
GMD �
Forschungszentrum
Informationstechnik
GmbH

GMD Report

Klaus Stüben

November 1999

70

Algebraic Multigrid (AMG):
An Introduction with
Applications

Updated version of GMD Report N° 53, March 1999

© GMD 1999

GMD �
Forschungszentrum Informationstechnik GmbH
Schloß Birlinghoven
D-53754 Sankt Augustin
Germany
Telefon +49 -2241 -14 -0
Telefax +49 -2241 -14 -2618
http://www.gmd.de

In der Reihe GMD Report werden Forschungs- und Entwicklungs-
ergebnisse aus der GMD zum wissenschaftlichen, nicht-
kommerziellen Gebrauch veröffentlicht. Jegliche Inhaltsänderung
des Dokuments sowie die entgeltliche Weitergabe sind verboten.

The purpose of the GMD Report is the dissemination of research
work for scientific non-commercial use. The commercial
distribution of this document is prohibited, as is any modification
of its content.

Anschrift des Verfassers/Address of the author:
Dr. Klaus Stüben
Institut für Algorithmen und Wissenschaftliches Rechnen
GMD � Forschungszentrum Informationstechnik GmbH
D-53754 Sankt Augustin
E-mail: stueben@gmd.de

ISSN 1435-2702

Abstrakt. Seit den fr�uhen neunziger Jahren besteht ein stark wachsender Bedarf an ef-
�zienteren Methoden zur L�osung gro�er, d�unnbesetzter und unstrukturierter linearer Glei-
chungssysteme. Klassische L�osungsverfahren sind f�ur praktisch relevante Problemgr�o�en
an ihre Grenzen gesto�en und neue hierarchische Verfahren mu�ten entwickelt werden,
um die numerische E�zienz zu steigern. Dieses Paper gibt eine elementare Einf�uhrung
in die erste, rein matrix-orientierte Methode dieser Art, die algebraische Mehrgitterme-
thode (AMG). In dieser Methode wird die klassische Mehrgitteridee der Kombination
von Gl�attungs- mit Grobgitterkorrekturprozessen auf gewisse Klassen von Matrixproble-
men �ubertragen. Neben ihrer Robustheit und E�zienz besteht ein gro�er Vorteil dieser
Methode etwa in ihrer direkten Anwendbarkeit zur L�osung verschiedener Typen elliptischer
partieller Di�erentialgleichungen auf unstrukturierten, zwei- oder dreidimensionalen Git-
tern. Weil AMG keine geometrische Information ausnutzt, kann es unmittelbar auch zur
L�osung von Problemen eingesetzt werden, die keinen direkten geometrischen Hintergrund
besitzen, vorausgesetzt, die zugrundeliegenden Matrizen erf�ullen gewisse Voraussetzungen.
Obwohl der AMG-Ansatz bereits zu Beginn der achtziger Jahre entwickelt wurde, stellt
er immer noch einen der e�zientesten Ans�atze zur algebraischen L�osung entsprechender
Probleme dar. Allerdings sind zwischenzeitlich einige Modi�kationen und Erweiterun-
gen hinzugekommen. Neben einer Einf�uhrung in die theoretischen Grundlagen von AMG
beschreiben wir einen konkreten Algorithmus und demonstrieren seine Robustheit und
E�zienz am Beispiel verschiedener Anwendungen.
Schlagworte. AMG, Algebraisches Mehrgitter, hierarchische L�oser.

Abstract. Since the early nineties, there has been a strongly increasing demand for more
e�cient methods to solve large sparse and unstructured linear systems of equations. For
practically relevant problem sizes, classical one-level methods had already reached their
limits and new hierarchical algorithms had to be developed in order to allow an e�cient
solution of even larger problems. The purpose of this paper is to give an elementary
introduction to the �rst hierarchical and purely matrix-based approach, algebraic multigrid
(AMG). The main idea behind AMG is to extend the classical ideas of geometric multigrid
(smoothing and coarse-grid correction) to certain classes of algebraic systems of equations.
Besides its robustness and e�ciency, the main practical advantage of AMG is that it
can directly be applied, for instance, to solve various types of elliptic partial di�erential
equations discretized on unstructured meshes, both in 2D and 3D. Since AMG does not
make use of any geometric information, it is a \plug-in" solver which can even be applied to
problems without any geometric background, provided that the underlying matrix satis�es
certain properties. Although the development of AMG goes back to the early eighties, it
still provides one of the most e�cient algebraic methods to solve corresponding problems.
Compared to the original approach, however, several modi�cations and extensions have
been introduced. In addition to the theoretical basics of AMG, we present a concrete
algorithm in some detail and demonstrate its robustness and e�ciency by means of a
variety of typical applications.
Keywords. AMG, algebraic multigrid, hierarchical solvers.

To appear: Guest contribution (appendix) in the book "Multigrid" by U. Trottenberg,
C.W. Oosterlee, A. Sch�uller; Academic Press, to appear 1999.

3

Contents

1 Introduction 8

1.1 Geometric multigrid . 9
1.2 Algebraic multigrid . 10
1.3 An example . 12
1.4 Overview of the paper . 14

2 Theoretical basis and notation 16

2.1 Formal AMG components . 16
2.2 Further notation . 18
2.3 Limit case of direct solvers . 20
2.4 The variational principle for positive de�nite problems 23

3 Algebraic smoothing 26

3.1 Basic norms and smooth eigenvectors . 26
3.2 Smoothing property of relaxation . 28
3.3 Interpretation of algebraically smooth error 31

3.3.1 M-matrices . 32
3.3.2 Essentially positive-type matrices 33
3.3.3 Large positive connections . 34

4 Post-smoothing and two-level convergence 37

4.1 Convergence estimate . 37
4.2 Direct interpolation . 39

4.2.1 M-matrices . 39
4.2.2 Essentially positive-type matrices 45
4.2.3 General case . 46

4.3 Indirect interpolation . 50

5 Pre-smoothing and two-level convergence 52

5.1 Convergence using mere F-smoothing . 52
5.1.1 An auxiliary result . 53
5.1.2 F-smoothing . 54
5.1.3 Jacobi-interpolation . 55
5.1.4 Convergence estimate . 55

5.2 Convergence using full smoothing . 58

6 Limits of the theory 60

7 The AMG algorithm 63

7.1 Coarsening . 63
7.1.1 Standard coarsening . 64
7.1.2 Aggressive coarsening . 67
7.1.3 Strong positive connections . 69

7.2 Interpolation . 69
7.2.1 Direct and standard interpolation 70

4

7.2.2 Multi-pass interpolation . 72
7.2.3 Jacobi-interpolation . 73
7.2.4 Truncation of interpolation . 74

7.3 AMG as pre-conditioner . 74

8 Applications 76

8.1 Default settings and notation . 77
8.2 Poisson-like problems . 78

8.2.1 Coarsening and complexity . 79
8.2.2 Performance and comparisons . 80
8.2.3 F-smoothing and Jacobi-interpolation 83

8.3 Computational
uid dynamics . 85
8.3.1 Segregated solution methods . 86
8.3.2 Industrial test cases . 88
8.3.3 Low-accuracy approximations . 91

8.4 Problems with discontinuous coe�cients . 92
8.4.1 A model problem . 93
8.4.2 Oil reservoir simulation . 97
8.4.3 Electromagnetic systems . 100

8.5 Further model problems . 102
8.5.1 Special anisotropic problems . 102
8.5.2 Convection-di�usion problems . 106
8.5.3 Inde�nite problems . 109

9 Aggregation-based AMG 112

9.1 Re-scaling of the Galerkin operator . 113
9.2 Smoothed aggregation . 115

10 Further developments and conclusions 118

5

List of Figures

1 Unstructured �nite element mesh . 8
2 Geometric versus algebraic multigrid . 10
3 Standard AMG coarsening . 11
4 a) \Smooth" error in case of problem (2). b) The �nest and three consec-

utive levels created by the standard AMG coarsening algorithm. 13
5 a) Coe�cient " for problem (44) and discretization stencil at the inner

interface. b) Algebraically smooth error obtained after a few Gauss-Seidel
relaxation steps. 33

6 Algebraically smooth error in case of (48) and the standard 5-point Poisson
stencil (33), respectively . 34

7 Algebraically smooth error in case of problem (51) and the 5-point Poisson
operator with anti-periodic boundary conditions, respectively 36

8 Di�erent C/F-arrangements and corresponding interpolation formulas . . . 43
9 Illustration of indirect interpolation in case of 5-point stencils 51
10 Strictly one-sided interpolation (piecewise constant) 61
11 Standard coarsening algorithm [63] . 65
12 First steps of the standard coarsening process in case of isotropic 5-point

(top) and 9-point stencils (bottom). At each stage, those undecided points
with highest �-value are shown in bold-italics. 66

13 Results of aggressive A2 (left) and A1 coarsening (right) in case of isotropic
5-point stencils. The dashed boxes depict the range of strong connectivity
in the sense of bS2;2

i and bS1;2
i , respectively. 68

14 The �nest and three consecutive AMG levels if aggressive A2 (left) and A1
coarsening (right) is applied (only) on the �rst level 68

15 Direct versus standard interpolation . 71
16 Multi-pass interpolation for isotropic 5-point problems (A2- and A1-

coarsening) . 73
17 The �nest and three consecutive AMG levels created by a) standard coarsen-

ing, b) aggressive A2-coarsening (applied only in the �rst coarsening step). 79
18 a) Convergence factors for cycles used stand-alone. b) Average reduction

factors for accelerated cycles. 81
19 a) Convergence histories for N = 512. b) Total time in millisec per �nest

grid point to reduce the residual by 10 orders of magnitude. 82
20 Convergence factors of cycles using F-smoothing 84
21 View into the interior of the bottom part of a coal furnace model (325,000

mesh cells; for simplicity, only the mesh surface is visualised) 85
22 Cooling jacket of a four-cylinder engine (100,000 cells) 86
23 a) Core part of a fan model. b) Convergence histories. 88
24 Convergence histories: a) cooling jacket, b) coal furnace. 90
25 Convergence histories: residual vs. error (fan model and cooling jacket) . . 93
26 Distribution of coe�cients . 94
27 a) Convergence factors of cycles used stand-alone. b) Average reduction

factors of accelerated cycles. 95
28 a) AMG standard coarsening. b) Convergence histories (N = 512). 96

6

29 Distribution of permeability as a function of space (logarithmic gray scale) 98
30 Convergence histories (one million cell case) 99
31 Synchronous line-start motor: a) magnetic �eld plot, b) initial and locally

re�ned mesh [42]. 100
32 Convergence histories: a) periodic case, b) anti-periodic case, c) anti-

periodic case (positive connections ignored) 102
33 Direction of strong connectivity ("� 1) . 103
34 a) Convergence factors of cycles used stand-alone. b) Average reduction

factors of accelerated cycles. 104
35 Convergence histories (N = 512, � = 20�) 105
36 a) Solution contours, b) standard coarsening pattern. 107
37 a) Average reduction factors, b) Convergence histories for N = 512. 108
38 Convergence factor of stand-alone VS(S)-cycle as a function of c (h=1/256) 110
39 a) Average reduction factor of the VS(S)/BI-CGSTAB-cycle as a function

of c (h=1/256). b) Solution of (151) for f(x; y) � 1 and c=1000. 110
40 Subdivision of �ne-level variables into aggregates. The arrows indicate

which C-variable an F-variable interpolates from. 112
41 Optimal approximation IhHe

H of eh w.r.t. the energy norm 114
42 Piecewise constant versus smoothed interpolation 116

List of Tables

1 Complexities and computing times (N = 512) 83
2 Complexities and computing times for cycles using F-smoothing (N = 512) 84
3 Complexities and computing times (fan model) 89
4 Complexities and computing times . 91
5 Total computing times to reach a low residual and error reduction, respec-

tively . 92
6 Complexities and computing times (N = 512) 96
7 Complexities and computing times (one million cell case) 99
8 Complexities and computing times (N = 512, � = 20�) 106
9 Complexities and computing times (N = 512) 108
10 Complexities and computing times . 117

7

1 Introduction

In contrast to geometrically based multigrid, algebraic multigrid (AMG) does not require
a given problem to be de�ned on a grid but rather operates directly on (linear sparse)
algebraic equations

Au = f or
nX

j=1

aijuj = fi (i = 1; 2; :::; n) : (1)

If one replaces the terms grids, subgrids and grid points by sets of variables, subsets of
variables and single variables, respectively, one can describe AMG in formally the same
way as a geometric multigrid method. In particular, coarse-grid discretizations used in
geometric multigrid to reduce low-frequency error components now correspond to certain
matrix equations of reduced dimension. However, no multigrid1 hierarchy needs to be
known a priori. In fact, the construction of a (problem-dependent) hierarchy { including
the coarsening process itself, the transfer operators as well as the coarse-grid operators
{ is part of the AMG algorithm, based solely on algebraic information contained in the
given system of equations

Although the central ideas behind AMG and its range of applicability are more general,
in this introductory paper, the focus is on the solution of scalar elliptic partial di�eren-
tial equations of second order. Moreover, we mostly consider symmetric, positive (semi-)
de�nite problems. This is because AMG is best developed for such problems. Various
recent research activities aim at the application of AMG to systems of partial di�erential
equations (such as Navier-Stokes equations or structural mechanics problems). However,
although important progress has been achieved for di�erent types of systems, major re-
search is still ongoing and there is no well-settled approach yet.

Figure 1: Unstructured �nite element mesh

We will see that AMG provides very robust solution methods. However, the real
practical advantage of AMG is that it can directly be applied to structured as well as
unstructured grids (see Figure 1), in 2D as well as in 3D. In order to point out the
similarities and di�erences of geometric and algebraic multigrid, we will �rst give a brief
review of some major steps in the development of robust geometric approaches.

1We should actually use the term multilevel rather than multigrid. It is just for historical reasons that
we use the term multigrid.

8

1.1 Geometric multigrid

In the early days of multigrid, coarse-grid correction approaches were based on simple
coarsening strategies (typically by doubling the mesh size in each spatial direction, that
is, by h ! 2h coarsening), straightforward geometric grid transfer operators (standard
interpolation and restriction) and coarse-grid operators being natural analogs of the one
given on the �nest grid. Later on, it was realized that such simple \coarse-grid compo-
nents" were not appropriate for various types of more complex problems such as di�usion
equations with strongly varying or even discontinuous coe�cients. The so-called Galerkin
operator [32] was introduced as an alternative to the \natural" selection of the coarse-grid
operators mentioned before. From a practical point of view, it is advantageous that this
operator can be constructed purely algebraically. This makes it very convenient for the
treatment of, for instance, di�erential operators with strongly varying coe�cients. From
a theoretical point of view, the major advantage of Galerkin-based coarse-grid correction
processes is that they satisfy a variational principle (for symmetric and positive de�nite
problems) which opened new perspectives for theoretical convergence investigations.

The introduction of operator-dependent interpolation [1, 85] { that is, interpolation
which directly relies on the discretisation stencils { was equally important. Together with
the Galerkin operator, this kind of interpolation allowed the treatment of larger classes of
problems including problems with strongly discontinuous coe�cients. The main trouble
with such problems is that, after having applied a typical smoothing process (relaxation),
the error is not geometrically smooth any longer: across discontinuities the smoothed error
exhibits the same discontinuous behavior as the solution itself. Galerkin-based coarsening,
however, requires interpolation which correctly operates on such error. While geometric
interpolation (which can be accurately applied only to corrections with continuous �rst
derivatives) does not correctly transfer such corrections to �ner levels, the discretisation
stencils themselves do re
ect the discontinuities and, if used for interpolation, also correctly
transfer the discontinuities. Galerkin-based coarse-grid correction processes with operator-
dependent interpolation became increasingly popular since then.

All geometric multigrid approaches operate on pre-de�ned grid hierarchies. That is,
the coarsening process itself is �xed and kept as simple as possible. Fixing the hierarchy,
however, puts particular requirements on the smoothing properties of the smoother used
in order to ensure an e�cient interplay between smoothing and coarse-grid correction.
Generally speaking, error components which cannot be corrected by appealing to a coarser-
grid problem, must be e�ectively reduced by smoothing (and vice versa). For instance,
assuming the coarser levels to be obtained by h ! 2h coarsening, pointwise relaxation
is very e�cient for essentially isotropic problems. For anisotropic problems, however,
pointwise relaxation exhibits good smoothing properties only \in the direction of strong
couplings" (cf. Section 1.3). Consequently, more complex smoothers, such as alternating
line-relaxation or ILU-type smoothers, are required in order to maintain fast multigrid
convergence. Multigrid approaches for which the interplay between smoothing and coarse-
grid correction works e�ciently for large classes of problems are often called \robust".

While the implementation of e�cient and robust smoothers was not di�cult in 2D
model situations, for 3D applications on complex meshes their realization tended to become
rather cumbersome. For instance, the robust 3D analog of alternating line relaxation is
alternating plane relaxation (realized by 2Dmultigrid within each plane) which, in complex

9

geometric situations, becomes very complicated, if possible at all. ILU smoothers, on the
other hand, loose much of their smoothing property in general 3D situations.

It is therefore not surprising that a new trend arose which aimed at simplifying the
smoother without sacri�cing convergence. However, in order to maintain an e�cient in-
terplay between smoothing and coarse-grid correction, this required putting more e�ort
into the coarse-grid correction process. More sophisticated coarsening techniques were
developed, for example, employing more than one coarser grid on each level of the multi-
grid hierarchy such as the multiple semi-coarsening technique (semi-coarsening in multiple
directions) [44, 82, 26, 43].

Fix coarsening
Adjust smoother

Fix smoother
Adjust coarsening

Geometric
multigrid

Algebraic
multigrid

Requirement for any multilevel approach:

Efficient interplay between
smoothing + coarse-grid correction

Σ ah
ij uh

j
= f hij

Algebraic systems

(no hierarchy given)

L huh = f h

Grid equations

(hierarchy given)

Figure 2: Geometric versus algebraic multigrid

1.2 Algebraic multigrid

Regarding the interplay between smoothing and coarse-grid correction, AMG can be re-
garded as the most radical attempt to maintain simple smoothers but still achieve robust
convergence. Its development started in the early eighties [14, 15, 12] when Galerkin-
based coarse-grid correction processes and, in particular, operator-dependent interpolation
were introduced into geometric multigrid (see previous section). One of the motivations
for AMG was the observation that reasonable operator-dependent interpolation and the
Galerkin operator can be derived directly from the underlying matrices, without any ref-
erence to the grids. To some extent, this fact had already been exploited in the �rst
\black-box" multigrid code [27]. However, regarding the selection of coarser levels, this
code was still geometrically based. In a purely algebraic setting, the coarsening process
itself also needs to be de�ned based only on information contained in the given matrix.

This leads to the most important conceptual di�erence between geometric and alge-
braic multigrid (cf. Figure 2). Geometric approaches employ �xed grid hierarchies and,
therefore, an e�cient interplay between smoothing and coarse-grid correction has to be
ensured by selecting appropriate smoothing processes. In contrast to this, AMG �xes the
smoother to some simple relaxation scheme such as plain point Gauss-Seidel relaxation,
and enforces an e�cient interplay with the coarse-grid correction by chosing the coarser
levels and interpolation appropriately. Geometrically speaking, AMG attempts to coarsen

10

only in directions in which relaxation really smoothes the error for the problem at hand.
However, since the relevant information is contained in the matrix itself (in terms of size
and sign of coe�cients), this process can be performed based only on matrix information,
producing coarser levels which are locally adapted to the smoothing properties of the given
smoother. The guiding principle in constructing the operator-dependent interpolation is
to force its range to approximately contain those \functions" which are una�ected by re-
laxation. It will turn out that this is the crucial condition to obtain e�cient coarse-grid
correction processes.

The coarsening process is fully automatic. This automatism is the major reason for
AMG's
exibility in adapting itself to speci�c requirements of the problem to be solved and
is the main reason for its robustness in solving large classes of problems despite using very
simple point-wise smoothers. There is no need for something like multiple semi-coarsened
grids. Figure 3 visualises the hierarchy of grids created by AMG if applied to a di�usion
equation discretised on the grid depicted in Figure 1. See Section 1.3 for an explanation
of this type of picture and a more detailed example on AMG's coarsening strategy.

Figure 3: Standard AMG coarsening

The
exibility of AMG and its simplicity of use, of course, have a price: A setup phase,
in which the given problem (1) is analysed, the coarse levels are constructed and all oper-
ators are assembled, has to be concluded before the actual solution phase can start. This
extra overhead is one reason for the fact that AMG is usually less e�cient than geometric
multigrid approaches (if applied to problems for which geometric multigrid can be applied
e�ciently). Another reason is that AMG's components can, generally, not be expected
to be \optimal", they will always be constructed on the basis of compromises between
numerical work and overall e�ciency. Nevertheless, if applied to standard elliptic test
problems, the computational cost of AMG's solution phase (ignoring the setup cost) is
typically comparable to the solution cost of a robust geometric multigrid solver. However,
AMG should not be regarded as a competitor of geometric multigrid. The strengths of
AMG are its robustness, its applicability in complex geometric situations and its appli-
cability to even solve certain problems which are out of the reach of geometric multigrid,
in particular, problems with no geometric or continuous background at all (as long as the
given matrix satis�es certain conditions). That is, AMG provides an attractive multi-level
variant whenever geometric multigrid is either too di�cult to apply or cannot be used at

11

all. In such cases, AMG should be regarded as an e�cient alternative to standard numeri-
cal methods such as conjugate gradient accelerated by typical (one-level) pre-conditioners.
We will see that AMG itself also provides a very e�cient pre-conditioner. In fact, we
will see that simpli�ed AMG variants, used as pre-conditioner, are often better than more
complex ones applied as stand-alone solver.

The �rst fairly general algebraic multigrid program is described and investigated in
[62, 69, 63], see also [23]. Since the resulting code, AMG1R5, was made publically avail-
able in the mid eighties, there had been no substantial further research and development
in algebraic multigrid for many years. However, since the early nineties, and even more
since the mid nineties, there was a strong increase of interest in algebraically oriented mul-
tilevel methods. One reason for this is certainly the increasing geometrical complexity of
applications which, technically, limits the immediate use of geometric multigrid. Another
reason is the steadily increasing demand for e�cient \plug-in" solvers. In particular, in
commercial codes, this demand is driven by increasing problem sizes which clearly exhibit
the limits of the classical one-level solvers which are still used in most packages. Millions
of degrees of freedom in the underlying numerical models require hierarchical approaches
for e�cient solution and AMG provides a possibility to obtain such a solution without the
need to completely re-structure existing software packages.

As a consequence of this development, there now exist various di�erent algebraic ap-
proaches [70], all of which are hierarchical but some of which di�er substantially from the
original AMG ideas as outlined above. It is beyond the scope of this introduction to AMG
to discuss all these approaches. For completeness, we will set pointers to the relevant liter-
ature in Section 10. This introduction stays close to the original AMG ideas as described
in [63]. In particular, AMG as we understand it, is structurally completely analogous to
standard multigrid methods in the sense that algorithmic components such as smoothing
and coarse-grid correction play a role in AMG similar to the one they play in standard
multigrid. Nevertheless, there is no unique AMG algorithm and one may think of various
modi�cations and improvements in the concrete realization of AMG's coarsening strategy.
We here refer to an approach which, by our experience, has turned out to be very
exible,
robust and e�cient in practice. It has been implemented in the code RAMG052, which
is a successor of the original code AMG1R5. However, RAMG05 is completely new and,
in particular, incorporates more e�cient and more
exible interpolation and coarsening
strategies.

1.3 An example

The
exibility of AMG in adjusting its coarsening process locally to the requirements of
a given problem is demonstrated in Figure 4. The underlying problem is the di�erential
equation

�(aux)x � (buy)y + cuxy = f(x; y) (2)

de�ned on the unit square (with Dirichlet boundary conditions). We set a = b = 1
everywhere except in the upper left quarter of the unit square (where b = 103) and in the
lower right quarter (where a = 103). The coe�cient c is zero except for the upper right
quarter where we set c = 2.

2The development of RAMG05 has partly been funded by Computational Dynamics Ltd., London.

12

0

0.25

0.5

0.75

1

x

0

0.2

0.4

0.6

0.8

1

y

Figure 4: a) \Smooth" error in case of problem (2). b) The �nest and three consecutive
levels created by the standard AMG coarsening algorithm.

The di�usion part is discretized by the standard 5-point stencil and the mixed deriva-
tive by the (left-oriented) 7-point stencil (147). The resulting discrete system is isotropic
in the lower left quarter of the unit square but strongly anisotropic in the remaining quar-
ters. In the upper left and lower right quarters we have strong connections in the y- and
x-directions, respectively. In the upper right quarter strong connectivity is in the diagonal
direction. Figure 4a shows what a \smooth" error looks like on the �nest level after having
applied a few point relaxation steps to the homogeneous problem, starting with a random
function. The di�erent anisotropies as well as the discontinuities across the interface lines
are clearly re
ected in the picture.

It is heuristically clear that such error can only be e�ectively reduced by means of
a coarser grid if that grid is obtained by essentially coarsening in directions in which
the error really changes smoothly in the geometric sense and if interpolation treats the
discontinuities correctly. Indeed, as outlined before, this is exactly what AMG does.
First, the operator-based interpolation ensures the correct treatment of the discontinuities.
Second, AMG coarsening is in the direction of strong connectivity, that is, in the direction
of smoothness.

Figure 4b depicts the �nest and three consecutive grids created by using standard
AMG coarsening and interpolation (cf. Section 7). The smallest dots mark grid points
which are contained only on the �nest grid, the squares mark those points which are also
contained on the coarser levels (the bigger the square, the longer the corresponding grid
point stays in the coarsening process). The picture shows that coarsening is uniform in
the lower left quarter where the problem is isotropic. In the other quarters, AMG adjusts
itself to the di�erent anisotropies by locally coarsening in the proper direction. For in-
stance, in the lower right quarter, coarsening is in x-direction only. Since AMG takes only
strong connections in coarsening into account and since all connections in the y-direction
are weak, the individual lines are coarsened independently of each other. Consequently, the
coarsening of neighboring x-lines is not \synchronized"; it is actually a matter of \coinci-

13

dence" where coarsening starts within each line. This has to be observed in interpreting
the coarsening pattern in the upper right quarter: within each diagonal line, coarsening is
essentially in the direction of this line.

1.4 Overview of the paper

The intention of this paper is to give an elementary, self-contained introduction to an
algebraic multigrid approach which is suited, in particular, for the treatment of large
classes of scalar elliptic di�erential equations and problems whose matrices have a similar
structure. Although the theoretical considerations are in the framework of positive de�nite
problems, the algorithm presented does not exploit symmetry and can, to some extent,
also be applied to certain non-symmetric and inde�nite problems.

We assume the reader to have some basic knowledge in standard (geometric) multigrid.
In particular, he should be familiar with the basic principles { smoothing and coarse-grid
correction { and with the recursive de�nition of multigrid cycles (such as V- or F-cycles).
This is because, for simplicity, we limit all our descriptions to just two levels. Accordingly,
whenever we talk about e�ciency of a particular approach, we implicitly always assume
the underlying two-level approach to be recursively extended to full cycles. (Clearly, a
mere two-level method is hardly ever practical.)

Section 2 describes our notation and contains basic theoretical aspects. In particular,
it summarizes well-known properties of Galerkin-based coarse-grid correction approaches
and shows that AMG, in certain limit cases, degenerates to direct solvers (Section 2.3).
Although, generally, these direct solvers are extremely ine�cient in terms of computational
work and memory requirement, they can be approximated by more realistic (iterative)
approaches in various ways, indicating the formal generality of the approach.

The AMG method as e�ciently used in practice, is largely heuristically motivated.
However, under certain assumptions, in particular symmetry and positive de�niteness, a
two-level theory is available showing that convergence can be expected to be independent of
the size of the problem and as fast (and expensive) as we wish. Actually, the convergence of
AMG is not generally the problem (in fact, AMG can always be forced to converge rapidly)
but rather the tradeo� between convergence and numerical work which is also directly
related to the memory requirements. Note that this is, in a sense, just opposite to standard
multigrid approaches where the numerical work per cycle is known and controlable but
the convergence may not be satisfactory.

This paper covers both theoretical and practical aspects. While the theoretical in-
vestigations are contained in Sections 3-6, practical aspects (a concrete algorithm and a
discussion of its performance for various types of problems) are presented in Sections 7-8.
Although the theoretical results form the basis for the details of the algorithm presented,
we have tried to keep the practically oriented sections as independent from the theoretical
sections as possible. Readers not interested in the theory may thus decide to skip the cor-
responding sections. Whenever necessary, we will make reference to relevant theoretical
aspects.

In Section 3, we �rst introduce the basic concept of algebraic smoothness [12]. This will
be used in Section 4 to prove the convergence of two-level methods using post-smoothing.
While the main approach is the same as in [12, 63], the de�nition of interpolation has
been modi�ed and extended. The case of pre-smoothing is considered in Section 5. In

14

both cases, it turns out that it is crucial to de�ne coarsening and interpolation so that
the \interpolation error", in some algebraic sense, is uniformly bounded. No realistic
extension of the two-level theory to complete V-cycles is available yet (cf. Section 6).
Moreover, while the underlying AMG code has successfully been applied also to various
non-symmetric problems, there is no comparable theory yet for the non-symmetric case.

The algorithm used in the code RAMG05 mentioned above is described in some detail
in Section 7. Although one can imagine several modi�cations and improvements, the
approach presented has turned out to be very
exible, robust and e�cient in practice.
Various applications and a discussion of RAMG05's performance are presented in Section
8. We investigate both standard model cases as well as some industrially relevant cases,
for instance, from computational
uid dynamics.

Section 9 outlines so-called \aggregation-based" AMG variants and points out their
relation to the \standard" approach considered in the other parts of this paper. Finally,
in Section 10, we summarize important further developments and draw some conclusions.
Although we try to cover the most important references, the list is certainly not complete
in this rapidly developing �eld of research.

Remark 1.1 Many considerations in the theoretical parts of this paper refer to a given
matrix A. However, it should be clear that we are not really interested in, for instance,
convergence estimates for one particular A only but rather in having uniform convergence if
A ranges over some reasonable class of matrices, A. A typical class is the class consisting of
all M-matrices. However, a reasonable class may also consist of the discretization matrices
of a particular elliptic di�erential equation discretized on a series of grids with mesh size
h ! 0. Uniform convergence for A 2 A then means that AMG convergence does not
depend on the mesh size (a typical property of geometric multigrid methods). In this
sense, we sometimes say that convergence does not depend on the size of the matrix. �

Remark 1.2 All results which refer to positive de�nite matrices carry over also to the
semi-de�nite zero rowsum case. One just has to exclude the constant vectors from all
considerations. Of course, besides treating the coarsest level properly, it is then crucial to
transfer constants exactly between levels. Since this will be ensured by all interpolation
processes discussed, we will not discuss the semi-de�nite case explicitly any further. �

Acknowledgements: I would like to thank A. Brandt, K. Witsch, R. Lorentz and A.
Krechel for various discussions concerning speci�c aspects of this paper. I also would like
to point out that signi�cant parts of this paper rely on the early work [63] which was the
result of a close cooperation with A. Brandt, S. McCormick, and J. Ruge. Finally, I would
like to thank Computational Dynamics Ltd., London, for funding substantial parts of the
work on AMG.

15

2 Theoretical basis and notation

As mentioned in the introduction, AMG is based on the Galerkin approach. The formal
structure of AMG, with all its components, is described in Section 2.1; some additional
notation is contained in Section 2.2. The remainder of the section summarizes fundamen-
tal aspects related to Galerkin-based coarse-grid correction processes. This includes the
discussion of certain limit cases in Section 2.3 for which AMG degenerates to a direct
solver. Since these (unrealistic) limit cases are presented mainly for reasons of motivation
{ in particular, to indicate the formal generality of the overall approach { this section
may well be skipped in �rst reading. Section 2.4, which re-calls the variational princi-
ple of Galerkin-based coarse-grid correction processes for symmetric and positive de�nite
matrices A, is more important for the concrete approaches investigated in this paper.

2.1 Formal AMG components

Since the recursive extension of any two-level process to a real multi-level process is for-
mally straightforward, we describe the components of AMG only on the basis of two-level
methods with indices h and H distinguishing the �ne and coarse level, respectively. In
particular, we re-write (1) as

Ahu
h = fh or

X
j2
h

ahiju
h
j = fhi (i 2
h) (3)

with
h denoting the index set f1; 2; :::; ng. We implicitly assume always that Ah corre-
sponds to a sparse matrix. The particular indices, h and H , have been chosen to have a
formal similarity to geometric two-grid descriptions. In general, they are not related to a
discretization parameter.

In order to derive a coarse-level system from (3), we �rst need a splitting of
h into
two disjoint subsets
h = Ch [Fh with Ch representing those variables which are to
be contained in the coarse level (C-variables) and Fh being the complementary set (F-
variables). Assuming such a splitting to be given and de�ning
H = Ch, coarse-level
AMG systems,

AHu
H = fH or

X
l2
H

aHklu
H
l = fHk (k 2
H) ; (4)

will be constructed based on the Galerkin principle, i.e. the matrix AH is de�ned as the
Galerkin operator

AH := IHh Ah I
h
H (5)

where IhH and IHh denote interpolation (or prolongation) and restriction operators, respec-
tively, mapping coarse-level vectors into �ne-level ones and vice-versa. We always assume
both operators to have full rank.

Finally, as with any multigrid method, we need a smoothing process with a correspond-
ing linear smoothing operator Sh. That is, one smoothing step is of the form

uh �! uh where uh = Shu
h + (Ih � Sh)A

�1
h fh (6)

16

(Ih denotes the identity operator). Consequently, the error eh = uh? � uh (uh? denotes the
exact solution of (3)) is transformed according to

eh �! eh where eh = She
h : (7)

Note that we normally use the letter u for solution quantities and the letter e for correction
or error quantities.

As already mentioned before, AMG employs simple smoothing processes. In this intro-
duction to AMG, we consider only plain Gauss-Seidel relaxation (i.e. Sh = (Ih �Q�1

h Ah)
with Qh being the lower triangular part of Ah, including the diagonal) or !-Jacobi-
relaxation (i.e. Sh = Ih � !D�1

h Ah with Dh = diag(Ah)). Clearly, unless Ah is positive
de�nite (which we assume most of the time), the use of such variable-wise relaxation meth-
ods implicitly requires additional assumptions on Ah, in particular, its diagonal elements
should be su�ciently large compared to the o�-diagonal elements.

For completeness, we want to mention that, particularly in connection with theoretical
investigations, we also consider partial relaxation steps, namely, Gauss-Seidel and Jacobi
relaxation applied only to F-variables (with frozen values for the C-variables). Since such
partial relaxation will then formally play the role of smoothing, we will refer to it as F-
smoothing. Note, however, that F-smoothing by itself has no real smoothing properties in
the usual sense.

Remark 2.1 The coarse-level system (4) formally plays the same role as coarse-grid
correction equations in geometric multigrid. In particular, fH and uH actually corre-
spond to residuals and corrections, respectively. More precisely, one two-level correction
step is de�ned as

uhnew = uhold + IhHe
H where AHe

H = IHh (rhold) = IHh (fh �Ahu
h
old) : (8)

For the corresponding errors, this means

ehnew = Kh;H ehold with Kh;H := Ih � IhHA
�1
H IHh Ah ; (9)

Kh;H being the so-called coarse-grid correction operator. Consequently, error reduction
by one complete two-grid iteration step { including �1 and �2 pre- and post-smoothing
steps, respectively { is described by the two-grid iteration operator (cf. (7)):

ehnew = Mh;H ehold with Mh;H(�1; �2) = S�2
h Kh;H S�1

h : �

Summarising, what needs to be explicitly constructed in order to formally set up a
two-level (and by recursive application a multi-level) process, are the C/F-splitting and
the transfer operators IhH and IHh . The construction of these components { which forms
the major task of AMG's setup phase { are closely related processes and, whenever we talk
about transfer operators, we implicitly always assume a suitable C/F-splitting to be given.
These components need to be selected so that an e�cient interplay between smoothing
and coarse-grid correction { and consequently good convergence { is achieved. It is equally
important that the splitting and the transfer operators are such that AH is still reasonably
sparse and much smaller than Ah. In Section 7, we will describe a practical algorithm.

17

From a more theoretical point of view, we consider AMG components in Sections 3-5.
Except for Section 2.3, the theoretical parts of this paper refer to symmetric and

positive de�nite matrices Ah for which we always de�ne the restriction as the transpose of
interpolation,

IHh = (IhH)
T : (10)

It then immediately follows that AH is also symmetric and positive de�nite, independent
of the concrete choice of IhH (as long as it has full rank):

(AHu
H ; uH)E = (IHh AhI

h
Hu

H ; uH)E = (AhI
h
Hu

H ; IhHu
H)E = (uH ; AHu

H)E

where (:; :)E denotes the Euclidian inner product. (Unless explicitly stated otherwise, the
terms symmetric and positive de�nite as well as the transpose of a matrix always refer to
the Euclidian inner product.) Moreover, the coarse-grid correction operator Kh;H turns
out to satisfy a variational principle (cf. Section 2.4).

