
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2010; 17:199–210
Published online 9 February 2010 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nla.697

Optimizing the number of multigrid cycles in the
full multigrid algorithm

A. Thekale1,∗,†, T. Gradl2, K. Klamroth3 and U. Rüde2

1Department of Mathematics, Applied Mathematics II, Martensstr. 3, 91058 Erlangen, Germany
2Department of Computer Science, System Simulation, Cauerstr. 6, 91058 Erlangen, Germany

3Department of Mathematics, Optimization and Approximation, Gaußstr. 20, 42097 Wuppertal, Germany

SUMMARY

Multigrid (MG) methods are among the most efficient and widespread methods for solving large linear
systems of equations that arise, for example, from the discretization of partial differential equations. In
this paper we introduce a new approach for optimizing the computational cost of the full MG method
to achieve a given accuracy by determining the number of MG cycles on each level. To achieve this, a
very efficient and flexible Branch and Bound algorithm is developed. The implementation in the parallel
finite element solver Hierarchical Hybrid Grids leads to a significant reduction in CPU time. Copyright
q 2010 John Wiley & Sons, Ltd.

Received 27 April 2009; Revised 1 December 2009; Accepted 2 December 2009

KEY WORDS: full multigrid; optimization; Branch and Bound; hierarchical hybrid grids

1. INTRODUCTION

Partial differential equations (PDEs) are used to describe many real life processes in various fields,
e.g. engineering, natural sciences or economics. Their solution is thus significant for both science
and industry. To solve such equations, they are usually discretized and lead to large linear systems
of equations.

Multigrid (MG) methods [1, 2] belong to the group of iterative solvers and are among the most
efficient solvers for PDEs. They respect the large- and small-scale features of the solution by
using a hierarchy of grids with different mesh widths. On the finest grid only a few iterations of
a local method, e.g. the Gauss–Seidel algorithm, are employed to produce a smooth error. The
smooth error can then be eliminated cheaply by a recursive procedure on the coarser grids. Various
strategies for combining smoothing and recursion have been developed, among the most popular
ones are V -, W -, and F-cycles. They differ in their computational efficiency when applied to
different types of PDEs.

∗Correspondence to: A. Thekale, Department of Mathematics, Applied Mathematics II, Martensstr. 3, 91058 Erlangen,
Germany.

†E-mail: alexander.thekale@am.uni-erlangen.de

Copyright q 2010 John Wiley & Sons, Ltd.

200 A. THEKALE ET AL.

Figure 1. The full multigrid method. V-cycles (outlined by gray boxes) are used as basic building blocks.
The total cost of the algorithm (K) is determined by the cost of an individual V-cycle (kl) and the number

of V-cycles performed on each level (nl).

Several optimiziation strategies for MG methods have already been developed, for example, to
improve the hardware utilization [3] and to optimize the mesh sizes [4] and the smoother proper-
ties [5].

The remainder of this paper does not assume a special cycle type, and we will therefore use the
general term MG cycle. The MG cycles within the boxes shown in Figure 1 are V-cycles. These
cycles are used as building blocks of the full multigrid (FMG) algorithm depicted in Figure 1.
FMG starts with solving the discrete system of equations up to the discretization error on the
coarsest level. The discretization error is defined as the difference between the exact continuous
solution of the PDE and the solution obtained by solving the discrete system. The approximate
solution is then interpolated to the next finer level, where one or more MG cycles are performed.
In each MG cycle the error of the approximation is reduced relative to the discretization error by a
factor which we call the convergence rate. After that, the solution is again interpolated to the next
finer level, and so on. The FMG algorithm is asymptotically optimal, which means that the cost
to solve the problem is proportional to the number of grid points on the finest grid. This makes
FMG the predestined candidate for solving very large systems.

Reducing the CPU time of an FMG run is therefore important, especially when applied to high-
end applications on supercomputers [6–8]. To minimize this computational cost while maintaining
an acceptable accuracy, it is necessary to understand the error propagation in FMG. Thus, a basic
error and cost model is derived in Section 2. This motivates the Branch and Bound optimization
algorithm that is constructed in Section 3. Some model extensions, which are necessary to represent
the quirks of real-world MG solvers, can easily be integrated in the Branch and Bound algorithm,
stressing its flexibility. This is described in Section 4. Some examples demonstrating the practical
value of the solver are shown in Section 5. The variables used in this paper are described in Table I.

