I.INTRODUCTION

The numerical solution of partial differential equations requires some discretization of
the field into a collection of points or elemental volumes (cells). The differential equations
are approximated by a set of algebraic equations on this collection, and this system of
algebraic equations is then solved to produce a set of discrete values which approximates the
solution of the partial differential system over the field. The discretization of the field
requires some organization for the solution thereon to be efficient, i.e., it must be possible to
readily identify the points or cells neighboring the computation site. Furthermore, the
discretization must conform to the boundaries of the region in such away that boundary
conditions can be accurately represented. This organization is provided by a coordinate
system, and the need for alignment with the boundary is reflected in the routine choice of
cartesian coordinates for rectangular regions, cylindrical coordinates for circular regions,
etc., to the extent of the handbook’ s resources.

The current interest in numerically-generated, boundary-conforming coordinate
systems arises from this need for organization of the discretization of the field for general
regions, i.e., to provide computationally for arbitrary regions what is available in the
handbook for simple regions. The curvilinear coordinate system covers the field and has
coordinate lines (surfaces) coincident with all boundaries. The distribution of lines should be
smooth, with concentration in regions of strong solution variation, and the system should
ultimately be capable of sensing these variations and dynamically adjusting itself to resolve
them.

A numerically-generated grid is understood here to be the organized set of points
formed by the intersections of the lines of a boundary-conforming curvilinear coordinate
system. The cardinal feature of such a system isthat some coordinate line (surfacein 3D) is
coincident with each segment of the boundary of the physical region. The use of coordinate
line intersections to define the grid points provides an organizational structure which allows
all computation to be done on afixed square grid when the partial differential equations of
interest have been transformed so that the curvilinear coordinates replace the cartesian
coordinates as the independent variables.

This grid frees the computational simulation from restriction to certain boundary
shapes and allows general codes to be written in which the boundary shape is specified
simply by input. The boundaries may also be in motion, either as specified externally or in
response to the devel oping physical solution. Similarly, the coordinate system may adjust to
follow variations developing in the evolving physical solution. In any case, the
numerically-generated grid allows all computation to be done on afixed square grid in the



computational field which is always rectangular by construction.

In the sections which follow, various configurations for the curvilinear coordinate
system are discussed in Chapter 1. In general, the computational field will be made
rectangular, or composed of rectangular sub-regions, and awide variety of configurationsis
possible. Coordinate systems may also be generated separately for sub-regionsin the
physical plane and patched together to form a complete system for complex configurations.
The basic transformation relations applicable to the use of general curvilinear coordinate
systems are developed in Chapter I11; the construction of numerical solutions of partial
differential equations on those systems is discussed in Chapter |V; and consideration is given
in Chapter V to the evaluation and control of truncation error in the numerical
representations.

Basically, the procedures for the generation of curvilinear coordinate systems are of
two general types. (1) numerical solution of partia differential equations and (2)
construction by algebraic interpolation. In the former, the partial differential system may be
elliptic (Chapter V1), parabolic or hyperbolic (Chapter VII). Included in the elliptic systems
are both the conformal (Chapter X), and the quasi-conformal mappings, the former being
orthogonal. Orthogonal systems (Chapter 1X) do not have to be conformal, and may be
generated from hyperbolic systems as well as from élliptic systems. Some procedures
designed to produce coordinates that are nearly orthogonal are also discussed. The algebraic
procedures, discussed in Chapter V111, include simple normalization of boundary curves,
transfinite interpolation from boundary surfaces, the use of intermediate interpolating
surfaces, and various other related techniques.

Coordinate systems that are orthogonal, or at least nearly orthogonal near the
boundary, make the application of boundary conditions more straightforward. Although
strict orthogonality is not necessary, and conditions involving normal derivatives can
certainly be represented by difference expressions that combine one-sided differences along
the line emerging from the boundary with central expressions aong the boundary, the
accuracy deterioratesif the departure from orthogonality istoo large. It may also be more
desirable in some cases not to involve adjacent boundary points strongly in the
representation, e.g., on extrapolation boundaries. The implementation of algebraic turbulence
models is more reliable with near-orthogonality at the boundary, since information on local
boundary normalsis usually required in such models. The formulation of boundary-layer
equationsis also much more straightforward and unambiguous in such systems. Similarly,
algorithms based on the parabolic Navier-Stokes equations require that coordinate lines
approximate the flow streamlines, and the lines normal thereto, especially near solid
boundaries. It isthus better in general, other considerations being equal, for coordinate lines
to be nearly normal to boundaries.

Finally, dynamically-adaptive grids are discussed in Chapter XI. These grids
continually adapt during the course of the solution in order to follow developing gradientsin
the physical solution. Thistopicis at the frontier of numerical grid generation and may well
prove to be one of its most important aspects.

The emphasis throughout is on grids formed by the intersections of coordinate lines of
acurvilinear coordinate system, as opposed to the covering of afield with triangular



elements or arandom distribution of points. Neither of these latter collections of pointsis
suitable for really efficient numerical solutions (although numerical representations can be
constructed on each, of course) because of the cumbersome process of identification of
neighbors of a point and the lack of banded structure in the matrices. Thus the subject of
triangular mesh generators, per se, is not addressed here. (Obviously atriangular mesh can
be produced by construction rectangular mesh diagonals.)

Considerable progress is being made toward the development of the techniques of
numerical grid generation and toward casting them in forms that can be readily applied. A
comprehensive survey of numerical grid generation procedures and applications thereof
through 1981 was given by Thompson, Warsi, and Mastin in Ref. [1], and the conference
proceedings published as Ref. [2] contains a number of expository papers on the area, as
well as current results. Other collections of papers on the area have also appeared (Ref. [3]
and [4]), and alater review through 1983 has been given by Thompson in Ref. [5]. Some
other earlier surveys are noted in Ref. [1]. A later survey by Eiseman is given in Ref. [37].
The present text is meant to be a developmental treatment of the techniques of grid
generation and its applications, not a survey of results, and therefore no attempt is made here
to cite all related references, rather only those needed to illustrate particular points are noted.
The surveys mentioned above should be consulted directly for references to examples of
various applications and related contributions. (Ref [I] gives ashort historical development
of the ideas of grid generation.) Other surveys of particular areas of grid generation are cited
later as topics are introduced.

Finally, in regard to implementation, a configuration for the transformed
(computational) field isfirst established as discussed in Chapter 11. The grid is generated
from a generation system constructed as discussed in Chapters VI -- X. (If the grid isto be
adaptive, i.e., coupled with the physical solution done thereon, then the grld must be
continually updated as discussed in Chapter XI1.) In the construction of the grid, due account
must be taken of the truncation error induced by the grid discussed in Chapter V. The partial
differential equations of the physical problem of interest are transformed according to the
relations given in Chapter I11. These transformed equations are then discretized, cf. Chapter
IV, and the resulting set of algebraic equationsis solved on the fixed square grid in the
rectangular transformed field.



[I.BOUNDARY-CONFORMING COORDINATE SYSTEMS
1. Basic Concepts

To provide afamiliar ground from which to view the general development to follow,
consider first atwo-dimensional cylindrical coordinate system covering the annular region
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Here the curvilinear coordinates (r,%) vary on theintervals[r,,r,] and [0,27], respectively.

These curvilinear coordinates are related to the cartesian coordinates (x,y) by the
transformation equations

x(r,8) = r cose

(1)
y(r,8) = r sing
The inverse transformation is given by
r{x,y) = /22 + yE
)

B(K.?) = tan_T -;-

Note that one of the curvilinear coordinates, r, is constant on each of the physlcal
boundaries, while the other coordinate, &, varies monotonically over the same range around
each of the boundaries. Note also that the system can be represented as a rectangle on which
the two physical boundaries correspond to the top and bottom sides:
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The transformed region, i.e., where the curvilinear coordinates, r and & the independent
variables, thus can be thought of as being rectangular, and can be treated as such from a
coding standpoint. These points will be central to what follows.

The curvilinear coordinates (r,&) can be normalized to the interval [0,1] by introducing
the new curvilinear coordinates (5, M), where

E = 8/2m, N == 3
or
8(E) = 2w, r(n) =ry + (rp =~ rydn 4)
The transformation then may be written
x(g,m) = [ry + (rp - rq)nlcos(2xE) (5a)
¥y(E:n) = [rq + (rp - ryInlsin(2rg) (5b)

wherenow & and M both vary on theinterval [0,1]. Thisis thus a mapping of the annular
region between the two circlesin the physical space onto the unit square in the transformed
space, i.e., each point (X,y) on the annulus corresponds to one, and only one, point (E ., on
the unit square:
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The bottom (" = 0) and top (" = 1) of the square corresgond, respectively, to the inner and
outer circles, r =r;, and r =r,. The sides of the square, = = 0 and € =1 correspond to & = 0



and © = 27 respectively, and hence to the two coincident sides of a branch cut in the
physical space. Therefore, boundary conditions are not to be specified on these sides of the
unit square in the transformed space. Rather these sides are to be considered re-entrant on
each other with points adjacent to one, outside the square, being equivalent to points adjacent
to the other, inside the square.

Conceptually, the physical region can be considered to have been opened at the cut ©
= 0and 2™ and then deformed into a rectangle to form the transformed region:
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Here, point correspondence across the re-entrant boundaries (indicated by the dashed
connecting line) in the transformed region isillustrated by the coincidence of the pair of
circled points. This conceptual device and mode of illustration for the the point
correspondence across re-entrant boundaries will serve later for more general configurations.

These simple concepts extend to more complicated two-dimensional configurations,
the central feature being that one of the curvilinear coordinates is made to be constant on a
boundary curve (aswasr above), while the other varies monotonically along that boundary
curve (as does ). The transformation to the rectangle is achieved by making the range and
direction of variation of the varying coordinate the same on each of two opposing boundaries
(as © variesfrom 0 to 27 on each circle above).

The physical space thus transforms to the rectangle shown above regardless of the shape of
the physical region. (It is not necessary to normalize the curvilinear coordinates to the
interval [0,1], and in fact, any normalization can be used. In computational applications the
normalization is more conveniently done to different intervals for each coordinate. Thefield
in the transformed space is then rectangular, rather than square.) Familiar examples of this
are elliptical coordinates for the region between two confocal ellipses, spherical coordinates
for two spheres, parabolic coordinates for two parabolas, etc.

These, same concepts will be extended later to completely general configurations
involving any number of boundary curves and branch outs. The extension to three



dimensions follows directly, using boundary surfaces instead of curves, i.e., one curvilinear
coordinate will be made constant on a boundary surface, with the other two forming a
two-dimensional coordinate system on the surface.

Returning to the concentric circles, if the functional dependence of & on &, and/or that of r
on ', had been made more general than the simple linear normalizations given by Eq. (4),
the corresponding coordinate lines would have become unequally spaced in the physical
space, while remaining asradial lines and concentric circles:

The transformation, from Eq. (1), is now given by
x(E,n) = r{n)cosd(E) (6a)

y(E,n) = r{n)sine(E) (6b)

In this case the points on the inner and outer circular boundaries are not equally spaced
around the circles in the physical space for equal increments of g although they remain
equally spaced on the top and bottom of the unit square in the transformed space by
construction. The spacing around these circlesis determined by the functional dependence of
6 on &, and, sincethe points are located at equal increments of 5 by construction, this
functional relationship is defined by the placement of these points around the circles. This
point, that the coordinate system in the field is determined from the boundary point
distribution, will be central to the discussion of grid generation to follow. The distribution of
circumferential linesis controlled here by the functional relationship between r and 1, which
is not related to any boundary point distribution. Thus factors other than the boundary point
distribution may be expected to be involved in grid generation, as well. That the point
distribution on the boundaries may be controlled by direct placement of the points, while the
coordinate line distribution in the field must be controlled by other means will also continue
to appear in the developments to follow.

The one-dimensional functional relationship between & and & in Eq. (6) requires that
the relative distributions of boundary points around the inner and outer circles be the same.
This restriction can be removed by making & afunction of 7, aswell asof &, while
retaining the periodic nature of the dependence on £ . In this case the ooordinate lines of
constant § will no longer be strai ght radial lines, although they will continue to connect
corresponding points on the inner and outer circular boundaries. Similarly the
circumferential coordinate lines (lines of constant "l here) can be made to depart from circles
by making r dependent on both € and M, but with the restriction that the dependence



vanishes on the inner and outer circular boundaries (where " =0and "l = 1, respectively,
here).

Obviously certain constraints will have to be placed on the functions 8 (5 ,) and (5 ,M) to
keep the mapping one-to-one. All of these considerations will reappear in the genera
developments that follow.

Finally, it should be realized that the intermediate use here of the cylindrical
coordinates (r,8) in defining the transformation between the curvilinear coordinates (5 ,M)
and the cartesian coordinates (X,y) has been only in deference to the familiarity of the
cylindrical coordinates, and such intermediary coordinates will not appear in general. The
generalized statement for the simple configuration under consideration hereis as follows:

Find & (x,y) and " (xy) in the annular region bounded by the curves x2 + y2 = 1 and x2 + y2
=73 , Subject to the boundary conditions

n-00n12+y2=r12

2 2 2

n=1o0nx*+y = I

Specified monotonic variation of € over [0,1] on x2 +y2 = r{ and on X2 + y2 = 73
with same sense of direction on each of these two curves.

7=1

e, FE{RY
find: {’lg’h?%

et Bpetified &
{6,1]

It isthe inverse problem that will be treated in fact, however, i.e., find x(E , and
y(5,M) on the unit square in the transformed space (0 = § = 1,0= T = 1), subject to the
boundary conditions



x(€,0) and y(& ,0) specified on M = 0 such that x3(& = 0) + y2§,0) =1

x( 1) and y(& ,1) specified on T = 1 such that xX(§ = 1) +y4(§,1) = 72
Periodicity in 5: x(1+ 5,1) =x(5,1) y(1+5 M) =y(5,")

The simple form for the transformation given by Eq. (6) is made possible by choosing the
same functional dependence of x andy on & on the boundaries, " =0and T = 1. The
familiar cylindrical coordinate system isthus a special case of the general grid generation
problem for this simple configuration applicable to the region between two concentric
circles, asisthe elliptical coordinate system for two ellipses, etc.

2. Generalization

Generalizing from the above consideration of cylindrical coordinates, the basic idea of
a boundary-conforming curvilinear coordinate system is to have some coordinate line (in 2D,
surface in 3D) coincident with each boundary segment, analogous to the way in which lines
of constant radial coordinate coincide with circlesin the cylindrical coordinate system. The
other curvilinear coordinate, analogous to the angular coordinate in the cylindrical system,
will vary along the boundary segment and clearly must do so monotonically, else the same
pair of values of the curvilinear coordinates will occur at two different physical points. (It
should be clear that the curvilinear coordinate that varies along a boundary segment must
have the same direction and range of variation over some opposing segment, e.g., asthe
angular variable varies from 0 to 2 over both of two concentric circlesin cylindrical
coordinates).

With the values of the curvilinear coordinates thus specified on the boundary, it then
remains to generate values of these coordinates in the field from these boundary values.
There must, or course, be a unique correspondence between the cartesian (or other basis
system) and the curvilinear coordinates, i.e., the mapping of the physical region onto the
transformed region must be one-to-one, so that every point in the physical field corresponds
to one, and only one, point in the transformed field, and vice versa. Coordinate lines of the
same family must not cross, and lines of different families must not cross more than once.

In this chapter atwo-dimensional region will be considered in most of the discussions
in the interest of economy of presentation. Generalization to three dimensions will be evident
in most cases and will be mentioned specifically only when necessary. As noted above, the
curvilinear coordinates may be normalized to any intervals, just as the radial and angular
coordinates of the cylindrical coordinate system can be expressed in many different units.
Since the interest of the present discussion is numerical application, it will be generally
convenient to define the increments of al the curvilinear coordinates to be uniformly unity,

and then to normalize these coordinates to the interval [l,N(i)], where NO) js the total number
of grid pointsto be used in the & ' direction. (The three curvilinear coordinates will be
indicated as 51,i = 1,2,3, in general. In two dimensions, however, the notation (5, ™) will
often be used for the two coordinates & 1 and & 2.) The computational field, i.e., thefield in
the transformed space, thus will have rectangular boundaries and will be covered by a square
grid. (It will become clear later that the actual values of the increments in the curvilinear

coordinates are immaterial since they do not appear in the final numerlcal expressions.
Therefore no generality islost in making the grid square and of unit increment in the



transformed field.)
A. Boundary-value Problem -- Physical Region

The generation of the curvilinear coordinate system may be treated as follows:. with
the curvilinear coordinates specified on the boundaries, e.g., 5 (x,y) and "(x,y) on a
boundary curve I' (this specification amounting to a constant value for either & or ™ on each
segment of I, with a specified monotonic variation of the other over the segment), generate
the values, & (x,y) and T (x,y), in the field bounded by I'. Thisis thus a boundary value
problem on the physical field with the curvilinear coordinates (5, M) as the dependent

variables and the cartesian coordinates (x,y) as the independent variables, with boundary
conditions specified on curved boundaries:

U= (Constant

mopetonc
variation

} Specified
pf &

(In these discussions, the transformation is assumed to be from cartesian coordinates in the
physical space. The transformation can, however, be from any system of coordinatesin the
physical space.)

B. Boundary value Problem - Transformed Region

The problem may be simplified for computation, however, by first transforming so
that the physical cartesian coordinates (x,y) become the dependent variables, with the
curvilinear coordinates (E ,'1 as the independent variables. Since a constant value of one
curvilinear coordinate, with monotonic variation of the other, has been specified on each
boundary segment, it follows that these boundary segments in the physical field will
correspond to vertical or horizontal lines In the transformed field. Also, since the range of
variation of the curvilinear coordinate varying along a boundary segment has been made the
same over opposing segments, it follows that the transformed field will be composed of
rectangular blocks.

The boundary value problem in the transformed field then involves generating the
values of the physical cartesian coordinates, x(5,M) and y(5 ,M), in the transformed field
from the specified boundary values of x(5,™) and y(5 ,M) on the rectangular boundary of the
transformed field, the boundary being formed of segments of constant Eor™,j.e, vertica or
horizontal lines. With Tl = constant on a boundary segment, and the incrementsin £ takento
be uniformly unity as discussed above, this boundary value specification is implemented
numerically by distributing the points as desired along the boundary segment and then
assigning the values of the cartesian coordinates of each successive point as boundary values



at the equally spaced boundary points on the bottom (or top) of the transformed field in the
following figure.

