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ANALYSIS AND COMPARISON OF GEOMETRIC AND
ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION

EQUATIONS∗

CHIN-TIEN WU† AND HOWARD C. ELMAN‡

Abstract. The discrete convection-diffusion equations obtained from streamline diffusion finite
element discretization are solved on both uniform meshes and adaptive meshes. Estimates of error
reduction rates for both geometric multigrid (GMG) and algebraic multigrid (AMG) are established
on uniform rectangular meshes for a model problem. Our analysis shows that GMG with line Gauss–
Seidel smoothing and bilinear interpolation converges if h � ε2/3, and AMG with the same smoother
converges more rapidly than GMG if the interpolation constant β in the approximation assumption

of AMG satisfies β � ( h√
ε
)α, where α =

{
1, h<

√
ε,

2, h≥
√
ε.

On unstructured triangular meshes, the per-

formance of GMG and AMG, both as solvers and as preconditioners for GMRES, are evaluated.
Numerical results show that GMRES with AMG preconditioning is a robust and reliable solver on
both type of meshes.
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1. Introduction. The purpose of this paper is to evaluate different solution
strategies for the linear systems obtained from discretization of the convection-diffusion
equation {

−ε�u + b · ∇u = f on Ω,
u = g on ∂Ω,

(1.1)

where b and f are sufficiently smooth and the domain Ω is convex with Lipschitz
boundary ∂Ω. We are interested in the convection-dominated case, i.e., |b| � ε. In this
setting, the solution typically has steep gradients in some parts of the domain. These
may take the form of boundary layers caused by Dirichlet conditions on the outflow
boundaries or internal layers caused by discontinuities in the inflow boundaries.

Let �h be a given quasi-uniform mesh of triangles on Ω and let Vh be the linear
finite element space on �h. It is well known that the standard Galerkin finite element
discretization on uniform grids produces inaccurate oscillatory solutions to convection-
diffusion problems. Here, we will discretize (1.1) on Vh using the streamline diffusion
finite element method (SDFEM) [7], a variant of the standard Galerkin method, where
extra diffusion in the streamline direction is introduced. The SDFEM formulation
entails finding uh ∈ Vh such that

Bsd(uh, vh) = fsd(vh) for all vh ∈ Vh,(1.2)
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where

Bsd(uh, vh) = ε(∇uh,∇vh) + (b · ∇uh, vh) +
∑

T∈�h

δT (b · ∇uh, b · ∇vh)T ,

fsd(vh) = (fh, vh) +
∑

T∈�h

(f, δT b · ∇vh),

and δT is a stabilization parameter. With a carefully chosen value of δT , the streamline
diffusion finite element discretization is able to eliminate most oscillations and produce
accurate solutions in the regions where no layers are present [7]. As shown in [6], a
good choice of δT is

δT =

{
1

2‖b‖T

(
1 − 1

PeT

)
if PeT > 1,

0 if PeT < 1,
(1.3)

where

PeT =
‖b‖T hT

2ε
for T ∈ �h with diameter hT

is the mesh Peclét number.
This strategy does not produce accurate solutions in regions containing layers that

are not resolved by the grid. Accuracy can be achieved at reasonable cost in such
regions by adaptive mesh refinement, in which an a posteriori error estimation strategy
is used to identify regions where errors are large, and a marking strategy is used to
select elements to be refined. An adaptive solution strategy is to start with a coarse
mesh, compute the discrete system, solve the linear system, and then locally refine the
mesh using the information provided by an a posteriori error estimation. This adaptive
solution process can be applied repeatedly until the a posteriori error estimator is
less than a prescribed tolerance or the maximal number of mesh refinement steps is
reached.

In this paper, we use the local error estimator proposed by Kay and Silvester [8],
with the maximum marking strategy [11], and regular mesh refinement strategy for
the adaptive refinement process. We are concerned with the costs of performing this
computation with emphasis on the costs of solving the discrete systems that arise
at each step of the mesh refinement. Let Ahuh = fh denote the discrete system of
equations derived from (1.2). Since adaptive mesh refinement produces a sequence
of nested meshes, multigrid methods are natural candidates for solving this linear
system. Here, we would like to explore the effectiveness of the geometric multigrid
(GMG) [5] and algebraic multigrid (AMG) [17] methods. Since the linear system is
nonsymmetric, Krylov subspace linear solvers such as the generalized minimal residual
method (GMRES) [18] are also good choices. In order to accelerate the convergence
of the Krylov subspace linear solvers, good preconditioners are needed. We would also
like to investigate the performance of GMRES preconditioned by GMG and AMG.

This paper is organized as follows: Details of the error estimator and refinement
strategy are given in section 2 where numerical studies that demonstrate the efficiency
of the error indicator are presented. In section 3, multigrid algorithms and some
estimates of two-level multigrid convergence are analyzed and numerical results that
support our theoretical analysis are given. A comparison of the solvers is shown in
section 4. This comparison examines both standalone versions of multilevel multigrid
as well as versions in which multigrid is used as a preconditioner for GMRES. We also
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compare these with unpreconditioned GMRES, and with a preconditioned GMRES
algorithm in which the smoother used for multigrid is used as a preconditioner. These
experiments are performed using the following two benchmark problems.

Problem 1: Constant flow with characteristic and downstream layers. Equa-
tion (1.1) is given with the coefficient b = (sin (φ), cos (φ)), where φ measures the
angle of the flow direction from the y-axis, and the right-hand side f = 0 on the
domain Ω = [−1, 1]× [−1, 1]. The Dirichlet boundary condition is set as g = 1 on the
segments y = −1 ∩ x > 0 and x = 1, and g = 0 elsewhere.

Problem 2: Flow with closed characteristics: Here, the coefficient vector (b1, b2)
is (2y(1− x2), 2x(1− y2)) and the right-hand side f = 0 on the domain Ω = [−1, 1]×
[−1, 1]. The Dirichlet boundary condition is g = 1 on the segments y = 1 and g = 0
elsewhere.

These examples are chosen because they exhibit many of the important features
of flow problems so that their effect on discretization and multigrid solvers can be
identified. In particular, Problem 1 has an exponential boundary layer at the outflow
boundary and a characteristic internal layer induced by a discontinuity on the inflow
boundary. Both of these can be treated using adaptive mesh refinement. Moreover,
by varying the angle φ, we can assess the effect of flow direction on performance of
solvers. Problem 2 also has a (characteristic) boundary layer caused by discontinuous
boundary conditions, and its recirculating flow requires that care be taken in choosing
smoothers for multigrid computations.

Finally, in section 5, we draw our conclusions.