We �nally want to mention that all interpolations eh = IhHe
H considered in this paper

are of the form

ehi = (IhHe
H)i =

(
eHi if i 2 ChP

k2Ph
i
wh
ike

H
k if i 2 Fh

(11)

where Ph
i � Ch is called the set of interpolatory variables. Clearly, for reasons of e�ciency,

Pi should be a reasonably small subset of C-variables \near" i. Note that any such
interpolation has full rank.

Remark 2.2 According to the above description, we regard the set of coarse-level vari-
ables as a subset of the �ne-level ones. In particular, (11) expresses that the coarse-level
correction eHk is used to directly correct the corresponding �ne-level variable, uhk . Note that
this is formally di�erent from algebraic multigrid approaches based on \aggregation" (see,
e.g., [73, 10, 19, 39]). However, we will see in Section 9 that aggregation-type approaches
can be regarded as a special case of the approach considered here. �

2.2 Further notation

AMG is set up in an algebraic environment. However, rather than using vector-matrix
terminology, it is often convenient to formally stick to the grid terminology by introducing
�ctitious grids with grid points being simply the nodes of the directed graph which can
be associated with the given matrix. In this sense, we identify each i 2
h with a point
and de�ne connections between points in the sense of the associated graph. That is, point
i 2
h is de�ned to be (directly) coupled (or connected) to point j 2
h if ahij 6= 0.
Correspondingly, we de�ne the (direct) neighborhood of a point i by

Nh
i = fj 2
h : j 6= i; ahij 6= 0g (i 2
h) : (12)

Referring to a point i 2
h means nothing else than referring to the variable uhi . Using
grid terminology, we can formally interpret the equations Ahu

h = fh as grid equations on

18

the �ctitious grid
h. Analogously, coarser level equations AHu
H = fH can be interpreted

as grid equations on subgrids
H �
h.
In the course of this paper, we will use both grid and vector-matrix terminology

whichever is more convenient for the given purpose. Moreover, we will usually omit the
indices h and H , writing, for instance, A, e, C and K instead of Ah, e

h, Ch and Kh;H ,
respectively. We actually use these indices only if we explicitly need to distinguish two
consecutive levels.

For theoretical investigations, it is often convenient to assume vectors and matrices to
be re-ordered so that, w.r.t. a given C/F-splitting, the set of equations (3) can be written
in block form,

Ahu =

�
AFF AFC

ACF ACC

� �
uF
uC

�
=

�
fF
fC

�
= f : (13)

Correspondingly, the inter-grid transfer operators are then written as

IhH =

�
IFC
ICC

�
; IHh = (ICF ; ICC) (14)

with ICC being the identity operator. Instead of eh = IhHe
H and (11) we simply write

eF = IFCeC and

ei =
X
k2Pi

wikek (i 2 F) ; (15)

respectively. This is for simplicity and should not lead to any confusion.
We �nally list some more speci�c notation. The range and null space of any operator

Q are denoted by R(Q) and N (Q), respectively. For any square matrix Q, its spectral
radius is denoted by �(Q). At several places in this paper, we make use of the fact that,
for any two matrices, Q1 and Q2, we have

�(Q1Q2) = �(Q2Q1) : (16)

We write A > 0 if A is symmetric and positive de�nite. Correspondingly, A > B stands
for A � B > 0. For vectors, u > 0 and u � 0 mean that the corresponding inequalities
hold componentwise.

If Ah > 0, we use the following three inner products in addition to the Euclidian one:

(u; v)0 = (Dhu; v)E ; (u; v)1 = (Ahu; v)E and (u; v)2 = (D�1
h Ahu;Ahv)E ; (17)

along with their associated norms k:ki (i = 0; 1; 2). Here, Dh = diag(Ah). (:; :)1 is the so-
called energy inner product and k:k1 the energy norm. Moreover, given any C/F-splitting,
we will use the analogs of the �rst two inner products applied to AFF (13) instead of Ah,

(uF ; vF)0;F = (DFFuF ; vF)E and (uF ; vF)1;F = (AFFuF ; vF)E ; (18)

and the associated norms k:ki;F (i = 0; 1) where DFF = diag(AFF). (Note that AFF is
positive de�nite.)

Important parts of our theoretical discussion refer to the model class of symmetric M-
matrices, where a symmetric matrix is de�ned to be an M-matrix if it is positive de�nite

19

and o�-diagonally non-positive. Such matrices often arise from second order discretizations
of scalar elliptic di�erential equations. If a matrix A contains both negative and positive
o�-diagonal entries, we use the notation

a�ij =

�
aij (if aij < 0)
0 (if aij � 0)

and a+ij =

�
0 (if aij � 0)
aij (if aij > 0)

: (19)

Correspondingly, we write

N�
i = fj 2 Ni : a

h
ij < 0g and N+

i = fj 2 Ni : a
h
ij > 0g : (20)

2.3 Limit case of direct solvers

In this section, we will see that, for very speci�c (impractical) de�nitions of the smoothing
and transfer operators, the two-level methods corresponding to pre- and post-smoothing
degenerate to direct solvers, that is, we have either Kh;HSh = 0 or ShKh;H = 0. This
is true under the mere assumption that Ah is non-singular. In order to show this, let us
�rst state some basic properties of the coarse-grid correction operator, Kh;H . The transfer
operators IhH and IHh are required to have full rank but are not required to be the transpose
of each other.

Lemma 2.1 Let Ah be any non-singular matrix and assume the C/F-splitting and the
transfer operators to be given such that A�1

H exists. We then have

Kh;HI
h
H eH � 0 ; K2

h;H = Kh;H and IHh AhKh;H eh � 0

which implies N (Kh;H) = R(IhH) and R(Kh;H) = N (IHh Ah). Consequently, given any
smoothing operator Sh, the following holds:

Kh;H Sh = 0() R(Sh) � R(IhH) and ShKh;H = 0() N (IHh Ah) � N (Sh) :

Proof: All statements are immediate consequences of the fact that AH is the Galerkin
operator (5). For instance, the �rst identity holds because of

Kh;HI
h
H = IhH � IhHA

�1
H IHh AhI

h
H = IhH � IhH = 0

which, in turn, implies N (Kh;H) � R(IhH). The reverse relation, N (Kh;H) � R(IhH),
follows directly from the de�nition (9) of Kh;H . The proof of the remaining statements is
similarly straightforward. 4

In the following, we use the notation (13) and (14) and, just for the purpose of this
section, de�ne a very speci�c \smoothing process" as follows:

u �! u where AFF uF + AFC uC = fF ; uC = uC : (21)

(Although this is not a practical smoothing process, we formally stick to the standard
multigrid terminology.) In terms of the error, e = u? � u, this means

e �! e where AFF eF + AFC eC = 0 ; eC = eC (22)

20

and the \smoothing operator" is seen to be

bSh = � 0 �A�1
FFAFC

0 ICC

�
(23)

which has the properties

R(bSh) = fe : eF = �A�1
FFAFC eCg and N (bSh) = fe : eC = 0g : (24)

In addition, we de�ne very speci�c transfer operators bybIFC = �A�1
FFAFC and bICF = �ACFA

�1
FF : (25)

We then obtain the following theorem:

Theorem 2.1 [37] Let Ah be non-singular and let a C/F-splitting be given such that A�1
FF

exists. Furthermore, use (21) as \smoothing process". Then the following statements hold:

1. For IFC = bIFC and arbitrary ICF , A
�1
H exists and Kh;H

bSh = 0 .

2. For ICF = bICF and arbitrary IFC , A
�1
H exists and bShKh;H = 0 .

3. In either of the two cases, the Galerkin operator (5) is just the Schur complement
corresponding to (13), that is, AH = CH where

CH := ACC �ACFA
�1
FFAFC : (26)

Proof: If IFC = bIFC , a straightforward computation shows that, independent of ICF , the
Galerkin operator equals the Schur complement:

AH = IHh AhI
h
H =

�
ICF ; ICC

�� AFF AFC

ACF ACC

�� �A�1
FFAFC

ICC

�
=
�
ICF ; ICC

�� 0

ACC � ACFA
�1
FFAFC

�
= CH :

Since both Ah and AFF are assumed to be non-singular, CH is also non-singular. Hence,
A�1
H exists. By de�nition, we haveR(IhH) = R(bSh) which, according to Lemma 2.1, implies

Kh;H
bSh = 0. Regarding the second statement, one can see by analogous arguments as

above that AH equals the Schur complement also in this case. Because of

IHh Ah =
� �ACFA

�1
FF ; ICC

�� AFF AFC

ACF ACC

�
=
�
0 ; AH

�
we have IHh Ahe = AHeC for all e. Hence, N (IHh Ah) = fe : eC = 0g = N (bSh) which,
according to Lemma 2.1, implies bShKh;H = 0. 4

According to the theorem, only one of the transfer operators has to be explicitly
de�ned in order to obtain a direct method. For the two-level method to be a direct solver
independent of whether pre- or post-smoothing is used, both operators have to be speci�ed
accordingly.

21

Remark 2.3 Note that interpolation eF = bIFCeC is de�ned by exactly solving the ho-
mogeneous F-equations

AFF eF + AFC eC = 0 : (27)

That is, interpolation and \smoothing" (22) are based on the same set of equations. Note
furthermore that, for symmetric matrices Ah, we have bICF = bITFC , that is, the restriction
is just the transpose of interpolation. In contrast to this, for non-symmetric matrices,bICF = eITFC where eIFC = �(A�1

FF)
TAT

CF which is related to solving

AT
FF eF + AT

CF eC = 0 (28)

instead of (27). Thus, bICF is just the transpose of another interpolation, namely, the one
corresponding to AT

h . �

The speci�c two-level approaches de�ned above can be extended to full V-cycles in
a straightforward way by recursively applying the same strategy to the coarse-level
Galerkin problems (4). Assuming the coarsest level equations to be solved exactly, the
resulting V-cycles then also converge in just one iteration step. However, such cycles are
far from being practical, the obvious reason being that A�1

FF is involved in computing
both the smoothing and the transfer operators. Generally, the explicit computation
of A�1

FF is much too expensive and, moreover, a recursive application in a multi-level
context would be prohibitive due to �ll-in on coarser levels.

Of course, the complexity of the matrix AFF strongly depends on the selected C/F-
splitting, and by just choosing the splitting appropriately, one may force AFF to become
simple and easy to invert. For instance, on each level, the splitting can be selected so
that all corresponding matrices AFF simply become diagonal (assuming non-zero diagonal
entries). In some exceptional situations, this indeed leads to an e�cient method. For
instance, if Ah corresponds to a tridiagonal matrix, the resulting V-cycle can easily be
seen to coincide with the well-known method of total reduction [68]. Nevertheless, in
general, the resulting method will still become extremely ine�cient: although the selection
of such special C/F-splittings often makes sense in constructing the second level, further
coarsening rapidly becomes extremely slow causing the corresponding Galerkin matrices
to become dense very quickly. This is illustrated in the following example.

Example 2.1 Consider any standard 5-point discretization on a rectangular mesh, for
instance, the 5-point discretization of the 2D Poisson equation. Then, obviously, AFF

becomes diagonal if we select the C/F-splitting so that, for each i 2 F , all of its neighbors
are in C, that is, if we select red-black coarsening, yielding a grid coarsening ratio of 0:5.
The coarse-grid operator on the second level (consisting of the black points, say) can
be seen to correspond to 9-point stencils. That is, although the reduction of points is
substantial, the overall size of the second-level matrix is still close to the �nest-level one.
Proceeding analogously in creating the third level, will now reduce the grid size only by a
factor of 3=4. At the same time, the Galerkin operator grows further: the largest matrix
rows on level 3 correspond to 21-point stencils. Clearly, continuing this process will lead
to a completely impractical coarsening. For corresponding 3D problems, the situation is
even more dramatic. �

22

The above V-cycles actually correspond to speci�c variants of Gauss elimination rather
than real multigrid processes. Clearly, in order to obtain more practical iterative ap-
proaches, the explicit inversion of AFF has to be avoided. From the multigrid point of
view, it is most natural to approximate the operators bIFC and bSh by more realistic inter-
polation and smoothing operators, IFC and Sh, respectively (and similarly bICF by some
ICF if Ah is non-symmetric). According to Remark 2.3, all e 2 R(IhH) and all e 2 R(Sh)
should approximately satisfy equation (27). We do not want to quantify this here any
further but rather refer to Sections 4 and 5.

2.4 The variational principle for positive de�nite problems

In the following, we summarize basic properties of Galerkin-based coarse-grid correction
processes in case of symmetric, positive de�nite matrices Ah. For symmetric matrices, we
always assume (10). We have already mentioned before that the Galerkin operator AH

(5) is then also symmetric and positive de�nite. Moreover, a variational principle for the
coarse-grid correction operator Kh;H (9) is implied (see the last statement of Corollary 2.1
below) which simpli�es theoretical investigations substantially. This principle follows from
well-known facts about orthogonal projectors which, for completeness, are summarized in
the following theorem.

Theorem 2.2 Let (.,.) be any inner product with corresponding norm k:k and let the
matrix Q be symmetric w.r.t. (.,.). Furthermore, let Q2 = Q. Then Q is an orthogonal
projector. That is, we have

1. R(Q)?R(I �Q)

2. For u 2 R(Q) and v 2 R(I � Q) we have ku+ vk2 = kuk2 + kvk2

3. kQk = 1

4. for all u: kQuk = minv2R(I�Q) ku� vk.

Proof: The �rst statement follows immediately since Q is symmetric and Q2 = Q:

(Qu; (I �Q)v) = (u;Q(I �Q)v) = (u; 0) = 0 :

This, in turn, implies the second statement. Regarding the third statement, we obtain by
decomposing u = Qu+ (I � Q)u,

kQk2 = sup
u6=0

kQuk2
kuk2 = sup

u6=0

kQuk2
kQuk2 + k(I � Q)uk2 � 1

which shows kQk � 1. Selecting any u 2 R(Q), proves that kQk = 1. Regarding the last
statement, again by decomposing u as before, we obtain

min
v2R(I�Q)

ku� vk2 = min
:::
kQu+ (I � Q)u� vk2 = min

:::
kQu� vk2

= min
:::

(kQuk2 + kvk2) = kQuk2 : 4

23

To apply this theorem to Kh;H , we observe that AhKh;H corresponds to a symmetric
matrix, that is, Kh;H itself is symmetric w.r.t. the energy inner product (17):

(Kh;Hu
h; vh)1 = (AhKh;Hu

h; vh)E = (uh; AhKh;Hv
h)E = (uh; Kh;Hv

h)1 :

Since we also have K2
h;H = Kh;H (see Lemma 2.1), Kh;H is an orthogonal projector. By

�nally observing that

R(Ih �Kh;H) = R(IhH) ; (29)

we obtain the following corollary:

Corollary 2.1 Let Ah > 0 and let any C/F-splitting and any full rank interpolation IhH
be given. Then the coarse-level correction operator Kh;H is an orthogonal projector w.r.t.
the energy inner product (.,.)1. In particular, we have:

1. R(Kh;H)?1R(IhH), i.e., (AhKh;Hu
h; IhHv

H)E = 0 for all uh, vH.

2. For uh 2 R(Kh;H) and vh 2 R(IhH) we have kuh + vhk21 = kuhk21 + kvhk21
3. kKh;Hk1 = 1

4. for all eh: kKh;He
hk1 = mineH keh � IhHe

Hk1 .

The last statement of the corollary expresses the variational principle mentioned above:
Galerkin-based coarse-grid corrections minimize the energy norm of the error w.r.t. all
variations in R(IhH). As a trivial consequence, a two-level method can never diverge if the
smoother satis�es kShk1 � 1 (e.g., Gauss-Seidel relaxation or !-Jacobi relaxation with
a suitably selected under-relaxation parameter !). That this holds also for complete V-
cycles, assuming any hierarchy of C/F-splittings and (full rank) interpolation operators
to be given, follows immediately by a recursive application (replacing exact coarse-grid
corrections by V-cycle approximations with zero initial guess) of the following lemma:

Lemma 2.2 Let the exact coarse-level correction eH in (8) be replaced by any approxi-
mation eeH satisfying keH � eeHk1 � keHk1 (where k : k1 is taken w.r.t. AH). Then the
approximate two-level correction operator still satis�es k eKh;Hk1 � 1.

Proof: For the approximate two-level correction operator

eKh;H eh = eh � IhH eeH = Kh;H eh + IhH(e
H � eeH)

we obtain
k eKh;H ehk21 = kKh;H ehk21 + kIhH(eH � eeH)k21 :

Since kIhHvHk1 = kvHk1 holds for all vH , we have

kIhH(eH � eeH)k21 = keH � eeHk21 � keHk21 = kIhH eHk21 :

Hence,
k eKh;H ehk21 � kKh;H ehk21 + kIhH eHk21 = kehk21

24

and, therefore, k eKh;Hk1 � 1. 4
Although this does not say anything about the e�ciency of a V-cycle, from a practical

point of view, it ensures at least some kind of minimum robustness. Based on the prop-
erties in Corollary 2.1, one can easily formulate concrete conditions which imply V-cycle
convergence at a rate which is independent of the size of Ah (see, for example, Theorem 3.1
in [63]). Since, unfortunately, these conditions are not suited for the explicit construction
of realistic AMG processes, we here just refer to related discussions in [63].

Remark 2.4 In our �nal algorithm (see Section 7), we will employ certain truncation
mechanisms in order to limit the growth of the Galerkin operators towards increas-
ingly coarser levels. According to the variational principle and the above remarks, the
truncation of interpolation (before computing the corresponding Galerkin operator) is
a \safe process": in the worst case, overall convergence may slow down, but no diver-
gence can occur. On the other hand, a truncation of the Galerkin operators themselves
may be dangerous since this violates the validity of the variational principle and, if not
applied with great care, may cause strong divergence in practice. �

25

3 Algebraic smoothing

In algebraic multigrid, smoothing and coarse-grid correction play formally the same role
as in geometric multigrid. However, the meaning of the term \smooth" is di�erent:

� In a geometric environment, the term \smooth" is normally used in a restrictive
(viz. the \natural") way. Moreover, in the context of multigrid, an error is regarded
as smooth only if it can be approximated on some pre-de�ned coarser level. That is,
smoothness in geometric multigrid has always to be seen relative to a coarser level.
For example, an error may be smooth with respect to a semi-coarsened grid but not
with respect to a standard h! 2h coarsened grid. Correspondingly, the \smoothing
property" of a given smoother always involves two consecutive levels.

� In contrast to this, in algebraic multigrid, there are no pre-de�ned grids and a
smoothing property in the geometric sense becomes meaningless. Instead, we de�ne
an error e to be algebraically smooth if it is slow to converge with respect to Sh, that
is, if She � e. In other words, we call an error \smooth" if it has to be approximated
by means of a coarser level (which then needs to be properly constructed) in order to
speed up convergence. From an algebraic point of view, this is the important point
in distinguishing smooth and non-smooth errors.

In this section, assuming Ah to be symmetric and positive de�nite (Ah > 0), we will
consider algebraic smoothing by relaxation and introduce a concept [12] of how to charac-
terize it. For typical types of matrices, we give some heuristic interpretation of algebraic
smoothness which is helpful in �nally constructing the coarsening and interpolation.

3.1 Basic norms and smooth eigenvectors

In investigating the smoothing properties of relaxation, we use the inner products and
norms de�ned in (17). The following lemma (omitting the index h) summarizes some
basic relations which will be needed later. Note that we can assume �(D�1A) to be
uniformly bounded for all important classes A of matrices under consideration.

Lemma 3.1 Let A > 0. Then the following inequalities hold for all e:

kek21 � kek0 kek2 ; kek22 � �(D�1A) kek21 ; kek21 � �(D�1A) kek20 : (30)

Applying these norms to the eigenvectors of D�1A, we have

D�1A� = �� =) k�k22 = � k�k21 and k�k21 = � k�k20 : (31)

Proof: The �rst inequality in (30) follows from Schwarz' inequality:

kek21 = (Ae; e)E = (D� 1

2Ae;D
1

2 e)E � kek2 kek0 :
The other inequalities follow from the equivalence

(B1e; e)E � c (B2e; e)E () �(B�1
2 B1) � c (32)

which holds for all B1 > 0 and B2 > 0. The veri�cation of (31) is straightforward. 4

26

Remark 3.1 The eigenvectors � of D�1A play a special role. In particular, eigenvec-
tors corresponding to the smallest eigenvalues � are those which typically cause slowest
convergence of relaxation and, therefore, correspond to what we de�ned as an alge-
braically smooth error. This can most easily be veri�ed for !-Jacobi relaxation (using
proper under-relaxation) by observing that small �'s correspond to eigenvalues of the
!-Jacobi iteration operator S = (I �!D�1A) close to one. This is also true for related
schemes such as Gauss-Seidel relaxation, but is not so easy to see.

Clearly, for all relevant applications, we can assume the smallest eigenvalues � to ap-
proach zero (otherwise, standard relaxation methods converge rapidly on their own and
no multi-level improvement is required). For instance, for standard elliptic problems of
second order, discretized on a square grid with mesh size h, the smallest eigenvalues sat-
isfy � = O(h2) and, for isotropic (e.g. Poisson-like) problems, correspond to just those
eigenfunctions � which are very smooth geometrically in all spatial directions. On the
other hand, the largest eigenvalues satisfy � = O(1) and correspond to geometrically
non-smooth eigenvectors. For an illustration, see Example 3.1 below.

Generally, however, whether or not slow-to-converge error really corresponds to ge-
ometrically smooth error (assuming a geometric background to exist), depends on A

(see Example 3.2 in the next section). �

Example 3.1 To illustrate the previous remark, consider the matrix A which corresponds
to the Poisson operator, discretized on the unit square with mesh size h = 1=N ,

1

h2

24 �1
�1 4 �1

�1

35
h

: (33)

Assuming Dirichlet boundary conditions, the eigenvalues and eigenfunctions of D�1A =
h2

4 A are known to be

�n;m = (2� cosn�h� cosm�h)=2 and �n;m = sin(n�x) sin(m�y) (34)

where n;m = 1; 2; :::;N � 1. Obviously, we have

�min = �1;1 = 1� cos�h = O(h2) and �max = �N�1;N�1 = 1 + cos�h = O(1) ;

corresponding to the lowest and highest frequency eigenfunctions, respectively,

�min = sin(�x) sin(�y) and �max = sin((N � 1)�x) sin((N � 1)�y) : �
The previous discussion on � and the corresponding eigenvectors � of D�1A, together

with the relations (31), motivate the signi�cance of the above norms, in particular, in the
context of algebraic smoothing: if applied to a slow-to-converge error e = � (� close to
zero), all three norms are largely di�erent in size,

k�k2 � k�k1 and k�k1 � k�k0 : (35)

On the other hand, if applied to algebraically non-smooth error, all three norms are
comparable in size. This di�erent behavior makes it possible to identify slow-to-converge
error by simply comparing di�erent norms and gives rise to the characterization of algebraic
smoothness in the next section.

27

3.2 Smoothing property of relaxation

We say that a relaxation operator S satis�es the smoothing property w.r.t. a matrix A > 0
if

kSek21 � kek21 � � kek22 (� > 0) (36)

holds with � being independent of e. This implies that S is e�cient in reducing the error
e as long as kek2 is relatively large compared to kek1. However, it will generally become
very ine�cient if kek2 � kek1. In accordance with the motivations given before, such
error is called algebraically smooth. We say that S satis�es the smoothing property w.r.t.
a class A of matrices if (36) holds uniformly for all A 2 A, that is, with the same �.

Below, we will show that Gauss-Seidel and !-Jacobi relaxation satisfy (36) uniformly
for all matrices which are of interest here. Before, however, we want to make some further
remarks on algebraic smoothness.

Remark 3.2 Note that � kek22 � kek21 is necessary for (36) to hold which, because of
(32), is equivalent to �(D�1A) � 1=�. Consequently, a necessary condition for (36) to
hold uniformly for all A 2 A is the uniform boundedness of �(D�1A) in A which, as
mentioned before, is satis�ed for all important classes A under consideration. �

We have already indicated that the term \algebraically smooth" in the above sense is
not necessarily related to what is called smooth in a geometric environment. In order to
illustrate this, we give two examples.

Example 3.2 As an extreme case, consider the matrix bA > 0 which corresponds to the
(somewhat arti�cial) stencil

1

h2

24 1
1 4 1

1

35
h

(37)

with Dirichlet boundary conditions and h = 1=N . That is, bA is similar to A in Example
3.1 (Poisson equation) except that the sign of all o�-diagonal entries has changed from
negative to positive. As a consequence of this, compared to the Poisson case, the role
of geometrically smooth and non-smooth error is completely interchanged: algebraically
smooth error is actually highly oscillatory geometrically and algebraically non-smooth
error is very smooth geometrically. In order to see this more clearly, observe thatbA = �(A� cI) with c = 8=h2 :

That is, the eigenvalues and eigenfunctions of bD�1 bA = h2

4
bA are directly related to those

of D�1A = h2

4 A (cf. Example 3.1), namely,b�n;m = ��n;m + 2 and b�n;m = �n;m

where n;m = 1; 2; :::;N � 1. A straightforward computation shows that the smallest and
largest eigenvalues of bD�1 bA and D�1A are the same,b�min = b�N�1;N�1 = ��max + 2 = �min and b�max = b�1;1 = ��min + 2 = �max ;

but the corresponding eigenfunctions are interchanged. �

28

Example 3.3 For certain matrices, there is no algebraically smooth error at all. For
instance, assume A to be strongly diagonally dominant, that is, aii �

P
j 6=i jaij j � �aii

with � > 0. The latter immediately implies �(A�1D) � 1=� which, because of (32),
is equivalent to kek22 � � kek21 for all e. That is, if � is of signi�cant size, there is no
algebraically smooth error. Clearly, such cases are not really interesting here since they
do not require any multi-level improvement. In fact, (36) implies rapid convergence for all
e. In the following, we will tacitly exclude such cases. �

As seen from the above considerations, the term \smooth" is sometimes misleading and
should better be replaced by, for instance, \slow-to-converge". However, for historical
reasons, we stick to the term \smooth".

The following lemma is used for proving the subsequent theorems which refer to the
smoothing properties of Gauss-Seidel and Jacobi relaxation, respectively.

Lemma 3.2 [63] Let A > 0 and let the smoothing operator be of the form S = I �Q�1A
with some non-singular matrix Q. Then the smoothing property (36) is equivalent to

�QTD�1Q � Q+QT �A :

Proof: Using the particular form of S, a straightforward calculation shows

kSek21 = kek21 � ((Q+QT �A)Q�1Ae;Q�1Ae)E :

Hence, (36) is equivalent to

� kek22 � ((Q+ QT � A)Q�1Ae;Q�1Ae)E

which, in turn, is equivalent to

� (D�1Qe;Qe)E � ((Q+QT �A)e; e)E : 4
Theorem 3.1 [12, 63] Let A > 0 and de�ne, with any vector w = (wi) > 0,

� = max
i

n 1

wiaii

X
j<i

wj jaijj
o
;
+ = max

i

n 1

wiaii

X
j>i

wj jaij j
o
:

Then Gauss-Seidel relaxation satis�es (36) with � = 1=(1 +
�)(1 +
+).

Proof: Gauss-Seidel relaxation satis�es the assumptions of Lemma 3.2 with Q being the
lower triangular part of A (including the diagonal) and we have Q+ QT �A = D. Thus,
(36) is equivalent to � (QTD�1Qe; e)E � (De; e)E which, because of (32), is equivalent to
� � 1=�(D�1QTD�1Q). A su�cient condition for the latter inequality is given by

� � 1=jD�1QT j jD�1Qj
where j : j stands for an arbitrary matrix norm which is induced by a vector norm (i.e.,
which is the corresponding operator norm). For the special choice

jLj = jLjw = max
i

n 1

wi

X
j

wj jlij j
o

(38)

29

we have jD�1Qj = 1 +
� and jD�1QT j = 1+
+ which proves the theorem. 4

From this theorem we conclude that Gauss-Seidel relaxation satis�es the smoothing
property uniformly for all important classes A of matrices under consideration:

� For all symmetric M-matrices, the smoothing property is satis�ed with � = 1=4.
This can be seen by observing that, for any such matrix, there exists a vector
z > 0 with Az > 0 [67]. By chosing w = z in Theorem 3.1, we obtain

� = max
i

n 1

ziaii

X
j<i

zj jaij j
o
= max

i

n
1� 1

ziaii

X
j�i

zjaij

o
< 1 :

Similarly, we obtain
+ < 1.

� The previous result, trivially, carries over to all A > 0 which are obtained from a
symmetric M-matrix by symmetrically
ipping some or all o�-diagonal signs.

� For any A > 0 with � ` non-vanishing entries per row, the smoothing property
is satis�ed with � = 1=`2. This can be seen by selecting wi = 1=

p
aii. Because of

a2ij < aiiajj (j 6= i), it follows that
�;
+ < `� 1.

� From a practical point of view, the previous result is far too pessimistic. We
typically have

P
j 6=i jaij j � aii, which means that, by selecting wi � 1, we can

expect
� and
+ to be close to or even less than 1. That is, � � 1=4 is typical
for most applications we have in mind here.

Theorem 3.2 [12, 63] Let A > 0 and � � �(D�1A). Then Jacobi relaxation with relax-
ation parameter 0 < ! < 2=� satis�es (36) with � = !(2�!�). In terms of �, the optimal
parameter (which gives the largest value of �) is !? = 1=�. For this optimal parameter,
the smoothing property is satis�ed with � = 1=�.

Proof: Jacobi relaxation satis�es the assumptions of Lemma 3.2 with Q = 1
!D. Hence,

(36) is equivalent to (Ae; e)E � (2=!��=!2) (De; e)E which, because of (32), is equivalent
to �(D�1A) � 2=! � �=!2. Replacing �(D�1A) by the upper bound �, leads to the
su�cient condition � � 2=! � �=!2, or, in terms of �, � � !(2 � !�). Obviously, � is
positive if 0 < ! < 2=�. This proves the theorem. 4

This theorem shows that Jacobi relaxation has smoothing properties similar to Gauss-
Seidel relaxation. However, like in geometric multigrid, some relaxation parameter,
!, is required. Using � = jD�1Ajw as an upper bound for �(D�1A) (see (38)), one
obtains, for instance, � = 2 for all symmetric M-matrices. More generally, for all
typical scalar PDE applications satisfying

P
j 6=i jaij j � aii we have � � 2. That is,

using the relaxation parameter ! = 1=2, we have � � 1=2.

We �nally want to mention that Gauss-Seidel and !-Jacobi relaxation also satisfy the
following variant of the smoothing property (36),

30

kSek21 � kek21 � e� kSek22 (e� > 0) : (39)

Regarding the proof, we refer to [63]. Further discussions on smoothing properties of
di�erent relaxation schemes can be found in [12].

3.3 Interpretation of algebraically smooth error

We have seen in the previous section that, in the sense of (36), Gauss-Seidel and !-Jacobi
relaxation have smoothing properties for all matrices A > 0 under consideration. This
smoothness needs to be exploited in order to �nally construct reasonable C/F-splittings
and interpolation (see Section 4.2). Therefore, in this section, we (heuristically) interprete
algebraic smoothness for some typical cases.

Algebraically smooth error is characterized by Se � e which, according to (36), implies
kek2 � kek1 (see also (35)). In terms of the residual, r = Ae, this means

(D�1r; r)E � (e; r)E

which indicates that, on the average, algebraically smooth error is characterized by (scaled)
residuals which are much smaller than the error itself. This can also be seen directly. For
instance, Gauss-Seidel relaxation, performed at point i, corresponds to replacing ui by ui
where

ui =
1

aii
(fi �

X
j 6=i

aijuj) =
1

aii
(aiiui + fi �

X
j

aijuj) = ui +
ri
aii

or, in terms of the corresponding error,

ei = ei � ri
aii

:

Here, ri denotes the residual before relaxation at point i. From this we can heuristically
conclude that, for algebraically smooth error (i.e. ei � ei),

jrij � aii jeij :

That is, although the error may still be quite large globally, locally we can approximate
ei as a function of its neighboring error values ej by evaluating

(ri =) aiiei +
X
j2Ni

aijej = 0 : (40)

In this sense, algebraically smooth error provides some rough approximation to the solution
of the basic equations (27).

The fact that (scaled) residuals are much smaller than the errors themselves, is, alge-
braically, the most important characteristic of smooth error. However, for some speci�c
classes of matrices, we can give algebraic smoothness a more intuitive interpretation.

31

3.3.1 M-matrices

An algebraically smooth error e satis�es kek2 � kek1 which, because of the �rst inequality
in (30), implies kek1 � kek0 (see also (35)) or, equivalently,

1

2

X
i;j

(�aij)(ei � ej)
2 +

X
i

sie
2
i �

X
i

aii e
2
i : (41)

This follows immediately from the equality

kek21 = (Ae; e)E =
X
i;j

aij ei ej =
1

2

X
i;j

(�aij)(ei � ej)
2 +

X
i

sie
2
i (42)

which can easily be seen to hold for all symmetric matrices A. Here and in the sequel,
si =

P
j aij denotes the i-th row sum of A.

For symmetric M-matrices (see Section 2.2), we have aij � 0 (j 6= i) and, in the most
important case of si � 0, (41) means that, on the average for each i,X

j 6=i

jaij j
aii

(ei � ej)2

e2i
� 1 : (43)

That is, algebraically smooth error varies slowly in the direction of large (negative)
connections, i.e., from ei to ej if jaij j=aii is relatively large. In other words, relaxation
schemes which satisfy the smoothing property (36), smooth the error along strong
(negative) connections.

Example 3.4 The most typical example which illustrates the previous statement is given
by matrices derived from the model operator �"uxx�uyy , discretized on a uniform mesh.
While, for " � 1, algebraically smooth error changes slowly in both spatial directions, for
" � 1 (the anisotropic case) this is true only for the y-direction (cf. Figure 4 in Section
1.3 for an example with varying directions of anisotropies).

Another example is illustrated in Figure 5. Here A is derived by discretizing

�("ux)x � ("uy)y = f(x; y) (44)

on the unit square with mesh size h and using Dirichlet boundary conditions. The coe�-
cient function " is piecewise constant and de�ned as indicated in Figure 5a. Using standard
5-point di�erencing (for the de�nition, see Section 8.4.1), we obtain uniform stencils away
from the interface of discontinuity and, consequently, in this area, algebraically smooth
error changes smoothly in both coordinate directions. At the interface itself, however,
the discretization stencil (depicted in Figure 5a) clearly shows that the inner subsquare
is virtually decoupled from the rest of the domain: "out is negligible compared to "in.
Consequently, the error inside the subsquare is una�ected by the error in the rest of the
domain and we cannot expect an algebraically smooth error to change smoothly across the
interface. In fact, it generally exhibits a sharp discontinuity. This is depicted in Figure 5b
which shows a typical algebraically smooth error obtained after the application of a few
Gauss-Seidel relaxation steps to the homogeneous equations (44). �

32

1
32h

h

in

in out in in

out

−
− + −

−

�

!

"

$

#
#
#

ε
ε ε ε ε

ε

ε in = 106

ε out = 1

0.375

0.625

1.0

0.0

0

0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

y

Figure 5: a) Coe�cient " for problem (44) and discretization stencil at the inner interface.
b) Algebraically smooth error obtained after a few Gauss-Seidel relaxation steps.

3.3.2 Essentially positive-type matrices

A positive de�nite matrix is called of essentially positive type [12] if there exists a constant
c > 0 such that, for all e,X

i;j

(�aij)(ei � ej)
2 � c

X
i;j

(�a�ij)(ei � ej)
2 : (45)

(Here and further below, we make use of the notation a�ij and a+ij as de�ned in (19).)
The main conclusion for M-matrices carries over to essentially positive type matrices. In
particular, instead of (41), algebraically smooth error satis�es

c

2

X
i;j

(�a�ij)(ei � ej)
2 +

X
i

sie
2
i �

X
i

aii e
2
i (46)

which still leads to the conclusion that an algebraically smooth error varies slowly in the
direction of large (negative) connections.

Higher order di�erence approximations to second order elliptic problems or problems
involving mixed derivatives often lead to essentially positive type matrices. Such and
similar matrices have the property that, for each aij > 0, there exist paths of length two
(or more) from i to j corresponding to relatively large negative connections (we call such
paths \strong negative paths"). For instance, we may have aik < 0 and akj < 0 with jaikj,
jakj j being su�ciently large compared to aij . In such cases, (45) can explicitly be veri�ed
by using simple estimates like

��

�+ �
(a+ b)2 � �a2 + �b2 (�; � > 0) : (47)

33

Example 3.5 Ignoring boundary conditions, the 4-th order discretization of ��u leads
to the stencil

1

12h2

0BBBB@
1

�16
1 �16 60 �16 1

�16
1

1CCCCA :

Using (47) with � = � = 1, one can easily verify (45) with c = 3=4. Similarly, the 9-point
discretization of ��u + uxy ,

1

h2

0@ �1
4 �1 +1

4
�1 4 �1
+1

4 �1 �1
4

1A ; (48)

satis�es (45) with c = 1=2. �

0

0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

y

0

0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

y

Figure 6: Algebraically smooth error in case of (48) and the standard 5-point Poisson
stencil (33), respectively

Figure 6 compares algebraically smooth error corresponding to (48) with that corre-
sponding to the standard 5-point Poisson stencil (33), obtained after the same number of
Gauss-Seidel relaxation steps and starting with the same random function. The result is
virtually the same, indicating that the positive matrix entries do not signi�cantly in
uence
the smoothing behavior of Gauss-Seidel.