2. BASIC ERROR AND COST MODEL

2.1. Assumptions

The assumptions in this section do not describe realistic MG methods in enough detail, but are
sufficient to motivate the optimization approach described in Section 3. Extensions necessary for
modeling MG methods realistically are developed in Section 4.

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:199–210
DOI: 10.1002/nla

OPTIMIZING THE NUMBER OF MULTIGRID CYCLES 201

Table I. Notation used throughout the paper.

d Spatial dimension

l Level

lc Coarsest level. On this level the problem is solved up to e∗lc
l f Finest level

e∗l Discretization error on level l

e↑l Interpolation error on level l

el Total error on level l

c Constant determining the error bound

nl Number of MG cycles on level l

�l,i Convergence rate of the i th MG cycle on level l

kl Cost of one MG cycle on level l

K Total cost of an FMG run

While in practice the FMG algorithm can start at any refinement level, we first assume that
it starts at level zero (i.e. lc=0) where the cost for the exact discrete solution can be neglected.
Additionally, we assume that the discretization error e∗

l on level l follows perfectly an O(h2)
behavior, i.e. it decreases by a factor of 22=4 with each level of refinement. Imposing, without
loss of generality, a normalization of the initial discretization error as e∗

0 =1, the discretization
error on any level is given by e∗

l =2−2l =4−l . Section 4.4 will show that the convergence rate �l,i
may be different for each level l and for each MG iteration i at that level. For our basic cost and
error model, we assume that the convergence rate is always the same (�l,i =� for all l=1, . . . , l f
and i ∈N). The treatment of varying �l,i is described in Section 4.4.

The problem shall be discretized on a rectangular grid with 2l grid points in each space
dimension. Therefore, the total number of grid points on level l is 2dl. V-cycles shall be used as
MG cycles on every level. The cost of a V-cycle on level l is the sum of the costs of its basic
building blocks on level l (smoothing, residual computation, restriction and prolongation) plus the
cost of a V-cycle on level l−1. The costs of the building blocks are proportional to the number
of grid points on that level. Without loss of generality, the proportionality constant is set to 1. To
describe the cost of an MG cycle, we use abstract work units proportional to the number of grid
point updates during that cycle. These work units would have to be translated to actual execution
times regarding implementation and machine characteristics. With these assumptions, the cost kl
of a V-cycle on level l is given by kl =2dl+kl−1. The cost for solving the problem on the coarsest
grid is set to 1: k0=1. Therefore, kl =∑l

i=0 2
di.

2.2. Construction of the basic model

When using an iterative solver, the algebraic error el −e∗
l is reduced by a factor of � (the convergence

rate) in every iteration (see Figure 2). After nl iterations on level l, the total error el is in dependence
of the initial error el−1 propagated from the coarser grid:

el =e∗
l +�nl (el−1−e∗

l). (1)

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:199–210
DOI: 10.1002/nla

202 A. THEKALE ET AL.

Figure 2. Error reduction, according to the basic error model, for an FMG run with n1=2 and n2=3.

Recursively using this equation for el−1 yields

el = e∗
l +�nl (e∗

l−1+�nl−1(el−2−e∗
l−1)−e∗

l) (2)

= e∗
l +�nl (e∗

l−1−e∗
l)+�nl+nl−1(el−2−e∗

l−1). (3)

On level 0 the total error is equal to the discretization error (e0=e∗
0), because the discrete

problem is solved exactly on this level. Using this terminal for the recursive Equation (2), and
recalling that e∗

l =4−l , the error on the finest level can be written as

el f = e∗
l f +

l f∑
l=1

(e∗
l−1−e∗

l)�
nl f +···+nl (4)

= 4−l f +
l f∑
l=1

3 ·4−l�nl f +···+nl . (5)

Related error models can also be found in, for example, [9–11]. The total cost K of the FMG
algorithm is the sum of the costs of all V-cycles on all levels

K =
l f∑
l=0

nlkl with n0=1 and k0=const. (6)

3. BRANCH AND BOUND OPTIMIZATION

In this section we describe an optimization approach aiming at the minimization of the total cost K
as derived in (6) while guaranteeing that the final error is below a prespecified error level. As will
be shown in Section 5, this leads in general to a significant reduction in the overall computational
cost since the optimization routine can be implemented very efficiently.

