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Abstract

A modified full multigrid (FMG) method for the solution of the Navier—Stokes equations is presented. The method proposed is based
on a V-cycle omitting the restriction procedure for dependent variables but retaining it for the residuals. This modification avoids
possible mismatches between the mass fluxes and the restricted velocities as well as the turbulent viscosity and the turbulence quantities
on the coarse grid. In addition, the pressure on the coarse grid can be constructed in the same way as the velocities. These features sim-
plify the multigrid strategy and corresponding programming efforts. This algorithm is applied to accelerate the convergence of the solu-
tion of the Navier—Stokes equations for both laminar and high-Reynolds number turbulent flows. Numerical simulations of academic
and practical engineering problems show that the modified algorithm is much more efficient than the FMG-FAS (Full Approximation

Storage) method.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical solution of even laminar flows based on
the Navier—Stokes equations requires a large number of
grid points in order to capture complex flow phenomena
and to obtain a grid-independent solution. For turbulent
flows, Especially at high Reynolds number, even finer grid
spacing is necessary in order to fully resolve turbulent shear
layers. Among the iterative solution methods for the
discretized Navier-Stokes equations, the SIMPLE algo-
rithm [11]is probably the most widely used for the calcula-
tion of incompressible flows. Like most of the iterative
methods used in existing solution algorithms, its conver-
gence rate decreases rapidly with increasing grid density.

Among the acceleration techniques known, the multi-
grid method has been shown to be a very efficient and gen-
erally applicable procedure and has been applied to
SIMPLE-based solution methods. Previous investigations
have shown that it is efficient not only for laminar isother-
mal flows but also for the flows with strong heat transfer,
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e.g., buoyancy-driven flows in enclosures [3] and flows with
radiative heat transfer [4]. In many cases, speed-up factors
up to two orders were achieved, depending on the flow
problem and the number of grid levels used. However,
the application of the multigrid method to calculate turbu-
lent flows [18,19,9] results in much lower speed-up factors.

Multigrid solution procedures for the Navier—Stokes
equations mainly use FMG-FAS by Brandt [2], whereby
the values of the variables and residuals from the fine grid
are transferred to the next coarser level. The initial mass
fluxes through the control volume faces of the coarse grid
are restricted by the summation of the corresponding two
or four fine-grid mass fluxes. However, this technique results
in discrepancies between the mass fluxes and the restricted
velocities, as well as the turbulent viscosity v, and the turbu-
lence quantities (k and e, etc.). This leads to lower stability
and acceleration efficiency, or even divergence. To overcome
this problem, a modified multigrid algorithm is proposed, in
which only the residuals on the fine grid are transferred to the
next coarser one. The initial quantities on the coarse grid are
directly taken from the previous cycle. Therefore, no restric-
tion is required for variables but only for residuals. This
avoids the discrepancies and simplifies the multigrid strategy
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and with it, the program structure. Additionally, the pres-
sure-correction equation on the coarse grid can be con-
structed in the same way as those for the velocities.

The basic idea about the modified algorithm and its
application to heat transfer has been published by Yan
and Thiele [20]. In the present work, a general validation
involving higher-order convection schemes, various geom-
etries, different grid-types and turbulence models are given.
Laminar flows (2D cavity, backward-facing step, 3D
curved duct) as well as turbulent flows (2D model hill,
3D curved duct) are considered. The performance of this
algorithm is compared with that of the FMG-FAS
method.

It should be mentioned that the modified algorithm can
be considered as an application in flow simulation of the
nonlinear multigrid method (NLMG) of Hackbusch [6]
which has since been discussed in the book by Trottenberg
et al. [14].

2. Multigrid algorithm

Details of multigrid methods can be found in the book
by Hackbusch [6]. Here, a brief summary of the features
of the modified algorithm is given.

2.1. Two-grid algorithm

The basic multigrid features can be explained by the
two-grid algorithm, which consists of pre-smoothing,
coarse-grid correction, prolongation and post-smoothing.

