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Abstract

An algebraic multigrid method for the solution of stabilized finite element discretizations of the Euler and Navier

Stokes equations on generalized unstructured grids is described. The method is based on an elemental agglomeration

multigrid strategy employing a semi-coarsening scheme designed to reduce grid anisotropy. The viscous terms are

discretized in a consistent manner on coarse grids using an algebraic Galerkin coarse grid approximation in which

higher-order grid transfer operators are constructed from the underlying triangulation. However, the combination of

higher-order transfer operators and Galerkin rediscretization diminishes the stability of stabilized inviscid operators on

coarse grids and a modification is proposed to alleviate this problem. A generalized line implicit relaxation scheme is

also described where the lines are constructed to follow the direction of strongest coupling. Applications are demon-

strated for convection–diffusion, Euler, and laminar Navier–Stokes. The results show that the convergence rate is

largely unaffected by mesh size over a wide range of Reynolds (Peclet) numbers.
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1. Introduction

Rapid advances in unstructured mesh methods for computational fluid dynamics (CFD) have been made

in recent years for both inviscid and viscous flows. In particular, unstructured meshes offer a practical

means for computation with complex domains and have the additional advantage of allowing easy

adaptation of the mesh. However, accurate and efficient solutions of the compressible Navier–Stokes
equations, especially in the turbulent high Reynolds number limit, remain a challenging problem due in

part to the wide range of associated length scales required to properly resolve flow features. This is espe-

cially true in the boundary layer regions which are characterized by strong variations in the normal
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direction but relatively weak streamwise variations. In order to accurately resolve the boundary layer in a
computationally efficient manner, grid anisotropy is employed. The grid anisotropy and the number of

unknowns required for these high Reynolds number flows (as compared to purely inviscid flows) leads to a

significant decrease in the effectiveness of many iterative solution methods.

The state of the art in solution methods for high Reynolds number flows on unstructured meshes is well

represented by the work of Mavriplis [1–4]. Mavriplis discretizes the Reynolds-averaged Navier–Stokes

(RANS) equations using a node-based finite volume method stabilized by a matrix-based artificial dissi-

pation. The solution method is a semi-coarsening non-linear multigrid scheme with a hybrid point/line

implicit smoother. For a variety of aerodynamic applications from airfoils to three-dimensional aircraft,
convergence rates for this approach ranged from 0.78 to 0.97, respectively. Of particular note with respect

to our work, Mavriplis [4] demonstrated that the limiting factor in the potential convergence rates for

Navier–Stokes was the use of lower-order approximations for the coarse grid discretizations. He concludes

that any improvement in the multigrid algorithm for these applications will have little effect on convergence

rates unless the coarse grid approximations are improved.

The use of lower-order approximations in multigrid solution of traditional finite volume discretizations

occurs because the stencils are non-compact. For a linear multigrid method (in which coarser grids are used

to solve the linear system arising from a Newton–Raphson iteration), the computational cost of evaluating
and/or storing the linearized operators is often impractical as a result of the extended stencils. For a non-

linear multigrid method (in which coarser grids approximate the non-linear problem directly), while storage

and/or calculation of the entire linearized operator is not required, a lower-order approximation of the non-

linear equations is still often used to decrease the work on the coarse grid. A possible solution to these

problems exists in the finite element method (FEM) since the resulting stencils are compact. Furthermore,

FEM discretizations readily permit higher-order formulations on unstructured meshes. We believe the

combination of compactness and higher-order accuracy are the critical ingredients for the development of

an accurate and efficient approximation method for the Navier–Stokes equations.
Our long term goal is the development of an effective solution method for accurate simulations of the

Navier–Stokes and Reynolds-averaged Navier–Stokes equations in complex geometries. The basic ap-

proach we are following employs higher-order FEM discretizations with multigrid solution techniques. In

this paper, we take an initial step towards this goal by considering multigrid solution of piecewise-linear

finite element discretizations for convection-dominated problems including laminar Navier–Stokes flows.

We begin by summarizing our strategy for applying multigrid to convection-dominated problems. Then,

the detailed algorithm is described and results are demonstrated for scalar convection–diffusion. Finally, we

apply an extension of the algorithm to Euler and Navier–Stokes solutions. Subsequent papers will consider
applications to higher-order discretizations and more complicated problems.
2. Overview of proposed multigrid strategy

Multigrid introduces coarser meshes to accelerate the convergence on the desired (fine) mesh. This

naturally leads to a decomposition of the solution error into rough error components, which cannot be

resolved on a coarser grid, and the complementary smooth error components which can be resolved on the
coarser grid. The crux of multigrid methods is the reduction of the rough error modes by means of an

inexpensive relaxation scheme on the current mesh, and correction of the smooth errors using the coarse

grid. Hence, the effectiveness of the multigrid performance is dependent on the synergy of the relaxation

scheme with the coarsening algorithms.

Until recently, multigrid solution of the Navier–Stokes equation for high Reynolds number flows had

very poor convergence rates often around 0.99 or worse [5]. As demonstrated by Pierce and Giles [6], the

use of high aspect ratio cells within the boundary layer collapses the convective eigenvalues onto the origin
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while decoupling the acoustic modes from the streamwise coordinate direction. Motivated by Fourier
analysis, Pierce and Giles developed a multigrid methodology for structured meshes based on point block

implicit smoothing and semi-coarsening. While this leaves some error modes lightly damped, the resulting

algorithm was shown to be a significant improvement over previous multigrid performance on structured

meshes. The work of Pierce and Giles led to the unstructured mesh multigrid algorithm of Mavriplis who

employed line solvers (in addition to semi-coarsening) to further strengthen the multigrid algorithm. In

both of these works, multigrid convergence rates where shown to be insensitive to cell aspect ratios in the

boundary layers.

