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Abstract-A multigrid solution strategy is presented for the efficient and economic solution of highly 
recirculating incompressible laminar flows. This paper emphasizes the importance of using high order 
discretizations for the governing equations of motion, in particular the inertia terms, and the enhancement 
of the overall litability and efficiency of the method through the use of defect correction. The latter enables 
solutions to an accuracy equivalent to machine round-off to be found easily with solutions to ‘engineering 
accuracy’ being obtained very rapidly on extremely fine grids. These ideas are demonstrated for the 
solution of two commonly encountered test problems-flow in a lid-driven cavity and flow through a 
suddenly expanding channel. Results show that proceeding in this way leads to a robust methodology for 
the solution of a whole class of problems of this type, which is readily extended to three dimensions. 

1. INTRODUCTION 

Increased reliance on computers as a means of investigating fluid flows of practical interest is 
placing ever greater demands on computational fluid dynamicists to provide: 

. improved models for important physical phenomena such as turbulence or combustion, 
l flexible grid generation and domain decomposition, 
. discretization techniques embodying increased accuracy, 
. economic solution procedures for large systems of algebraic equations. 

From an engineering standpoint all four are of equal importance, however it is the latter two which 
form the principal theme of this paper-the formulation of a robust, nonlinear, multigrid, high 
order, bounded, unsegregated solution strategy for confined, highly recirculating, laminar flows. 

Although a streamfunction-vorticity formulation of the governing equations has some advan- 
tages it is now common practise to use primitive variables to represent the flow in the context of 
engineering applications. This is usually accompanied by the use of a staggered grid arrangement 
in order to avoid solutions containing pressure oscillations, an approach which is followed 
here-work with Icolocated grids is reported elsewhere [l]. The choice of a suitable and preferably 
accurate discrete approximation to the nonlinear inertial terms present in the governing equations 
needs careful consideration. Low order approximations are notorious for introducing numerical 
(or false) diffusion into solutions whilst high order ones are noted for their inherent lack of 
boundedness. A recent study [2] has however made it possible for solutions to be obtained with 
a combined high order bounded convective transport approximation and nonlinear multigrid 
approach. 

The choice of ar suitable smoother for the velocity and pressure field is a key component of the 
overall solution strategy and should not be underestimated, since an inefficient smoother can 
severely degrade multigrid convergence rates [3]. 

The well-known SIMPLE technique [4] has been implemented in a multigrid environment [5]. 
However, it represents a segregated (or decoupled) solver-that is, the velocity and pressure fields 
are decoupled and solved sequentially, the latter being determined via a derived pressure equation. 
Another solver which falls into this category is the Distributive Gauss-Seidel (DGS) method, 
proposed by Brandt [6]. An obvious disadvantage of such an approach is the use of frozen variables 
in the solution at each stage of the calculation. 

Recently attempts [7-91 have been made to devise methods that solve the variables simul- 
taneously, in an unsegregated fashion, thus maintaining the physical coupling between them. 
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Fig. 1. Staggered grid and coarsening. 

References [7] and [8] are more complex than Symmetric Coupled Gauss Seidel (SCGS) [9] or as 
it is called here, the Block Implicit Method (BIM), which is easily comprehended and efficient. With 
the BIM each velocity component is incremented twice. The method’s simplicity and low operation 
count make it the ideal choice for use with, and in the development of, a multigrid solution strategy. 
The method can be applied point-by-point or extended to a line solution technique [lo, 111. Both 
approaches are investigated here. Unlike SIMPLE, prior to the start of this work the authors were 
unaware of any theoretical smoothing analysis of the BIM, hence an intuitive approach had to be 
adopted in performing the computations. It was re-assuring to subsequently discover from an 
independent source that analysis [12] reveals the latter to have a superior smoothing rate. 

The discretization procedure adopted is discussed in Section 2 and is followed by a detailed 
description of the preferred smoother, both point and line versions. Treatment of boundary 
conditions is given in Section 3 together with a solution to the well known lid-driven cavity problem 
[13]. Section 4 introduces the theory of multigrids, before defining a complete multigrid strategy 
for use with the BIM. The application of this strategy is demonstrated in Section 5 and 
accompanying results are presented in Section 6 along with the results for the additional test 
problem of the flow over a suddenly expanding channel. Finally, in Section 7, the merits of this 
combined overall solution procedure are reviewed. 

2. EQUATIONS OF MOTION AND NUMERICAL FORMULATION 

2.1. Governing Equations 

For steady-state, incompressible laminar flow the non-dimensional governing equations of 
motion, written in Cartesian tensor form, are: 

a(uiu,> = 
axj 

ap I 1 a24 
ax, Re ax; (1) 
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au,,0 
8Xj 

where Re is the R.eynolds number, 

(2) 

2.2. Discretization Procedure 

The method used to discretize the inertia terms present in equation (1) is extremely important 
in the case of convection dominated flows since it can greatly influence the quality of the solution. 
The characteristic lack of boundedness, associated with a typical high order approximation, in 
regions of the flow containing steep gradients in one or more of the dependent variables has ensured 
the continued widespread use of the well known, low order, numerically diffuse hybrid [14] scheme 
in complex flow situations. This in turn has lead to an element of complacency with regard to the 
presence of false diffusion in solutions. It is argued that grid refinement can satisfactorily alleviate 
this problem. 

