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SUMMARY

A new prolongator is proposed for smoothed aggregation (SA) multigrid. The proposed prolongator
addresses a limitation of standard SA when it is applied to anisotropic problems. For anisotropic problems,
it is fairly standard to generate small aggregates (used to mimic semi-coarsening) in order to coarsen only
in directions of strong coupling. Although beneficial to convergence, this can lead to a prohibitively large
number of non-zeros in the standard SA prolongator and the corresponding coarse discretization operator.
To avoid this, the new prolongator modifies the standard prolongator by shifting support (non-zeros within
a prolongator column) from one aggregate to another to satisfy a specified non-zero pattern. This leads to
a sparser operator that can be used effectively within a multigrid V-cycle. The key to this algorithm is that
it preserves certain null space interpolation properties that are central to SA for both scalar and systems
of partial differential equations (PDEs). We present two-dimensional and three-dimensional numerical
experiments to demonstrate that the new method is competitive with standard SA for scalar problems, and
significantly better for problems arising from PDE systems. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Anisotropic phenomena arise in many physical simulations for a variety of reasons. These
phenomena may reflect the underlying physical model, such as is the case with anisotropic material
laws in elasticity or anisotropic heat conduction. Anisotropies can also arise from discretizations
with stretched grids, where the discretization is intentionally chosen coarser in one spatial direction
than the other to capture certain physical characteristics (e.g. boundary layers in fluid flow).
Such problems pose a challenge to standard algebraic multigrid (AMG) methods, and have been
considered in [1–3] and recently in [4], among others.

The basic problem is that errors in certain directions are not smoothed by standard relaxation
techniques and so it is inappropriate to coarsen in these directions. Thus, the general AMG goal
is to detect directions where smoothing is not effective and to take this into account within the
algorithms for both coarsening and generating prolongators.

The actual detection of directions where smoothing is ineffective remains an active research
topic and is not the focus of this paper. Here, we use fairly standard algorithms. Instead, this paper
addresses properly choosing the prolongator in the context of smoothed aggregation (SA). Standard
SA proceeds by first selecting a set of aggregates (coarsening the problem) and then improving the
derived simple prolongator via a prolongator smoothing step. One limitation is that the sparsity
pattern of the final prolongator is essentially fixed once the aggregates are chosen. Within stan-
dard isotropic elliptic partial differential equations (PDEs), this limitation is not a problem as the
resulting prolongator sparsity pattern gives rise to a method that is effective in cost per iteration
and convergence rate. For anisotropic problems, however, small aggregates are often created to
improve convergence, and this may give rise to a sparsity pattern considerably too dense to yield a
cost-effective method. To rectify this, we consider a new algorithm that modifies the standard SA
prolongator so that it conforms to a desired sparsity pattern. The key feature to this new algorithm
is that it preserves the exact interpolation of near null space components. The near null space is the
kernel of the ‘principal part’ of the underlying PDE neglecting any Dirichlet boundary conditions
present [2]. This exact interpolation of near null space components is an essential feature of SA
multigrid and is considered necessary for mesh-independent convergence rates. The basic idea is to
perform a standard prolongator smoothing step to generate a standard SA prolongator. As in classical
SA, this yields a prolongator whose basis functions are of low energy, where the energy of a basis

function � is defined as 1
2

√
�TA� and A is the symmetric positive-definite discrete differential

operator. The low-energy property of coarse basis functions is needed to ensure mesh-independent
convergence, see [5]. Owing to small aggregates, however, there may be too many non-zeros in
the prolongator. To prevent this, the prolongator is modified by moving support among columns
to sparsify the prolongator. The key idea is that this modification maintains the exact interpolation
of the null space while not significantly altering the energy of the basis functions. Local orthogo-
nalization of the tentative prolongator basis functions can be incorporated in the shifting process,
and the resulting shifted prolongator preserves the interpolation properties for the near null space.

The remainder of this paper is organized as follows. Section 2.1 gives a brief overview of
multigrid principals. Section 2.2 gives a summary of SA AMG. Section 2.3 discusses how coarse
basis function support would ideally be chosen for anisotropic problems. Our new approach is
detailed in Section 3. Section 4 discusses how SA AMG traditionally addresses problems with
anisotropic properties and the associated shortcomings. Numerical experiments are presented in
Section 5. Some concluding remarks are given in Section 6.
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2. BACKGROUND

In this section, we give an overview of multigrid, as well as a brief introduction to SA multigrid
applied to symmetric positive-definite operators.