The multigrid algorithm we have developed is based on these recent advances for solving finite volume
discretizations of high Reynolds number problems. In particular, we combine an implicit line relaxation

algorithm with a semi-coarsening, agglomeration multigrid algorithm to solve stabilized FEM discretiza-

tions. The line relaxation is designed to solve implicitly along the direction of strongest coupling in the mesh

and the agglomeration strategy is designed to reduce mesh anisotropy. Nodal agglomeration is a popular

coarsening technique in which fine grid nodes are merged to produce a coarse mesh [7–10,17]. However,

a known problem with existing nodal agglomeration methods is their inability to accurately represent

higher-order differential operators due to low accuracy multigrid transfer operators [1]. An alternative

agglomeration method is elemental (or volume) agglomeration that fuses neighboring elements into mac-
roelements [11–16]. In particular, Chan et al. [14] have developed higher-accuracy transfer operators which

are critical for efficient multigrid solutions of viscous problems. Our agglomeration multigrid algorithm is

an extension of Chan’s approach but produces semi-coarsened grids to reduce anisotropy. Furthermore,

while the use of higher-order interpolants results in consistently discretized viscous operators, in this work

we demonstrate an important duality with respect to inviscid operators. Specifically, the use of higher-order

transfer operators diminishes the stability of stabilized inviscid operators on coarser meshes.
3. Application to convection–diffusion

The strong form of the two-dimensional, linear convection–diffusion equation is,

r � ðVUÞ � r � ½lðx; yÞrU� ¼ f in X; ð1Þ
where X is a bounded domain in R2 with boundary C which is made up of a Dirichlet boundary CD and a

Neumann boundary CN ¼ C n CD. V ¼ ðu; vÞ is a prescribed divergence free velocity field, the coefficient
lðx; yÞ is a strictly positive diffusivity (or viscosity) coefficient and f is a source function. Let us consider the

partition of C into fC�;Cþg where

C� ¼ fðx; yÞ 2 C : V � n < 0g ðinflow boundaryÞ;

Cþ ¼ C n C� ðoutflow boundaryÞ;
and also consider the following boundary subsets,

C�
D ¼ CD \ C�;

C�
N ¼ CN \ C�:

We simplify the boundary conditions by assuming that C� � CD such that Eq. (1) is subject to the

boundary conditions,

U ¼ gD on CD;

ð�UVþ lrUÞ � n ¼ gN on Cþ
N:
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The behavior of Eq. (1) is governed by the Peclet number,

Pe ¼ UL
l

;

which represents the relative importance of advection to diffusion where U is some reference speed and L is

a characteristic length of the problem. The application of the classical Galerkin finite element method to the

advection-dominated convection–diffusion equation is well known to lack stability, hence, we consider the

streamline upwind/Petrov Galerkin (SUPG) method introduced by Brooks and Hughes [18]. A general-

ization of the SUPG method is the Galerkin/least squares (GLS) method [19] which is equivalent to the

SUPG method for purely hyperbolic operators and/or for piecewise-linear elements.

Let the spatial domain Xh, be discretized into non-overlapping elements Te, such that Xh ¼ [Te, and
Te \ Te0 ¼ ;, e 6¼ e0. Within each element, the solution is approximated by a set of kth-order interpolation
polynomials Pk which are C0 continuous across the elements,

Ph ¼ fUhjUh 2 C0ðXhÞ; UhjXe 2 PkðXeÞ 8Xe 2 Xhg:
We consider the trial finite element solution space Sh,

Sh ¼ fV hjV h 2 Ph; V h ¼ gD on CDg;
and introduce the space Vh of test functions,

Vh ¼ fW hjW h 2 Ph; W h ¼ 0 on CDg:

The discrete variational form of Eq. (1) reduces to finding Uh 2 Sh such that:

BðUh;whÞgal þ BðUh;whÞgls þ BðUh;whÞbc ¼ 0 8wh 2 Vh; ð2Þ

where the forms Bð�; �Þgal, Bð�; �Þgls and Bð�; �Þbc account for the Galerkin, GLS stabilization, and boundary

condition terms respectively,

BðUh;whÞgal ¼
Z
X
ð�UhV � rwh þ lrUh � rwh � whf ÞdX;

BðUh;whÞgls ¼
Xnel
e¼1

Z
Xe
ðV � rwh � lr2wh � f Þse � ðV � rUh � lr2Uh � f ÞdX;

BðUh;whÞbc ¼
Z
CN

whgN dC:

The coefficient se is the GLS stabilization parameter which is positive and represents an intrinsic time

scale. The dependence of se on the local element length scale (he) and local element Peclet number

(Peh ¼ kVkhe=l) is important in order to provide accuracy and stability [20]. For the construction of se, we
consider a generic triangle Te and introduce an affine mapping x ¼ xðnÞ, between the master triangle bTe, in
the parametric space n ¼ ½n; g�T, and Te 2 X in the mapped space x ¼ ½x; y�T. Let

B1 ¼ ðy;g�u� x;g�vÞ=x;ny;g � y;nx;g;

B2 ¼ ðx;n�v� y;n�uÞ=x;ny;g � y;nx;g;

B3 ¼ �B1 �B2;

where V ¼ ð�u;�vÞ is the average of the velocity defined at the three element vertices. Then, the parameter se is
defined by
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DðB1;B2;B3Þ ¼
3

ðjB1j þ jB2j þ jB3jÞ
;

Peh ¼ ðV � VÞD
l
;

se ¼ D
Pehffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ Pe2h

p :

For the choice of the nodal basis functions and linear P1 interpolation polynomials in Sh and Vh, Eq.

