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SUMMARY

The present work investigates the efficiency and the accuracy of a multigrid (MG) technique for solving
the Navier–Stokes/Boussinesq equations. In order to improve convergence, an accelerated full multigrid
(AFMG) method with the iterative red and black successive over-relaxation smoother (RBSOR) is utilized.
The AFMG method consists in introducing an accelerated parameter �>0 in the standard full multigrid
procedure (FMG). A well-known benchmark problem is used to demonstrate the effectiveness and the
accuracy of the method. Solutions are compared with those of the literature and show excellent agreement.
Results for Prandtl numbers Pr = 12.5, 6.8, 0.71 and 0.025 are also presented in this paper. It is observed
that the mean heat transfer rate is minimum for Pr = 0.71 and maximum for Pr = 0.025. Copyright q
2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The application of computational fluid dynamics (CFD) methods in engineering problems shows
that for sufficient accuracy, large grid sizes are needed for capturing thin boundary layer proper-
ties, detecting high heat transfer spots or resolving small eddy regions. On relatively fine grids,
standard single-grid iterative methods suffer unfortunately from poor convergence characteristics.
The reason is that iterative methods can efficiently smooth out only those Fourier error compo-
nents of wavelengths smaller than or comparable to the grid size. In contrast, multigrid (MG)
methods aim at covering a wider spectrum of wavelengths through relaxation on various grids [1].
The applications of MG methods to solve elliptic partial differentiation equations iteratively have
shown practically optimum convergence characteristics [2–4]. The computation times are directly
proportional to the number of grid points, allowing very fine grids to be used.
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In this paper a finite volume, full multigrid method (FMG) applied to natural convection flows
is presented. The smoother used in the FMG procedure is the iterative red and black successive
over-relaxation scheme (RBSOR). In order to accelerate convergence, an acceleration factor is
implemented yielding to the accelerated full multigrid (AFMG) procedure [5, 6].

In the next section the numerical approach is briefly described, followed by the description of
the RBSOR scheme and the AFMG method. Next, the implementation of the AFMG algorithm
is validated by a relatively recent CFD benchmark problem: a time-dependent buoyancy-driven
flow in a tall cavity with aspect ratio 8:1 [7]. Results related to different Prandtl numbers are also
presented. In the final section the most important findings of this study are summarized.

2. NUMERICAL APPROACH

The non-dimensional governing equations for an incompressible flow, corresponding to the
continuity, Navier–Stokes and energy equations, under the Boussinesq approximation, are given by
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where ui = (u, v), p and � are the velocity, the kinematic pressure and temperature, respectively.
Here �i j is the Krönecker symbol. The non-dimensional parameters are Rayleigh number (Ra)
and Prandtl number (Pr) defined as Ra = g��TW 3/�� and Pr = �/�, where � is the kinematic
viscosity, � the thermal diffusivity, W the characteristic length, g the gravitational acceleration,
� the isobaric coefficient of thermal expansion and �T = Th−Tc the temperature difference between
the hot and cold walls.

The unsteady Navier–Stokes and energy equations are discretized by a second-order time
stepping of finite difference type. Non-linear terms in Equation (2) are treated explicitly with
a second-order Adams–Bashforth scheme. Convective terms in Equation (3) are treated semi-
implicitly and diffusion terms in both Equations (2) and (3) are treated implicitly. Note that the
advective terms in Equation (2) are discretized using a QUICK third-order scheme [8], while a
second-order central differencing scheme is used to discretize advective terms in energy equation
(3). A finite-volume method [6] is used to discretize the Navier–Stokes and energy equations. In
order to get round the difficulty that resides in the strong velocity–pressure coupling, we choose
to use a projection method [9, 10]. Equations to solve are the equation of energy, the equation
related to an intermediate velocity field and a Poisson pressure correction equation. The two first
equations are solved using the red and black successive over-relaxation method (RBSOR), while
the Poisson equation is solved using an AFMG.
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3. ACCELERATED FULL MULTIGRID METHOD

3.1. RBSOR scheme

The successive over-relaxation method (SOR) is a method of solving a linear system of equations
derived by extrapolating the Gauss–Seidel method. One SOR iteration permits to find a new
approximation of the solution Xnew

i, j on node (i, j) by knowing the approximation Xold
i, j of the

previous iteration

Xnew
i, j = Xold

i, j − �
Ri, j

aP
(4)

Here, � is the relaxation parameter and Ri, j is the residual term defined as

Ri, j = aW Xnew
i−1, j + aS X

new
i, j−1 + aP X

old
i, j + aE X

old
i+1, j + aN X

old
i, j+1 − Sci, j (5)

where Sc is the source term and W , E , S and N are the four immediate neighbours of point P
on node (i, j).