Boundary values are not specified on the left and right sides of the transformed field since
these boundaries are re-entrant on each other (analogous to the 0 and 27 linesin the
cylindrical system), as discussed above, and as indicated by the connecting dotted line on the
figure. Points outside one of these re-entrant boundaries are coincident with points at the
same distance inside the other. The problem is thus much more simplein the transformed
field, since the boundaries there are al rectangular, and the computation in the transformed
field thusis on a square grid regardless of the shape of the physical boundaries.

With values of the cartesian coordinates known in the field as functions of the
curvilinear coordinates, the network of intersecting lines formed by contours (surfacesin
3D) on which acurvilinear coordinate is constant, i.e., the curvilinear coordinate system,
provides the needed organization of the discretization with conformation to the physical
boundary. It is aso possible to specify intersection angles for the coordinate lines at the
boundaries as well as the point locations.

3. Transformed Region Configurations

As noted above, the generation of the curvilinear coordinate system is done by
devising a scheme for determination of the field values of the cartesian coordinates from
specified values of these coordinates (and/or curvilinear coordinate line intersection angles)
on portions of the boundary of the transformed region. Since the boundary of the
transformed region is comprised of horizontal and vertical line segments, portions of which
correspond to segments of the physical boundary on which a curvilinear coordinate is
specified to be constant, it should be evident that the configuration of the resulting
coordinate system depends on how the boundary correspondence is made, i.e., how the
transformed region is configured.

Some examples of different configurations are given below, from which more
complex configurations can be inferred. In these examples only a minimum number of
coordinate lines are shown in the interest of clarity of presentation tation. In all of these
examples, boundary values of the physical cartesian coordinates (and/or curvilinear
coordinate line intersection angles) are understood to be specified on all boundaries, both
external and internal, of the transformed region except for segments indicated by dotted
lines. These latter segments correspond to branch cuts in the physical space, asis explained



in the examples in which they appear. Such re-entrant boundary segments always occur in
pairs, the members of which are indicated by the dashed connecting lines on each of the
configurations shown. Points outside the field across one segmentof such a pair are
coincident with pointsinside the field across the other member of the pair. The conceptual
device of opening the physical field at the cutsis used here to help clarify the
correspondence between the physical and transformed fields. In many cases an example of
an actual coordinate system is given as well. References to the use of various configurations
may be found in the surveys given by Ref. [1] and [5], and a number of examples appear in
Ref. [2].

A. Simply-connected Regions

It is natural to define the same curvilinear coordinate to be constant on each member
of apair of generally opposing boundary segments in the physical plane. Thus, a
simply-connected region formed by four curvesislogically treated by transforming to an
empty rectangle:
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Here, for instance, the cartesian coordinates of the desired points on the physical boundary
segment 4-5 are specified as boundary conditions on the vertical line 4-5, in corresponding
order, which forms a portion of the boundary of the transformed region.

The generalization of these ideas to more complicated regionsis obvious, the
transformed region being composed of contiguous rectangular blocks. An example follows:



The physical boundary segment on which asingle curvilinear coordinate is constant
can have slope discontinuities, however, so that the L-shaped region above could have been
considered to be composed of four segments instead of six, so that the transformed region
becomes a simple rectangle:

Here the cartesian coordinates of the desired points on the physical boundary 5-4-3 are the
specified boundary values from left to right across the top of the transformed region.
Whether or not the boundary slope discontinuity propagates into the field, so that the
coordinate lines in the field exhibit a slope discontinuity as well, depends on how the
coordinate system in the field is generated, as will be discussed later.

It is not necessary that corners on the boundary of the transformed region correspond
to boundary slope discontinuities on the physical boundary and a counter-example follows

next:



ke

In this case, the segment 1-2 on the physical boundary is aline of constant I, while the

segment 1-4 isaline of constant & . Thus at point 1 we have the following coordinate line
configuration:

£

so that the angle between the two coordinate linesis T at point 1, and consequently the
Jacobian of the transformation (the cell area, cf. Chapter I11) will vanish at this point. The
coordinate species thus changes on the physical boundary at point 1. (Difference
representations at such specia points as this, and others to appear in the following examples,
are discussed in Chapter 1V.) Since the species of curvilinear coordinate necessarily changes
at a corner on the transformed region boundary, the identification of a concave corner on the
transformed region boundary with a point on a smooth physical boundary will always result
in aspecial point of the typeillustrated here. (A point of slope discontinuity on the physical



boundary also requires specia treatment in difference solutions, since no normal can be
defined thereon. This, however, isinherent in the nature of the physical boundary and is not
related to the construction of the transformed configuration.)

Some dlightly more complicated examples of the alternatives introduced above now
follow:
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Still another alternative in this case would be to collapse the intrusion 2-3-4-5to adlit in the
transformed region:
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Here the physical cartesian coordinates are specified and are double-valued on the vertical
dit, 2-9-5, in the transformed region. The cartesian coordinates of the desired points on the
physical boundary 2-9 are to be used on the dlit in the generation of the grid to the | eft of the
dlit in the transformed region, while those on the physical boundary 5-9 are used for
generation to the right of the dlit. Solution values in a numerical solution on such a
coordinate system would also be double-valued on the dlit, of course. This
double-valuedness requires extra bookkeeping in the code, since two values of each of the
cartesian coordinates and of the physical solution must be available at the same point in the
transformed region so that difference representations to the left of the dlit use the dlit values
appropriate to the left side, etc. Difference representations near dlits are discussed in Chapter
IV. With the composite grid structure discussed in Section 4, however, this need for
double-valuedness, and the concomitant coding complexity, with the slit configuration can
be avoided.

The point 9 here requires special treatment, since the coordinate line configuration
thereisasfollows:

The coordinate lines through point 9 are as follows:



Here the slope of the coordinate line on which & variesis discontinuous at point 9, and the
lineonwhich " varies splits at this point. Such a special point will always occur at the dit
ends with the dlit configuration.

B. Multiply-connected Regions

With obstaclesin the interior of the field, i.e., with interior boundaries, there are still
more alternative configurations of the transformed region. One possibility isto maintain the
connectivity of the transformed region the same as that of the physical region, asin the
following examples showing two variations of this approach using interior slabs and dlits,
respectively, in the transformed region. The slab configuration is as follows:
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In coding, pointsinside the slab in the transformed region are ssimply skipped in al
computations.

This configuration introduces a special point of the following form at each of the
points corresponding to the slab cornersin the transformed field:

The coordinate lines through



point 7 are shown below:

Thistype of specia point, where the coordinate species changes on a smooth line, occurs
when a convex corner in the transformed field isidentified with a point on a smooth contour
in the physical field. Both coordinate lines experience slope discontinuities at this point.

The dlit configuration is as shown below:

(An obvious varition would be to have the dlit vertical.) In this dlit configuration, the point 5
and 6 are special points of the form shown on p. 26 characteristic of the slit configuration,
and will require special treatment in difference solutions.

The transformed region could, however, be made simply-connected by introducing a
branch cut in the physical region asillustrated below:

Conceptually this can be viewed as an opening of the field at the out and then a deformation
into arectangle:



Here the coincident coordinate lines 1-2 and 4-3 form a branch cut, which becomes
re-entrant boundaries on the left and right sides of the transformed region. All derivatives are
continuous across this cut, and points at a horizontal distance outside the right-side boundary
in the transformed region are the same as corresponding points at the same horizontal
distance on the same horizontal line inside the left-side boundary, and vice versa. (In all
discussions of point correspondence across cuts, "distance” means distance in the
transformed region). In coding, the use of alayer of points outside each member of a pair of
re-entrant boundaries in the transformed region holding values corresponding to the
appropriate points inside the other boundary of the pair avoids the need for conditional
choices in difference representations, as discussed in Section 6 of this chapter.

Boundary values are not specified on the cut. (Thiscut is, of course, analogous to the
coincident 0 and 2™ linesin the cylindrical coordinate system discussed above.) At the cut
we have the following coordinate line configuration, as may be seen from the conceptional
deformation to arectangle:

so that the coordinate species and directions are both continuous across the cut.

Thistype of configuration is often called an O-type. Another possible configuration is
as shown below, often called a C-type:
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Opening thefield at the cut we have, conceptualy,

with 1-2-3-4 to flatten to the bottom of the rectangle. Here the two members of the pair of
segments forming the branch cut are both on the same side of the transformed region, and
consequently points located at a vertical distance below the segment 1-2, at a horizontal
distance to the left of point 2, coincide with points at the same vertical distance above the
segment 4-3, at the same horizontal distance to the right of point 3. The point 2(3) isa
specia point of the type shown on p. 26 for dlit configurations.

The coordinate line configuration at the cut in this configuration is as follows:
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whereitisindicated that & variesto the right on the upper side of the cut, but to the left on
the lower side. The direction of variation of " also reverses at the cut, so that although the
species and slope of both lines are continuous across the cut, the direction of variation
reverses there.

It is possible to pass onto a different sheet across a branch cut, and discontinuitiesin
coordinate line species and/or direction occur only when passage is made onto a different
sheet. It is also possible, however, to remain on the same (overlapping) sheet asthe cut is
crossed, in which case the species and direction are continuous, and this must be the
interpretation when derivatives are evaluated across the cut, asis discussed in Section 5 to
follow. These concepts are illustrated in the following figure, corresponding to the C-type
configuration given on p. 30:



In the present discussion of configurations, the behavior of the coordinate lines across the cut
will always be described in regard to the passage onto a different sheet, since thisisin fact
the case in codes. It isto be understood that complete continuity can aways be maintained
by conceptually remaining on the same sheet as the cut is crossed. Much of this complexity
can, however, be avoided with the use of an extra layer of points surrounding the
transformed region as will be discussed in Section 6.

Although in principle any region can be transformed into an empty rectangular block
through the use of branch cuts, the resulting grid point distribution may not necessarily be
reasonablein al of the region. Furthermore, an unreasonable amount of effort may be
required to properly segment the boundary surfaces and to devise an appropriate point
distribution thereon for such a transformation. Some configurations are better treated with a
computational field that has dlits or rectangular slabsin it.

Regions of higher connectivity than those shown above are treated in asimilar
manner. The level of connectivity may be maintained asin the following illustration:
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Here one dlit is made horizontal and one vertical just for generality of illustration. Both

could, of course, be of the same orientation. Slabs, rather than dits, could a'so have been
used. The example has three bodies.

With the transformed region made simply-connected we have, using two branch cuts,
a configuration related to the O-type shown above for one internal boundary:

The conceptual opening here is asfollows:



with segment 2-3-4-5-6-7 opening to the bottom. Here the pairs of segments (1-2,8-7) and
(3-4,6-5) are the branch cuts, which form re-entrant boundaries in the transformed region as
shown. In this case, points outside the right side of the transformed region coincide with
pointsinside the |eft side, and vice versa. This cut is of the form described on p. 30, where
both the coordinate species and direction are continuous across the cut. Points below the
bottom segment 3-4, to the left of point 4, coincide with points above the bottom segment
6-5 to theright of point 5. This cut is of the form discussed on p. 31, for which the
coordinate speciesis continuous across the cut but the direction changes there. There are a
number of other possibilities for placement of the two cuts on the boundary of the
transformed region, of course, some examples of which follow.
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It is not necessary to reduce the connectivity of the region completely; rather, adlit or slab
can be used for some of the interior boundaries, while others are placed on the exterior
boundary of the transformed region.

One other possibility in two dimensionsis the use of a preliminary analytical
transformation of infinity to a point inside some interior boundary, with the coodinates
resulting therefrom replacing the cartesian coordinates in the physical region. The grid
generation then operates from these transformed coordinates rather than from the cartesian



coordinates. Thistypicaly gives afine grid near the bodies, but may give excessively large
spacing away from the body.

are transformed according to the complex transformation

Z =17z

wherez = x+iy and 2’ = X’ +iy’, infinity in the x,y system will transform to the origin in the
X',y system, as shown below.
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Then with the grid generated numerically from the x’, y’ system the following configuration
results:



References to the use of this approach are made in the survey of Ref. [1]. Somewhat related
to this are various two-dimensional configurations which arise directly from conformal
mapping, cf. Ref. [6] and the survey of lves on this subject, Ref. [7]. (Conformal mapping is
discussed in Chapter X.)

C. Embedded Regions

In more complicated configurations, one type of coordinate system can be embedded
in another. A ssimple example of thisis shown below, where an O-type system surrounding an
internal boundary is embedded in a system of a more rectangular form, using what amounts
to adlit configuration.
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The conceptual opening of this system is best understood in stages: First considering
only the embedded O-type system surrounding the interior boundary, we have the region
inside the contour 12-13-6-9 opening as follows:



This then opens to the rectangular central portion of the transformed region shown above,
with the inner boundary contour 8-7-8 collapsing to adlit. Therest of the physical region
then opens as shown below:
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These two regions then deform to rectangles and are fitted to the top and bottom of the
rectangle corresponding to the inner system along the contours 12-13 and 9-6 as shown.

Here points at a vertical distance below the segment 11-12 are coincident with points
at the same vertical distance below the segment 10-9 on the same vertical line, and vice
versa, with similar correspondence for the pair of segments 13-14 and 6-5. Points at a
horizontal distance to the left of the segment B-12, at a vertical distance above point 8,
coincide with points at the same horizontal distance to the right of the segment 8-9, at the
same vertical distance below point 8. Similar correspondence holds for the pair 7-13 and 7-6.
Boundary values are specified on the dlit 8-7.

The composite system shown on p. 40 can aso be represented as a dlit configuration in
the transformed region:
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and the lower side of the dit considered re-entrant with the left half of the top boundary of
the rectangle corresponding to the inner system, the upper side of the dlit being re-entrant
with the right half of thistop boundary of the inner region. Now the conceptual opening isas
follows for the inner region:



Difference representations made above the dlit thus would use points below the right half of
the top of the inner region in the transformed region, etc. Similarly, representation made
below the left half of the top of the inner region would use points below the dlit. The dlitis
thus a"black hol€e" into which coordinate lines from the outer system disappear, to reappear
as part of the inner system. The dlit here, matched with the top of the inner system, isthen
clearly abranch cut, and passage through the dlit onto the inner system is simply passage
onto a different sheet.

Note that the embedded system has its own distinctive species and directions for the
coordinate lines, entirely separate from the outer system. Thus for the inner region the
directions are as follows:

while for the outer region they are as shown below:
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Thus at a point on the upper interface, 12-13, between the systems the lines are as follows:



nufter

Thus both coordinates reverse direction at the lower interface although the speciesis
continuous, while both the species and directions are continuous across the upper interface.
This again corresponds to passage onto a different sheet, for the interface between the inner
and outer systems, i.e., the segments 12-13 and 9-6, is actually a branch cut.

The points 9(12) and 6(13) here require special notice. For example, at point 9 the
coordinate line configuration is as follows:

The lines through point 9 are as shown below



There are thus several changesin species and direction at this point. This type of special
point embodies the form which always occurs with the slit configuration, shown on p. 26,
and occurs here because the embedded region inside the contour 9-6-13-12 is essentially
contained inside a dlit defined by the same set of numbers.

The above discussion refers to the slit configuration on p. 41. For the configuration on
p. 40, the lines in the outer region are still as diagrammed on p. 43, but the linesin the inner
region now are as follows:

The coordinate line species and direction given on p. 43 for the upper interface, 12-13, thus
applies here on the entire interface between the two regions.

An alternative treatment of the two special pointsisto place them inside cells as
shown below:
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Thisresultsin asix-sided cell surrounding each of these two points which requires special
treatment as discussed in Chapter 1V.



Embedded systems can also be constructed in the block configuration:
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Here the top of the block, 7-8, in the outer system is re-entrant with the corresponding
segment, 7-8, on a portion of the top of the inner system. The left side of the block, 6-7, and
the bottom of the block, 6-5, are similarly re-entrant with single portions of the top of the
inner system. Finally, the right side of the block, 5-12-8, is re-entrant with two portions, 5-12
and 12-8, of the top of the inner system. Points outside one of these segments in one system
are thus located at corresponding positions inside the other segment of the re-entrant pair in
the other system. The slab sides, matched with the top of the inner system, are thus branch
cuts between the inner and outer systems.

Here the coordinate lines proceed as follows for the outer system:
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while those for the inner system are the same as before, as shown on p. 42. This means that
on the left and right sides of the block, i.e., segments 6-7 and 5-8, the line directions are as

follows:
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There are thus changes in coordinate species and/or direction that are different on each side
of the block.

The point 8 (and points 7,6 and 5) are special points of the following form:

inner

Here the special points occur in the field instead of on the boundary.

An example of a C-type system embedded in another C-type system is given next:



Here the conceptual opening is as follows: First, considering the system about the upper
body, we have the following configuration:

which, with the body collapsed to a dlit, opens to the rectangle in the center of the
transformed region. Next consider the system about the other body:

This opens to arectangle, with the body flattening to a portion of the bottom, which isfitted
to the first rectangle along the segment 11-13. Finally, the outermost portion opens as
follows:
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which opens to a rectangle which is fitted to the first one along the segment 12-14.

Again the embedded region inside the contour 14-12-11-13 can be considered to lie
inside adlit. This contour, which forms the interface between the inner and outer systems, is
actually a branch cut between the two systems, across which there are discontinuitiesin
coordinate species and directon in the same manner as was discussed above for the previous
embedded system. Points below segment 16-12 coincide with points below segment 17-11in
this case. Points to the left of segment 15-12, above point 15, are coincident with pointsto
the right of segment 15-11 below point 15. The dlit hereis formed of the segments 8-15 and
9-15. The coincident points 11 and 12 here must be taken as a point boundary in the physical
region, i.e., fixed at a specified value. Several special points of the types discussed above are
present here.

An alternative arrangement of the transformed region that corresponds to exactly the
same coordinate system in the physical region is as follows:
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Here points below segment 3-4, to the left of point 4, coincide with points above segment
6-5, to the right of point 5. When cal culations are made on or above the segment 12-14 on
the larger block, points below this segment coincide with points below the corresponding



segment on the smaller block. Similarly, when calculations are made on or below the
segment 13-11 on the larger block points above this segment coincide with points below the
corresponding segment on the smaller block. Finally, points below the segment 7-8, to the
left of point 8, on the smaller block are coincident with points above the segment 10-9, to the
right of point 9.