(2) represents a sparse linear system of equations which can also be written simply as

AhUh ¼ bh: ð3Þ
3.1. Multigrid algorithm

Given a linear system of equations AhUh ¼ bh, derived on a grid Xh, we consider a multigrid formulation

for the solution. The application of an iterative scheme or smoother SðU0
h; bh;Ah; nÞ results in a better

estimate Un
h to the solution after a given number of iterations n, starting from an initial guess U0

h. The

multigrid algorithm considers the computation of corrections to the error enh ¼ Un
h � Uh, on a coarser grid

XH via a set of coarse grid equations AHeH ¼ bH and the transfer operators, Rh and Ph which are the

restriction and prolongation operators respectively [21]. This two grid algorithm may be applied recursively

to a hierarchy of grids fXk : ðk ¼ 0; . . . ;mÞg such that X0 ¼ Xh. Let nk be the dimension of the finite

dimensional vector space Rnk associated with each grid Xk such that nk > nkþ1 and let fAk : ðk ¼ 0; . . . ;
mÞ;Ak 2 Rnk�nkg be the representations of Ah on these coarse grids such that A0 ¼ Ah. Also, let

fRk : R
nk 7!Rnkþ1g and fPk : R

nk 7!Rnk�1g represent the restriction and prolongation operators defined on

these spaces respectively. In our implementation of multigrid, the coarsening procedure terminates when

the coarse grid system of equations AmUm ¼ bm is small enough to be solved exactly.
3.2. Implicit line smoother

Consider a splitting of the matrix Ak,

Ak ¼ Mk �Nk;

where Mk is non-singular. A fixed-point iterative method for the system is,

Uiþ1
k ¼ SkU

i
k þ xM�1

k bk;

Sk ¼ I� xM�1
k Ak;

ð4Þ

where Ui
k represents the current solution estimate at iteration i and x is a relaxation factor. The matrix Mk

is the preconditioning matrix and Sk is called the iteration matrix. It may be shown that the basic iterative

method Eq. (4) will converge for any initial guess U0
k iff qðSkÞ < 1 where qðSkÞ is the spectral radius of the

matrix Sk. Smoothers such as point Jacobi that possess good damping properties for elliptic operators have

been shown to exhibit poor convergence rates when applied to strongly convective systems [21,22]. Fur-

thermore, many simple iterative schemes such as point Jacobi or point Gauss–Seidel discretizations are

known to be unstable for higher-order solutions of hyperbolic partial differential equations [21]. A possible

solution is to increase the stability region of the smoother by the introduction of a multistaging scheme.
Multistage methods were developed by Jameson [23] for the solution of the Euler equations and have been
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applied with great success to a variety of applications [23,24]. An N -stage scheme using the Mk to pre-

condition the linear residual has the following generic form,

u0k ¼ Ui
k;

u1k ¼ u0k þ xa1M
�1
k ðbk � Aku0kÞ;

� � � ¼ � � �
unk ¼ u0k þ xanM

�1
k ðbk � Akun�1

k Þ;
� � � ¼ � � �
uNk ¼ u0k þ xaNM

�1
k ðbk � AkuN�1

k Þ;
Uiþ1

k ¼ uNk ;

where an are the multistage coefficients. Although optimized multistage coefficients may be determined for a

specific spatial discretization [24–29], in this work the optimized multistage coefficients developed by Lynn

[29] for finite volume discretizations are utilized. Table 1 shows the numerical values employed for the 3-

stage and 5-stage schemes.

In regions with highly stretched grids or strong convection, the convection–diffusion model problem is

characterized by strong coupling in one direction. Hence, we opt to use an implicit line preconditioner
where the implicit lines are constructed to follow directions of strong influence. For the highly stretched

grids used boundary layer simulations, strong coupling often occurs normal to the boundary layer. In

strongly convective regions of the flow, the strong coupling occurs in the streamwise directions. The line

smoother developed here for unstructured grids is similar to the geometry-based lines formed by Mavriplis

[2,3,30]. In Mavriplis’ scheme, the formation of the lines is based purely on the local grid stretching and, in

the isotropic regions of the grid, reverts to a point implicit smoother.

To measure nodal coupling for use in forming the implicit lines, we introduce a coupling measure. For a

scalar convection–diffusion problem, we use the coefficients ai;j of Ak to form the coupling measure. Let the
set of points, denoted by Si, connected to node i be,

Si � fj 6¼ i : ai;j 6¼ 0g:
Then, we define the coupling measure between any two connected vertices (i; j) by

coupði; jÞ � maxðbi; bjÞ;

bi �
jai;jj

max jai;kj
fk : k 2 Sig;

bj �
jaj;ij

max jaj;kj
fk : k 2 Sjg:

ð5Þ

In convection-dominated flows with upwind-type discretizations, strong coupling tends to be one-sided

which necessitates the two way consideration of Eq. (5). We refer to [21,31] for other methods regarding the
detection of strong coupling.
Table 1

Optimized damping multistage coefficients by Lynn [29]

3 Stage 5 Stage

a1 0.2239 0.08699

a2 0.5653 0.1892

a3 1 0.3263

a4 0.5558

a5 1
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The algorithm for constructing the lines given the coupling measure is:

Procedure 1 (Implicit line construction).
Step 0: Create tag vector for the nodes and untag all nodes.