By combining the two techniques red–black ordering and successive over-relaxation one can
significantly improve the rate of convergence. The algorithm divides the unknowns into two groups:
red and black (sometimes called odd and even). With red–black ordering, the equation system is
divided into alternating red and black points in a checkerboard fashion as shown in Figure 1. The
red–black SOR method consists, in a typical iteration, to perform in a first step an update on all
red cells. The second step consists to update the remaining black cells, by using the red cells that
have just been updated.

3.2. AFMG method

The main idea of the multigrid method can be understood by considering the simplest case of a
two-grid method. Suppose we are trying to solve the linear elliptic Poisson equation:

��k = Sk (6)

Figure 1. Red–black checker-pointing for SOR.
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where Sk is the source term, �k the exact solution and k the grid level. Note that level 1 corresponds
to the coarsest grid and level k to the finest mesh.

After �prek RBSOR pre-smoothing iterations with a relaxation factor �pre
k applied to (6) one

obtains an intermediate value �̃k satisfying

��̃k − Sk = Rk (7)

where Rk is the corresponding residual. Substituting (6) in (7) one gets

�(�̃k − �k) = Rk (8)

Here (�̃k − �k) is the error or the correction in �̃k . Equation (8) can then be rewritten as

�	k = Rk (9)

So, the exact solution 	k = �̃k − �k permits one to determine the exact �k field by the following
correction:

�k = �̃k − 	k (10)

The multigrid method consists of determining the correction field 	k on the coarser grid k − 1.
For that purpose only the residual Rk is transferred from grid k to grid k − 1. This interpolation
is obtained by a restriction operator I k−1

k . Thus, on grid k − 1, we solve

��k−1 = I k−1
k (Rk) (11)

The above equation is solved with the iterative RBSOR method (�prek−1 iterations and a relaxation
parameter �pre

k−1). The obtained field �k−1 is thereafter interpolated toward the grid k by the inter-

mediary of a prolongation operator I kk−1. After �postk−1 RBSOR post-smoothing iterations (�= �post
k−1)

of equation

�I kk−1(�k−1) = Rk (12)

the obtained field is injected in 	k and the new field �new
k is updated by the relation

�new
k = �̃k − 	k (13)

The method outlined above describes one V-cycle on two grids. Generally more than two grids are
employed. In that case, after �prek−1 RBSOR iterations (�= �pre

k−1) on grid k − 1, an approximate

solution �̃k−1 is obtained and the residue Rk−1 is transferred to the coarser grid k − 2 and so on.
When the coarsest grid is reached, the reverse procedure starts, in which corrections are evaluated
and transferred to the finer grid. The exact solution �1 is calculated on the coarsest grid and
extrapolated to grid 2. After �post2 iterations (with a relaxation factor �post

2 ) of the prolongated

field we obtain the correction to add to the prevailing approximate solution �̃2, and so on, until
reaching the finest grid.

We have implemented our multigrid procedure in a so-called full multigrid (FMG) fashion [2].
Indeed, before starting V-cycles, the source term is calculated on the coarsest grid permitting the
determination of an exact solution �1. This solution is progressively interpolated from the coarsest
to the finest grid, and used there as a starting guess for the V-cycle procedure (see Figure 2).
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Figure 2. Schematic presentation of the FMG procedure.

The convergence of the result is established when the residue Rk on the finest grid becomes lower
than 10−6.

In order to optimize the number of V-cycles, it is demonstrated [6] that convergence can be
substantially improved by just multiplying the correction field in the MG procedure by some
suitable factor �>0 (AFMG method)

�new
k = �̃k − �	k (14)

The chosen value of � is discussed in the next paragraph.