For many flows of a practical nature the above compromise represents a rather simplistic view; 
for example, experience shows that for flow in a lid-driven cavity at a Reynolds number of 1000 
a mesh size as sm,all as l/500 may be required to obtain a grid independent solution with hybrid 
differencing. Similarly a 25% error in the solution of the same problem at a Reynolds number of 
5000, on a grid containing 128* points, is easily demonstrated. Also in a recent paper Gaskell and 
Lau [2] show that one would need to employ a vastly greater number of grid nodes, 0(103) with 
hybrid, than with their new high order scheme, to achieve the same level of accuracy for the solution 
of a simple (yet demanding) test problem. The same is also found to be true in more complex flow 
situations [15]. Unfortunately, the use of grids as fine as these are not a practical option in the case 
of general three-dimensional flows. Storage requirements are a severe restriction, particularly as 
the number of dependent variables (and thus the number of equations to be solved) increases in 
proportion to the complexity of the physics involved. 

In the present work equations (1) and (2) were written in discrete form using the staggered grid 
arrangement and control volume formulation-shown in Fig. 1. Applying Gaskell and Lau’s high 
order Curvature Compensated Convective Transport (CCCT) [2] generic approximation to a 
two-dimensional computational domain then, for a control volume centred at the (i - 1, j)th node 
of a uniform grid (with ui_ ,,2,j > 0) gives the value of a scalar, 4, at the right hand face, as: 

(3) 

0 50 100 150 200 250 300 350 

Fig. 2. Log of residual against Fine Grid Work Units for the driven cavity with Re = 1000, n = 64, and 
tolerance = 10-‘“. 
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Fig. 3. Log of residual against Fine Grid Work Units for the driven cavity with various forms of defect 
correction on a grid of 256 x 256 points. 

which has a leading truncation error term of 0(&r’), where a is an optimal parameter and h is 
the size of the grid spacing. Initially, a was set equal to zero, representing maximum accuracy and 
making equation (3) equivalent to Leonard’s [16] QUICK approximation. Later the use of the 
SMART [2] algorithm for determining a is demonstrated. Other well known approximations to 
convective transport can be generated by simply selecting an appropriate value for ~1. Diffusion 
terms were approximated in the standard way by central differencing. Also, for comparison 
purposes, results obtained with hybrid differencing of the convective terms are reported. 

3. THE BLOCK IMPLICIT METHOD (BIM) 

The BIM is relatively straight forward and easily comprehended. Proceeding as if for a 
two-dimensional calculation, four velocities and one pressure, corresponding to the same control 
volume, are updated simultaneously by inverting a 5 x 5 matrix. The details of the implementation 

lo-” 
* 11 

I -& T4 

0 50 100 150 200 250 300 

Fig. 4. Log of residual against Fine Grid Work Units for the driven cavity with SMART and QUICK 
discretization. 
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adopted here differ in several ways from Vanka’s SCGS [9] approach (in terms of the treatment 
of relaxation, discretization and line solution) and are thus outlined in full below. 

3.1. A Point-by-Point Formulation 

Consider the control volume shown in Fig. 1. The control volumes are visited in turn with the 
result that each velocity is updated twice-it has been observed that this ensures the stability lacking 
with a single update. The difference equations are given by: 

]:A ;,I%./+ pm+‘3\-pm”‘=0 foru,,,,m=iandi-I,n=j, (4) 

1: A~,,vk,,+Pm~n~~.Pmn = 0 for v,,,, m = i, n = j and j - 1, (5) 

and 

Writing in terms of residuals 
from central ones, gives: 

A$ 0 

0 A;_ 

0 0 

0 0 

%,j- ui- I.j vi,j- vi.j- I 

h + h 
=o (6) 
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= (7) 

This diagonal, doubly-bordered, sparse matrix can be decomposed into lower and upper diagonal 
(LU) form, the unknown values being found efficiently by forward and back substitution [17]. As 
a result of the linearization involved in the calculation of the coefficients A” and A’ from values 
at the previous iterate, the corrections need to be under-relaxed. In this work values between 0.5 
and 0.7 for velocity and 1.3 and 1.6 for pressure were used. The line solver was more robust and 
in general the values used were higher. Iteration proceeds until the modulus of the residual given 
by the )I.[1 2 norm defined below is less than a prescribed value, taken after examining results at 
various tolerances to be 10-4. 