Step 1: Tag the current node and compute coupling measure for all of the untagged nodes connected to the

current node.

Step 2: Choose the node which has the largest coupling measure greater than a threshold (typically 0.75).

Repeat from Step 1.

Step 3: If no node exists meeting criteria, terminate line. Select next untagged node to initiate a new line.
Repeat from Step 1 until all nodes are tagged.

Fig. 1 shows an example of the implicit line construction for a 2D GLS/FEM discretization of the linear

convection–diffusion equation with an imposed velocity field of V ¼ ð�y; xÞ. The use of a line relaxation

scheme leads to a natural splitting of the matrix into tridiagonal sub-matrices which may be solved in OðNÞ
time. Furthermore, after each solve of an individual line, the linear solution is updated resulting in a line

Gauss–Seidel preconditioner.
Fig. 1. Example of implicit line and coarse grid construction from a fine grid for scalar convection–diffusion (see Fig. 4 for a

description of the problem): (a) grid, (b) implicit lines and (c) coarse grid.
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3.3. Agglomeration and coarse grid operators

The coarse space matrix Ak may be constructed by rediscretization, however algebraic multigrid (AMG)

considers an algebraic alternative to this [21] given by the recursive relation,

Akþ1 ¼ RkAkPk:

Although the Rk and Pk operators are independent, the choice of Rk ¼ PT
k results in the minimization of the

error in the solution after coarse grid corrections when measured in the A-norm, k � kAk
, for SPD operators.

This choice for the interpolation operators also has the added advantage that only one of the operators

needs to be constructed. This method for coarse space operator construction is called the Galerkin coarse

grid approximation (GCA) and is the approach we use.

To obtain mesh size independent convergence rates, the interpolation operators must have sufficient

accuracy [21,32]. Specifically,

mP þ mR > 2m; ð6Þ

where mP and mR are the order (degree plus one) of the polynomials that are interpolated exactly by the

prolongation P and restriction R operators respectively, and 2m is the order of the governing partial dif-

ferential equation.

As described previously, the agglomeration technique used to construct coarse grids can be node-based

or element-based. However, the standard implementation of nodal agglomeration [7–10] uses simple

injection (summation) operators for prolongation (restriction). As a result, mP and mR are unity, and for a

second-order operator (2m ¼ 2), the accuracy condition (Eq. (6)) is violated [21]. Thus, either the pro-
longation, restriction, or both must be exact for linear polynomials. To achieve this accuracy, we have

chosen an elemental agglomeration strategy because the existence of the underlying triangulation allows the

relatively straightforward development higher-order interpolation [14–16,33,34]. We note, however, that

our use of the geometric information from the triangulation makes our approach a blend of geometric and

algebraic multigrid.

A review of elemental agglomeration is given by Chan et al. [15] who also propose alternative elemental

agglomeration algorithms. The goal of our elemental agglomeration method is to reduce mesh anisotropy

while coarsening the grid. One important distinction between the proposed method and that described by
Chan et al. [15] is that the coarse mesh elements are not converted into standard elements by a retrian-

gulation but are generalized polygons formed by the agglomerated fine mesh elements. This is especially

attractive in 3D because of the complicated rules which may be involved for the retriangulation [15]. One

drawback of this formulation is that the support for the basis functions defined on these macroelements is

larger than standard triangular elements.

The coarse grid topology is constructed by partitioning the elements into macroelement groups as shown

in Fig. 2 for a 2D mesh. A macroedge is defined to be the ordered collection of fine grid edges which are

shared by two neighboring macroelements. To complete the definition of the coarse grid graph, the coarse
nodes are chosen to be the fine grid nodes where three or more macroedges meet. Macroelements with

exactly two coarse nodes (and would therefore be degenerate elements) are modified by the addition of extra

supporting coarse nodes using fine grid nodes which lie on the macroedge connecting these two coarse nodes.

The decision to agglomerate two neighboring elements is determined by the macroelement skew. For a

macroelement defined by a general polygon, the macroelement skew is a measure of anisotropy and is

defined as the area of the n-gon divided by the area of an isotropic n-gon with the same perimeter. In the

extreme cases, this is 0 for co-linear polygon vertices and unity for an isotropic n-gon. Macroelement skew

can be extended to 3D through a suitable redefinition such as ratio of macroelement volume to macro-
element circumsphere volume similar to the control volume skew described by Venkatakrishnan and

Mavriplis [35].
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We also define the related concept of edge skew. Specifically, for an element which borders a macro-

element/element on a given edge, edge skew is defined as the macroelement skew of the macroelement which

would be created if the element is merged with the macroelement/element across that edge.

The macroelement construction algorithm is:

Procedure 2 (Macroelement construction).
Step 0: Consider the graph of the mesh: G ¼ ðV ;EÞ and calculate the edge length for the edges E.
Step 1: Obtain seed element: if there is no seed element in the queue, choose any suitable element which

does not belong to a macroelement group.

Step 2: Agglomerate unassigned neighboring elements with edge skew larger than some specified fraction

(typically 0.75) of the average edge skew.

Step 3: Place elements which share a vertex but no edges with the last macroelement created into the queue.

Step 4: Repeat Step 1 until either all elements belong to a macroelement or there are no more seed ele-

ments.