2. Adaptive mesh refinement by a posteriori error estimation. One com-
mon technique to increase the accuracy of the finite element solution is mesh refine-
ment. Unlike uniform mesh refinement, the adaptive mesh refinement process refines
meshes only in the regions where errors between the weak solution of the partial dif-
ferential equation and the corresponding finite element solution are large. In general,
the adaptive mesh refinement process consists of loops of the following form:

Solve︸ ︷︷ ︸
1

→ Compute error indicator︸ ︷︷ ︸
2

→ Refine mesh︸ ︷︷ ︸
3

In step 3, elements in which the value of the a posteriori error estimator is large are
marked for refinement according to some element selection algorithm. On a given
triangulation �h, for any element T ∈ �h, let ηT be the a posteriori error indicator
of element T . A heuristic marking strategy is the maximum marking strategy where
an element T ∗ is marked for refinement if

ηT∗ > θ max
T∈�h

ηT ,(2.1)

with a prescribed threshold 0 < θ < 1. For other marking strategies, we refer to
[11]. Once decisions on where to refine are made, commonly used mesh refinement
schemes are regular refinement, where a triangle is divided into four triangles equally,
and longest side bisection [15], [16], where a triangle is divided into two triangles
by adding a new node to the midpoint of the longest edge. The maximum marking
strategy and regular refinement scheme are used in our experiments.

A reliable computable a posteriori error estimator in step 2 is the key for the
adaptive mesh refinement process to succeed. For the convection-diffusion equation
discretized by SDFEM, the first a posteriori error estimation where the error is esti-
mated by computing the residual was proposed by Verfürth [21], and the first a pos-
teriori error estimation where the error is estimated by solving a local problem was
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developed by Kay and Silvester [8]. In this study, we use the Kay and Silvester a
posteriori error estimator, which we have found to be a more effective choice in [23].
Hereafter, we call this indicator the KS-indicator. First, let us introduce the following
abbreviations. Let ‖·‖0,Ω and ‖·‖0,T denote the L2 norm on domain Ω and element
T , respectively. Let E(T ) be the set of edges of T and ωT = ∪T ′∩T∈E(T )T

′, i.e., ωT is
the set of triangles T ′ that share a common edge with T . Let P 0

T be the L2 projection
onto the space of polynomials of degree 0 on element T . The interior residual RT of
element T and the interelement flux jump RE of edge E are defined as follows:

RT = (f − b · ∇uh)|T ,

R0
T = P0

T (RT ),

RE =

{
[ ∂uh

∂nE
]E if E ∈ Ω,

0 if E ∈ ∂Ω,

where [·]E is the jump across edge E.1 Let Φ be the element affine mapping from the
physical domain to the computational domain and let χi be the nodal basis function
of node i. The approximation space is denoted as QT = QT

⊕
BT , where

QT = span{ψE ◦ Φ−1| ψE = 4χiχj , i, j are the endpoints of E and

E ∈ ∂T
⋂

(Ω
⋃

ΓN )}

is the space spanned by quadratic edge bubble functions and

BT = span

{
ψT ◦ Φ−1| ψT = 27

3∏
i=1

χi

}

is the space spanned by cubic interior bubble functions. For details, see [8]. On each
element T , the error estimator is then given by ηh,T = ‖∇eT ‖0,T , where eT ∈ QT

satisfies

ε(∇eT ,∇v)T = (R0
T , v)T − 1

2
ε
∑

E∈∂T

(RE , v)E .(2.2)

Let eh = u− uh. The a posteriori error estimation is specified as follows:

(global upper bound)

‖∇(eh)‖0,Ω ≤ C

( ∑
T∈�h

η2
h,T +

∑
T∈�h

(
h

ε

)2 ∥∥RT −R0
T

∥∥2

0,T

)1/2

(2.3)

(local lower bound)

ηh,T ≤ c

(
‖eh‖0,ωT

+
∑

T⊂ωT

hT

ε
‖b · ∇eh‖0,T +

∑
T⊂ωT

hT

ε

∥∥RT −R0
T

∥∥
0,T

)
,(2.4)

where constants C and c are independent of the diffusion parameter ε and mesh size h.

1This definition of RE for E ∈ ∂Ω is for Dirichlet boundary conditions. We don’t consider
Neumann conditions in this study; in case E ∈ ∂Ω and a Neumann condition holds, the flux jump

RE would be set to −2( ∂uh
∂nE

) [8].
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The sharpness of the error indicator can be revealed by computing the local
effectivity index,

ET = max
t∈�h

ηh,T
|u− uh|1,T

,

and the global effectivity index,

EΩ =
(
∑

T∈�h
η2
h,T )1/2

|u− uh|1,Ω
,

where | · |1,Ω and | · |1,T represent the H1 seminorms on domain Ω and element T ,
respectively. If both indices are close to 1, the error indicator is reliable and efficient.
The global upper bound provides an estimate of the error over the whole domain, and
the local lower bound locates where the error is large. It has been shown that EΩ

grows in proportion to
√
Pe and ET grows in proportion to Pe for the KS-indicator

[8]. The following numerical results support this conclusion.
Consider here equation (1.1) on the domain Ω = [0, 1]× [0, 1] with b = (β1, β2) =

(sin 75◦, cos 75◦) and the Dirichlet boundary condition is obtained from the analytic
solution

u(x, y) =
eβ1x/ε − 1

eβ1/ε − 1
+

eβ2y/ε − 1

eβ2/ε − 1
.(2.5)

Both global effectivity index EΩ and local effectivity index ET are computed. In order
to see how the effectivity indices change in terms of the diffusion parameter ε and
mesh size h, the problem is solved over uniform meshes with mesh size h = 1

8 ,
1
16 ,

1
32 ,

and 1
64 for ε = 1

64 ,
1

256 ,
1

1024 , and 1
4096 . For accurately approximating the true error

u − uh, a very fine mesh �f , as shown in Figure 2.1, consisting of 11272 nodes and
21379 elements is generated by first solving the above test problem with ε = 10−3

on a 64 × 64 mesh followed by three mesh refinement steps where a large threshold
θ = 0.75 in the maximum marking strategy (2.1) is used to prevent unnecessary over
refinement. An approximation of the exact error is then computed on �f by

|u− uh|1,Ω∗ =

⎛
⎝ ∑

τ∈�f∪Ω∗

|u− uh|21,τ

⎞
⎠1/2

for Ω∗ = Ω or T ∈ �h,
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Fig. 2.1.
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Table 2.1

Effectivity indices of the KS-indicator.

ε 8 × 8 16 × 16 32 × 32 64 × 64

1
64

1.156 0.951 0.979 1.022

1
256

2.044 1.457 1.105 0.929

1
1024

4.016 2.772 1.952 1.422

1
4096

8.470 5.842 4.075 2.867

(a) Global index EΩ.

ε 8 × 8 16 × 16 32 × 32 64 × 64

1
64

2.504 1.714 1.687 1.557

1
256

9.242 4.637 2.536 1.750

1
1024

36.95 18.48 9.239 4.629

1
4096

147.8 73.90 36.95 18.48

(b) Local index ET .
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Fig. 2.2. Adaptively refined mesh with threshold value θ = 0.01.
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(d) Solution on �4.