(8) 

3.2. A Line by Line Formulation 

Some of the relaxation techniques mentioned in Section 1 solve the variables along a line 
simultaneously (i.e. all variables 4@, i = 1, . . . II, with j = constant or vice versa). This is often 
thought to be preferable to solving point-by-point, due to better treatment of the coupling between 
variables in what is a more implicit solution procedure. Furthermore, earlier work [18] indicates 
that CPU times inNcrease markedly with an increase in Reynolds number when applying the point 
version of the BIM, and that a line solver may therefore be beneficial. The line formulation 
implemented here solves on a line of constant j all the variables vii, pv, z.+ I) uv for i = 1, . . . , n 
and although it is found to be computationally more expensive than the point solver, its fully 
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Table I. CPU times for the BIM solution of the two-dimensional driven cavity on the Silicon Graphics 
4D/480 

Re = 100 Re = 1000 

Grid hvbrid OUICK hvbrid OUICK 

8’ 
16* 
322 
642 
I 2g2 

0.00 s 0.00 s 

0.02 s 0.04 s 0.15s 
0.52 s 0.45 s 0.84 s 4.67 s 
6.28 s 5.52 s 6.58 s 28.05 s 

I min 22.94 s 1 min 13.39 s 58.26 s 2 min 33.51 s 
20 min 26.43 s 17 min 36.54 s 11 min31.68s 24min 41.55s 

5 h I3 min 2.37 s 4h4min43.17s 2 h 2 min 41.76 s 5 h 34 min 43.58 s 

implicit nature allows for a complete evaluation of the line solver. The consequence being that if 
such a solver is not superior to the point one, then other less implicity line solvers [3] will probably 
offer no advantage. 

The structure of the solution matrix is exploited to the full, in order to solve it as efficiently as 
possible. The vector of variables for a line of constant j is: 

and this is represented as 

Ilj={w,,w2,...,Wi,...,WN) 

where ~=(v~,P~,u~-~, ZQ}. This requires the solution of the matrix equation: 

AE=L (9) 

where A is tridiagonal which can be decomposed into LU form and solved by backward and 
forward substitution. Obviously, A, L and U are all matrices whose entries are themselves 4 x 4 
matrices which are inverted in the course of the algorithm. 

3.3. Sweeping Procedures 

When sweeping through the grid it is common practice to visit each control volume in the 
direction of increasing i then j. However, this is obviously not the only way of proceeding; i or 
j could decrease or j could change before i. There are, of course, eight different possibilities: 

l(5) i(j)-increasing followed byj(i)-increasing, 
2(6) i(j)+lecreasing followed byj(itincreasing, 
3(7) i(j)-increasing followed byj(i+decreasing, 
4(8) i(j)--decreasing followed byj(i)-decreasing. 

The relative performance of each of these is affected by the predominant flow direction, so to 
choose any particular one would not be meaningful for the general case. A combination of some 
sort would be preferable. Several permutations were investigated and the following one selected: 
1 followed by 4 then 5 then 8. 

For the line-by-line case the solution sweeps through the domain four times in the direction of 
j increasing, j decreasing, i increasing and i decreasing. In other matters the solution procedure is 
the same as for the point-by-point solver. 

3.4. Boundary Conditions 

Two techniques for implementing the boundary conditions for momentum have been employed 
previously. One uses values positioned on the boundaries and amends the near wall calculation to 

Table 2. The different combinations of schemes evalu- 
ated for defect correction 

case smoother residual 

I upwind hybrid 
2 upwind QUICK 
3 hybrid central 
4 hybrid QUICK 
5 QUICK QUICK 
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Table 3. Selected data comparing the defect correction solutions on a 256’ grid at Reynolds number of 1000 to a 
tolerance of lO_“‘. The subscriots m denotes the local extremum in the main vortex 
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Scheme !k x Y % 

1 0.102328428561E + 00 0.52340 0.42974 1.769344232581 
2 0.115222561641EfOO 0.52340 0.42974 2.022297162212 
3 0.1133438615748 + 00 0.52340 0.42974 1.986152868512 
4 0.115222563512E + 00 0.52340 0.42974 2.022297161544 
5 0. I I5222562452E + 00 0.52340 0.42974 2.0222971631 I2 

take account of this. The other uses ‘mirror’ nodes outside the boundary that are set so as to satisfy 
the boundary conditions. The first technique is common practice [19] and has been successfully 
applied to a wide range of complex problems. Leonard [16], on the other hand, is known to favour 
the second approach but has only reported results for simple test cases. Both techniques were 
evaluated during the present study. Although the second method is easier to program and requires 
less CPU time per iteration (there are less logical expressions to evaluate), it was found to require 
more iterative steps, so it actually used more CPU time than the first technique. Also at high 
Reynolds numbers, it was often unstable, particularly when used in conjunction with a multigrid 
technique. Therefore when, as is the case here, high order discretization is used for the inertia terms 
the near-boundary values of velocity perpendicular to the boundary were approximated by 
switching to hybrid differencing in order to calculate the near-boundary flux. 