During the pre-smoothing, v, relaxation sweeps of the
discretized equation Lh(d)”')A: /" on the fine grid / lead to
an approximate solution ¢". In general, this solution is
not converged and contains a residual R":

(@)

where L" denotes the appropriate operator based on d)” In
the FAS the approximate solution qb and residual R” are re-
stricted to the coarse grid H by

¥ = =

=/"+ R, (1

13/ 1R, (2)

Modified FMG-cycle

[ ] Converged solution
{©) Solution on the coarsest grid

O Pre—smoothing or Post—smoothing

where [1/7] and [I//] denote the appropriate restriction oper-
ators for the variable and the residual, respectively. Using
¢ as the starting solution, the approximate solution qS on
the coarse grid H is calculated by

(@) = " =1"(") - R", 3)
from which the coarse-grid correction is evaluated:
St = P — 1. (4)

In the modified algorithm, the initial quantity ¢ is taken
from the previous cycle instead of using the restriction
from the fine grid. The restriction of the residual remains
unaltered.

Once the approximate solution is obtained, the coarse-
grid correction can be calculated by Eq. (4). Since ¢ is ini-
tiated by ¢, when the residual on the fine grid vanishes,
Eq. (3) is identically satisfied and no correction to the
fine-grid solution is produced.

After the coarse-grid correction 8¢’ is obtained, it will
be prolongated to the fine grid and added to the previous
approximate solution:

8¢ = (118", @' = ¢" + 59" (5)

Here, [I7,] is an appropriate prolongation operator from
the coarse grid to the fine one.

In the post-smoothing, with ¢" as starting solution v,
relaxation sweeps of the discretized equation Lh(qﬁh) =f h
on the fine grid are carried out to obtain an improved
approximate solution.

2.2. Modified FMG with V-cycle

The two-grid algorithm procedure described above can
be further generalized to a sequence of grids using a recur-
sion procedure, which leads to the modified FMG with
V-cycle as shown in Fig. 1. After a convergent solution
on the coarsest grid is obtained, it is then extrapolated to
the next finer grid and serves there as the initialization.
When the solution on this grid is convergent, it is trans-
ferred to the next finer grid and so on, until the finest grid
is reached. With FAS, the starting solution on the coarse

Modifed V-cycle

(w) fine
~® ®
0 coarse

\\ Restriction
~ Prolongation

--= Variable taken from previous V—cycle

Fig. 1. Modified FMG-algorithm and V-cycle.
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grid is restricted from the finer grid, but in the modified
algorithm it is taken from the previous cycle.

In Fig. 1, the arrow *\, symbolizes the residual transfer
from the fine grid to the next coarser one. The arrow
holds for the prolongation of the coarse-grid correction.
The arrow — symbolizes the processes in which the vari-
able is taken from the previous cycle. vg is the number of
relaxation sweeps on the coarsest grid. Usually the solution
on the coarsest grid requires more relaxation sweeps than
the fine grid, as the coarsest grid correction should be as
exact as possible.

2.3. Multigrid algorithm for the Navier—Stokes equations

The numerical simulation of turbulent flows is based on
the Reynolds-averaged Navier-Stokes equations. A
description of the SIMPLE algorithm, finite-volume dis-
cretization and turbulence closures can be found in the
book by Ferziger and Peri¢ [5]. For the purpose of convey-
ing the essential features of the multigrid algorithm, the
coarse grid control volume is obtained by merging four fine
grid cells together in 2D cases, while it is constructed from
eight fine grid cells in 3D cases. As a consequence, the
residuals are restricted to the coarse grid by the summation
of the corresponding fine grid residuals. In the following
text the method description focuses only on the two-dimen-
sional case.