Fig. 2.3. Contour plots of the solutions of Problem 1 on adaptively refined meshes starting with
a uniform 16 × 16 mesh.

where the discrete true solution u is evaluated directly from (2.5) on �f and the
SDFEM solution uh is prolonged from �h onto �f by standard bilinear interpolation.
In Table 2.1, for h � ε, EΩ and ET decrease by factors approximately of size

√
2 and

2, respectively, as the mesh size is halved. Also, EΩ and ET double and quadruple,
respectively, when ε is reduced by a factor of four. Thus, ET = O(Pe) and EΩ =
O(

√
Pe), as shown in [8].
Although there is deterioration in reliability and efficiency for these error indica-

tors, the regions with large errors can still be located when a good threshold value θ
is chosen. Next, we give a representative picture of how the adaptive solution process
improves the solution quality. We use the KS-indicator for mesh refinement in solving
Problem 1 with the diffusion parameter ε = 10−3 and φ = 0. From the local lower
bound (2.4), we suspect that the value of the indicator ηh,T in the outflow boundary
layer regions is O(hε ) larger than its value in the internal layer regions. Therefore, for
the case considered here, a threshold value θ = 0.01 ≈ ε

h is chosen so that both the
boundary and internal layer regions can be refined by the maximum marking strategy
(2.1). A sequence of adaptively refined meshes is shown in Figure 2.2 in which ele-
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ments in both boundary layer and internal layer regions are refined. It can be seen in
Figure 2.3 that both the characteristic and downstream layers are resolved accurately
by the mesh refinement process.

3. The multigrid algorithms. Given a sequence of meshes �1,�2, . . . ,�n, let
Vk be the piecewise linear finite element subspace associated with �k, let Ak be the
matrix defined on �k, and let wk be the initial guess. Let MG1 represent the direct
solver on the coarsest grid �1. The general form of the k-level multigrid algorithm
is shown in Algorithm 1, where fk is the right-hand side obtained from discretization
of data function f on �k, M

−1
k represents the smoothing operator, and the operators

Ik−1
k and Ikk−1 represent the grid transfers, restriction and prolongation, between
�k−1 and �k. The multigrid V-cycle and W-cycle are defined by choosing m = 1 and
m = 2, respectively.

Unlike in solving self-adjoint elliptic problems, GMG methods usually do not pos-
sess mesh-independent convergence for the convection-diffusion equation with domi-
nant convection unless the mesh size h � ε or special treatments are employed for the
meshes, interpolations, and relaxation [4] when h � ε. For h � ε (and coarse grid
size also < ε), Bramble et al. [1], [2] and Wang [22] have shown GMG converges with a
rate independent of mesh size by using a compact perturbation technique. To achieve
mesh-independent convergence for h � ε, Reusken and Olshanskii have recently shown
L2-convergence by using semicoarsening, matrix-dependent prolongation, and line re-
laxation for Problem 1 discretized by an upwind finite difference method [9], [14], and
Szepessy proved L1-convergence on R2 by residual damping through large smooth-
ing steps [12]. On the other hand, the convergence of AMG is essentially based on
an M-matrix property of the discrete system [17]. No convergence result of alge-
braic multigrid for the convection-diffusion equation exists to our knowledge. In this
section, we describe the versions of GMG and AMG considered here. We restrict
our attention to the 2-level V-cycle multigrid and show some convergence results for
Problem 1 on uniform rectangular meshes. For this problem, the matrix from SDFEM
discretization with stabilization parameter δT = h

2 has the form

Ak =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D −U
−L D −U 0

−L
. . .

. . .

. . .
. . . −U

0 −L D −U
−L D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(3.1)

Algorithm 1 Multigrid algorithm.

1. set xk = wk,
2. (presmoothing) xk = wk + M−1

k (gk −Akwk),

3. (restriction) ḡk = Ik−1
k (gk −Akxk),

4. (correction) qi = MGk−1(qi−1, ḡk) for 1 ≤ i ≤ m, m = 1 or 2 and q0 = 0,
5. (prolongation) q̄m = Ikk−1qm,
6. set xk = xk + q̄m,
7. (postsmoothing) xk = xk + M−1

k (gk −Akxk),
8. set yk = MGk(wk, gk) = xk.
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where the block tridiagonal matrices

D = h× tridiag

[
1

6
− 1

3

ε

h
,
2

3
+

8

3

ε

h
,
1

6
− 1

3

ε

h

]
,

L = h× tridiag

[
1

6
+

1

3

ε

h
,
2

3
+

1

3

ε

h
,
1

6
+

1

3

ε

h

]
,

U = ε× tridiag

[
1

3
,
1

3
,
1

3

]
.

(3.2)

In the following, we describe each component of the multigrid methods used here.
First, we use the same smoother in both GMG and AMG. On uniform rectangular
meshes, one step of a horizontal line Gauss–Seidel (HLGS) smoother is used. The
HLGS method uses the block lower triangle of Ak as a splitting operator. (Thus, the
HLGS sweep can be viewed as proceeding along horizontal lines, one line at a time,
in the vertical direction.) Second, in GMG, (1) the coarse grids are obtained directly
from the mesh refinement process; (2) the grid transfer is via linear interpolation for
prolongation, and the restriction operator Ik−1

k is then taken to be the transpose of the
prolongation operator Ikk−1; and (3) the matrix Ak is obtained directly from SDFEM
discretization in the refinement process. For AMG, we use the method developed
by Ruge and Stüben [17] (AMG): (1) a coarse grid at level k − 1 is generated by
coarsening the fine grid along the so-called strong connection direction of matrix graph
G of Ak = (ai,j) where a directive edge −→e i,j ∈ G is defined to be strongly connected

from node i to node j if μ ≤ −ai,j

maxm�=i (−ai,m) for a given parameter 0 < μ < 1; (2) the

interpolation operator Ikk−1 is defined dynamically by a sophisticated algebraic formula
during the AMG coarsening process [17]; and (3) the matrix Ak−1 for a coarse grid
is computed by Ik−1

k AkI
k
k−1. The above process is repeated until all coarse grids are

generated.
Next, we show the convergence behavior of 2-level V-cycle multigrid for Prob-

lem 1. Let Es
k be the error reduction operator of the HLGS smoother and let

Ec
k = I − Ikk−1A

−1
k−1I

k−1
k Ak be the coarse grid correction operator. The error reduc-

tion operators of multigrid methods can then be written as Es
kE

cEs
k. The notation

Emg
k and Eamg

k denotes the error reduction operators of geometric multigrid and the
algebraic multigrid, respectively. The notation ‖·‖ denotes the usual discrete L2 norm
for any vector and matrix. The notation ‖·‖0 and ‖·‖1 represents the continuous L2

and H1 norms. Variants of these norms are specified using matrix notation in (3.17)
below.