In the test problems considered in the subsequent sections there is no boundary condition for 
pressure. This problem is resolved by fixing the value of the pressure (normally zero) at a 
pre-determined reference point. Then after each iteration the new value of the pressure there is 
subtracted from the value at all the nodes spanning the solution domain. Other researchers have 
taken this point to lie at one of the corners. Here, instead, the value at the centre was chosen-the 
pressure there being calculated as the average of its value at the four surrounding nodes. This 
procedure is just as efficient as the other but when multigrids are employed ensures easier 
comparison betwelen pressures on different grid levels. 

3.5. Assessment of the BIM 

In order to assess the suitability of the BIM as a potential smoother for use with multigrids the 
problem of the two-dimensional lid-driven cavity was solved for Reynolds numbers of 100 and 
1000, with mesh spacings ranging from l/4 to l/128. 

CPU times for hlybrid and QUICK generated on a Silicon Graphics 4D/480 machine are shown 
in Table 1. It can be seen that for both schemes the CPU time obeys the power-law relationship: 

CPUanS (10) 

where p x 1.8 and n is the number of finite difference nodes. It is apparent that solutions on grids 
with more than 1282 nodes are impractical with the BIM as it stands. Even if it were possible to 
achieve convergence, then with QUICK differencing at a Reynolds number of 1000 the time 
required to obtain a solution on a grid containing 2562 nodes say, would be in the region of 
75 h-an estimate based on the above relationship. 

Table 4. Selected data at Reynolds number 1000 for 
a grid of 1024 x 1024 for comparison of QUICK 
and SMART the subscripts are the same as in Table 
3 with the addition of the secondary left and right 
corner vortices denoted by r and I and the tertiary 
left and right corner vortices denoted bv rr and II 

Disc. OUICK SMART 

0.11866 0.11866 
0.52930 0.52390 
0.43164 0.43 I64 
2.0641 2.06413 

-0.2314le - 3 -0.23143e - 3 
0.08008 0.08008 
0.91992 0.91992 

-0.34367 - 0.34366 
-0.017392e - 2 -0.1733Oe - 2 

0.86133 0.86133 
0.88477 0.88477 

-1.1335 -1.1333 
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Fig. 5. Streamfunction and vorticity for the driven cavity at Re = 100. 
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Table 5. CPU seconds and convergence rate I3 for BIMM at Reynolds number 100 

hybrid QUICK SMART 

CPU s Cow. rate 0 CPU s Cow. rate f3 CPU s Cow. rate 0 

71 

42 0.66 0.574 0.89 0.629 0.74 0.663 
g2 1.12 0.538 1.61 0.590 1.37 0.596 
16’ 3.06 0.541 4.25 0.552 3.90 0.586 
322 10.87 0.496 13.93 0.483 12.13 0.501 
642 38.68 0.420 44.58 0.380 42.33 0.415 
128* 135.45 0.296 150.23 0.291 132.90 0.296 
2S62 472.65 0.255 581.93 0.249 503.38 0.255 
5122 1857.20 0.245 2369.20 0.244 2065. I5 0.245 
1024’ 8842.08 0.277 11509.18 0.275 10188.90 0.275 

The results of selected data such as maximum streamfunction for QUICK differencing on a grid 
of 128 x 128 cornpare well with those of Ghia et al. [20] in Table 7, who used a coupled 
strongly-implicit method with a streamfunction-vorticity formulation and multigrid algorithm for 
h as small as l/256. Their results are very accurate not only because of the small grid spacing 
employed, but also as a result of the fact that II/ and w are calculated directly-not indirectly as 
in the present work. The indirect calculation can introduce errors due to the approximations 
involved. 

4. MULTIGRID FORMULATION 

A current serious constraint on the application of CFD techniques to real problems is that of 
limited resolution vis-a-vis a restriction on the number of grid nodes that can be employed. From 
the test problem considered in the previous section it is found that with QUICK a grid of 642 nodes 
is required for accurate solutions, although one of 32’ gives a qualitatively correct answer that 
would suffice in s’ome situations. However, the solution to many problems is often found on very 
coarse grids containing approx. 162 nodes. These have proved to be very inaccurate, especially when 
hybrid differencing is used to approximate convective transport. A hybrid solution to the above 
lid-driven cavity ton a 16’ grid at a Reynolds number of 1000 results in an error of 46% for the 
value of the maximum streamfunction relative to that obtained by Ghia et al. [20]. Clearly, when 
solution techniques are extended to encompass three-dimensional flow situations these problems 
are exacerbated. 

Hitherto, the principle research activity aimed at overcoming the above problems has been 
targeted at designing iterative schemes with higher error reductions. However, these still have the 
disadvantage of deteriorating convergence rates as the iteration proceeds. The one idea that has 
opened the door to the practical and accurate solution of such flows is the concept of multigrids, 
which was outlined briefly in Section 1. The method seeks to obtain the initial fast convergence 
of an ordinary scheme throughout the iteration procedure, thus giving very fast solutions. Below 
the theory of multigrids is discussed more fully, various components of the overall approach and 
those specific to the methodology described here are examined in relation to the two-dimensional 
lid-driven cavity problem. 