In the following, the error bound will be specified with respect to the discretization error e∗
l f

on the finest level, e.g. a constant c>1 is defined by the user such that the final error el f after the
FMG run is less or equal than c ·e∗

l f
. Altogether, we want to find the numbers of MG cycles ni in

the levels i=1, . . . , l f such that the total cost K in (6) is minimal and the error bound el f �c ·e∗
l f

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:199–210
DOI: 10.1002/nla

OPTIMIZING THE NUMBER OF MULTIGRID CYCLES 203

is maintained. More formally, we can thus formulate the optimization problem as the following
nonlinear integer programming problem:

min
(n1,...,nl f)

�

l f∑
l=1

nlkl

such that el f �c ·e∗
l f

n1, . . . ,nl f ∈N={0,1,2,3, . . .}.

(7)

Note that for l=0 we have n0=1 and thus the leading term of the sum in the objective function
was omitted. Replacing el f by its expression in (5), problem (7) is equivalent to

min
(n1,...,nl f)

�

l f∑
l=1

nlkl

such that
l f∑
l=1

3 ·4−l�nl f +···+nl�ce∗
l f −4−l f

n1, . . . ,nl f ∈N.

We will mainly work with the shorter formulation (7) in the following.
As the number of integer variables in problem (7) is rather small, an exact solution method

based on a Branch and Bound procedure appears to be appropriate. For a detailed discussion of
Branch and Bound methods, we refer to [12]. In order to get good bounds as early as possible in
the Branch and Bound tree, we will branch on the integer variables in a backwards procedure, i.e.
beginning with variable nl f and then continuing with variable nl f −1 and so forth. The error on
level l−1 can be computed based on the current error on level l and the number nl of MG cycles
applied on level l. Equation (1) yields

el−1=e∗
l +�−nl (el −e∗

l). (8)

If we thus start from the finest level l f with the highest acceptable error el f =c ·e∗
l f
, we can easily

determine a lower bound nlowl f
and an upper bound nupl f on the possible number of MG cycles on

level l f . For an intermediate level l such bounds can be computed as follows: The lower bound
nlowl must be selected such that the error el−1 is strictly larger than the discretization error on level
l−1, i.e.

el−1=e∗
l +�−nlowl (el −e∗

l)>e∗
l−1.

Hence, nlowl ∈N is the smallest integer satisfying

nlowl >
ln(el −e∗

l)− ln(e∗
l−1−e∗

l)

ln�
. (9)

Consequently, less than nlowl MG cycles on level l are not admitted since otherwise the error after
level l−1 would need to be smaller or equal to the discretization error, which is impossible.

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:199–210
DOI: 10.1002/nla

204 A. THEKALE ET AL.

An upper bound nupl , on the other hand, must be chosen such that the error el−1 is larger than
the discretization error at level 0. Observe that a larger number of iterations on this level would
not be useful since in this case, this error could be achieved by performing MG cycles exclusively
on the current level. We thus obtain

e∗
l +�−nupl (el −e∗

l)�1=e∗
0

with e∗
0 =1. Then nupl ∈N is the smallest integer such that

nupl �
ln(el −e∗

l)− ln(1−e∗
l)

ln�
. (10)

The Branch and Bound algorithm is thus initiated by branching on the variable nl f , generating
child nodes with values for nl f in {nlowl f

, . . . ,nupl f } and associating the costs nlowl f
kl f , . . . ,n

up
l f
kl f and

the errors el f −1=e∗
l f

+�−nL f (el f −e∗
l f

) with them, respectively.
This procedure is then iterated, wherein each iteration that active child node with the smallest

cost is selected for further branching, until the coarsest level l=1 is reached. In this process, the
cost values and the error values are simply added over the different levels. The number of MG
cycles on level 1 is then uniquely determined by n1=nup1 . The resulting search strategy may be
interpreted as a depth first search.