Remark 3.3 Note that, for an essentially positive type matrix, each row containing o�-
diagonal elements has at least one negative o�-diagonal entry. For the k-th row, this
follows immediately by applying (45) to the special vector e = (ei) with ei = �ik (Kronecker
symbol). �

3.3.3 Large positive connections

For essentially positive type matrices, positive o�-diagonal entries are relatively small. If
there exist strong negative paths as in the previous examples, algebraically smooth error

34

still varies slowly even in the direction of positive connections. However, this cannot be
expected to be true any more if positive connections exceed a certain size, in particular
not, if aij > 0 and there exist no strong negative paths from i to j. We demonstrate this
for matrices A > 0 which are close to being weakly diagonally dominant [33].

To characterize algebraically smooth error analogously as before, observe �rst that
si = ti + 2

P
j 6=i a

+
ij where ti := aii �

P
j 6=i jaij j. Using this, one can evaluate (42) further:

(Ae; e)E =
1

2

X
i;j

ja�ij j(ei � ej)
2 � 1

2

X
i;j

a+ij(ei � ej)
2 +

X
i

sie
2
i

=
1

2

X
i;j

ja�ij j(ei � ej)
2 +

X
i

X
j 6=i

a+ij(2e
2
i � (ei � ej)

2=2) +
X
i

tie
2
i

=
1

2

X
i;j

ja�ij j(ei � ej)
2 +

1

2

X
i

X
j 6=i

a+ij(2e
2
i + 2e2j � (ei � ej)

2) +
X
i

tie
2
i

=
1

2

X
i

�X
j 6=i

ja�ij j(ei � ej)
2 +

X
j 6=i

a+ij(ei + ej)
2
�
+
X
i

tie
2
i : (49)

Assuming ti � 0 (approximate weak diagonal dominance), kek1 � kek0 now leads to the
conclusion that, on the average for each i, algebraically smooth error satis�es

X
j 6=i

ja�ij j
aii

(ei � ej)2

e2i
+
X
j 6=i

a+ij
aii

(ei + ej)2

e2i
� 1 (50)

instead of (43).

Consequently, as before, algebraically smooth error can be expected to change slowly
in the direction of strong negative directions. However, ej tends to approximate �ei
(relative to the size of ei) if aij is positive and aij=aii is relatively large. In other words,
algebraically smooth error tends to oscillate along strong positive connections.

Example 3.6 If A corresponds to the following stencil24 +1
�1 4 �1

+1

35 ; (51)

algebraically smooth error is geometrically smooth only in x-direction but strongly oscil-
latory in y-direction. This is depicted in Figure 7 (left picture). Note that the situation
here is completely di�erent from the anisotropic case �uxx � "uyy with " � 1. While,
in the latter case, the error between any two horizontal gridlines (y � const) is virtually
unrelated, it is strongly related in case of (51). According to the oscillatory behavior in
y-direction, the error is actually rather smooth globally, if one considers only ever other
horizontal gridline.

As an example which is more typical for di�erential problems, consider the standard
discretization of Poisson equation with anti-periodic boundary conditions. Compared

35

to the corresponding periodic case (only negative o�-diagonal entries), here certain o�-
diagonal entries have changed sign near the boundary. As a consequence, algebraically
smooth error will generally exhibit a jump across the boundary. This is illustrated in
Figure 7 (right picture). Note that AMG will not be able to detect the boundary: all
equations with positive o�-diagonals look like interior equations to AMG. �

-1

-0.5

0

0.5

1

error

0
0.5

1
1.5

2
2.5

3

x

0

0.5

1

1.5

2

2.5

3

y

Figure 7: Algebraically smooth error in case of problem (51) and the 5-point Poisson
operator with anti-periodic boundary conditions, respectively

36

4 Post-smoothing and two-level convergence

In this section, we investigate the two-level convergence for symmetric and positive de�nite
problems. As mentioned before, using transfer operators satisfying (10), the correspond-
ing Galerkin operators (5) are also symmetric and positive de�nite and the coarse-grid
correction operators, K = Kh;H (9), satisfy the variational principle described in Section
2.4.

We here consider the case of post-smoothing, adopting the theoretical approach intro-
duced in [12], also see [63]. For simplicity, we assume that only one smoothing step is
performed per cycle, that is, the two-grid operator to be considered is SK. In Section 4.1,
we will derive a simple algebraic requirement on interpolation (which implicitly includes
also a requirement on the C/F-splitting), in terms of a bound for its \error", which implies
uniform two-level convergence w.r.t. the energy norm. In Sections 4.2 and 4.3, we will
discuss concrete interpolation approaches satisfying this requirement for relevant classes
of matrices. Compared to [63], interpolation has been modi�ed and generalized.

Throughout this and the following Section 5 (which covers the case of pre-smoothing),
we employ the inner products and norms de�ned in (17) and (18). Indices h and H will
be used only if absolutely necessary.

4.1 Convergence estimate

For SKe to become small, it is important that the smoothing operator S e�ciently reduces
all vectors contained in R(K). Loosely speaking, the error after a coarse-grid correction
step has to be \relaxable". Since, assuming property (36) to be satis�ed, error reduction
by smoothing becomes the less e�cient the smaller kek2 is relative to kek1, the least we
have to require is that, for all e 2 R(K), kek2 is bounded from below by kek1. This leads
to the following theorem.

Theorem 4.1 [63] Let A > 0 and let S satisfy the smoothing property (36). Furthermore,
assume the C/F-splitting and interpolation to be such that

kKek21 � � kKek22 (52)

with some � > 0 being independent of e. Then � � � and kSKk1 �
p
1� �=� :

Proof: By combining (36) and (52) one immediately obtains

kSKek21 � kKek21 � � kKek22 � (1� �=�) kKek21 � (1� �=�) kek21
which proves the theorem. 4

Condition (52) is not very practical. The following theorem gives a su�cient condition
directly in terms of \accuracy" of interpolation.

Theorem 4.2 [63] If the C/F-splitting and interpolation IFC are such that, for all e,

keF � IFCeCk20;F � � kek21 (53)

with � being independent of e, then (52) is satis�ed.

37

Proof: Let any e 2 R(K) be given. Then, for arbitrary eH , the orthogonality properties
of K (Corollary 2.1) imply

kek21 = (Ae; e� IhHe
H)E

and a straightforward application of Schwarz' inequality yields

kek21 = (D� 1

2Ae;D
1

2 (e� IhHe
H))E � kek2 ke� IhHe

Hk0 : (54)

By selecting eH to be just the straight projection of e to the coarse level, we obtain

ke� IhHe
Hk0 = keF � IFCeCk0;F :

Hence, assumption (53) implies kek21 � � kek22 for all e 2 R(K) which proves (52). 4
We have already pointed out before (Remark 1.1) that we are not interested in conver-

gence for one particular A only but rather in having uniform convergence if A ranges over
some reasonable class of matrices, A. Since, according to Section 3.2, standard relaxation
schemes satisfy the smoothing property (36) uniformly for all problems under consider-
ation, Theorem 4.1 actually implies uniform two-level convergence for A 2 A if we can
show that an (operator-dependent) interpolation can be constructed so that (53) holds
uniformly for all such A (i.e. with the same �). That this is possible for relevant classes
A, will be shown in the following section. Before, however, we want to make some general
remarks on the requirement (53).

Remark 4.1 In the limit case of zero row sum matrices, the right hand side of (53)
is zero for all constant vectors e. Hence, constants necessarily have to be interpolated
exactly (cf. Remark 1.2). Note that this is not necessary for non-singular matrices.
In fact, one may be able to satisfy (53) with smaller � -values if one does not force
constants to be interpolated exactly (see the related discussion in Section 4.2). �

Remark 4.2 Although (53) has to hold for all e, it implies a non-trivial condition only
if e is algebraically smooth. This is most easily seen by writing (53) in terms of the
eigenvectors � of D�1A and using (31),

k�F � IFC�Ck20;F � � � k�k20 : (55)

Requiring this to be uniformly satis�ed within a relevant class A of matrices implies a
non-trivial condition only for those � = �A which correspond to the small eigenvalues
� = �A, in particular, those which approach zero if A varies in A. According to
Remark 3.1, these are just the algebraically smooth eigenvectors. If A consists of the
h-discretization matrices corresponding to a standard and isotropic elliptic problem, we
know that algebraically smooth eigenvectors are also geometrically smooth and their
eigenvalues satisfy � = O(h2). In such cases, obviously, (53) is closely related to the
requirement of �rst order interpolation. �

We �nally want to note that the two-level approach considered here can be regarded as
an approximation to the direct solver (post-smoothing variant) described in Section 2.3.
In particular, the requirement that the error after a coarse-grid correction step has to be

38

\relaxable" (see beginning of this section) corresponds to the property of the direct solver
that all vectors in R(K) are annihilated by smoothing (cf. Lemma 2.1).

4.2 Direct interpolation

In the following, we describe and discuss basic approaches to automatically construct
(operator-dependent) interpolation which, for relevant classes A, can be shown to uni-
formly satisfy (53). For ease of motivation, we start with the class of M-matrices in Sec-
tion 4.2.1. Generalisations are given in Sections 4.2.2 and 4.2.3. Regarding a realisation
in practice, we refer to Section 7.

In order to motivate the general approach in constructing interpolation, we recall that
(53) is a non-trivial condition only for algebraically smooth error (see Remark 4.2). For
such error, however, we have heuristically seen in Section 3.3 that the basic equations (27)
are approximately satis�ed (cf. (40)). Consequently, the de�nition of interpolation will
be based on the same equations.

That is, given a C/F-splitting and sets Pi � C (i 2 F) of interpolatory points, the goal
is to de�ne the interpolation weights wik in

ei =
X
k2Pi

wik ek (i 2 F) (56)

so that (56) yields a reasonable approximation for any algebraically smooth e which
approximately satis�es

aiiei +
X
j2Ni

aijej = 0 (i 2 F) : (57)

Of course, the actual construction of the C/F-splitting and the interpolation itself
are closely related processes. Generally, the splitting has to be such that each F-point
has a \su�ciently strong connection" to the set of C-points. Although this connectivity
does not necessarily have to be via direct couplings, in the following sections we only
consider \direct" interpolation, that is, we assume the sets of interpolatory points to
satisfy Pi � C \ Ni where, as before, Ni denotes the direct neighborhood (12) of point
i. This is for simplicity; some remarks on more general \indirect" interpolations are
contained in Section 4.3.

Remark 4.3 Variables which are not coupled to any other variable (corresponding to
matrix rows with all o�-diagonal entries being zero) will always become F-variables which,
however, do not require any interpolation. For simplicity, we exclude such trivial cases in
the following. �

4.2.1 M-matrices

We have seen in Section 3.3.1 that, for symmetric M-matrices, algebraically smooth error
varies slowly in the direction of strong couplings. That is, the error at a point i is essentially
determined by a weighted average of the error at its strong neighbors. Consequently,

39

assuming ; 6= Pi � C \Ni, the more strong connections of any F-variable i are contained
in Pi, the better will

1P
k2Pi

aik

X
k2Pi

aikek � 1P
j2Ni

aij

X
j2Ni

aijej (58)

be satis�ed for smooth error. This suggests approximating (57) by

aiiei + �i
X
k2Pi

aikek = 0 with �i =

P
j2Ni

aijP
k2Pi

aik
(59)

which leads to an interpolation formula (56) with matrix-dependent, positive weights:

wik = ��iaik=aii (i 2 F; k 2 Pi) : (60)

Note that the row sums of (57) and (59) are equal and we have

aii

�
1�

X
k2Pi

wik

�
= si :=

X
j

aij (61)

showing that
P

k2Pi
wik = 1 if si = 0. Consequently, in the limit case of zero row sum ma-

trices, constants are interpolated exactly (cf. Remark 4.1). For regular matrices, however,
this is not the case. Instead, the weights are chosen so that IFC1C is an approximation
to bIFC1C (see Section 2.3). More precisely, IFC1C equals the result of one Jacobi step
applied to the equations (57) with the vector e = 1 as starting vector. (Here 1 denotes
the vector with all components being ones.)

The above interpolation approach can formally be applied to any M-matrix and any
C/F-splitting provided that C \Ni 6= ; for each i 2 F . The following theorem shows that
(53) can be satis�ed uniformly within the class of weakly diagonally dominant M-matrices
whenever the sets C \Ni are reasonably large.

Theorem 4.3 Let A be a symmetric M-matrix with si =
P

j aij � 0. With �xed � � 1
select a C/F-splitting so that, for each i 2 F , there is a set Pi � C \Ni satisfyingX

k2Pi

jaikj � 1

�

X
j2Ni

jaij j : (62)

Then the interpolation (56) with weigths (60) satis�es (53).

Proof: We �rst note that, according to Remark 4.3, Pi 6= ; for all i 2 F . Because of (42),
we can estimate for all e

kek21 = (Ae; e)E �
X
i2F

� X
k2Pi

(�aik)(ei � ek)
2 + sie

2
i

�
: (63)

On the other hand, employing Schwarz' inequality, we can estimate

keF � IFCeCk20;F =
X
i2F

aii

�
ei �

X
k2Pi

wikek

�2
=

X
i2F

aii

� X
k2Pi

wik(ei � ek) + (1�
X
k2Pi

wik)ei
�2

(64)

�
X
i2F

aii

� X
k2Pi

wik(ei � ek)
2 + (1�

X
k2Pi

wik)e
2
i

�
: (65)

40

Observing (61), the previous two estimates imply (53) if aiiwik � � jaikj holds for i 2
F; k 2 Pi. According to the de�nition of the interpolation weights (60), this is equivalent
to �i � � (i 2 F) which, in turn, is equivalent to assumption (62). 4

The requirement of weak diagonal dominance in the previous theorem is su�cient but
not necessary. The following generalization applies to the class of M-matrices whose row
sums are uniformly bounded from below and whose eigenvalues are uniformly bounded
away from zero.

Theorem 4.4 Let the symmetric M-matrix A satisfy si =
P

j aij � �c with some c � 0
and assume (Ae; e)E � �(e; e)E for all e with some � > 0. With �xed � � 1, select a
C/F-splitting as in Theorem 4.3. Then the interpolation (56) with weigths (60) satis�es
(53) with � replaced by some e� = e�(�; c; �). As a function of � and c, we have e� ! 1 if
either c!1 or �! 0.

Proof: Let us assume that si < 0 for (at least) one i. Instead of (63) we employ the
following estimate with eA = A+ cI :

(eAe; e)E �X
i2F

� X
k2Pi

(�aik)(ei � ek)
2 + (c+ si)e

2
i

�
:

In order to estimate the interpolation error, we proceed as in the proof of the previous
theorem. However, we need to modify the estimation of (64) for those i 2 F for which
si < 0 (because 1 �Pk2Pi

wik < 0, see (61)) by, for instance, inserting an additional
estimate of the form (a+ b)2 � 2(a2+ b2) for each such i. A straightforward computation,
exploiting that jsij � c and aii � �, then yields an estimate of the form

keF � IFCeCk20;F � �1(eAe; e)E + �2(e; e)E � e� kek21
with e� = e�(�; c; �). The rest of the theorem follows from the explicit form of e� . 4

While the smoothing property (36) is uniformly satis�ed in the class of all symmetric
M-matrices, the previous theorem indicates that (53) cannot be expected to uniformly
hold in this class. In particular, the smaller the �rst eigenvalue of A (i.e. the smaller �)
is, the higher is the required accuracy in interpolating the corresponding eigenvector.
However, unless this eigenvector is constant (cf. Remark 1.2), this cannot be achieved
by the above interpolation. The following example illustrates this situation.

Example 4.1 Consider the class of matrices Ac (0 � c < �0) de�ned by discretizing the
Helmholtz operator ��u � cu on the unit square with �xed mesh size h and Dirichlet
boundary conditions. Here �0 > 0 denotes the smallest eigenvalue of the corresponding
discrete Poisson operator, A0. If we select e = �0 as the corresponding eigenfunction
(normalized so that kekE = 1), we have for each A = Ac that kek21 = �0 � c. Thus, for
(53) to hold independently of c,

keF � IFCeCk20;F � � (�0 � c)

is required which means that the �rst eigenfunction of the Poisson operator has to be
approximated with increasing accuracy if c ! �0. However, this is generally not true

41

unless the interpolation formula is improved by special techniques (e.g. based on an
approximate knowledge of �0 [63]). Regarding numerical results for this case, see Section
8.5.3. �

According to the above theorems, the C/F-splitting should be selected so that, for
each i 2 F , a �xed fraction of its total strength of connection is represented in C (and
used for interpolation). However, given any � , this leaves quite some freedom in realising
a concrete splitting algorithm. Although speci�c realisations cannot be distinguished
within the framework of this algebraic two-level theory, the �nally resulting convergence
may substantially depend on the details of this realisation. We want to make some basic
remarks:

Remark 4.4 The concrete choice of � is crucial. Clearly, the larger � is, the weaker
is the assumption (62). In particular, for large � , (62) allows for rapid coarsening, but
the two-level convergence will be very slow (see Section 4.1). On the other hand, the
choice � = 1 gives best convergence, but will force all neighbors of i 2 F to be in C. In
fact, since the latter means that the submatrix AFF becomes diagonal, this results in a
direct solver as described in Section 2.3 (if combined with F-relaxation for smoothing)
and we have already seen that this approach, if applied recursively, will be extremely
ine�cient (cf. Example 2.1). A reasonable compromise is � = 2 which means that
about 50% of the total strength of connections of every F-point has to be represented
on the next coarser level. However, from a practical point of view, coarsening may still
be too slow, in particular, for matrices which have many row entries of similar size. We
come back to a practical algorithm in Section 7. �

Remark 4.5 To satisfy (62) with as few C-points as possible, one should arrange
the splitting so that C-points are only chosen from the strongest connections of every
F-point. This just means coarsening \in the direction of smoothness". �

Remark 4.6 Given an application with geometrical background, the algebraic con-
dition (62) does not take the geometric locations of C-points relative to the F-points
into account. In fact, this is the main reason for the limited accuracy of purely al-
gebraically de�ned interpolation as mentioned in Remark 4.2. In practice, however,
the accuracy of interpolation { and through this the resulting convergence { can often
be substantially improved by just arranging the C/F-distribution carefully. As a rule,
it has turned out to be bene�cial to arrange the C/F-splitting so that the set of C-
points builds (approximately) a maximal set with the property that the C-points are
not strongly coupled among each other (\maximally independent set") and that the
F-points are \surrounded" by their interpolatory C-points. This can be ensured to a
large extent by merely exploiting the connectivity information contained in the matrix.
For an illustration, see the following example. �

Example 4.2 A careful arrangement of the C/F-splitting in the sense of the previous
remark is particularly bene�cial if the matrix A corresponds to a geometrically posed
problem with many o�-diagonal entries being of essentially the same size. Consider, for

42

instance, the 9-point discretization of the Poisson operator,

1

3h2

24 �1 �1 �1
�1 8 �1
�1 �1 �1

35
h

: (66)

Figure 8 illustrates some local C/F-arrangements all of which are admissible (in the sense
of (62)) if we set � = 4, say. Clearly, interpolation given by the left-most arrangement is
worst: it just gives �rst order accuracy, the best we can really ensure by purely algebraic
means (cf. Remark 4.2). Following the rule mentioned in Remark 4.6, we would obtain a
C/F-splitting for which the two right-most arrangements are characteristic. Both of them
correspond to second order interpolation which, as we know from geometric multigrid,
gives a much better performance for such balanced stencils as considered in this example.
The second arrangement does not give second order, but is still better than the �rst one.

This illustrates that a proper arrangement of the splitting may substantially enhance
convergence. Ignoring this, may, in the worst case, not only cause relatively slow con-
vergence of the two-level method, but also an h-dependent convergence behavior of full
V-cycles. For an extreme example of such a situation, see Example 6.1. Clearly, in general,
there is no way to strictly ensure optimal interpolation and convergence by exploiting only
algebraic information contained in the matrix. In practice, however, it is usually su�cient
to avoid extreme one-sided interpolation (see the related discussion in Section 6 and also
in Section 9). �

C F F

F F F

C F F

C F F

F F C

C F F

C F C

F F F

C F C

F F F

C F C

F F F

wik ≡ 1 2/ wik ≡ 1 3/ wik ≡ 1 4/ wik ≡ 1 2/

Figure 8: Di�erent C/F-arrangements and corresponding interpolation formulas

For completeness, we want to brie
y mention a few other typical approaches to de�ne
interpolation which are, however, not in the focus of this paper and may well be skipped
in reading. In each case, we brie
y discuss requirements which, instead of (62), ensure
(53) for weakly diagonally dominant M-matrices. Note that any interpolation (56) with
Pi � C \Ni satis�es (53) if the following two inequalities hold:

0 � aiiwik � � jaikj ; 0 � aii(1�
X
k2Pi

wik) � � si : (67)

This follows immediately from the proof of Theorem 4.3 and will be used below.

Variant 1. One variant, considered in [63], starts from the assumptionX
j =2Pi

aijej �
�X
j =2Pi

aij
�
ei

43

instead of (58). This corresponds to adding all non-interpolatory connections to the
diagonal, leading to the weights

wik = �aik=
X
j =2Pi

aij : (68)

A certain drawback of this approach is that the denominator in (68) may, in principle,
become zero or even negative for matrices which contain rows with si < 0. Apart
from this, however, this variant performs very comparably to the interpolation (60)
(in fact, in the limit case of zero row sums, si � 0, both interpolations are identical).
For weakly diagonally dominant M-matrices, the requirementX

j =2Pi

aij � 1

�
aii (i 2 F) : (69)

can be seen to imply (67) and, hence, also (53).

Variant 2. The interpolation weights

wik = aik=
X
j2Pi

aij

are constructed so that
P

k2Pi
wik � 1 which forces constants to be always interpo-

lated exactly. Compared to (60), no essential di�erence in behavior is expected as
long as si � 0. However, if this is strongly violated for some i (e.g. near boundaries),
the approximation of algebraically smooth error (which is not constant) becomes less
accurate which, in turn, may cause a certain reduction in convergence speed. Ac-
cording to (67), (53) is satis�ed ifX

k2Pi

jaikj � 1

�
aii (i 2 F) : (70)

This also indicates that, in cases of strongly diagonally dominant rows, (70) may
unnecessarily slow down the coarsening process compared to (62), or, alternatively,
lead to worse bounds for the interpolation error.

Variant 3. As an alternative to the previous interpolation, it is sometimes proposed to
simply use equal weights wik = 1=ni where ni = jPij just denotes the number of
neighbors used for interpolation. Then (53) is satis�ed if

ni jaikj � 1

�
aii (i 2 F; k 2 Pi) : (71)

Obviously, for this interpolation to be reasonable it is particularly crucial to inter-
polate only from strong connections (otherwise, ni has to be too large). Unless all
interpolatory connections are of approximately the same size, this interpolation will
be substantially worse than the previous ones.

44

Variant 4. Aggregation-based AMG approaches (see Section 9) can be interpreted as to
use interpolation to any F-point from exactly one C-point only (with weight 1), that
is, jPij = 1. This interpolation allows for a rapid coarsening and, moreover, the
computation of the coarse-level Galerkin operators becomes extremely simple. On
the other hand, this interpolation is the crudest possible by de�nition, leading to
rather bad bounds for the interpolation error. In fact, (53) is satis�ed only if

jaikj � 1

�
aii (i 2 F; k 2 Pi) : (72)

Consequently, the smaller the (signi�cant) o�-diagonal entries are compared to the
diagonal, the larger � will be. In particular, (53) cannot be satis�ed uniformly within
the class of weakly diagonally dominant M-matrices any more. Generally, using this
most simple interpolation, convergence will be rather poor (and h-dependent for
complete V-cycles; see the related discussion in Section 6).

In spite of this, aggregation-based AMG approaches have become quite popular, one
reason being their simplicity and ease in programming. However, to become practi-
cal, they require additional acceleration by means of various techniques, for instance,
by smoothing of interpolation (\smoothed aggregation"). In addition, aggregation-
based AMG is typically used as pre-conditioner rather than stand-alone. We will
come back to such approaches in Section 9.

4.2.2 Essentially positive-type matrices

In the previous section we considered o�-diagonally non-positive matrices. However, the
essential estimates carry over to certain matrices with relatively small positive o�-diagonal
entries such as the essentially positive-type matrices considered in Section 3.3.2. The
theorem below shows that, for such matrices, it is su�cient to base the splitting on the
connectivity structure induced by the negative o�-diagonal entries only. Accordingly,
interpolation needs to be done only from neighbors with negative coe�cients. In the
following, we make use of the notation a+ij , a

�
ij and N+

i , N
�
i as de�ned in Section 2.2.

Using interpolatory points ; 6= Pi � C \N�
i and recalling the heuristic considerations

on algebraically smooth error in Section 3.3.2, we might de�ne interpolation exactly as
before (59). However, for reasons explained in Remark 4.8 below, we rather extend the
interpolation to the case of positive entries by adding all such entries to the diagonal (to
preserve row sums). That is, we use

eaiiei + �i
X
k2Pi

a�ikek = 0 with eaii = aii +
X
j2Ni

a+ij ; �i =

P
j2Ni

a�ijP
k2Pi

a�ik
(73)

instead of (59), yielding positive interpolation weights

wik = ��ia�ik=eaii (i 2 F; k 2 Pi) : (74)

Note that the row sums of (57) and (73) are equal and we have

eaii�1� X
k2Pi

wik

�
= si : (75)

45

Theorem 4.5 Let A > 0 be essentially positive-type (45) with si =
P

j aij � 0. With

�xed � � 1, select a C/F-splitting such that, for each i 2 F , there is a set Pi � C \N�
i

satisfying X
k2Pi

ja�ikj �
1

�

X
j2Ni

ja�ij j : (76)

Then the interpolation (56) with weights (74) satis�es (53) with �=c rather than � .

Proof: The proof runs analogously to the one of Theorem 4.3. We �rst note again that
Pi 6= ; for all i 2 F (cf. Remark 3.3). Since c � 1 and si � 0, (42) and (45) imply

(Ae; e)E � c

2

X
i;j

(�a�ij)(ei � ej)
2 +

X
i

sie
2
i

� c
X
i2F

� X
k2Pi

(�aik)(ei � ek)
2 + sie

2
i

�
:

Using (65) and observing that eaii � aii, we see that (53) is satis�ed with �=c rather than
� if �i � � (i 2 F) which is equivalent to (76). 4

Remark 4.7 There is a straightforward generalization of this theorem to the case of
negative row sums which is analogous to Theorem 4.4. �

Remark 4.8 The reason for adding positive entries to the diagonal (rather than using
the same formula as in the previous section) is mainly practical: In practice, we want to
implement an interpolation which (at least formally) can also be employed to matrices
which are not of strictly essentially positive type, for instance, which contain some par-
ticularly large positive entries. However, in such cases,

P
j2Ni

aij might become zero or
even positive for certain i 2 F and, using (59), we would obtain zero or even negative
interpolation weights. This is avoided by adding positive entries to the diagonal. Never-
theless, the approximation (73) is, obviously, only reasonable if we can assume that, for
each i 2 F , an algebraically smooth error satis�esX

j

a+ij ej �
X
j

a+ij ei (77)

which, for j 6= i, either requires ej � ei or a
+
ij to be small (relative to aii). According to the

heuristic considerations in Section 3.3.2, this can be assumed for essentially positive type
matrices as considered here. However, we will see in the next section that (73) becomes
less accurate (in the sense of (53)) if (77) is strongly violated. �

4.2.3 General case

Although the previous interpolation can, formally, always be used (provided each i has,
at least, one negative connection), it is well suited only if (77) can be assumed to hold
for an algebraically smooth error. To demonstrate this, let us consider a problem already
mentioned in Section 3.3.3 (Example 3.6):

46

Example 4.3 Consider the matrix A which corresponds to the stencil24 +1
�1 4 �1

+1

35 ; (78)

applied on an N �N grid with mesh size h = 1=N and Dirichlet boundary conditions.
We select the particular error vector e with components de�ned by +1 (-1) along even

(odd) horizontal grid lines. For this vector, we have e2i = 1 for all i, (ei � ej)
2 = 0 if

aij < 0 and (ei � ej)
2 = 4 if aij > 0. Using (42), we therefore see that

(Ae; e)E = �2
X
i;j

a+ij +
X
i

si =
X
i

�
si � 2

X
j

a+ij

�
=
X
i

ti

with ti := aii �
P

j 6=i jaijj. Since ti = 0 in the interior and ti = 1 along the boundary, we
obtain

(Ae; e)E = O(N) : (79)

Assume now any C/F-splitting and any interpolation IFC with Pi � C \N�
i to be given.

Using (64), we then see that

keF � IFCeCk20;F =
X
i2F

aii

�
1�

X
k2Pi

wik

�2
: (80)

If IFC is the particular interpolation from the previous section, (75) implies that each
term of the sum in (80) is non-zero and we obtain

keF � IFCeCk20;F = O(N2) : (81)

Because of this and (79), inequality (53) cannot hold independently of N . �

The problem seen in this example is that an algebraically smooth error is geometrically
smooth only in x-direction but highly oscillatory in y-direction (cf. Section 3.3.3). (The
particular error vector considered in the example is actually algebraically smooth.) That
is, we have ej � �ei if aij > 0 and j 6= i. Consequently, (77) is strongly violated which
explains the high interpolation error observed above. A re-de�nition of eaii in (73) by
subtracting all positive connections from the diagonal (rather than adding them), is a way
out for situations such as the one considered here (in fact, this would give O(N) in (81)
rather than O(N2)) but it is just the wrong thing to do in other cases.

This indicates that the correct treatment of positive connections in interpolation is, in
general, more critical than that of negative connections. We have seen in Section 3.3.2 that,
assuming aij > 0, algebraically smooth error e can still be expected to change slowly from i

to j for essentially positive type matrices, in particular, if there exist strong negative paths
from i to j. On the other hand, for matrices which are approximately weakly diagonally
dominant, we have to expect an oscillatory behavior (which is the stronger the larger aij
is relative to aii, see (50)). In both cases, however, we may expect that those ek which
correspond to positive connections aik > 0, change slowly among each other (unless aik

47

is very small in which case we can ignore its in
uence). This gives rise to the following
generalization of the interpolation approach (59) (M-matrix case) which is completely
symmetric in the treatment of negative and positive connections.

Let us assume that some i 2 F has both negative and positive connections, that is,
N�
i 6= ; and N+

i 6= ;. Then, assuming the C/F-splitting to be such that at least one
connection of either sign is contained in C, we can select two sets of interpolation points,
; 6= P�

i � C \N�
i and ; 6= P+

i � C \N+
i . Setting Pi = P�

i [P+
i , we then use

aiiei + �i
X
k2Pi

a�ikek + �i
X
k2Pi

a+ikek = 0 (82)

instead of (59) with

�i =

P
j2Ni

a�ijP
k2Pi

a�ik
and �i =

P
j2Ni

a+ijP
k2Pi

a+ik
:

At this point, we have assumed that, for an algebraically smooth error, approximations
analogous to (58) hold separately for the negative and the positive connections. This leads
to the following interpolation weights:

wik =

(��i aik=aii (k 2 P�
i)

��i aik=aii (k 2 P+
i)

: (83)

Note that wik > 0 (k 2 P�
i) and wik < 0 (k 2 P+

i). If either N
+
i = ; or N�

i = ;, these
de�nitions are to be modi�ed in a straightforward way by setting P+

i = ;, �i = 0 and
P�
i = ;, �i = 0, respectively. In particular, for M-matrices, the above interpolation is

identical to the one in (59). In any case, the row sums of (57) and (82) are equal and we
have

aii

�
1�

X
k2Pi

wik

�
= si : (84)

Formally, this approach can always be applied even in cases where most, or even all,
entries are positive. The following theorem { a direct generalization of Theorem 4.3 {
shows that (53) can uniformly be satis�ed in the class of weakly diagonally dominant
matrices A under completely symmetric conditions for positive and negative entries. Note
that the above example belongs to this class. A more realistic application arises, for
instance, in connection with anti-periodic boundary conditions (see also Section 3.3.3).

Theorem 4.6 Let A > 0 and ti = aii �
P

j2Ni
jaijj � 0. With �xed � � 1, select a

C/F-splitting such that the following holds for each i 2 F . If N�
i 6= ;, there is a set

P�
i � C \N�

i satisfying X
k2P�i

jaikj � 1

�

X
j2N�i

jaij j (85)

and, if N+
i 6= ;, there is a set P+

i � C \N+
i satisfyingX

k2P+

i

aik � 1

�

X
j2N+

i

aij : (86)

Then the interpolation (56) with weights (83) satis�es (53).

48

Proof: Using (49), we can estimate

(Ae; e)E �
X
i2F

� X
k2P�i

jaikj(ei � ek)
2 +

X
k2P+

i

aik(ei + ek)
2 + tie

2
i

�
: (87)

Regarding an estimate for keF � IFCeCk20;F , we start from (64). We �rst note that

aii(1�
X
k2Pi

wik) = si = 2
X
j2N+

i

aij + ti = 2�i
X
k2P+

i

aik + ti = 2aii
X
k2P+

i

jwikj+ ti

which impliesX
k2P+

i

wik(ei � ek) + (1�
X
k2Pi

wik)ei =
X
k2P+

i

jwikj(ei + ek) + ti=aii ei :

The latter, inserted into (64), gives the following estimate by applying Schwarz' inequality

keF � IFCeCk20;F =
X
i2F

aii

� X
k2P�i

wik(ei � ek) +
X
k2P+

i

jwikj(ei + ek) + ti=aii ei

�2
�

X
i2F

aii

� X
k2P�

i

wik(ei � ek)
2 +

X
k2P+

i

jwikj(ei + ek)
2 + ti=aii e

2
i

�
: (88)

Regarding this estimate, note that
P

k2Pi
jwikj+ ti=aii = 1. The estimates (87) and (88)

imply (53) if aiijwikj � � jaikj (i 2 F; k 2 Pi) which is equivalent to the assumptions of the
theorem. 4
Remark 4.9 We note that there is a straightforward extension of this theorem to the
case ti � �c with some c � 0 which is analogous to Theorem 4.4. �

Although the above theorem applies only to weakly diagonally dominant matrices, it
is heuristically clear that the approach (82) is also reasonable in other cases. In particular,
if we can assume algebraically smooth error to vary slowly even along positive connections
(as in the essentially positive type case), (82) is as good an approximation as (73). In fact,
replacing ek (k 2 P+

i) in (82) by ei gives exactly (73).
The latter indicates that, in practice, there is no need to use the approach (82) for all

i 2 F but rather only for those for which oscillatory behavior has to be expected. This
simpli�es the coarsening algorithm substantially in case of elliptic di�erential problems
where the largest couplings will usually be negative. In such cases, we will use the full
interpolation as described above only in case there really exist large positive couplings
(comparable in size to the largest negative connection, say). Otherwise, we proceed as
described in the previous section, that is, we do not interpolate from positive connections
but rather add them to the diagonal (for more details, see Section 7).

Remark 4.10 A di�erent interpolation has been considered in [33] (which is actually a
direct generalization of the one used in [63]). Compared to (82), �i = �i = 1 has been
selected and all non-interpolatory connections are used to modify the diagonal element:

aii �! eaii = aii �
X

j =2Pi; j 6=i

jaij j : (89)

49

The resulting interpolation is limited to (and actually has been developed for) weakly diag-
onally dominant matrices where algebraically smooth error really oscillates along positive
connections (note that positive matrix entries are subtracted from the diagonal element
rather than added; see the related comment further above). It is not suited for other
applications. In particular, (89) does not preserve row sums and, consequently, constants
are not interpolated exactly if si � 0. Also, the denominator in (89) may become zero or
negative. �

We �nally want to note that interpolation from positive connections is not always
necessary even if an algebraically smooth error tends to oscillate in certain directions. We
just have to ensure that the C/F-splitting is such that the C-variables can represent the
oscillations su�ciently well and that interpolation along negative couplings is \accurate
enough". We do not want to discuss this aspect any further but rather refer to the above
Example 4.3 where the situation is particularly simple. If we perform no coarsening in
y-direction (i.e. in the direction of strong positive connections), we may, for instance, use

wik = aik=
X
j2Pi

aij with k 2 Pi � C \N�
i

for interpolation (cf. Variant 2 in Section 4.2.1).

4.3 Indirect interpolation

In the previous sections, we considered approaches to construct interpolation based on
direct connections, that is, interpolation to an F-point i only from its direct neighbors.
Correspondingly, the C/F-splittings had to be such that each i 2 F is su�ciently strongly
connected to the set of C-points via direct connections.