2.1. Multigrid overview

Multigrid methods (e.g. [6–8]) are among the most efficient iterative algorithms for solving the
linear system, Ax= f , associated with elliptic PDEs. The basic idea is to damp errors by utilizing
multiple resolutions in the iterative scheme. High-energy (or oscillatory) components are efficiently
reduced through a simple smoothing procedure, while the low-energy (or smooth) components are
tackled using an auxiliary lower-resolution version of the problem (coarse grid). The idea is applied
recursively on the next coarser level. An example multigrid iteration is given in Algorithm 1 to
solve

A1u1= f1 (1)

Algorithm 1 Multigrid V-cycle consisting of Nlevels grids to solve A1u1= f1.
1. {Solve Akuk = fk}
2. procedure multilevel(Ak, fk,uk,k)
3. if (k �=Nlevels) then
4. uk = Ŝk(Ak, fk,uk);
5. rk = fk−Akuk ;
6. Ak+1= PT

k Ak Pk ;
7. uk+1=0;
8. multilevel(Ak+1, PT

k rk,uk+1,k+1);
9. uk =uk+Pkuk+1;
10. uk = Ŝk(Ak, fk,uk);
11. else
12. uk = A−1

k fk ;
13. end if

The two operators needed to specify the multigrid method fully are the relaxation (smoothing)
procedures, Ŝk , k=1, . . . ,Nlevels, and the grid transfers, Pk , k=1, . . . ,Nlevels−1. Note that Pk is
an interpolation operator that transfers grid information from level k+1 to level k. The coarse grid
discretization operator Ak+1 (k�1) is specified by the Galerkin product

Ak+1= PT
k Ak Pk (2)

The key to fast convergence is the complementary nature of these two operators. That is, errors
not reduced by Ŝk must be well interpolated by Pk . While constructing multigrid methods via
algebraic concepts presents certain challenges, AMG can be used for several problem classes
without requiring a major effort for each application. In this paper, we focus on a strategy to
determine the Pk’s based on algebraic principles. It is assumed that A1 and f1 are given.
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2.2. SA multigrid

We describe a special type of AMG called SA multigrid. For a more detailed description, see
[2, 5, 9, 10]. Specifically, we focus on the construction of SA interpolation operators Pk (k�1).

The interpolation Pk is defined as a product of a given prolongator smoother Sk and a tentative
prolongator P̂k

Pk = Sk P̂k, k=1, . . . ,Nlevels−1 (3)

The basic idea of the tentative prolongator is that it must accurately interpolate certain near null
space (kernel) components of the discrete operator Ak . Once constructed, the tentative prolongator
is then improved by the prolongator smoother in a way that reduces the energy or smooths the
basis functions associated with the tentative prolongator. Constructing P̂k consists of deriving its
sparsity pattern and then specifying its non-zero values. The sparsity pattern is determined by
decomposing the set of nodal blocks of degrees of freedom (DOFs) associated with Ak into a set
of so-called aggregates Ai

k , such that

Nk+1⋃
i=1

Ai
k ={1, . . . ,Nk}, Ai

k∩A
j
k =∅, 1�i< j�Nk+1 (4)

where Nk denotes the number of nodal blocks on level k. A nodal block refers to the submatrix
that couples all DOFs defined at the same grid node. For example, a nodal block in the case of
a scalar Laplace-type problem would contain mk =1 DOF. In two (three)-dimensional elasticity a
nodal block would consist of mk =2(3) DOFs per node, respectively.

The ideal i th aggregate Ai
k on level k would formally be defined by

Ai
k ={ ji }∪N( ji ) (5)

where ji is a so-called root nodal block in Ak and

N( j)={d :‖(Ak) jd‖ �=0 and d �= j} (6)

is the neighborhood of nodal blocks, (Ak) jn (corresponding to neighboring mesh nodes) that share
a non-zero off-diagonal block entry with node j . While ideal aggregates would only consist of
a root nodal block and its immediate neighboring blocks, it is usually not possible to entirely
decompose a problem into ideal aggregates. Instead, some aggregates that are a little larger or
smaller than an ideal aggregate must be created. Figure 1 gives an illustration of aggregates on an
unstructured grid.

For this paper, each nodal block contains mk DOFs, where for simplicity we assume that the
nodal block size mk is constant throughout Ak . Thus, the dimension of Ak is nk =Nkmk . As we
will frequently refer to these dimensions in the following, we separately list them in Table I for
clarity. AggregatesAi

k can be formed based on the connectivity and the strength of the connections
in Ak . For an overview of serial and parallel aggregation techniques, we refer to [5, 10].

Although we speak of ‘nodal blocks’ and ‘connectivity’ in an analogy to finite element discretiza-
tions here, it shall be stressed that a node is a strictly algebraic entity consisting of a list of DOFs.
In fact, this analogy is only possible on the finest level; on coarser levels, k>1, a node denotes a
set of DOFs associated with the coarse basis functions whose supports contain the same aggregate
on level k−1. Hence, each aggregate Ai

k on level k gives rise to one node on level k+1, and
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Figure 1. Aggregates of nodes on an unstructured discretization of a half sphere. Gray regions indicate
aggregates containing all nodes in and adjacent to that region.