Applying the Gaussian divergence theorem, the integra-
tion of the governing equations over a finite volume such as
that shown in Fig. 2 results in a balance of convective and
diffusive cell-face fluxes and a volume-integrated net
source. Appropriate approximations for the convection
fluxes through the cell faces using the QUICK [8] or
MUSCL [7] as well as central differences for the diffusive
fluxes leads to a weighted-average formula in the following
form:

—ap¢p + Zanb¢nb +84 =1y (6)
nb

Here, nb denotes neighbours of the node P involved in the
polynomials, and ¢ stands for either the velocity compo-
nents u;, pressure correction p’ or turbulence quantities
e.g., k, e. The definitions for the coefficients ap and ayy,

Fig. 2. Finite volume and storage arrangement.

can be also found in [5]. For clarity, Eq. (6) for the linear-
ized momentum equations is rewritten as follows:

L{u;} + Di(p) + S{u;} = f{u}, (7)

where L{u;} represents the quantity —ap¢pp+ > dnpPnb-
D{p) and S{u;} denote the term for the pressure gradient
in the i-direction and the source term, respectively. f{u;}
is the right-hand side term, which becomes zero on the fin-
est grid while it may be non-zero on any coarse grid.

After performing v; outer iteration sweeps with the
SIMPLE algorithm on the fine grid 4, the intermediate
approximations of velocities #" and pressure p" are ob-
tained. In general, the intermediate solution is not yet con-
verged and the residuals R*{i/'} do not vanish

LM} + Dy (p") + S™ii} = fM{ui} + R i} (8)

In order to obtain the converged solution, the corrections
for velocity components and pressure are sought, namely,

L =il s o, P =i, o)
so that R"{u;} vanishes:
LYuf} + Dj(p) + $"{u} = f"{u;}. (10)

Subtracting Eq. (8) from Eq. (10) yields a relationship
which serves as a basis for multigrid coupling:

L'{ul} + DI + 5t}
= Ui} + SMal} + DI} — Rt} (1)

constant

For the scalar quantities ¢ such as the turbulent kinetic en-
ergy k and its dissipation rate e, the analogous equation
can be written as

9"} + S{"} = L{¢"} +5{¢"} — R'{§"} . (12)

constant

Applying the multigrid method, the corrections can be cal-
culated on the coarse grid H. The equations now read for
the velocity component u;

L'} + D7 (p) + S™{a"y = " {us}
= L'}y + D{p"} + 8" (i} — I/ IR" (i} (13)

and for the scalar ¢ (¢ =k, ¢, etc.)

L"{¢"} +5"{¢"}
= "¢} =L"{9"} + "{9"} — [ IR'{¢"} . (14)

constant

In the above equations, the variables &, p* and ¢ are the
initial quantities for velocity components, pressure and the
scalar quantities while &, p and ¢" denote their interme-
diate approximations on the coarse grid, respectively. In the
FAS algorithm 2, p' and ¢ are restricted from the finer
grid, but in the modified algorithm they are taken directly
from the previous cycle. On the right-hand side, the terms
(MR {a} and [I7)R"{¢"} are the restricted residuals
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obtained from the fine grid, whereas the other terms are
calculated on the coarse grid based on the starting quanti-
ties. The right-hand side terms remain unchanged within
the iterative process on the coarse grid.

The handling of the pressure-correction equation within
the multigrid concept deserves more attention. The pres-
sure-correction equation in the SIMPLE algorithm can
be written in a general form as

L{p'} + O0n =P} (15)

where the right-hand side term f{p’} is zero on the finest
grid, but may be non-zero on the coarse grid. Q,, is the
mass imbalances as follows:

O,, = N + niy, + niy, + nig. (16)
Here, the suffixes w, s, e and n refer to the west, south, east,
and north faces of the 2D control volume, respectively. 7
denotes the mass flux through the volume faces. Once the
pressure corrections are obtained, they are used to correct
the velocity components and the mass fluxes. This leads to
a new mass imbalance Q" , which is defined as the residual
R'{p'}):
h i

R'{p'} = 0, (17)
The pressure-correction equation on the coarse grid can
then be expressed as

L{p"} + 0 = 0% — [ITR"{p'} = f"{p'}, (18)

where @g is the mass imbalance taken from the previous
cycle.

As Eq. (18) is solved with the right-hand side term /7 {p’}
on the coarse grid H, the global mass flux should be cor-
rected with the sum of f{p’} through the entire domain,
ie, Y f H1p'}. In cases of open through-flow geometries,
we assume that the sum of mass fluxes at the inlet boundary
is equal to the sum of mass fluxes at the outlet on the finest
grid. On the coarse grid, S f7{p’} should be added to the
sum of inlet mass fluxes to satisfy the global conservation
condition.