Although a strong F-to-C connectivity is indeed crucial, it does not necessarily have
to be via direct connections. In practice, this may limit the speed of coarsening. Too
slow coarsening, however, may cause high memory requirements, often unacceptably high.
Clearly, a faster coarsening will typically imply a slower convergence. However, the ad-
vantages in terms of less memory requirement and lower computational cost per cycle and
for the setup, in many cases outweigh the disadvantage of slower convergence. Moreover,
the use of AMG as a pre-conditioner (rather than stand-alone) is usually a very e�cient
means to bring the speed of convergence back up again. This will be seen in Section 8.

In order to permit more rapid coarsening, one has to allow that F-points may be
interpolated via su�ciently many of their strong F-neighbors. For an illustration, consider
the typical geometric scenario of (isotropic) 5-point discretizations on regular meshes.
Interpolation based only on direct connections would not allow for the h! 2h coarsening
which is typically used in geometric multigrid methods, the reason being that those F-
points i located in the center of a coarse-grid cell have no direct connection to the C-
points (see Figure 9, left picture). However, all their direct F-neighbors, j, do have strong
connections to the C-points and, thus, can interpolate directly.

This simple scenario gives rise to a straightforward generalization of interpolation:
First interpolate the j-variables and then, via the resulting interpolation formulas, the
i-variable (see Figure 9, right picture). Since the details of a corresponding generalization
of the theorems in the previous sections are elementary but rather involved, we here just

50

outline the main additional step required for the generalization of Theorem 4.3 (M-matrix
case). We have a scenario in mind which is analogous to the one described above.

C F C

F F F

C F C

C F C

F F F

C F C

C F C

F F F

C F C

i i i
j j j

Figure 9: Illustration of indirect interpolation in case of 5-point stencils

Assuming a given C/F-splitting to be such that there is some i 2 F which has no
(strong) connection to any C-point, we select a set of points PF

i � F \Ni satisfying (62)
with Pi replaced by PF

i . With the same arguments as at the beginning of Section 4.2.1
we approximate in an intermediate step

ei =
X
j2PF

i

wF
ijej with wF

ij = ��iaij=aii ; �i � � : (90)

Assume now that each of the neighboring points j 2 PF
i can be interpolated, that is, we

have

ej =
X
k2Pj

wjkek with wjk = ��jajk=ajj ; �j � � : (91)

Inserting (91) into (90), yields

ei =
X
j2PF

i

X
k2Pj

wF
ijwjkek =:

X
k2Pi

wikek with Pi =
[

Pj : (92)

If, for simplicity, we �nally assume that the pairwise intersection of all Pj 's is empty
(otherwise there will be several terms of the following form), we can estimate for k 2 Pi

aiiwik(ei � ek)
2 = aiiw

F
ijwjk(ei � ek)

2

� 2aiiw
F
ijwjk((ei � ej)

2 + (ej � ek)
2)

= 2�i�j
aijajk
ajj

((ei � ej)
2 + (ej � ek)

2)

� c1 jaijj(ei � ej)
2 + c2 jajkj(ej � ek)

2 ;

where c1 and c2 depend only on � but not on the given matrix.
By means of such simple estimates and by using the full representation (42) of kek21 in

(63), one can immediately extend the proof of Theorem 4.3 showing that (53) holds with
some e� which is larger than � but does not depend on A. Regarding practical aspects, we
refer to Section 7.2.2 (\multi-pass interpolation").

51

5 Pre-smoothing and two-level convergence

In this section, we investigate two-level convergence if pre-smoothing is used rather than
post-smoothing, that is, we consider the (energy) norm of the two-level operator KS�

with some � � 1. Post- and pre-smoothing are treated separately because the immedi-
ate interaction between coarse-grid correction and smoothing is di�erent for these cases.
Clearly, regarding the asymptotic two-level convergence, it does not matter whether pre-
or post-smoothing is used. In this sense, the conclusions for either of the two cases carry
over to the other one. (In practice, we usually employ post- and pre-smoothing anyway.)

The theoretical approach used in this section is quite di�erent from the one used in
the previous section. In particular, it does not use the smoothing property (36) but is
rather directly based on the following equivalence which is an immediate consequence of
the variational principle (last statement in Corollary 2.1):

Corollary 5.1 The two-level estimate kKS�k1 � � holds if and only if, for all e, there
exists an eH such that

kS�e � IhHe
Hk1 � � kek1 : (93)

The interpretation of (93) is that the speed of convergence depends solely on the
e�cient interplay between smoothing and interpolation. To this end, S does not necessarily
have to satisfy the smoothing property as long as S�e is represented in R(IhH) su�ciently
well. The better this is satis�ed, the faster the convergence will be.

In fact, we will see in Section 5.1 that we can force � to be small (independently
of A 2 A for relevant classes A) by smoothing only at F-points. Interpolation can be
constructed as described in Section 4.2. Additional Jacobi relaxation steps, applied to
the interpolation operator, can be used to speed up convergence further. In Section 5.2
we make some remarks on the use of complete (rather than just F-) relaxation steps for
smoothing.

5.1 Convergence using mere F-smoothing

In order to motivate our theoretical approach, let us brie
y recall the results on direct
solvers (pre-smoothing variant) described in Section 2.3. The very speci�c smoothing and
interpolation operators introduced there, bS and bIhH (see (23) and (25), respectively), have
the property

R(bS) = R(bIhH) = E := fe : eF = �A�1
FFAFC eCg (94)

which, obviously, implies that the left side of (93) is identically zero (for � = 1). This
suggests trying to approximate bS and bIhH by some more realistic operators, S and IhH .

One can imagine various ways to do this. Recalling that bS and bIhH have been de�ned
by exactly solving the F-equations (21) and (27), respectively, we will here de�ne S and
IhH by solving these equations only approximately. This becomes particularly easy, if one
assumes the submatrix AFF to be strongly diagonally dominant,

aii �
X

j2F; j 6=i

jaij j � �aii (i 2 F) (95)

52

with some �xed, pre-de�ned � > 0. This assumption is very natural for large classes
of problems, in particular those considered in this paper. It essentially means that a
strong F-to-C connectivity is required which, however, has to be ensured by a reasonable
C/F-splitting anyway (cf. Section 4.2; see also Remark 5.3 further below).

All of the following is based on the assumption of strong diagonal dominance (95) and
we consider the simplest means to approximate the solutions of the F-equations (21) and
(27), namely, by straightforward relaxation involving only F-variables (\F-relaxation",
either Gauss-Seidel or Jacobi).

Remark 5.1 Note that strong diagonal dominance (95) is assumed for simplicity. What
we really require is that F-relaxation converges at a rate which is independent of the
original matrix A. Strong diagonal dominance of AFF , with pre-de�ned �, is su�cient to
ensure this, but it is not necessary. �

Before we derive the main convergence estimate in Section 5.1.4, we formally de�ne the
smoothing and interpolation operators in Sections 5.1.2 and 5.1.3. The following section
contains an auxiliary result.

5.1.1 An auxiliary result

In all of the following, the subspace E , de�ned in (94), will play an essential role. Given
any e = (eF ; eC)T , we denote its projection onto E by be,

be := (beF ; eC)T where beF := bIFCeC = �A�1
FFAFCeC : (96)

The following lemma states some basic properties which will be needed below. In partic-
ular, it relates the energy norm of e to that of be.
Lemma 5.1 Let A > 0 and any C/F-splitting be given. Then the Schur complement CH

(26) is also positive de�nite and satis�es �(C�1
H) � �(A�1). For all e, we have

(Ae; e)E = (AFF (eF � beF); eF � beF)E + (CHeC ; eC)E = ke� bek21 + kbek21 (97)

which immediately implies

kbek1 � kek1 and keF � beF k1;F = ke� bek1 � kek1 : (98)

Proof: The left equality in (97) follows by a straightforward computation. The positive
de�niteness of CH then follows from (CHeC ; eC)E = (Abe; be)E . Denoting the smallest
eigenvalue of A by � > 0, we have (Ae; e)E � �(e; e)E for all e. We can then estimate for
all eC

(CHeC ; eC)E = (Abe;be)E � �(be; be)E � �(eC ; eC)E :

Hence, �(C�1
H) � 1=� = �(A�1). 4

53

5.1.2 F-smoothing

As motivated above, we de�ne � smoothing steps by applying � F-relaxation steps to
approximately solve (21), starting with the most recent approximation u = (uF ; uC)

T

(keeping uC �xed). We will refer to this process as F-smoothing.

We here use the term \smoothing" although mere F-relaxation (like any other partial
relaxation) has no real smoothing properties in the usual sense. In particular, the
considerations in Section 3 on algebraically smooth error do not apply here. In fact,
F-relaxation aims at approximately solving the F-equations (21) (with �xed uC) rather
than smoothing the error of the full system of equations.

Consequently, a relaxation parameter, !, may be used to speed up the convergence.
However, since we require AFF to be strongly diagonally dominant, this is not really
necessary and, for simplicity, we only consider the case ! = 1. Having this in mind, one
F-smoothing step consists of

u �! u where QFFuF + (AFF � QFF)uF + AFCuC = fF ; uC = uC : (99)

QFF is the lower triangular part of AFF (including the diagonal) in case of Gauss-Seidel
relaxation and QFF = DFF in case of Jacobi relaxation. (In practice, we only use Gauss-
Seidel relaxation.) To explicitly compute the corresponding smoothing operator, we re-
write this as

uF = SFFuF + (IFF � SFF)A
�1
FF (fF �AFCuC) ; uC = uC (100)

or, in terms of the error e = u? � u (with u? denoting the exact solution of Au = f),

eF = SFF eF � (IFF � SFF)A
�1
FFAFCeC ; eC = eC :

Here, SFF = IFF �Q�1
FFAFF denotes the iteration matrix corresponding to the relaxation

of the F-variables. Consequently, the relaxation operator reads

Sh =

�
SFF (SFF � IFF)A

�1
FFAFC

0 ICC

�
(101)

and a simple calculation shows that

S�
he =

�
S�
FF (eF � beF) + beF

eC

�
: (102)

Obviously, we have rapid convergence S�
he! be (� !1) for each e.

Remark 5.2 Note that F-smoothing does not satisfy the smoothing property (36). In
fact, (102) shows that Se = e for all e 2 E . Hence, (36) cannot hold. �

54

5.1.3 Jacobi-interpolation

Given any eC , we de�ne interpolation by applying � F-relaxation steps to approximately
solve the F-equations (27). However, in order to keep the resulting operator as \local" as
possible, we only consider Jacobi-relaxation. That is, we iteratively de�ne

e
(�)
F = PFF e

(��1)
F �D�1

FFAFCeC (103)

and set IFCeC = I
(�)
FCeC := e

(�)
F . Here PFF denotes the Jacobi iteration operator, PFF =

IFF �D�1
FFAFF . In contrast to the F-smoothing process described in the previous section,

however, here no \natural" �rst approximation, e
(0)
F , is available to start the relaxation

process with. Using zero as the �rst guess is not su�cient as will be seen in Remark 5.6

further below. For now, we assume any \�rst guess interpolation", I
(0)
FC , to be given and

use e
(0)
F = I

(0)
FCeC as the �rst guess. (In the following section, we will derive a requirement

on I
(0)
FC .)
Since the interpolation operator needs to be known explicitly in order to compute the

Galerkin operator, we re-write (103) in operator form,

I
(�)
FC = PFF I

(��1)
FC �D�1

FFAFC (104)

starting with the �rst-guess interpolation operator, I(0)FC . (Regarding the practical com-
putation of the interpolation, see Section 7.2.3.) By subtracting these equations from the
equality bIFC = PFF bIFC �D�1

FFAFC , we obtain

J
(�)
FC = I

(�)
FC � bIFC = P�

FF (I
(0)
FC � bIFC) = P�

FF J
(0)
FC (105)

where JFC = IFC � bIFC denotes the \interpolation error" of IFC relative to bIFC .
We will later refer to this relaxation of interpolation as Jacobi-interpolation. Clearly,

for any given e = (eF ; eC)T , we have rapid convergence (IhH)
(�)eC ! be (�!1).

5.1.4 Convergence estimate

The following theorem yields a requirement on the �rst guess interpolation I
(0)
FC which is

su�cient to imply uniform two-level convergence. Further below, in Lemma 5.2, we will
see that this requirement is very much related to the corresponding one (53) in Section
4.1.

Theorem 5.1 Let A > 0 and assume the C/F-splitting to be such that AFF is strongly
diagonally dominant (95) with �xed � > 0. Let smoothing be performed by � � 1 F-

relaxation steps (99). Finally, let the interpolation be de�ned by IFC = I
(�)
FC with some

� � 0 (see (104)) and assume that the �rst guess interpolation, I
(0)
FC , satis�es

k(bIFC � I
(0)
FC) eCk1;F � � kek1 (106)

for all e with some � � 0 being independent of e. Then the following estimate holds:

kKS�ek1 � (kSFF k�1;F + � kPFF k�1;F) kek1 : (107)

55

Proof: Because of the variational principle (Corollary 2.1) and exploiting the representa-
tion (102) of S� , we can estimate for all e:

kKS�ek1 = min
eH

kS�e� IhHe
Hk1 � kS�e � IhHeCk1

= kS�
FF (eF � beF) + beF � IFCeCk1;F :

Recalling that beF = bIFCeC , the application of the triangular inequality gives

kKS�ek1 � kS�
FF (eF � beF)k1;F + k(IFC � bIFC)eCk1;F :

Finally, because of (105) and (98), assumption (106) implies

kKS�ek1 � kSFF k�1;F keF � beF k1;F + kPFF k�1;F k(I(0)FC � bIFC) eCk1;F
� (kSFFk�1;F + � kPFF k�1;F) kek1 ;

which proves the theorem. 4

Clearly, the norms of SFF and PFF in (107) are less than one and depend only on �

but not on A. In particular, the larger � is, the smaller these norms are. Consequently,
the previous theorem shows that, in principle, we can enforce arbitrarily fast two-level
convergence by selecting � and � accordingly. Moreover, the convergence is uniform for

A 2 A if we can construct the �rst guess interpolation, I
(0)
FC , so that (106) is uniformly

satis�ed for all such A. We will see next that this can be achieved for the same classes
of matrices for which the related condition (53) can be uniformly satis�ed (which has
been discussed in detail in Section 4.2). In fact, the following lemma shows that (106)
and (53) are essentially equivalent.

Lemma 5.2 Consider the two estimates

(a) keF � IFCeCk20;F � �1 kek21 ; (b) k(bIFC � IFC) eCk21;F � �2 kek21 : (108)

If (a) holds for all e and if � � �(D�1A), then (b) holds for all e with �2 = ��1. If (b)
holds for all e and if AFF is strongly diagonally dominant (95), then (a) holds for all e
with �1 = (1 +

p
�2)

2=�.

Proof: We �rst note that �(D�1
FFAFF) � �(D�1A):

�(D�1
FFAFF) = sup

eF

(AFF eF ; eF)E
(DFF eF ; eF)E

= sup
(eF ;0)

(Ae; e)E
(De; e)E

� sup
e

(Ae; e)E
(De; e)E

= �(D�1A) :

Using this and assuming (a) to hold for all e, we obtain because of (32)

keF � IFCeCk21;F � � keF � IFCeCk20;F � ��1 kek21 :

Applying this to be rather than e and using (98), gives

kbeF � IFCeCk21;F = k(bIFC � IFC)eCk21;F � ��1 kbek21 � ��1 kek21

56

which proves the �rst statement. Regarding the second one, we �rst estimate for any e

keF � IFC eCk1;F � keF � beF k1;F + k(bIFC � IFC) eCk1;F � (1 +
p
�2)kek1 :

By observing that

�(A�1
FFDFF) = 1 =minf� : � eigenvalue of D�1

FFAFF g � 1=� ;

we conclude that

keF � IFCeCk20;F � �(A�1
FFDFF) keF � IFCeCk21;F �

1

�
(1 +

p
�2)

2 kek21 :

This proves the lemma. 4
According to this lemma, we can use the same interpolation approaches as described

in Section 4.2 to de�ne I
(0)
FC . Regarding the practical realisation, we want to make the

following remark:

Remark 5.3 The requirement of strong diagonal dominance (95) can most easily be
satis�ed. If the C/F-splitting and interpolation are constructed according to Theorems
4.3 and 4.6, strong diagonal dominance is even automatically satis�ed, namely, with
� = 1=� . For instance, the assumptions of Theorem 4.3 imply for all i 2 F :

aii �
X

j2F; j 6=i

jaijj = si +
X
j2Pi

jaij j+
X

j2CnPi

jaijj

� si +
1

�

X
j2Ni

jaij j = 1

�
aii + (1� 1

�
)si � 1

�
aii :

A second remark refers to the parameter �. Although the two-level method con-
verges for all � � 0, Theorem 5.1 states fast convergence only if � is su�ciently large.
In practice, however, � > 2 is hardly ever required (at least if � is not too small). Never-
theless, each additional relaxation step increases the \radius" of interpolation (causing
additional �ll-in in the resulting Galerkin operator). Most of the new entries, however,
will be relatively small and can be ignored without sacri�cing convergence seriously.
Consequently, in order to keep the resulting Galerkin operator as sparse as possible,
relaxation of interpolation should always be combined with a reasonable truncation,
performed before the Galerkin operator is computed (cf. Remark 2.4; see also Section
7.2.4). We also note that, in practice, it is usually not necessary to perform F-relaxation
with the complete matrix AFF . Instead, one may well ignore all those entries of AFF

which are relatively small (and add them to the diagonal, say, in order to preserve the
row sums of interpolation). �

For completeness, the following remarks summarize some algebraic conditions which
are equivalent to (106). They are not important for the remainder of the paper, though.

Remark 5.4 Requirement (106) is equivalent to

k(bIFC � I
(0)
FC) eCk21;F � �2 (CHeC ; eC)E (109)

57

for all eC . This follows immediately by applying (106) to be rather than e and using Lemma
5.1. (109), in turn, is equivalent to

�(C�1
H J

(0)
CFAFF J

(0)
FC) = kA

1

2

FF J
(0)
FCC

� 1

2

H k2E � �2 (110)

where, as above, J
(0)
FC = I

(0)
FC � bIFC and J

(0)
CF = (J

(0)
FC)

T denote the \errors" of the �rst
guess interpolation and restriction, respectively. �

Remark 5.5 Denoting the Galerkin operator corresponding to the �rst-guess interpola-

tion by A
(0)
H , the requirement that (106) holds uniformly for A 2 A is equivalent to the

spectral equivalence of CH and A
(0)
H for A 2 A,

(CHeC ; eC)E � (A
(0)
H eC ; eC)E � (1 + �2) (CHeC ; eC)E : (111)

In order to see this, one �rst veri�es by a straightforward computation that

A
(0)
H = CH + J

(0)
CFAFF J

(0)
FC :

This equality, together with (109), proves the statement. Note that, because of (32), (111)
implies that the related (spectral) condition number is uniformly bounded,

�
�
(A

(0)
H)�1 CH

�
:=

�max

�
(A

(0)
H)�1CH

�
�min

�
(A

(0)
H)�1 CH

� � 1 + �2 : �

We conclude with a remark which stresses the importance of constructing the �rst
guess interpolation reasonably.

Remark 5.6 If we select the �rst guess interpolation too simply, we can, generally,

not expect uniform two-level convergence. For instance, if we just select I
(0)
FC = 0, (110)

is equivalent to

�(C�1
H ACFA

�1
FFAFC) = kA� 1

2

FFAFCC
� 1

2

H k2E � �2 : (112)

For h-discretized elliptic problems, we typically have kA�1
FF kE = O(h2) (provided AFF

is strongly diagonally dominant) and kAFCkE = O(h�2). Hence, (106) cannot be
expected to hold with � being independent of h! 0; we actually have � = O(h�1). In
order to still obtain uniform convergence, we would need to select � = O(log(h�1)). �

5.2 Convergence using full smoothing

The approach discussed in the previous section is not really in the spirit of multigrid since
smoothing in the usual sense is not exploited. Two-level convergence is actually obtained
by purely algebraic means. In fact, as already pointed out before, the role of F-smoothing
is merely to force S�e � be rather than to smooth the error of the full system. This,

58

together with Jacobi-interpolation, is a \brute force" approach to make kS�e � IhHeCk1
small for all e.

Although this brute force approach helps convergence, in particular in case of \tough
problems", we will see in Section 8 that the use of full relaxation steps for smoothing
usually leads to cycles which are considerably more e�cient if computational work is taken
into regard. The heuristic reason is that, assuming S to satisfy the smoothing property
(36), relatively simple interpolation of the type derived in Section 4.2 is usually su�cient
to approximate algebraically smooth error. However, if mere F-smoothing is employed,
approximations of the type (58) { as used in Section 4.2 { are too crude and, generally,
additional e�ort needs to be invested to \improve" interpolation by Jacobi-relaxation in
order to cope with all those error components which are not a�ected by mere F-smoothing.
In particular, recall that an error e 2 E is not reduced at all by F-smoothing (cf. Remark
5.2).

Unfortunately, Theorem 5.1 does not carry over to the use of general smoothing pro-
cesses based on full relaxation steps. This is because the proof is based on an estimate of
kS�e� bek1. The latter, however, can most easily be obtained for F-smoothing but not for
smoothing by full relaxation steps, except if we perform relaxation in CF-ordering, that
is, if we �rst relax all C-variables and afterwards all F-variables. In this case, Theorem 5.1
trivially carries over, at least for � = 1, by simply ignoring the C-part of the relaxation.
For completeness, we give this result here although it is unrealistic in the sense that it
cannot explain the better performance mentioned above.

Corollary 5.2 Under the same assumptions as in Theorem 5.1, except that smoothing
is replaced by one step of Gauss-Seidel relaxation in CF-order, we obtain the following
estimate

kKSek1 � (kSFF k1;F + � kPFF k�1;F) kek1 : (113)

Gauss-Seidel CF-relaxation has turned out to be a very e�cient smoother in practice.
In particular, for positive de�nite problems, it is usually more e�cient than Gauss-
Seidel relaxation without any speci�c order of variables. (Note that CF-relaxation is
related to red-black relaxation in geometric multigrid.)

From a practical point of view, (113) is too pessimistic since it implies convergence
only if � is su�ciently large. However, since the asymptotic two-level convergence does not
depend on whether pre- or post-smoothing is performed, we can conclude from the results
in Section 4.1 that the above two-level cycle asymptotically converges even for � = 0 and
convergence is uniform for A 2 A provided (106) holds uniformly for all such A.

Compared to the results in Section 4.1, the relevance of Theorem 5.1 and Corollary 5.2
is due to the complementary information. In particular, the fact that Jacobi-interpolation
with � > 0 provides a (purely algebraic) means to improve convergence and that (ad-
ditional) F-smoothing steps can be used in case of \tough" problems. We will present
examples in Section 8 demonstrating the e�ect of relaxation of interpolation. Various nu-
merical experiments employing F-smoothing and Jacobi-interpolation can also be found
in [37].

59

6 Limits of the theory

The two-level investigations of the previous sections are the basis for the de�nition of
our �nal multi-level method in Section 7. Various results will be presented in Section 8,
showing that AMG's V-cycle convergence is, to a large extent, independent of the size of
the problem, at least for the geometrically posed problems as considered here.

Unfortunately, the latter cannot be proven in a purely algebraic setting. Since the
main reason for this implies some important additional objective which should be taken
into regard in AMG's coarsening algorithm { indicated already in Remark 4.6 {, we want
to brie
y discuss the limitations of the theoretical approach presented before.

First, uniform two-level convergence has strictly been proven only for certain \ideal"
classes of positive de�nite matrices such as M-matrices, essentially positive type matrices,
weakly diagonally dominant matrices and some perturbations thereof. Although it is
plausible that we can still expect uniform convergence w.r.t. certain larger classes, the
uniformity may get lost if the matrices considered are too far o�. A special limit case has
already been discussed in Example 4.1. It is also clear that we have to expect a degradation
if the given problem is still symmetric and positive de�nite but corresponds to a system of
PDEs (e.g. from structural mechanics) rather than a scalar PDE. In such cases, generally,
the overall approach requires modi�cation: the speci�c connectivity between di�erent
physical quantities needs to be taken into account (at least, all these quantities should be
kept separate) in order to still obtain an e�cient solution method. Since such problems
are not in the focus of this paper, we will not discuss such modi�cations here but rather
refer to the preliminary discussion in [63].

However, apart from such limit cases, AMG's performance in practice turns out to
be fairly insensitive to deviations of the underlying matrices from the ideal types. This
is important to know, in particular, in recursively extending two-level to real multi-level
cycles: even if the given matrix A belongs to one of the ideal classes mentioned above, the
recursively de�ned coarse-level Galerkin operators will generally not. It is often possible
to avoid this by particular coarsening strategies. For instance, if A is a weakly diagonally
dominant M-matrix, the corresponding Galerkin operator AH will also be a weakly di-
agonally dominant M-matrix if coarsening is performed according to Theorem 4.3 with
� � 2 (for a proof, we refer to [63]). A similar result can be shown for weakly diagonally
dominant matrices A > 0 (cf. [33]). However, these results turned out to be not really
relevant in practice since they put unnecessary restrictions on the coarsening strategy:

From experience, allowing faster coarsening and accepting that the coarse-level matrices
do not exactly remain in the respective classes, typically leads to much more e�cient
solution processes.

However, even if all coarse-level matrices belong to one of the ideal classes (for instance,
if they are all weakly diagonally dominant M-matrices), the two-level theory does not carry
over to a multi-level V-cycle theory. To demonstrate this, we consider the following very
simple but characteristic counter-example.

Example 6.1 [12, 63] Let Ah be derived from discretizing �u00 on the unit interval with
meshsize h, i.e., the rows of Ah correspond to the di�erence stencil

60

1

h2
[�1 2 � 1]h ;

with Dirichlet boundary conditions. (However, since the concrete boundary conditions are
irrelevant for this example, we may ignore the boundary in the following.) One possibility
of satisfying the assumptions of Theorem 4.3 with � = 2 is to assume h ! 2h coarsening
and de�ne interpolation to each F-point strictly one-sided (with the interpolation weight
being 1), see Figure 10.

F F F FC C C C

I eH
h H

Ωh

ΩH

Figure 10: Strictly one-sided interpolation (piecewise constant)

The corresponding coarse-grid operator, AH , is easily computed to correspond to the
di�erence stencil

1

(2h)2
[�4 8 � 4]2h

which, after proper scaling of the restriction operator by 1=2, is seen to be o� by a factor of
2 compared to the \natural" 2h-discretization of �u00. Due to this, for a very smooth error
frequency, sin(�x), say, we obtain Ke � 1

2e. Consequently, as smoothing hardly e�ects
this frequency (if h is very small), we cannot expect the asymptotic two-level convergence
factor to be better than 1=2.

If the same strategy is now used recursively to introduce coarser and coarser levels,
the above arguments carry over to each of the intermediate levels and, in particular, each
coarser-grid operator is o� by a factor of 2 compared to the previous one. A simple
recursive argument { applied to the same error frequency as above { shows that errors are
accumulated from grid to grid and the asymptotic V-cycle convergence factor cannot be
expected to be better than 1� 2�m where m denotes the number of coarser levels. That
is, the V-cycle convergence is h-dependent. �

The major cause of the problem seen here is that the interpolation is only piecewise
constant (�rst order) which, obviously, is insu�cient to ensure h-independent V-cycle
convergence. (We will consider piecewise constant interpolation again in the context of
aggregation-based AMG in Section 9, where the basic problem with piecewise constant
interpolation will become clear; see Section 9.1.) Note that one-sided interpolation has
been arti�cially introduced in this particular example to demonstrate the consequences. In
practice, each F-point should, of course, be interpolated from both its C-neighbors, leading
to linear interpolation (which, in this 1D case, even gives a direct solver). In any case,
Theorem 4.3 formally allows such interpolations, and h-dependent V-cycle convergence

61

always has to be expected whenever essentially one-sided interpolation is employed to
solve analogous problems, in any dimension.

The main hurdle in extending the two-level to a V-cycle theory is due to the fact that
the basic algebraic condition for interpolation, (53) (and hence also (106)), is too weak to
imply uniform V-cycle convergence (cf. Remark 4.2). In [63], the stronger requirement

keF � IFCeCk20;F � � kek22 (114)

has been discussed which is more suited for an algebraic V-cycle convergence theory. In-
deed, following the same arguments as in Remark 4.2, one sees that interpolation based on
(114) is related to second order interpolation (assuming an adequate geometric problem).
Unfortunately, it hardly seems possible to construct interpolation so that (114) is satis�ed
exactly by using only algebraic information such as the matrix entries.

In practice, however, it turned out that potential problems with interpolation can most
easily be avoided to a large extent, at least for all applications considered here. In
fact, for geometrically posed applications, a su�cient improvement of the accuracy of
interpolation (compared to the worst-case as considered above) is generally obtained,
by just arranging the C/F-splittings as uniformly as possible (based on the connectivity
information contained in the matrices) so that each F-point is reasonably surrounded
by its interpolatory neighbors. The importance of this has already been stressed in
Remark 4.6. Of course, if there is no geometrical background of a given problem or if
the underlying connectivity structure is far away from being local, there is no a priori
guarantee of highest e�ciency.

The application of one Jacobi relaxation step to a given interpolation is another simple
(but generally more costly) way of improvement. In the above example, for instance,
this would immediately \overwrite" the given piecewise constant interpolation by linear
interpolation. Although, in general, relaxation of interpolation will not be able to increase
the order of interpolation, it tends to substantially improve it.

The most popular way to overcome h-dependent V-cycle convergence is to use \better"
cycles like F- orW-cycles. However, apart from the fact that such cycles are more expensive
(which may be considerable in AMG, depending on the actual coarsening), they will, at
best, have the same convergence factor as the corresponding two-level method which, in
turn and for the same reasons which may lead to h-dependent V-cycle convergence, might
not be fully satisfactory. That is, although better cycles may well be a pragmatic way to
overcome a convergence problem, they tend to hide the true reasons for such problems
and should be only a possibility of second choice.

Although not needed for the type of applications considered here, we �nally want to
mention that one can imagine other strategies to improve interpolation. For instance,
by exploiting a minimum amount of geometric information (e.g. point locations). More
algebraically, local �tting of interpolation weights provides various possibilities to better
approximate smooth error (cf. [63]), for instance, �tting based on some \test vector(s)"
provided by the user upon calling AMG. In general, however, such \sophisticated" tech-
niques are rather complicated and tend to be computationally expensive.

62

7 The AMG algorithm

The application of AMG to a given problem is a two part process. The �rst part, a fully
automatic setup phase, consists of recursively choosing the coarser levels and de�ning the
transfer and coarse-grid operators. The second part, the solution phase, just uses the
resulting components in order to perform normal multigrid cycling until a desired level
of tolerance is reached (usually involving Gauss-Seidel relaxation for smoothing). The
solution phase is straightforward and requires no explicit description.

This section describes algorithmic components used in the setup phase of the code
RAMG05 mentioned before. According to Section 2.1, only the C/F-splitting and the
interpolation, IFC , need to be explicitly de�ned. These de�nitions closely follow the
approaches suggested by the analysis contained in Sections 4.2 and 4.3. Restriction is taken
as the transpose of interpolation (10) and the computation of the coarse-level Galerkin
operators (5) is straightforward. There is still much room for modi�cations and further
enhancements, but the algorithmical components proposed here have been tested for a
wide variety of problems and have been found to lead to robust and e�cient solution
processes. Typical results will be presented in Section 8.

We point out that the algorithm described below does not exploit symmetry, except
that restriction is always taken as the transpose of interpolation (which is not necessarily
the best for non-symmetric problems, see Section 2.3). Without any modi�cation, the
algorithm has been applied to various non-symmetric problems. Practical experience in-
dicates that, generally, the non-symmetry by itself does not necessarily cause particular
problems for AMG. Other properties of the underlying matrices, such as a strong violation
of weak diagonal dominance, seem to in
uence the performance of AMG (as it stands) to
a much larger extent.

In the following, we will �rst describe the splitting process (Section 7.1) and after-
wards the interpolation (Section 7.2). The approach for constructing the splitting and
the interpolation is the same for all levels of the AMG hierarchy. Therefore, the following
description will be for any �xed level. Clearly, all of the following has to be repeated
recursively for each level until the level reached contains su�ciently few variables (for a
direct solve, say). All quantities occuring will actually depend on the level, but the index
will be omitted for convenience.

To make the current section easier to read and more self-contained, we keep references
to previous sections to a minimum. Instead, we repeat the most relevant aspects.

7.1 Coarsening

In order to achieve fast convergence, algebraically smooth error needs to be approximated
well by the interpolation. As a rule, this can be achieved the better the stronger the
F-to-C connectivity is. On the other hand, the size of the coarse-level operator (and the
time to compute it) strongly depends on the number of C-variables. Since the overall
e�ciency is determined by both the speed of convergence and the amount of work needed
per cycle (which is directly related also to the total memory requirement), it is absolutely
imperative to limit the number of C-variables while still guaranteeing that all F-variables
are su�ciently strongly connected to the C-variables.

However, the goal should not just be to minimize the total number of C-points, say.

63

According to Remark 4.6 and the related discussion in Section 6, an important objec-
tive is to create C/F-splittings which are as uniform as possible with F-variables being
\surrounded" by C-variables to interpolate from. Although there is no algebraic proof,
interpolation tends to be considerably better, resulting in much faster convergence, if this
objective is taken into regard. A simple algorithm is described in Section 7.1.1.

Requiring strong F-to-C connectivity does not necessarily mean that all F-variables
need to have strong direct connections to C-variables. In general, strong connectivity
may be via strongly connected neighboring F-variables (cf. Section 4.3). This leads to
\aggressive" coarsening strategies as described in Section 7.1.2. Such strategies allow for a
drastic reduction of the setup and cycle cost, the complexity of the coarse-level operators
as well as the memory requirement. Clearly, these bene�ts will be at the expense of a
reduced convergence speed since smoothing becomes less e�cient and since it becomes
more di�cult to \match the ranges" of the smoothing and the interpolation operators.
In practice, however, it has turned out that this disadvantage is usually more than made
up for by the bene�ts, in particular, if AMG is used as a pre-conditioner rather than
stand-alone (cf. Section 7.3). We will present examples in Section 8.

7.1.1 Standard coarsening

In this section, we consider C/F-splittings based on direct couplings: each F-variable i is
required to have a minimum number of those of its couplings j 2 Ni be represented in C
which a�ect the error at i most, that is, for which jaij j is largest in some sense (\strong
connections").

For all applications we have in mind here, by far most of the strong couplings are
negative and we �rst describe a fast procedure which generates a C/F-splitting taking only
negative couplings into account (regarding positive couplings, see Section 7.1.3). That is,
the resulting C/F-splitting will be such that all F-variables have a substantial (direct)
negative connectivity to neighboring C-variables. In other words, we essentially coarsen in
directions in which algebraically smooth error changes slowly (cf. Section 3.3).

To be more speci�c, let us de�ne a variable i to be strongly negatively coupled (or
strongly n-coupled) to another variable, j, if

�aij � "str max
aik<0

jaikj with �xed 0 < "str < 1 (115)

and let us denote the set of all strong n-couplings of variable i by Si,

Si = fj 2 Ni : i strongly n-coupled to jg : (116)

(Note that all positive connections are regarded as weak at this point.) According to
practical experience, the concrete value of "str is not critical, "str = 0:25 being a reasonable
default value. Since the relation of variables being strongly n-coupled is generally non-
symmetric (even if A is symmetric), we introduce the set ST

i of strong transpose n-couplings
of i consisting of all variables j which are strongly n-coupled to i:

ST
i = fj 2
 : i 2 Sjg :

The proposed simple splitting algorithm corresponds to the \preliminary C-point
choice" as described in [63]. Essentially, one starts with de�ning some �rst variable,

64

i, to become a C-variable. Then all variables, j, which are strongly n-coupled to i (i.e.
all j 2 ST

i) become F-variables. Next, from the remaining undecided variables, another
one is de�ned to become a C-variable and all variables which are strongly n-coupled to it
(and which have not yet been decided upon before) become F-variables. This process is
repeated until all variables have been taken care of.

The only problem is that { in order to avoid randomly distributed C/F-patches but
rather obtain reasonably uniform distributions of C- and F-variables { we need to perform
this process in a certain order. In order to ensure that there is a tendency to build
the splitting starting from one variable and continuing \outwards" until all variables are
covered, we introduce a \measure of importance", �i, of any undecided variable i to become
the next C-variable. We de�ne

�i = jST
i \ U j+ 2jST

i \ F j (i 2 U)

where U , at any stage of the algorithm, denotes the current set of undecided variables.
(For any set P , jP j denotes the number of elements it contains.) �i acts as a measure
of how valuable a variable i 2 U is as a C-variable, given the current status of C and
F. Initially, variables with many others strongly n-coupled to them become C-variables,
while later the tendency is to pick as C-variables those on which many F-variables strongly
depend.

The complete algorithm is outlined in Figure 11. We point out that the measure �i
has to be computed globally only once at the beginning of the algorithm. At later stages,
it just needs to be updated locally. For isotropic 5-point and 9-point stencils, the �rst
coarsening steps are illustrated in Figure 12.