In the case where the lengths and areas of the fine grid elements are equal, the algorithm degenerates to a
4:1 isotropic agglomeration in 2D and fully recovers the natural coarse structure for a regular grid. After

the algorithm terminates, some post-processing is necessary to deal with ‘‘sliver’’ elements. These are fine

mesh elements which were not originally selected by the algorithm to be merged into a macroelement. A

determination of which macroelement to merge these sliver elements with is based on the minimum edge

skew. An example of an agglomerated coarse mesh is shown in Fig. 1(c).

To construct the multigrid interpolation operators, nodal basis functions are derived for the coarse

space. The basis functions use geometry-weighted graph distance interpolation on both the boundary and

interior. This approach is an extension of an interpolation proposed by Chan et al. [14] which makes use of
graph distance interpolation on the boundary and constant interpolation over the interior. For every fine

grid node i in a macroelement which corresponds to a coarse grid node j, the prolongation operator

Pkði; jÞ ¼ 1. For every other fine grid node i in the macroelement which does not correspond to a coarse grid

node, the prolongation operator is,
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Pkði; jÞ ¼
1

distði;jÞP
l

1
distði;lÞ

;

where distði; jÞ is the length along the graph from node i to coarse grid node j. If node i is on a macro-

element edge, then the summation over l only includes the coarse grid nodes on that macroelement edge.
Otherwise, if node i is in the interior of the macroelement, the summation occurs over all coarse grid nodes

for the macroelement. We note that this prolongation operator is not linearly exact for general triangu-

lations in the interior of the macroelements. Finally, with the prolongation operator defined as above, the

restriction operator is determined using the Galerkin approach, Rk ¼ PT
k .

3.4. Coarse grid stabilization scaling

Coarse grid algebraic discretizations can result in a lack of stability when applied to convection-domi-
nated problems. The problem stems from the use of stabilized methods such as SUPG or GLS in which the

stabilization enters through a term which is proportional to the local mesh size. As the grid is coarsened, the

stabilization should be proportional to the coarse grid mesh size, however, straightforward application

of the GCA algebraic discretization will result in the stabilization being based on the fine mesh spacing. Let

us consider the matrix equation (Eq. (3)) where Ak is some matrix resulting from a stabilized method

such that,

Ak ¼ Abase
k þ As

k; ð7Þ
where As

k is the component containing the stabilization parameter and Abase
k is the base stiffness matrix

(Galerkin+ boundary terms for FEM). Stabilization schemes for convection–diffusion operators such as

those used here add a dissipative term (roughly) of the form shr2Uh, where sh ¼ OðhÞ. The higher-order

interpolant produced with our approach results in a consistent approximation of second-order operators.

Thus, on the coarse grid, sHr2UH ¼ OðhÞ since sH ¼ OðhÞ and r2UH ¼ Oð1Þ. Clearly, the stabilization term
is too small for the coarse grid by a factor of H=h since sH is based on h instead of H . For nodal

agglomeration using the standard injection-based interpolation, second-order operators are not consis-

tently approximated and are scaled by a factor of roughly H=h. Thus, the overall stabilization tends to be

OðHÞ as desired when using this approach. This demonstrates an interesting and important duality, spe-

cifically: using higher-order interpolation results in consistently discretized viscous operators but diminishes

the stability of (stabilized) inviscid operators, whereas using lower-order interpolation results in inconsis-

tently discretized viscous operators but preserves the stability of the (stabilized) inviscid operators.

This loss of stabilization when using higher-order transfer operators can be demonstrated in the simple
setting of scalar convection in one-dimension. For pure convection with constant velocity u, the stabil-

ization parameter on a uniform fine mesh is, se ¼ h=2juj. The resulting stabilized discretization for linear

elements is the standard first-order upwind scheme given by,

1
2
uðUhiþ1

� Uhi�1
Þ � 1

2
jujðUhiþ1

� 2Uhi þ Uhi�1
Þ ¼ 0:

The first term is the central difference operator which arises from the Galerkin term in the SUPG/GLS
formulation. The second term is the usual upwind dissipation which arises from the stabilization term in the

SUPG/GLS formulation. On a uniform mesh, the prolongation operator based on linear interpolation is,

P ¼
1 0
1

2

1

2
0 1

0
BB@

1
CCA:
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Using a Galerkin coarse grid discretization in which R ¼ PT, the coarse grid discrete equation is,

1
2
uðUHiþ1

� UHi�1
Þ � 1

4
jujðUHiþ1

� 2UHi þ UHi�1
Þ ¼ 0;

where H ¼ 2h. Clearly, the stabilization term has been reduced by a factor of 1/2 relative to the (Galerkin)

central difference term.

In order to address the loss of stabilization, we introduce a length scaling matrix r to increase the coarse
grid stabilization. We note that Mavriplis has used a similar scaling approach to improve the accuracy of

coarse grid discretizations when using nodal agglomeration with low-order transfer operators [1]. The fine

grid matrix is split according to Eq. (7) and the coarse grid matrices are computed using the GCA for-

mulation,

Akþ1 ¼ RkA
basePk þ rRkA

sPk � Abase
kþ1 þ As

kþ1;

where r is a diagonal scaling matrix which accounts for h-dependency in As. For each coarse grid node, the

scaling is the square root of the coarse-to-fine mesh areas associated with the node. Note, this scaling

procedure is only fully appropriate for coarse grid nodal control volumes with shapes that are similar to the

fine grid nodal control volume. A more appropriate version for semi-coarsening has not been developed yet.