After performing v; SIMPLE-relaxation sweeps with the
initial quantities #”, p"” and ¢, the coarse grid solution
including the coarse-grid pressure is obtained. Therefore,
the coarse-grid corrections can be calculated by
Sull =o' —al

i i [

spft =i =, 89" = ¢ — 9",
(19)
which are then prolongated to the fine grid using

8¢" = [17,]3¢" (20)

du! — [14Jou"

Sp! = [13,]8p",
and added to the previous intermediate approximations:

W=l s, P =p 8y, @ =@+ s¢".  (21)
Here, A is an under-relaxation factor, 0 < A < 1, which has
been found useful in some cases of complex three-dimen-

sional simulations.

It should be mentioned that the coarse-grid correction
dp™ for pressure is calculated directly by Eq. (19), whereby
the p and p denote the approximate pressure and its initial
value, respectively. This procedure differs from those
described in [9,12], where the so-called correction of pres-
sure correction (8p’) is solved. Moreover, the corrections
to the mass fluxes on the fine grid are evaluated from the
velocity corrections du’ and added to the mass fluxes
obtained previously.

The boundary conditions on all grid levels are treated in
the same manner as the in any single grid algorithm.

In general, the calculations of turbulent flows require a
higher grid density to capture the large variations associ-
ated with strong turbulent shear. They require special
attention in the treatment of the turbulent viscosity v,
and the source terms:

o The turbulent viscosity v, is fixed on the coarse grid. This
means, once the converged solution on the coarse grid is
obtained, v, remains unchanged in the next multigrid
cycle.

e The right-hand side term *{¢} in Eq. (14) is evaluated
as follows: if ff{ {¢} >0, it is included in the right-hand-
side term S¥{¢"}; otherwise it is included in the diago-
nal coefficient via a division by ¢*. This commonly-used
implementation method enhances the diagonal domi-
nance of the solution matrix, thereby increasing the
robustness.

e As the coarse-grid corrections could be negative, it is
possible that the turbulence quantities can assume
unphysical negative values. To prevent this, a realizabil-
ity constraint is applied, whereby a positive value is
enforced using ¢ = |¢" + A[I"]5¢"|.

Experience has demonstrated that such treatment results
in a high stability of the overall algorithm.

3. Application to laminar and turbulent flows

The multigrid algorithms described above have been
implemented in a general-purpose computer code to solve
fluid flow and heat transfer in complex geometries. The
program is based on a non-orthogonal, co-located grid
arrangement and the SIMPLE algorithm. The momentum
interpolation proposed by Rhie and Chow [13]is employed
for calculating the cell-face mass fluxes to avoid pressure
oscillations.

For reliable validation of the multigrid method, this
work focuses on higher-order convection schemes (QUICK,
MUSCL) as well as on various grids (non-uniform, Carte-
sian, highly skewed, non-orthogonal). Their influences are
evaluated for 2D flow configurations such as the driven cav-
ity, backward-facing step and model hill as well as 3D cases.
For comparison and to demonstrate the convergence
behaviour of the present multigrid procedure in the simula-
tion of turbulent flows, the k—e turbulence model is applied
in both the high-Re formulation with wall function and the
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low-Re formulation of Lien and Leschziner [10]. The later is
referred to LL k—e model in the following.

In all examples, a solution is considered to be conver-
gent when the mass, momentum, and turbulence quantity
residuals on the finest grid fall below 10~ corresponding
to their scales. In the case of open through-flow geometries,
these scales refer to the inlet fluxes, whereas for closed cav-
ities the lid velocities and cavity depth are used as reference
scales. The under-relaxation factors are set to 0.7 for the
velocity components, 0.3 for pressure and 0.7 for turbu-
lence quantities, respectively. The smoothing numbers vy,
v, and vy are fixed to 3, 2 and 8, respectively. All 2D calcu-
lations are run on a Silicon Graphics workstation, and a
Cray-T3E has been used for the 3D flow problems. The
multigrid performance is demonstrated by CPU-time in
(s) and speed-up factor. The CPU-time required for the sin-
gle grid (SG) calculation serves as reference for the speed-
up factors. To validate the performance of the modified
multigrid algorithm, all 2D cases are additionally calcu-
lated with the FMG-FAS for comparison.