4.1. Multigrid Theory 

When observing the convergence of a non-multigrid iterative technique it can be seen that 
initially convergence is rapid, but that this soon stops and error reduction becomes very slow. This 

Table 6. CPU seconds and convergence rate fI for BIMM at Reynolds number 1000 

hybrid QUICK SMART 

Grid CPU s Cow. rate 0 

42 0.68 0.624 
g2 1.34 0.693 

16’ 4.20 0.673 
32’ 16.25 0.677 
64= 68.48 0.684 
I 2g2 343.97 0.737 
2562 1153.70 0.636 
5122 3687.76 0.527 
1024’ 14313.05 0.488 

CPU s Cow. rate 0 

- - 
3.62 0.946 

10.39 0.853 
33.22 0.818 
87.69 0.699 

263.03 0.622 
854.80 0.543 

3066.08 0.491 
12404.90 0.463 

CPU s 

- 
- 

32.62 
94.32 

282.44 
924.01 

3532.70 
13419.76 

Cow. rate 0 

- 

0.869 
0.709 
0.625 
0.546 
0.511 
0.464 
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Fig. 6. Streamfunction and vorticity for the driven cavity at Re = 1000. 
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Table 7. Selected data for BIMM with 1024’ points 

13 

Disc. hybrid 

Re=lOO 

SMART GGS hybrid 

Re = 1000 

SMART GGS 

k 0.103516 
x 0.6157 
Y 0.2622 

%l 3.17044 
$1 - I .79705E - 06 
x 0.0337 
Y 0.9653 
01 -1.46139E-02 

@r -1.27312E-01 
x 0.9419 

Y 0.9380 

0, - 3.506688 - 02 
lL!l 4.33481E - 06 
x 0.0493 

Y 0.9468 

WI1 -4.30330E - 02 

ti” 3.14914E - 10 
x 0.9966 
Y U.YY56 

0.103519 0.103423 
0.6157 
0.2622 
3.17046 

-1.798178-06 
0.0337 
0.9653 

-1.46152E-02 
- I .27336E - 05 

0.9419 
0.9380 

- 3.50654E - 02 
4.33276E - 06 
0.0493 
0.9468 

-4.30363E - 02 
3.17386E - 10 
0.9966 
0.9956 

0.2656 
3.16646 

- 1.74877E - 6 
0.0313 
0.9609 

-1.555098-2 
- 1.25374E - 5 

0.9453 
0.9375 

- 3.30749E - 2 
- 

- 

- 

0.118696 
0.5308 
0.4341 
2.05888 

-2.33135E - 04 
0.0825 
0.9214 

-0.35090 
-1.727138-03 

0.8638 
0.8872 

-1.11374 
6.08160E - 09 
0.0044 
0.9946 
2.728098 - 03 
4.890038 - 08 
0.9917 
0.9917 

% 2.086288 - 04 2.08796E - 04 8.93567E - 03 

0.118821 
0.5308 
0.4341 
2.06337 

- 2.35445E - 04 
0.0825 
0.9214 

-0.35194 
- I .73142E - 03 

0.8638 
0.8872 

-1.11118 
I .46830E - 08 
0.0034 
0.9927 
3.814688 - 03 
4.99971 E - 08 
0.9917 
0.9917 
8.864858 - 03 

0.117927 
0.5313 
0.4375 
2.04968 

-2.31129E -4 
0.0859 
0.9219 

-0.36175 
1.75102E - 3 
0.8594 
0.8906 

-1.15465 
- 

9.319298 - 8 
0.9922 
0.9922 
8.52782E - 3 

is a manifestation of the efficiency of an iterative solver in eliminating errors of wavelength similar 
to the mesh size only. In order to maintain this fast convergence and exploit this property of 
iterative solvers, multigrid methods solve the problem on a hierarchy of coarser grids. This has the 
added advantage that iterations on coarser grids takes less time. Equations on coarser grids are 
amended to ensure that they represent the actual solution on the finer grids by the adding of a 
source term. Hem, because the Navier-Stokes equations are non-linear we use the Full Approxi- 
mation Storage (FAS) version of multigrids. 

For full details of the theory readers are referred to an earlier text [l&21]. It has been shown 
theoretically by Brandt and Dinar [6] (who first proposed these techniques) that such an algorithm 
will be very effiaent. It should result in grid independent convergence and so require the same 
number of iterations for any grid level. Having selected an appropriate multigrid approach the next 
step is to see how this can be combined with the BIM to yield an efficient solution procedure. 

4.2. A Block Implicit Multigrid Method (BZMM) 

Several multigrid strategies have been proposed and implemented for cycling between grids in 
order to smooth errors efficiently. The one used here differs from those of Shaw and Sivaloganathan 
[22] and Brandt and Dinar [6]: 

(1) 
(2) 
(3) 

(4) 
(5) 

The system of equations is constructed on each grid level k = 1, . . . , m. 
The solution on the coarsest grid is smoothed using the BIM for a fixed number of iterations. 
The difference between the initial and final solution on the current grid level is calculated. 
This is the correction to the corresponding fine-grid which is prolonged and added to the 
solution there. 
If the new grid is not the finest, m, stages (2) and (3) repeated. 
Once the finest grid level has been reached, the solution there is smoothed for a fixed number 
of iterations. 