The effect of s stabilization scaling is demonstrated by plotting the eigenspectrum of the system matrix

Ak¼0 and the coarse space matrix Ak¼1 with and without scaling. The test case considered is the linear

convection–diffusion equation discretized over a square domain X ¼�0; 1½2 (Fig. 1(a)) with a prescribed

velocity field V ¼ ð�y; xÞ and Peclet number of 106. An eigenspectrum decomposition of the fine grid matrix
and the first coarse grid matrix is shown in Fig. 3, with and without s scaling. If the coarse grid is discretized

with the proper level of stabilization for the mesh, the real portion of the eigenvalues would be expected to

scale with H=h relative to the fine grid. Since numerical stabilization is designed to only introduce dissi-

pation, the imaginary portion of the eigenvalues is set by the model problem and should remain largely

unchanged by the rediscretization on the coarse mesh. This behavior is clearly observed in the eigenspec-

trum of the coarse grid with s scaling shown in Fig. 3. Furthermore, without s scaling, the imaginary

portion of the eigenvalues has grown on the coarse grid.

3.5. Results

We consider the linear convection–diffusion equation (Eq. (1)) over a square domain defined by X ¼
�0; 1½2 (Fig. 4) and prescribed velocity field V ¼ ð�y; xÞ. The forcing function f is set to 0, the Neumann

outflow condition on the upper boundary is gN ¼ 0 and the Dirichlet conditions on the other boundaries

are,

gD ¼

5:0ðx� 0:2Þ for 0:2 < x6 0:4; y ¼ 0;
1 for 0:4 < x6 0:6; y ¼ 0;
1� 5ðx� 0:6Þ for 0:6 < x6 0:8; y ¼ 0;
0 otherwise:

8>><
>>:

The discretized domain is adapted on the x ¼ 0 boundary to capture the boundary layer as shown in Fig.

1(a). All presented results are based on a V ð1; 1Þ multigrid cycle using the line Gauss–Seidel preconditioner.

The line preconditioner was found to be stable for this problem even without multistaging. Thus, all results

presented for this example are based on a single-stage formulation with x ¼ 0:95.
The dependence of the convergence rate on the mesh size is shown in Fig. 5(a). Three meshes with

increasing mesh sizes of 3849, 15,763 and 60,399 points were used. Good convergence properties are ob-

served with some departure for the largest mesh. The dependence of the convergence rate on the Peclet

number is shown in Fig. 5(b) for a range of Reynolds numbers from 102 to 106 on the 60,399 node mesh.

Clearly, the algorithm works well for a wide range of Peclet numbers maintaining a nearly constant number



0 0.05 0.1 0.15 0.2 0.25 0.3
–0.03

–0.02

–0.01

0

0.01

0.02

0.03

Re

Im

0 0.05 0.1 0.15 0.2 0.25 0.3
–0.03

–0.02

–0.01

0

0.01

0.02

0.03

Re

Im

0 0.05 0.1 0.15 0.2 0.25 0.3
–0.03

–0.02

–0.01

0

0.01

0.02

0.03

Re

Im

(a) (b)

(c)

Fig. 3. Comparison of scalar convection–diffusion equation eigenspectrum with and without s scaling for Pe ¼ 1e6 (see Fig. 4 for a

description of the problem): (a) fine grid matrix A0, (b) coarse grid matrix A1 without s scaling and (c) coarse grid matrix A1 with s

scaling.
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of iterations for convergence. The average convergence rates (��) and asymptotic convergence rates (�) for
the different test cases are summarized in Table 2. The average multigrid convergence rate is defined as

�� ¼ krnk
kr0k

� �1
n

;

where n is the number of multigrid cycles while the asymptotic convergence rate � is defined as the average
convergence rate computed over the last five multigrid cycles.
4. Application to compressible flow

We now consider the application of the proposed AMG algorithm to a stabilized finite element discreti-

zation of the Navier–Stokes equations. The discretization used for the compressible flow equations was

provided byWong et al. [36]. The steady 2D compressible flow equations in conservative form can be written,

F1ðVÞ;1 þ F2ðVÞ;2 ¼ Fv
1ðVÞ;1 þ Fv

2ðVÞ;2;
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where

F1 ¼

qu1
qu21 þ p
qu1u2

u1ðqE þ pÞ

8>><
>>:

9>>=
>>;; F2 ¼

qu2
qu1u2
qu22 þ p

u2ðqE þ pÞ

8>><
>>:

9>>=
>>;;

Fv
1 ¼

0

s11
s12

u1s11 þ u2s12 þ q1

8>><
>>:

9>>=
>>;; Fv

2 ¼

0

s21
s22

u1s21 þ u2s22 þ q2

8>><
>>:

9>>=
>>;;



Table 2

Convergence results for scalar convection–diffusion problem using a V ð1; 1Þ multigrid cycle and a single-stage line Gauss–Seidel

relaxation (see Fig. 4 for a description of the problem)

Grid size Pe Average convergence �� Asymptotic convergence �

3849 102 0.31 0.29

15,763 102 0.47 0.50

60,399 102 0.67 0.69

3849 104 0.53 0.57

15,763 104 0.52 0.55

60,399 104 0.55 0.58

3849 106 0.52 0.54

15,763 106 0.54 0.54

60,399 106 0.65 0.63
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such that Fi are the inviscid fluxes, Fv
i are the viscous fluxes, q is the density, u ¼ fu1; u2gT is the velocity

vector, E is the specific total energy, and p is the pressure. The system of equations is closed through the

equation of state, p ¼ ðc� 1Þqe, where e ¼ E � juj2=2 is the internal energy where c ¼ 1:4 is the ratio of

specific heats. The viscous stresses and heat transfer are,

sij ¼ l
oui
oxj

�
þ ouj

oxi
� 2

3
dij

ouk
oxk

�
;

qi ¼ �k
oT
oxi

;

where l is the dynamic viscosity and k the thermal conductivity, both of which are assumed to be constant.