3.1. Lid-driven flow in a 2D square cavity

Due to its established role as a test of computational
performance, the lid-driven flow in a 2D square cavity

was selected to evaluate the multigrid methods. A sequence
of five non-uniform grids ranging from 16 x 16 to 256 x 256
cells is adopted to resolve flow features.

Computations have been carried out for Re = 100, 400
and 1000 with the MUSCL and QUICK schemes. Table
1 shows the CPU-time for SG calculation. The results indi-
cate that the QUICK scheme needs less CPU-time than the
MUSCL scheme to obtain a convergent solution. At
Re =100 the QUICK scheme needs about 10% less CPU-
time than the MUSCL scheme. At Re =400 and 1000 on
the fine grids, the difference in CPU-time reduces to less
than 5%. The SG procedure requires more CPU-time with
increasing Reynolds number on the coarse grids, while on
the finer grid the opposite trend is observed. This is in
agreement with the observations in [4,9,12].

With application of the multigrid technique, the results
in Table 2 show a remarkable gain in the speed-up factor
when the grid density increases. In general, the speed-up
factor declines slightly as Reynolds number grows, which
is consistent with the findings in [16,9]. The modified
FMG procedure underlines its potential for the finer grids
with 128 x 128 and 256 x 256 cells where the speed-up fac-
tors are about 40% higher compared to the FMG-FAS in
this work. For comparison, the speed-up factors from [9]
are listed in this table. On the coarse grid the present

Table 1
CPU-time for SG on various grid level for laminar flow in 2D square cavity
Grid MUSCL QUICK
Re =100 Re =400 Re = 1000 Re =100 Re =400 Re =1000
16> 0.12 0.17 0.20 0.11 0.16 0.180
322 1.24 1.40 1.44 1.08 1.20 1.35
64° 21.99 20.71 19.72 19.86 18.72 18.26
1282 598.29 520.07 468.73 567.45 492.23 444.68
2562 10994.89 8454.69 7581.09 9689.09 8204.58 7573.64
Table 2
Comparison of speed-up factors in terms of multigrid algorithm, grid level with QUICK scheme for laminar flow in 2D square cavity
Grid Mod. FMG FMG-FAS 9]
Re =100 400 1000 100 400 1000 100 400 1000
162 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.8
322 2.9 2.2 1.8 2.8 2.1 1.6 39 2.5 1.8
64> 12.2 11.0 9.3 11.1 8.9 6.6 19.9 10.6 6.2
1282 60.8 65.8 59.9 49.1 49.6 40.9 43.7 26.5 16.8
2562 228.6 288.8 283.5 180.0 187.4 169.0 - - -
Table 3
Comparison of the maximum negative velocity on the vertical cavity centerline by the modified FMG, QUICK and MUSCL for laminar flow in 2D square
p g y y y q
cavity
Grid MUSCL QUICK HYBRID [16]
Re =107 Re =10 Re =107 Re =10’ Grid Re =107 Re =10
162 —0.193 —0.250 —0.191 —0.260 - - -
322 —0.206 —0.322 —0.206 -0.321 402 —0.202 —0.258
64> -0.211 —0.363 —0.211 —0.367 802 —0.209 —0.338
1282 -0.212 —0.381 —0.212 —0.379 160? -0.212 —0.381
256> -0.213 —0.382 —0.213 —0.380 3207 -0.213 —0.387
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(@

speed-up factors of FMG-FAS is a little lower, but with
four grid levels they are much higher than those in [9].

Table 3 shows that the velocities along the vertical cav-
ity centerline are in agreement with Vanka’s results [16]
calculated with a HYBRID scheme. This indicates that
higher-order convection schemes yield results closer to
the “grid-independent” values with fewer grid cells.