F:=∅, C:=∅, U:=Ω

λi := |ST∩U| + 2|ST∩F| (i∈U)i

pick i∈U with max. λi: C:=C∪{i}, U:=U\{i}

for all j∈ST∩U: F:=F∪{j}, U:=U\{j}i

λi =0? end
yes

no

define
update

i

Figure 11: Standard coarsening algorithm [63]

Remark 7.1 Before the above algorithm starts, variables which have no connection at
all (e.g., resulting from Dirichlet boundary points which have not been eliminated from
the system) are �ltered out and become F-variables. Trivially, such variables do not
require interpolation. Similarly, variables which correspond to (very) strongly diagonally
dominant rows of the matrix might be �ltered out at this point. �

65

U U U U U

U U U U U

U U F U U

U F C F U

U U F U U

U U U U U

U U U F U

U U F C F

U F C F U

U U F U U

U U U U U

U F U F U

F C F C F

U F C F U

U U F U U

U U F U U

U F C F U

F C F C F

U F C F U

U U F U U

U U U U U

U U U U U

F F F U U

F C F U U

F F F U U

U U U U U

U U U U U

F F F

F C F

F F F

F F

C F

F F

U U

U U

F F F

F C F

F F F

F F

C F

F F

F F

F C

F

F

F F F

F C F

F F F

F F

C F

F F

F F

F C

F

F

F

C

F

F

Figure 12: First steps of the standard coarsening process in case of isotropic 5-point (top)
and 9-point stencils (bottom). At each stage, those undecided points with highest �-value
are shown in bold-italics.

Remark 7.2 After termination of the above algorithm, all F-variables have (at least)
one strong n-coupling to a C-variable (except for the \trivial" ones taken out at the very
beginning, see Remark 7.1). However, there may be a few U-variables left, in particular,
in non-symmetric problems. Such particular variables have the property that they are
not strongly n-coupled to any of the C-variables (otherwise they would have become F-
variables earlier in the process). Moreover, such variables have no strong n-connection
among each other nor is any F-variable strongly n-coupled to any of them (otherwise their
measure �i would be non-zero). However, each of these U-variables is strongly n-coupled
to (at least) one of the F-variables. We therefore re-de�ne all potentially remaining U-
variables to become F-variables. In interpolation, they will be interpolated indirectly via
their strong F-couplings (see Section 7.2.1). �

Remark 7.3 None of the C-variables is strongly n-coupled to any of those C-variables
created prior to itself in the coarsening process described above. However, since the
relation of being strongly n-coupled is not necessarily symmetric, this may not fully be
true the other way around. In any case, however, the resulting set of C-variables is close
to a maximal set of variables which are not strongly n-connected among each other (see
Remark 4.6). �

Remark 7.4 The theoretical investigation of special processes such as F-smoothing (Sec-
tion 5.1.2) and relaxation of interpolation (Jacobi-interpolation, Section 5.1.3) was based
on the assumption that the submatrices AFF are strongly diagonally dominant. Clearly, if
required, this condition can be exactly satis�ed during the coarsening step or, most easily,
by adding a few C-points afterwards (if necessary at all). However, for those applications
considered in this paper, the above coarsening algorithm tends to ensure diagonal dom-
inance to a su�cient extent without any modi�cation. Therefore, by default, we do not
explicitly check for strong diagonal dominance. �

66

7.1.2 Aggressive coarsening

In many PDE applications, we have to deal with small stencils. In such cases, the previ-
ous splitting algorithm, because it is based on direct connections, may cause a relatively
high complexity (memory requirement due to the coarse-level Galerkin operators). For
instance, isotropic 7-point stencils on regular 3D meshes, will cause the �rst coarser level
to correspond to the black points of a red-black coarsened grid (as in the 2D case depicted
in Figure 12, upper picture). One easily sees that the Galerkin operator on this level
corresponds to a 19-point stencil. That is, the Galerkin matrix is larger than the original
matrix by a factor of 1.36. Although subsequent coarsening will typically become faster
(simply because the corresponding stencils are larger), the �rst coarsening step signi�-
cantly contributes to the �nal complexity. Complexity can substantially be reduced by
employing \aggressive coarsening".

In order to allow aggressive coarsening, we extend the de�nition of strong connectivity
to also include variables which are not directly coupled. Following [63], we introduce the
concept of long-range strong n-connections: A variable i is said to be strongly n-connected
to a variable j along a path of length ` if there exists a sequence of variables i0; i1; :::; i`
with i = i0 and j = i` such that ik+1 2 Sik for k = 0; 1; 2; :::; `� 1. With given values
p � 1 and ` � 1, we then de�ne a variable i to be strongly n-connected to a variable j

w.r.t. (p; `) if at least p paths of length � ` exist such that i is strongly n-connected to j
along each of these paths (in the above sense).

In principle, for any given p and `, the splitting algorithm described in the previous
section immediately carries over if we apply it to the set

S
p;`
i = fj 2
 : i strongly n-connected to j w:r:t: (p; `)g (117)

rather than Si (116). From a practical point of view, however, it generally does not
pay to exploit strong n-connectivity in this generality. In fact, the cases p = 2; ` = 2 and
p = 1; ` = 2 turn out to be the most useful. Moreover, it hardly ever pays to use aggressive
coarsening on more than one level. (On all but the �rst level, standard coarsening is usually
e�cient enough.) We will refer to the coarsening strategies corresponding to S2;2

i and S1;2
i

as A2- and A1-coarsening, respectively.

Remark 7.5 Applying the splitting algorithm directly to Sp;`
i instead of Si, requires

the storage of the complete connectivity information (and the corresponding transpose

information contained in (Sp;`
i)T) for each variable i. Even for the cases S2;2

i and S1;2
i

considered here, this may be quite substantial but can be avoided to a large extent
by applying the standard coarsening algorithm twice: In the �rst step, it is applied
exactly as described in the previous section. Then, instead of (117), we de�ne strong n-
connectivity only between the resulting C-variables (via neighboring F-variables). That
is, for each variable i 2 C, we de�ne

bSp;`
i = fj 2 C : i strongly n-connected to j w:r:t: (p; `)g : (118)

Using this de�nition, the standard coarsening algorithm is now applied a second time
but restricted to the set of C-variables. The subset of \new" C-variables resulting from
this second step will then be used as the next coarser level. �

67

C F C F C

F C F C F

C F C F C

F C F C F

C F C F C

C F C F C

F F F F F

C F C F C

F F F F F

C F C F C

C F C F C

F C F C F

C F C F C

F C F C F

C F C F C

F

C

F

C

F

F

C

F

C

F

F C F C FC C

F C F C FC C

C F F F C

F F F F F

F F C F F

F F F F F

C F F F C

F

F

F

F

F

F

F

F

F

F

F F F F FF F

F F F F FF F

Figure 13: Results of aggressive A2 (left) and A1 coarsening (right) in case of isotropic
5-point stencils. The dashed boxes depict the range of strong connectivity in the sense ofbS2;2
i and bS1;2

i , respectively.

Clearly, A1- is faster than A2-coarsening. As an example, Figure 13 illustrates the
second step of the two-step process described in the previous remark for isotropic 5-point
stencils. Generally, while A2-coarsening is e�ective only in (at least) \plane-wise" isotropic
problems, A1 is also e�ective in strongly anisotropic cases. In illustration, Figure 14 shows
the result of using A2 and A1 coarsening in case of the example discussed in Section 1.3.
In case of strategy A2 (left picture), the coarsening pattern is essentially the same as for
standard coarsening (see Figure 4) except in the lower left quarter where the problem is
isotropic and coarsening is faster. Strategy A1, on the other hand, also speeds coarsening
up in the anisotropic areas. Indeed, the right picture in the �gure shows that coarsening
now is substantially faster everywhere: it is still essentially in the direction of strong
couplings, coarse-level points are further apart than before though.

Figure 14: The �nest and three consecutive AMG levels if aggressive A2 (left) and A1
coarsening (right) is applied (only) on the �rst level

Remark 7.6 If aggressive coarsening is used, strong diagonal dominance of the corre-
sponding submatrices AFF (theoretically required if F-smoothing or Jacobi-interpolation
is to be employed in the sense of Section 5.1), can no longer be assumed in the strict sense,
at least not for each row. �

68

7.1.3 Strong positive connections

The previous approaches to construct a C/F-splitting were based on negative couplings
only. Provided that potentially existing positive couplings are relatively small, they can,
indeed, be ignored in coarsening and interpolation (cf. the related discussion in Section
4.2). However, this cannot always be assumed and we have to allow for matrices which
also contain some strong positive entries.

According to Theorem 4.6, a more general splitting process should ensure that, for all
F-variables which have strong negative and positive couplings, a minimum number of both
types of couplings is represented in C. However, to construct such a splitting within one
step, turns out to be relatively complicated. Since, for all problems we have in mind here,
far most strong connections are negative, we propose a very simple alternative:

After one of the coarsening processes described before has been applied, we test for all
F-variables i whether or not there exist strong positive F-to-F couplings. For instance, we
simply check whether

aij � "+strmax
k 6=i

jaikj (119)

holds for some j 6= i. Here, "+str is some reasonable tolerance, for instance, "+str = 0:5.
If such a j exists, all j's satisfying (119) will a posteriori be added to the set Si (116)
(this will a�ect the performance of the interpolation routines, see Section 7.2) and the
variable which corresponds to the largest positive coupling, will be re-de�ned to become
a C-variable. (Regarding an example demonstrating the e�ect of this process, we refer to
Section 8.4.3.)

Clearly, this a posteriori update of the C/F-splitting is suitable only if there are not
too many strong positive connections. Otherwise, one has to change the original splitting
algorithm as mentioned above.

7.2 Interpolation

In de�ning interpolation to the currently �nest level, we assume that a C/F-splitting has
been constructed either by means of standard or aggressive coarsening. In the �rst case,
interpolation is used as described in Section 7.2.1 (direct or standard interpolation). In the
second case, interpolation is used as described in Section 7.2.2 (multi-pass interpolation).
In both cases, interpolation can optionally be improved further by means of additional
relaxation steps (Section 7.2.3, Jacobi-interpolation).

Some of the interpolation variants described in the following exploit strong indirect
C-couplings which will increase the \radius" of interpolation. In all such cases, it is
important to reasonably truncate the resulting interpolation operator before computing
the Galerkin operator (see Section 7.2.4).

The following abbreviations will be needed below. Here, Si is as de�ned in (116),
possibly modi�ed a posteriori as described in Section 7.1.3:

Ci = C \Ni ; Cs
i = C \ Si ;

Fi = F \Ni ; F s
i = F \ Si :

69

7.2.1 Direct and standard interpolation

The following procedures apply in case the C/F-splitting has been constructed by means
of standard coarsening.

Direct interpolation

In the simplest case, the de�nition of interpolation, as described in Section 4.2.3, is applied
immediately. More precisely, for each i 2 F , we de�ne the set of interpolatory variables
by Pi = Cs

i and approximate

aiiei +
X
j2Ni

aijej = 0 =) aiiei + �i
X
k2Pi

a�ikek + �i
X
k2Pi

a+ikek = 0 (120)

with

�i =

P
j2Ni

a�ijP
k2Pi

a�ik
and �i =

P
j2Ni

a+ijP
k2Pi

a+ik
:

This immediately leads to the interpolation formula

ei =
X
k2Pi

wik ek with wik =

(��i aik=aii (k 2 P�
i)

��i aik=aii (k 2 P+
i)

: (121)

If P+
i = ;, this formula is modi�ed according to Section 4.2.2, that is, we set �i = 0 and

add all positive entries, if there are any, to the diagonal. Since this interpolation involves
only direct connections of variable i, we will refer to it as direct interpolation later on.

Remark 7.7 The above procedure can be applied as long as Cs
i 6= ;. However, this is en-

sured by the standard coarsening algorithm for all F-points i with the potential exception
of just a few of them (see Remark 7.2). Such \exceptional" F-points, however, necessar-
ily have at least one strong connection to a \regular" F-point, and will be interpolated
indirectly as described next. �

Standard interpolation

The standard coarsening strategy ensures that there is a strong F-to-C connectivity. How-
ever, it does not strictly enforce what actually is required by the two-level theory, namely,
that each F-variable should have a �xed percentage of its total connectivity be re
ected in
C (de�ned by � , see Section 4.2). Although this is usually not a problem in practice (since
the coarsening algorithm by itself usually ensures a su�cient F-to-C connectivity), we can
make up for this in a simple way: We modify the previous direct interpolation so that, for
each i 2 F , its strong F-connections are also (indirectly) included in interpolation.

That is, instead of immediately approximating the i-th equation (left equation in
(120)), we �rst (approximately) eliminate all ej (j 2 F s

i) by means of the corresponding
j-th equations. More speci�cally, for each j 2 F s

i , we replace

ej �! �
X
k2Nj

ajkek=ajj (122)

70

resulting in a new equation for ei,

baiiei + X
j2 bNi

baijej = 0 with bNi = fj 6= i : baij 6= 0g : (123)

By de�ning Pi as the union of Cs
i and all C

s
j (j 2 F s

i), we now de�ne interpolation exactly

as in (120)-(121) with all a's replaced by ba's and Ni replaced by bNi.
This modi�cation usually enhances the quality of interpolation substantially (see Ex-

ample 7.1 below), the main reason being that the type of approximation (120), if applied
to the \extended" equation (123), introduces less error. Moreover, it further contributes
to the objective of having F-variables largely be \surrounded" by interpolatory variables.
This modi�ed interpolation will be referred to as standard interpolation below.

Example 7.1 In illustration, consider the same case as in Example 6.1 except that the
coarse grid is assumed to be created by h! 3h coarsening, see Figure 15. (This is just for
ease of demonstration; the standard coarsening process described in Section 7.1.1 would
not really create this coarsening.)

F F C FC F F C

e−1 e0 e+1 e+2

Ωh

ΩH

standard

direct

Figure 15: Direct versus standard interpolation

Direct interpolation in this situation would obviously give piecewise constant inter-
polation (dashed line in the �gure) which, as we know from Example 6.1, is not quite
satisfactory. (Compared to the case considered in Example 6.1, the Galerkin operator
here is even o� by a factor of 3 rather than 2.) Standard interpolation, on the other hand,
can easily be seen to correspond to linear interpolation. For instance, the interpolated
value for e0 is computed from the equation �e�1 + 2e0 � e1 = 0 by substituting

e1 �! (e0 + e2)=2 ;

giving e0 =
2
3e�1 +

1
3e2. �

Of course, direct and standard interpolation processes may also be mixed in a straight-
forward way. That is, standard interpolation is used only for variables i for which, based
on some reasonable criterion, the (direct) F-to-C connectivity appears to be too low. How-
ever, for simplicity, such mixed interpolation will not be considered here. Moreover, for
critical F-variables i, one might be tempted to eliminate all ej (j 2 Fi) (rather than just

71

the strong F-neighbors) and to use the union of Ci and all Cj (j 2 Fi) as Pi. How-
ever, taking computational work into account, this extended interpolation is rarely ever
advantageous and will not be discussed further.

Remark 7.8 Apart from other minor di�erences, interpolation in AMG1R5 was a com-
promise between the direct interpolation and the standard interpolation described above.
There, an attempt was made to replace ej (j 2 F s

i) by averages involving only variables
in Cs

i . That is, the goal was to improve the direct interpolation without increasing the set
of interpolatory variables Pi. If it turned out that this was not possible, based on certain
criteria, new C-variables were added to the splitting, increasing Cs

i a posteriori. Although
this approach works quite well in many situations, it has two drawbacks.

First, an a posteriori introduction of additional C-variables may turn a fairly regular
C/F-splitting (produced by the coarsening algorithm) into a quite disturbed one which,
during subsequent coarsening steps, may lead to more irregular and more complex Galerkin
operators. In fact, in complex 3D situations, many additional C-variables are typically
introduced a posteriori often causing unacceptably high complexities (see Section 8 for
examples). Second, the above-mentioned replacement of the ej 's by averaged values was
motivated by geometric arguments. In fact, it works very well in case of matrices which
are close to M-matrices and are related to regular geometric situations. However, it may
substantially deteriorate in other cases.

In practice, the standard interpolation as described above { extending the interpolation
pattern on a �xed set C followed by a truncation (see Section 7.2.4) { has turned out to
be more robust and often considerably more e�cient. �

7.2.2 Multi-pass interpolation

The following interpolation procedure applies in case the C/F-splitting has been con-
structed by means of aggressive coarsening. It proceeds in several passes, using direct
interpolation whenever possible and, for the remaining variables, exploiting interpolation
formulas at neighboring F-variables. (This corresponds to the approach described in Sec-
tion 4.3.) The individual passes are as follows:

1. Use direct interpolation (Section 7.2.1) to derive formulas for all i 2 F for which
Cs
i 6= ; and de�ne the set F ? to contain all these variables. If F ? = F stop, otherwise

proceed.

2. For all i 2 F n F ? for which Si \ F ? 6= ; do the following: Take the i-th equation
(left equation in (120)) and, for all j 2 Si \ F ?, replace

ej �!
X
k2Pj

wjkek

leading to a new equation (123) for ei. De�ning the set of interpolatory variables Pi as
the union of all Pj for j 2 Si\F ?, an interpolation formula then is computed exactly
as in the case of standard interpolation. If all such variables i have been processed,
update F ? to also include all variables which have obtained an interpolation formula
during this pass.

72

3. If F ? = F stop. Otherwise go back to step 2.

Using the agressive (A1 or A2) coarsening strategy as described in Remark 7.5, this
process can be shown to terminate after at most four passes. Note that the update of F ?

is done in a Jacobi (not Gauss-Seidel) fashion. This is done to preserve the locality of
interpolation. We will refer to this interpolation as multi-pass interpolation.

C 1 C 1 C

1 2 1 2 1

C 1 C 1 C

1 2 1 2 1

C 1 C 1 C

C 1 2 1 C

1 2 1 2 1

2 1 C 1 2

1 2 1 2 1

C 1 2 1 C

1

2

1

2

1

1

2

1

2

1

1 2 1 2 12 2

1 2 1 2 12 2

Figure 16: Multi-pass interpolation for isotropic 5-point problems (A2- and A1-coarsening)

Example 7.2 Figure 16 illustrates multi-pass interpolation in case of A2- and A1-
coarsening, applied to the 5-point Poisson stencil (cf. Figure 13). F-points marked by
\1" and \2" are those which are interpolated in the �rst and second pass, respectively. In
case of A2-coarsening (left picture), the resulting interpolation can easily be seen to be
linear. For A1-coarsening (right picture), we obtain constant interpolation at all points
marked by \1", and linear interpolation at the remaining points (see also Example 7.3
below). �

7.2.3 Jacobi-interpolation

Given any of the previous interpolation formulas, we can optionally improve it by a pos-
teriori applying Jacobi-relaxation as formally described in Section 5.1.3. More explicitly,
one step of this Jacobi-relaxation { proceeding from iteration � � 1 to iteration � (where
� = 0 corresponds to the given interpolation) { proceeds as follows.

For all variables i 2 F in turn, take the i-th equation (left equation in (120)) and, for
all j 2 Fi, replace

ej �!
X
k2Pj

w
(��1)
jk ek (124)

which leads to a new equation (123) for ei. De�ning the set of interpolatory variables Pi
as the union of Ci and all Pj for j 2 Fi, the �-th interpolation formula then is obtained
exactly as in the case of standard interpolation.

Clearly, only one or (at most) two steps are practical. Depending on the situation,
relaxation of interpolation may enhance convergence considerably. Often, however, the
additional cost for computing this interpolation does not pay if total computational work
is taken into account. Clearly, one may save a substantial amount of work by applying
relaxation of interpolation only locally wherever it appears to be reasonable. This is not
done in the following.

73

The interpolation as described above will be referred to as fully relaxed Jacobi-
interpolation. In most cases, it will be su�cient to use the replacement (124) only for
j 2 F s

i , that is, only for the strongly connected F-variables. Accordingly, the set Pi is then
selected as the union of Cs

i and all Pj for j 2 F s
i . This will be referred to as partially

relaxed Jacobi-interpolation.

Example 7.3 Consider the same case as in the previous Example 7.2. We have seen there
that multi-pass interpolaton, applied to the A1-coarsened grid (right picture in Figure 16),
gives constant interpolation at those points marked by \1", and linear interpolation at the
remaining points. One easily sees that, applying Jacobi-relaxation just to the points
marked by \1" yields linear interpolation everywhere. �

7.2.4 Truncation of interpolation

For both standard as well as Jacobi-interpolation, the sets Pi of interpolatory variables
may become quite large. This is, in particular, true for the Jacobi-interpolation since each
relaxation step introduces, roughly, a \new layer" of additional C-variables to be used for
interpolation. Consequently, even if only one Jacobi step is applied at each AMG level,
the resulting Galerkin operators will substantially increase towards coarser levels. This
process, without reasonable truncation, will generally be much too costly.

However, interpolation weights corresponding to variables \far away" from variable i
will usually be much smaller than the largest ones. Before computing the coarser-level
Galerkin operator, we therefore always truncate the full interpolation operator by ignoring
all interpolatory connections which are smaller (in absolute value) than the largest one by
a factor of "tr and re-scale the remaining weights so that the total sum remains unchanged.
In practice, a value of "tr = 0:2 is usually taken.

Remark 7.9 If interpolation contains substantial positive and negative weights, one
should truncate and re-scale positive and negative weights separately (analogously to the
de�nition of interpolation (120).) Otherwise, convergence may substantially degrade. �

Remark 7.10 One might be tempted to truncate the Galerkin operator rather than the
interpolation operator. In fact, this would formally give more control on the growth of
the coarse-level operators. However, we have already pointed out in Remark 2.4, that this
may cause serious convergence problems if not applied with great care. �

7.3 AMG as pre-conditioner

In order to increase the robustness of standard multigrid approaches, it has become very
popular during the last years, to use multigrid not as a stand-alone solver but rather com-
bine it with acceleration methods such as conjugate gradient, BI-CGSTAB [72] or GMRES
[64, 65]. In the simplest case, complete multigrid cycles are merely used as pre-conditioners
[34, 49]; in more sophisticated approaches, acceleration is even used on the individual grids
of the hierarchy [50, 17]. This development was driven by the observation that it is often
not only simpler but also more e�cient to use accelerated multigrid approaches rather
than to try to optimise the interplay between the various multigrid components in order
to improve the convergence of stand-alone multigrid cycles.

74

This has turned out to be similar for AMG which, originally, was designed to be
used stand-alone. Practical experience has clearly shown that AMG is also a very good
pre-conditioner, much better than standard (one-level) ILU-type pre-conditioners, say.
Heuristically, the major reason is due to the fact that AMG, in contrast to any one-level
pre-conditioner, e�ciently operates on all error components, short-range as well as long-
range. This has the implication that, instead of using AMG stand-alone, it is generally
more e�cient to put less e�ort into the (expensive) setup phase and use AMG as pre-
conditioner, for example, by using aggressive coarsening strategies (cf. the applications in
Section 8).

In this context, we also point out that, although AMG tries to capture all relevant
in
uences by proper coarsening and interpolation, its interpolation will hardly ever be
optimal. It may well happen that error reduction is signi�cantly less e�cient for some
very speci�c error components. This may cause a few eigenvalues of the AMG iteration
matrix to be considerably closer to 1 than all the rest. If this happens, AMG's convergence
factor is limited by the slow convergence of just a few exceptional error components while
the majority of the error components is reduced very quickly. Acceleration by, for instance,
conjugate gradient typically eliminates these particular frequencies very e�ciently. The
alternative, namely, to try to prevent such situations by putting more e�ort into the
construction of interpolation, will generally be much more expensive. And even then,
there is no �nal guarantee that such situations can be avoided. (We note that this even
happens with \robust" geometric multigrid methods, see, for instance, Remark 8.10.)

75

8 Applications

In this section we will demonstrate the e�ciency and robustness of AMG in solving second
order elliptic di�erential equations. All results presented have been obtained by the code
RAMG05 described in the previous section. Although the strength of RAMG05 is its di-
rect applicability to geometrically complex problems, we will often consider selected model
problems on simple geometries in quite some detail. Such model problems certainly do
not give the full picture, but they most easily allow the investigation of AMG's asymptotic
behavior as well as its dependence on various speci�c aspects such as anisotropies, discon-
tinuities, singular perturbations and the like. Practical experience has shown that AMG's
performance in geometrically complex situations, in 2D as well as 3D, is very comparable
to that in related model situations. We will present some typical examples demonstrating
this.

We have already pointed out before that it is not at all su�cient to merely look
at AMG's convergence behavior in order to judge its performance. De�nitely, useful
comparisons have to take both computing times and memory requirements into account.
Having this in mind, we will compare the in
uence of di�erent algorithmical components
(such as type of interpolation and speed of coarsening) and solution approaches (stand-
alone versus accelerated cycles) on the performance. Moreover, in order to quantify the
overall e�ciency, we will make some comparisons with well-known standard (one-level)
solution methods such as ILU pre-conditioned conjugate gradient (\cg"). However, we
want to point out that the purpose of these comparisons is merely to give a �rst indication,
they are not suited to give a �nal picture:

First, many variants and improvements of ILU pre-conditioned cg methods are avail-
able and here we just focus on simple and best-known strategies. In particular, our
comparisons are not meant to judge the performance of such classical methods in gen-
eral. Second, RAMG05 is still under development and is continuously being enhanced and
generalized. In particular, RAMG05 is far from being optimized. In fact, this code has
not been designed for highest e�ciency but rather for
exibility in testing and extend-
ing the method. In particular, the setup cost may substantially be reduced. Depending
on the concrete approach, 50% savings or even more seem realistic. Moreover, our main
interest here is to demonstrate typical trends in the in
uence of di�erent algorithmical
components. For simplicity, these components are implemented as \�xed" strategies, that
is, they are not locally adjusted to particular requirements of the given problem. For
example, if Jacobi-relaxation of interpolation is performed, it is always applied \globally".
In many situations, however, a local application, controled by some reasonable measure
(e.g. based on the total strength of C-connectivity found at an F-point), may give similar
convergence improvements at much lower cost and memory. Similarly, if aggressive coars-
ening is performed, it is done everywhere. Thus, there is much room for quite substantial
optimisations. Nevertheless, the results indicate that the code is very e�cient even as it
stands.

In the sequel, for brevity, we will refer to \AMG" rather than to \RAMG05". How-
ever, one should keep in mind that there is an ongoing rapid development of new AMG
approaches and variants and that there is no unique and best AMG approach yet.

76

8.1 Default settings and notation

Various parameters have to be set to de�ne AMG's setup and cycle (see Section 7). Unless
explicitly stated otherwise, we use the following default settings and procedures:

� "str = 0:25 to de�ne strong connectivity (Section 7.1.1).

� "tr = 0:2 to de�ne truncation of interpolation (Section 7.2.4).

� Coarsening is terminated if the number of variables on the coarsest level drops below
40. The coarsest-level equations are solved by direct Gauss elimination.

� Smoothing is done by Gauss-Seidel relaxation, one pre- and one post-smoothing step
being the default. Unless explicitly stated otherwise, the order of relaxation is \CF",
that is, �rst all C-variables are relaxed and then all F-variables. (This corresponds
to red-black relaxation in geometric multigrid.)

Other degrees of freedom in de�ning the concrete strategy will be varied in the exper-
iments below and some notation is required to distinguish these cases:

� Type of cycle and coarsening. The abbreviations VS and VA are used to dis-
tinguish V-cycles based on standard and aggressive coarsening, respectively (Section
7.1). Aggressive coarsening is performed only in creating the second AMG level,
and only the types A1 and A2 are used (see Section 7.1.2). Correspondingly, we
distinguish VA1 and VA2 cycles. For F-cycles, the \V" is replaced by \F".

� Type of smoothing. As mentioned above, by default we use one Gauss-Seidel
CF-relaxation step for pre- and post-smoothing. If this is not the case, we append
the type of smoothing to the abbreviation of the cycle. For instance, VS-FF stands
for a V-cycle using standard coarsening but employing two F-smoothing steps rather
than one CF-step for pre- and post-smoothing (cf. Section 5.1.2). SGS stands for
symmetric Gauss-Seidel relaxation.

� Type of interpolation. The type of interpolation used is appended in parentheses:
The letters \D" and \S" stand for direct and standard interpolation, respectively (see
Section 7.2.1). Our standard AMG cycle is VS(S). Note that, if aggressive coarsening
is employed, interpolation to the �nest level is always multi-pass interpolation (Sec-
tion 7.2.2). For example, VA2(S) means that standard interpolation is performed on
all but the �nest level.

If, in addition, Jacobi-relaxation is applied to improve interpolation, the letters \F"
and \P" refer to fully and partially relaxed interpolation, respectively (Section 7.2.3).
For instance, VS(S-2F) stands for a V-cycle using standard coarsening and standard
interpolation improved by 2 full Jacobi-relaxations. As mentioned above, truncation
with "tr = 0:2 is the default. Otherwise, the truncation parameter is also contained
within the parentheses, for example, VS(S-1F,0.02).

� Acceleration. If a cycle is used as pre-conditioner rather than stand-alone, the type
of accelerator is appended to the corresponding cycle abbreviation. For instance,
VA1(D)/cg means that the VA1(D) cycle is used as pre-conditioner for cg. Note that,

77

if a cycle is used as pre-conditioner for cg, pre- and post-smoothing will always be
done in a symmetric way. For instance, if pre-smoothing is done by CF-relaxation,
post-smoothing will be CF-relaxation with the order of points reversed. For non-
symmetric problems, we will usually use AMG as pre-conditioner for BI-CGSTAB.

The following sections contain results on asymptotic convergence,memory requirement
as well as computational work. The asymptotic convergence factor, �, is always computed
numerically by applying a v. Mises vector iteration to the homogeneous problem, usually
starting with a random �rst approximation. Results on memory requirement will be given
in terms of the grid and operator complexity, cG and cA,

cG =
X
`

n`=n1 and cA =
X
`

m`=m1 ; (125)

where n` and m` denote the number of variables and non-zero matrix entries, respectively,
on level `. Note that ` = 1 corresponds to the �nest level. Although the true memory
requirement by AMG is not fully re
ected by these quantities (some extra work space still
needs to be allocated), they are closely related.

Unless explicitly stated otherwise, all timings given have been obtained on a Pentium
II/300 PC using the Lahey F90 Compiler (version 4.0). We point out that timings for
a particular machine always have to be judged with care. Comparisons typically change
from machine to machine and even from compiler to compiler. For instance, the Pen-
tium II is relatively fast in integer (compared to
oating point) computations. This is
advantageous for substantial parts of the AMG algorithm which essentially require inte-
ger computations (in particular, during the setup phase). Consequently, comparisons of
the setup and solution costs may give a di�erent picture on machines for which
oating
point computations are more e�cient than integer computations (such as on IBM RS6000
workstations).

8.2 Poisson-like problems

In the following, we investigate the performance of AMG in some detail if applied to the
di�usion equation

�((1 + sin(x+ y))ux)x � (ex+yuy)y = f(x; y) ; (126)

de�ned on the unit square with f(x; y) � 1 and homogeneous Dirichlet boundary condi-
tions. Discretization is on a uniform grid of mesh size h = 1=N using standard 5-point
stencils. Although this example is very simple, the resulting AMG behavior is typical for
general \Poisson-like" problems and the relevant conclusions qualitatively carry over also
to unstructurd meshes (cf. the examples in Section 8.3). We summarize our practical
experience with AMG in the following remark.

Remark 8.1 Compared to problems on very regular meshes, a certain decrease of AMG
convergence has to be expected in case of irregular meshes. This is essentially due to
the fact that, on regular meshes, standard AMG interpolation tends to be close to geo-
metrical interpolation (which is very good for Poisson-like problems as considered here).
This cannot be expected to be satis�ed to the same extent on irregular meshes. Similarly,

78

convergence has to be expected to be somewhat slower in 3D than in 2D situations. In
3D, we have the additional e�ect that smoothing by Gauss-Seidel relaxation is (slightly)
less e�cient than in 2D problems (just like in geometric multigrid). By how much conver-
gence will �nally be in
uenced by the irregularity of the grid and its dimension, depends
somewhat on the concrete problem. By experience, however, the e�ects mentioned are
very limited and the results presented in the following exhibit the typical AMG behavior
as observed also in many other cases. �

8.2.1 Coarsening and complexity

Problem (126) has a slight anisotropy towards the upper right corner. Due to the setting
"str = 0:25, however, AMG still treats all connections contained in the corresponding ma-
trix as strong, at least on the �nest level. Consequently, the �rst standard coarsening step
of AMG corresponds to geometrical red-black coarsening. This is shown in Figure 17a.
Subsequent coarsening then becomes faster (here, grid size ratio 1:4) simply because the
Galerkin stencils become larger on coarser levels. For example, the Galerkin operator on
level 2 corresponds to a 9-point stencil. There is a slight disturbance of the regular coars-
ening in the upper right corner where the anisotropy of the problem is largest. However,
the coarsening pattern is still essentially the same.

Figure 17: The �nest and three consecutive AMG levels created by a) standard coarsening,
b) aggressive A2-coarsening (applied only in the �rst coarsening step).

This type of coarsening is typical for 5-point stencils with all connections being strong,
yielding grid complexities of cG � 1:7. If interpolation were to be de�ned geometrically
(i.e., linear interpolation), the Galerkin operators on all coarser levels would correspond
to 9-point stencils and the \ideal" operator complexity would be cA � 2:2. For AMG,
however, the situation is more involved, since the �nal values of cG and cA are in
uenced
by the AMG interpolation operator which tends to cover more points than geometric
interpolation, especially towards coarser levels. As a consequence, the AMG Galerkin
operators will tend to become somewhat larger towards coarser levels. This e�ect, however,
is normally limited and is more than made up for by the decrease of grid points. In any

79

case, one has to expect the �nal operator complexity of AMG to be larger than the ideal
one by a certain factor. In the above example, we obtain cA � 2:38 if standard coarsening
and interpolation are used (see Table 1).

Remark 8.2 Memory requirement is somewhat higher in corresponding 3D situations.
For instance, if applied to 7-point stencils with all connections being strong, standard
AMG coarsening again yields geometrical (3D) red-black coarsening in creating the �rst
coarser level, with the Galerkin operator corresponding to a 19-point stencil. Subsequent
coarsening, as before, will become faster. However, the \ideal" operator complexity (ob-
tained if geometrical interpolation was used) is now cA � 2:8. Consequently, the true
AMG complexity, generally, has to be expected to be larger than 3.0. �

If memory requirement is an issue, aggressive coarsening may be used instead of stan-
dard coarsening. As mentioned earlier, it is usually su�cient to apply this type of coars-
ening only in the �rst coarsening step and maintain standard coarsening for all subsequent
levels. Figure 17b shows the resulting �rst 4 levels if aggressive A2-coarsening is performed
to create the �rst coarser level. The �rst AMG coarsening step now corresponds to geo-
metrical h! 2h coarsening rather than red-black coarsening. Except for the upper right
area of the domain, this also holds for the subsequent (standard) coarsening steps. Near
the upper right corner, the situation is slightly di�erent. Obviously, the Galerkin operator
on level 2 is more anisotropic than it was on the �nest level. AMG detects this and creates
the third level by line-wise coarsening in y-direction. Since line-wise coarsening essentially
removes the anisotropy, the next coarsening step is again in both directions.

Ignoring the special coarsening near the upper right corner, the grid complexity now
is only cG � 1:33 and the ideal operator complexity becomes cA � 1:6 (assuming linear
interpolation, all Galerkin operators correspond to 9-point stencils). As before, the true
AMG operator complexity will be somewhat larger; in the above example we obtain cA �
1:77 (see Table 1) which is very reasonable. In corresponding 3D situations, the gain in
terms of memory reduction by means of aggressive coarsening is even higher. Memory
usage can further be reduced either by using A2-coarsening also on the coarser levels
(which usually does not pay, see above) or by using A1-coarsening to create the �rst
coarser level (cf. the examples in Section 8.3).

8.2.2 Performance and comparisons

Figure 18a shows asymptotic convergence factors, �, for several AMG strategies and in-
creasing N . We �rst observe that our standard cycle, the VS(S)-cycle, exhibits a very
stable convergence behavior with � < 0:15 for increasing N . Investing more e�ort into the
interpolation, by applying one Jacobi F-relaxation, improves convergence only marginally,
indicating that the standard interpolation is fairly good in this case (cf. VS(S-1F,0.02)-
cycle). In contrast to this, investing more work into the cycle itself, by applying an F-
instead of a V-cycle, causes extremely fast convergence (cf. Remark 8.4 below).

The in
uence of aggressive coarsening is demonstrated by the low-memory VA2(S)- and
VA1(S)-cycles. As expected, convergence becomes considerably slower but still approaches
an upper limit for large N . As mentioned earlier, aggressive coarsening causes not only
the smoothing to be less e�ective (we still use only one CF-relaxation step for pre- and
post-smoothing) but also interpolation to be less accurate (multi-pass interpolation from

80

32 64 128 256 512 1024
mesh size (N)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
n

ve
rg

en
ce

fa
ct

o
r

VA1(S)

VS(S)

VA2(S)

VS(S-1F,0.02)

FS(S)

Cycles used stand-alone

VS(D)

32 64 128 256 512 1024
mesh size (N)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

av
er

ag
e

re
du

ct
io

n
fa

ct
o

r

VA1(S)

VS(S)

VA2(S)

VS(S-1F,0.02) FS(S)

Cycles accelerated by cg

VS(D)

Figure 18: a) Convergence factors for cycles used stand-alone. b) Average reduction factors
for accelerated cycles.

level 2 to level 1). Clearly, convergence can be improved, for instance, by using twice as
many smoothing steps and using Jacobi-relaxation to improve interpolation to the �nest
level. However, this would substantially increase the cycle cost and, more importantly,
tend to reduce the advantage of low operator complexity which was the major purpose for
using aggressive coarsening to begin with.