The entropy variables V are used for the dependent variables [37–39], specifically,

V ¼

cþ 1� s
c� 1

� qE
p

qu1
p
qu2
p

� q
p

2
666666666664

3
777777777775
:

Barth [38] has shown that the use of entropy variables leads to a non-linear stability condition for these

stabilized discretizations. The GLS algorithm can then be written as: Find Vh 2 Vh such that for all

W 2 Vh,

BðVh;WÞgal þ BðVh;WÞgls þ BðVh;WÞbc ¼ 0;

where

Vh ¼ fWjW 2 ðC0ðXÞÞ4; WjTe 2 ðP1ðTeÞÞ4 8Te 2 Xg;

BðVh;WÞgal ¼
Z
X
ð�W;1 � ðF� FvÞ1ðVhÞ �W;2 � ðF� FvÞ2ðVhÞÞdX;
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BðVh;WÞgls ¼
Z
X
fðF� FvÞ1ðWÞ þ ðF� FvÞ2ðWÞg � sfðF� FvÞ1ðVhÞ þ ðF� FvÞ2ðVhÞgdX;

BðVh;WÞbc ¼
Z
CnCw

W � ðFffÞðVh; g; nÞds:

The domain boundary is separated into an impermeable solid wall Cw, and a computational far field
boundary C n Cw. For the Navier–Stokes equations, no-slip Dirichlet boundary conditions replace the

momentum equations over the solid wall, and the wall is assumed adiabatic. On the far field boundary, a

characteristic-based boundary condition is imposed from a known farfield state, g through an upwind flux-

function Fff .

s is the stabilization matrix which must be symmetric (for the current choice of entropy variables),

positive definite, have dimensions of time and scale linearly with the element size. The current imple-

mentation for s is based on the following modification for viscous simulations:

s�1 ¼ s�1
i þ s�1

v ;

where si is the inviscid stabilization matrix by Wong et al. [36] and sv is a viscous modification as developed

by Shakib et al. [40].

4.1. AMG extension to the Navier–Stokes equations

The solution strategy employed for the non-linear system of equations is a damped Newton scheme in

which multigrid is used to solve the linear system at each Newton iteration. The agglomeration and coarse

grid discretizations are performed as described previously for the convection–diffusion application. The line

preconditioner is extended to the system case by solving the local blocks for each node in a coupled manner.

The coupling matrix used to form the lines is chosen as the stiffness matrix resulting from a GLS redis-
cretization of the stationary linear convection equation using the velocity field V ¼ ðu1; u2Þ from the current

Newton iteration. The implicit lines for the inviscid flow around a NACA 0012 airfoil at a zero angle of

attack and a freestream Mach number of 0.1 are shown in Fig. 6. Also, we have found that symmetric line
Fig. 6. Grid and implicit lines for inviscid flow simulation around a NACA 0012 airfoil: (a) grid and (b) lines for inviscid flow at Mach

0.1.
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Gauss–Seidel (i.e. sweeping over the lines symmetrically from first-to-last and then from last-to-first)
provides advantages in the robustness and convergence rate of the multigrid algorithm to justify the

doubled cost relative to the uni-directional Gauss–Seidel sweep for Euler and Navier–Stokes solutions.

For both the Euler and Navier–Stokes solutions, the termination condition for the linear multigrid

solver is chosen to be when the linear residual is the square of the non-linear residual. This ensures that

Newton quadratic convergence is achieved without requiring the linear multigrid solution to converge to

machine precision.

4.2. Euler results

In order to demonstrate the effectiveness of the proposed multigrid scheme for the compressible Euler

equations, we will consider two different test cases and conduct a study of dependency on the grid size and

Mach number.

The first case consists of a channel flow with a sine-squared bump of 5% height on the lower wall as

shown in Fig. 7. The domain is discretized into a structured grid of quadrilaterals which are then trian-

gulated. A V ð2; 1Þ multigrid cycle is used with a 3-stage multistage scheme and the symmetric line Gauss–

Seidel preconditioner. Table 3 shows the asymptotic convergence rate � for a number of fine grid sizes and
Mach numbers. As can be observed from Table 3, excellent convergence rates (below 0.1) are achieved for

all cases.

The second test case consists of external flow around a NACA 0012 airfoil at angle of attack of a ¼ 0�
and 3�. A typical mesh for this test case is shown in Fig. 6(a). Both the 3-stage and 5-stage schemes were run

for this test case, and a V ð2; 1Þ multigrid cycle was used.

Table 4 shows the asymptotic convergence rate � for a number of fine grid sizes and Mach numbers as

well as the total element complexity (TEC) and total vertex complexity (TVC) over all the grids. Given the

number of elements nek and vertices nvk per grid level, these complexities for an m-grid (total of fine + coarse)
problem are defined as,
l = 1

L = 3

h = 1

flow
u . n = 0

u . n = 0

u 

Fig. 7. Channel flow geometry for compressible, inviscid flow example.