This configuration displays explicitly the correspondence of the embedded region
inside the contour 14-12-11-13 to adit. Conceptually, coordinate lines from the main system
disappear into the dlit and emerge into the embedded system. These coordinate lines thus are
continued from the main system onto another sheet representing the embedded system. This
concept of embedded systems, with continuation onto another sheet through a dlit adds
considerable flexibility to the grid configurations and is of particular importance with
multiple boundaries and in three dimensions. The composite structure discussed in Section 4
removes much of the coding complexity associated with systems of thistype.

D. Other Configurations
Another arrangement of cuts, where the species of coordinate changes on a continuous

line asthe cut is crossed, isillustrated below. The transformed region in thiscase is
composed of three blocks connected by the cuts.

Here points outside one section are coincident with corresponding points inside the adjacent
section.

The coordinate line configuration on the interface on the right side of block A hereis
asfollows:

This same type of configuration occurs, in different orientations, on each of the interfaces.
These interfaces are branch cuts, so that passage onto the adjacent block amounts to passage
onto another sheet in the same manner discussed above.



Asafinal configuration for consideration in two dimensions, the following example
shows a case with fewer lines on one side of a slab than on the other. This does not
necessitate the use of different increments of the curvilinear coordinates in the numerical
expressions, because, as has been mentioned, these increments always cancel out anyway.

E. Three-dimensional Regions

All the general conceptsillustrated in these examples extend directly to three
dimensions. Interior boundaries in the transformed region can become rectangular solids and
plates, corresponding to the slabs and dlits, respectively, illustrated above for two
dimensions. Examples of three-dimensional configurations can be found in the surveys given
by Ref. [8] and [9].

It isalso possible to use branch cuts, asillustrated above for two dimensions, to bring
the interior boundaries in the physical region entirely to the exterior boundary of the
transformed region:

Physical space Computational space

The correspondence between the physical and transformed fields can, however, become
much more complicated in three dimensions, and considerable ingenuity may be required to
visualize this correspondence. For instance, the simple case of polar coordinates corresponds
to arectangular solid with two opposing sides having the radial coordinate constant thereon,
and two re-entrant sides on which the longitudinal coordinate is constant at 0 and 27,
respectively (corresponding to the cut). The remaining two sides correspond to the north and
south polar axes, so that an axis opensto cover an entire side. Thereisthusaline, i.e., the
axis, in the physical region that corresponds to an entire side in the transformed region.



Three-dimensional grids may be constructed in some cases by simply connecting

corresponding points on two-dimensional grids generated on stacks of planes or curved
surfaces:

It should be noted, however, that this procedure provides no inherent smoothness in
the third direction, except in cases where the stack isformed by an analytical transformation,
such as rotation, translation or scaling, of the two-dimensional systems. An example of such
an analytical transformation of two-dimensional systemsis the construciton of a
three-dimensional grid for a curved pipe by rotating and translating (and scaling if the
cross-sectional area of the pipe varies) two-dimensional grids generated for the pipe

cross-section so as to place these transformed two-dimensional grids normal to the pipe axis
at successive locations along the axis:
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Another exampleis the rotation of atwo-dimensional grid about an axis to produce an
axi-symmetric grid:




4. Composite Grids

All of the above concepts can be incorporated in a single framework, and the coding
complexity can be greatly reduced, by considering the physical field to be segmented into
sub-regions, bounded by four (six in 3D) generally curved sides, within each of which an
individual coordinate system is generated. The overall coordinate system, covering the entire
physical field, is then formed by joining the sub-systems at the sub-region boundaries. The
degree of continuity with which thisjuncture is made is a design consideration in regard to

the mode of application intended for the resulting grid.

This segmentation concept isillustrated in the figure below.
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The locations of the interfaces between the sub-regionsin the physical region are, of course,

arbitrary since these interfaces are not actual boundaries. These interfaces might be fixed,

i.e., the location completely specified just asin the case of actual boundaries, or might be left

to be located by the grid generation procedure. Also the coordinate lines in adjacent

sub-regions might be made to meet at the interface between with complete continuity:
---Interface

with some lesser degree of continuity, e.g., continuous line slope only:
---Interface



or with a discontinuity in slope:

or perhaps not to meet at all:

Naturally, progressively more special treatment at the interface will be required in numerical
applications as more degrees of line continuity at the interface are lost. Procedures for
generating segmented grids with various degrees of interface continuity are discussed | ater,
and conservative interface conditions are given in Ref. [52], [53].

Now, with regard to placing these concepts in the framework of segmentation, the
sides of an individual subregion (called a"block™" hereafter) can be treated as boundaries on
which the coordinate points, and/or the coordinate line intersection angles, are specified, just
asisdone for actual boundaries, or aside may be treated as one member of a pair of
re-entrant boundaries, i.e., one side of abranch cut in the physical region across which
complete continuity is established. The other member of the pair may be another side (or



portion thereof) of the same block or may be all (or part of) a side of an adjacent block in the
physical field. Recall that it is not necessary for a coordinate to remain of the same species
across are-entrant boundary, since the passage is onto a different sheet. This can introduce
some coding complexity, but the treatment is straightforward, and in fact the coding can be
greatly simplified by using an extralayer of points surrounding each block asis discussed in
Section 6.

Some of the general concepts have been embodied in the two-dimensional code
discussed in Ref. [19] and in three recent three-dimensional codes, Ref. [13] Ref. [14], and
[51].

A. Simply-connected Regions
Thefirst L-shaped simply-connected configuration on p. 21 can be interpreted as

being composed of three blocks, with the sides of adjacent blocks forming pairs of re-entrant
boundaries:

or two blocks with a portion of a side of one block re-entrant with an entire side of another
block:

2 ]

Here, and in the examplesto follow, solid lines correspond to physical boundaries, while the
dashed lines correspond to the interfaces between the blocks. The dashed arrows indicate the
linkage between the interfaces. (Obviously, any single block can be broken into any number
of blocks connected by re-entrant boundaries across adjacent sides.) In contrast, the
L-shaped configuration on p. 22 corresponds to the use of asingle block. Similarly, the
configuration on p. 24 can be formed with three blocks:



while the first configuration for the same boundary on p. 25 is formed with a single block.

The dlit configuration on p. 25 can be formed of three blocks:

or two blocks with only a portion of the adjacent sides of two blocks forming a re-entrant

boundary:
i~
gl
1 2[

B. Multiply-connected Regions

The configuration with a single cut shown on p. 29 corresponds to the use of asingle
block with the left and right sides here being the members of a pair of re-entrant boundaries:
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The multiply-connected slab configuration on p. 27 can be broken into four blocks:
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Other decompositions should also be immediately conceivable. The dlit configuration on p.
28 can be formed with two blocks, again with only portions of adjacent sides serving as
re-entrant boundaries:
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The double-body region on p. 34 opensto asingle block as shown there, with portions
of sides as re-entrant boundaries. A five block configuration would use only entire sides as
re-entrant boundaries, however:



There is no real advantage, however, to the five-block system here.

C. Embedded Regions

The segmentation concept is most useful in the construction of embedded coordinate
systems. For instance, the system on p. 40 can be considered to be formed of three blocks as

follows:

4 3
P, ‘
E g u 1
L ! B HL e e | S
w“-i----?---m{*' * 1;' * ,: E EE‘ Q.'EZ 13
E R St :
t U SR L, -
{ i ! - : 4
A 00 s e e o et B ¥ = )
1 3 § sl s
; 2}

Here portions of adjacent sides of the two larger blocks are re-entrant with each other, while
each of the remaining portions of these sides is re-entrant with half of one side of the smaller
block. The left and right sides of the smaller block are re-entrant with each other. This
configuration could also have been constructed with eight blocks:
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with only entire sides being involved in re-entrant pairs as shown.

With embedded systems the coordinate species often changes as the re-entrant
boundary is crossed. These systems also show that the blocks need be physically adjacent
only in the physical field, and it isin this sense that "adjacent” is always to be interpreted.
The transformed (computational) field should always be viewed as only a bookkeeping



structure. Various constructions are possible for the configurations on p. 48 and 50, and a

two block structure was actually used on p. 50. A further example follows:
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D. Three-dimensional Regions

For general three-dimensional configurations, it isusualy very difficult to obtain a
reasonable grid with the entire physical region transformed to a single rectangular block. A
better approach in most cases isto segment the physical region into contiguous sub-regions,



each bounded by six curved surfaces, with each sub-region being transformed into a
rectangular block. Anindividual grid is generated in each sub-region:

Physical Computaticnal
domain damain

These sub-region grids are patched together to form the overall grads, asin the
two-dimensional cases discussed above. Examples of the use of this segmentation in three
dimensions are found, in particular, in Ref. [11] and [12]. Others are noted in the survey
given by Ref. [9].

As noted above, complete continuity can be achieved at the sub-region interfaces by
noting the correspondence of points exterior to one sub-region with points interior to
another. The necessary bookkeeping can be accomplished, and the coding complexity can be
greatly reduced, by using an auxiliary layer of points just outside each of the six sides of the
computational region, analogous to the procedure mentioned above for two dimensions. A
correspondence is then established in the code between the auxiliary points and the
appropriate points just inside other sub-regions. This approach has recently been
incorporated in an internal region code, Ref. [13], and in two codes for general regions, Ref.
[14] and [51]. Thisis discussed in more detail in Section 6.

General three-dimensional regions can be built up using sub-regions as follows: First,
point distributions are specified on the edges of a curved surface forming one boundary of a
sub-region:

and atwo-dimensional coordinate system is generated on the surface:
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When this has been done for all surfaces bounding the sub-region, the three-dimensional
system within the sub-region is generated using the points on the surface grids as boundary

conditions;
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Inthree dimensionsit is possible for aline, e.g., apolar axis, in the physical region to
map to an entire side of the computational region asin theillistration below, where the axis
corresponds to the entire left side of the block:

Computational space

Physical space
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The system illustrated here could be one of several identical blocks joining together to form
a complete system around the axis.

Itisillustrated by an exercise that the occurence of apolar axis can be avoided, and
this facilitates the construction of ablock structure. Thus a surface grid, having eight
"corners’, analogous to the four "corners' on the circle in the 2D grid on p. 23, can be
constructed on the surface of a sphere. This serves much better than a latitude-longitude type



system for joining to adjacent regions. Similarly, the use of the four "corner" system, rather
than acylindrical system, in acircular pipe allows T-sections and bifurcations to be treated
easily by acomposite structure, c.f. Ref. [13].
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Generaly, grid configurations with polar axis should not be used in composite grid
structures.

E. Overlad Grids

Another approach to complicated configurationsisto overlay coordinate systems of
different types, or those generated for different sub-regions:

Here an appropriate grid is generated to fit each individual component of the configuration,
such that each grid has several lines of overlap with an adjacent grid. Interpolation is then
used in the region of overlap when solutions are done on the composite grid, with iteration
among the various grids. This approach has the advantage of ssimplicity in the grid
generation, in that the various sub-region grids are only required to overlap, not to fit.
However, there would appear to be problemsiif regions of strong gradients fall on the
overlap regions. Also the interpolation may have to be constructed differently for different
configurations, so that a general code may be hard to produce. Some applications of such
overlaid grids are noted in Ref. [5].

5. Branch Cuts

As has been noted in the above discussion of transformed field configurations, it is
possible for discontinuities in coordinate species and/or direction to occur at branch cuts, in
the sense of passage onto another sheet. Continuity can be maintained, however, by
conceptually remaining on the same overlapping sheet asthe cut is crossed. All derivatives
thus do exist at the cut, but careful attention to difference formulations is necessary to
represent derivatives correctly across the cut. Although the correct representation can be
accomplished directly by surrounding the computational region with an extralayer of points,



asisdiscussed in Section 6, it isinstructive to consider what is required of a correct
representation further here.

A. Point Correspondence

Points on re-entrant boundaries in the transformed region, i.e., on branch cutsin the
physical region, are not specia points in the sense used above. Points on re-entrant
boundaries, in fact, differ no more from the other field points than do the points on the 0 and
27 linesin acylindrical coordinate system. Care must be taken, however, to identify the
interior points coinciding with the extensions from such points beyond the field in the
transformed space. This correspondence was noted above in each of the configurations
shown above, being indicated by the dashed connecting lines joining the two members of a
pair of re-entrant boundaries. There are essentially four types of pairs of re-entrant
boundaries, asillustrated in the following discussion of derivative correspondence. In these
illustrations one exterior point, and its corresponding interior point, are shown for each case.
The converse of the correspondence should be evident in each configuration.

For the configurations involving a change in the coordinate species at the cut, not only
must the coordinate directions be taken into account as the cut is crossed, but aso the
coordinate species may need to be interpreted differently from that established across the cut
in order to remain on the same sheet as the cut is crossed. For example, points on an " -line
belonging to section A in the figure on p. 52, but located outside the right side of thisregion,
are coincident with points on a = -line of region B at a corresponding distance (in the
transformed region) below the top of this region.

B. Derivative Correspondence

Care must be taken at branch cuts to represent derivatives correctly in relation to the
particular side of the cut on which the derivative is to be used. The existence of branch cuts
indicates that the transformed region is multi-sheeted, and computations must remain on the
same sheet as the cut is crossed. Remaining on the same sheet means continuing the
coordinate lines across the cut coincident with those of the adjacent region, but keeping the
same interpretation of coordinate line species and directions as the cut is crossed, rather than
adopting those of the adjacent region. As noted above, points outside a region across a cut
the transformed space are coincident with points inside the region across the other member
of the pair of re-entrant boundary segments corresponding to the cut in the transformed
space. The positive directions of the curvilinear coordinates to be used at these pointsinside
the region across the other member of the pair in some cases are the same as the defined
directions there, but in other cases are the opposite directions. As noted above, the
coordinate species may change also.

For cuts located on opposing sides of the transformed region, the proper formis
simply a continuation across the cut. Thus in the configuration on p. 29, with a computation
site on the right side of the transformed region, i.e., on the upper side of the cut in the
physical plane, we have points to the right of the site (below the cut in the physical plane)
coinciding with points to the right of the left side of the transformed region (below the cut in
the physical plane) as noted above. When & -derivatives and M -derivatives for use outside the
right side of the transformed region are represented inside the left side, the positive



directionsof & and M to be used there are to the right and upward, respectively, asis
illustrated below. (In this and the following figures of the section, the dotted arrows indicate
the proper directions to be used at the interior points coincident with the required exterior
points, i.e., on the same sheet across the cut, while solid arrows indicate the locally
established directions for the coordinate lines, i.e., on adifferent sheet.)
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With the two sides of the cut both located on the same coordinate line, i.e., on the
same side of the transformed region as in the configuration on p. 30, however, the situation
is not as simple as the above. In this case, when the computation site is on the left branch of
the cut in the transformed region (on the lower branch in the physical region), the points
below this boundary in the transformed region coincide with points located above the right
branch of the cut (above the cut in the physical region) at mirror-image positions, as has
been noted earlier. The " -derivatives for use at such points below the left branch thus must
be represented at these corresponding points above the right branch. The positive direction
of T for purposes of this calculation of derivatives above the right branch, for use below the
left branch, must be taken as downward, not upward. Thereisasimilar reversal in the
interpretation of the positive direction of & . Thisisin accordance with the discussion on p.
31. These interpretations are illustrated below:
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In the configuration on p. 40, where two sides of a cut face each other across avoid,
thereisreally no problem of interpretation, since the directions in the configuration are
treated ssimply asif the void did not exist. This correspondence is as shown below:

In all casesthe interpretation of the positive directions of the curvilinear coordinates



must be such as to preserve the direction in the physical region, i.e., on the same sheet, asthe
cut is crossed. In the cases where the coordinate species change at the cut, the situation is
even more complicated. Thus on the left side, segment 6-7, of the dlab interface between the
inner and outer systems in the embedded configuration on p. 46, where the species changes
across the cut, the correspondence is as follows:

outer

Simanm

g inner

T

Thus, when a & -derivative is needed outside the outer sytem, for use inside the left slab
interface, the positive € _direction at the corresponding pointsinside the inner system must
be taken to coincide with the negative " -direction of the inner system. Similarly, an
"l-derivative would be represented taking the positive " -direction to coincide with the
positive & -direction of the inner system. In an analogous fashion, a & -derivative needed
outside the inner system, for use inside the segment 6-7, would be represented at the
corresponding point inside the outer system, i.e., to the left of the left slab side, but with the
positive € _direction taken to be the positive 'l -direction of the outer system. An "l -derivative
would be represented similarly, taking the positive " -direction to be the negative & _direction
of the outer system.

A & -derivative to the left of the right side of the slab in the outer system would be
represented below segment 12-5 or 8-12, as the case may be, but with the positive
€ _direction taken to be the positive " -direction of the inner system. Similarly, an
"I-derivative would be represented taking the positive "l -direction to be the negative
direction of theinner system. For a & -derivative above the bottom of the slab in the outer
system, the correspondence is to below the segment 5-6 inside the inner system, with the
positive & -direction taken to be the negative & -direction of theinner system. The
"I-derivative is represented taking the positive "l -direction to be the negative " -direction of
the inner sytem. Finally, for derivatives below the top of the slab in the outer system, the
correspondence is to below the segment 7-8 inside the inner system, with both the species
and direction of the coordinates unchanged.

The proper interpretation of coordinate species and direction across branch cuts for all
the other configurations discussed above can be inferred directly from these examples. A
conceptual joining of the two members of a pair of re-entrant boundaries in accordance with
the dashed line notation used on the configurations given in this chapter will always show
exactly how to interpret both the coordinate species and directions in order to remain on the
same sheet and thus to maintain continuity in derivative representation across the cuit.
Examples of the proper difference representation are given in the following section. The
complexities of this correspondence can be completely avoided, however, by using



surrounding layers around each block in a segmented structure as discussed in the next
section.

6. Implementation

As discussed above, the transformed region is always comprised of contiguous
rectangular blocks by construction. This occurs because of the essential fact that one of the
curvilinear coordinates is defined as constant on each segment of the physical boundary.
Conseguently, each segment of the physical boundary corresponds to a plane segment of the
boundary of the transformed region that is parallel to a coordinate plane there. The complete
boundary of the transformed region then is composed of plane segments, all intersecting at
right angles. Although the transformed region may not be a simple six-sided rectangular
solid, it can be broken up into a contiguous collection of such solids, here called blocks.