4. RESULTS AND DISCUSSION

4.1. Numerical validation

In June 2001, a special session dedicated to understanding the fluid dynamics of a differentially
heated cavity of aspect ratio A= 8 was held at the First MIT Conference on Computational Fluid
and Solid Mechanics [7]. The primary objective for this special session was to identify the correct,
i.e. best time-dependent benchmark solution for the 8:1 thermally driven cavity at particular values
of Rayleigh and Prandtl numbers. As a test case, we consider this benchmark problem to validate
our code. Thus, in this paragraph, results related to Ra = 3.4× 105, Pr = 0.71 and an aspect
ratio A= 8 are presented. The number of control volumes applied on the finest grid are 96× 480
corresponding to six levels in the multigrid calculation. The coarsest grid level consisted of 3× 15
number of control volumes. The number of smoothing sweeps (�prek , �postk ) and the relaxation

factors (�pre
k , �post

k ) on each grid level k are summarized in Table I. Grids are uniform in the
vertical direction and non-uniform in the horizontal direction with smallest cells near hot and cold
walls. Note that the grids are obtained with Cartesian meshes.

We ran our computations on three different grids with increasing refinement: 24× 120 nodes
(coarse), 48× 240 nodes (medium) and 96× 480 nodes (fine). Preliminary tests on grid 24× 120
have been carried to determine an optimal value of factor �. A mean value of �= 3.75 were
retained. Figure 3 shows time histories of V-cycles for � = 1 (classical FMG) and �= 3.75
(AFMG). It clearly appears that the AFMG method reduces in a significant manner the number
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Table I. Smoothing sweeps and over-relaxation factors used for the 8:1
differentially heated problem.

Grid level Grid size �pre �post �pre �post

6 96× 480 1.9 1.0 1 2
5 48× 240 1.9 0.1 3 1
4 24× 120 1.9 0.1 3 1
3 12× 60 1.9 0.1 3 1
2 6× 30 1.9 0.1 3 1
1 3× 15 1.6 1.6 — —

Figure 3. Time history of V-cycles performed with FMG and AFMG.

of V-cycles. Hence, a value of �= 3.75 was kept for computations on all grids. Calculations have
been carried until a non-dimensional time of t = 1500.

During the flow solution, time history data at point 1 of co-ordinate (x, y) = (0.1810, 7.3700)
(see Reference [7] for details) were reported at each time step. Table II provides a summary
of the time-history data for the three grid resolutions. The time averaged value is given along
with the amplitude of the oscillations for each variable presented in the table. The time average
was integrated over 10 complete time periods near the end of the calculation. The table presents
information at point 1 for the velocity in the x-direction (u1), the velocity in the y-direction
(v1), the temperature (�1) and the Nusselt number (Nu). The corresponding fluctuating x-velocity,
y-velocity, temperature and Nusselt number are �u1, �v1, ��1 and �Nu. The period, 
�, is the
period associated with the temperature oscillation at point 1. In order to assess the comparative
performance of the present results to the benchmark test, Nu, �Nu and 
� are shown in Table III
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Table II. Numerical results at Point 1 (x = 0.1810, y = 7.3700) on different grids.

Grid resolution

Quantity 24× 120 48× 240 96× 480

u1 5.01203× 10−2 5.37072× 10−2 5.61780× 10−2

�u1 7.16083× 10−4 3.59755× 10−2 5.43379× 10−2

v1 4.52762× 10−1 4.59891× 10−1 4.61412× 10−1

�v1 1.12033× 10−3 5.28620× 10−2 7.67392× 10−2

�1 2.68107× 10−1 2.66011× 10−1 2.65582× 10−1

��1 5.93518× 10−4 2.88141× 10−2 4.26336× 10−2

Nu 4.61383 4.58802 4.58179
�Nu 1.70366× 10−4 4.98058× 10−3 7.10453× 10−3


� 3.7440 3.4400 3.4160

Table III. Comparison of benchmark solutions with some contributors to
the MIT session held in June 2001.

First author [7] Nu �Nu 
�

Johnston 4.56700 0.007130 3.4220
Davis 4.57960 0.007000 3.4120
LeQuéré 4.57946 0.007100 3.4115
Westerberg 4.58700 0.007600 3.4100
Present study 4.58179 0.007104 3.4160

Table IV. Grid sizes and the corresponding execution times.

Grid size �t Steps Method Total CPU (s) CPU (s)/step

12× 120 0.032 46 875 AFMG 702 0.015
RBSOR 12 636 0.27

48× 240 0.016 93 750 AFMG 8296 0.088
RBSOR 605 474 6.46

96× 480 0.008 187 500 AFMG 63 355 0.338
RBSOR 15 930 000∗ 84.96

∗Estimated.

and compared with some of the contributors to the MIT session. Our presented results have been
calculated on a grid 96× 480 for 1465.84�t�1500 (10 periods) and show good agreement with
those of the available literature.