Table 8. Convergence rate for the line version at Reynolds number 1000 
- 

hybrid QUICK SMART 

Grid Cow. rate Conv. rate Cow. rate - 
42 0.487 0.797 - 
S2 0.527 0.901 
16* 0.557 0.863 
32’ 0.678 0.818 0.876 
64’ 0.744 0.71 I 0.728 
128* 0.761 0.620 0.623 
2562 0.656 0.539 0.544 
5122 0.522 0.438 0.442 
1024’ 0.418 0.366 0.367 - 
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Table 9. Reattachment lengths for various 
Remolds numbers 

Re Rest. Length 

100 1.1090 
200 I .7078 
400 2.6477 

One multigrid iteration consists of executing the above sequence once iterations are continued 
until the residual on the fine-grid is less than a specified tolerance. The multigrid cycling strategy 
is based on a fixed V-cycle of [23] which has been successfully implemented for a variety of 
problems in compressible flows. More sophisticated adaptive cycling strategies such as W- and 
F-cycle were evaluated, but offered no advantage at the Reynolds numbers of interest. 

In the following multigrid calculations, the residual measure and relaxation factors were taken 
to be the same as those used for the ordinary BIM computations. Note that in the formulation 
of the BIM given in the previous section, in terms of residuals and updates, is advantageous for 
use with multigrids, since the values of the residuals are readily available for transfer to coarser 
grids. 

4.3. Restriction and Prolongation 

The grid coarsening procedure adopted is illustrated in Fig. 1. A grid reduction factor of 2 is 
used. One coarse grid scalar cell coincides with four fine-grid scalar cells. The velocity cells for each 
grid are orientated in line with what one would expect with a procedure for a one-grid technique; 
this means that coarse and fine-grid velocity cells do not coincide. 

The nature of the restriction and prolongation operators is dictated by the grid arrangement. 
Linear interpolation is used for the restriction of velocities, and bi-linear interpolation for the 
restriction of scalars. The boundaries are not restricted since they are fixed. Prolongation is 
similarly carried out using linear and bi-linear interpolation. 

There is one aspect of coarsening and interpolation that deserves special mention. Consider the 
source term that is added to the coarse grid equations, 

Zfp’rk + Lk-‘(Z~-‘qk), (11) 
along with a point (i,,j,) on the coarse-grid and the four associated fine-grid points (&,j,), 
(if+ l,j,), (ir,jr+ 1) and (if+ l,jr+ 1), where if= 2i, - 1 andj,= 2j, - 1. By examining the residual 
of the continuity equation, on the coarse grid level, for the interpolated velocities and the 
interpolation of the fine-grid residual of continuity in terms of the fine-grid velocities, it can be 
shown that they are the same, so that: 

(12) 
Thus the coarse-grid RHS for the continuity equation is zero. When implementing the algorithm 

this RHS could be computed along with that for the other equations. However, this is seen to be 
unnecessary from the above analysis. In fact it would be disadvantageous to do so, as this would 
give values to machine round-off error rather than zero. Sivaloganathan and Shaw [22] have also 
discussed this feature. They refer to it as “continuity satisfaction”, that is, if continuity is satisfied 
on the fine grid it is automatically satisfied on the coarse-grid. They also state that this method 
of coarsening gives rise naturally to compatible momentum control volumes, but this is not the 
case since momentum control volumes on different grids do not coincide. Oosterlee and Wesseling 

Table IO. Fine grid work units and convergence rate 0 for the sudden expansion in a pipe using SMART discretization and 
256 bv 4096 mesh ooints 

Grid FGWU 

100 

Cow. rate 0 FGWU 

200 

Cow. rate fJ FGWU 

400 

Cow. rate0 

92.00 0.922 58.00 0.878 
58.15 0.821 59.25 0.862 

8’ 42.06 0.766 67.56 0.874 
162 24.44 0.570 32.52 0.629 
322 18.16 0.486 23.54 0.608 38.87 0.793 
642 14.89 0.420 21.24 0.592 28.41 0.664 
128’ 14.06 0.386 15.65 0.405 20.77 0.556 
256’ 13.85 0.385 12.58 0.337 20.53 0.570 



H 

Highly recirculating flows 

u-v=0 

L =32H 

Fig. 7. The geometry and boundary conditions for the sudden expansion. 

[24] use a volume <average to interpolate momentum residuals. This was assessed, 
no appreciable advantages. 