Now it is noted in Chapter 111 that the increments A & ' cancel from all difference

expressions, and that the actual values of the curvilinear coordinates €l areimmaterial. The
coordinates in the transformed region can thus be considered simple counters identifying the
points on the grid. This being the case, and the transformed region being comprised of a
collection of rectangular blocks, it is convenient to identify the grid points with integer
values of the curvilinear coordinates in each block, and thus to place the cartesian

coordinates of agrid point in = ke where the subscripts (i,j,k) here indicate position (E R¥

5 3) in the transformed region. (In coding, a fourth index may be added to identify the
block.) In each block, the curvilinear coordinates are then taken to vary as Ei=12. .1 over
the grid points, where I is the number of pointsin the Ei_direction. Grid pointson a
boundary segment of the transformed region will be placed in £ ik with one index fixed.

Now each block has six exterior boundaries, and may also have any number of interior
boundaries (cf. the slab and dlit configurations of Section 3), all of which will always be
plane segments intersecting at right angles, although the occur ence of interior boundaries
can be avoided if desired by breaking the block up into a collection of smaller blocks as
discussed in Section 4. The boundary segments in the transformed plane may correspond to
actual segments of the physical boundary, or may correspond to cutsin the physical region.
Asdiscussed in Section 5, these cuts are not physical boundaries, but rather are interfaces
across which the field is re-entrant on itself. A boundary segment in the transformed region
corresponding to such a cut then is an interface across which one block is connected with
complete continuity to another block, or to another side of itself, several examples having
been given above in this chapter.

Depending on the type of grid generation system used (cf., the later chapters), the
cartesian coordinates of the grid points on a physical boundary segment may either be
specified or may be free to move over the boundary in order to satisfy a condition, e.g.,
orthogonality, or the angle at which coordinate lines intersect the boundary.

To set up the configuration of the transformed region, a correspondence is established
between each (exterior or interior) segment of the boundary of the transformed region and
either a segment of the physical boundary or a segment of a cut in the physical region. This



isbest illustrated by a series of examples using the configurations of this chapter. The first
step in general isto position points on the physical boundary, or on a cut, which areto
correspond to corners of the transformed region (exterior or interior). As noted in Section 3,
these points do not have to be located at actual corners (slope discontinuities) on the physical
boundary.

For example, considering the two-dimensional simply-connected region on p. 23, four

points on the physical boundary are selected to correspond to the four corners of the empty
rectangle that forms the transformed region here:
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Now, considering any one of these four points, one species of curvilinear coordinate will run
from that point to one of the two neighboring corner points, while the other species will run
to the other neighbor:
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The corresponding species of coordinates will run to connect opposite pairs of corner points:

Since the curvilinear coordinates are to be assigned integer values at the grid points, Eiisto

vary from 1 at one corner to amaximum value, I', at the next corner, where I' is the number
of grid points on the boundary segment between these two corners. Thus, proceeding
clockwise from the lower left corner, the cartesian coordinates of the four corner points are

in ¥ 3 F 1_ 2
placed|n~1’1,~1,J,~|,J,and~|'1,wherel =land14=J.
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The boundary specification is then completed by positioning I-2 points on the lower and
upper boundary segments of the physical region as desired, and J-2 points on the left and
right segments. The cartesian coordinates of these points on the lower and upper segments

areplacedin £, ; and £, ;, respectively, for i from 2 to I-1, and those on the left and right
segments are placed, respectively, in £ 1j and L j forjfrom2to J-1.

This process of boundary specification can be most easily understood by viewing the
rectangular boundary of the transformed region, with | equally-spaced points along two
opposite sides and J equally-spaced points along the other two sides, conceptually, as being
deformed to fit on the physical boundary. The corners can be located anywhere on the
physical boundary, of course. Here the point distribution on the sides can be conceptually
stretched and compressed to position points as desired along the physical boundary. The
cartesian coordinates of all the selected point locations on the physical boundary are then
placed in as described above.

This conceptual deformation of the rectangular boundary of the transformed region to
fit on the physical boundary serves to quickly illustrate the boundary specification for the
doubly-connected physical field shown on p. 29, which involes acut. Thus | points are
positioned as desired clockwise around the inner boundary of the physical region from 2 to
3, and | points are positioned as desired, also in clockwise progression, around the outer
boundary from 1 to 4. The cartesian coordinates of these points on the inner boundary are

placedin £ ;, and those on the outer boundary in =, ;, withi from 1to I. Note that here the
first and last points must coincide on each boundary, i.e., £, =%, ;and £, ;=1 . The
left and right sides of the transformed region (i=1 and i= I) are re-entrant boundaries,
corresponding to the cut, and hence values on these boundaries are not set but will be
determined by the generation system. The system must provide that the same value appears
on both of these sides, i.e., *, | = llj for all j from 2to J-1.

The conceptual deformation of the rectangle for a C-type configuration isillustrated
on p. 31. Here, with 11 the number of points on the segments 1-2 and 3-4 (which must have
the same number of points), |2 points are positioned as desired around the inner boundary in
the physical region in a clockwise sense from 2 to 3, and the cartesian coordinates of these
points are placed in Li 1 forifromlltoI1+12-1.

The first and last of these points must be coincident, i.e. =, ;=% ;5.1 ;- Now the

top, and the left and right sides, of the rectangle are deformed here to fit on the outer
boundary of the physical region. (In theillustration given, the two top corners are placed on



the two corners that occur in the physical boundary, a selection that islogica but not
mandatory.) The cartesian coordinates of the J points(positioned as desired on the segment
4-5 of the physical boundary) are placed in ~ 1 proceeding upward on the physical

boundary from 4 to 5 for j= 1 to J, and those on the segment 1-6 are placed in = 1jr but

proceeding downward on the physical boundary from 1 to 6 for j1 to J. Finally, the cartesian
coordinates of the | selected points on the physical boundary segment 6-5 are placed in =~ i3

proceeding clockwise from 6 to 5 for i=1 to |. Since the same number of points must occur
on the top and bottom of the rectangle, we must have |=2(11-1)+12. Here the portions of the
lower side of the rectangle, i.e., i from 2 to I1-1, and from |1+I2 to I-1 with j=1, are
re-entrant boundaries corresponding to the cut, and hence no values are to be specified on
these segments. The generation system must make the correspondence £ i1= 4 for

- T-i+11
i=2 to 11-1 on these segments.

The conceptual deformation of the boundary of the transformed regions also serves for
the slab configuration on p. 27, where the interior rectangle deforms to fit the interior
physical boundary, while the outer rectangle deformsto fit the outer physical boundary. On
the inner boundary, the cartesian coordinates of J2-J1+1 selected points on the segment 5-8

of the physical boundary are placed in ~ 11 for j from J1 to J2, proceeding upward on the

physical boundary from 5 to 8, where J1 and J2 are the j-indices of the lower and upper
sides, respectively, of theinterior rectangle and 1 isthe i-index of the left side of this
rectangle. Similarly, J2-J1+1 points are positioned as desired on the segment 6-7 of the
physical boundary and are placed in ~ 12 where 12 isthei-index of the right side of the

inner rectangle. Also 12-11+1 points on the segments 5-6 and 8-7 of the physical boundary
areplacedin =, ;, and ~, ., respectively, for i from 11 to 12, proceeding to the right on each

segment. The outer boundary is treated as has been described for an empty rectangle. Here
there will be J1-1 coordinate lines running from left to right below the inner boundary, and
J-J2 lines running above the inner boundary. Similarly, there will be I1-1 lines running
upward to the left of the interior boundary and I-12 lines to the right. Thus the specifications
of the desired number of coordinate lines running on each side of the inner boundary serves
to determine theindicies|1, 12, J1, and J2. Note that the pointsinsidethe dlab, i.e, 1 <i <
12 and J1 <j < J2 are simply excluded from the calculation.

The dlit configuration, illustrated on p. 28, can also be treated via the conceptual
deformation, but now with a portion of aline inside the rectangle opening to fit the interior
boundary of the physical region. This requires that provision be made in coding for two
values of the cartesian coordinates to be stored on the dlit. If thei-indices of the dlit ends, 5
and 6, are |1 and 12, respectively, then the cartesian coordinates of 12-11+1 points positioned
as desired on the lower portion of the physical interior boundary, again proceeding from 5 to
6, are placed in aone-dimensional array, while the coordinates of the same number of points
selected on the upper portion of the physical interior boundary, again proceeding from 5 to 6,
are placed in another one-dimensional array. The first and last pointsin one of these arrays
must, of course, coincide with those in the other. Then the generation system must read
valuesinto - i1 for i from 11 to 12 (J1 being the j-index of the dlit) from the former array for

use below the dlit, or values from the latter array for use above. (As has been noted, the use
of acomposite structure eliminates the need for these two auxiliary arrays.) Note that the



index values 11 and |2 are determined by the number of lines desired to run upward to the
left and right of the interior boundary, respectively, i.e., 11-1 lines on the left and I-12 on the
right. Similarly, there will be J1-1 lines below the interior boundary, and J-J1 above.

Configurations, such as those illustrated on pp. 24-25, which involve slabs or dlits that
intersect the outer boundary are treated similarly, with pointsinside the slab again being
simply excluded from the calculations. Also multiple slab or dlit arrangements are treated by
obvious extensions of the above procedures. Here the indices corresponding to each slab or
dlit will be determined by the number of points on the interior boundary segments and the
number of coordinate lines specified to run between the various boundaries. For example, in
the dlit configuration shown on p. 33, the ends of the horizontal slit would be at i-indices 11
and 12, where 11-1 lines run vertically to the left of the dlit and there are 12-11+1 points on
the dlit. The vertical dlit would be at i=13 where there are 13-12-1 vertical lines between this
dlit and the horizontal dlit (and I-12 lines to the right). Similarly, if the j-indices of the ends of
the vertical dlit or J1 and J2, there will be J1-1 horizontal lines below this dit and J-J2 lines
above. With the j-index of the horizontal dlit as J3, there will be J3-1 horizontal lines below
thisdlit and J-J3 above. Provision will now have to be made in coding for two
one-dimensional arrays for each dlit to hold the cartesian coordinates of the points on the
segments of the physical interior boundaries corresponding to the two sides of each dlit.
Again this coding complexity is avoided in the composite structure.

The use of the conceptual deformation of the rectangle to setup the boundary
configuration for the case with multiple interior boundaries on p. 34 should follow with little
further explanation. Here there must be the same number of points on the pair of segments
2-3 and 6-7, which correspond to the two segments forming the interior boundary on the
right. There must also be the same number of points on the pair, 3-4 and 5-6, corresponding
to the cut connecting the two interior boundaries. Finally the number of points on the outer
boundary must, of course, be the same as that on the bottom boundary. Note also that the
values of the cartesian coordinates placed at 2 must be the same as are placed at 7; those at 3
must be the same as those at 6, and those at 4 the same as at 5. Values are not set on the cuts,
of course, but the generation system must provide that values at points on the segment from
3 to 4 are the same as those on the segment 5-6, but proceeding from 6 to 5. Also values on
the segments 2-1 and 7-8 must be the same, proceeding upward in each case.

Following the conceptual deformation of the rectangular boundaries of the
transformed region and the indexing system illustrated above, it now should be possible to
set up the more complicated configurations such as the embedded regions shown in Section
3C. Asnoted there, however, the most straightforward and general approach to such more
complicated configurationsisto divide the field into contiguous rectangular blocks, each of
which hasits own intrinsic set of curvilinear coordinates and hence its own (i,j,k) indexing
system. The necessary correspondence between the individual coordinate systems across the
block interfaces was discussed in some detail in Section 3C. This block structure greatly
simplifies the setup of the configuration. For example, consider the 3-block structure shown
on p. 49 for the physical field shown on p. 48, for which the blocks are as follows:



Here the selected points on the right interior boundary (segment 8-15-9) are placed in = i 4 Of
thefirst block, for i from thei-index at 8 to that at 9,proceeding clockwise from 8 to 9 on the
physical boundary. (The difference between these two i-indices here is equal to the number
of points on thisinterior boundary,less one.) Similary,the selected points on the left interior
boundary (segment 4-5) are placed in £ i 1 of the second block for i from thei-index at 4 to

that at 5, proceeding clockwise from 4 to 5 on the physical boundary. The selected points on
the outer boundary of the physical region are placed in = 1 of the third block for j from 1 to
J3,in Li pforifrom1tol3, andin L 13 for j from J3to 1, proceeding from 16to 1to 2to
14 on the physical boundary. Points on the remainder of the physical outer boundary are
placed in £ 1 of the second block for j from 1 to J2 and in L|2j for j from J2to 1,
proceeding from 3 to 17 for the former and from 13 to 6 for the latter, and in = 1 of thefirst
block for j from 1 to J andin £ 11 for j from Jl to 1, proceeding from 7 to 13 for the former
and from 14 to 10 for the latter.

Since the three blocks must fit together we have 13=12, (11+1)/2 equal to the difference
in i-indices between 11 and 13 in the second block and to that between 12 and 14 of the third
block. The quantities J1, J2, and J3 determine how many C-type lines occur in each block,
and can be chosen independently. Here the segment 11-13 on the top of the first block
interfaces with the corresponding segment on the top of the second block. The segment
12-14, which forms the remainder of the top of the first block, interfaces with the



corresponding segment on the bottom of the third block. Finally, the segment 12-16, which
forms the remainder of the bottom of the third block, interfaces with segment 11-17, which
forms the remainder of the top of the second block. The segments 3-4 and 6-5 on the bottom
of the second block interface with each other in the order indicated, as do aso the segments
7-8 and 10-9 on the bottom of the first block.

In coding, this block structure can be handled by using a fourth index to identify the
block, placing an extra layer around each block, (i=0 and 1+1, j=0 and J+1) and providing an
image-point array by which any point of any block can be paired with any point of any other,
or the same, block. Such pairs of points are coincident in the physical region, being on or
across block interfaces, and consequently are to be given the same values of the cartesian
coordinates by the generation system. This imaging extends to the extra layer surrounding
each block, so that appropriate points Inside other blocks can be identified for use in
difference representations on the block interfaces that require points outside the block, (cf.
Section 5).

Interface correspondence then can be established by input by setting the image-point
correspondence on the appropriate block sides, i.e., placing the (i,j,k) indices and block
number of one member of a coincident pair of pointsin the image-point array at the indices
and block number of the other member of the pair. This correspondence is indicated on the
block diagram on pp. 85-86 by the points enclosed in certain geometric symbols.

Thus, for the 3-block configuration considered above, the indices (11-i+1, 1) and block
number 1, corresponding to a point on the segment 9-10 of the first block, would be placed
in the image-point array at the point (i,1) on the segment 7-8 of this block, and vice versa. A
similar pairing occurs for points on the segments 3-4 and 5-6 of the second block. The
indices (12-i+1, J2) and block number 2, corresponding to a point on the segment 11-13 of
the second block would be placed in the image-point array at the point (i,Jl) of the first block
on the segment 13-11 of that block, and vice versa. The indices (13-11+i, 1) and block
number 3 (a point on the segment 12-14 of the third block) would be placed in the array at
the point (i,J1) of the first block for a point on the segment 12-14 of that block. Finally, the
indices (i,1) and block number 3 (point on segment 16-12 of the third block) would be
placed in the array at the point (i,J2) of the second block for a point on the segment 17-11 of
that block. The remaining segments all correspond at portions of the physical boundary and
hence do not have image points.

In the same manner the following image correspondence can be set between interior
points and points on the surrounding layersin order to establish difference representations
across the block interfaces: (This correspondence is indicated symbolically on the block
diagram on pp. 85-86 by geometric symbols.):
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As noted, all of thisinformation would be input into the image-point array. Then with
values of the cartesian coordinates at the image points on the surrounding layer set equal to
those at the corresponding object point inside one of the blocks, it is possible to use the same
difference representations on the interfaces that are used in the interior.

The discussion given in this chapter should now allow the image-point input to be
constructed for any configuration of interest. As noted, it is not necessary that the coordinate
species remain the same as the interface is crossed. Thus, for instance, a point on the right
side of one block could be paired with one on the bottom of another block. In such a case the
image point of the point (1+1, j) the first block would be the point (j,2) inside the second
block. Similarly the image of the point (i,0) below the second block would be the point (1-1,
1) inside the first block, The correct difference representation across interfaces is thus
automatically established, eliminating the need for the concern with passage onto different
sheets discussed in detail earlier in this chapter.

This greatly smplifies the coding, since with the surrounding layers and the use of the
image points, all of the derivative correspondences are automatic and do not have to be
specified for each configuration. It is only necessary to specify the point correspondence by
input. This construction also allows codes for the numerical solution of partial differential
equations on the grid to be written to operate on rectangular blocks. Then any configuration
can be treated by sweeping over al the blocks. The surrounding layers of points and the
image correspondence provide the proper linkage across the block interfaces. In an implicit
solution the values on the interfaces would have to be updated iteratively in the course of the
solution. The solution for the generation of the grid would similarly keep the interface and
surrounding layer values updated during the course of the iterative solution.

This, of course, maintains completecontinuity across the block interfaces. If complete
continuity is not required, then the surrounding layer is not required and the interfaces would
be treated in the same manner as are physical boundaries. However, the surrounding layer
and the point correspondence thereon discussed above might still be needed for the
numerical solution to be done on the grid.



The extension of al of the above concepts and structures to three dimensionsis direct,
theillustrations having been given in two dimensions only for economy of presentation.

Exercises

1. Sketch the grid when the physical region shown below is transformed to an empty
rectangle as indicated.
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2. Locate the cuts on the grid in the physical region for the grids shown on pp. 35-37.

3. Sketch the grid for a O-grid, a C-grid, and a dlit configuration for a cascade arrangement
(aperiodic stack of bodies, e.g., turbine blades.)

&

%:“'X

4. For the configuration shown below, let body 11 transfrom form to adlit in a C-type system
about 1. Sketch the grid lines and show the transformed region configuration.

5. Sketch the surface grid on a sphere with eight "corners’ on the sphere. Thisis analogous
to the 2D grid for the circle with four "corners' on p. 23. This configuration would be more
appropriate for embedding a spherical region in a composite structure than would the usual



polar system.

6. Diagram the transformed region configuration for a polar coordinate system between two
concentric spheres. Here the polar axis will map to an entire side of the transformed region.

7. Sketch the surface grid on acircular cylinder with a hemispherical cap for two cases: (1)
with a cylindrical-coordinate type grid on the hemisphere and (2) with four "corners' on the
intersection of the hemisphere with the cylinder. The latter case would be more appropriate
for a composite system.

8. For the two-dlit configuration on p. 33, diagram a composite system composed of empty
blocks. Show all cuts and the correspondence between pairs thereof

9. Sketch the grid and diagram the blocks for a composite two-block system for a circular
pipe T-section. It is necessary to use a cross-sectional grid of the type shown on p. 23,
having four "corners" on the circle, since cylindrical grids would not join with line
continuity.