Table I. Overview of dimensions.

k Level index; k=1 indicates fine grid
nk Number of scalar equations
mk Size of a nodal block (degrees of freedom per node)
Nk Number of nodal blocks in the system on level k
nns Dimension of the near null space
ai Number of degrees of freedom in aggregate Ai

each DOF associated with that node is a coefficient of a particular basis function associated with
Ai

k [11]. Populating the sparsity structure of P̂k derived from aggregation with appropriate values
is the second step. This is done using a matrix Bk ∈Rnk×nns which represents the near null space
of Ak . For a scalar PDE, the dimension of the near null space is nns=1 and consists of a constant
function, while for a vector-valued PDE corresponding to two (three)-dimensional elasticity, nns=3
(nns=6) and the near null space consists of two (three) constants and one (three) linear functions,
respectively. In an elasticity problem, these functions are referred to as rigid body translations
and rotations. On the finest mesh, it is assumed that Bk is given and that it satisfies Ãk Bk =0,
where Ãk differs from Ak in that Dirichlet boundary conditions are replaced by natural boundary
conditions.

Tentative prolongators and a coarse representation of the near null space are constructed simul-
taneously and recursively to satisfy

Bk = P̂k Bk+1, P̂T
k P̂k = I, k=1, . . . ,Nlevels−1 (7)

This guarantees exact interpolation of the near null space by the tentative prolongator. To do this,
each aggregate is assigned a set of columns of P̂k with a sparsity structure that is disjoint from all
other columns. We define Imk ∈Ram×nk

Imk (i, j)=

⎧⎪⎨
⎪⎩
1 if i+

m−1∑
d=1

ad = j, 1�i�am

0 otherwise

(8)
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to be the mth aggregate-wise row partition of the identity Ik ∈Rnk×nk . Then,

Bm
k = Imk Bk, m=1, . . . ,Nk+1 (9)

is an aggregate-local block of the near null space. Bk is restricted to individual aggregates using (9)
to form

B̄k =

⎛
⎜⎜⎜⎜⎜⎜⎝

B1
k

B2
k

. . .

BNk+1
k

⎞
⎟⎟⎟⎟⎟⎟⎠

(10)

and an aggregate-local orthonormalization problem

Bi
k =Qi

k R
i
k, i=1, . . . ,Nk+1 (11)

is solved by applying a QR algorithm. The resulting orthonormal basis Qi
k forms the values of a

block column of

P̂k =

⎛
⎜⎜⎜⎜⎜⎜⎝

Q1
k

Q2
k

. . .

QNk+1
k

⎞
⎟⎟⎟⎟⎟⎟⎠

(12)

whereas the coefficients Ri
k define the coarse representation of the near null space

Bk+1=

⎛
⎜⎜⎜⎜⎜⎜⎝

R1
k

R2
k

...

RNk+1
k

⎞
⎟⎟⎟⎟⎟⎟⎠

(13)

The exact interpolation of the near null space, (7), is considered to be an essential property of an
AMG grid transfer. It implies that error components in the near null space (which are not damped
by conventional smoothers) are accurately approximated (and therefore eliminated) on coarse
meshes. Unfortunately, (7) is not sufficient for an effective multigrid cycle. In addition, one needs
to also bound the energy of the grid transfer basis functions. To do this, the tentative prolongator
is improved via the prolongator smoother. The usual choice for the prolongator smoother is

Sk =
(
I − 4

3�k
D−1Ak

)
(14)

where D=diag(Ak) and �k is an upper bound on the spectral radius of the matrix on level k,
i.e. �(D−1Ak)��k . This corresponds to a damped Jacobi smoothing procedure applied to each
column of the tentative prolongator.
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It can be easily shown that (7) holds for the smoothed prolongator when the near null space Bk
is actually the true null space of Ak . In particular,

Pk Bk+1 = (I −�D−1Ak)P̂k Bk+1

= (I −�D−1Ak)Bk

= Bk as Ak Bk =0 (15)

where �=4/(3�k). It is emphasized that once P̂k is chosen, the sparsity pattern of Pk is defined. In
standard SA multigrid with well-shaped aggregates, the sparsity pattern of Pk leads to an attractive
method. However, there are situations where it is beneficial to consider non-standard aggregates
(e.g. for anisotropic problems). In these situations the sparsity pattern of Pk does not lead to a
practical method.

With A1, B1 and b1 given, the setup of the standard isotropic SA (ISA) multigrid hierarchy can
be performed using (4), (11), (7), (3) and finally (2). For a more detailed discussion of SA we
refer to [9, 10].

2.3. SA with non-standard aggregates

We give a simple two-dimensional example to illustrate details on the support of coarse-level basis
functions, as these play a crucial role in understanding the new approach presented in Section 3.

Using the smoothed prolongator (3) and the Galerkin product (2) results in a coarse grid
discretization of the following form:

Ak+1= P̂T
k (I −�D−1Ak)

TAk(I −�D−1Ak)P̂k (16)

If we neglect the D’s (as they do not alter the sparsity pattern)

Ak+1= P̂T
k q(Ak)P̂k (17)

where q(Ak) is a third degree polynomial. This implies that nodal blocks (Ak+1)i j are non-zero

for any aggregates Ai
k and A

j
k (or nodal block columns (P̂k)·i and (P̂k)· j ) that are less than a

distance of 3 in the graph of Ak from each other.
In Figure 2(a), a symbolic visualization of aggregates and support of basis functions on a finite

element grid as it is achieved with standard ISA is given. Note that the aggregates represent the
support of basis functions in the tentative prolongator P̂1, while the visualized support of basis
functions in the final prolongator results from the prolongator smoothing step (3).