In order to show convergence, the following auxiliary lemmas are needed.
Lemma 3.1. Given two symmetric matrices B1 and B2, assume that B1, B2 ≥ 0,

B1 is irreducible, and B2 is positive definite. The following properties hold.
1. There exists a positive eigenvector x+ of B−1

2 B1 such that

B−1
2 B1x

+ = ρ(B−1
2 B1)x

+.(3.3)

2. If αI−B−1
2 B1 is nonsingular and (αI−B−1

2 B1)
−1 ≥ 0, then ρ(B−1

2 B1) < α.
Proof. The existence of a positive eigenvector satisfying (3.3) is essentially a

generalization of the well-known Perron–Frobenius theorem [20, Theorem 2.7]. Using
(3.3), one can prove the second result using a standard argument of the Perron–
Frobenius theory; see Theorem 3.16 in [20].

Lemma 3.2. Let L and D be the matrices defined in (3.2). For any δ ≥ (1+ 2ε
h )hε ,

the matrix δ(D − L) −D is an M-matrix.
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Proof. Let us choose δ = hγ
ε for some γ > 0. From (3.2), D − L = ε

3 ×
tridiag[−2, 7,−2]. Therefore, we have

δ(D − L) −D = h× tridiag

[
−2γ

3
,
7γ

3
,
−2γ

3

]
− h× tridiag

[
1

6
− ε

3h
,
2

3
+

8ε

h
,
1

6
− ε

3h

]

= h× tridiag

[
−
(

2γ

3
+

1

6
− ε

3h

)
,
7γ

3
− 2

3
− 8ε

3h
,−

(
2γ

3
+

1

6
− ε

3h

)]
.

Since

7γ

3
− 2

3
− 8ε

3h
− 2

(
2γ

3
+

1

6
− ε

3h

)
= γ − 1 − 2ε

h
,

clearly, for γ ≥ 1 + 2ε
h , the matrix δ(D − L) −D is irreducible and weakly diagonal

dominant. This implies that the matrix δ(D − L) − D and (δ(D − L) − D)−1 are
positive definite. Moreover, since the off-diagonal entries of (δ(D − L) − D) are all
negative, the matrix δ(D − L) −D is an M-matrix for δ ≥ (1 + 2ε

h )hε .
Lemma 3.3. For h � ε, the error reduction matrix Es

k of the HLGS iterative
method for the matrix obtained from SDFEM discretization of Problem 1 satisfies the
following inequality:

‖Es
k‖ ≤ 3

ε

h2
min

{
3h√
ε
, 1

}
.(3.4)

Proof. With Ak from (3.1), Es
k is the product of the inverse of the block lower

triangular part of Ak and the strict block upper triangular part of Ak. By direct
computation, one has Es

k = G1G2, where

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I

0 D−1L
. . .

...
...

. . . I
0 (D−1L)n−2 · · · D−1L I
0 (D−1L)n−1 · · · (D−1L)2 D−1L

⎤
⎥⎥⎥⎥⎥⎥⎦ , G2 =

⎡
⎢⎢⎢⎣

0
D−1U

. . .

D−1U

⎤
⎥⎥⎥⎦ .

From the Gerschgorin circle theorem, the following inequalities hold for h � ε:

‖U‖ = ρ(U) ≤ ε,∥∥D−1
∥∥ = ρ(D−1) =

1

λmin(D)
<

1
h
3 + 10ε

3

≤ 3

h
.

Therefore, we have

‖G2‖ ≤ 3
ε

h
.(3.5)

Next, we estimate ‖G1‖. First, let us estimate
∥∥D−1L

∥∥. Considering D−1L = I −
D−1(D − L), we have

αI −D−1L = D−1(D − L) − (1 − α)I = (1 − α)

{
D−1

[
1

1 − α
(D − L) −D

]}
.

(3.6)
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Let us choose α satisfying 1
1−α = δ = (1 + 2ε

h )hε . Lemma 3.2 implies that the matrix
1

1−α (D−L)−D is an M-matrix. Consequently, ( 1
1−α (D−L)−D)−1 ≥ 0. Then using

(3.6) and the fact that D ≥ 0, it follows that the matrix αI −D−1L > 0. Since D is
also positive definite, by Lemma 3.1 we can conclude that

ρ(D−1L) < α = 1 − 1

δ
= 1 − ε

h

(
1

1 + 2 ε
h

)
< 1 − ε

3h
.(3.7)

Let x = (x1, x2, . . . , xN ) ∈ Vh, where xi ∈ RN and
∑N

i=1 ‖xi‖2
= 1. We have that

‖G1x‖ < ‖G1y‖ for y = (‖x1‖x+, ‖x2‖x+, . . . , ‖xN‖x+), where x+ is the Perron–
Frobenius eigenvector of D−1L. Therefore, the eigenvector corresponding to the max-
imum eigenvalue has the following form:

y = (0, β1x
+, β2x

+, . . . , βN−1x
+), where

N−1∑
i=1

β2
i = 1.

By direct computation,

‖G1y‖ ≤

⎧⎨
⎩

N∑
i=1

∥∥∥∥∥
i∑

k=1

βk(D
−1L)i−kx+

∥∥∥∥∥
2
⎫⎬
⎭

1/2

=

⎧⎨
⎩

N∑
i=1

(
i∑

k=1

βkl
i−k

)2
⎫⎬
⎭

1/2

,

where l = ρ(D−1L). Since l < 1 and
∑N−1

i=1 β2
i = 1, the inequalities

‖G1‖ ≤

⎧⎨
⎩

N−1∑
i=1

(
i∑

k=1

βk

)2
⎫⎬
⎭

1/2

≤
(

N−1∑
i=1

i

)1/2

≤ N(3.8)

and

‖G1‖ ≤
{

N−1∑
i=1

[
i∑

k=1

β2
k

][
i∑

k=1

(li−k)2

]}1/2

≤
{

N−1∑
i=1

i∑
k=1

(li−k)2

}1/2

≤
{

1

1 − l2

(
N−1∑
i=1

1 − l2i

)}1/2

≤
(

N

1 − l

)1/2

(3.9)

hold. Recall that l < 1 − ε
3h from (3.7). By combining (3.8) and (3.9), we have

‖G1‖ ≤ 1

h
min

{
3h√
ε
, 1

}
.(3.10)

Therefore, from (3.5) and (3.10), inequality (3.4) holds.
Lemma 3.4 (smoothing property). Let Es

k be the error reduction operator of the
HLGS iterative method on Vk. The following inequality holds:

‖Ak(E
s
k)‖ ≤ ε

(
1 + 3

ε

h2
k

min

{
3hk√
ε
, 1

})
.(3.11)
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Proof. By directly multiplying Ak and Es
k, we have

AkE
s
k =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 U − U(D−1L)D−1U −UD−1U

0 −U(D−1L)2D−1U
. . .

. . .

...
...

. . . −U(D−1L)D−1U −UD−1U
0 −U(D−1L)n−1D−1U · · · −U(D−1L)2D−1U −U(D−1L)D−1U
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

= diag[U ](T1 − T2G2),

where

T1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I

0 0
. . .

...
...

. . . I
0 0 · · · 0 I
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ and T2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 D−1L I

0 (D−1L)2
. . .

. . .
...

...
. . . D−1L I

0 (D−1L)n−1 · · · (D−1L)2 D−1L
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Using the same argument as in the proof of Lemma 3.3, one can show

‖T2G2‖ ≤ 3
ε

h2
k

min

{
3hk√
ε
, 1

}
.