3.2. Lid-driven laminar flow in 2D skewed cavity

Many engineering applications require highly skewed
grids which may influence the solution efficiency. There-
fore, the skewness effect is investigated for a cavity flow
with 27° side wall angle. The non-uniform grids, ranging
from 16> to 1282 cells, and the stream lines at Re = 400
are displayed in Fig. 3.

Table 4 shows the speed-up dependence on the Rey-
nolds number, convection schemes and multigrid algo-
rithms. The results indicate that the modified FMG is
about 40% more efficient than the FMG-FAS. This behav-
iour is in agreement with the results for square cavity flow
with orthogonal grid. Hence, the grid skewness has no
clear influence on the efficiency of the modified FMG.
Compared to the investigation by Lien and Leschziner
[9], the speed-up factor is up to about two times higher
for the FMG-FAS.

Table 4
Comparison of speed-up factors with respect to multigrid algorithm, grid

(b)

Fig. 3. (a) Geometry and four grids; (b) streamlines for laminar flow at Re =400 in a 2D skewed cavity.

Table 5

Comparison of CPU-time and speed-up factor for backward-facing step
flow at Re =100 for different multigrid procedures and grid levels with
QUICK scheme

Grid CPU-time Speed-up
SG Mod. FMG-FAS Mod. FMG-FAS [12]
FMG FMG
40 x 20 090 0.90 0.90 1.00  1.00 -
80 x 40 1286 2.54  4.05 506  3.17 -
160 x 80 360.27  9.20 19.71 38.92 18.27 9.85
320x 160 6840.36 40.79 - 167.68 — -

------------ MUSCL, single grid ,

max Residual

—— MUSCL, 3-level mod. FMG
— —- MUSCL, 3-level FMG-FAS

40 60 80 100 120
cycle

Fig. 5. Convergence histories in terms of cycle number for backward-
facing step flow, 160 x 80 cells on the finest grid.

Table 6
CPU-time for the SG and multigrid algorithms and turbulence models on
various grids for turbulent flow over a model hill

level with QUICK for laminar flow in a 2D skewed cavity Grid e LL ke

Grid  Mod. FMG FMG-FAS o SG  Mod. FMG-FAS SG  Mod. FMG-FAS
Re =100 Re=400 Re=100 Re=400 Re=100 Re =400 FMG FMG

16 1.00 1.00 1.00 1.00 - - 50 x 20 32 32 3.2 45 45 45

322 3.28 2.19 2.98 2.05 33 2.1 100 x 40 306 151 236 475 149 19.6

(7 13.53 11.27 11.76 8.75 15.5 11.7 200 x 80 772.8 783 1644 923.5 859 110.5

128 61.32 70.53 49.36 50.37 27.2 31.3 400x 160  12468.9 324.6 1029.5 14361.0 396.1 774.6

?///%

-

Fig. 4. The coarsest grid and streamlines for backward-facing step flow at Re = 100.
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Table 7 1 01
Speed-up factors in terms of multigrid algorithm, turbulence model and ' ' ' '
grid level, MUSCL scheme for turbulent flow over a model hill

Grid k—e LL k—e E
Mod. FMG FMG-FAS Mod. FMG FMG-FAS E ‘ ;

50 x 20 1.00 1.00 1.00 1.00 E ............ MUSCL, single grid E

100 x 40 1.93 1.29 3.18 241 E

200%x80  9.87 470 10.75 8.36 é — MUSCL, 4-level mod. FMG ]

400x 160  38.41 12.11 36.25 18.54 ——- MUSCL, 4-level FMG-FAS |

40 60 80 100
cycle

3.3. 2D backward-facing step flow

In this configuration, the inlet is half of the total channel Fig. 6. Convergence histories in terms of cycle number for turbulent flow
height H while the length of the computational domain is  over a model hill, FMG with the LL k— model.