Each multiplication by the matrix Ak extends the support by 1 in each direction. Thus, while
q(Ak)P̂k extends support by 3 in each direction, the resulting function still interacts with only
the eight neighboring aggregates in Figure 2(a). This implies that the coarse matrix block row
associated with the central aggregate will contain nine non-zero block entries corresponding to its
immediate neighbors and itself. However, because the diameter of each aggregate is 3, the distance
between the central aggregate and the non-neighboring aggregates is greater than 3; hence, no
non-zero is created with non-neighboring aggregates.

Unfortunately, for an anisotropic problem, the support of basis functions in Figure 2(a) is not
optimal. For the moment, let us consider the simple anisotropic Laplace equation �uxx +uyy =
f,��1, with strong couplings in the vertical and weak couplings in the horizontal direction.
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aggregates

support of smoothed prolongator

(a) (b) (c)

Figure 2. Symbolic visualization of aggregates and support of coarse grid basis functions: (a) isotropic
behavior of standard smoothed aggregation multigrid; (b) desired behavior in anisotropic case where
strong connections exist in vertical direction; and (c) anisotropic semi-coarsening aggregates with standard

prolongator smoother leading to prohibitively high complexities.

Standard point-wise smoothing would damp error components in the vertical direction much better
than in the horizontal direction. Therefore, error components in the horizontal direction cannot be
expected to show smoothness and therefore coarsening in this direction is inappropriate. It becomes
obvious that coarse basis function support should be laid out as depicted in Figure 2(b), such that
the vertical direction is coarsened but not the horizontal direction. Further, basis function energy
1
2

√
�TA� is dominated only by the y-derivative term as ��1. Thus, the tentative prolongator only

needs to be smoothed in the y-direction by extending support vertically.
Creating the anisotropic aggregates in Figure 2(b) also implies modifying the prolongator

smoother, or else significant undesired overlap between non-neighboring aggregates appears as
depicted in Figure 2(c). In Figure 2(c) the same aggregates are shown in conjunction with
the support of a standard smoothed prolongator basis function. The problem, however, is that
the central aggregate has 20 aggregates that are a distance 3 or less from it. This implies
that a nine-point operator on the fine mesh grows to a 21-point operator on the coarse mesh
according to (17). This leads to a multigrid cycle that has prohibitively high cost in storage, setup
and cost per iteration. This cost is commonly measured with the so-called multigrid operator
complexity

c=
∑Nlevels

k=1 nz(Ak)

nz(A1)
(18)

where nz() denotes the total number of non-zero entries in a matrix.
To overcome the described shortcomings of Figure 2(c), we would like to modify the prolongator

smoother step in a way that the supports look like that shown in 2(b). It is easy to see that the
coarse mesh stencil remains a nine-point operator with these basis functions, thus leading to an
attractive method in terms of storage, setup and cost per iteration. The main difficulty and topic of
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this contribution now is to find a method to modify the prolongator smoother to obtain smoothed
prolongator basis function support as depicted in Figure 2(b) while maintaining exact interpolation
of the near null space.

3. SMOOTHED AGGREGATION MULTIGRID WITH BASIS FUNCTION SHIFTING

As a first step, a desired sparsity pattern for the prolongator Pk has to be found. The pattern
should well reflect the anisotropy of the underlying problem while at the same time be as sparse as
possible to guarantee low complexity (18) of the overall multigrid hierarchy. Finding such patterns
for anisotropic problems is an active field of research but not the topic of this contribution. Standard
ways to find such patterns will therefore be briefly reviewed in Sections 4.1 and 4.2. For now we
assume that such a pattern is given.

We denote the non-zero sparsity pattern of a matrix T ∈Rn×m by

N(T )={(i, j) : ti j �=0}, T ∈Rn×m, i=1, . . . ,n, j =1, . . . ,m (19)

and define Nbs
k =N(Pbs

k ) as the desired pattern of the still undefined basis shifting smoothed
prolongator Pbs

k . Note that for this paper it is assumed that

N(P̂k)⊂Nbs
k (20)

In the following, we omit the level index (·)k for ease of notation and denote coarse-level
quantities (·)k+1 by (·)c. We repeat (7)

B= P̂ Bc (21)

with Bc still given by (13) and stress that the smoothed prolongator (3) also satisfies (21) by
construction, see (3) and (14).

Consider an interpolation operator of the form

P= P̂−�T B̄−1
c (22)

where

B̄−1
c =

⎛
⎜⎜⎜⎜⎜⎜⎝

(R1)−1

(R2)−1

. . .

(RNc)−1

⎞
⎟⎟⎟⎟⎟⎟⎠

(23)

contains the aggregate-wise inverses of the coarse representation of the near null space. Then,

PBc= P̂ Bc−�T B̄−1
c Bc= B−T Ic (24)
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with

Ic=

⎛
⎜⎜⎜⎜⎜⎜⎝

I 1

I 2

...