Therefore,

‖AkE
s
k‖ ≤ ε

(
1 + 3

ε

h2
k

min

{
3hk√
ε
, 1

})

= ε

(
1 + 3

ε

h2
k

min

{
3hk√
ε
, 1

})
.

Using the inequalities in Lemmas 3.3 and 3.4, our multigrid convergence results
can be shown. In the following, estimates of the error reduction operators of GMG
and AMG are given in Theorems 3.5 and 3.7, respectively.

Theorem 3.5. Let Emg
k be the error reduction operator of the 2-level V-cycle

geometric multigrid in Algorithm 1 with the HLGS smoother and bilinear interpolation
prolongation on a uniform rectangular mesh �k for Problem 1. The following estimate
for Emg

k holds:

‖Emg
k ‖ ≤ c

ε

h3/2
for some constant c.(3.12)

Proof. First, in general, the error reduction operator of GMG can be written as

Emg
k = Es

kE
cEs

k = Es
k(I − Ikk−1(I − Emg

k−1)A
−1
k−1I

k−1
k Ak)E

s
k.(3.13)

For 2-level GMG, since Emg
k−1 = 0, we have

‖Emg
k ‖ =

∥∥Es
k(I − Ikk−1A

−1
k−1I

k−1
k Ak)E

s
k

∥∥
≤ ‖Es

k‖
∥∥(I − Ikk−1A

−1
k−1I

k−1
k Ak)E

s
k

∥∥ .(3.14)
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Let Pk : H1 �→ Vk be the projection operator defined by Bsd(Pku, v) = Bsd(u, v) for
all v ∈ Vk for all k. We have Ik−1

k Ak = Ak−1Pk−1 on Vk. Therefore, let es = Es
k(e)

for any e ∈ Vk ⊂ H1,∥∥(I − Ikk−1A
−1
k−1I

k−1
k Ak)E

s
k(e)

∥∥ =
∥∥(I − Ikk−1Pk−1)e

s
∥∥

≤ ch−2
k ‖(I − Pk−1)e

s‖0 ≤ ch−2
k

1√
ε
‖(I − Pk−1)e

s‖1

≤ ch−2
k

√
hk

ε
|es|1 by the a priori error estimation,

≤ ch−2
k

√
hk

ε2
‖AkE

s
k(e)‖0 by the regularity estimate,

≤ c
√
hk

(
1 + 3

ε

h2
k

min

{
3hk√
ε
, 1

})
‖e‖ by (3.11),

where c is a constant independent of h and ε. By combining the above estimate and
(3.4), inequality (3.14) implies

‖Emg
k ‖ ≤ c

ε

h3/2
min

{
h√
ε
, 1

}(
1 +

ε

h2
min

{
h√
ε
, 1

})
≤ c

ε

h3/2
.

Remark 3.6. From inequality (3.12), it is clear that the geometric multigrid
converges when hk � ε2/3. The above 2-level analysis can be generalized by mathe-
matical induction and estimation of (3.13). In [23], we have found that the multigrid
V-cycle converges when h �

√
ε.

Next, we analyze AMG convergence. The framework to prove the convergence of
algebraic multigrid is based on the smoothing assumption,

∃ α > 0 such that ‖Es
keh‖

2
1 ≤ ‖eh‖2

1 − α ‖eh‖2
2 for any eh ∈ Vk,(3.15)

and the approximation assumption,

min
eH∈Vk−1

∥∥eh − IhHeH
∥∥2

0
≤ β ‖eh‖2

1 with β > 0 independent with eh ∈ Vk,(3.16)

where

‖v‖2
0 = 〈Dv, v〉, ‖v‖2

1 = 〈Akv, v〉, and ‖v‖2
2 = 〈D−1Akv,Akv〉(3.17)

for any v ∈ Vk. For problems where the coefficient matrix is an M-matrix, Ruge and
Stüben have proved that 2-level AMG converges when both the smoothing assumption
and the approximation assumption hold for M-matrices. It has also been shown that
the smoothing assumption holds for the usual point Gauss–Seidel relaxation, and
the approximation assumption holds for some simple coarse grid selection algorithms
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with algebraic interpolation formula [17]. The classical algebraic multigrid coarsening
algorithm is designed to satisfy the approximation assumption based on the property
of algebraically smooth error, whereby the smooth errors vary slowly along the strong
connection directions.

For the discrete convection-diffusion Problem 1, the matrix obtained from SDFEM
discretization is nonsymmetric and not an M-matrix. As a result, the usual framework
of AMG analysis cannot be applied directly. In Lemma 3.2 of [14], Reusken has shown
that there is a constant c independent of ε and h such that ‖Ec‖ ≤ c for a two-grid
method with a coarse grid from semicoarsening and a matrix-dependent prolongation.
In the following, we take this as an assumption and estimate the error reduction rate
of AMG in terms of the parameter β in the approximation assumption (3.16) by using
(3.4) and (3.11).

Theorem 3.7. Assume the approximation assumption (3.16) holds. Then the
following inequality holds:

‖Eamg
k ‖ ≤

√
3c

ε2

h3
min

{
h√
ε
, 1

}
β√
h
,(3.18)

where c is some constant independent of ε and h.
Proof. For any e ∈ Vk, we have

‖Eamg
k (e)‖ = ‖Es

kE
cEs

k(e)‖ ≤ ε

h2
min

{
h√
ε
, 1

}
‖EcEs

k(e)‖ .(3.19)

Let ē = Es
k(e). Since Ker(Ec) = Rang(Ikk−1), we have

‖Ec(ē)‖ ≤ c min
eH∈Vk−1

∥∥ē− Ikk−1eH
∥∥ ≤ c

√
3

h
min

eH∈Vk−1

∥∥ē− Ikk−1eH
∥∥

0

≤ c

√
3

h
β ‖ē‖1 by approximation assumption (3.16),

≤
√

3

h
β(‖AkE

s
k(e)‖ ‖Es

k(e)‖)1/2

≤ c

√
3

h
β

(
ε

[
1 +

ε

h2
min

{
h√
ε
, 1

}][
ε

h2
min

{
h√
ε
, 1

}])1/2

‖e‖

by (3.4) and (3.11)

≤ c

√
3

h

ε

h
β ‖e‖ .

(3.20)

By combining (3.19) and (3.20), inequality (3.18) holds.
Remark 3.8. Inequality (3.18) can be rewritten as

‖Eamg
k ‖ ≤ c

ε

h3/2
min

{
h√
ε
, 1

}
βε

h2
= c

ε

h3/2

(√
ε

h

)α

β,

where α =
{

1, h<
√
ε,

2, h≥
√
ε.

Comparison with the estimate of Emg
k in (3.12) suggests that

algebraic multigrid will converge more rapidly than geometric multigrid if the param-
eter β in the approximation assumption is less than ( h√

ε
)α. Although we have not
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Table 3.1

Comparison of GMG and AMG for Problem 1 on uniform rectangular meshes.