As soon as level 1 is reached for the first time, a feasible solution (n1, . . . ,nl f)
� is obtained

with the currently best known cost value Kbest. Note that Kbest is an upper bound on the optimal
solution value of problem (7) , which can now be used to prune all those active nodes of the
Branch and Bound tree that already have an accumulated cost value that is larger than Kbest. Those
nodes can never lead to a better solution than the already known one.

This procedure is then iterated until all active nodes have been investigated. The best known
solution and the best known solution value are updated whenever another, better solution is found
during the search. If several solutions achieve the same optimal cost value, the solution with the
smallest total error el f according to (5) can be selected.

In Figure 3 an example for a Branch and Bound tree for l f =3 levels is shown. The node
numbers show the order of appearance of the nodes in the tree, and the boxed numbers are the
cumulative costs along the according branch. The optimal solution for this problem is (1,0,2)�
with optimal cost 18. As the assigned costs in nodes 9 and 3 are larger than Kbest at the time of
their consideration, the attached branches are pruned.

Note that due to the cost structure of the problem the cumulative costs are typically significantly
higher at early levels of the Branch and Bound tree and become smaller at the lower levels. We
can thus expect to detect suboptimal branches early in the tree, which explains the high numerical
efficiency of the procedure, see Section 5.

4. MODEL EXTENSIONS

Having the optimization algorithm for the basic error model at hand, we now state some model
extensions to reflect the ‘real life’ FMG method.

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:199–210
DOI: 10.1002/nla

OPTIMIZING THE NUMBER OF MULTIGRID CYCLES 205

Figure 3. Branch and Bound tree.

4.1. Coarsest level is not level 0

We allow the user to specify some coarsest level lc �=0 at which the FMG algorithm starts with
solving the problem up to the discretization error. Then, (5) and (6) become

el f = 4−l f +
l f∑

l=lc+1
3 ·4−l�nl f +···+nl and (11)

K =
l f∑

l=lc+1
nlkl . (12)

This modification does not change the optimization algorithm in principle, but is just a shift of
indices. As lc is fixed throughout the optimization and our aim is to find nl for l= lc+1, . . . , l f ,
the cost on level lc is ignored in the optimization.

4.2. Arbitrary order of the discretization error

The discretization error depends on the selected discretization method, the smoothness of the
solution and other factors. Usually only the order D of the discretization error is known. e∗ is said
to be of order D, if there exists a constant c∗>0 such that, for all levels l=1, . . . , l f ,

e∗
l �c∗2−Dl. (13)

Using (13), we can reformulate (1) to

el =(1−�nl)e∗
l +�nl el−1�(1−�nl)c∗2−Dl+�nl el−1=c∗2−Dl+�nl (el−1−c∗2−Dl).

D and c∗ are independent of the current level l and the current iteration i in level l. They are
used in the optimizer as two additional parameters that are incorporated into the error calculation
on each level.

4.3. Additional interpolation error

In practice, the prolongation of the solution from level l−1 to level l is affected by an additional
error e↑

l depending on the selected interpolation method. This error is usually not known exactly,

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:199–210
DOI: 10.1002/nla

206 A. THEKALE ET AL.

Figure 4. Convergence rates.

but only its order P and a bounding constant c↑ can be given:

e↑
l �c↑2−Pl. (14)

The interpolation error e↑
l is added to the error el−1 from the coarser level, before the MG

cycles are applied on level l. Therefore, (1) becomes

el =e∗
l +�nl (el−1+e↑

l −e∗
l), (15)

and (4), the error on the finest level, can be written as

el f =e∗
l f +

l f∑
l=1

(e∗
l−1−e∗

l +e↑
l)�nl f +···+nl . (16)

P and c↑ are also used in the optimizer as two additional parameters that are incorporated into
the error calculation on each level.

4.4. Level- and iteration-dependent convergence rates

If an MG cycle is run repeatedly, in every iteration using the result of the previous iteration as
initial guess, the convergence rates are usually very good in the beginning, but then they deteriorate
and approach an asymptotic convergence rate [13]. This behavior is shown in Figure 4. The figure
also points out that the level influences the value of the asymptotic convergence rate and the
characteristics of approaching that value. On the coarser levels, the influence of the boundary
is more prominent than on the fine levels, and the type of boundary conditions determines the
convergence rates.