10. Diagram the block structure and grid for a six-block composite system for the region
between two concentric spheres, based on the surface grid of Exercise 10. Note that no polar
axis occurs with this configuration.

11. Consider aregion between two boundaries, both of which are formed of cylinders with
hemi-spherical caps, these being coaxial with one inside the other. Sketch the grid and
diagram the blocks for a three-block system, with one block corresponding to the annular
region between the caps, for the following two configurations: (1) with the polar axis
connecting the caps and (2) with no polar axis. In the latter case each of four sides of one
block will correspond to one of four portions of one side of the other block.

12. Diagram the point correspondence across al the cuts in the two-body O-grid on p.34.
Also give the relation between the indices of corresponding points on the cuts. Finally give
the relation between the indices of points on a surrounding layer of points and pointsinside
the field inside the cuts.

13. For one block of the system on p. 52, give the correspondence between indices of points
on the surrounding layers and points inside adjacent blocks for the cuts.

14. Sketch the grid for a2-D composite system having two circular regions embedded in a
grid which is generally rectangular. Let one of the circular regions have a
cylindrical-coordinate type of grid and the other have a grid of the type with four "corners’
on the circleas on p. 23.

15. Show that isis not possible to handle the point correspondence across the cuts in the
embedded slab type system shown on p. 46 (a 2-block system) by using an extra layer of
points just inside the slab in the outer system. Also show that it is possible to represent the
correspondence across the cuts using surrounding layersif a4-block composite system is
used.



[11. TRANSFORMATION RELATIONS

The transformation relations from cartesian coordinates to a general curvilinear system
are developed here using certain concepts from differential geometry and tensor analysis,
which are introduced only as needed. Warsi [15] has given an extensive collection of
concepts from tensor analysis and differential geometry applicable to the generation of
curvilinear coordinate systems. Another discussion is given in Eiseman [16], where these
concepts are devel oped as part of ageneral survey on the generation and use of curvilinear
coordinate systems. Eiseman includes a discussion on differential forms, whichisa
fundamental part of modern differential geometry, but primarily restricts his development to
Euclidean space. In contrast, Warsi has given aclassical development that includes curved
space, but not differential forms.

Partial derivatives with respect to cartesian coordinates are related to partial
derivatives with respect to curvilinear coordinates by the chain rule which may be writtenin
either of two ways. If A isascaar-valued function, then
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Either formulation may be used to relate the cartesian and curvilinear derivatives of the
function A. However, there is adifference in the transformation derivatives which must be
inserted in these relations. In the first ease one must be able to evaluate (or approximate) the
vectors

el (1 -1,2,3)

whereas, the second case requires

Cei (1 =1,2,3)

Thus all the transformation relations may be based on either of these two sets of vectors.
Various properties of, and relationships between, these vectors are developed and applied in
this chapter to provide the necessary transformation relations.

1. Base Vectors
The curvilinear coordinate lines of athree-dimensional system are space curves

formed by the intersection of surfaces on which one coordinate is constant. One coordinate
varies along a coordinate line, of course, while the other two are constant thereon. The



tangents to the coordinate line and the normals to the coordinate surface are the base vectors
of the coordinate system.

A. Covariant
Consider first a coordinate line along which only the coordinate & varies:

£

Clearly atangent vector to the coordinate lineis given by

nig + dg) -~ nlg) _
ééfu dE e

(Coordinates appearing as subscripts will always indicate partial differentiation.) These
tangent vectors to the three coordinate lines are the three covariant base vectors of the
curvilinear coordinate system, designated

where the three curvilinear coordinates are represented by Ei (i=1,2,3), and the subscript i
indicates the base vector corresponding to the & coordinate, i.e., the tangent to the
coordinate line along which only & ! varies.

B. Contravariant

A normal vector to a coordinate surface on which the coordinate & is constant is given

£= [onstant

These normal vectors to the three coordinate surfaces are the three contravariant base vectors



of the curvilinear coordinate system, designated
al myel (1 -1,2,3) (4)

Here the coordinate index i appears as a superscript on the base vector to differentiate these
contravariant base vectors from the covariant base vectors. The two types of base vectors are
illustrated in the following figure, showing an element of volume with six sides, each of
which lies on some coordinate surface.

C. Orthogonality

Only in an orthogonal coordinate system are the two types of base vectors parallel,
since for anon-orthogonal system, the normal to a coordinate surface does not necessarily
coincide with the tangent to a coordinate line crossing that surface:

Also for an orthogonal system the three base vectors of each type are obviously mutually
perpendicular.

2. Differential Elements

The differential increments of arc length, surface, and volume, which are needed for
the formulation of the respective integrals, can be generated directly from the co-variant base
vectors. The genera arc length increment leads a so to the definition of afundamental metric
tensor.



A. Covariant metric tensor

The general differential increment (not necessarily along a coordinate line) of a
position vector is given by
3

3
i i
= d. = d
dr 121 :Ei £ iz1 @2y df

Anincrement of arc length along ageneral space curve then is given by

3 3
(@)? = [ac}? = § 321 a; + gy dglagd

[ S
The generd arc length increment thus depends on the nine dot products, ~¢ 7 (i=1,2,3)
and (j= 1,2,3), which form a symmetric tensor. These quantities are the covariant metric
tensor components:

Byg =31 = @y = Bgy (1 =1,2,3), (J =1,2,3) 5)

Thus the general arc length increment can be written as

3 3
ds)? = 14¢d (6)
(da)® = B L By o&7dE

B. Arc length element

An increment of arc length on a coordinate line along which & |variesis given by

ds’ - ICEH"EI - |§11‘“5'-i - Vg1 ag? @)

C. Surface area € ement

Also an increment of area on a coordinate surface of constant 5 is given by
i lark Jaek
d3 = [P , X P o |dEYdE™ = |a. x g, |dEYdE
| E‘j Ek | I J kl

(8)
{(i=1,2,3) (1,3,k) oyelie

Using the vector identity
(A xB)» (CxP)=-A-Q)B-2)-(&-2(8Q 9

we have



IEJ X Ek|2 - (EJ * iJ}':ﬂk - "L (ﬂj * ﬂk}z

(10)
“ 838k ~ 83k
so that the increment of surface area can be written as
ast = Jeygmu - €f a1 -1.2,3)
(11)
(i,J,k) eyelic
D. Volume element
Anincrement of volumeis given by
aV =g v (X x Ty el (g keyelie
(12)
= 2; ¢ (ap x ag)de azfag3
But, by the identity (9),
[ﬂ1 - {ﬂ-z X 33}]2 - EE-‘ . a-ﬂ'[(ﬂg X aa} * EEE X 33}]
= |ﬂ1 X ':ﬂ.z X 53}"2
Also from (9),
(ap x ag} = (ap x ag) = (ap - ap)(a3 - ag) - {83 - 33}2
and by the vector identity
Ax (BxC)=(4~-L)B- (4~ B)C (13)

we have
a, x (3 x a3) = (87 * agla; ~ (31 * @)y

so that with the dot products replaced according to the definition (5),



[gy - {85 % 13}]2 = B11{BpoB33 ~ 353} - 3?3522
- 3?2533 * 2813812823
- 511820833 - €23)
- £12{812833 ~ £13823)

+ 813812823 ~ By38pp)
Thislast expression is ssimply the determinant of the (symmetric) covariant metric tensor
expanded by cofactors. Therefore
[2; - (3 x 23)]° = det]gyy| = & (14)

s0 that the volume increment can be written

av = /g delde?de3 (15)

where l (called the Jacobian of the transformation) can be evaluated by either of the
following expressions:

JE-W-M . (E-Exﬂg) (16)

3. Derivative Operators

Expressions for the derivative operators, such as gradient, divergence, curl, Laplacian,
etc., are obtained by applying the Divergence Theorem to a differential volume increment
bounded by coordinate surfaces. The gradient operator then leads to the expression of
contravariant base vectors in terms of the covariant base vectors, and to the contravariant
metric tensor as the inverse of the covariant metric tensor.

By the Divergence Theorem,

Iﬂn-adv-ﬁa-nus (17)

5

for any tensor 4 , Where 2 is the outward-directed unit normal to the closed surface S

enclosing the volume V. For adifferential surface element lying on a coordinate surface we
have, by Eg. (8),



nas! -1 8y % &, dgddeX (18)

with the choice of sign being dependent on the location of the volume relative to the surface.
Then considering a differential element of volume, &V, bounded by six faces lying on
coordinate surfaces, as shown in the figure on p. 98, we have, using Eq. (15) and (18),

“J (¥ - &) /g dgldg2ag3

k|
= 1;[{] 4+ {ayx adengEk

st (19)

- [ &+ oy = aeedak
a8l

where the notation & S+ and 52 indicates the element on & | two sides of the which & is
constant and which are located at larger and smaller values, respectively, of £ Here, as
usual, theindices (i,j,k) are cyclic.

A. Divergence

Proceeding to the limit as the element of volume shrinks to zero we then have an expression
for the divergence:
3
c b= 7 [(ay x 3) ¢ &3 20
Vebm gl ey x e 4Ty 20

where, as noted, the subscript &' on the bracket indicates partial differentiation.

A basic metric identity isinvolved here, since

3 3
I, xa), = (e, xr.)
P R B = e e

3
XLt LLgEL Ly

)
- n
- B T B s B

1=1 g

Theindices (i,},k) are cyclic, and therefore the last summation may be written equivalently
as



3 3
X = r xr
121 Led * Tkl 121 gk = Fglgd

Since thisis then the negative of the first summation we have the identity,

3
121 (gy x ak)gi -0 (21)

Thisis afundamental metric identity which will be used several timesin the devel opments

that follow. Thisidentity also follows directly from Eqg. (20) for uniform 4 |t then follows
that the divergence can also be written as

3

« A o= . 22
¥ A Tgriz1 (EJ X ﬂk) &Ej_ (22)

Although the equations (20) and (22) are equivalent expressions for the divergence,
because of the identity (21), the numerical representations of these two forms may not be
equivalent. The form given by Eq. (20) is called the conservative form, and that of Eq. (22),
where the product derivative has been expanded and Eq. (21) has been used, is called the

[ it
non-conservative form. Recalling that the quantity (2 % &)

] a .
surface area (cf.Eq. (8)), so that (£ % 2,04 isaflux through this area, it is clear that the

difference between the two formsis that the area used in numerical representation of the flux
in the conservative form, Eq. (20), isthe area of the individual sides of the volume element,
but inthe nonconservative form, a common area evaluated at the center of the volume
element is used. The conservative form thus gives the telescopic collapse of the flux terms
when the difference equations are summed over the field, so that this summation then
involves only the boundary fluxes. Thiswould seem to favor the conservative form as the
better numerical representation of the net flux through the volume element.

represents an increment of

It isimportant to note that since the conservative form of the divergence, and of the
gradient, curl, and Laplacian to follow, is obtained directly from the closed surface integral
in the Divergence Theorem, the use of the conservative difference forms for these derivative
operators is equivalent to using difference forms for that closed surface integral. Therefore
the finite volume difference formulation can be implemented by using these conservative
forms directly in the differential equations of motion without the necessity of returning to the
integral form of the equations of motion.

B. Curl

Since Eq. (17) isaso valid with the dot products replaced by cross products, the
conservative and non-conservative expressions for the curl follow immediately from Eq. (20)
and (22):



3
Yxa-——1 [(a xa)xal, (23)

/g i=1 A £
and
gxg-—‘—g{g xa)xh, (24)
/g 1s1 I £
These expressions can also be written, using Eq. (13), as
1
T xA=— . - .
Yyxa /g 131 “EJ ﬂ}ﬂk (Ek ﬁJEJ]Ei (25)
and
vxaeld
yxas ??;1;1 [(EJ - g‘Ei]Ek (g - &E_{) EJ] (26)
C. Gradient

Eq. (17) isalso valid with 4 replaced by a scalar, and the dot product replaced by simple
operation on the left and multiplication on the right. Therefore the conservative and
non-conservative expressions for the gradient also follow directly from Eq. (20) and (22) as

YA = #_;7_1}31 [la; x ng£]£1 (27)
and

Vi = }-_;—121 {gj x Ek)A§1 (28)
D. Laplacian

The expressions for the Laplacian then follow from Eq. (20) or (22), with 4 replaced
by ¥ A from Eq. (27) or (28). Thus the conservative form is



VA -7 - (VA

3
1 1 (29)
- [ (a b = [{ A 1

' 121 1}.:1 o A 3 * 2 ]EI}E

(1,J.k) eyelice (1,m,n) eoyoliec

and the non-conservative is

2, _ _t E E 1
T - — (a, 8 )« [a_ xa)a.]
R I = Y e &

(30)

{1,1,k) oyella (1,m,n) ecyclic

With the product derivative expanded, the non-conservative form, Eq. (30), can also be
written as

?ﬂ-—}: gta xa) - (g xa)A
B L4y 15 W TRk plel
(31)
L% } (a, xa,) » —Ha xa)l, A
g 1= 1= 0 K g R TR

+

1

4. Relations Between Covariant and Contravariant Metrics
A. Base vectors

The expression (28) for the gradient allows the contravariant base vectors to be
expressed in terms ofthe co-variant base vectors as follows. With A=EMin (28), we have

?mn_"._g (a, x &, )8
¥E s i1 8y X 379y

since the three curvilinear coordinates are independent of each other. Then

1 1
VE* = —a, xa (L =1,2,3) {1,j,k} cyelle 32
=R (32



This gives arelation between the derivatives of the curvilinear coordinates (E i)xI and the

derivatives (x,) & s of the cartesian coordinates. By Eq. (4) the contravariant base vectors
maybe written in terms of the covariant base vectors as

1 i 1
- - gwa; xa
i ¥E z 4 k
(33)
(i =1,2,3) (1,31.k) eyelle

By Eq. (33),
gy o 3! ’7&31 - {3, x g;)

where here (j,k,I) arecyclic. If | # i, either k or | must bei, and in that case the right-hand
sidevanishessince the three vectors in the triple product may be in any cyclic order and the
cross product of any vector with itself vanishes. When j=i, the right-hand side is ssmply
unity. Therefore, in general

a; - al = 5] (34)

Because of thisrelation, any vector 4 canbe expressed in terms of either set of base vectors
as

3
a = 121{51 - A) a4 (35)
and
3
A - 1211:31 - 8} 2l (36)

Here the quantities 4’ = 2'* 4 and 4° = 4" 4 gre the contravariant and co-variant
components, respectively, of the vector 4

B. Metric Tensors

The components of the contravariant metric tensor are the dot products of the
contravariant base vectors:

gld et e g agdl  (1a1,2,33 (9a-1,2,9 (37)

The relation between the covariant and contravariant metric tensor components is obtained
by use of Eq. (33) in (37). Thus, with (i,j,k) cyclic and (I,m,n) cyclic,



gt =gl -8l -} (g xa) - (g xap

= L [{ay » ap)lay * 8y) = (85 = ap){ay * ay)]

by the identity (9). Then from the definition (5),

11

B~ = .13. {E;lmgkn - Ejngkm)

(1 - 1|2:3} {1 = 1,2.3] (38)
{1,3,k) eyelic (1,m,n) cyeclic

Since the quantity in parentheses in the above equation is the signed cofactor of theil
component of the covariant metric tensor, the right-hand side above is the li component of
the inverse of thistensor. Then, since the metric tensor is symmetric we have immediately
that the contravariant metric tensor is simply the inverse of the covariant metric tensor. It
then follows that

1] 1 1
det L L — =
& dete;5] &

s0 that, in terms of the contravariant base vectors, the Jacobian is

vYE = (det |gi'j|ll"'1‘er - 1 (39)
al - 3% xad

The identity (21) can be given, using Eq. (33), as

3
1y |, = 40
121 (l"’E =] ]Ei 0 ( )

5. Restatement of Derivative Operators

Inview of EQ. (33), the cross products of the co-variant base vectors in the expressions
given above for the gradient, divergence, curl, and Laplacian can be replaced directly by the
contravariant base vectors (multiplied by the Jacobian). The components of these
contravariant base vectors £' in the expressions are the derivatives of the curvilinear
coordinates with respect to the cartesian coordinates, and this notation, rather than the
cross-products, often appears in the literature. Thus, by Eqg. (4), the x j-component of a can

be written as

(ah); = (eh)y, (41)



The expressions for the gradient, divergence, curl, Laplacian, etc., given abovein

terms of the cross products of the covariant base vectors, £ | involve the derivatives of the
cartesian coordinates with respect to the curvilinear coordinates, e.g. (X;)¢ j. The expressions

given below in terms of the contravariant base vectors, £ | involve the derivatives G i)X_
J

when /s is evaluated from (39). From a coding standpoint, however, the contravariant base

vectors £1in these expressions would be evaluated from the covariant base vectors using EQ.
(33).

A. Conservative

The conservative forms are as follows:

74 - :,—‘_ R ; (42)
g i=1 E
g«4m ,7:; 121 (/g al » by (43)
Txa--t S Ealxzm (44)
Vg 1=1 g
a2l § Trat. vEew (45)
/g 1=1 J=1 Tl

By expanding the inner derivative, the Laplacian can be expressed as

3
2L ] 3 st

) 46
/g 1=1 =1 gd'g! 9
For ¥ * (2 ¥ 4) e have

V. (a¥A) = L g f [mai v (VB aJnJ H (47)

) /g =1 3=1 AN

or, with the inner derivative expanded,
v + (a¥a) .11} wEeth By (48)
- vYg 1=1 3=1 EYE

In the expressions for the divergence, 4 may be atensor, in which case we have



(¥« 4), - E (A,

1-1 %
E E (49)
--L [J_{aJA] (k = 1,2,3)
/B 1=1 1=1 Lkt ’
From Eq. (42) we have the conservative expressions for the first derivative:
3
- -] 1y.a 50
where )y is the component in the xj-di rection. Also, for the second derivative,
33ty Iv/E (ahyal o) (51)
A - {(a™) [Vg (2
xyx, [zu ?__12 21 a ), [V& R L
or, with the inner derivative expanded,
; 3 3 7 ol 1
- (2 ) {83 )4 1] 52
Axgm " 7k b8 @Rl %2
It then follows that all of the above conservative expressions can be written in the
form
3
1 i
Teh Mgt 3
where the quantity Al takes the fol lowing form for the various operatfons, withi = 1,2,3,
ga = al « /g ala (54)
Y « 4 (vector B} : al = /g al + (55)
¥ « 4 (tensor A&) : 3 = vz 3 al (56)
matrix product of square matrix 4 and column vector 1. Here € is avector)

Yxa: Al =/Ea x4 (57)



72y ¢ Al - a

- f Eidﬂj
¥ « (afa) : al - uj§1 [gi = (JE'EJA] j] (for Eq. (47))
- E

3
SR CPRE A

A

x

!Jxl{

al = /5 {eilk 3

3
1,3 vaew , (for Ea. (45))
3=1 E

J=1

J

3

1=1

E

gd

3
s, ¢ Al -l ¥ o0/ (ab).ad
LI Y= ~

(for Eq. {U6))

(for Eq. (%8))

E

: al -*’E(gi)d A

(EI}JAEJ_ (for Eq. (52))

(58)

(59)

(60)

(61)

(62)

(63)

(64)

It is computationally more efficient to evaluate the product Jg ai as an entity from Eq.
(33) when the conservative forms are used, in order to avoid the extra multiplication by Jz .
Another alternativeisto include 5 with <.