ε 10−1 10−2 10−3 10−4

h = 1
8

5 4 2 2

h = 1
16

5 4 3 2

h = 1
32

5 5 4 2

(a) GMG iterative steps.

ε 10−1 10−2 10−3 10−4

h = 1
8

4 3 2 2

h = 1
16

4 3 3 2

h = 1
32

5 4 3 2

(b) AMG iterative steps.

yet estimated β for the interpolation operator from AMG coarsening, AMG converges
more rapidly than GMG, as shown in Table 3.1. Moreover, in Table 3.1, the facts that
both GMG and AMG converge more rapidly as ε becomes smaller and converge more
slowly as the mesh size h decreases are also consistent with our theoretical analysis.
In these numerical studies, the stopping tolerance is set to be

‖rm‖ ≤ 10−6 ‖r0‖ ,(3.21)

where r0 is the initial residual and rm is the residual at the mth iteration.
Remark 3.9. Since the row-sum

∑
j(ai,j) and column-sum

∑
i(ai,j) are equal for

the matrix Ak arising from Problem 1, the following equality holds:

‖e‖2
1 = (Ake, e) =

∑
i,j

ai,jeiej =
1

2

⎛
⎝∑

i,j

(−ai,j)(ei − ej)
2

⎞
⎠ +

∑
i

sie
2
i ,(3.22)

where si =
∑

j(ai,j). Recall that the algebraically smooth error es is characterized
by Es

k(es) ≈ es. Clearly, inequalities (3.4) and (3.11) imply

〈Akes, es〉 ≈ 〈AkE
s
kes, E

s
kes〉 ≤

c

h
‖AkE

s
k‖‖Es

k‖‖es‖2
0

≤ c
ε2

h3
min

{
3h√
ε
, 1

}(
1 +

3ε

h2
min

{
3h√
ε
, 1

})
‖es‖2

0

≤ c
ε2

h3
‖es‖2

0.

For h � ε2/3, ‖es‖2
1 � ‖es‖2

0 follows from the above estimate. Moreover, by (3.22),
this is equivalent to

1

2

∑
i

∑
j �=i−1,i+1

(−ai,j)(ei − ej)
2 +

∑
i

sie
2
i

�
∑
i

ai,ie
2
i + ai,i−1(ei − ei−1)

2 + ai,i+1(ei − ei+1)
2

⇒1

2

∑
i

∑
j �=i−1,i+1

(
−ai,j
ai,i

)
(ei − ej)

2 �
∑
i

e2
i +

1

4
(ei − ei−1)

2 +
1

4
(ei − ei+1)

2.

It can be seen from (3.1) that the weights
ai,j

ai,i
= O(1) for downstream indices j and

O( ε
h ) for upstream. Therefore, we can conclude that the smooth error tends to vary

more slowly in downstream directions than in upstream directions. Since the strong
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(a) φ = −45◦ on an adaptive mesh.
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(b) φ = 15◦ on an adaptive mesh.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) φ = 75◦ on an adaptive mesh.

Fig. 3.1. Coarse grid points selected by AMG coarsening.

connectivity of the matrix Ak is also along the downstream direction, we expect the
AMG coarsening to select a large number of downstream nodes, and the resulting
strategy tends to resemble one of semicoarsening.

In the following, we show the AMG coarse grids for the Problem 1 with ε = 10−3

and φ = −45◦, 15◦, and 75◦, where the connection parameter is μ = 0.25. Each fine
grid is generated by two adaptive mesh refinement steps from an initial 8×8 mesh and
the threshold value θ in (2.1) is set to 0.01. In Figure 3.1, the fine grid is plotted and
the coarse grid points, selected by AMG coarsening, are marked by ◦. Evidently, the
AMG coarsening process is sensitive to the flow direction mentioned in Remark 3.9
and generates meshes by means of semicoarsening. The numerical results in Table 3.1,
and Table 4.3 and 4.4 of the next section, shows that AMG converges more quickly
than GMG for Problem 1. This leads us to conjecture that the algebraically smooth
errors are well in the range of the AMG interpolation operator, i.e., the parameter
β in the approximation assumption is small. Analysis of the AMG interpolation and
approximation assumption will be considered in a future study.

For Problem 2, multigrid convergence is much harder to prove. In fact, the pres-
ence of a stagnation point leads to poor performance of multigrid methods when
the equation is discretized by a first order upwind scheme [10], [4]. However, many
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numerical studies have shown that GMG- and AMG-accelerated Krylov space meth-
ods, such as GMRES and BiCGSTAB, achieve nearly mesh-independent convergence
[10], [19]. Recently, Ramage has demonstrated that GMRES with GMG precondi-
tioning achieves mesh-independent convergence when SDFEM with an optimal stabi-
lization parameter is employed for discretization on uniform rectangular mesh [13]. In
the next section, GMG and AMG are used as a preconditioner for GMRES in some
numerical tests.

4. Numerical results. In this section, the performances of different linear
solvers, including GMG, AMG, and preconditioned GMRES, for the discrete convec-
tion-diffusion equation are compared on both adaptively refined meshes and uniform
meshes. We use both Problem 1 with φ = 0 and Problem 2. In both problems, (1.1)
is discretized by SDFEM with the stabilization parameter δT defined in (1.3) on both
a uniform 32× 32 mesh and an adaptively refined mesh for ε = 10−2, 10−3, and 10−4.
Here, a 32 × 32 mesh is generated from 3 uniform refinements starting with a 4 × 4
initial mesh, and the adaptively refined mesh is generated by refining an initial 8× 8
mesh 4 times, where full multigrid is used with those coarse meshes. The threshold
value θ in the maximum marking strategy is chosen such that elements in the regions
containing large errors can be refined for both problems.

For Problem 1, θ = 0.1, 0.01, and 0.001 for ε = 10−2, 10−3, and 10−4, respectively.
The adaptive meshes are shown in Figure 4.1. For Problem 2, θ = 0.1 for all ε and
the adaptive meshes are shown in Figure 4.2.

Since there are no natural “lines” in unstructured meshes or in the coarse meshes
of AMG, only point-versions of the Gauss–Seidel method are used for smoothing. Grid
points are numbered in lexicographical order where the y-coordinate is the primary
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(a) Mesh: ε = 10−2.
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(b) Mesh: ε = 10−3.
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(c) Mesh: ε = 10−4.

Fig. 4.1. Problem 1: Adaptively refined meshes after 4 refinements starting from an 8× 8 grid
for various ε.
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(a) Mesh: ε = 10−2.
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(b) Mesh: ε = 10−3.
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(c) Mesh: ε = 10−4.