A simpler and very e�ective way of improving the convergence of any cycle, in par-
ticular those using aggressive coarsening, is to use them as pre-conditioners rather than
stand-alone. This is demonstrated in Figure 18b which shows the AMG convergence if
used as pre-conditioner for cg. For the same cycles as before, the average residual reduction
factors are shown, obtained over (at most) 50 iterations in solving the homogeneous system
starting with a random �rst approximation. At relatively little extra cost, convergence is
enhanced substantially.

Remark 8.3 Figure 18 also depicts the convergence of the VS(D)-cycle (where standard
interpolation is replaced by the simpler direct interpolation). Although this cycle also
gives good convergence in most cases, its convergence behavior is often not as stable as
that of the VS(S)-cycle. This is why the VS(S)-cycle is our standard cycle. �

Remark 8.4 The purpose of using F-cycles rather than V-cycles is to solve the coarse-
level correction equations more accurately and to reduce the accumulation of errors from
the individual levels of the AMG hierarchy. Clearly, in general, F-cycle convergence can-
not be better than the corresponding two-level convergence. The drastic improvement
of convergence shown in Figure 18 (cf. VS(S)- and FS(S)-cycles) is due to a particular
situation which cannot be expected in general: Since standard coarsening, applied to a 5-
point stencil with all connections being strong, corresponds to red-black coarsening, there
are no F-to-F connections on the �nest level (i.e., AFF is a diagonal matrix). Therefore,
according to Section 2.3, the two-level method involving the �rst two levels corresponds to
a direct solver. Consequently, any increase of accuracy in solving the correction equations
on level 2, directly improves the AMG convergence by a corresponding amount. Since,

81

compared to the V-cycle, the F-cycle solves the second level correction equation approxi-
mately twice as accurately, this immediately causes the overall convergence to be twice as
fast. (Note that we have a similar e�ect for isotropic 7-point stencils in 3D.) �

0 10 20 30
iter

10-10

10-8

10-6

10-4

10-2

100

102

re
si

du
al

cg/ILU(0)

VA1(S)

VS(S)/cg VS(S)

VA2(S)/cg

VA2(S)

VA1(S)/cg

128 256 512 1024
mesh size (N)

0

0.1

0.2

0.3

A
M

G
tim

es
(m

ill
is

ec
p

er
po

in
t)

0

1

2

3

4

5

cg
/IL

U
(0

)
tim

es
(m

ill
is

ec
p

er
po

in
t)

cg/ILU(0)

VS(S)VS(S)/cg

VA2(S)

VA2(S)/cg

VA1(S)

VA1(S)/cg

Figure 19: a) Convergence histories for N = 512. b) Total time in millisec per �nest grid
point to reduce the residual by 10 orders of magnitude.

Figure 19a shows the convergence histories of the VS-, VA2- and VA1-cycles, with and
without acceleration by cg, for solving the given problem (N = 512 and using u � 1 as �rst
approximation)3. The �gure also shows the convergence history of ILU(0) pre-conditioned
cg for the �rst 30 iterations.

However, the computational time, and how it increases with increasing N , is more
important than convergence histories. Figure 19b shows computational times to solve (126)
for varying mesh sizes up to a residual reduction by 10 orders of magnitude. Times are
given in milliseconds per �nest grid point and include the setup cost. For all AMG variants
discussed here, the total cost approaches an upper limit for increasing mesh sizes which
demonstrates their computational optimality for solving problems of the kind at hand. The
�gure also depicts the corresponding increase of cost for ILU(0) pre-conditioned cg. Since
the convergence speed of cg/ILU(0) depends on N (the number of cg iterations required
increases proportionally with N), the advantage of AMG over cg/ILU(0) substantially
increases with increasing problem size. For N = 1024, it can be seen that the accelerated
standard cycle, VS(S)/cg, is about 37 times faster than cg/ILU(0).

Remark 8.5 The computational work of AMG is essentially determined by the operator
complexity cA and the convergence factor �. Only if both quantities are bounded as a
function of h, do we have an asymptotically optimal performance. We here just remark
that cA is indeed virtually independent of N for all AMG variants shown. The slight
increase of the total cost for medium sized meshes, seen in Figure 19b, is caused by the
small increase of the convergence factors in this area (cf. Figure 18). �

3For ease of reading, we always use thin lines for stand-alone AMG cycles and corresponding fat lines
for their accelerated analogs.

82

complexities times (sec) / Pentium II, 300 MHz
setup stand-alone conjugate gradient

method cA cG time cycle "0 = 10�10 cycle "0 = 10�10

ILU(0) 0.87 1.07 628.6 (587)
AMG1R5 2.42 1.71 6.97 2.10 25.9 (9)

VS(S) 2.38 1.67 11.8 2.32 37.4 (11) 2.93 32.6 (7)
FS(S) " " " 3.87 31.2 (5) 4.46 29.7 (4)
VS(D) 2.20 1.67 8.51 2.22 48.5 (18) 2.83 39.7 (11)
VA2(S) 1.77 1.35 10.3 1.78 58.2 (27) 2.38 41.3 (13)
VA1(S) 1.50 1.19 8.07 1.47 65.4 (39) 2.07 45.3 (18)

Table 1: Complexities and computing times (N = 512)

Detailed measurements are given in Table 1 for N = 512 including the complexity
values, cG and cA. Besides the computational times for the setup phase and single cy-
cles, total execution times (including setup) are given for the reduction of the residual
by a factor of "0 = 10�10 (the values in parentheses indicate the number of iterations
required). The table shows that the standard cycle, VS(S)/cg, is nearly 20 times faster
than standard ILU(0) preconditioned cg. The lowest-memory cycle, VA1(S), reduces the
memory overhead for storing the coarse-level matrices by approximately 64%. If used as
a pre-conditioner, it is still approximately 14 times faster than cg/ILU(0).

Table 1 also shows complexity values and timings for the original AMG solver,
AMG1R5, which should be compared with the VS(S)-cycle. Obviously, for the current
problem, AMG1R5 converges somewhat faster (9 iterations instead of 11) and the total
execution time is lower4. The faster convergence is due to the particularly simple geomet-
rical situation which bene�ts the interpolation used in AMG1R5 (cf. Remark 7.8). We
will see later that this advantage gets lost in more complex geometric situations or for
more complicated problems.

Remark 8.6 The cost of \better" cycles such as F-cycles (and even more of W-cycles) is
usually substantially higher than that of the simpler V-cycles, at least in connection with
standard coarsening: While, in V-cycles, each level is visited just once, in F-cycles, level
n is visited n times. This increase of cost is, generally, more critical in AMG than it is
for comparable geometric multigrid cycles. This is mainly due to the more complex AMG
coarse-level operators. Thus, although convergence of F-cycles may be faster than that
of their V-cycle analog, the total computational time is usually higher. That, in Table 1,
the total times for the FS(S)-cycle are (slightly) lower than that for the VS(S)-cycle is a
consequence of the extremely fast F-cycle convergence which, in turn, is a consequence of
the particular situation mentioned in Remark 8.4. �

8.2.3 F-smoothing and Jacobi-interpolation

According to the theoretical results of Section 5.1.4, it is possible to employ mere F-
smoothing instead of full smoothing except that standard interpolation might then not be

4This lower computational time is, to some extent, due to the fact that AMG1R5 is a FORTRAN77
code using only static arrays while RAMG05 uses dynamic FORTRAN90 arrays (which decreases the
performance in case of the Lahey compiler used here).

83

su�cient any more. Indeed, generally, additional work needs to be invested in improving
interpolation by Jacobi F-relaxation in order to cope with all those error components which
cannot e�ciently be reduced by mere F-smoothing. That just one Jacobi-step is enough is
demonstrated in Figure 20 which compares the convergence factors of the standard cycle,
VS(S), with that of various cycles using mere F-smoothing5.

32 64 128 256 512 1024
mesh size (N)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
n

ve
rg

en
ce

fa
ct

o
r

VS-FF(S)

VS-FF(S-1F,0.2)

VS-FF(S-1F,0.1)

VS-FF(S-1F,0.02)

VS(S)

Figure 20: Convergence factors of cycles using F-smoothing

complexities times (sec) / Pentium II, 300 MHz
method cA cG setup cycle "0 = 10�10 �

VS(S) 2.38 1.67 11.8 2.32 37.4 (11) 0.151

VS-FF(S) 2.45 1.68 13.1 2.65 113.6 (38) 0.656
VS-FF(S-1F,0.2) 2.82 1.67 22.0 2.91 65.6 (15) 0.354
VS-FF(S-1F,0.1) 2.95 1.67 24.7 3.02 60.9 (12) 0.253
VS-FF(S-1F,0.02) 3.24 1.67 39.6 3.20 71.9 (10) 0.177

Table 2: Complexities and computing times for cycles using F-smoothing (N = 512)

Obviously, the VS-FF(S) cycle (i.e., the VS(S)-cycle with each CF-relaxation step
replaced by two F-relaxation steps), is substantially inferior to the VS(S)-cycle and h-
dependent. However, one Jacobi F-relaxation step, applied to the interpolation, enhances
convergence substantially: if truncation with "tr � 0:1 is used, convergence approaches
that of the VS(S)-cycle. (Truncation with the default value, "tr = 0:2, is not quite su�-
cient.) Unfortunately, this is at the expense of an increase of the total solution cost (mainly
because of a strong increase of the setup cost). In addition, operator complexities sub-
stantially increase. Detailed results are shown in Table 2 for the case N = 512. Although
we have already mentioned ways of improvement, the trend indicated is typical: skipping
relaxation of the C-equations may unnecessarily increase cost and memory requirement
(cf. Section 5.2).

5We have forced strong diagonal dominance (95) here with � = 0:75.

84

8.3 Computational
uid dynamics

Industrial CFD applications involve very complicated
ow problems. For instance, in the
car industry,
ows through heating and cooling systems, complete vehicle underhood
ows
or
ows within passenger compartments are computed on a regular basis. Large complex
meshes, normally unstructurd, are used to model such situations. Requirements on the
achievable accuracy are ever increasing, leading to �ner and �ner meshes. Locally re�ned
grid patches are introduced to increase the accuracy with as few additional mesh points as
possible. Figures 21 and 22 show two exemplary meshes used to model the
ow through
a down-shot coal furnace and the cooling jacket of a four-cylinder engine, respectively6 .

Figure 21: View into the interior of the bottom part of a coal furnace model (325,000
mesh cells; for simplicity, only the mesh surface is visualised)

The software industry is continuously improving the generality and the e�ciency of
their codes. The incorporation of multigrid methods would be one way to improve perfor-
mance. Geometrically oriented approaches, however, can hardly cope with the complex
geometries under consideration. Generally, there is no natural grid hierarchy which could
easily be exploited. But even if there was such a hierarchy, the coarsest level would still
be required to be �ne enough to resolve the geometry to some extent. For industrially
relevant con�gurations, such coarsest grids would still be much too �ne for an e�cient
multi-level solution. AMG is of particular interest here since it can be used as a \plug-in
solver" for existing codes.

In this section, we present some examples of AMG's performance if applied to industrial
CFD applications based on segregated solution methods.

6All examples have been provided by Computational Dynamics Ltd.

85

Figure 22: Cooling jacket of a four-cylinder engine (100,000 cells)

8.3.1 Segregated solution methods

The basic equations to be solved are the Navier-Stokes equations

ut � 1

Re
�u+ u � ru+rp = f (127)

r � u = 0 (128)

where (127) are the momentum equations and (128) is the continuity equation. u denotes
the velocity vector, p the pressure and f the body force. Re is the Reynolds number.

Segregated solution methods (or pressure correction typemethods) to tackle the solution
of the Navier-Stokes equations belong to the most established approaches used in general-
purpose commercial CFD codes. Their major advantage is that, at each time step, the
approximate solution of just a series of scalar equations is required rather than the solution
of the coupled Navier-Stokes system.

Assuming an implicit time-stepping scheme (here backward Euler for simplicity) and
a stable discretisation in space (indicated by the subscript h), equations of the following
form have to be solved at the n-th time step:

1

�t
(u

(n)
h � u

(n�1)
h)� 1

Re
�hu

(n)
h + u

(n�1)
h � rhu

(n)
h +rhp

(n)
h = f

(n)
h (129)

rh � u(n)h = 0 : (130)

Here, the convective part has been linearised. (If required, the solution of the nonlinear
equations can be computed iteratively in a straightforward way.) For ease of reading, we
omit the subscript h in the following.

There are several variants of pressure correction type approaches all of which proceed
in two steps: First, an intermediate velocity approximation, u?, is computed by replacing
p(n) in (129) by values from the previous time step:

1

�t
(u? � u(n�1))� 1

Re
�u? + u(n�1) � ru? +rp(n�1) = f (n) : (131)

86

Second, corrections

u(n) = u? + u0 and p(n) = p(n�1) + p0 (132)

are computed such that u(n) is an improved solution of (129) satisfying the continuity
equation (130). To strictly satisfy (129), one would have to solve

1

�t
u0 � 1

Re
�u0 + u(n�1) � ru0 +rp0 = 0 : (133)

However, since the correction u0 is assumed to be relatively small and change little in
space, the u0-dependent part in (133) is approximated by A(u(n�1))u0 with some simple
(invertible) matrix A, depending on old velocity values. Usually A is assumed to be
diagonal, in the simplest case just A = 1

�tI . Well-known methods such as SIMPLE and
SIMPLEC are based on such approximations. Consequently, the velocity correction u0 is
computed via

u0 = �[A(u(n�1))]�1rp0 (134)

where p0 is the solution of the so-called pressure correction equation

r � [A(u(n�1))]�1rp0 = r � u? : (135)

The latter follows immediately from (134) because of the requirement that the velocity,
after its correction (132), has to satisfy the continuity equation (130). Typically, the
pressure correction equation has to be solved several times at each time step.

In practice, segregated solution methods are used to solve time-dependent as well as
steady-state problems with well-known approaches being PISO and SIMPLER, respec-
tively (for more information on segregated solution methods, we refer to [51, 52, 53, 45,
36, 22]).

Summarising, two di�erent types of scalar equations have to be solved within each step:
A set of (de-coupled) convection-di�usion equations (131) and the pressure-correction
equation (135), a Poisson-like equation with coe�cients which, in general, depend on
known velocity values. AMG can e�ciently be used to solve both types of scalar equations.
Regarding Poisson-like equations, we have demonstrated this in Section 8.2 by means of a
simple model problem. Convection-di�usion problems will be considered in Section 8.5.2.
However, the pressure-correction equation is generally by far the more expensive one to
solve. We therefore put our focus on this equation. For a further discussion of segregated
solution methods, in particular in the context of AMG, see also [30].

Remark 8.7 The fact that the pressure-correction equation is just one component within
an outer iteration has two implications. First, there is no need to solve it too accurately,
in particular not in steady-state computations. We will therefore consider the e�ciency
of AMG not only for obtaining high- but also low-accuracy approximations. Second,
potential performance gains through the use of an e�cient solver solely for solving the
pressure-correction equations is limited by the cost of the remaining components. But
still, since the solution of the pressure-correction equations typically makes up the largest
part of the overall computation, potential bene�ts may be substantial. �

87

Remark 8.8 Currently, there is a trend in commercial code development towards solving
the Navier-Stokes equations directly as a fully coupled system. However, this has several
drawbacks, for instance, regarding overall memory requirements (which is a major concern
for all commercial software providers). On the other hand, having e�cient solvers available
for directly solving coupled systems on complex geometries, would increase the overall
performance substantially. AMG solvers can play a very important role here. Extensions
of the AMG approach which can handle such coupled systems are under development. �

8.3.2 Industrial test cases

In order for any new solver to be interesting for industrial use, it has to be fast, robust and
require only a low amount of memory. Whether or not this is satis�ed, has to be judged
by comparing with solvers typically used such as ILU pre-conditioned conjugate gradient.

Regarding performance, AMG is generally much more e�cient than any one-level
method, in particular, if the underlying meshes are large and complex, if there are thin
substructures in di�erent directions, or if coe�cients are not smoothly varying. Also ro-
bustness has turned out to be extraordinarily high for all industrial problems solved by
now. Regarding memory requirement, AMG can certainly not compete with a simple one-
level method. In fact, any hierarchical solver { and hierarchical approaches are necessary
to obtain fast solution { requires additional memory. Memory requirement, however, is a
major concern for any commercial software provider. Industrial users of commercial codes
always drive their simulations to the limits of their computers, shortage of memory being
a serious one. In fact, most industrial users would prefer to wait longer for the results if
they would otherwise not be able to solve what they really want to solve.

0 10 20 30
iter

10-15

10-13

10-11

10-9

10-7

10-5

re
si

du
al

cg/ILU(0)

VA1(S)

VA1(S)/cg

VA2(S)/cg

VA2(S)

VS(S)/cg VS(S)

Fan model

Figure 23: a) Core part of a fan model. b) Convergence histories.

For these reasons, low-memory AMG approaches are of particular interest, even if
the reduced memory requirement causes an increase of the total computational time. A
memory overhead of some tens of percents is certainly acceptable. In any case, however,

88

the operator complexity cA must not be signi�cantly larger than 2.0, say. We will see that
the low-memory cycles, VA1(S) and VA2(S), will satisfy the industrial requirements in all
cases considered.

In this section, our focus will be on solving pressure-correction equations to a high
accuracy, namely, by reducing the residual by 10 orders of magnitude. (Regarding low-
accuracy approximations, see Section 8.3.3.) We consider problems with di�erent types
of meshes. Discretisation is based on a standard �nite-volume approach. In all cases, the
concrete data used corresponds to one particular time step taken from a normal production
run.

The �rst problem corresponds to the 2D simulation of the
ow through a fan model.
The core part of the corresponding mesh is outlined in Figure 23a. The mesh consists
mostly of quadrilaterals and some triangles.

Figure 23b shows the convergence histories for the standard VS(S) cycle as well as
for the low-memory variants VA1(S) and VA2(S), used with and without acceleration by
conjugate gradient. We observe that the convergence behavior is very much comparable
to that of the simple model equation (126) except that convergence is slightly slower here
(cf. Figure 19a). As before, the VA-cycles are not supposed to be used stand-alone but
rather as preconditioners.

complexities times (sec) / Pentium II, 300 MHz
setup stand-alone conjugate gradient

method cA cG time cycle "0 = 10�10 cycle "0 = 10�10

ILU(0) 0.11 0.09 32.0 (354)

VS(S) 2.38 1.65 0.93 0.20 4.50 (18) 0.25 3.68 (11)
VA2(S) 1.87 1.43 0.83 0.16 6.70 (37) 0.21 4.56 (18)
VA1(S) 1.39 1.21 0.60 0.13 8.44 (63) 0.17 4.60 (23)

Table 3: Complexities and computing times (fan model)

The fastest cycle, VS(S)/cg, needs 11 steps to reduce the residual by 10 orders of
magnitude. It also provides the best method in terms of computational time as can be
seen from Table 3: It requires a total time of 3.68 sec which is about 8.5 times less than the
time required by ILU(0)/cg. Memory overhead is reasonable for this 2D problem, however,
relative to our above requirements, still somewhat too high. The VA2- and VA1-cycles are
still much faster than ILU(0)/cg but require substantially less memory. In particular, the
operator complexity of the VA1/cg-cycle is only cA = 1:39. That is, its memory overhead
is smaller than that of the standard cycle by 72% at the expense of some 25% increase in
total execution time.

The following two examples correspond to 3D
ow computations with largely di�erent
unstructured meshes, namely, the
ows through the cooling jacket of a four-cylinder engine
(Figure 22) and through a coal furnace (Figure 21), respectively. While the �rst mesh is
a fairly uniform tetrahedral mesh, the second one consists mainly of hexahedra and a few
thousand pentahedra, including many locally re�ned grid patches. According to this, the
discretized problems employ mostly 5-point stencils in the �rst case and varying stencil
sizes in the second case (ranging from 4- to 11-point stencils).

The convergence histories for both problems are depicted in Figure 24. Observe �rst
that the di�erence in size and structure of the above meshes hardly in
uences the con-

89

0 10 20 30
iter

10-12

10-10

10-8

10-6

10-4

10-2

re
si

du
al

AMG1R5

cg/ILU(0)

VS(S)

VS(S)/cg

VA1(S)/cg

VA2(S)/cg

Cooling jacket

0 10 20 30
iter

10-10

10-8

10-6

10-4

10-2

100

re
si

du
al

AMG1R5

cg/ILU(0)

VS(S)

VS(S)/cg VA1(S)/cgVA2(S)/cg

Coal furnace

Figure 24: Convergence histories: a) cooling jacket, b) coal furnace.

vergence of AMG. Compared to the 2D problem (Figure 23b), however, convergence is
somewhat slower here which is typical for 3D applications (cf. Remark 8.1). The only
major di�erence between the 2D and 3D problems is that the standard VS(S)-cycle, used
stand-alone, converges signi�cantly slower in the 3D cases. As a consequence, the acceler-
ated VA-cycles converge faster than the standard cycle. For both meshes, the accelerated
standard cycle exhibits fastest convergence and requires 15 iterations to reduce the residual
by 10 orders of magnitude.

Table 4 shows that, in terms of total execution time, the accelerated standard cycle
is nearly 20 times faster than ILU(0)/cg for the cooling jacket, and around 6.5 times for
the coal furnace. The lowest-memory cycle, VA1(S)/cg, is still over 17 times faster than
cg/ILU(0) for the �rst case. For the second case, it is even cheaper than the accelerated
standard cycle although it requires 8 additional iterations.

Generally, standard coarsening requires signi�cantly more memory in 3D than it does
in 2D. According to the table, the operator complexity of the VS(S)-cycle is given by
cA = 2:77 and cA = 3:39 for the two problems (which is still practical but too high w.r.t our
particular requirements). The reasons for this increase of complexity are similar to those
pointed out already in Remark 8.2 for the model problem: the �rst standard coarsening
step tends to be relatively slow (in terms of a reduction of grid points) while, at the same
time, the size of the Galerkin stencils on the second level becomes substantially larger than
on the �nest one. As can be seen from Table 4, aggressive coarsening avoids this problem
very e�ciently in both cases. In particular, A1-coarsening reduces the memory overhead
by around 80% in both test cases. Although this signi�cantly increases the number of
iterations required, the resulting method is still very e�cient (even the most e�cient in
some cases).

Remark 8.9 For comparison, Figure 24 and Table 4 show also the performance of
the original code AMG1R5. Note �rst that convergence of AMG1R5 is comparable to
RAMG05 for the cooling jacket case but signi�cantly slower for the coal furnace case. More
importantly, however, the complexity values of AMG1R5 { cA = 5:35 and cA = 7:06, re-

90

complexities times (sec) / Pentium II, 300 MHz
setup stand-alone conjugate gradient

method cA cG time cycle "0 = 10�10 cycle "0 = 10�10

Cooling jacket

ILU(0) 0.39 0.40 434.1 (1084)
AMG1R5 5.35 1.98 7.25 1.29 42.1 (27)

VS(S) 2.77 1.55 5.77 0.90 34.4 (32) 1.11 22.6 (15)
VA2(S) 2.25 1.30 4.94 0.73 55.6 (69) 0.96 27.2 (23)
VA1(S) 1.44 1.14 3.18 0.56 59.2 (100) 0.76 24.5 (28)

Coal furnace

ILU(0) 1.86 1.70 743.8 (436)
AMG1R5 7.06 1.90 72.6 6.76 370.0 (44)

VS(S) 3.39 1.59 33.9 4.36 174.2 (32) 5.27 113.5 (15)
VA2(S) 2.12 1.27 21.8 3.00 173.5 (51) 3.93 104.6 (21)
VA1(S) 1.47 1.14 14.4 2.33 170.2 (67) 3.27 89.5 (23)

Table 4: Complexities and computing times

spectively { indicate an unacceptably high memory requirement of AMG1R5 in both test
cases. This con�rms what has already been mentioned in Remark 7.8: the coarsening
strategy used in AMG1R5 may become very ine�cient in case of non-regular 3D meshes
such as those considered here. Since cA is directly related to the computational time,
AMG1R5 is more expensive, in particular, in the coal furnace case. �

8.3.3 Low-accuracy approximations

Particularly in steady-state computations, the pressure-correction equation usually needs
to be solved only with a low accuracy of one or two digits, say. One might expect that
then the use of AMG solvers is an \overkill" (in particular, because of the high setup cost
involved) and simple one-level methods would become more e�cient.

Indeed, this seems to be true if one compares the total computing times needed by
AMG and cg/ILU(0) to reduce the residual by only one order of magnitude. Table 5 shows
corresponding timings (in the columns labeled \resid") for both the fan model and the
cooling jacket. The results show that the execution time of AMG is still comparable to
that of cg/ILU(0) in case of the cooling jacket but is considerably higher in case of the fan
model where cg/ILU(0) appears to be up to 4 times faster. Note that, in this case, AMG's
setup time alone is already 2 to 3 times higher than the total execution time of cg/ILU(0)!
If, however, the residual is required to be reduced by two orders of magnitude instead,
the execution time of cg/ILU(0) becomes again higher than that of AMG (accelerated
VA1(S)-cycle) by factors of approximately 8 and 23 for the two problems.

Generally, however, one has to be very careful in drawing conclusions from small
residual reductions to corresponding reductions in the error. Indeed, if one compares AMG
with cg/ILU(0) on the basis of error rather than residual reductions, the picture looks
completely di�erent. To demonstrate this, Table 5 contains also total computing times on
the basis of the true error reduction (in the columns labeled \error"). According to these
results, AMG is always faster than cg/ILU(0). For instance, even if the requirement on

91

fan model cooling jacket
method setup "0 = 10�1 "0 = 10�2 setup "0 = 10�1 "0 = 10�2

cost resid error resid error cost resid error resid error

cg/ILU(0) 0.11 0.28 9.98 11.1 12.2 0.39 7.64 114.8 202.8 177.4

VS(S) 0.93 1.15 1.32 1.32 1.69 5.77 7.62 8.50 10.2 11.2
VS(S)/cg " 1.20 1.45 1.70 1.45 " 8.99 8.99 10.3 8.99

VA2(S) 0.83 1.10 1.23 1.41 1.54 4.94 8.84 9.50 13.2 13.9
VA2(S)/cg " 1.20 1.20 1.65 1.20 " 8.95 7.00 10.8 8.95

VA1(S) 0.60 0.86 1.22 1.47 1.83 3.18 7.53 8.62 12.9 14.1
VA1(S)/cg " 0.94 0.94 1.46 1.46 " 4.70 4.70 8.49 6.22

Table 5: Total computing times to reach a low residual and error reduction, respectively

the error reduction is merely one order of magnitude, the execution time of VA1(S)/cg
is lower than that of cg/ILU(0) by factors of approximately 10 and 25 for the �rst and
second test case, respectively. Note that these results depend, to some extent, on the used
norm (here, we used the Euclidian norm). The tendency, however, will be similar also for
other norms.

This advantageous behavior of AMG in terms of error reduction is related to its prop-
erty to globally reduce errors much more e�ectively than a one-level method (such as
ILU(0)). To illustrate this di�erent behavior further, Figure 25 shows convergence his-
tories separately for residuals and errors both for cg/ILU(0) and VA2(S)/cg. Obviously,
during the �rst iterations, AMG reduces errors much more e�ectively than cg/ILU(0).
This unsatisfactory behavior of cg/ILU(0) makes the use of termination criteria, based
merely on the residual reduction, very unpractical: If the given tolerance is too large,
cg/ILU(0) may stop after only a few iterations although the error may still be far too
large. On the other hand, selecting a (slightly) smaller tolerance, may drastically increase
computing cost.

Nevertheless, in computing low-accuracy approximations, AMG's setup cost becomes
quite substantial. In fact, far most of the total computing time may be spent in the setup
routines. Incidentally, however, in situations as described here, typically chains of (often
many hundreds or thousands of) problems have to be solved for which the underlying
matrices usually change only slowly from one step to the next. Consequently, AMG's setup
phase needs to be performed only once in a while. For most of the problems, the complete
setup can be \frozen" (or \updated" by �xing the interpolation and just re-computing
the Galerkin operators). To control such an optimized use of AMG by an e�cient and
automatic strategy is straightforward. In this way, AMG's total setup overhead can be
drastically reduced. For those examples considered here, for instance, new setups are, on
the average, needed only after every 5th time step. Clearly, this substantially enhances
the e�ciency of AMG further.

8.4 Problems with discontinuous coe�cients

In this section, we consider problems with strongly discontinuous coe�cients, again be-
ginning with the investigation of a typical model problem. We will see that, compared to

92

0 100 200 300
iter

10-15

10-13

10-11

10-9

10-7

10-5

re
si

du
al

10-8

10-6

10-4

10-2

100

102

er
ro

r

residual
error

Fan model
cg/ILU(0)

0 5 10 15 20
iter

10-15

10-13

10-11

10-9

10-7

10-5

re
si

du
al

10-8

10-6

10-4

10-2

100

102

er
ro

r

residual
error

Fan model
VA2(S)/cg

0 100 200 300 400 500 600
iter

10-12

10-10

10-8

10-6

10-4

10-2

re
si

du
al

10-6

10-4

10-2

100

102

104

er
ro

r

residual
error

Cooling jacket
cg/ILU(0)

0 5 10 15 20
iter

10-12

10-10

10-8

10-6

10-4

10-2
re

si
du

al

10-6

10-4

10-2

100

102

104

er
ro

r

residual
error

Cooling jacket
VA2(S)/cg

Figure 25: Convergence histories: residual vs. error (fan model and cooling jacket)

Poisson-like problems, the overall performance of AMG decreases to some extent. Qualita-
tively, however, AMG behaves as before. In particular, its performance for more complex
problems is very similar to that observed in Section 8.3. We give typical results in Sections
8.4.2 and 8.4.3.

8.4.1 A model problem

We consider the di�usion problem [49]

� (a ux)x � (b uy)y = f(x; y) (136)

on the unit square with discontinuous coe�cients a > 0 and b > 0 being de�ned as
indicated in Figure 26. f(x; y) is de�ned to be 0 except for the points (0:25; 0:25), (0:5; 0:5)
and (0:75; 0:75) where it is de�ned to be 10. Dirichlet boundary conditions are given as

u = 1 for x � 0:5; y = 0 and x = 0; y � 0:5 ; otherwise : u = 0 :

Discretisation is assumed to be done by the standard 5-point stencil on a regular grid of
mesh size h = 1=N . For instance, the x-derivative �(aux)x at point x0 is approximated

93

by

1

h2

�
� a(x0 � h=2)u(x0 � h) + c u(x0)� a(x0 + h=2)u(x0 + h)

�
(137)

with c = a(x0 � h=2) + a(x0 + h=2).

1:

2:

3:

4:

a b

a b

a b

a b

= =

= =

= =
= =

− −

+ −

− +

10 10

10 10

10 10

1 1

3 3

3 3

3 3

,

,

,

,

1 1

1 1

2

2

13 3
4

4

Figure 26: Distribution of coe�cients

Besides discontinuous changes in the size of the coe�cients by orders of magnitude, the
resulting equations are strongly anisotropic near the boundary, with the strong connec-
tivity being in the direction of the boundary. Regarding the treatment of such problems
by geometric multigrid methods, both properties require special attention. In order to see
the similarities between geometric and algebraic multigrid if applied to such problems, we
brie
y recall a typical geometric approach.

First, assuming usual h ! 2h coarsening, smoothing needs to be done by \robust"
smoothers such as alternating line relaxation. Second, geometric (linear) interpolation of
corrections is not appropriate any more. This is because linear interpolation for u at a grid
point x0 requires the continuity of its �rst derivatives. However, in our example, ux and
uy are not continuous but rather aux and buy. Since corresponding corrections exhibit the
same discontinuous behavior, proper interpolation has to approximate the continuity of
aux and buy rather than that of ux and uy . Consequently, we obtain a better interpolation,
for instance in x-direction, if we start from the equation

(aux)(x0 � h=2) = (aux)(x0 + h=2)

and approximate this by

a(x0 � h=2)(u(x0)� u(x0 � h)) = a(x0 + h=2)(u(x0 + h)� u(x0)) :

This yields the interpolation formula

c u(x0) = a(x0 � h=2)u(x0 � h) + a(x0 + h=2)u(x0 + h) (138)

for computing u(x0) from its neighbors.
The extension of such relations to both space dimensions forms the basis for the def-

inition of \operator-dependent" interpolation in geometric multigrid. Clearly, by means
of some additional approximations, the \interpolation pattern" has to be modi�ed in or-
der to match the coarse-grid points really available. Such an interpolation has �rst been
investigated in [1]. In that paper, it was also shown that the use of operator-dependent
interpolation gives most robust multigrid convergence if, in addition, Galerkin operators
are used on coarser levels (rather than the coarse-level stencils corresponding to (136)).

94

The development of AMG can actually be regarded as the attempt to generalise the
ideas contained in [1]. In fact, operator-dependent interpolation (138), motivated geo-
metrically above, is nothing else but an approximation to the (homogeneous) di�erence
equations (137). This is exactly the way AMG attempts to de�ne interpolation. Clearly,
in contrast to the geometric approach, line-relaxations are not required in AMG since
anisotropies are \resolved" by coarsening essentially in the directions of strong connectiv-
ity (see Figure 28a).

32 64 128 256 512 1024
mesh size (N)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

co
n

ve
rg

en
ce

fa
ct

o
r

VA1(S)

VS(S)
VA2(S)

VS(S-1F,0.02)

FS(S)

Cycles used stand-alone

32 64 128 256 512 1024
mesh size (N)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

av
er

ag
e

re
du

ct
io

n
fa

ct
o

r

VA1(S)

VS(S)
VA2(S)

VS(S-1F,0.02) FS(S)

Cycles accelerated by cg

Figure 27: a) Convergence factors of cycles used stand-alone. b) Average reduction factors
of accelerated cycles.

Figure 27a shows the convergence factors of the VS- and VA-cycles if applied to
the above problem. The standard VS(S)-cycle converges somewhat slower than for the
Poisson-like model problem and its rate exhibits a (slight) h-dependence. But even for the
�nest grid, it still converges at a rate of 0.38 per cycle. In contrast to the Poisson-like ex-
ample, improving interpolation by one additional Jacobi-relaxation step (VS(S-1F)-cycle)
substantially speeds up convergence. In fact, the improved interpolation restores the con-
vergence observed for the standard interpolation in the Poisson-like case (cf. VS(S)-cycle
in Figure 18a). The F-cycle convergence factor is around 0.05 and virtually constant for
all grids considered. The VA1(S)-cycle converges asymptotically at about the same rate
as in the Poisson case. Finally, the VA2-cycle converges even faster than the VS-cycle.
However, this is unusual and cannot be expected in general.

As before, acceleration by conjugate gradient improves convergence substantially (s.
Figure 27b). Moreover, convergence speed becomes virtually independent of the mesh
size. How this improvement translates into number of iteration steps and computational
time needed to solve (136) by 8 orders of magnitude (for N = 512 and starting with u � 0
as �rst approximation), is shown in Figure 28b and Table 6. The accelerated VS-cycle
requires just 8 iterations and is over 20 times faster than cg/ILU(0). The corresponding
F-cycle even solves this problem in only 4 cycles and is approximately 23 times faster
than cg/ILU(0). However, this extraordinarily rapid convergence is for similar reasons as
already mentioned in Remark 8.4: Although the two-level method involving the �rst two

95

levels does no longer strictly correspond to a direct solver (due to the one-dimensional
coarsening near the boundary, see Figure 28a), it is still very close since the F-points of
the �nest level are only (very) weakly connected.

0 10 20 30
iter

10-10

10-8

10-6

10-4

10-2

100

re
si

du
al

VA1(S)

cg/ILU(0)

VA1(S)/cgVS(S)

VS(S)/cg

FS(S)

Figure 28: a) AMG standard coarsening. b) Convergence histories (N = 512).

complexities times (sec) / Pentium II, 300 MHz
setup stand-alone conjugate gradient

method cA cG time cycle "0 = 10�8 cycle "0 = 10�8

ILU(0) 0.93 1.07 693.4 (647)
AMG1R5 2.58 1.81 6.87 2.19 41.9 (16)

VS(S) 2.52 1.79 9.43 2.44 41.1 (13) 3.03 33.8 (8)
FS(S) " " " 4.67 32.8 (5) 5.20 30.2 (4)
VA2(S) 2.14 1.58 8.78 2.08 29.6 (10) 2.68 30.3 (8)
VA1(S) 1.78 1.32 7.52 1.67 65.8 (35) 2.29 48.6 (18)

VS(S-1F,0.02) 3.20 1.79 25.9 2.79 48.2 (8) 3.40 46.3 (6)
VS(S-1P,0.02) 3.05 1.79 19.0 2.82 47.2 (10) 3.30 42.1 (7)

Table 6: Complexities and computing times (N = 512)

We note that the memory requirement for strongly anisotropic problems is typically
higher than that for isotropic problems, the reason being that AMG will essentially per-
form one-dimensional coarsening (in the direction of strong connectivity). To a limited
extent, this is also observed in Table 6. To reduce memory requirement in anisotropic
areas, A1-coarsening needs to be employed and is quite e�ective. From the table we see
that, compared to the VS-cycle, the VA1-cycle requires 50% less overhead memory at the
expense of a 50% increase in execution time.