To account for varying convergence rates in the error model, we introduce a variable �l,i which
denotes the convergence rate of the i th MG cycle on level l. Equation (1) has to be rewritten as

el =e∗
l +(el−1−e∗

l)
nl∏
i=1

�l,i , (17)

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:199–210
DOI: 10.1002/nla

OPTIMIZING THE NUMBER OF MULTIGRID CYCLES 207

and (4) becomes

el f =e∗
l f +

l f∑
l=1

(
(e∗

l−1−e∗
l)

l f∏
j=1

nl∏
i=1

� j,i

)
. (18)

The convergence rates �l,i are often not known in as much detail as depicted in Figure 4 before
the solver is actually started. Fortunately, though, the optimization algorithm is so fast that it can
be started several times during the FMG run without noticeably increasing the total run time.
Therefore, the optimizer should be run whenever new convergence rates are available.

4.5. Modifications of the Branch and Bound algorithm

In Sections 4.1–4.4 several extensions of the basic error model derived in Section 2 have been
discussed. All these extensions do not affect the Branch and Bound algorithm in general, the only
modification is the determination of nlowl and nupl for l= lc+1, . . . , l f . If all extensions from above
are included, (8) becomes

el−1=c∗2−Dl−c↑2−Pl+
(nl∏
i=1

�l,i

)−1

(el −c∗2−Dl). (19)

Therefore, nlowl is the smallest nl ∈N such that

nl∏
i=1

�l,i<
el −c∗2−Dl

c∗2−D(l−1)−c∗2−Dl+c↑2−Pl
(20)

and nupl is the smallest nl ∈N such that

nl∏
i=1

�l,i�
el −c∗2−Dl

c∗2−Dlc −c∗2−Dl+c↑
∑l

i=lc+1 2
−Pi

(21)

for l= lc+1, . . . , l f . Note that (20) and (21) do not provide, in comparison to (9) and (10), a direct
formula, but nlowl and nupl can be determined without much computational effort by iteratively
multiplying �l,i until the desired bounds are satisfied.

5. EXAMPLES

5.1. Interesting optimization results

In the following, we show two special cases that can occur as a result of the optimization. In both
examples we assume V-cycles as the basic MG cycles within the FMG algorithm.

The first example shows that there are cases in which it is optimal to perform no MG cycles
on some of the levels. For the parameter set {d=1, l=10,�=0.1,c=1.06} the optimal result is
(1,0,1,2,1,0,1,1,1,2)� with a cost of K =6026 and a final error of e10=1.011×10−6. We have
not yet studied the feasibility of leaving out entire levels in FMG. It might, depending on the
problem characteristics, lead to bad convergence rates on the level following the one with no MG
cycles. If we add the constraint nl>0 for all l=1, . . . , l f , then the optimal result for the above
parameter set is (1,1,1,1,1,1,1,1,1,2)� with K =6129 and e10=1.0014×10−6.

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:199–210
DOI: 10.1002/nla

208 A. THEKALE ET AL.

Sometimes it is even cheapest to employ an additional level of refinement. For the parameters
{d=1, l=9,�=0.3,c=1.1} the best solution for l=9 is (2,1,2,2,1,3,1,1,4)� with K =5407
and e9=4.1960×10−6. The best solution for l=10, however, is (3,2,1,2,1,2,1,2,1,1)� with
K =4764 and e10=4.1954×10−6. The reason is that the first solution requires many V-cycles on
level 9 to reach the tight error bound of e9�1.1 ·e∗

9. With 10 levels the same error can be reached
much easier because of the lower discretization error on the 10th level. Of course it is not always
possible to go to the next finer level in practice, for example due to storage space restrictions on
the computer.

5.2. The optimizer in practice

The optimizer has been incorporated into theHierarchical Hybrid Grids (HHG)MG solver [14, 15].
HHG is designed for very large finite element simulations on three-dimensional semi-structured
grids. It uses an extremely memory-efficient storage scheme for the linear system of equations
and MPI parallelization to exploit the capabilities of supercomputers. The largest simulation with
HHG to date solved a finite element problem comprising 3×1011 unknowns. On 9170 cores
(4585 Intel Itanium2 Montecito dual-core CPUs, respectively) of HLRB II,‡ the time to solution
was about 1.5minutes [16]. For problems of such dimensions, optimizing the number of MG
cycles is invaluable, because that immediately translates to a reduction in expensive CPU hours
on supercomputers, shorter waiting times in the job queues of these computers and a reduced risk
of encountering hardware failures.