I Nc

⎞
⎟⎟⎟⎟⎟⎟⎠

= B̄−1
c Bc (25)

being a block vector of stacked aggregate-wise identities I i ∈Rnns×nns . Thus, for (22) to satisfy
the interpolation of the null space condition, we need

T Ic=0 (26)

For standard unsmoothed aggregation using P̂ , T =0 and (26) is trivial. For standard SA as
described in Section 2.2

T =T sa=D−1AB̄ (27)

and therefore

T sa Ic=D−1AB̄ Ic=D−1AB=0 (28)

Unfortunately, for non-standard aggregates T sa has too many non-zero entries. Therefore, we
would like to find a matrix T bs such that T bs Ic=0, T bs has a prescribed sparsity pattern Nbs and
the energy of the resulting basis functions in P is minimized. A related approach was considered
in [2]. In [2], the sum of the basis function energies is minimized subject to the constraint
that the exact interpolation of the null space has to be preserved for scalar- and vector-valued
problems. Although this approach has merits, it does require the non-trivial solution of a constrained
minimization problem. We instead seek an alternative approach which is direct in that it does not
require iteration nor the solution of a constrained minimization problem. To do this, we relax the
condition of finding minimum energy basis functions and look for a matrix T bs that is ‘close’
to T sa in a way that does not significantly alter the energy of the original grid transfer basis
functions.

We therefore introduce a splitting

T sa=Tm+T nm (29)

where Tm corresponds to all non-zeros in T sa matching the desired sparsity pattern Nbs:

N(Tm)⊂Nbs, N(Tm B̄−1
c )⊂Nbs (30)

where T nm corresponds to the remaining (not matching) non-zeros. We then replace T nm by a
new matrix T s which also matches the target sparsity pattern. That is

T bs=Tm+T s, N(T bs)=Nbs (31)

such that

T bs Ic=0 (32)
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This implies that

T s Ic = −Tm Ic (33)

= (T nm−T sa)Ic

= T nm Ic (34)

Equation (32) is a simple row sum condition stating that each row sum of T s must equal the
corresponding negative row in Tm. As it is under-determined, there are many solutions including
the trivial choice T s=−Tm which would result in the tentative prolongator P̂ .

Another possible solution is

T s
i j =

−∑
k(T

m)ik

nz((T s) j ·)
, (i, j)∈Nbs (35)

where nz((T s) j ·) denotes the number of non-zero entries in row j of T s. This corresponds to the
minimum 2-norm solution. The main problem with row-wise approaches is that each component of
a basis function is modified independently. This could potentially degrade the low-energy character
of the standard smoothed prolongator. To avoid this, we instead pursue a column-based approach.
The basic idea is to assign column subsets of T nm to column subsets of T s such that (34) is
satisfied. In particular, for each entry T nm

i j in the j th column of T nm, there exists at least one entry
T s
ik that is allowed to be non-zero. We add the value of T nm

i j to T s
ik . If there are in fact several

possible k’s, we choose a k that allows for a large number of entries in the j th column of T nm

to be assigned to the same kth column of T s. The basic reasoning is that we desire to split basis
function support into as few as possible parts to achieve good smoothness of the resulting shifted
basis functions in directions where smoothness is desired.

Algorithm 2 performs the column-wise shifting starting from T sa and results in T bs that is
guaranteed to satisfy the desired sparsity pattern Nbs. The final basis shifting prolongator is then
constructed according to (22) and is guaranteed to have the null space within its range. For ease
of notation Algorithm 2 presents the scalar case with 1 DOF per node. The actual vector-valued

Algorithm 2 Basis function shifting algorithm.

1. Given T sa from (27), Nsa, empty matrix T bs and Nbs(T bs)

2. for j =1 to nc do {Loop over columns T sa· j }
3. T bs

i j =T bs
i j +{T sa

i j :(i, j)∈Nbs} {Copy elements in Nbs}
4. I ={i : (i, j) /∈Nbs, T sa

i j �=0} {Find elements not in Nbs}
5. while I �=∅ do
6. Define Gd ={(i,d) : i ∈ I }
7. Find column l that maximizes |Gl ∩N(P̂)|
8. Il ={i : i ∈ I and (i, l)∈Nbs}
9. T bs

Il l
=T bs

Il l
+T sa

Il j
10. I = I\Il
11. end while
12. end for
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case of interest is straightforward to derive by applying the algorithm to nodal block columns of
T sa and T bs, respectively.

4. REVIEW OF STANDARD SMOOTHED AGGREGATION TECHNIQUES
FOR ANISOTROPIC PROBLEMS

In order to test and compare the presented basis shifting approach we briefly review and discuss
techniques that are commonly used on anisotropic problems to mimic anisotropic coarsening, find
a desired sparsity pattern and modify the prolongator smoother.