We have seen above that relaxation of interpolation improves convergence substantially.
However, although the mere solution time of VS(S-1F,0.02) (not counting the setup) is
signi�cantly lower than that of VS(S), the table shows that this advantage is eaten up by
a much higher setup cost. Unfortunately, this is also typical for more general situations.

96

Moreover, relaxation of interpolation naturally increases the memory requirement. As can
be seen in Table 6, the VA1-cycle requires only one third of the memory overhead of the
VS(S-1F,0.02)-cycle. As already mentioned at the beginning of Section 8, there is much
room for optimizing the application of relaxation of interpolation, for instance, by applying
it only locally where really needed and by locally optimizing truncation of interpolation.

Remark 8.10 The above test case was constructed as a worst-case example for the ge-
ometric multigrid code MG2 [49]. Although MG2 is normally very e�cient in solving
problems with discontinuous coe�cients, for this very particular problem there exist eigen-
values of the MG2 iteration matrix which are very close to one. As a consequence, MG2
V-cycle convergence becomes extremely slow. Using MG2 as pre-conditioner substantially
improves convergence. But still, on the order of 60 MG2 V-cycles have to be performed to
reduce the residual by 8 orders of magnitude. Even the F-cycle still requires on the order
of 40 cycles (see [49]). Compared to this, AMG does not show any particular problems
for this test case and converges much faster. �

8.4.2 Oil reservoir simulation

In oil reservoir simulation, the basic task is to solve complex multiphase
ows in porous
media. For each phase, `, of a multiphase problem, the governing equations are the
continuity equation

�r � (�` u`) = @

@t
(�` �S`) + q` (139)

and Darcy's law

u` = �Kkr`
�`

(rp` � �` grz) : (140)

The continuity equation describes the mass conservation. For each phase, u` denotes the
velocity vector, S` the saturation, �` the density distribution (depending on p`) and q`
represents injection or production wells. � denotes the porosity of the medium. Darcy's
law essentially describes the velocity-pressure dependence. Here, p` denotes the pressure,
�` the viscosity and kr` the relative permeability (depending on S`). g is the gravity
acceleration constant (we here assume that gravity acts in the direction of the z-axis).
Finally, K is a tensor (absolute permeability). The absolute permeability varies in space
by, typically, several orders of magnitude in a strongly discontinuous manner. In Figure
29, the gray scale indicates the variation of the permeability as a function of space for a
typical case.

By inserting (140) into (139), the phase velocities can be eliminated. For incompressible

ows we can assume @�=@t = 0 and @�`=@t = 0, and one obtains the following equations
involving pressures and saturations

r �
�
K
kr`
�`

(rp` � �` grz)
�
= �

@

@t
S` + q`=�` : (141)

From this set of equations, pressures and saturations can be computed if one takes into
account that

P
` S` � 1 and that the individual phase pressures are directly interrelated by

97

Figure 29: Distribution of permeability as a function of space (logarithmic gray scale)

means of simple non-PDE relations involving known (but saturation-dependent) capillary
pressures.

Solving the �nally resulting non-linear system fully implicitly is rather expensive and
currently strongly limits the size of problems which can be handled. The more classical
IMPES approach (implicit in pressure, explicit in saturation) treats (141) by an explicit
time-stepping. Consequently, in each time step, the pressures need to be computed with
all saturations being known from the previous time step. Exploiting the interrelation of
the individual phase pressures mentioned above, only one pressure (for instance, the oil
pressure) requires the solution of a partial di�erential equation of the form

�r � (T rp) = Q (142)

which is obtained by adding up the individual equations (141) (and using
P

` S` � 1).
The tensor T is directly related to K. According to the assumption of incompressibility,
both T and Q depend only on the saturations and given quantities.

Clearly, as with any explicit time-stepping method, the major drawback of the IMPES
approach is the serious restriction in the maximally permitted time step size (CFL con-
dition). Since this restriction gets increasingly strong with decreasing spatial mesh size
or increasing variation in the magnitude of T , the classical IMPES method also strongly
limits the treatment of large problems in practice.

Recently, however, a new IMPES-type approach has become quite popular which elim-
inates the time step restriction due to the CFL condition. Rather than updating the sat-
urations directly on the grid based on (141), a streamline method is used instead [71, 9].
By transporting
uids along periodically changing streamlines, the streamline approach is
actually equivalent to a dynamically adapting grid that is decoupled from the underlying,
static, grid used to describe the reservoir geology (and to compute the pressure). The
1D nature of a streamline allows decoupling the 3D problem into multiple 1D problems.
The main advantage of this approach is that the CFL conditions are eliminated from the

uid transport, allowing global time step sizes that are independent of the underlying grid
constraints.

Although this approach cannot (yet) be applied to all relevant situations occuring in
oil-reservoir simulation, it is well suited for large heterogeneous multi-well problems that

98

are convectively dominated. This has been demonstrated in [9] for a problem consisting
of one million mesh cells. Cases of this size could not be solved as easily and quickly by
standard implicit methods. Clearly, an e�cient solver for the pressure equation (142) then
becomes highly important.

0 10 20 30
iter

10-12

10-10

10-8

10-6

10-4

10-2
re

si
du

al

cg/ILU(0)

VS(S)/cg

VS(S)

VA2(S)/cg VA1(S)/cg

Figure 30: Convergence histories (one million cell case)

complexities times (sec) / IBM PowerPC, 333 MHz
setup stand-alone conjugate gradient

method cA cG time cycle "0 = 10�10 cycle "0 = 10�10

ILU(0) 3.89 3.74 3376. (902)
AMG1R5 7.66 2.21 167. 22.7 758.6 (26)

VS(S) 2.85 1.56 43.8 10.5 401.2 (34) 12.6 245.1 (16)
VA2(S) 2.56 1.39 41.6 9.20 492.2 (49) 11.3 267.3 (20)
VA1(S) 1.41 1.13 26.7 5.56 476.4 (81) 7.67 210.7 (24)

Table 7: Complexities and computing times (one million cell case)

The one million cell case previously mentioned, provided by StreamSim Technologies
(CA, USA), has been used as a test case for AMG. The variation of the absolute perme-
ability, which directly corresponds to a discontinuous variation of the coe�cients in the
resulting matrix by four orders of magnitude, is shown in Figure 29. Figure 30 shows the
convergence histories of the typical AMG cycles for this case (starting with the zero �rst
approximation). We see that all cycles presented show essentially the same convergence
behavior as for the Poisson-like problems considered in Section 8.3.2 (cf. Figure 24). This
demonstrates the robustness of AMG with respect to strong, discontinuous variations in
the matrix coe�cients.

Table 7 presents some detailed measurements. For all cycles considered, we see a
substantial bene�t by using them as pre-conditioners rather than stand-alone. The ac-
celerated standard VS(S)-cycle takes 16 iterations to reduce the residual by 10 orders of
magnitude. Although the lowest-memory cycle, VA1(S)/cg, converges more slowly (24

99

iterations), in terms of total computation time it is fastest and about 16 times faster than
cg/ILU(0). Its complexity value cA = 1:41 is very reasonable. Note, however, that the
memory reduction by aggressive A2-coarsening is not very e�ective, the reason being the
strong anisotropies in the problem. On the whole, the AMG performance is very much
comparable to that shown in Table 4 for Poisson-like cases.

The performance of AMG1R5 shows that the original interpolation (cf. Remark 7.8)
leads to unacceptably high memory requirements for this example: cA = 7:66 as compared
to cA = 2:85 for VS(S). As a consequence, although AMG1R5 converges faster than VS(S),
its e�ciency is substantially lower.

8.4.3 Electromagnetic systems

In this section we consider a synchronous line-start motor excited with permanent magnets.
The knowledge of the magnetic �eld inside such a motor, induced by the currents in the
stator and the magnets in the rotor, allows its optimization w.r.t. functionality and
e�ciency. For an example, see Figure 31a.

Figure 31: Synchronous line-start motor: a) magnetic �eld plot, b) initial and locally
re�ned mesh [42].

The governing equation is the magnetostatics Maxwell equation (also known as Am-
pere's law)

r�H = J (143)

where H denotes the magnetic �eld intensity and J the electric current density. According
to Maxwell's equation for the magnetic
ux density,

r �B = 0 ;

we know that there is a magnetic vector potential, A, such that B = r � A. Observing
�nally the constitutive relation B = �H with � being the permeability, (143) can be

100

re-written as

r� (�r�A) = J (144)

where � = 1=� is the reluctivity.
We here consider only 2D intersections (Cartesian coordinates) and, for reasons of

symmetry, we can assume A and J to be of the special form

A = (0; 0; u(x; y)) ; J = (0; 0; f(x; y)) :

Hence, (144) can be seen to correspond to a scalar di�usion equation for the (z-component
of the) magnetic potential, namely,

�r � (�ru) = f : (145)

For isotropic materials, the reluctivity � is a scalar quantity. Normally, it is a function of
u and (145) has to be solved by some outer linearization (for instance, Newton's method).
More importantly, however, � is strongly discontinuous and di�ers by three orders of
magnitude between the steel and air areas inside the motor.

An accurate solution of (145) by �nite elements requires local re�nements near the
critical areas (see Figure 31b). Instead of solving the discrete equations on the full circular
domain (with Dirichlet boundary conditions), one may solve it more e�ciently on half the
domain using periodic boundary conditions or on a quarter of the domain using anti-
periodic bounday conditions.

Figures 32a-b show the performance of AMG for both the periodic and the anti-periodic
case. Except that the low-memory cycle converges somewhat slower here, the overall
performance is very much comparable to the case considered in the previous section.
The underlying mesh, provided by the Dept. of Computer Science of the Katholieke
Universiteit Leuven, is shown in Figure 1 (half the domain). The coarser levels produced
by AMG's standard coarsening are depicted in Figure 3.

We point out that anti-periodic boundary conditions cause strong positive connections
to occur in the underlying matrix (in all equations which correspond to points near the
anti-periodic boundary). As theoretically discussed in Section 4.2.3, interpolation should
take such connections properly into account, for instance, in the way as described in
Section 7.1.3. If this is ignored, that is, if interpolation is done only via strong negative
couplings, the discontinuous behavior of corrections across the anti-periodic boundary is
not properly re
ected by the interpolation, leading to a substantial degradation of the
method.

This is demonstrated in Figure 32c. We observe that the standard VS(S)-cycle, without
acceleration, hardly converges. In fact, convergence speed is limited by the convergence
of the smoother on the �nest level. It is heuristically clear that this slow convergence
is only caused by particular error components, namely, those which really exhibit the
discontinuity. All other components are still reduced very e�ectively. Consequently, the
use of accelerated cycles \cures" this problem to some extent as can be seen from the
�gure. However, it takes 10 \wasted" cycles before the critical error components are suf-
�ciently reduced by conjugate gradient and the AMG performance becomes visible again.
Although this demonstrates that the use of accelerators such as conjugate gradient helps

101

0 10 20 30
iter

10-17

10-15

10-13

10-11

10-9

10-7

10-5

re
si

du
al

cg/ILU(0)

VS(S)

VA2(S)/cgVS(S)/cg

0 10 20 30
iter

10-17

10-15

10-13

10-11

10-9

10-7

10-5

re
si

du
al

cg/ILU(0)

VS(S)

VA2(S)/cgVS(S)/cg

0 10 20 30
iter

10-17

10-15

10-13

10-11

10-9

10-7

10-5

re
si

du
al

cg/ILU(0)

VS(S)

VA2(S)/cg

VS(S)/cg

Figure 32: Convergence histories: a) periodic case, b) anti-periodic case, c) anti-periodic
case (positive connections ignored)

to stabilize convergence, a situation like that shown here should clearly be avoided since
it demonstrates that something is wrong conceptually. Moreover, the area of \stalling"
convergence (here just the �rst 10 iterations) strongly depends on the problem and the size
of the grid (more precisely, on the distribution of those eigenvalues of the AMG iteration
matrix which are close to one).

8.5 Further model problems

8.5.1 Special anisotropic problems

We have seen before that AMG treats anisotropies by coarsening in the proper direction.
This works perfectly if the anisotropies are essentially aligned with the grid. Moreover,
since AMG adjusts its coarsening locally, di�usion equations (136) with strongly varying
anisotropies are no problem for AMG.

102

However, one has to expect certain di�culties if strong anisotropies are not aligned
with the grid. The following model problem is a well-known test case for such a situation:

�(c2 + "s2)uxx + 2(1� ")scuxy � (s2 + "c2)uyy = f(x; y) (146)

with s = sin� and c = cos�. We consider this di�erential operator on the unit square
with f(x; y) � 1, homogeneous Dirichlet boundary conditions, " = 10�3 and 0� � � � 90�.
For such values of �, uxy is most naturally discretized by the left-oriented 7-point stencil

1

2h2

24 �1 1
1 �2 1

1 �1

35 (147)

where h = 1=N .
The main di�culty with the di�erential operator (146) is that it corresponds to the

operator �uss � "utt in an (s; t)-coordinate system obtained by rotating the (x; y)-system
by an angle of � (\rotated anisotropic di�usion equation" [81]). That is, (146) is strongly
anisotropic with the direction of strong connectivity given by the angle � (see Figure 33).

α = °0

α = °90

α = °45

Figure 33: Direction of strong connectivity ("� 1)

In particular, for � = 0� and � = 90�, (146) becomes �uxx � "uyy = f and �"uxx �
uyy = f , respectively, and the anisotropies are just aligned with the axes. Geometric
multigrid methods solve these equations very e�ciently by employing h ! 2h coarsening
and using line relaxations (in the direction of strong connectivity) for smoothing. In
contrast to this, AMG uses point relaxation for smoothing but coarsens in the direction
of strong connectivity. The standard VS(S)-cycle, for instance, converges at a rate of
0.1 per cycle, independent of the grid size. This can be seen from Figure 34a. Using
acceleration by conjugate gradient even gives a convergence factor better than 0.01 per
cycle (see Figure 34b).

The �gure shows that AMG performs similarly well for � = 45� also. In this case, the
discretisation of (146) corresponds to the stencil

1

h2

24 �1�"
2 �"

�" 1 + 3" �"
�" �1�"

2

35 ; (148)

which exhibits a strong connectivity in the diagonal direction. It has only non-positive
o�-diagonal entries and essentially degenerates to a 3-point stencil for small ". Since the
anisotropy is still aligned with the grid, AMG can cope with this anisotropy as e�ciently
as in the previous cases by coarsening in diagonal direction. Nevertheless, solving this case

103

0 10 20 30 40 45 50 60 70 80 90
alpha

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
n

ve
rg

en
ce

fa
ct

o
r

N=128
N=256
N=512

VS(S)

FS(S-1F,0.02)

VS(S-1F,
0.02)

Cycles used stand-alone

0 10 20 30 40 45 50 60 70 80 90
alpha

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

av
er

ag
e

re
du

ct
io

n
fa

ct
o

r N=128
N=256
N=512

VS(S)FS(S-1F,0.02)

VS(S-1F,
0.02)

Cycles accelerated by cg

Figure 34: a) Convergence factors of cycles used stand-alone. b) Average reduction factors
of accelerated cycles.

with geometric multigrid (using h ! 2h coarsening), brings a problem: Even alternating
line relaxation does not have good smoothing properties any more. In fact, it is no better
than point relaxation (since the connections in both coordinate directions are very weak).

For other values of �, the strong anisotropies are no longer aligned with the grid.
(Note also that, generally, the resulting discretization matrices are not M-matrices.) This
causes particular di�culties for any multigrid method. In geometric multigrid, as above,
neither point- nor line-relaxation schemes have good smoothing properties with respect to
h ! 2h grid coarsening. More importantly, however, the extent to which the anisotropy
is captured by grid points, strongly depends on � and is di�erent on di�erent grid levels.
This substantially reduces the e�ectiveness of coarse-grid correction processes and, through
this, the overall cycle convergence.

Since AMG cycles also obtain their correction quantities from points which form sub-
grids of the given grid, the non-alignment in
uences the AMG performance, too. This
is demonstrated in Figure 34a which, for N = 128; 256; 512 and di�erent cycles, shows
convergence factors as a function of �. One sees that, for certain values of �, the standard
VS(S)-cycle (upper three curves in the �gure) converges very slowly and the convergence
factor depends on the mesh size h. For instance, for � = 10� and N = 512, the convergence
factor is worse than 0.9. We note that the convergence of the corresponding F-cycle (not
shown here) is faster but still shows a similar h-dependency for most values of �.

This con�rms that the slow convergence is not (only) due to the mere accumulation
of errors (introduced by the inaccurate solution of the coarse-level correction equations
in a V-cycle) but that there are also convergence problems for the \intermediate" two-
level methods. Consequently, an improvement of interpolation by relaxation should help.
Although the corresponding VS(S-1F,0.02)-cycle indeed converges much better than the
standard VS(S)-cycle, it still shows a signi�cant h-dependency as can be seen from the
�gure. However, using the improved interpolation in conjunction with the F-cycle elimi-
nates this problem: the FS(S-1F,0.02)-cycle converges at a rate which is the same for all

104

mesh sizes and better than 0.1 for all � considered.
Figure 34b shows average reduction factors obtained for the corresponding cycles if

used as pre-conditioner for conjugate gradient. Although the shapes of the curves are
similar to the previous ones, the accelerated cycles converge much faster. In particular,
the accelerated F-cycle with improved interpolation converges at a rate �0.02 for all �
and h considered.

0 10 20 30
iter

10-12

10-10

10-8

10-6

10-4

10-2

re
si

du
al

FS(S-1F,0.02)/cg

VS(S)

FS(S)

VS(S)/cg

FS(S)/cg

BI-CGSTAB/ILUT(5)

Figure 35: Convergence histories (N = 512, � = 20�)

Finally, Figure 35 shows convergence histories for N = 512 and � = 20�, starting with
u = 0 as �rst approximation. One observes that the VS(S)-cycle converges rapidly for the
�rst few cycles before convergence levels o� and reaches its slow asymptotic value. This
e�ect is virtually eliminated for the corresponding accelerated cycle. To a lesser extent,
a similar e�ect occurs also for the FS(S)-cycle. The accelerated F-cycle with improved
interpolation reduces the residual by 10 orders of magnitude in 6 iteration steps only.

We see that it is easy to obtain fast convergence even in this example which can be
regarded as very di�cult for geometric multigrid methods. However, as can be seen from
Table 8, cost and memory requirement become rather high if relaxation of interpolation
is employed: an operator complexity cA of over 6 is unacceptably high for practical ap-
plications. Related to this is also a setup cost which is much higher than for the other
cycles. The table shows that, although the cycles with standard interpolation converge
much slower, in terms of total computational work they are still more e�cient, the best
one being the accelerated VA2-cycle. The following remark outlines the main reason for
the particularly high memory requirement observed in this example:

Remark 8.11 We have already mentioned earlier that, compared to isotropic problems,
memory requirement is generally higher for anisotropic problems. Memory requirement
increases further for problems as discussed here where anisotropies are not aligned with the
grid. In fact, Table 8 shows that, using standard coarsening and standard interpolation,
the operator complexity is cA = 3:24 while for the Poisson-like problem discussed earlier,
it was only cA = 2:38 (see Table 1). The major reason is that the non-alignment causes the
strong connections to \fan out" so that each point is strongly connected to an increasing

105

complexities times (sec) / Pentium II, 300 MHz
setup stand-alone conjugate gradient

method cA cG time cycle "0 = 10�10 cycle "0 = 10�10

AMG1R5 3.02 1.84 12.1 3.07 414. (131)

VS(S) 3.24 1.84 18.6 3.55 263.6 (69) 4.22 119.7 (24)
FS(S) " " " 6.87 183.4 (24) 7.49 108.4 (12)
VA2(S) 1.72 1.41 11.6 2.25 153.1 (63) 2.92 75.8 (22)

VS(S-1F,0.02) 6.05 1.84 91.9 5.65 199.2 (19) 6.45 162.9 (11)
FS(S-1F,0.02) " " " 13.1 210.0 (9) 13.8 174.4 (6)

VS(D-1F,0.5) 2.54 1.88 15.4 3.13 125.1 (35) 3.82 76.5 (16)
FS(D-1F,0.5) " " " 5.91 109.9 (16) 6.53 74.2 (9)

Table 8: Complexities and computing times (N = 512, � = 20�)

number of points on both sides of the \true" anisotropic line. Thus interpolation stencils
get larger on coarser levels and, as an immediate consequence, so do the Galerkin operators.
Clearly, this e�ect is strongly ampli�ed by relaxation of interpolation. �

The fan-out e�ect mentioned in this remark may be reduced by choosing a larger
truncation value for interpolation, "tr. Indeed, this dramatically improves e�ciency as
seen from the last two rows in Table 8 where we have chosen "tr = 0:5: compared to
the case "tr = 0:02, the operator complexity is reduced from 6.05 to 2.54 and the total
execution time is reduced by more than a factor of two! (Note that we also have used the
simpler direct interpolation instead of the standard one.)

In this context we want to recall that our main goal in this chapter on applications is
to demonstrate how di�erent AMG components may in
uence the overall performance.
We have not tried to �nd optimal components or parameters but rather con�ned our-
selves to a few typical ones. The above results clearly show that optimized parameter
settings may, depending on the application, improve the performance substantially
further.

Remark 8.12 If, instead of the 7-point discretisation (147), we use the standard 9-
point discretization, the AMG convergence behavior is qualitatively the same (except
that � = 45� does not play such a particular role any more). Generally, the performance
of AMG su�ers from the non-alignment of the anisotropies just as geometric multigrid
does. However, in AMG, due to its higher
exibility in creating the coarser levels, this
problem is much less severe and easy to cure in the cases considered here, at least in terms
of robust convergence. Concerning the convergence behavior of geometric multigrid in
such cases, see, for example, [49]. �

8.5.2 Convection-di�usion problems

So far, we have only considered symmetric problems. However, as mentioned earlier,
RAMG05 does not make use of the symmetry and can formally also be applied to non-
symmetric problems. Practical experience has shown that, generally, the non-symmetry
by itself does not necessarily cause particular problems for AMG. Other properties of the

106

given system typically in
uence the performance of RAMG05 to a much larger extent, for
instance, whether or not the underlying matrices are (approximately) weakly diagonally
dominant. If this is strongly violated, there is no guarantee that the method converges.

We are not going to discuss non-symmetric problems in detail here but rather present
results for one typical example from a class of non-symmetric problems for which AMG has
turned out to yield robust and fast convergence. This is the class of convection-dominant
equations

�"�u + a(x; y) ux + b(x; y) uy = f(x; y) (149)

with some small " > 0, discretised by standard �rst order upwind di�erences. Note that
the resulting discretization matrices are o�-diagonally negative.

Generally, for such equations, AMG converges very quickly, in particular, if the char-
acteristics are straight lines. Heuristically, this is an immediate consequence of AMG's
coarsening strategy. Since strong connections are only in the upstream direction, inter-
polation to any F-point i will typically use relatively many of them for interpolation and,
consequently be rather accurate in the sense of AMG. Thus, the reason for fast convergence
is essentially algebraic, and not a consequence of smoothing in the usual sense.

Figure 36: a) Solution contours, b) standard coarsening pattern.

When the characteristics change over the region, the simple directionality of the strong
connections on coarser grids is lost, and AMG will exhibit a more typical convergence
behavior. As an example, we here consider a worst-case problem given by selecting

a(x; y) = � sin(�x) cos(�y) and b(x; y) = sin(�y) cos(�x) ; (150)

f(x; y) � 1 and u = sin(�x)+sin(13�x)+sin(�y)+sin(13�y) on the boundary of the unit
square. Finally, we set " = 10�5.

The major di�culty with this particular example is that a and b are chosen to yield
closed characteristics and a stagnation point in the center of the domain. Consequently,
(149) becomes more and more singular for " �! 0. For " = 0, the continuous problem is no
longer well de�ned: any function which is constant along the characteristic curves, solves
the homogeneous equation. According to the results shown in [49], geometric multigrid

107

approaches have serious di�culties with this example: covergence becomes very slow and
mesh dependent.

Figure 36 depicts the coarsening strategy performed by AMG. Since strong connectivity
is in the circular direction only, AMG attempts to not coarsen in the radial direction
(within the limits imposed by the grid).

Figure 37a shows average reduction factors of some AMG cycles if used as a pre-
conditioner for BI-CGSTAB [72]. In all cases, instead of CF-relaxation, we employed
symmetric Gauss-Seidel relaxation for smoothing (which usually gives faster convergence
for convection dominant problems). The �gure shows rapid convergence in all cases.
In particular, the cycles using standard coarsening, on the average reduce the residual
by approximately two orders of magnitude per BI-CGSTAB iteration. (Note that each
BI-CGSTAB iteration involves the performance of two AMG cycles.) The VA2(S)-cycle
still converges very fast (better than 0.1 reduction per iteration) but exhibits a relatively
signi�cant h-dependency. Figure 37b shows the convergence histories of cycles with and
without acceleration.

32 64 128 256 512 1024
mesh size (N)

0

0.025

0.05

0.075

0.1

av
er

ag
e

re
du

ct
io

n
fa

ct
o

r

Cycles accelerated by BI-CGSTAB

VA2(S)

VS(S)

FS(S)

VS(S-1F,0.02)

0 5 10 15 20
iter

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

re
si

du
al

BI-CGSTAB/ILUT(5)

VS(S)

VA2(S)/BICG

FS(S)

VS(S)/BICG

FS(S)/BICG

Figure 37: a) Average reduction factors, b) Convergence histories for N = 512.

complexities times (sec) / Pentium II, 300 MHz
setup stand-alone BI-CGSTAB

method cA cG time cycle "0 = 10�10 cycle "0 = 10�10

AMG1R5 3.94 2.11 9.72 2.94 180.2 (58)

VS(S) 3.33 1.92 12.0 3.48 88.6 (22) 7.52 64.8 (7)
FS(S) " " " 8.34 95.4 (10) 17.3 98.4 (5)
VA2(S) 2.58 1.68 9.62 2.87 107.1 (34) 6.22 78.0 (11)

VS(S-1F,0.02) 5.14 1.94 89.3 4.93 138.6 (10) 10.4 141.2 (5)

Table 9: Complexities and computing times (N = 512)

Table 9 shows detailed performance measurements forN = 512. The accelerated VS(S)
cycle requires 7 iterations to reduce the residual by 10 orders of magnitude, the accelerated

108

FS(S)- and VS(S-1F)-cycles require even only 5 cycles. In terms of total cost, however, the
accelerated standard cycle is most e�cient. Note that acceleration by BI-CGSTAB is not
really e�ective here for those cycles which exhibit a fast stand-alone convergence (FS(S)
and VS(S-1F)): although acceleration reduces the number of iterations by a factor of
two, there is no gain in computational time since, as mentioned above, each BI-CGSTAB
iteration requires the performance of two AMG cycles. However, for the other cycles,
acceleration is bene�cial. Regarding the relatively high memory requirement observed
in the table, note that we have a similar "fan out" e�ect (in the upstream direction) as
described in the previous section (cf. Remark 8.11).

8.5.3 Inde�nite problems

We consider the Helmholtz equation (with constant c)

�� u� cu = f(x; y) (c � 0) (151)

on the unit square with homogeneous Dirichlet boundary conditions. Discretization is on
a regular mesh with �xed mesh size h = 1=N using the standard 5-point stencil,

1

h2

24 �1
�1 4� ch2 �1

�1

35 :

The corresponding discretization matrix, Ac, is non-singular as long as c does not equal
any of the eigenvalues

�n;m =
2

h2
(2� cosn�h� cosm�h) (n;m = 1; 2; :::; N � 1) (152)

of the corresponding discrete Poisson operator, A0. If c = �n;m (= �m;n), Ac is singular
and its nullspace is spanned by the eigenfunctions

�n;m = sin(n�x) sin(m�y) and �m;n = sin(m�x) sin(n�y) (153)

of A0 corresponding to the eigenvalue �n;m.
Ac is positive de�nite as long as c is smaller than the �rst eigenvalue of A0, that is, if

c < �1;1. However, according to our comments in Section 4.2.1 (see Example 4.1), we have
to expect a performance degradation of AMG if c approaches �1;1. This is demonstrated in
Figure 38 where the convergence factor of the VS(S)-cycle (used stand-alone) is depicted
as a function of c (for h = 1=256). Indeed, if c approaches �1;1 = 2�2 + O(h2), AMG's
convergence factor tends to one. We have shown in Example 4.1 that, in order to avoid
this, interpolation in AMG necessarily would have to approximate �1;1 increasingly better
if c! �1;1.

If c > �1;1, Ac is no longer positive de�nite. Nevertheless, Figure 38 shows that
AMG converges at a slightly reduced rate as long as c remains well between the �rst two
eigenvalues (the second eigenvalue being �1;2 = �2;1 � 49:4). Increasing c further, we see
that AMG converges as long as c remains well between consecutive eigenvalues, but that
this convergence becomes poorer and poorer. By the time c approaches the 6th eigenvalue
(c � 150), AMG diverges, even for c in the \valleys" between the eigenvalues. The reason

109

0 25 50 75 100
c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
n

ve
rg

en
ce

fa
ct

o
r

Figure 38: Convergence factor of stand-alone VS(S)-cycle as a function of c (h=1/256)

for this degradation is the fact that Gauss-Seidel relaxation, although it still has good
smoothing properties (on the �ner levels), diverges for all (smooth) eigenfrequencies �n;m
with �n;m < c. Consequently, as in usual geometric multigrid, the overall method will
still converge as long as the coarsest level used is �ne enough to represent these smooth
eigenfrequencies su�ciently well (and a direct solver is used on that coarsest level). That
is, the size of the coarsest level limits the convergence of AMG when c gets larger: the
more variables are represented on the coarsest level, the higher the value of c for which
AMG converges. (In the above computations, we used �ve AMG levels resulting in a
coarsest grid containing 500 variables.)

0 500 1000 1500 2000
c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

av
er

ag
e

re
du

ct
io

n
fa

ct
o

r

Figure 39: a) Average reduction factor of the VS(S)/BI-CGSTAB-cycle as a function of c
(h=1/256). b) Solution of (151) for f(x; y) � 1 and c=1000.

If we use the VS(S)-cycle as a pre-conditioner for BI-CGSTAB rather than stand-alone,

110

we obtain reasonable convergence for much larger values of c. This is demonstrated in
Figure 39a which shows the average reduction factor of VS(S)/BI-CGSTAB as a function
of c in solving the homogeneous problem with the �rst approximation being constant to
one. (The values shown are the average reduction factors per BI-CGSTAB iteration {
each of which requires two AMG iterations { observed in reducing the residual by 8 orders
of magnitude.) The �gure shows that acceptable convergence is achieved up to c � 1000
(close to the 40th eigenvalue of A0). Figure 39b shows the solution of (151) for f(x; y) � 1
and c = 1000.

For even larger values of c the average reduction factor per iteration is only 0:8� 0:9.
Finally, for c > 2100, AMG breaks down since some diagonal entries in the coarsest level
Galerkin operator become negative. As before, we used �ve levels for all computations.
Decreasing the number of levels (i.e., increasing the number of variables on the coarsest
level) gives convergence for even larger values of c. In any case, however, the size of c
permitted will remain limited. We will not discuss this problem any further since it is
well-known that the e�cient solution of Helmholtz equation with very large values of c
requires di�erent algorithmical approaches [16].

111

9 Aggregation-based AMG

In this section, we consider a particularly simple limiting case of the AMG approach
discussed in this paper, namely, the case that interpolation is de�ned such that each F-
variable interpolates from exactly one C-variable only. That is, although each F-variable
i may have more than one connection to the set of C-variables, the sets of interpolatory
variables, Pi, are restricted to contain exactly one C-variable each. According to Section
4.2, the corresponding interpolation weight should equal one if the i-th rowsum of the
given matrix is zero. To simplify interpolation further, let us always de�ne this weight to
be one even if the i-th rowsum of the given matrix is not zero.

Consequently, the total number of variables can be subdivided into \aggregates" Ik
where k 2 C and Ik contains (apart from k itself) all indices i corresponding to F-variables
which interpolate from variable k (see Figure 40). With this notation, the computation of
the Galerkin coarse-level operator now becomes very simple. One easily sees that

IHh Ah I
h
H =

�
aHkl

�
where aHkl =

X
i2Ik

X
j2Il

ahij (k; l 2 C) ; (154)

that is, the coe�cient aHkl is just the sum of all cross-couplings between Ik and Il.

l
C

F

F

F

F

k
C

F

F

F

C

F

F

F CF
F

F

Ik I l

Figure 40: Subdivision of �ne-level variables into aggregates. The arrows indicate which
C-variable an F-variable interpolates from.

Obviously, regarding the coe�cients aHkl , the particular role of the variables k and l

(as being C-variables) is not distinguished from the other variables. In fact, the Galerkin
operator merely depends on the de�nition of the aggregates. Consequently, we might
as well associate each aggregate Ik with some \new" coarse-level variable which has no
direct relation to the C-variable k. The above interpolation is nothing else than piecewise
constant interpolation from these new coarse-level variables to the associated aggregates.

This leads to the so-called aggregation-type AMG approaches [73, 74, 10] which origi-
nally had been developed the other way around: Coarsening is de�ned by building aggre-
gates (rather than constructing C/F-splittings), a new coarse-level variable is associated
with each aggregate and interpolation is de�ned to be piecewise constant. The above
description just points out that the aggregation approach can be regarded as a limiting
case of the approach considered in this paper (which started from the interpretation that
the coarse-level variables form a subset of the �ne-level ones; see Remark 2.2).

112

Clearly, for a given subdivision into aggregates to be reasonable, all variables in the
same aggregate should strongly depend on each other. Otherwise, piecewise constant
interpolation makes no real sense. Since directionality of strength of connectivity plays
no role in this approach, strength of connectivity is most naturally de�ned in a symmetric
way. More precisely, one usually de�nes two variables i and j to be strongly connected to
each other if a2ij=aiiajj exceeds a certain size.

Unfortunately, an immediate implementation of this simple coarsening and interpola-
tion approach leads to rather ine�cient AMG cycles, even if used as a pre-conditioner.
Convergence will be very slow and not at all robust (this has already been pointed
out in Section 4.2.1, see \Variant 4"). In particular, V-cycle convergence will exhibit a
strong h-dependency if applied to di�erential problems. In fact, if regarded as a limit-
ing case of the approach considered in this paper, the aggregation approach just forces
worst-case situations as discussed in Section 6 (see Example 6.1). By the de�nition of
the approach, remedies to avoid such worst-case situations in practice (by a proper dis-
tribution of the C- and F-variables) as discussed in Section 6, cannot be realised here.
Finally, piecewise constant interpolation cannot account for any potential oscillatory
behavior of the error and, thus, is not suitable if there are strong positive couplings.

Consequently, the basic idea of aggregation-based AMG needs certain improvements in
order to become practical. In the following sections, we sketch two possibilities introduced
in [10] and [73, 74], respectively. Since we just want to highlight the main ideas, we restrict
our motivation to simple but characteristic (Poisson-like) problems.

At this point, for completeness, we also want to mention [21] where some concept of
aggregation has been introduced for the �rst time.

9.1 Re-scaling of the Galerkin operator

In [10] it is demonstrated that the coarse-grid correction of smooth error, and by this the
overall convergence, can often be substantially improved by using \over-interpolation",
that is, by multiplying the actual correction (corresponding to piecewise constant inter-
polation) by some factor � > 1. Equivalently, this means that the coarse-level Galerkin
operator is re-scaled by 1=�,

IHh Ah I
h
H �! 1

�
IHh Ah I

h
H :

To motivate this approach, let us consider the most simple case that Ah is derived
from discretizing �u00 on the unit interval with meshsize h, i.e., the rows of Ah correspond
to the di�erence stencil

1

h2
[�1 2 � 1]h ;

with Dirichlet boundary conditions. Let us assume any error, eh, to be given which satis�es
the homogeneous boundary conditions. If no re-scaling is done (� = 1), the variational
principle (last statement in Corollary 2.1) tells us that the two-level correction, IhHe

H ,
is optimal in the sense that it minimizes keh � IhHe

Hk1 w.r.t. all possible corrections in

113

R(IhH). Because of (42) this means that IhHeH minimizes

kvhk21 = (Ahv
h; vh)E =

1

2h2

X
i;j

0
(vhi � vhj)

2 +
X
i

si(v
h
i)

2 (155)

where vh = eh � IhHe
H . (The prime indicates that summation is only over neighboring

variables i and j.) This, in turn, means that, away from the boundary (where we have
si = 0), the Euclidian norm of the slope of vh is minimal. At the boundary itself we have
si 6= 0, and vh equals zero.