B. Non-conservative

The non-conservative relations are as follows:

A = 1,
¥ l§1E Ei

3

From Eq. (65) the p operator can be represented by

and

i

T

3
)

=1

a

i

3.
(3

(65)

(66)



al Ay (67)

(68)
(69)

Since

3
vglay.@h-g-8" - ] 2 - @y (70)

by Eqg. (37) and (69), the Laplacian can aso be written as

3 3 3
2y - Ha, .+ ] (v%hn (71)
vhe L 321 87 Petgd JE1 gl

Using Eg. (67) and (65) we aso have

3 3
V. (aya) = I gt - Gamw),
=1 g

3
: E I el s 31
i=1 J=1 EY £

o4 J ] 1
= g )  [& {ak ) +ﬂ{§)1-ﬁ
i=1 321 g gt g

Thus, by Eq. (70), the non-conservative expression is

3

3 3
. . 14 (vZedia 72
¥ - (aFA) 121 3215 (uAEJ)Ei + aJE_:1 £ g (72)



A more practical equation than Eq. (70) for the evaluation of ¥ 2E1 in these expressions can
be obtained as follows.

Since ¥2Z =0 it follows from Eq. (71) that

3 3 3
b gy 8 By gk (TR (")

But ~ ¢ jzﬁj. Then dotting £ into this equation and using Eq. 34, we have

3 3 3
1) Gl ., + 5 wihst -0
121 _]Z1 g 2 :Eili‘fI J=1 1
so that ¥2E ! is given by
2,1 7 3 1j ;1 (1 =1,2,3)
- - . = lags 74
At Y N R B (7

The non-conservative form of the divergence of atensor is, by expansion in Eqg. (49),
3 i3 A :
" - - y.!
(¥ é}k E Ej‘kl)xl 121 121 (a 11 kl Ei

351 (75)

(k = 1,2,3)

From Eq.(65) the non-conservative expressions for the first and second derivatives are

3
Ay, - (Ta) - iET{aiidAEi (76)
and
3 3 1 1
A = =
1%, [E(AKJ)]H 121 121 (a"), [(a )Jngllzi
5 5 (77)
1 1 2
- A A ]
121 121 (g )k [(g }J Elﬁi + {aEi}J El

This non-conservative form in terms of the contravariant base vectorsis referred to by
some as the "chain-rule conservation" form (Eq. (76) is equivalent to Eq. (1)). In any case
only the conservative form gives the telescopic collapse over the field that characterizes



conservative numerical representations, and it is necessary to substitute for the contravariant
base vectors from Eqg. (33) in implementation, since it is the covariant base vectors that are
directly calculated from the grid point locations.

6. Normal and Tangential Derivatives

Expressions for derivatives normal and tangential to coordinate surfaces are needed in
boundary conditions and are obtained from the base vectors as follows.

A. Tangent to coordinate lines

Since the covariant base vectors are tangent to the coordinate lines, the tangential
derivative on a coordinate line along which &' variesis given by

3
bt 1 J
(A}i-_-ﬂ= E (g, » ad)a
L P las] 3= 1 gl

using Eqg. (65). In view of Eq. (34), thisreducesto
Aol
(ol . (1 =1,2,3)
Tl (78

B. Normal to coordinate surfaces

Also, since the contravariant base vectors are normal to the coordinate surfaces, the
normal derivative to a coordinate surface on which &1 is constant is given by

3
1
1-...5'—- -—1_-.— i' }A-
(4) ke . 321 (gt o el

(79)

{i - 1 |2|3]

C. Normal to coordinate lines and tangent to coordinate surfaces

Thevector ® * <+ isnormal to the coordinate line on which & varies and is also
tangent to the coordinate surface on which &1 is constant:



Using Eqg. (33) and the identity (13), this vector is given by

Ei;gl-r%{ga xakJ X 8,
1
) -#_E[‘Ei 308y - (g - gyl gl (80)

and the magnitude is given by

1 2 1,2 2
8" x 2| - 5 (85, Byy * iy~ 2BridigBy

1 - -
= 2L (81,81 gy y85 * 81508158y ByyB ikt
The bracket is the negative of the second and third terms of the determinant, ¥ ~ dﬂt|§=‘f|,
expanded by cofactors. Therefore, we have
Iﬁ-i x ﬂilz - 1; [giitgj_] Bk ~ 3§k} - g]
(81)

g 2 -
o SRLULVRE T

The derivativ_e normal to the coordinate line on which & ! varies and in the coordinate
surface on which &' is constant then, using Eq. (65) and (80), is given by



1
= I (E.UCEJ * E a 1- Eijék * E A l]

/g|at x 8| 1=1 E E
1
- iee————— (g .k, — By.h )
By Eg. (34). Thus, using Eq. (81),
Bijh k ~ Byl 3
(A = = : (1,1,k) cyolic (82)

7
811(8yj8kk ~ 8Bjx) " 8

7. Integrals

Expressions for surface, volume, and lineintegrals are easily developed from the base
vectors as follow.

A. Surface integral

Returning to the Divergence Theorem, Eq. (17), and its counterparts with the dot product
replaced by a cross product or simple operation (the latter with A replaced by a scalar), we
have approximate expressions for the surface integrals over the surface of the volume
element given, using Eq. (15), by

C&a o ndS= /g9 . 4 de'dgae3 (83)

with the open circle indicating the product operation, and using the appropriate expression

for ¥ = < from those given in the developments above. This emphasizes again that difference
representations based on integral formulations, e.g. finite volume, can be obtained by using
conservative expressions for the derivative operators directly in the partial differential
equations.

B. Volume integral

The approximate expression for the volume integral over the volume element, again
using Eq. (15), issimply



Ilj 4 dv = ﬁ . dE1d§2d53 (84)

C. Lineintegrals

Using Eg. (3), theline integral on a coordinate line element on which Eivariesis
simply

Aodr =4 0 8 ﬂEi (85)
§s

where again the open circle indicates any type of operation, and s any tensor. Also since

,Egudc-LJ(uxm.aus
<

we have for a closed circuit lying on a coordinate surface on which & 'is constant,

3
!E Lodp =72 1 [al xah-21 .8 dgTae”
Ts 151 A

3
-7z 3 (atxagh) o 3.1 dg™ag™
using Eq. (83), where (I,m,n) are cyclic. But

gl x g = al x (a, x 2,)/v8

Then using the identity (13), we have

al xal = (al - aylag - (a* - an)ayn
(86)
= 5111 8y ~ 5#1 an
by using Eq. (34). With (1,j,k) cyclic we have for the circuit integral,
- o ] - & 4 dﬁk
ii Ao dr 2 iE‘j di 4 @ Ek (87)

8. Two-Dimensional Forms



In two dimensions, let the X3 direction be the direction of invariance, and let the €3
curvilinear coordinate be identical with X3. Also, for convenience of notation, let the other
coordinates be identified as

X =% Xp = ¥, 51-£, a,ndEz-n

A. Metric elements

Then
ﬂ3 = 3. K.

and the other base vectors are

8 = g = 1xg * dyp

(88)
8y = o, = ix, * 1y,
The covariant metric components then are
B33 =k -k =1
313-531 -ﬂ.l. r k=0
B3 =832 =8 " k=0
(89)

2 2
814 = *g + ¥e

Ezz'xﬁ*?ﬁ
Brz = B * XX, + Ye¥n

From Eq. (16), the Jacobian is given by



Vg = Ydet[gy [ ~ '/511522 - &5,
=k - (g %3 = |E1 xﬂgl
= Xe¥n T A4V

The other contravariant base vectors are, from Eq. (33),

1 .1 -1 _
a ﬁ-[ﬁz Ik 7 “':FTI .12“1

2 . 1 -1 .
R 7;(5:-31} ?E-{ Lyg + 1x)

and the contravariant metric components are, from Eqg. (37) or (38),

g3 =k .-
gid-gdl a3l . k=0

3= g2 -0

2z Eq9

B
E11_£l E m _ '
B

g
12 _ .21 __ Bz
g = & -
From Eq. (4) we have ¥ E=2£1and ¥ 1=£2 g that by Eq. (91),

¥ ¥ X
5:“7;1—153,--:%, Tlx"yg--ﬂy'ysé—

B. Transformation relations

Divergence (conservative), Eq. (43):

Y-4- 7%—[(!“11 = Xphodp + (¥edy 245D ]

(non-conservative), Eq. (67):

(90)

(91)

(92)

(93)

(94)



Ve = Dy (B = Xy (R = Ye(Ap)y + Xe(hp)] (95)

Gradient (conservative), Eq., (42):

£, = ;%—E{rﬂflg (yg),] (96)
f 7—-[ (x r}E * ':]lEr} ] (97)

(non-conservative), Eg. (65):

f! - E{}' fa - }"Ef ] (98)
1 ¢-
fy = 72 et % )

By Eq. (93), or directly from Eqg. (76), these non-conservative forms may be given as

fx = fEEx + fnnz

f =fE +°F
y - Teby T Iy

which are the so-called "chain-rule conservative" forms. This form, however, is not
conservative and the relations given by Eq. (93) must be substituted in the implementation in
any case, sinceitisx ¢, etc., rather than ¢, that is directly calculated from the grid point

locations.

Curl (conservative), EQ. (44):

k
Vx4A- }-_; [ly Ay + x Ad = (¥ 4, + x40 ] (100)
(non-conservative), Eq. (68):
k
YxA-= v’_i Eyn{AE)E + xn(AT}E - yE(AE}ﬂ - xE{A1}n] (101)

Laplacian (conservative), Eq. (45):



2 1 _
/E v°f {[}§-rn[(rnfiz (y. 23]

-y
1"‘,_hl'tﬂl: (xnf}E + (foJ“]':'E

B
(102)
-1 -
+ 4 = el Oy - (3,0 ]
1 [ )
+ e IE[ fxnf}E + (foJ“]}n
(non-conservative), Eq. (65):
2 1 2 2
VT == -2 +
g [(x“ * rn)rEE fxExn rEyn}fﬁn
(103)
2 2 2 2
+ + + iy
{xE YEJr“nJ (V°E) gt {v nJrTI
Second derivatives (non-conservative):
2, . o2
Fxx = [FﬂrEE ¥e¥oTen YgTan?/®
2 _ 2 _
P L Tes ~ BghgTen * Y (R - xf)
2, _ 2 _ 3/2
Op¥gg ~ Byp¥pxg, YeXon! gl = ¥, T ) /2 (104)
-{xzf -2gxr +rEf e
¥y N E§ EnEn L nn
2 2 _
R R e L
2 /2
- - /
* (xﬁxﬁﬁ Eztxnxiﬂ * xExnn}(IErﬂ anE]] 53
(105)

ey = LORg¥y + 2y = xe¥ f = X ¥, Fppl/E



+ XYy =~ X Ve /8 * XY VB - ey, (VB 1783 2z,

- : /2
+ {{xﬂTEE - XEFEn]fE + [xE?ECJEjﬂ xHEEKJE}E]fEB }fﬂ

Normal derivative (conservative):

1
f = LF [(Y f] - {y f} ]

(E) 13
T

n

- xn[-{xnr}E + thf)n]}

— 1 p— —
fn{“} = - { rE[(rnf)E (rgf}n]
ve X, * ¥

+ xE[-{x“r}E + {fo}n]}

(non-conservative):

2 . 2., .
r (g) ™ [(xn + rn}fE {x %

n YE ¥x

o ] |—

f

P

n(n) v’_/_ n

ul'\"l

Tangential derivative (conservative):

1
- {x [ty B), - (¥ £

{E) g
< B

- rn[(xnf]E - {x r} 11

£ S E— Ly £ = Gy ]
T{nJ 5 =
VB Xe * ¥y

- ?E[Exnf)E - {fo}n]I

En*’i"?

[—I:Ex ¥e¥y }f Ex + IE]f ]

(106)

(207)

(108)

(109)

(110)

(111)

(112)



(non-conservative):

]
f oy = £
L{E) ﬁ? n (113)

n n
G 21+ fe (114)
X * Vg
Surface integral:
ﬂ £dS = /g fdedn (115)

9. Time derivatives
A. First Derivative

With moving grids the time derivatives must be transformed also. For the first
derivative we have

ax
(r>§ - (FEJ - GGy (116)

where here, and in Eq. (117) below, the subscripts indicate the variable being held constant
in the partial differentiation. Here the time derivative on the left side is at afixed position in
the transformed space, i.e., at agiven grid point. The time derivative on theright is at afixed
position in the physical space, i.e., the time derivative that appears in the physical equations

of motion. The quantity Ao isthe grid point speed, to be written = X hereafter. Thus we
have, for substitution into the physical equations of motion, the relation

A [ ]
Gty - ('gT)g -x .7 (117)

with ¥ to come from thetransformation relations given previously. With the time derivatives
transformed, only time derivatives at fixed pointsin the transformed space will appear in the
equations and, therefore, all computation can be done on the fixed uniform grid in the
transformed field without interpolation, even though the grid points are in motion in the
physical space. The last term in Eq. (117) resembles a convective term and accounts for the
motion of the grid.

B. Convective terms

Consider the generic convective terms



Cuip +¥ ¢ (yh) (118)

where £ isavelocity, which occur in many conservation equations. Using Eq. (117) we
have

CmAy - TA+Y - (uA)

where now the time derivative is understood to be at a fixed point in the transformed space.
Then using Eq. (42) and (43) for the gradient and divergence, this becomes

3
3 1 1
wr -_1sz, i + e (Vg a3 * ud) 119
C A't 7; & 121 (/g a A)Ei g 12:-1 51 (119)

By Eq. (16),

{JE}t = [E1 » (EE X i3}]t

{31)t . {ﬂz X E3> + (Ez)t . (53 X 31)

+

(EBJt . (E1 X Ez)
2 i
/g 121 (2;); = &

by Eq. (33). But

(ﬂijt = (xsi)t - (i}Ei

S0 that

(/&) =78} a' » (&)l (120)

We then can write



3
C =4 +M‘/E)"'+1 Z[/Eéi'(‘_"'i)"‘]i
t /B Jg 1= &

(121)

3 .
-l (w/Ega, + I [WVe A)gi « (u-%) 1}
/g E e E

which is aconservative form of the generic convective terms with regard to the quantity,
e, By Eg. (33), the quantity

gl el s (-8 (i =1,2,3) (122)

isthe contravariant velocity component in the £ I_direction, relative to the movi ng grid. Thus
Eqg. (121) can be written in the conservative form,

3
/EC=(fE_A)t+iE1

(/g Aul )Ei (123)

Expanding the derivativesin Eqg. (119) and using Eq. (40), we have

3 3
s 1, 4 al « (uA ; * Ay} (12
30 that the non-conservative form
3 3
i 1
- A + A a“ s« u (125)
C =yt Uh ik gl

The last summation is the divergence of the velocity, You, (Computationaly, 5 might be
included in the definition of U' for use in the conservative form in the interest of

computational efficiency, since by Eq. (33) the product fg ai can be evaluated directly as
the cross product of the co-variant base vectors.)

From Eq. (117) we have, with A takenas &,
el -z .ogela-z. 4t (126)



by Eq. (4). Here the time derivative of tlis, of course, at afixed position in physical space.

The quantity U' introduced above in Eq. (122), thus could be written as

Ul wgt o gr gl agel cpe gl (1 -1,2,9)

Herethe &' % are, of course, the contravariant velocity components.
C. Second derivative

The second time derivative transforms as follows;
3 3

32 - b > =u L)

where the X,y subscripts on the left indicate the variables being held constant, and

3
- i
¥ 121 4 ¢Ei
(Z9)y = f al ¢, +als )
1=1 tgd £l

3 3

- k 1 1
¢313J kg'l 121 (2 Ji[tﬂ }j ¢£lEk * [Egk}j ¢El]

| ij
EnEk - an X nEmEk} a & EEIEJ

= =1
e B1lad

1y - _1. e
(a3 }Ek @(%x

with (I,m,n) cyclic.

Exercises

(127)

(128)

(129)

(130)

(131)

(132)

1. Obtain the covariant and contravariant base vectors for cylindrical coordinates from Eq.

(3) and (4). Show that Eq. (34) holds for this system.

2. Obtain the elements of arc length, surface area, and volume for cylindrical coordinates.

3. Obtain the relations for gradient, divergence, curl, and Laplacian for cylindrical
coordinates.

4. Demonstrate that the identity (21) holds for cylindrical coordinates.



5. Demonstrate that Eqg. (33), (38) and (39) hold for cylindrical coordinates.
6. Repeat exercises 1 - 5 for spherical coordinates.

7. Show that the covariant base vectors may be written in terms of the contravariant base
vectors by

a, = vE (& xa) (1,3,k) oyclle

Hint: Cross 2Kinto Eq. (33) and use (13), rearranging k subscripts at the end. Recalling that
/% ascan be expressed (det g7~ , this gives, arelation for (x) ¢ i in terms of the derivatives

(5N,

8. Show that the elements of the covariant metric tensor can be expressed in terms of the
contravariant elements by

= E(Ejmskn - B’jnﬂkm}{i..].k) ayelie
{1,m,n} cycllec

851

Hint: Follow the development of Eqg. (38), but with 4.8

9. Show that Eqg. (65) is equivalent to the chain rule expression (1). Also show that the dot
product of ﬁj with Eq. (65) leads, after interchange of indices, to the chain rule expression

(4).
10. Show that

(',E)Ei = "’Eg E B'jk tEkEi

Hint: Since £ = detlg”| dependson & only through the g;j. differential g with respect to g;,
with respect to 5. Recall Eq. (38).