5. APPLICATION OF THE BIMM 

but found to offer 

The above BI.MM was applied to the test problem described in Section 3, namely the 
two-dimensional I.id-driven cavity. Once again, solutions were obtained for Reynolds numbers of 
100 and 1000 with both hybrid and QUICK discretization. The maximum number of internal nodes 
employed was 1024’. A Full Multigrid (FMG) algorithm was used, that is, a solution on a 
coarse-grid was obtained and prolonged to form an initial solution on the next fine-grid level. On 
the coarsest grid initial conditions of zero were used, that is, u = p = 0 for all z = 0. 

With respect to the pressure condition Brandt and Dinar [6] advise that this should only be 
applied on one grid level. It was found, however, that applying it on all grid levels had no effect 
on the convergence rate. It was sufficient, though, to only apply it on the coarse-grid. This strategy 
was adopted to save CPU time. Sivaloganathan and Shaw have also observed this phenomenon. 

Figure 2 shows the log of residual against FGWU for a grid of 64 x 64 points to a tolerance 
of lo-“. This is a straight line which shows that optimal multigrid convergence has been achieved. 
The fine-grid work unit is a measure of the total work done on all grids expressed in terms of the 
work required for one fine-grid iteration. 

5.1. Defect Correction 

Before considering full solutions and CPU times, the concept of “defect correction” is examined. 
This concept derives from examining the problem of choosing between a low order stable and 
efficient discretization such as hybrid and a high order less stable and computationally more 
expensive one such as QUICK to approximate convective transport. When smoothing in multigrid 
algorithm, all that is required is to smooth the error on the current grid, not eliminate it. So the 
accuracy of the discretization is not relevant. The only criteria are stability and efficiency. So it 
would appear natural to use a low order discretization for smoothing and implement a high order 
discretization through a correction to the source term in the equation. This is the basis of the defect 
correction metho’d as outlined by Hackbusch [25]. To find a new iteration un+’ from the equation, 

Lun+l - - - r” 

requires the use of two operators 

l L’--lower order discretization for smoothing 
l L h-high order discretization for residual calculation. 

The following system needs to be solved, 

(13) 

(14) 
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Fig. 8. Log of residual against Fine Grid Work Units for the sudden expansion for Re = 100, 200 and 
400. 

This has been implemented in five cases as shown in Table 2. Obviously case 5 is not defect 
corrected, but is included for comparison. 

From Fig. 3 it can be seen that all five converge very quickly initially and the four defect 
correction cases reach solutions of engineering accuracy (x 10m3) faster than QUICK/QUICK. It 
should also be noted that in these cases all the methods, with the exception, of QUICK/QUICK, 
were able to start from zero initial conditions. QUICK/QUICK required an initial condition from 
another grid to prevent divergence. This instability is also reflected in the slower initial convergence. 
Only when the residual is down to lo-’ does QUICK/QUICK perform better. The worse 
convergence for cases l-4 is caused by the delayed implementation of the QUICK terms, i.e. once 
every multigrid iteration. Table 3 gives values of maximum streamfunction (IJ,), position (x,y) 
and vorticity (w,) at this point. Those obtained with the same discretizations for residual 
calculation are identical to eight decimal places, demonstrating that the choice of discretization 
scheme for smoothing has no effect on the eventual solution. 

In view of its superior stability and convergence it was decided to proceed only with defect 
correction. Upwind/QUICK was adopted for maximum stability and efficiency in smoothing and 
accuracy in solution. 

5.2. Implementation of the SMART algorithm 

As mentioned earlier initial implementation of CCCT was performed with c1 = 0. This is identical 
to Leondard’s QUICK scheme which can be prone to unphysical under and/or overshoots. These 
are problematic for turbulent calculations and may affect accuracy in this laminar case. So for the 
multigrid program to be fully applicable and amenable to extension to more complex physical 
phenomena and geometries, Gaskell and Lau’s [2] SMART algorithm for determining a was 
implemented. For details of the latter, readers are referred to their work. Having developed the 
defect correction as part of the multigrid strategy it is very easy and computationally efficient to 
implement SMART, with the feature of tl values only being calculated within the defect correction 
in the source term. From Fig. 4 it can be seen that convergence histories for SMART and QUICK 
are practically identical. Furthermore the results for maximum streamfunction and such data are 
very close, with SMART just a little more accurate than QUICK-see Table 4. The present 
implementation of SMART differs from that of Gaskell and Lau in two ways. Firstly, a is not 
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stored at each point and so is not under-relaxed. Secondly, the algorithm has been adapted to 
prevent divide by zero problems that maybe encountered when calculating normalized face values. 

6. RESULTS 

At a glance the results reveal that the times required with multigrid are significantly lower than 
those found with lthe ordinary BIM [see Tables 1, 5 and bthe bracketed numbers are predictions 
based on the power law relation, equation (lo)]. It is not certain however, that given the necessary 
CPU time a solution could be obtained in the standard way on the finest grids quoted-there is 
evidence [20] that the use of so fine a grid makes ordinary schemes unstable. The only reason that 
multigrid so1ution.s were not obtained on even finer grids was the limit on the core memory space 
available on the !3ilicon Graphics machine. 