Table 3

Asymptotic linear multigrid convergence rates for compressible channel flow using a V ð2; 1Þ multigrid cycle and a 3-stage scheme with

symmetric line Gauss–Seidel preconditioning

Fine grid size # of coarse grids � : M ¼ 0:1 � : M ¼ 0:5

31· 11 1 0.04 0.06

61· 21 2 0.04 0.06

121· 41 3 0.04 0.07

241· 81 4 0.06 0.08



Table 4

Asymptotic linear multigrid convergence rates for compressible Euler flow over a NACA 0012 airfoil using a V ð2; 1Þ multigrid cycle

and symmetric line Gauss–Seidel preconditioning

Fine grid size Coarse grids TVC TEC �M¼0:1 (a ¼ 0�) �M¼0:5 (a ¼ 0�) �M¼0:5 (a ¼ 3�)

3 Stage 5 Stage 3 Stage 5 Stage 3 Stage 5 Stage

2607 2 1.58 1.34 0.26 0.19 0.24 0.18 0.28 0.18

5258 3 1.64 1.36 0.31 0.22 0.34 0.24 0.25 0.17

10,273 4 1.67 1.36 0.28 0.17 0.25 0.24 0.24 0.17

20,621 5 1.64 1.36 0.33 0.26 0.34 0.21 0.23 0.21
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TEC ¼
Xm
k¼0

nek
ne0

;

TVC ¼
Xm
k¼0

nvk
nv0

:

These complexities can be used as a measure of the overall work and storage required for the multigrid
algorithm in comparison to the fine grid calculation. The number of coarse grids chosen was such that the

number of vertices on the coarsest grid is less than 500. As can be observed from Table 4, excellent and

relatively mesh independent convergence rates are achieved. The vertex complexities show that the total

storage for the multigrid algorithm is about 65% greater than the fine mesh computation. Fig. 8 shows the

non-linear Newton and linear multigrid solver residual history for the compressible Euler computation on

the 20,621 node fine grid for a freestream Mach number of 0.5 and a 5-stage multistage scheme.

4.3. Navier–Stokes results

The final test case is the laminar flow over a NACA 0005 airfoil at a Reynolds number of 5000. The grid,

shown in Fig. 9, has stretching in the boundary layer where the largest cell aspect ratio is of the order of

500. The V ð2; 1Þ multigrid cycle is used again with a 5-stage scheme and symmetric line Gauss–Seidel

preconditioner.
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Fig. 8. Non-linear Newton outer loop and linear multigrid convergence histories for compressible Euler flow over a NACA 0012

airfoil with 20,621 fine grid nodes at Mach 0.5 and zero angle of attack using a V ð2; 1Þ multigrid cycle and a 5-stage scheme with

symmetric line Gauss–Seidel preconditioning: (a) non-linear convergence history and (b) linear convergence history.



Fig. 9. Unstructured mesh for viscous simulation on a NACA 0005 airfoil.

Table 5

Asymptotic linear multigrid convergence rates for compressible Navier–Stokes flow over a NACA 0005 airfoil at Reynolds number

5000 using a V ð2; 1Þ multigrid cycle and a 5-stage scheme with symmetric line Gauss–Seidel preconditioning

Fine grid size Coarse grids TVC TEC �M¼0:1 (a ¼ 0�) �M¼0:5 (a ¼ 0�) �M¼0:5 (a ¼ 3�)

8872 2 1.64 1.37 0.16 0.37 0.21

18,416 3 1.88 1.44 0.25 0.37 0.57

36,388 4 1.67 1.37 0.35 0.35 0.45
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Fig. 10. Non-linear Newton outer loop and linear multigrid convergence histories for compressible Navier–Stokes flow over a NACA

0005 airfoil at Mach 0.5, Reynolds number 5000, and zero angle of attack with 36,388 fine grid nodes using a V ð2; 1Þ multigrid cycle

and a 5-stage scheme with symmetric line Gauss–Seidel preconditioning: (a) non-linear convergence history and (b) linear convergence

history.
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During the initial stages of the Newton iteration, it was found that large transient growths occurred in

the solution preventing convergence. As a result, timestepping was introduced for the initial iterations. In
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the later iterations, the timestepping was eliminated and the Newton method was recovered. The asymp-
totic convergence rates for the linear multigrid solver are reported only for the final Newton iterations once

the timestepping is eliminated. Table 5 shows the asymptotic convergence rate � as well as the total element

and vertex complexities for a sequence of independently generated fine grid sizes. As can be observed from

Table 5, excellent convergence rates are achieved. Also, the vertex complexity is still reasonably low, despite

the semi-coarsening, increasing the storage cost of the multigrid algorithm by at most 88% relative to the

fine mesh. Fig. 10 shows the non-linear Newton and linear multigrid solver residual history for the com-

pressible Navier–Stokes computation on the 36,388 node fine grid for a freestream Mach number of 0.5 and

zero angle of attack. After 35 non-linear iterations, the timestepping was removed with a corresponding
jump in the residual followed by Newton convergence as shown in Fig. 10.
5. Conclusion

A multigrid method has been developed for solving convection-dominated flows using stabilized finite

element discretizations. The algorithm combines a line preconditioner with semi-coarsening using an alge-

braic multigrid approach in which elements are agglomerated. We demonstrate that numerical stabilization
on the coarse grid scales with the fine grid spacing when accurate prolongation and restriction operators are

used. A modification to the algebraic coarse grid discretization is proposed allowing the stabilization to scale

appropriately with the coarse grid size. The multigrid convergence rates were shown to be very insensitive to

both mesh size and Reynolds number. While the current algorithm is demonstrated only for linear elements,

on-going work is investigating the extension of the basic approach to higher-order elements.
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