11. Show that ¥2Z =0, Hint: Use cartesian coordinates.
12. Obtain the two-dimensional relations in Section 6 from the general expression.
13. Verify Eqg. (74) for cylindrical and spherical coordinates.

14. Obtain the normal and tangential derivatives (Sectiond) for cylindrical and spherical
coordinates.






IV.NUMERICAL IMPLEMENTATION
1. Transformed Eqations

In order to make use of ageneral boundary-conforming curvilinear coordinate system
in the solution of partial differential equations, or of conservation equationsin integral form,
the equations must first be transformed to the curvilinear coordinates. Such atransformation
is accomplished by means of the relations devel oped in the previous chapter and produces a
problem for which the independent variables are time and the curvilinear coordinates. The
resulting equations are of the same type as the original ones, but are more complicated in
that they contain more terms and variable coefficients. The domain, on the other hand, is
greatly simplified since it is transformed to a fixed rectangular region regardless of its shape
and movement in physical space. This facilitates the imposition of boundary conditions and
isthe primary feature which makes grid generation such a valuable and important tool in the
numerical solution of partial differential equations on arbitrary domains.

A numerical solution of the transformed problem can be obtained using standard
techniques once the problem is discretized. Since the domain is stationary and rectangular,
and since the increments of the curvilinear coordinates are arbitrary, the computation can
always be done on afixed uniform square grid. Spatial derivatives at nearly al field pointsin
the transformed domain can therefore be represented by conventional finite-difference or
finite-volume expressions, as discussed in the next section. In fact, the transformed problem
has the appearance of a problem on a uniform cartesian grid and thus may be treated as such
both in the formation of the difference equations and in the solution thereof.

The specific form of the transformed equations to be solved depends, of course, on
which of the realtionsin Chapter |11 are used, i.e., conservative or not. As an example,
consider the generic convection-diffusion equation

A+ 0 - () + T ¢ (IR + 8 =0 @

Equations (111-123), (111-42), and Eq. (111-43) may be used to transform the convective terms,
the gradient, and the second divergence, respectively, and thereby yield the conservative
form:

3
1
v UvYEA)
( Eﬂ)t * 1Z1t g EI

(2
3 3
i_(,,"'.h_)] + /g5 = 0
v 121 ‘121 lua el TS

where now the time derivative is understood to be at a fixed point in the transformed region,
and the contravariant velocity components (relative to the moving grid) are given by Eq.
(111-122). Eg. (2) can aso be written in the form



3 3
i J Ygs = 0
(/ga), * i21[111-/'5'.5. + pug J§-1 (Vg3 )5‘1151 * /8 3)

which clearly shows the conservative form. It is the product /€ A rather than the function A
itself, which is conserved in this form. The derivative inside the | summation can be
expanded and Eq. (111-40) invoked to obtain the simplified form:

3 3
1
Vah)y + I [VE(UA + udz131JaEJJJEI +/gs=0

which is still conservative in regard to the & -derivatives.

These conservative forms are in the commonly used form

3
i -
By * 121 (E'(B)1 4 + B =0

where the solution vector is £5 4 the "flux" vectors £ ! are given by the bracketsin (3)
and (4), and the source vector is R_fg 5

The flux vectors £ ' contain metric derivatives and depend on time and the curvilinear
coordinates through these metric elements, as well as through the solution vector £ and this
must be taken into account in the construction of factored solution methods. A general
formulation of split solution methods (encompassing both time splitting, e.g., approximate
factorization, and spatial splitting, e.g., MacCormack method) in the curvilinear coordinates
can, however, be formulated.

The non-conservative form of EqQ. (1) follows using Eq. (111-125) for the convective

terms, Eq. (111-65) for the gradient, and Eq. (111-67) for the divergence Yo (xXA) The
resulting equation may be written

3 3 3

i 2.1 ij
A U vV A A
t 121( + u¥°E") Ei "'121 jg'l g (u EJ)Ei
(5)
$ g
A . 5=20
+ L a ggi +

since Eq. (111-70) gives



3
el - ) ol - () ®)

(Thelast summation in Eg. (5) isjust ¥ "% \which vanishes for incompressible flow.)
Comparison of Eq. (5) with the original equation, written in the form

3 3 13 3
+35=0
Ay * 1§1uinx1 * 121 121 S1(MAx,)x, T 4 121 Reti Y

demonstrates that the equation has been complicated by the transformation only in the sense
that the coefficient u; has been replaced by the coefficient U'+K (?ZE ", and the Kroniker

deltain the double summation has been replaced by g'!, thus expanding that summation from
three termsto nine terms, and through the insertion of variable coefficientsin the last
summation. This exemplifies the fact that the use of the general curvilinear coordinate
system does not introduce any significant complications into the form of the partial
differential equationsto be solved. When it is conthat the transformed equation (5) isto be
solved on afixed rectangular field with a uniform sguare grid, while the original equation (7)
would have to be solved on a fiels with moving curved boundaries, the advantages of using
the curvilinear system are clear.

These advantages are further evidenced by consideration of boundary conditions. In
general, boundary conditions for the example being treated would be of the form

ak + g = (u¥4) = ¥ (®)

where 2 isthe unit normal to the boundary and ¢, F, and I are specified. From Eq. (111-79)
these conditions transform to
3

ah + g ¥ 21 EIJAEJ =Y (9)

fg.il J=

for aboundary on which & 'is constant. For comparison, the original boundary conditions (8)
can be written in the form

3
A = 10
ol + BuJZ1nijj Y (10)

The transformed boundary conditions thus have the same form as the original conditions, but

with the coefficient n; replaced by g’/ /¢ The important simplification is the fact that the

boundary to which the transformed conditions are applied is fixed and flat (coincident with a
curvilinear coordinate surface). This permits a discrete representation of the derivatives At j



along the transformed boundary without the need for interpolation. By contrast, the

derivatives A, inthe original conditions cannot be discretized along the physical boundary
J

withoutinterpolation since the boundary is curved and may be in motion.

This discussion of a generic convection-diffusion equation and associated boundary
conditions should serve to allow specific physcial equations to be transformed. References to
application of these equations are gven in the surveys Ref. [1] and [5]. Several examples also
appear in Ref. [2].

2. Discrete Representation of Derivatives

Approximate values of the spatial derivatives of afunction which appear in the
transformed equations may be found at a given point in terms of the function’s value at that
point and at neighboring points. As noted earlier, with the problem in the transformed space,
only uniform sguare grids need be considered, hence the standard forms for difference
representation of derivatives may be used. For example, in two dimensions the first, second,
and mixed partials with respect to the curvilinear coordinates € and M are ordi narily
represented at an interior point (i,j) by finite differences or finite-volume expressions which
contain function values at no more than the nine points shown below.

-1 I 1+1
-] -] -] l.g.-‘
1 o . o |
a o e [~1
&

This centered, nine-point "computational molecule” is usually preferred because of the
associated difference representations which are symmetry-preserving and second-order
accurate. Examples of finite-difference approximations of thistype are:

(felyy - %{fiﬂ,,j - fi-1,3) (118)
=1 -

{rﬂ}ij = E(rigj+1 fi,J"'1) (11b)

{fEE}iJ - fi+1 .J = Ef‘td + fvj_""l oJ (128.)

(fnn]iJ = ri.J""l - Efij + fi,.j"1 (12b)



;
Fendiy = 3(T141,341 = Tia1,3-1 = Fi-1,341 * T1-q,31) (13)

Other second-order approximations of the mixed partial (f& n), j which use the nine-point
molecule are:

1 - -
PRSI PR BRI TN B W T Y

(14)
BT S L S I B PR IR R

and
1 _ _
341,37 Tan, -1 * Frgn T 2y
(15)
Py qer T Ly, g4t Biag,y)

It isclear that at boundary points, where at most first partials must be represented, the

computational molecule cannot be centered relative to the direction of the coordinate & ¢
which is constant on the boundary (see diagram below).

£
n+2 .
n+1- o . o

There a one-sided difference must be used to approximate f & .. The second-order formula
appropriate for the boundary point indicated aboveis

{fEqun - -15( - rm’n+2 * urtﬂ,ﬂ""] - Sfm!n}

Any standard text on the subject of finite-difference methods will provide formulas of
alternate order and/or based on other computationa molecules.

A finite-volume approach uses function values at grid-cell centers and approximates
derivatives at a cell center by line (surface in 3D) integrals about the cell boundary which are
equivalent to averages over the cell. In particular, the identity



Worg = L g oas = 1 al £ g do (16)

isused, whereV isthe volume of D. Thus, if afunction is assumed constant along a grid-cell
face, it isasimple matter to evaluate the line integral in (16) when D isagrid cell in
transformed space. In terms of the two-dimensional grid:

+ ==
o,
| I
+—--4
| |
I
+--4
I, |
| l
I |
+1
this approach gives
-1, 173
L=2d (173)
- fi J-1
Ry (17b)

With an edge value approximated as the average of the center values of the two cells sharing
that face, e.g.

1
4 = E[fiﬂ,j * flJ}

1
1+, (18)
-|-2 J

the values given by (17) are equivalent to ordinary central differences (cf. Eq. (11)) and
hence are second-order accurate. Thefirst partials of f may also be assumed constant along
each cell edge in order to derive from (16) the following approximations of second and
mixed partials at a cell center:

(Fggdyy = (Fgd a0, ~ M) g (199)
2 2
(Fgpley = )y 0~ (g, g1 (19b)
2
{f‘ﬂﬁ}id = {r“}iﬂ_.J = (rﬂji-%.‘] (19C)
2



(frndyg = (F (f)

} . 1
n 1 L 19d
1.J+E 1, 2 (19d)

Now, however, the averaging scheme in (18) cannot be used to approximate edge val ues of
the derivatives without going outside the nine-point computational molecules shown above.
Instead, a second-order accurate representation can be obtained on the nine-point molecule
using aforward (backward) assignment for the center value of afunction and a backward
(forward) assignment for the first partial on a given side. There are four possible schemes of
this type. One uses
Ty TR Tyl TR (20
2

to evaluate ¥f(5,M) at all cell centers according to (17), and then uses

81, "B By 51T R (21)
c 2

to evaluate the second and mixed partials given in (19). This method is equivalent to a
finite-difference scheme which approximates first partials by backward differences of the
function, and then approximates second and mixed partials by forward differences of the first
partials. Consequently, the second derivatives which result are equal to those given in Eq.
(12), while the resulting representations of the two mixed partial sare unequal and only
first-order accurate. If the two mixed partials are averaged, however, the second-order
expression (15) isrecovered. Thisis also true of the reverse scheme:

r - f £ -=f
1 i I i.4-1 1j 22
> 32 (22)
fily By By el T BL (23)

Expressions (12) and (14) are similarly recovered from the other two possibilities (Eq. 20a,
21a, 22b, and 23b or Eg. 20b, 21b, 22a, and 23a). The symmetry-preserving form (13) can be
recovered by averaging the averaged mixed partial obtained in one of the first two schemes
mentioned and that obtained in one of the remaining two.

The manner in which boundary conditions are treated in afinite volume approach
depends on the type of conditionsimposed. When Dirichlet conditions are prescribed, it is
advantageous to treat the boundary as the center line (plane in three-dimensions) of arow of
cells straddling the boundary. The centersof these cells then fall on the physical boundary
where the function values are known. When Neumann or mixed conditions are given,
however, the boundary is best treated as coincident with cell faces.

Suppose, for example, that boundary condition (9) isto be imposed at the cell edge
"'=j-1/2 indicated below.



The edge value of f; i-1/2 cannot be approximated by the usual averaging scheme (illustrated

by Eg. (18)) since thereis no cell center at " =j-1. It can, however, be found in terms of
neighboring cell-centered function values by using boundary condition (9) in connection
with the forward/backward scheme used to approximate second derivatives at the cell
centers.

Considering the scheme represented by Eq. (20) and (21), the values of f along the cell
edges shown above are:

T r

- f -
1 i-1,] 1 1j
1-1, ok 1,341
2 . 2

f = [ r

gl L, 1,3-L

+2 . J 2

It follows from Eq. (17) that the first partials of f at the cell center are

(Fgdgg = F1g ™ Timr,30 Updyy = Fyy ~ %

Eq. (21a,b) then giveft and fr aong the cell edges enclosing (i,)) intermsoffi_lj, fi-1j+1’

fi,j’ fi,j+l’ fi.,.l’j, X and Xit1- In particular,

{fgjil‘j-% - fij = fi___1,J| ':fl'l:li.j_'l - fi‘j - .}[1

Substitution of these expressions into boundary condition (9) then determines the edge value
X; as

- - - /22y —1
xi fi._j-1 (o By Ez )

- 1y - —E;?[Em':fu - tyog,p) 80T

/6%



In thisway, f, and henceft and fr, are found on all boundary-cell edgesin terms of
cell-centered values of f.

The finite-difference and finite-volume techniques described thus far are appropriate
for representing all derivatives with respect to the curvilinear coordinates, even those
appearing in the metric quantities. In fact, asit is shown later in this chapter and in chapter
V, the metric quantities should be represented numerically even when analytical expressions
are available. One might have, for example,

(Xgdigic = 5%0e1, 3,k ~ Fa-1,9,k) (24)

3. Specia Points

Many of the expressions given in the previous section break down at so-called "special
points’ in the field where special attention is required in the approximation of derivatives.
These points commonly arise when geometrically complicated physical domains are
involved. Asindicated in Chapter I1, specia points can occur on the domain boundary and
on interfaces between subregions of a composite curvilinear coordinate system. They may be
recognized in physical space as those interior points having a nonstandard number of
immediate neighbors or, equivalently, those points which are vertices, or the center, of a cell
with either a nonstandard number of faces or a vertex shared by a nonstandard number of
other cells. (In two dimensional domains, ordinary interior points have eight immediate
neighbors [refer to figure on p.141]; standard two-dimensional interior grid cells have four
sides and share each vertex with three other cells [see diagram on p. 143].) Boundary points
are not special unless they are vertex-centered and have a nonstandard number of immediate
neighbors (other than five in two dimensions see diagram on p. 142 for an ordinary boundary
point) and then are special only when their assocciated boundaryconditions contain spatial
derivatives. Some examples of special cell-centered points and specia vertex-centered points

e Interface —*
between subregions HW

When afinite-difference formulation is used, the usual approach, as described in



Section 2, can be followed at a special point P if the transformed equations and difference
approximations at that point are rephrased in terms of suitable local coordinates. The local
system is chosen so as to orient and label only the surrounding pointsto be used in the
needed difference expressions. Choices appropriate to various special points are listed in
Tables1, 2, and 3.

The difficulties encountered at special pointsin afinite-volume approach are clearly
seen by considering the image in the transformed plane. The first pair of diagrams below, for
example, shows that at centers of cells having the usual number of faces but sharing a vertex
with a nonstandard number of cells, such difficulties amount to mere bookkeeping
complications when only first partials must be approximated. Equations (17) and (18) still
apply, but the indices must be defined to correctly relate the cell centers on the two sides of
an interface. The following diagrams

Magrem of Characterization Image {n transtormed

Local rdinat
special point of special point plans ocal coordinate

system

Special point 3 on
smoath boundary is
transformed to 3 comner
of tha compyiational
domain.,

Special point € is on
an intrugion or
interipr ebject and {5
transformed to a corner
of an intruding ar
interior siab,

{2) Special point 2 fs
& branch point on an {b}
irterior body, or

k) point 2 15 on an
interior body snd §%
transformed to an end f].8
peint of a sl1it,

==l

Table 1. Speciel boundary points,



Diagran of
special point

Characterization
of special point

Image in transformed
plane

Loca} coprdinete
syS han

{a) Special point £ 15 cmmman
in tvo subregions. 1ty image
{s a torner paint for one and
an edge paint for tha ather,

{b) Special paint § 15 commam
to three subregions. s
image 15 & corner polat for
each,

{a}) Special peint § is commen
to twir subreglons. [ts image
i5 a concave corner poiat for
gne and an edge point for the
ather,

{b) Special paint 9 1§ cosmon
to four subregions, Its
image 15 2 corner point for
three of the seguents and an
edge point for the fourth.

{e) Spectal point & 15 common
to fiva subragions. 1is
imege i & corner point for
each,

{d} Specta] point 5 {5 comman
to three subreglons, 1S
imege s a camner point for
gne Seqnent and An edge paint
for the pther t=o,

{c} Analogous to 1V {b}.
{d) An chwicus modification ef ¥ (b)),

thrn-n
i

choose peints
4 and 10
instead af 7
and 11 if the
skewness of
seanents -8
and 4-110 is tha
same or less
than that af
seqments 8-7
snd 9-11,

thIe 2. Special vertex-centered interior points assaciated
with subregions Joined alung grid Tines,




Biagram of
special point

Characterization
of special point

Image in transtormed
plass

Loca!l crordinate
gyt

{a) Specéal paint & 15 common
tu two subregfons. [t §5 a
branch paint in cae subregion
and an ordinary edge paiat

of the other,

{b) Special pafnt § 15 common
to two subregions, Its image
i5 an endpoint 9f a sHL in one
transfoarmed segment and 15 an
edge pnint af the other.

{c] Special point 5 15 common to
five subregions. [ts image is

a corner paint for four of the
seoments and an edge point of
the fifth.

{d) Special pofnt 5 4% cameon fo
#lx subregions. Its Tmage fs a
corner paint for each.

(e} Special point b 15 common to
four subreqions, Its image is
corner point for two of the
segments and an edge point for
the Gther twa.

{f] Special point 5 1s conwon to
three subraglons and 5 an
edge point for eagh,

e

| =
e |
=

, [:a

1 4 10
(a) e
331
1 i h
4 s |2
{b} 6 |3
i [

{c] Analsgous to ¥ (b},

{d] Analogous to 1V (b).

{t} An obvlous modification
of ¥i [e).

{e)

1 12

Fels

or

choose points 9
and 11, or 7 and
13, instead of &
srd 12, to obtain
the most Teasonahl
system.

Tabla 2.

continged




Iiagram of
special print

Characterization
of special point

Twaga Tn transformed
plana

Local cogrdfnate
systen

{a) Special point & {5 commen
to two subregions, It is 2
brench paint in one subregion
and i3 a corner point in the
image of the other,

{o} Special pyint 6 1s common
ta two subreglons. 1ts Image
iz an endpoint of & 311t In
ane transformed segnent and

15 a comner point of the other
{c) Same as ¥ (c}.