Fig. 4.2. Problem 2: Adaptively refined meshes for various ε.
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key and the x-coordinate is the secondary key. The point Gauss–Seidel method asso-
ciated with this node ordering is called the forward horizontal Gauss–Seidel (forward-
HGS) method. Naturally, one can obtain another lexicographical order where the
x-coordinate is the primary key and the y-coordinate is the secondary key. The point
Gauss–Seidel method associated with this node ordering is then called the forward ver-
tical Gauss–Seidel (forward-VGS) method. The backward-HGS and backward-VGS
methods are obtained from the forward-HGS and forward-VGS methods, respectively,
by simply reversing the node ordering. In Problem 1, one step of forward-HGS is
used in both presmoothing and postsmoothing. In Problem 2, the smoother consists
of four point Gauss–Seidel sweeps (forward-HGS, forward-VGS, backward-HGS, and
backward-VGS). Hereafter, this smoother is abbreviated as ADGS (namely, alternat-
ing direction Gauss–Seidel).

Both problems are solved by GMG, AMG, GMRES, and right-preconditioned
GMRES with zero initial guess, and the stopping tolerance (3.21) is used here for these
iterative solvers. The preconditioned GMRES methods with HGS, ADGS, GMG, and
AMG preconditioners are denoted as GMRES-HGS, GMRES-ADGS, GMRES-GMG,
and GMRES-AMG, respectively. In the following tables, increases in level numbers
correspond to finer meshes, where level 1 represents the coarsest mesh in multigrid
solver. The notation “-” represents that the number of iterations is greater than 400.

First, Tables 4.1 and 4.2 show some details about the meshes used by GMG and
AMG. Table 4.1 shows the number of coarse grid points obtained starting from a
uniform 32 × 32 fine grid of elements. Listed under “GMG” is simply the number
of points in the hierarchical set of uniform coarse grids. Listed under “AMG” is
the number of grid points derived using the AMG coarsening strategy. Table 4.2
shows what happens when adaptive grid refinement is used. That is, GMG uses the
hierarchical set of grids obtained from adaptive refinement. In contrast, AMG starts
with the fine grid produced by grid refinement, but then it generates its own set of
coarse grids using its coarsening strategy. Table 4.1 shows that when AMG starts
with a uniform fine mesh, it generates more coarse grid points than are found in the
hierarchical coarse grids. On the other hand, Table 4.2 shows that if AMG starts
with a fine mesh obtained from adaptive refinement, the coarse grids it generates
often contain fewer points than are found in the adaptively refined coarse grids.

Tables 4.3–4.6 examine the iteration counts for both multigrid strategies as a
function of the levels at which the solver is used. Tables 4.3 and 4.4 show that both
solvers display “textbook” performance on Problem 1 for ε = 10−2. As ε is reduced,
however, performance of GMG decreases and becomes mesh-dependent, especially on
uniform grids. In contrast, the performance of AMG is robust and shows weaker

Table 4.1

Number of coarse grid points from uniform refinement and AMG coarsening.

GMG AMG

log10
1
ε

2, 3, 4 2 3 4

Level = 4 1089 1089 1089 1089

Level = 3 289 480 479 479

Level = 2 81 307 331 231

Level = 1 25 157 108 108

(a) Problem 1.

GMG AMG

log10
1
ε

2, 3, 4 2 3 4

Level = 4 1089 1089 1089 1089

Level = 3 289 499 507 513

Level = 2 81 294 283 289

Level = 1 25 174 164 169

(b) Problem 2.
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Table 4.2

Number of coarse grid points from adaptive refinement and AMG coarsening.

GMG AMG

log10
1
ε

2 3 4 2 3 4

Level = 5 797 1275 2102 797 1275 2102

Level = 4 410 649 1047 359 586 997

Level = 3 215 320 528 193 328 547

Level = 2 122 176 239 112 179 308

Level = 1 81 81 81 55 101 153

(a) Problem 1.

GMG AMG

log10
1
ε

2 3 4 2 3 4

Level = 5 1233 946 922 1233 946 922

Level = 4 625 632 823 597 496 445

Level = 3 305 373 387 338 291 258

Level = 2 150 196 199 205 168 165

Level = 1 81 81 81 121 95 97

(b) Problem 2.

Table 4.3

Problem 1: Iteration counts for GMG and AMG on uniform meshes.

Level GMG AMG

3 13 7

2 13 6

1 12 6

(a) ε = 10−2.

Level GMG AMG

3 27 8

2 26 7

1 16 6

(b) ε = 10−3.

Level GMG AMG

3 51 11

2 35 8

1 17 6

(c) ε = 10−4.

Table 4.4

Problem 1: Iteration counts for GMG and AMG on adaptive meshes.

Level GMG AMG

4 9 6

3 8 6

2 7 5

1 7 5

(a) ε = 10−2.

Level GMG AMG

4 22 6

3 24 6

2 18 6

1 17 6

(b) ε = 10−3.

Level GMG AMG

4 59 11

3 57 9

2 47 7

1 34 6

(c) ε = 10−4.

dependence on ε and mesh size. Problem 2, with a recirculating flow, is more difficult
for both solvers. On a uniform grid, GMG diverges for ε = 10−4, but AMG manages
to converge, as shown in Table 4.5. On adaptive meshes, as shown in Table 4.6, text-
book-like performance is achieved for both methods. However, AMG is considerably
slower than GMG, especially for small ε = 10−4 on the finest mesh. Our speculation
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Table 4.5

Problem 2: Iteration counts for GMG and AMG on uniform meshes.

Level GMG AMG

3 25 9
2 25 8
1 20 7

(a) ε = 10−2.

Level GMG AMG

3 179 11
2 135 21
1 43 11

(b) ε = 10−3.

Level GMG AMG

3 - 52
2 - 43
1 57 13

(c) ε = 10−4.

Table 4.6

Problem 2: Iteration counts for GMG and AMG on adaptive meshes.

Level GMG AMG

4 9 12
3 9 11
2 7 10
1 6 7

(a) ε = 10−2.

Level GMG AMG

4 27 26
3 21 26
2 24 21
1 20 17

(b) ε = 10−3.

Level GMG AMG

4 30 39
3 32 38
2 40 44
1 30 36

(c) ε = 10−4.

Table 4.7

Problem 1: Iteration counts for various GMRES methods on finest grids.

ε 10−2 10−3 10−4

GMG 13 27 51
AMG 7 8 11

GMRES 56 76 95
GMRES-HGS 24 26 36
GMRES-GMG 11 16 22
GMRES-AMG 6 7 9

(a) Iterative steps on uniform mesh.

ε 10−2 10−3 10−4

GMG 9 22 59
AMG 6 6 11

GMRES 83 146 -
GMRES-HGS 19 25 48
GMRES-GMG 8 13 27
GMRES-AMG 5 5 9

(b) Iterative steps on adaptive mesh.

is that this is caused by inadequacy of the grid transfer operator used in AMG and
the fact that the number of coarse grid points generated by AMG coarsening is only
about half the number of coarse grid points used in GMG, as shown in Table 4.2(b).
AMG interpolation can be improved by the recently developed AMGe methods [3].
As we will show below, performance can also be remedied using a Krylov space
acceleration.