170. 160 T T T
136. 140
0 120 °
Lo e — 100
y e — y 80
68. K 60
" R 40
’/\ 20
0. +——————>= 0 L R
-80. -40. 0. 40. 80. 120. 160. 200. 240. 280. 320. -1.0 0.0 1.0 2.0 3.0 4.0
X (a) u
170.7 160 T T T T o
136.1 140
S — 120 °
102 e — 100
/\—’\
y b Y 80
[ e — 60
7&
’/\
34"& 2
] > 20
o N ol L
-80. -40. 0. 40. 80. 120. 160. 200. 240. 280. 320. -1.0 0.0 1.0 2.0 3.0 4.0
X (b) U
170'7 160
©w{ 140
120 °
102. 4 100
y r ] Y 80
68. 60
///\
]
34-://& "
] 20
o == oL -
-80. -40. 0. 40. 80. 120. 160. 200. 240. 280. 320. -1.0 0.0 1.0 2.0 3.0 4.0
X (c) 8]
170. 160 T
www{ ] 140
120 °
102. 4 100
y 1 ] Y 80
68.*//\ 60
e
34‘,’/\ 40
] /E\ 20
0. ol
-80. -40. 0. 40. 80. 120. 160. 200. 240. 280. 320. -1.0 0.0 1.0 2.0 3.0 4.0
X (d) U

Fig. 7. Streamlines and U-profile comparison at x = 0 for turbulent flow over a model hill on various grids: (a) 25 x 10; (b) 50 x 20; (c) 100 x 40; (d)
200 x 80.
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10H, to assure the Neumann condition at the outlet. A
parabolic velocity profile is prescribed at the inlet. Non-
uniform grids ranging from 40 x 20 to 160 x 80 cells are
adopted, as seen in Fig. 4, where the coarsest grid and
streamlines are displayed.

The computation for Re =100, based on the mean
velocity at the inlet and the channel height, has been car-
ried out with the QUICK scheme. For comparison, the
same under-relaxation factors used by [12] are applied,
namely, 0.7 for velocities and 0.2 for pressure correction.

The results support those obtained from the cavity case.
Here, the speed-up factor for the modified FMG is up to
80% higher than that in the work of Orth [12], where the
FMG-FAS was used. With four grid levels, the modified
FMG procedure displays its efficiency by the speed-up fac-
tor of 167 and less than 41 s CPU-time as shown in Table 5.

It should be mentioned that with the FMG-FAS the
solution is not convergent using four grid levels. This is
probably due to the discrepancies between the restricted
velocities and initial mass fluxes on the coarse grid, for
instance, at the inlet where the parabolic velocity profile
is prescribed.

The convergence histories shown in Fig. 5 support this
conclusion, as the modified FMG procedure without veloc-
ity restriction clearly demonstrates a stable and efficient
convergence. Behind the step a large recirculation area is
produced. The reattachment length is 3.20H, which is in
good agreement with [12].

3.4. Turbulent flow over a model hill

The turbulent flow over a model hill [1] at Re = 6000
based on the hill height is calculated using the standard
k—e model as well as the LL k—e model. For validation, four
non-uniform grids ranging from 50 x 20 to 400 x 160 cells
are used. Two separate grid systems are adopted, with
respect to the high-Re and low-Re turbulence model
formulations.

Table 6 shows the CPU-time required for a convergent
solution for the SG technique, the different multigrid algo-
rithms and various grids. When using the multigrids, the
coarsest grid level is 50 x 20 cells. Table 7 shows the corre-
sponding speed-up factors. With four grid levels, the speed-
up factors of 38.4 and 12.1 can be obtained for the modi-
fied FMG and the FMG-FAS algorithms, respectively.

Fig. 6 shows the convergence histories. As seen here,
using the modified FMG, the maximal residual decreases
faster than that of the FMG-FAS algorithm. The reason
is most probably the non-matching between the flow field
and the restricted turbulence quantities on the coarse grid
for the FMG-FAS. In particular, the turbulent viscosity
does not correspond to the turbulent kinetic energy and
its dissipation rate. As seen from these results, the modified
algorithm has better performance than the standard one,
but the convergence rate is not as monotonic as that
observed in the laminar cases. The stream function plots
arising from the calculation with the k—e model and the
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Fig. 8. Dimensions of bend and coordinate definition sketch.

modified multigrid method, and the comparison of the
numerical U-velocity profiles with experimental data at
x =0 on the various grid levels are given in Fig. 7. On
the fine grid, the numerical results show reasonable agree-
ment for the very challenging flow case.