The following example will demonstrate the efficacy of the optimizer for HHG. To be able to
document the feasibility of the optimization results, we choose a PDE for which the analytical
solution is known. The Laplace equation �u=0 in the domain �⊂R3 with u=g(x, y, z)=sin(�x) ·
sinh(�y) on the Dirichlet boundary �� is satisfied by u=g in �.

The Laplace equation is solved by FMG on a hierarchy of seven levels (l f =6). The coarsest
level is set to lc=2. Thus, optimal numbers of V-cycles per level have to be found for the
levels 3–6. Comparing the discrete solution found by HHG with the analytical solution, the error
bounding constants can be calculated as c∗ =91 and c↑ =229. The orders of the discretization
and interpolation operators are D= P=2. The Euclidean norm was used to measure the errors
throughout this example. In practice, these constants can, for the lack of an analytical solution, of
course not be calculated that exactly, but they can be estimated, e.g. by evaluating the curvature of
the solution. The constant bounding the final error is set to c=3.5, i.e. e6�0.078 must be satisfied
at the end of the FMG run.

Figure 5 compares three FMG runs achieving that error goal. The first run used a ‘rule of thumb’
setup with two V-cycles on every level. Using only one cycle per level would be infeasible with
a final error of e6=0.12. Two cycles per level yield an acceptable solution with e6=0.039 after
a run-time of 1.3 seconds. The figure shows how the error is reduced by the FMG algorithm over
time. First, the problem is solved on level 2 exactly, which leaves an error of 4.8 (the discretization
error on level 2) at time t=0s. The prolongation to level 3 increases the error even more, to 7.2,
before two V-cycles on level 3 reduce the error to 1.3. Then, the error is increased again by the
prolongation to level 4, and so on. All four prolongations are visible as peaks in the error curve.

The pattern for the second run was determined by our Branch and Bound optimization, assuming
a constant convergence rate of �=0.3. The optimization finds (3,2,2,1)� on levels 3–6 to be the

‡http://www.lrz-muenchen.de/services/compute/hlrb/.

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:199–210
DOI: 10.1002/nla

OPTIMIZING THE NUMBER OF MULTIGRID CYCLES 209

 0.01

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

er
ro

r

time [s]

error bound
2, 2, 2, 2 cycles
3, 2, 2, 1 cycles
1, 1, 2, 1 cycles

Figure 5. Practical optimization example.

cheapest pattern satisfying the error bound. The error bound is marked with a horizontal line in
Figure 5. An FMG run with this cycle pattern takes 1.1 s, which is an improvement of 15% over
the ‘rule of thumb’ setup. Note that in this specific example it would also be sufficient to just
stop the (2,2,2,2)� run after the first cycle on level 6. The pattern (2,2,2,1)� would yield an
acceptable error in less time than the pattern (3,2,2,1)�. The optimizer did not find this pattern,
because it did not know the exact convergence rates. However, without the optimizer, using only
the ‘rule of thumb’, this pattern, though obvious in the figure, would not be found, either.

If we apply the extension of the Branch and Bound algorithm, which was introduced in
Section 4.4 where the optimizer was provided with the convergence rates measured during the
previous runs, the optimizer finds the pattern (1,1,2,1)�. With this more realistic estimate of the
convergence rates at hand the optimizer is able to shave off another 0.24 s of the FMG run-time.
The third setup takes 0.85 s, 35% less than the initial setup.

6. CONCLUSIONS AND OUTLOOK

A fast and flexible Branch and Bound algorithm for optimizing the computational cost of the
FMG algorithm has been developed. The cost-optimal solutions achieved with this algorithm are
much cheaper than ‘rule of thumb’ strategies like performing two cycles on every level. Thus, the
presented optimizer can be a valuable tool in MG practice. Implemented in the HHG solver, it
drastically reduces the required CPU time. There is still room for improvements in the details, e.g.
in the accurate prediction of the convergence rates.