4.1. Creation of anisotropic aggregates

One approach originally presented in [5] is to define a strongly coupled neighborhood of node i
on level k

Ni (�)={ j : |ai j |��
√
aii a j j } (36)

where the choice of the drop tolerance � depends on the problem. A thresholded or filtered matrix
AF
k =(aFi j ) from Ak is constructed by

aFi j =
{
ai j if j ∈Ni (�)

0 otherwise

}
if i �= j, aFi i =aii +

n∑
j=1, j �=i

(ai j −aFi j ) (37)

The diagonal modification ensures that constant functions remain in the near null space of AF
k .

AF
k can then be used with a standard isotropic aggregation method to form anisotropic aggregates.

For vector-valued PDEs such as elasticity, the definition of the strongly coupled neighborhood (36)
has to be altered to incorporate norms of nodal block matrices, making the choice of a good
thresholding strategy for such problems more complicated, see [5].

In the case where the anisotropy results from a stretched discretization, a second approach
involves the construction of an auxiliary matrix ApL

k , the pseudo-Laplacian (pL), that reflects
distances among nodes of the discretization. Provided that nodal coordinate information x1∈RN1×3

of the fine grid k=1 is available, one constructs a matrix ApL
k =(apLi j )k such that

apLi j = − 1

di j
, di j =

3∑
l=1

(xil −x jl)
2 if ai j �=0 and i �= j

apLi i = ∑
j

1

di j

(38)

Coarse-level matrices ApL
k , k>1 are formed by recursively building aggregate coordinates xk ∈

RNk×3 of all nodes in an aggregate Ai
k using averages of coordinates.

Off-diagonal entries of ApL
k properly reflect decay with increasing distance between neighboring

nodes while diagonal entries are formed such that row sums are zero. Thresholding (36) and (37)
is then applied to ApL

k to form a thresholded pseudo-Laplacian, ApLF
k . It can then be used in

the aggregation process to create anisotropic aggregates but must not be used in the prolongator
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smoothing process to be discussed in Section 4.2, as it is physically unrelated to the problem at
hand. Instead a matrix AF

k is constructed via (37) using ApLF
k only for the sparsity pattern. The

pseudo-Laplacian ApLF
k from (38) is a scalar operator with 1 DOF per node, and has to be extended

to a matching block node form if used as auxiliary operator for a vector-valued problem. This can
easily be achieved by forming a new matrix with nodal blocks of appropriate size mk , where the
main diagonal of a nodal block replicates the scalar value.

4.2. Anisotropic prolongator smoothing

An anisotropic variant of the prolongator smoothing step (3) can be obtained using the thresholded
matrix AF

k from (37) in the prolongator smoother (14)

SFk =
(
I − 4

3�k
(DF )

−1
AF
k

)
(39)

where �k is given in Section 2.2. This approach leads to a correct interpolation of the near null space

Bk = SFk P̂k Bk+1 (40)

for scalar problems, where the only near null space component is the constant. This is due to
the diagonal modification in (37) which guarantees zero row sums of AF

k away from Dirichlet
boundary conditions. However, (40) in general is not satisfied in the case of vector-valued PDEs.
In this case, zero row sums of AF

k are a necessary but not sufficient condition to guarantee that AF
k

and Ak share the same near null space. Detailing (3) and (7) and utilizing a thresholded matrix
in the construction of the prolongator smoother in the more general case of vector-valued PDEs
leads to

Bk �=(P̂k−�(DF
k )

−1
AF
k P̂k)Bk+1 (41)

as

AF
k P̂k Bk+1= AF

k Bk �=0 (42)

Usually, this shortcoming of thresholded prolongator smoothing for vector-valued problems is
simply ignored. This leads to deterioration of convergence rates. We will compare our basis shifting
approach with it in Section 5.

5. NUMERICAL EXPERIMENTS

A series of numerical tests are performed to evaluate the modified prolongator smoother algorithm.
In particular, the basis function shifting approach is applied to several anisotropic problems. The
anisotropy is due to mesh stretching (i.e. elements with poor aspect ratios) in all cases. As mentioned
earlier, the detection of general anisotropic behavior is still a research question. However, a pL
works fairly well for mesh stretching and is used to generate anisotropic aggregates for these
experiments in conjunction with a drop tolerance range of 0.18���0.25 in (36). The basis shifting
SA (BSSA) approach is compared with plain aggregation using isotropic aggregates (IPA), ISA
and SA with anisotropic aggregation (ASA). In IPA, the prolongator smoother step is skipped. This
means that the prolongator is already fairly sparse and so there is no need to further sparsify it. ISA
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Table II. Solution methods used in experiments.

IPA Isotropic plain aggregation multigrid
ISA Isotropic smoothed aggregation multigrid
ASA Smoothed aggregation multigrid with anisotropy detection

(Sections 4.1 and 4.2)
BSSA Basis shifting smoothed aggregation multigrid

Figure 3. Distribution of x-coordinates for the IFISS-generated problem.

corresponds to standard SA with standard aggregates. ASA uses the pseudo-Laplacian to determine
the sparsity pattern in conjunction with AF

k defined by (37) within the prolongator smoother though
this approach has not been explicitly designed for vector-valued problems. BSSA uses Algorithm 2
in conjunction with the pseudo-Laplacian. Different algorithms are summarized in Table II. All
results correspond to a conjugate gradient iteration using a multigrid V-cycle preconditioner with
one Gauss–Seidel iteration within the pre- and post-smoother.