With reference to Tables 5 and 6 one can compare the relative performance of hybrid, QUICK 
and SMART when used as the high order scheme in the defect correction. On coarse grids SMART 
and QUICK have higher convergence rates than hybrid. On finer grids though the opposite occurs. 
It was not possible to obtain full solutions at Reynolds number 1000 with a finest grid level of less 
than 32’ with SMART, but coarse grids of 22 were used as the coarsest in the multigrid algorithm 
to obtain corrections. An examination of Table 7 shows that there are differences in the value of 
key variables between hybrid and SMART particularly in the tertiary vortices at Reynolds number 
of 1000 due to higher gradients. These are only slight, due to the extremely fine grids used. Results 
for these fine grids are shown as contours in Figs 5 and 6. 

The convergence rate, 8, which is shown in Tables 5 and 6 is defined as: 

“FGWU 
0= 

[ 

final residual 

initial residual 1 (15) 

As one might expect, from the above results, the rates obtained with the BIMM are much lower 
than those that would be obtained with non-multigrid BIM. The multigrid convergence rates 
decrease (on the whole) as mesh size decreases, and optimality is achieved. This, along with the 
plots of log of residual against FGWU confirms that optimal multigrid behaviour has been 
obtained. Optimal behaviour is achieved at coarser grid levels for lower Reynolds numbers, because 
the governing equations are ‘less’ non-linear. 

It can be seen that there is little difference between the convergence rates obtained with the three 
discretizations on the different grid levels, at Reynolds number 100. The sudden drop in the 
convergence rate experienced with hybrid between the two grid levels, 12g2 and 2562 was also 
observed by Linden et al. [27]. This is caused by a change to the predominant use of central 
differencing within the solution domain as the cell Reynolds number falls below 2. Upwind 
differencing, with its inherent grid-dependent numerical diffusion, limits convergence rate [28]. 

Fig. 9. Streamfunction and vorticity for the sudden expansion at Re = 400. 
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Tables 6 and 8 allow for comparison of the point and line solvers. A similar pattern emerges 
for all three discretizations. On coarser grids the line solver has a higher convergence rate, but at 
the finest level it requires less. This is particularly apparent for the higher order discretizations 
where the line solver is more suited to their large computational molecules. It should be noted, 
however, that a full sweep with the line solver takes 100% more CPU time than one full sweep 
with the point solver, so the point version is still superior. This overhead could be reduced by use 
of specially written sparse matrix routines as used by [lo] who observed an overhead of 50%. 

In light of the experience with the lid-driven test case, the point-by-point algorithm was extended 
to examine the problem of a sudden expansion in a pipe, as this represents a more severe test. In 
particular, other researchers [12] have experienced difficulties in the application of derivative 
boundary conditions within a multigrid algorithm. Here the condition imposed at the exit (see 
Fig. 7) is, 

This condition is applied implicitly within the smoother by setting the coefficient, A,, to zero 
whenever the east face of the control volume is on the exit boundary. This condition is applied 
on all grid levels and no boundary values are transferred between grids as the implicit implemen- 
tation means that no boundary values are required. Whilst the length of the channel does affect 
convergence differently for various Reynolds numbers a 1ength:width ratio of 16 was used 
throughout. Both very high and very low ratios lead to degraded convergence. 

The reattachment lengths in Table 9 are in reasonable agreement with those obtained by using 
the FLOW3D program with a mesh of 20 x 160 and upwind differencing. These results were 
obtained using a mesh of 256 points across the pipe and 4096 along it. Contours are shown in Fig. 9. 
The graph in Fig. 8 shows that multigrid convergence has been achieved and this is further borne 
out by examining Table 10. Here the convergence rates decrease with finer grids. The rates for 
Reynolds number 400 are higher. These are thought however to be due to the omission of relaxation 
of o! in the SMART algorithm. Higher Reynolds numbers solutions make more use of non-zero 
CI and require the more sophisticated treatment. 

7. CONCLUSIONS 

The main conclusion from this work is that it is possible to obtain solutions with high order 
discretizations on very fine grids by the use of multigrids. The solutions presented here are very 
accurate and would be impossible to obtain with non-multigrid methods. The use of a high order 
bounded discretization is seen to present no significant problems to the multigrid technique. Its 
implementation is further enhanced by defect correction which leads to a more robust solution 
technique. 

The investigation of a line solver reveals that whilst it has the expected benefit of reducing the 
number of iterations required, this is not sufficient to give an overall saving in computer time. 
However, such a solver may be useful for solutions at even higher Reynolds numbers or in other 
flow situations. The solution of a problem with derivative boundary conditions is another extension 
of the multigrid which was previously seen as problematic, but is now possible and opens the way 
to further applications. 

The main area of future work that is apparent is to extend the ideas to three dimensions. This 
work is progressing, enhanced by recent developments in computer graphics, and will be reported 
elsewhere. A further extension to be investigated is application of the algorithms to the modelling 
of turbulence. 
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