4.2. Time performances

The CPU times, measured on a Dell Dimension 4600 system with a single 2.9 GHz processor
(specFP95= 71), corresponding to RBSOR and AFMG methods are compared in Table IV. The
improvement factors in execution time, when comparing the single grid and the MG algorithm,
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Table V. Comparison of the normalized algorithm timing metric �AT.

First author [7] �AT Ranking

Johnston 1.00 1/(26)
Christon II 1.31 2/(26)
Christon III 1.35 3/(26)
Present study 2.11 4/(26)
Matsumoto 2.34 5/(26)
Bruneau 3.40 6/(26)
Chan I 12.77 10/(26)
LeQuéré 90.17 24/(26)
Ingberg 2010.14 26/(26)

Figure 4. Phase portrait for Pr = 0.025 on grid 96× 480 at point 1.

are of 18, 73 and 251 for grids 12× 120, 48× 240 and 96× 480, respectively. By introducing the
factor �

� = CPUFMG

CPUAFMG

which represents the improvement factor in execution time between FMG and AFMG method,
a value of � = 1.74 was obtained. In order to reflect the computational cost required to obtain the
solution of the benchmark problem, a normalized algorithm timing has been developed [7] and is
defined as

�AT =
(

ms

node · step · steps

period

)
· specFP95
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Figure 5. Streamlines for decreasing Prandtl numbers on grid 96× 480: (a) Pr = 12.5; (b) Pr = 6.8;
(c) Pr = 0.71; and (d) Pr = 0.025.

The normalized performance metric is scaled in a relative sense so that the minimum value of
�AT is unity. The normalized performance metric is presented in Table V and compared with some
of the contributors to the MIT session. Our metric is ranked fourth and shows that the numerical
method presented in this paper is sufficiently fast to study natural convection problems on relatively
fine grids in acceptable CPU times.

4.3. Effect of Prandtl number

In this section, results for higher and lower Prandtl numbers are presented. The Rayleigh number is
maintained at Ra = 3.4× 105, and three Prandtl numbers are considered, i.e. Pr = 12.5 (Glycerin),
Pr = 6.8 (Water) and Pr = 0.025 (Mercury). All computations were carried out on the 96× 480
grid described above and the time steps for each Prandtl number were �t = 5× 10−2, 4× 10−2 and
2× 10−3, respectively for Pr = 12.5, 6.8 and 0.025. The flow is steady for both cases Pr = 12.5
and 6.8 and unsteady for Pr = 0.025. For this Prandtl number, the phase portrait of Figure 4
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Figure 6. Temperature isolines for decreasing Prandtl numbers on grid 96× 480: (a) Pr = 12.5;
(b) Pr = 6.8; (c) Pr = 0.71; and (d) Pr = 0.025.

corresponding to 1420�t�1500 clearly shows the presence of several frequencies in the spectrum
which indicates that the regime is chaotic. The isolines of Figure 5 for the stream-function and
Figure 6 for the temperature illustrate the increasing of vortex dynamics when the Prandtl number
decreases. In Figure 7 is plotted the average Nusselt number versus the investigated Prandtl
numbers. The value increases from the value 4.581 for the periodic solution of Pr = 0.71 to the
values 4.783, 4.684 and 4.693 for the three other solutions of Pr = 0.025, 6.8 and 12.5, respectively.
Hence, beyond the four considered Prandtl numbers, the heat transfer rate is minimum for Pr = 0.71
and maximum for Pr = 0.025.

5. CONCLUSION

The main features of an AFMG method for the solution of an 8:1 differentially heated enclosure
have been presented. The performed test calculations demonstrate the potential of the MG technique
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Figure 7. Average Nusselt number versus Prandtl number.

for enabling accurate solutions. It has also proven to be a good acceleration technique for both
steady and unsteady flows. The method has been applied to study effects of Prandtl number in a
tall cavity of aspect ratio A= 8. Three different regimes are observed at Ra = 3.4× 105: a steady
state for Pr = 12.5 and 6.8, a periodic state for Pr = 0.71 and a chaotic state for Pr = 0.025.
Comparing with the classical FMG method (�= 1.0), the AFMG method (�= 3.75) is more
efficient. An improvement factor of � = 1.74 is observed between the two methods. Comparing
with the RBSOR scheme, the AFMG method can reach speed-up in the CPU time up to 251 times,
depending on the mesh size.
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