5.1. Anisotropic Poisson’s equation in two dimensions

In this example, we consider the two-dimensional Poisson equation on a square domain and
discretized with Q1 elements. This problem was generated using the IFISS packages [12]. Q1
elements are particularly difficult for AMG methods as the matrix coefficients corresponding to
weak coupling are still relatively large. The lower boundary corresponds to a Dirichlet boundary
condition while the other three boundaries correspond to Neumann conditions. The finite element
mesh is uniform in the center of the mesh and increasingly anisotropic toward the boundaries. The
distribution of the x-coordinates for the 65×65 mesh is given in Figure 3, and the finite element
mesh is given in Figure 4(a).
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Figure 4. Mesh and aggregates for Poisson’s equation on unit cube: (a) finite element mesh with Q1
elements and (b) fine grid aggregates.

Table III. Iterations and complexity for two-dimensional Poisson equation discretized
with Q1 elements on unit square.

No. elements No. equations IPA ISA ASA BSSA

172 289 18/1.11 17/1.10 9/1.31 10/1.31
332 1089 34/1.11 27/1.11 15/1.37 12/1.37
652 4225 49/1.12 45/1.12 21/1.37 16/1.37
1292 16641 99/1.12 77/1.12 31/1.38 18/1.38

The anisotropic fine grid aggregates using the pseudo-Laplacian are given in Figure 4(b). Note
that the aggregate shapes accurately reflect the direction of grid anisotropy. Results are given in
Table III corresponding to choosing a random right-hand side and a zero initial guess. Convergence
is declared when the initial residual is reduced by 10 orders of magnitude. As expected IPA gives
poor convergence rates as it employs sub-optimal piece-wise-constant interpolation. ISA generates
misshaped aggregates that correspond to coarsening in all spatial dimensions including those of
weak coupling. Thus, its poor convergence rates are also not surprising. ASA exhibits better
iteration counts, but there is still h-dependence. BSSA, although not completely h-independent,
shows the best iteration counts. Furthermore, the BSSA complexity is the same as ASA, as the
ASA prolongator and the BSSA prolongator used identical target non-zero patterns.

5.2. Elasticity for a beam on anisotropic grid in three dimensions

This example describes a three-dimensional linear elastic beam with full Dirichlet boundary condi-
tions on one end and a constant distributed surface load on the other. The initial guess was chosen
to be zero. The geometry and material properties of the example and one of the investigated
discretizations are given in Figure 5. It is generated using CARAT [13]. The discretization is
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Figure 5. Three-dimensional beam with discretization 9×8×8.

Table IV. Iterations and complexity for three-dimensional beam.

Discretization
(elements x× y×z) No. equations IPA ISA ASA BSSA

3×2×2 81 22/1.01 21/1.01 14/1.29 10/1.29
9×8×8 2187 117/1.10 109/1.12 42/1.35 14/1.35
10×9×9 3000 77/1.19 63/1.19 43/1.53 12/1.53
15×14×14 10125 161/1.13 117/1.15 39/1.43 14/1.43
19×18×18 20577 104/1.17 79/1.17 55/1.54 12/1.54

IPA, isotropic plain aggregation multigrid; ISA, isotropic smoothed aggregation multigrid; ASA, smoothed
aggregation multigrid with anisotropy detection; BSSA, basis shifting smoothed aggregation multigrid.

chosen such that it is isotropic in the y–z plane (cross section of beam) and stretched along the
main axis of the beam. Thus, coupling is ‘weak’ along the x-axis and isotropic in the y–z plane.

To obtain coarse grid discretizations of good approximation quality and low complexity here,
it is desirable to have aggregates that are of planar shape and lie in the y–z plane. This is
again achieved by using the pseudo-Laplacian operator together with thresholding as described in
Section 4.1 in the aggregation process. In Table IV, we give iteration numbers and preconditioner
complexities (18) for several levels of refinement.

Although IPA and ISA result in very low complexities due to the isotropic aggregation, iteration
numbers are high. SA with anisotropy detection (ASA) results in slightly higher complexity
numbers while exhibiting a slight advantage in iteration numbers compared with IPA and ISA.
Although the trend is similar to the Laplace operator, the improvement is much more modest for
ASA. This is due to the inexact interpolation of the near null space as pointed out in Section 4.2. In
particular, the null space is six dimensional, corresponding to three translations and three rotations.
The filtered matrix used in the prolongator smoother, however, is only adapted to properly maintain
the constant within the null space. BSSA exhibits the same moderate complexity as the ASA
approach throughout the investigated range of discretizations due to the limitation of the basis
function support through shifting and usage of aggregates that lie in the y–z plane. It shows low
iteration numbers and h-independence. This example illustrates the importance of maintaining null
space properties and how this is easily accomplished with basis function shifting even for PDE
systems, which is in contrast to the filtering approach.
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Figure 6. Three-dimensional thick plate with discretization 8×8×6.