3.5. Curved duct flow with strong secondary motion

This subsection reports on the performance of applying
the modified FMG to a three-dimensional curved duct flow
which has been investigated experimentally by Taylor et al.
[15]. The flow enters a duct of square cross section with a
dimension of 40 mm x 40 mm, followed by a 90° bend of
mean radius 92 mm, with upstream and downstream tan-
gent lengths of 0.3 m and 2.0 m, respectively, as shown in
Fig. 8.

For numerical simulation, a block profile of the mean
velocity is applied at the inlet. It is set to 1.98 cm/s and
1.00 m/s for the laminar and turbulent flows, respectively,
corresponding to the Reynolds numbers of 790 and
40,000. The non-uniform grids with 128 x 64 x 64 cells
on the finest level are divided into eight blocks in the i
direction and three grid levels are considered. The standard
k—e model and the LL k—e model are applied in conjunction
with the MUSCL scheme. The computations have been

Table 8
Speed-up factor for laminar and turbulent duct flow, with 128 x 64 x 64
grid cells

Re =790 Re = 40,000
Laminar k—e LL ke
7.61 7.90 7.96
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Fig. 9. Convergence histories in terms of cycle number for laminar flow in
a curved duct.

carried out on a CRAY-T3E. The parallel algorithm
adopted is available in [17]. In this case, the under-relaxa-
tion factor 4 =0.7 in Eq. (21) is used.

The speed-up factors are shown in Table 8. For the lam-
inar flow, a speed-up factor of 7.7 has been obtained. Fig. 9
displays the convergence histories. The development of the
streamwise velocity is depicted in Fig. 10, where the agree-
ment between the calculation and experiment is very good.

A speed-up factor of up to 7.96 has been obtained for
the turbulent flow simulation. The profiles of the stream-
wise velocity are shown in Fig. 11, which are plotted from
the results for the LL k—e model. The tangential growth of
the turbulent boundary layers is slower than that for the
laminar flow and thus the boundary layers at Xz = —0.25
are thinner, where the core fluid is displaced further toward
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the inner wall surface than for laminar results. The core
fluid remains at the inner wall, with no evidence of low
momentum fluid being accumulated at this surface, until
0 = 60°. Thereafter the rapid creation of a region of low
streamwise momentum at the inner wall is evident and con-
tinues to the exit of the bend with corresponding migration
of core fluid toward the outer wall.

4. Conclusion

A modified multigrid algorithm has been developed in
this work. The performance of the algorithm is assessed
based on tests with five different flow problems. Based on
the results of the computations, the following conclusions
can be drawn:

e For calculations with a low number of grid levels (less
than three), the speed-up achieved with the modified
FMG algorithm is comparable with that of the standard
method. However, when three or more levels are used
the modified method achieves considerably faster
speed-up factors (roughly 40% more than the standard
method).

e The speed-up factors obtainable with the standard
FMG-FAS deteriorate strongly in turbulent flow simu-
lations. The modified FMG algorithm however does not
exhibit this disadvantage; comparable speed-up factors
are observed both for laminar and turbulent flow simu-
lations. This has considerable significance for industrial
applications.

e Due to the manner in which the mass flux, turbulence
and pressure-correction variables are handled, the
implementation is significantly more simple than the
standard multigrid method.

The reason for these beneficial properties lies in the
modified formulation. In the standard method, the initial
mass fluxes through the control volume faces of the coarse
grid are usually restricted by the summation of the corre-
sponding two or four fine-grid mass fluxes. This always
leads to a mismatch with the restricted velocities. By keep-
ing the coarse grid mass fluxes and velocities from the pre-
vious cycle, this problem does not occur with the modified
method. The same technique is applied to the turbulence
variables, which avoids a further problem with the original
multigrid algorithm. In the standard approach, incorrect
values of the eddy viscosity (which is defined in terms of
these variables) contributed to the poor performance for
turbulence simulations.
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