Next, we compare the performance of preconditioned GMRES methods on both
the finest uniform mesh and the finest adaptive mesh. Tables 4.7 and 4.8 examine
the iteration counts for various versions of preconditioned GMRES. The Krylov space
acceleration of the convergence of GMG and AMG is observed in most cases. The
numerical results indicate that the AMG-preconditioned GMRES requires the fewest
iterations to converge, compared to GMG, AMG, and other versions of GMRES.
Particularly in Problem 2, despite the fact that AMG converges more slowly than
GMG, GMRES-AMG outperforms GMRES-GMG. This observation suggests that
AMG can be a good preconditioner for Krylov space solvers in solving complex flow
problems. Moreover, in Table 4.9, iterations of GMRES-AMG on each level of the
adaptive meshes are shown for ε = 10−2 · · · 10−4. It is clear that the convergence of
GMRES-AMG depends only weakly on the mesh size and ε on adaptive meshes.

Remark 4.1. Notice a difference between performance of GMG for Problem 1
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Table 4.8

Problem 2: Iteration counts for various GMRES methods on finest grids.

ε 10−2 10−3 10−4

GMG 25 179 -
AMG 9 11 52

GMRES 392 - -
GMRES-ADGS 33 54 73
GMRES-GMG 11 29 42
GMRES-AMG 6 8 15

(a) Iterative steps on uniform mesh.

ε 10−2 10−3 10−4

GMG 9 27 30
AMG 11 26 39

GMRES 199 - -
GMRES-ADGS 30 37 35
GMRES-GMG 7 12 12
GMRES-AMG 6 8 9

(b) Iterative steps on adaptive mesh.

Table 4.9

Iteration counts of GMRES-AMG for various ε on adaptive meshes.

Level ε = 10−2 10−3 10−4

4 5 5 9
3 5 5 8
2 5 5 6
1 4 5 6

(a) Iterative steps in Problem 1.

Level ε = 10−2 10−3 10−4

4 6 8 9
3 6 7 9
2 5 7 9
1 4 6 7

(b) Iterative steps in Problem 2.

here and the bounds shown in section 3 which suggest convergence is essentially
independent of ε. The latter result holds only in special settings and depends on
having a very accurate smoother. Similar ε-independent results for this problem
can be found in [9], [12], [14]. In contrast, the better performance of AMG is due
to matrix-dependent grid transfer operators and the superior choice of coarse mesh
identified by AMG coarsening, for which the smoother is better able to mimic the
flow characteristics.

5. Conclusion. In this work, we have explored solution strategies for the convec-
tion-diffusion equation using adaptive gridding techniques and a multigrid algorithm.
In section 3, the convergence analysis for both GMG with bilinear interpolation and
line Gauss–Seidel smoother and AMG with the same smoother not only shows that
GMG converges for Problem 1 when h � ε2/3, but also suggests that AMG converges
faster than GMG on uniform rectangular meshes. Although the AMG interpolation
and approximation assumption remain to be analyzed, our numerical results support
this observation on both triangular and rectangular uniform meshes. In addition,
numerical studies in section 4 show that the convergence rates of both GMG and AMG
deteriorates as the diffusion parameter ε decreases. To overcome this drawback, we
have found that Krylov space acceleration significantly improves the convergence of
both GMG and AMG, especially when ε is small. Moreover, GMRES-AMG converges
more rapidly than GMRES-GMG in all of our test cases on both uniform and adaptive
meshes.

With adaptive mesh refinement, GMG seems to be a natural choice because the
coarse grids, correction operators, and interpolations are ready to be used in GMG.
However, GMG convergence is slower than AMG for some examples of both tested
problems even though more coarse grid points are employed in GMG. On the other
hand, the most important strength of AMG is that it can be treated as a black-
box solver. There is no need to compute coarse grids and interpolations explicitly
in AMG. The facts that AMG is applicable to a wider range of applications, AMG
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converges for all of our test cases, and GMRES-AMG outperforms all other solvers in
our numerical studies make AMG very attractive for solving the SDFEM-discretized
convection-diffusion problems.

REFERENCES

[1] J. H. Bramble, D. A. Kwak, and J. E. Pasciak, Uniform convergence of multigrid V-cycle
iterations for indefinite and nonsymmetric problems, SIAM J. Numer. Anal., 31 (1994),
pp. 1746–1763.

[2] J. H. Bramble, J. E. Pasciak, and J. Xu, The analysis of multigrid algorithms for nonsym-
metric and indefinite elliptic problems, Math. Comp., 51 (1988), pp. 398–414.

[3] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel,

S. F. McCormick, and J. W. Ruge, Algebraic multigrid based on element interpolation
(AMGe), SIAM J. Sci. Comput., 22 (2000). pp. 1570–1592.

[4] P. M. De Zeeuw, Matrix-dependent prolongations and restrictions in a blackbox multigrid
solver, J. Comput. Appl. Math., 33 (1990), pp. 1–27.

[5] R. P. Fedorenko, A relaxation method for solving elliptic difference equations, USSR Comput.
Math. Phys., 1 (1961), pp. 1092–1096.

[6] B. Fischer, A. Ramage, D. Silvester, and A. J. Wathen, On parameter choice and iter-
ative convergence for stabilised discretisations of advection-diffusion problems, Comput.
Methods Appl. Mech. Engrg., 179 (1999), pp. 179–195.

[7] T. J. R. Hughes, M. Mallet, and A. Mizukami, A new finite element formulation for com-
putational fluid dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 54
(1986), pp. 485–501.

[8] D. Kay and D. Silvester, The reliability of local error estimators for convection-diffusion
equations, IMA J. Numer. Anal, 21 (2001), pp. 107–122.

[9] M. A. Olshanskii and A. Reusken, Convergence analysis of a multigrid method for a
convection-dominated model problem, SIAM J. Numer. Anal., 42 (2004), pp. 1261–1291.

[10] C. W. Oosterlee and T. Washio, An evaluation of parallel multigrid as a solver and a
preconditioner for singularly perturbed problems, SIAM J. Sci. Comput., 19 (1998), pp.
87–110.

[11] A. Papastavrou and R. Verfürth, A posteriori error estimators for stationary convection-
diffusion problems: A computational comparison, Comput. Methods Appl. Mech. Engrg.,
189 (2000), pp. 449–462.

[12] I. Persson, K. Samuelsson, and A. Szepessy, On the convergence of multigrid methods for
flow problems, Electron. Trans. Numer. Anal., 8 (1999), pp. 46–87.

[13] A. Ramage, A multigrid preconditioner for stabilised discretizations of advection-diffusion
problems, J. Comput. Appl. Math., 110 (1999), pp. 187–203.

[14] A. Reusken, Convergence analysis of a multigrid method for convection-diffusion equations,
Numer. Math., 91 (2002), pp. 323–349.

[15] M. C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid
techniques, Internat. J. Numer. Methods Engrg., 20 (1984), pp. 745–756.

[16] M. C. Rivara, Using longest-side bisection techniques for the automatic refinement of Delau-
nay triangulation, Internat. J. Numer. Methods Engrg., 40 (1997), pp. 581–597.
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