Other groups have already put efforts into research on similar problems. Optimal local refinement
with respect to cost and accuracy has been studied by Bai and Brandt [4] and De Sterck et al.
[17]. Wienands et al. have optimized the recursive structure of MG cycles, i.e. how many recursive

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:199–210
DOI: 10.1002/nla

210 A. THEKALE ET AL.

V-cycles to perform on each level of a V-cycle. In a future project, Wienands’ algorithm will be
combined with the work presented in this paper.

ACKNOWLEDGEMENTS

A. Thekale and T. Gradl are Ph.D. students of the International Doctorate Program Identification, Opti-
mization and Control with Applications in Modern Technologies within the Elite Network of Bavaria.
K. Klamroth and U. Rüde are the corresponding supervisors.

REFERENCES

1. Brandt A. Multigrid techniques: 1984 guide with applications to fluid dynamics. GMD–Studien Nr. 85. Gesellschaft
für Mathematik und Datenverarbeitung, St. Augustin, 1984.

2. Hackbusch W. Multigrid methods and applications. Computational Mathematics, vol. 4. Springer: Berlin, 1985.
3. Douglas CC, Hu J, Kowarschik M, Rüde U, Weiß C. Cache optimization for structured and unstructured grid

multigrid. Electronic Transactions on Numerical Analysis 2000; 10:21–40.
4. Bai D, Brandt A. Local mesh refinement multilevel techniques. SIAM Journal on Scientific and Statistical

Computing 1987; 8(2):109–134.
5. McCormick SF. Multigrid methods for variational problems: general theory for the V-cycle. SIAM Journal on

Numerical Analysis 1985; 22:634–643.
6. Freundl C, Gradl T, Rüde U, Bergen B, Towards petascale multilevel finite element solvers. In Petascale

Computing: Algorithms and Applications, Chapter 18, Bader D (ed.). Chapman & Hall/CRC: London,
Boca Raton, FL, 2007; 375–389.

7. Bergen B, Hülsemann F, Rüde U. Is 1.7·1010 unknowns the largest finite element system that can be solved
today? SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing. IEEE Computer Society:
Washington, DC, U.S.A., 2005.

8. Hülsemann F, Kowarschik M, Mohr M, Rüde U. Parallel geometric multigrid. Numerical Solution of Partial
Differential Equations on Parallel Computers, Chapter 5. Lecture Notes for Computational Science and
Engineering, Bruaset AM, Tveito A (eds), vol. 51. Springer: Berlin, 2005; 165–208.

9. Douglas CC, Douglas J. A unified convergence theory for abstract multigrid or multilevel algorithms serial and
parallel. SIAM Journal on Numerical Analysis 1993; 30:136–158.

10. Douglas CC, Douglas J, Fyfe DE. A multigrid unified theory for non-nested grids and/or quadrature. East–West
Journal of Numerical Mathematics 1994; 2:285–294.

11. Reusken A. Convergence of the multigrid full approximation scheme including the V-cycle. Numerische
Mathematik 1988; 53:663–686.

12. Nemhauser GL, Wolsey LA. Integer and Combinatorial Optimization. Wiley-Interscience: New York, NY, U.S.A.,
1988.

13. Trottenberg U, Oosterlee C, Schüller A. Multigrid. Academic Press: New York, 2001.
14. Bergen B. Hierarchical Hybrid Grids: Data Structures and Core Algorithms for Efficient Finite Element Simulations

on Supercomputers. Advances in Simulation, vol. 14. SCS Europe, July 2006.
15. Bergen B, Gradl T, Hülsemann F, Rüde U. A massively parallel multigrid method for finite elements. Computing

in Science and Engineering 2006; 8(6):56–62.
16. Gradl T, Freundl C, Köstler H, Rüde U. Scalable multigrid. In High Performance Computing in Science and

Engineering. Garching/Munich 2007, Wagner S, Steinmetz M, Bode A, Brehm M (eds). Springer: Berlin, LRZ
KONWIHR, 2008; 475–483.

17. De Sterck H, Manteuffel T, McCormick S, Nolting J, Ruge J, Tang L. Efficiency-based h- and hp-refinement
strategies for finite element methods. Numerical Linear Algebra with Applications 2008; 15:89–114.

Copyright q 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2010; 17:199–210
DOI: 10.1002/nla