Table V. Iterations and complexity for three-dimensional thick plate.

Discretization
(elements x× y×z) No. equations IPA ISA ASA BSSA

4×4×3 252 70/1.05 67/1.05 14/1.98 15/1.98
8×8×6 1605 211/1.07 186/1.09 35/2.13 15/2.13
16×16×12 11079 346/1.08 270/1.11 61/2.29 14/2.29

IPA, isotropic plain aggregation multigrid; ISA, isotropic smoothed aggregation multigrid; ASA, smoothed
aggregation multigrid with anisotropy detection; BSSA, basis shifting smoothed aggregation multigrid.

5.3. Elasticity for a plate on anisotropic grid in three dimensions

In this second elasticity example, a thick plate shown in Figure 6 is discretized using stretched
finite elements that are thin in one dimension. Strong connections exist in the z-axis direction
(across the plate thickness) and therefore aggregation should take place in this direction as well.

In this case, pseudo-Laplacian yields one-dimensional aggregates that are aligned with the z-axis
and have no geometrical extension in the y- and x-directions, see Figure 6. As such ‘degenerate’
aggregates cannot represent the full set of six rigid body modes, we limit the number of near
null space components in the construction of the multigrid hierarchy to 5 and exclude the rotation
around the z-axis. As such ‘degenerate’ aggregates are more likely to appear in aggregation
designed for anisotropic problems, handling this case in a more general manner is subject to further
investigation, but shall not be further addressed in this contribution. In Table V, iteration numbers
and preconditioner complexity for the BSSA approach are compared with the same set of isotropic
and anisotropic approaches already used in Section 5.2.

IPA and ISA do not perform well on this example and do not scale in problem size. ASA leads
to the same complexities as the new basis shifting approach (BSSA) because they use the same
desired sparsity pattern. As the ASA approach inherently cannot guarantee correct interpolation of
the null space, iteration numbers are not satisfactory. Although complexities with the basis shifting
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Figure 7. Rectangular domain with unstructured discretization with 980 unknowns. Top: ratio 1:1, middle:
ratio 8:1, bottom: ratio 16:1.

Table VI. Iterations and complexity for two-dimensional stretched unstructured rectangle with
dimension ratios x : y=1 :1,8 :1,16 :1.

Discretization Dimensions
(no. equations) (x : y) IPA ISA ASA BSSA

980 1 :1 19/1.20 13/1.33 16/1.35 9/1.35
3760 1 :1 25/1.22 12/1.35 22/1.36 10/1.36
980 8 :1 60/1.20 45/1.33 37/2.01 20/2.01
3760 8 :1 105/1.22 67/1.35 57/2.03 26/2.03
980 16 :1 81/1.20 66/1.33 45/2.14 25/2.14
3760 16 :1 158/1.22 107/1.35 80/2.10 38/2.10

IPA, isotropic plain aggregation multigrid; ISA, isotropic smoothed aggregation multigrid; ASA, smoothed
aggregation multigrid with anisotropy detection; BSSA, basis shifting smoothed aggregation multigrid.

method are higher than with any of the isotropic methods due to the one-dimensional shape of the
aggregates, iteration numbers are significantly lower than with any other technique and scale well
with problem size.

5.4. Elasticity on anisotropic unstructured grid in two dimensions

In this example, a two-dimensional elasticity problem on a rectangular domain is discretized
with an unstructured stretched quadrilateral grid. The stretched discretization is obtained by first
discretizing a unit square and then stretching it to obtain a rectangular domain, see Figure 7.
Dirichlet boundary conditions are imposed along one edge of the rectangle corresponding to the
y-direction. Two unstructured refinements are studied in Table VI.
None of the tested multigrid methods exhibit mesh-independent convergence on the stretched

grids. BSSA and ISA lead to mesh-independent convergence rates for the unstretched meshes.
The additional complications associated with anisotropic phenomena that are not aligned with the
mesh have been observed in [14]. Generally, non-aligned anisotropic phenomena are considered
much harder problems for multigrid methods. In this example, the use of a stretched unstructured
discretization using quadrilaterals results in a poor discrete approximation to the PDE problem
due to the high distortion of the elements. This affects not only the quality of the solution but
also the multigrid performance as shown in Table VI and even the performance of basic relaxation
methods. The new basis shifting method BSSA though converges significantly better than the other
approaches in all stretched cases while maintaining the same complexity as the ASA approach.
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6. CONCLUSIONS

A new method to form SA interpolation operators for anisotropic problems is studied and compared
with traditional approaches to handle anisotropy. We show that using this approach, a prolongation
operator with a prescribed anisotropic sparsity pattern can be constructed that leads to moderate
complexities and maintains exact interpolation of a given null space for scalar- and vector-valued
problems. The latter property is important to obtain low and scalable iteration numbers and is
demonstrated in the given examples.
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