The result of this minimization is illustrated in Figure 41 (see also [10, 12]), assuming
the aggregates to be built by joining pairs of neighboring variables (marked by dashed
boxes). We here consider a smooth error eh in the neighborhood of the left boundary
of the unit interval. On each aggregate, interpolation is constant and the slope of IhHe

H

necessarily vanishes. On the remaining intervals, the Euclidian norm of the slope of vh

becomes minimal if the slope of IhHe
H equals that of eh. Consequently, IhHe

H has, on the
average, only half the slope of eh.

Ωh

ΩH

eh

I eH
h H

Figure 41: Optimal approximation IhHe
H of eh w.r.t. the energy norm

This simple argument illustrates that the optimal approximation of eh by elements in
R(IhH) w.r.t. the energy norm is quite bad in the sense of approximating the actual
values of eh. In fact, multiplying the resulting approximation by a factor of � = 2
gives a much more e�ective correction in this sense. Note that subsequent smoothing
smooths out the \wiggles", but does not improve the quality of the correction.

Remark 9.1 Note that the aggregation approach considered above for the model problem
�u00 coincides with the approach considered in Example 6.1, where we have shown that
the Galerkin operator is o� by a factor of 2. In fact, we could have used this result
immediately to motivate that a re-scaling of the Galerkin operator by � � 2 makes sense.
However, the above considerations show the origin of the problem more clearly, namely, the
inability of piecewise constant interpolation to approximate the values of smooth error if
approximation is based on the energy norm. Piecewise linear (second order) interpolation
would not exhibit this problem (see the next section). �

114

The main argument carries over to the Poisson equation in 2D and 3D, assuming a
uniform grid and the aggregates to be built by 2 � 2 and 2 � 2� 2 blocks of neighboring
variables, respectively. In case of more general problems and/or di�erent grids, the optimal
weight is no longer � = 2. Nevertheless, it has been demonstrated in [10] that a slightly
reduced value of � = 1:8 (in order to avoid \overshooting") yields substantially improved
V-cycle convergence for various types of problems, at least if the cycle is used as a pre-
conditioner and if the number of coarser levels is kept �xed (in [10] four levels are always
used). Smoothing is done by symmetric Gauss-Seidel relaxation sweeps.

Clearly, the robustness and e�ciency of this (very simple and easy to program) ap-
proach are somewhat limited since a good value of � depends on various aspects such as
the concrete problem, the type of mesh and, in particular, the size of the aggregates. For
instance, if the aggregates are composed of three neighboring variables (rather than two)
in each spatial direction, the same arguments as above show that the best weight would be
� � 3 in case of Poisson's equation. If the size of the aggregates varies over the domain,
it becomes di�cult to de�ne a good value for �.

9.2 Smoothed aggregation

Another approach to accelerate aggregation-based AMG is developed and analyzed in
[73, 74, 75]. Here, piecewise constant interpolation is only considered as a �rst-guess
interpolation which is improved by some smoothing process (\smoothed aggregation")
before the Galerkin operator is computed. In [73, 74], this smoothing is proposed to be
done by applying one !-Jacobi relaxation step.

To be more speci�c, denote the operator corresponding to piecewise constant interpo-
lation by eIhH . Then the �nal interpolation operator used is de�ned by

IhH = (Ih � !D�1
h Af

h)
eIhH

where Dh = diag(Af
h) and Af

h is derived from the original matrix Ah by adding all weak
connections to the diagonal (\�ltered matrix"). That is, given some coarse-level vector
eH , eh = IhHe

H is de�ned by applying one !-Jacobi relaxation step to the homogeneous

equations Af
hv

h = 0 starting with the �rst approximation eIhHeH . (Note that this process
will increase the \radius" of interpolation and, hence, destroy the simplicity of the basic
approach. Note also that Jacobi relaxation here serves a quite di�erent purpose than
Jacobi F-relaxation as considered in Section 5.1.3.)

To illustrate this process, we again consider the 1D case of �u00 and assume the ag-
gregates to consist of three neighboring variables (corresponding to the typical size of
aggregates used in [73, 74] in each spatial direction). Note �rst that, since all connections

are strong, we have Af
h = Ah. Figure 42 depicts both the piecewise constant interpolation

(dashed line) and the smoothed interpolation obtained after the application of one Jacobi-
step with ! = 2=3 (solid line). Obviously, the smoothed interpolation just corresponds
to linear interpolation if the coarse-level variables are regarded as the �ne-level analogs of
those variables sitting in the center of the aggregates.

In order to see this explicitly, we use the notation as introduced in the �gure and note
�rst that the result of piecewise constant interpolation is

eei;k�1 = ek�1; eei;k = ek and eei;k+1 = ek+1 (i = �1; 0; 1) : (156)

115

Ωh

ΩH

Ik−1

e k− −1 1, e k0 1, − e k1 1, − e k−1, e k0, e k1, e k− +1 1, e k0 1, + e k1 1, +

Ik Ik+1

ek−1 ek ek+1

smoothed

piecewise constant

Figure 42: Piecewise constant versus smoothed interpolation

The application of one !-Jacobi step as formally described above, using ee as �rst approxi-
mation, means that the �nal interpolated values within the aggregate Ik (and analogously
in all other aggregates) are computed as follows:

e�1;k = ee�1;k + !(e�1;k � ee�1;k) where e�1;k =
1

2
(ee1;k�1 + ee0;k) ;

e1;k = ee1;k + !(e1;k � ee1;k) where e1;k =
1

2
(ee0;k + ee�1;k+1) ;

e0;k = ee0;k + !(e0;k � ee0;k) where e0;k =
1

2
(ee�1;k + ee1;k) :

Inserting (156), this gives

e�1;k =
!

2
ek�1 + (1� !

2
)ek ; e1;k = (1� !

2
)ek +

!

2
ek+1 and e0;k = ek :

The special choice ! = 2=3 indeed leads to linear interpolation as pointed out above,

e�1;k =
1

3
ek�1 +

2

3
ek ; e1;k =

2

3
ek +

1

3
ek+1 and e0;k = ek :

Remark 9.2 Linear interpolation does not exhibit a scaling problem as described in
the previous section for piecewise constant interpolation. In fact, for the above model
case, one easily computes the Galerkin operator to be

1

(3h)2
[�3 6 � 3]3h

which, after proper scaling of the restriction operator by 1=3, is seen to exactly corre-
spond to the \natural" 3h-discretization of �u00. �

Of course, in more general situations, relaxation of piecewise constant interpolation
will not give exact linear interpolation any more and a good choice of ! depends on the
situation. Nevertheless, even if ! = 2=3 is kept �xed, interpolation will typically be
much better than for the piecewise constant one. This is demonstrated in [74] by means
of various 2D and 3D examples. (Smoothing is done by a mixture of Gauss-Seidel and

116

SOR sweeps.) Note that a good value for ! depends not only on the problem and the
underlying mesh, but also on the size of the aggregates. In [73], the tendency is to compose
aggregates of three neighboring variables in each spatial direction. If, instead, only two
neighbors would be aggregated in each spatial direction (as in the previous section), one
easily sees by similar arguments as above that ! � 0:5 should be chosen.

In the following, we compare the performance of RAMG05 with that of the aggregation-
based AMG code distributed by Mandel/Vanek [73]. We want to stress that this is not
meant to be any kind of judgement of the underlying two approaches in general; too much
can still be improved in either approach. We just want to point out some di�ering behavior
of the interpolations as currently used in these two codes.

complexities times (sec) / IBM PowerPC, 333 MHz
setup stand-alone conjugate gradient

method cA cG time cycle "0 = 10�10 cycle "0 = 10�10

Example from Section 8.4.1, h = 1=512

aggregat. AMG 1.56 1.31 10.7 2.04 245.4 (115) 2.48 57.90 (19)

VS(S) 2.52 1.79 4.86 1.74 27.49 (13) 2.11 21.71 (8)
FS(S) 2.52 1.79 4.86 3.30 21.42 (5) 3.64 19.52 (4)
VA2(S) 2.14 1.58 4.76 1.45 19.28 (10) 1.81 19.25 (8)

Example from Section 8.4.2 (one million cell case)

aggregat. AMG 2.64 1.29 108. 17.0 4634. (266) 19.1 414.4 (16)

VS(S) 2.85 1.56 43.8 10.5 401.2 (34) 12.6 245.1 (16)
FS(S) 2.85 1.56 43.8 17.5 288.6 (14) 19.5 258.2 (11)
VA1(S) 1.41 1.13 26.7 5.56 476.4 (81) 7.67 210.7 (24)

Example from Section 8.5.1, h = 1=512; � = 20�

aggregat. AMG 1.22 1.13 11.2 2.10 1610. (762) 2.37 191.5 (76)

VS(S) 3.24 1.84 8.82 2.57 186.2 (69) 3.03 81.66 (24)
FS(S) 3.24 1.84 8.82 5.03 129.6 (24) 5.43 74.12 (12)
VA2(S) 1.72 1.41 6.09 1.54 103.3 (63) 1.99 49.86 (22)

Table 10: Complexities and computing times

In general, both codes perform comparably if applied to relatively smooth (Poisson-
like) problems. Sometimes RAMG05 is slightly faster and sometimes the aggregation-
based code. A major advantage of aggregation-type AMG is that it, typically, needs still
less memory than RAMG05 (due to its very fast coarsening which causes a lower operator
complexity cA). On the other hand, the aggregation-based code seems to require accel-
eration by conjugate-gradient to maintain its e�ciency and robustness in more complex
situations. Since RAMG05 puts more e�ort into the construction of interpolation and
performs a slower coarsening, its performance seems to depend on aspects such as strong
discontinuities only to a lesser extent. This is demonstrated in Table 10 for three examples
all of which exhibit strong anisotropies or discontinuites. The results clearly show that,
at least for the kind of problems considered here, aggregation-based AMG behaves criti-
cally if used stand-alone (with total computing times being higher than those of RAMG05
by factors of 8.5 to 16). However, if used as a pre-conditioner, e�ciency substantially
increases.

117

10 Further developments and conclusions

The AMG approach described in this introductory paper has been seen to provide very
robust and e�cient methods for solving certain types of matrix equations such as those
typically arising in the numerical solution of (scalar) elliptic PDEs. This has been demon-
strated by a variety of applications of di�erent type, on structured as well as unstructured
grids, in 2D and 3D. Although all applications were geometrically based and many of them
were even de�ned on very simple grids, AMG did not make use of any information other
than that contained in the given matrix. The only reason for also considering certain
model problems on simple geometries was that they most easily allow the investigation
of AMG's asymptotic behavior as well as its dependency on various speci�c aspects such
as anisotropies, discontinuities, singular perturbations and the like. AMG's performance
in geometrically complex situations is very much comparable as demonstrated by some
selected examples.

From a practical point of view, this is the main strength of AMG: its applicability
to complex geometric situations, independently of the spatial dimension, and its applica-
bility to even solve certain problems which are out of the reach of geometric multigrid,
in particular, problems with no geometric or continuous background at all (as long as
the underlying matrix satis�es certain conditions). That is, AMG provides an attractive
multi-level variant whenever geometric multigrid is either too di�cult to apply or cannot
be used at all.

Clearly, AMG should not be regarded as a competitor for geometric multigrid: when-
ever geometric multigrid can be applied e�ciently, it will usually be superior. Instead,
AMG should be regarded as an e�cient alternative to standard numerical methods such
as conjugate gradient accelerated by typical (one-level) pre-conditioners: AMG not only
converges much faster but its convergence is, to a large extent, also independent of the
size of the given problem. Although it is designed to be used stand-alone, practical expe-
rience has clearly shown that one often can increase e�ciency further by using AMG as a
pre-conditioner. We have seen that cheaper (e.g. low-memory) AMG variants, used as a
pre-conditioner, are often better than more sophisticated ones applied stand-alone.

Further developments and applications which are close to the original AMG ideas are,
for example, contained in [20, 29, 30, 33, 37, 41, 42, 55, 83, 84]. Related approaches, but
with a focus on di�erent coarsening and interpolation strategies, are, for example, found
in [28, 35]. AMG methods based on smoothed aggregation (see Section 9.2) are an e�cient
alternative to standard AMG, at least if employed as a pre-conditioner rather than stand-
alone. Applications of the (non-smoothed) aggregation-type approach in computational

uid dynamics are found in [39, 54, 61, 80].

Many aspects have not been addressed in this introductory paper, for instance, the
further improvement of interpolation. The expressed focus of this introduction was on
purely matrix-based approaches. However, as long as interpolation is de�ned merely on
the basis of the algebraic information contained in the given matrix, its \quality" (assuming
an adequate geometric problem to be given) is somewhat limited. Although, for all type
of problems considered here, this could be compensated for by a proper arrangement of
the algorithm, in general this limitation is the major reason for the fact that the two-level
theory presented does not carry over to a V-cycle theory (proving V-cycle convergence
factors which are independent of the size of the given problem). Generally, the more

118

e�ort is put into the construction of interpolation, the faster the convergence can be, but,
unfortunately, the required numerical work may increase even faster. That is, the main
problem in designing e�cient AMG algorithms is the tradeo� between convergence and
numerical work, and keeping the balance between the two is the ultimate goal of any
practical algorithm.

Moreover, there are still many applications for which algebraically de�ned interpola-
tion, and hence the resulting AMG performance, are not yet satisfactory. For instance,
one of the major current research activities in AMG aims at its generalization to e�ciently
treat systems of PDEs such as linear elasticity problems. Although AMG has successfully
been applied to various cases (see, e.g., [10, 18, 40, 63, 74]), its development has not yet
reached a state where a particular approach is well-settled. However, even for scalar ap-
plications, there are still questions about best ways to de�ne coarsening and interpolation,
for instance, if the given matrix is symmetric positive de�nite, contains relatively large
positive o�-diagonal entries, and is far from being weakly diagonally dominant. In such
cases, the performance of classical AMG may be only suboptimal.

It is often possible to avoid such situations by simplifying the given matrix before
applying AMG [56]. One can also imagine situations where it would be advantageous
(and easy) to provide AMG with some additional information on the problem at hand.
For instance, information on the geometry (in terms of point locations) or more concrete
descriptions on what an \algebraically smooth" error looks like (e.g. in form of some
user-provided \test-vector(s)"). This additional information can be used to �t AMG's
interpolation in order to approximate certain types of error components particularly well.
Straightforward possibilities have already been pointed out in [63].

In the following, we brie
y summarize a few more recent approaches to de�ne inter-
polation which aim at increasing the robustness in cases such as those mentioned above.

A new way to construct interpolation (AMGe, [18]) starts from the fact that an al-
gebraically smooth error is nothing else but an error which is slow-to-converge w.r.t. the
relaxation process. Hence, an algebraically smooth error, generally, corresponds to the
eigenvectors of A belonging to the smallest eigenvalues. Instead of de�ning interpolation
by directly exploiting (40), the goal in [18] is to de�ne interpolation so that eigenvectors
are interpolated the better the smaller the associated eigenvalue is. To satisfy this by
explicitly computing eigenvectors is, of course, much too expensive. However, in the case
of �nite element methods { assuming the element sti�ness matrices to be known { one
can derive measures (related to measures used in classical multigrid theory) whose min-
imization allows the determination of local representations of algebraically smooth error
components in the above sense. The added robustness has been demonstrated in [18] by
means of certain model applications. However, the approach is still in its infancy. In
particular, signi�cant development work still has to be invested to link the processes of
coarsening and interpolation de�nition in order to obtain an optimal algorithm. In any
case, it is an interesting new approach which has the potential of leading to more generally
applicable AMG approaches.

Other algebraic approaches, designed for the solution of equations derived from �nite-
element discretizations, have been considered in [40, 79]. Both approaches are aggregation
based and the coarse space basis functions are de�ned so that their energy is minimized in
some sense. (In the �nite-element context it is natural to de�ne interpolation implicitly by
constructing the coarse space basis functions.) This does not require the element sti�ness

119

matrices to be known, but leads to a global (constraint) minimization problem the exact
solution of which would be very expensive. However, iterative solution processes are
proposed in both papers to obtain approximate solutions, indicating that the extra work
(invested in the setup phase) is acceptable. While [79] concentrates on scalar applications,
an extension to systems of PDEs (from linear elasticity) is one major aspect in [40].
Special attention is paid to the correct treatment of zero energy modes (e.g. rigid body
modes in case of linear elasticity): such modes should be contained in the span of the
coarse space basis functions, at least away from Dirichlet boundaries. (Note that, for
typical scalar problems, this corresponds to the requirement that constants should be
interpolated exactly away from Dirichlet boundaries, see Remark 4.1.) It is interesting that
the approach in [40] can be regarded as an extension of the earlier work [74] on smoothed
aggregation: if only one iteration step is performed to approximately solve the energy
minimization problem, the resulting method coincides with the smoothed aggregation
approach. In contrast to the latter, however, further iterations will not increase the
support of the basis functions (i.e., the radius of interpolation). Some test examples
in [40] indicate the advantages of this new interpolation in terms of convergence speed.
Unfortunately, however, this bene�t is essentially o�set by the expense of the minimization
steps.

There are various other papers with focus on the development of multigrid methods
to solve �nite-element problems on unstructured grids. Although some of them are also
based on algorithmical components which are, more or less, algebraically de�ned, most of
them are not meant to be algebraic multigrid solvers in the sense as considered in this
paper. We therefore do not want to discuss such approaches here further but rather refer,
for example, to [19] and the references given therein.

In the approach of [77], A is not assumed to be symmetric, and interpolation and
restriction are constructed separately. Interpolation, for instance, is constructed so that
a smooth error, She

h, is interpolated particularly well w.r.t. the Euclidian norm, k:kE.
More precisely, the attempt is to make

kSheh � IhHe
HkE ;

where eH denotes the straight injection of She
h to the coarse level, as small as possible

(cf. (93)). In [77], this leads to certain local minimizations which are used to �nd, for each
variable, pairs of neighboring variables which would allow a good interpolation in the above
sense, and, at the same time, compute the corresponding weights (of both the interpolation
and the restriction). Based on this information, a C/F-splitting is constructed which allows
each F-variable to interpolate from one of the pairs found before. A heuristic algorithm is
used to minimize the total number of C-variables.

In this context, we want to point out that, although standard AMG has been developed
in the variational framework, it has successfully been applied to a large number of non-
symmetric problems without any modi�cation. This can be explained heuristically but no
theoretical justi�cation is available at this time. In the context of smoothed aggregation-
based AMG, a theoretical analysis can be found in [31].

An important aspect which has not been addressed in this paper is the parallelisation
of AMG. An e�cient parallelisation of AMG is rather complicated and requires certain
algorithmical modi�cations in order to limit the communication cost without sacri�cing
convergence signi�cantly. Most parallelisation approaches investigated up to now either

120

refer to simple aggregation-based variants (e.g. [61]) or use straightforward domain de-
composition techniques (such as Schwarz' alternating method) for parallelisation. A par-
allelisation strategy which stays very close to the standard AMG approach is presented in
[38]. Results for complex 3D problems demonstrate that this approach scales reasonably
well on distributed memory computers as long as the number of unknowns per processor is
not too small. The method discussed in [77] is also available in parallel. There are several
further ongoing parallelisation activities, for instance, at the University of Bonn and the
National Laboratories LLNL [24] and LANL, but no results have been published by now.

It is beyond the scope of this introduction to also discuss the variety of hierarchical
algebraic approaches which are not really related to the multigrid idea in the sense that
these approaches are not based on the fundamental multigrid principles, smoothing and
coarse-level correction. There is actually a rapid and very interesting ongoing develop-
ment of such approaches. For completeness, however, we include some selected references.
Various approaches based on approximate block Gauss elimination (\Schur-complement"
methods) are found in [2, 3, 4, 5, 25, 46, 47, 48, 57, 76]. Multi-level structures have also
been introduced into ILU type pre-conditioners, for example, in [66]. Recently, some hy-
brid methods have been developed which use ideas both from ILU and from multigrid
[6, 7, 8, 58, 59, 60]. For a further discussion, see also [78].

Summarizing, the development of hierarchically operating algebraic methods to e�-
ciently tackle the solution of large sparse, unstructured systems of equations, currently
belongs to one of the most active �elds of research in numerical analysis. Many di�erent
methods have been investigated but, by now, none of them is really able to e�ciently deal
with all practically relevant problems. All methods seem to have their range of applica-
bility but all of them may fail to be e�cient in certain other applications. Hence, the
development in this exciting area of research has to be expected to continue for the next
years.

121

References

[1] Alcou�e, R.E.; Brandt, A.; Dendy, J.E.; Painter, J.W.: The multi-grid method for
the di�usion equation with strongly discontinuous coe�cients, SIAM J. Sci. Stat.
Comput. 2, pp 430-454, 1981.

[2] Axelsson, O.; Vassilevski, P.S.: Algebraic multilevel preconditioning methods I,
Num. Math. 56, pp 157-177, 1989.

[3] Axelsson, O.; Vassilevski, P.S.: Algebraic multilevel preconditioning methods II,
SIAM Numer. Anal. 27, pp 1569-1590, 1990.

[4] Axelsson, O.: The method of diagonal compensation of reduced matrix entries and
multilevel iteration, J. Computat. Appl. Math. 38, pp 31-43, 1991.

[5] Axelsson, O.; Neytcheva, M.: Algebraic Multilevel Iteration Method for Stieltjes
Matrices, Numerical Linear Algebra with Applications, Vol 1(3), pp 213-236, 1994.

[6] Bank, R.E.; Smith, R.K.: The incomplete factorization multigraph algorithm,
SIAM J. Sci. Comput., to appear.

[7] Bank, R.E.; Smith, R.K.: The hierarchical basis multigraph algorithm, SIAM J.
Sci. Comput., submitted.

[8] Bank, R.E.; Wagner, Ch.: Multilevel ILU Decomposition, Numer. Math., to appear.

[9] Batycky, R.; Blunt, M.; Thiele, M.: A 3D Field-Scale Streamline-Based Reservoir
Simulator, SPE Reservoir Engineering, November 1997 issue.

[10] Braess, D.: Towards Algebraic Multigrid for Elliptic Problems of Second Order,
Computing 55, pp 379-393, 1995.

[11] Brandt, A.: Multigrid Techniques: 1984 Guide with Applications to Fluid Dynam-
ics, Arbeitspapiere der GMD 85, 1984.

[12] Brandt, A.: Algebraic multigrid theory: the symmetric case, Appl. Math. Comp.
19, pp 23-56, 1986.

[13] Brandt, A: General highly accurate algebraic coarsening schemes, Proceedings of
the Ninth Copper Mountain Conference on Multigrid Methods, Copper Mountain,
April 11-16, 1999.

[14] Brandt, A.; McCormick, S.F.; Ruge, J.: Algebraic multigrid (AMG) for automatic
multigrid solution with application to geodetic computations, Institute for Compu-
tational Studies, POB 1852, Fort Collins, Colorado, 1982.

[15] Brandt, A.; McCormick, S.F.; Ruge, J.: Algebraic multigrid (AMG) for sparse
matrix equations, in \Sparsity and its Applications", D.J. Evans (ed.), Cambridge
University Press, pp 257-284, Cambridge, 1984.

[16] Brandt, A.; Livshits, I.: Wave-ray multigrid method for the standing wave equation,
Electr. Trans. on Num. Analysis 6, 162-181, 1997.

122

[17] Brandt, A.; Mikulinsky, V.: On recombining iterants in multigrid algorithms and
problems with small islands, SIAM J. Sci. Comput. 16, pp 20-28, 1995.

[18] Brezina, M.; Cleary, A.J.; Falgout, R.D.; Henson, V.E.; Jones, J.E.; Manteu�el,
T.A.; McCormick, S.F.; Ruge, J.W.: Algebraic Multigrid Based on Element Inter-
polation (AMGe), LLNL technical teport UCRL-JC-131752, submitted to SIAM
Journal on Scienti�c Computing.

[19] Chan, T.; Zikatanov, L.; Xu, J.: An agglomeration multigrid method for unstruc-
tured grids, Proceedings of the 10-th International Conference on Domain Decom-
position Methods, 1998.

[20] Chang, Q.; Wong, Y.S.; Fu, H.: On the algebraic multigrid method, J. Comp. Phys.
125, 279-292, 1996.

[21] Chatelin, F.; Miranker, W.L.: Acceleration by aggregation of successive approxi-
mation methods, LAA 43, 17-47, 1982.

[22] Chen, L.; Arm�eld, S.: A simpli�ed marker and cell method for unsteady
ows on
non-staggered grids, Int. J. Num. Meth. Fluids, 21, pp 15-34, 1995.

[23] Cleary, A.J.; Falgout, R.D.; Henson, V.E.; Jones, J.E.; Manteu�el, T.A.; Mc-
Cormick, S.F.; Miranda, G.N.; Ruge, J.W.: Robustness and scalability of algebraic
multigrid, SIAM Journal on Scienti�c Computing, special issue on the \Fifth Cop-
per Mountain Conference on Iterative Methods", 1998.

[24] Cleary, A.J.; Falgout, R.D.; Henson, V.E.; Jones, J.E.: Coarse-grid selection for
parallel algebraic multigrid, Proceedings of the \Fifth International Symposium on
Solving Irregularly Structured Problems in Parallel", Lecture Notes in Computer
Science 1457, Springer-Verlag, New York, pp. 104-115, 1998.

[25] Dahmen, W.; Elsner, L.: Algebraic multigrid methods and the Schur complement,
Notes on Numerical Fluid Mechanics 23, Vieweg Verlag, Braunschweig, 1988.

[26] Dendy, J.E.; McCormick, S.F.; Ruge, J.; Russell, T.; Scha�er, S.: Multigrid meth-
ods for the three-dimensional petroleum reservoir simulation, Procs. 10th SPE Sym-
posium on Reservoir Simulation, Feb 6-8, 1989.

[27] Dendy, J.E. (Jr.): Black box multigrid, J. Comp. Physics 48, pp. 366-386, 1982.

[28] Fuhrmann, J.: A modular algebraic multilevel method, Tech. Report Preprint 203,
Weierstrass-Institut f�ur Angewandte Analysis und Stochastik, Berlin, 1995.

[29] Grauschopf, T.; Griebel, M.; Regler, H.: Additive multilevel-preconditioners based
on bilinear interpolation, matrix dependent geometric coarsening and algebraic
multigrid coarsening for second order elliptic PDEs, Appl. Numer. Math. 23, pp
63-96, 1997.

[30] Griebel, M.; Neunhoe�er, T.; Regler, H.: Algebraic multigrid methods for the so-
lution of the Navier-Stokes equations in complicated geometries, SFB-Bericht Nr.
342/01/96 A, Institut f�ur Informatik, Technische Universit�at M�unchen, 1996.

123

[31] Guillard, H.; Vanek, P.: An aggregation multigrid solver for convection-di�usion
problems on unstructured meshes, Center for Computational Mathematics, Univer-
sity of Denver, Report 130, 1998.

[32] Hemker, P.W.: A note on defect correction processes with an approximate inverse
of de�cient rank, J. Comp. Appl. Math. 8, pp 137-139, 1982.

[33] Huang, W.Z.: Convergence of algebraic multigrid methods for symmetric positive
de�nite matrices with weak diagonal dominance, Appl. Math. Comp. 46, pp 145-
164, 1991.

[34] Kettler, R.: Analysis and comparison of relaxation schemes in robust multigrid and
preconditioned conjugate gradient methods, Lecture Notes in Mathematics 960, pp
1-176, Springer, 1982.

[35] Kickinger, F.: Algebraic multi-grid for discrete elliptic second order problems, In-
stitutsbericht 513, Universit�at Linz, Institut f�ur Mathematik, 1997.

[36] Kim, Y.; Chung, T.: Finite-element analysis of turbulent di�usion
ames, AIAA
Journal 27, pp 330-339, 1988.

[37] Krechel, A.; St�uben, K.: Operator dependent interpolation in algebraic multigrid,
Proceedings of the Fifth European Multigrid Conference, Stuttgart, Oct. 1-4, 1996;
Lecture Notes in Computational Science and Engineering 3, Springer, 1998.

[38] Krechel, A.; St�uben, K.: Parallel algebraic multigrid based on subdomain blocking,
GMD-Report 71, 1999. Submitted to Parallel Computing.

[39] Lonsdale, R.D.: An algebraic multigrid solver for the Navier-Stokes equations on
unstructured meshes, Int. J. Num. Meth. Heat Fluid Flow 3, 3-14, 1993.

[40] Mandel, J.; Brezina, M.; Vanek, P.: Energy optimization of algebraic multigrid
bases, UCD/CCM Report 125, 1998.

[41] McCormick, S.; Ruge, J.: Algebraic multigrid methods applied to problems in com-
putational structural mechanics, in: \State-of-the-Art Surveys on Computational
Mechanics", pp 237-270, ASME, New York, 1989.

[42] Mertens, R.; De Gersem, H.; Belmans, R.; Hameyer, K.; Lahaye, D.; Vandewalle,
S.; Roose, D.: An Algebraic Multigrid Method for Solving Very Large Electromag-
netic Systems, to appear in: IEEE Trans. Magn. 34, 1998.

[43] Mulder, W.A.: A new multigrid approach to convection problems, J. Comp. Phys.
83, 303-323, 1989.

[44] Naik, N.H.; van Rosendale, J.: The improved robustness of multigrid elliptic solvers
based on multiple semicoarsened grids, SIAM Num. Anal. 30, 215-229, 1993.

[45] Nonino, C.; del Guidice, S.: An improved procedure for �nite-element methods in
laminar and turbulent
ow, in: \Numerical Methods in Laminar and Turbulent
Flow, Part I" (Taylor, C., ed.), Pineridge Press, pp 597-608, 1985.

124

[46] Notay, Y.: Optimal V-cycle algebraic multilevel preconditioning, Num. Lin. Alg.
Appl., to appear.

[47] Notay, Y.: Using approximate inverses in algebraic multilevel methods, Numer.
Math. 80, pp 397-417, 1998.

[48] Notay, Y.: An e�cient algebraic multilevel preconditioner robust with respect to
anisotropies, in: \Algebraic Multilevel Iteration Methods with Applications" (Ax-
elsson, O.; Polman, B. eds.), Department of Mathematics, University of Nijmegen,
pp 111-228, 1996.

[49] Oosterlee, C.W.; Washio, T.: An evaluation of parallel multigrid as a solver and
a preconditioner for singularly perturbed problems, SIAM J. Sci. Comput. 19, pp
87-110, 1998.

[50] Oosterlee, C.W.; Washio, T.: Krylov subspace acceleration of nonlinear multigrid
with application to recirculating
ow, to appear in: SIAM J. Sci. Comput., 1999.

[51] Patankar, S.; Spalding, D.: A calculation procedure for heat, mass and momentum
transfer in three-dimensional parabolic
ows, Int. J. Heat Mass Transfer, 15, pp
1787-1806, 1972.

[52] Patankar, S.: Numerical Heat Transfer and Fluid Flow, McGraw-Hill, 1980.

[53] Patankar, S.: A calculation procedure for two-dimensional elliptic situations, Num.
Heat Transfer, 4, pp 409-425, 1981.

[54] Raw, M.: A coupled algebraic multigrid method for the 3D Navier-Stokes equa-
tions, report: Advanced Scienti�c Computing Ltd., 554 Parkside Drive, Waterloo,
Ontario N2L 5Z4, Canada.

[55] Regler, H.: Anwendungen von AMG auf das Plazierungsproblem beim Layouten-
twurf und auf die numerische Simulation von Str�omungen, PhD thesis, TU
M�unchen, 1997.

[56] Reitzinger, S.: Algebraic Multigrid and Element Preconditioning I, SFB-Report
98-15, University Linz, Austria, Dec 1998.

[57] Reusken, A.A.: Multigrid with matrix-dependent transfer operators for a singular
perturbation problem, Computing 50 (3), pp. 199-211, 1993.

[58] Reusken, A.A.: A multigrid method based on incomplete Gaussian elimination,
Eindhoven University of Technology, Report RANA 95-13, ISSN 0926-4507, 1995.

[59] Reusken, A.A.: Approximate Cyclic Reduction Preconditioning, in: Multigrid
Methods 5, (Hackbusch, W.; Wittum, G.; eds.), Lecture Notes in Computational
Science and Engineering, Vol 3, pp 243-259, Springer Berlin, 1998.

[60] Reusken, A.A.: On the Approximate Cyclic Reduction Preconditioner, Report 144,
Institut f�ur Geometrie und Praktische Mathematik, RWTH Aachen, 1997. (To
appear in SIAM J. Sci. Comput.)

125

[61] Robinson, G.: Parallel computational
uid dynamics on unstructured meshes using
algebraic multigrid, Parallel Computational Fluid Dynamics 92 (Pelz, R.B.; Ecer,
A.; H�auser, J. eds.), Elsevier Science Publishers B.V., 1993.

[62] Ruge, J.W.; St�uben, K.: E�cient solution of �nite di�erence and �nite element
equations by algebraic multigrid (AMG), Multigrid Methods for Integral and Di�er-
ential Equations (Paddon, D.J.; Holstein H.; eds.), The Institute of Mathematics
and its Applications Conference Series, New Series Number 3, pp. 169-212, Claren-
den Press, Oxford, 1985.

[63] Ruge, J.W.; St�uben, K.: Algebraic Multigrid (AMG), In \Multigrid Methods" (Mc-
Cormick, S.F., ed.), SIAM, Frontiers in Applied Mathematics, Vol 5, Philadelphia,
1986.

[64] Saad, Y.: Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston,
USA, 1996.

[65] Saad, Y.; Schultz, M.H.: GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Comput. 7, pp 856-869, 1986.

[66] Saad, Y.: ILUM: a multi-elimination ILU preconditioner for general sparse matri-
ces, SIAM J. Sci. Comput. 17, pp 830-847, 1996.

[67] Schr�oder, J.: Operator inequalities, Mathematics in Science and Engineering, Vol.
147, Academic Press, 1980.

[68] Schr�oder, J.; Trottenberg, U.: Reduktionsverfahren f�ur Di�erenzengleichungen bei
Randwertaufgaben I, Numer. Math. 22, pp. 37-68, 1973.

[69] St�uben, K.: Algebraic multigrid (AMG): Experiences and comparisons, Appl.
Math. Comp. 13, pp. 419-452, 1983.

[70] St�uben, K.: A Review of Algebraic Multigrid, GMD-Report 69, 1999. To appear in
Journal of Computational and Applied Mathematics, 2000.

[71] Thiele, M.; Batycky, R.; Blunt, M.: A Streamline-Based 3D Field-Scale Composi-
tional Reservoir Simulator, paper SPE 38889 presented at the 1997 SPE Annual
Technical Conference and Exhibition, San Antonio, Texas, 5-8 October.

[72] Van der Vorst, H.: BICGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of non-symmetric linear systems, SIAM J. Sci. Comput. 13, pp
631-644, 1992.

[73] Vanek, P.; Mandel, J.; Brezina, M.: Algebraic multigrid on unstructured meshes,
University of Colorado at Denver, UCD/CCM Report No 34, 1994.

[74] Vanek, P.; Mandel, J.; Brezina, M.: Algebraic multigrid by smoothed aggregation
for second and fourth order elliptic problems, Computing 56, pp 179-196, 1996.

[75] Vanek, P.; Brezina, M.; Mandel, J.: Convergence of algebraic multigrid based on
smoothed aggregation, UCD/CCM Report 126, 1998. Submitted to Numer. Math.

126

[76] Wagner, C.; Kinzelbach, W.; Wittum, G.: Schur-complement multigrid - a robust
method for groundwater
ow and transport problems, Numer. Math. 75, pp 523-545,
1997.

[77] Wagner, C.: On the algebraic construction of multilevel transfer operators, IWR-
Report, Universit�at Heidelberg, submitted to Computing, 1999.

[78] Wagner, C.: Introduction to algebraic multigrid, Course notes of an algebraic
multigrid course at the University of Heidelberg in the Wintersemester 1998/99,
http://www.iwr.uni-heidelberg.de/�Christian.Wagner, 1999.

[79] Wan, W.L.; Chan, T.F.; Smith, B.: An energy minimization interpolation for
robust multigrid methods, Department ofMathematics, UCLA, UCLA CAMReport
98-6, 1998.

[80] Webster, R.: An algebraic multigrid solver for Navier-Stokes problems in the dis-
crete second order approximation, Int. J. Num. Meth. in Fluids 22, 1103-1123,
1996.

[81] Wesseling, P.: An Introduction to Multigrid Methods, John Wiley, Chichester, 1992

[82] Washio, T.; Oosterlee, C.W.: Flexible multiple semicoarsening for 3D singularly
perturbed problems, SIAM J. Sci. Comput. 19, pp 1646-1666, 1998.

[83] Zaslavsky, L.: An adaptive algebraic multigrid for multigroup neutron di�usion
reactor core calculations, Appl. Math. Comp. 53, pp 13-26, 1993.

[84] Zaslavsky, L.: An adaptive algebraic multigrid for reactor critically calculations,
SIAM J. Sci. Comput. 16, pp 840-847, 1995.

[85] de Zeeuw, P.M.: Matrix-dependent prolongations and restrictions in a black-box
multigrid solver, J. Comp. and Appl. Math. 33, 1-27, 1990.

127