{d) Same as ¥ {b).

[e) Same as ¥ (d].

{c) Same 25 ¥ {c).
{d) Sama az V {b].
fe) Same as ¥ [d].

or

choose pointt 12 and
14, or 10 and 18,
jnstaad of 1t and
18, to obtein tha
most reasonable
system,

Table 2,

continyed




B agren of Cheracterization of Peint in tocal?
special polnt associated speciy) cell { computational moleculs

[a} Points 1-9, or

Celt center fx (b} poirts 1, 2, 4-6,
equivalent to speciast B, 9 and use the
patat & 1r category eoeees prd g
IV. antisymmetric, Znd-

grder difference for
the tross darivative,

(&} Potnts 3-10 and }

Cell center is or 2, or

equivaient to special | (k] 37, 9, 10 and use
perint & fo category corres pnd g

¥. antisymmetric, End-
orger df fference for
cross derivative.

Cell cantar iz
equivalent te specinl
gi;‘[nt % in category sae @5 IX.

ff} At special vertex
3t lse points T-8 and

811 cantar is 9 or 10.
el valent o speciat
paint B in category {11} Treat special
VEI. vertex 8 ey jame a3
special vertex 4 in
cxtegory IR,

table 3. ZSpecial vertex-centered interior poings
asgociated with subregions foined between grid tipes.

asoillustrate the breakdown at al special cell-centered points of the previously-described
finite-volume schemes for approximating second and mixed partial derivatives. Thisis
because the forward/backward orientation of the coordinate system in one segment cannot be
consistently followed across the interface adjacent to, or intersecting, the special points. The
second pair of diagrams displays the additional complication associated with grid cells
having a nonstandard number of edges. Such a cell can occur on an interface between
segments of a composite grid which are joined between grid lines. When the segments are
transformed to their respective images, the separate pieces of the special grid cell cannot be
joined without distorting them. It is thus unclear how to evaluate the volume and the
outward normals of that transformed cell in order to use identity (16) in the transformed
plane. Consequently, at special points of thistype and at all specia points where second
derivatives must be approximated, the governing equations are best represented locally in the



physical plane where such ambiguities do not exist.

subregion A ~.
‘ﬂ

subregion A'

subregion B subregion B

subregion B

b

Treatment in physical space involves approximation of the original equations by
means of identity (16). Thus, for atwo-dimensional N-sided cell of area A with cartesian

centroid P = (py,p,), vertices V' = (172 i=1,2, N, and edges s joining V! and Vi*1

(VN*1=v/1) slong which afunction f and its first partial derivatives are constant, this
approach gives

N
P

T = I e=' (vi*! - vy
P_ 1+1
P 1 p

HRE AR, SR

N
B -t sl 4 1+

where the superscripts on f and its derivatives indicate the point or face of evaluation. Asin

the previous section, an obvious way to approximate f9isto average the center values of the
two cells sharing edge . This same averaging scheme cannot be repeated to approximate
73" and F# ", however, without rejecting the recommended strategy of avoiding use of

values at points which are not immediate neighbors of the point at which a quantity is being
evaluated. Instead, we propose the averaging technique:



i 1+1
8” _ 1,V ¥
fx ._(2 r + fx )

i 1 I+
at o 1ra¥ Y
f E{rf + fy }
where the vertex values are obtained by applying identity (16) to auxiliary cells formed by

joining the midpoints of the edges of each cell to the cell center. To make this more precise,
let VV be a vertex common to Q cells and label the cell faces emanating from V ask; with

midpoints

Hi=(m-j|.,m%} 1-1,2....|Q.

Thenif £* = PP isthe center of the cell having edges ki and ki*L, and if

i -
fr = ' along Plil"i and 15'*1'1'“[”‘I

thefirst partial derivativesof f at V may be approximated by

Qo1
¥ -1 pto 141 _ i
- A T ms)
Ty 121 (m3 2

Q 1
- 1+1
f‘; = f 1 E fP {m%‘ - m1 ]

where A is the area of the 2Q-faced auxiliary cell MIPIM2P2.. MQPRM1 indicated in the
following diagram.

Thistechniqueis applicable to al grid cell centers; however, it is recommended for use only
at points where the methods devel oped in section 2 break down, since the difference
representations associated with those methods are ssmpler.

4. Metric ldentities



When the transformed equations are in conservative form, it is possible for the metric
coefficients to introduce spurious source termsinto the equations, as has been noted in
severa works cited in Ref. [1] and as discussed also in Ref. [11] and [12]. Thisis because
the metric coefficients have been included in the operand of the differential operators and if
the differencing of these coefficients does not numerically satisfy identities (111-40) and
(111-120), the numerical representations of derivatives of uniform physical quantities are
nonvanishing.

For example, if the quantity A is constant, the conservative form for the gradient, Eq.
(111-42) gives

3
i
0 121 (Vea 351

which is precisely Eq. (111-40). Relations (111-43) - (111-45) similarly reduce to (111-40) when
s uniform. Therefore, Eq. (111-40), or equivalently Eq. (111-21), is ametric identity which
must be satisfied numerically in order that the conservative expressions for the gradient,
divergence, curl, and Laplacian, etc., vanish when the physical variableis uniform. This
consideration does not arise with the non-conservative forms since the quantity A is
differentiated directly in those expressions.

Another metric identity which must be satisfied numerically ariseswhen the grid is

time-dependent. This may be seen by considering a generic conservation equation of the
form

A, + ¥ - (ud) = 0
The conservative relation (111-121) transforms this to

3
an), + I LGER! - tu - & Mg =0 (25)

where now the time derivative is understood to be at a fixed point in the transformed space.
If A and £ are both constants, then Eq. (25) gives

3 3
(&]t - iET(EEi » i)-ﬁi == = 1;1{@1351

which vanishes according to Eq. (111-40). Expansion of the left-hand summation subject to
Eq. (111-40) then reveals the additional identity to be satisfied:

3
/B)y - 78 b oat - @) -0 (26)

whichisjust Eq. (I11-120). This equation, therefore, is that which should be used to



numerically determine updated values of the Jacobian, /s . For if s isinstead updated
directly from the new values of the cartesian coordinates, spurious source terms will appear.

The following example provides asimple illustration of differencing schemes which
do, and do not, satisfy the metric identities. The conservative expression for afirst derivative
intwo dimensionsis givenin Eq. (111-96) as

fx = = LCE¥)g = (yg)y] (27)

which for uniform f reduces to
0= ¥ng ™ ¥ (28)

Suppose that f, isto be represented at the center of the cell shown below.

i+2
i +1
o
i
]—1
i—1 i 141 1+2
The differencing scheme should satisfy
(¥ .g) = (yg.)
UL AS Y TS En'iel gal
3% 2 32

One possible candidate is the sequence of central differences represented by

(y,) - {y.?

(IT'IE] n 1"'1“1'*% m i.Jq.JE (29a)

1 5.1 "7
i+, je

2 J 2
(Fnj 1 - Yi+1 "j+1 = Yi+"| .J (29b)

i+1 IJ+E

The resulting expressions for the mixed partials are



w"E]i'%-d% m A U PS8 T £ € IR R £ IR £ R

{YEH}“";?J*% = ¥1e1,501 T ¥i, e T ¥ier, g Y Y

which are indeed equal and thus satisfy identity (28). An aternate choice might be to use
central differences for the second differentiation asin Eq. (29a), while approximating the
required edge values of thefirst partials by the average of the values at the adjacent nodes,

eg.

{y_J

1
T 1+ J+1_ - E[{Yﬂ}iﬂ..']""l * (Tnjiﬂ ,;]]
2

The nodal values are reasonably represented by central differences such as
=1 -
(Yn]1+1,1+1 = E(Yj_-l-'lljh? 71+1,j}

This scheme cannot possibly satisfy (28), however, since the points used to represent

I(Jjﬂg}:l' +h 7+ are:

while those needed to evaluate Do)y are:

It should be noted that the representations in both of these schemes are consistent and
of the same formal order of accuracy. Also, if the metric coefficients at the grid points were
evaluated and stored, it would perhaps be natural to follow the second approach, using
averages of the metric coefficients at the intermediate points. This, however, is not



acceptable since it fails to satisfy the metric identity involved and thus would introduce
spurious non-zero gradientsin auniform field.

This example suggests one basic rule that should always be followed: Never average
the metric coefficients. Rather, average the coordinate values themselves, if necessary, and
then calculate the metric derivatives directly. Alternatively, a coordinate system can be
generated with mesh points at all of the half-integer points, as well as at the integer points
used in the physical solution. The metric coefficients can then be evaluated directly by
differencing between neighboring points, even at the half-integer points. For example,

{y“}ﬂl.,j BRET S TLANR T N
2 2" 2 2" 2

This approach was used in Ref. [13] and problems with the metric identities were thereby
eliminated.

It isalso possible to construct difference representations which do not involve any
averaging and yet still do not satisfy the metric identities; schemes which use unsym metric
differences are an example. Fortunately, most reasonable symmetric expressions without
averaging do satisfy the identities.

In the representation of the Laplacian using Eqg. (111-71), ¥ 2E i should be calculated
using Eq. (111-74), rather than using derivatives of the metric tensor elements.

Caution is required even when the coordinate transformation is known explicitly. In
that case, the metric coefficients can be evaluated analytically, but the metric identities will

not in general be satisfied numerically when these coefficients are differenced. Thisistrue
even in the ssimple case of cylindrical coordinates as the following example shows. With

x = 1 cos(2r &) 0<4{ngJ
J I
=N gy 5 0 I
¥ an(ETrIJ {E £

the partials of y(5,M) are

= 2rn 5
Ve T3 aos(2n I]

1
If the first partial derivativef, isrepresented asin Eq. (27) and the difference in Eq. (293) is

used, but the first partialsyt and yr are represented exactly, e.g.

I+1 )

o
(Yplis1,pe1/2 = 5 sinlam =



the bracket in Eq. (27) evaluated at © ¥ *2+/ * ) for uniform f becomes

[ ]a= r[-}-sin(ar 'ﬂ} - -}-ain{z'r—}

- 2233 cos(anlZ}E) + 2L qos(ardtlfE))

which does not vanish identically. Thus the metric identity (28) is not satisfied when the
metric derivatives, yt and yr, are evaluated analytically. But it was shown above that the
difference form used here, Eq. (29a), doesin fact satisfy the metric identity (28) when the
metric derivatives are evaluated numerically without averaging.

The use of exact analytical expressions for the metric coefficients therefore does not
necessarily increase the accuracy of the difference representations, and may actually degrade
the accuracy. In Chapter V it is shown further that a detrimental contribution to the
truncation error can be removed by evaluating the metric coefficients numerically rather than
analytically. Accuracy in the representation of the metric coefficients thus has no inherent
valuein and of itself. Rather, it isthe accuracy of the overall difference representation that is
important.

To summarize, the metric identities can often be numerically satisfied through careful
attention to the evaluation of the metric coefficients. These coefficients should be expressed
as differences, not by analytical expressions. They should be evaluated directly from
coordinate values wherever they are needed and should never be averaged, since the use of
averaged values will almost certainly result in failure to satisfy the metric identities.
Intermediate coordinate values needed to construct differences which are compatible with
the metric identities can be obtained by averaging the coordinates at neighboring grid points
or by using agrid with twice as many pointsin each direction asto be used in the actual
solution.

The metric identities may become more difficult to satisfy numerically in three
dimensions and in schemes involving higher-order operators or unsymmetric difference
expressions, as may be needed at boundaries or near the special points discussed previoudly.
When exact satisfaction is not achieved, the effects of the spurious source terms can be
partially corrected, as discussed in Ref. [12], by subtracting off the product of the metric
identities with either a uniform solution or the local solution. The former amountsto using a
kind of perturbation form, while the latter is, in effect, expansion of the product derivatives
involving the metric coefficients and retention of the supposedly vanishing terms, thus
putting the equations into aweak conservation law form. Thus the gradient could be written,
using Eq. (111-42), as

3 i
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where A is either the local value of A or auniform vaue. In view of Eg. (111-40), this
modification does not change the analytical expression for the gradient. Difference
representations based on this form of the gradient will clearly vanish for uniform A equal to
A - Analogous weakly-conservative expressions for al the other derivative operations of
Chapter 111 can be inferred immediately. Subtraction of the product of the identity and the

uniform free stream solution was used in Ref. [14], because of the difficulty in satisfying the
metric identities exactly with flux-vector-splitting involving directional differences.

All codes should be checked for the presence of spurious source terms arising from the
metric identities by running with uniform non-zero values for all of the dependent variables.
If such atest run produces any changes at all, some failure to satisfy the metric identities has
escaped detection (assuming the code is free from errors), and the difference representations
should be modified or a change should be made to the weakly-conservative form described
above.

5. Implementation Procedure

When a coordinate system has been generated, the values of the cartesian coordinates,
x; will be available as functions of the curvilinear coordinates, Ei withi=1,2,3. Although

these relations might be in the form of analytical equationsin the event that the coordinate
system was generated by some analytical means, a more common result is a set of values
generated by a numerical solution. By definition the curvilinear coordinates take on integer

values at the grid points (£ i:O,1,2,...Ni where N;+1 isthei total number of pointsin the Ei
direction). Thus the values of x,,x,,X, ill be available at each grid point & ;,,,% .

Difference expressions, such as Eq. (24), are then used at each grid point to evaluate
the components of the three covariant base vectors, £ from Eq: (111-3):

[ (&) | [ ‘“1}51-
{giJE - {IE}EI (t = 1I2I3}
| (ag)g ] | (m)s

As discussed previously, the metric derivatives should not be averaged, but rather should
always be evaluated directly from differences between grid points. Therefore, it may be
necessary in some difference formulations to have coordinate values available at points
between the grid points on which the solution isto be represented. In that case, the
coordinate values at such points should be generated either by averaging the coordinate
values between adjacent main points or by generating the coordinate system with twice as
many grid pointsin each direction as will be used in the solution representation.

The nine elements of the covariant metric tensor can then be evaluated at each point
from Eq. (111-5):



Elj = éi * EJ (1 = 1!213] {J «1,2,3)

(Only six of these elements are distinct, of course, since the tensor is symmetric, so only six
dot products actually need to be evaluated.) The Jacobian is then evaluated at each point
using Eq. (111-16):

@‘_’§1 . (EEXEB}

Next the three components of each of the three contravariant base vectors are evaluated at
each point from Eq. (111-33):

ﬂi = —1(aJ X a) (1 =1,2,3) {1,].k eyolic)
Vg

and the nine elements of the contravariant metric tensor are evaluated at each point from Eq.
(111-37):

gl =gl = g3 (1 =1,2,3 (i = 1.,2,3)

Again only six elements are distinct.

All quantities involved in the transformed derivative operations are now available at

each point. Recall that if conservative forms are to be used, the product Jg ai may be stored
at each point, being evaluated from

Bal - gy xa (1=1,2,3) (L1k eyelic)

to avoid the need for multiplication of 2i by fg in al the operations.

In transforming the physical partial differential equations, the gradient, divergence,
curl, and Laplacian operations will have been replaced by either the conservative
expressions, Eq. (111-42)-(111-45), or by the non-conservative expressions, Eq.
(111-65)-(111-71). Derivatives occurring individually will have been replaced by the
expressions given by Eq. (111-50)-(111-52). Finally, derivatives occurring in boundary
conditions will have been replaced by the expressionsin Eq. (111-78), (111-79) or (111-82).
Integrals will have been replaced by the relations given by Eq. (111-83)-(111-S7). Thus, with
the metric quantities evaluated at each point, as discussed above, al quantitiesinvolved in
the difference representations of the transformed partial differential equations are available.

Aswas noted in Chapter 11, the use of the conservative forms of the gradient,
divergence, curl, Laplacian, etc. in the partial differential equationsis equivalent to



formulation of difference equations from the integral form of these equations. Hence
finite-volume formulations may be set up directly from the partial differential equations by
using the conservative forms for the derivative operators involved.

It should be pointed out again that the transformed partial differential equations are of
the same form and type as the original equations, and are more complicated only in the sense
of having variable coefficients, cross-derivatives, and more terms. The field on which these
equations are solved is rectangular and the grid is fixed, uniform and square. Therefore all
numerical solution algorithms that have been developed for partial differential equations on
cartesian coordinate systems are applicable to these transformed equations, and al the
simplifications that result from the use of uniform square grids are in order, as well.

Exercises
1. Verify Eq. (2).

2. Apply Eq. (16) tothe (i,j) cell in the diagram below this equation to obtain Eq. (17). In
(16) interpret the gradient as

Cof 3 4N 3
L= 2

where < E and < 1 are unit vectorsinthe & and M directions, respectively, in the

transformed space. Thenormal Z is = £ E or= £ , s appropriate, on each of the faces

of the cell. Recall AE=AT=1,

3. Following the procedure given with Eq. (20) and (21), obtain Eq. (12) from Eq. (16)
applied to the (i,j) cell. Show that the two mixed partials obtained in this manner are not
equal, but that their average gives Eq. (15).

4. Verify the boundary value, f”-_ll2 given on p.147

5. In cylindrical coordinates show that the conservative expression for ¥ does not vanish for
uniform f when the metric coefficients are evaluated analytically.



V. TRUNCATION ERROR

Difference representations on curvilinear coordinate systems are constructed by first
transforming derivatives with respect to cartesian coordinates into expressions involving
derivatives with respect to the curvilinear coordinates (the metric coefficients). The
derivatives with respect to the curvilinear coordinates are then replaced with difference
expressions on the uniform grid in the transformed region. The "order" of adifference
representation refers to the exponential rate of decrease of the truncation error with the point
spacing. On a uniform grid this concerns simply the behavior of the error as the point
spacing decreases. With a nonuniform point distribution, there is some ambiguity in the
interpretation of order, in that the spacing may be decreased locally either by increasing the
number of pointsin the field or by changing the distribution of afixed number of points.
Both of these could, of course, be done simultaneously, or the points could even be moved
randomly, but to be meaningful the order of a difference representation must relate to the
error behavior as the point spacing is decreased according to some pattern. Thisis amoot
point with uniform spacing, but two senses of order on a nonuniform grid emerge: the
behavior of the error (1) as the number of pointsin the field isincreased while maintaining
the same relative point distribution over the field, and (2) as the relative point distribution is
changed so as to reduce the spacing locally with a fixed number of pointsin the field.

On curvilinear coordinate systems the definition of order of a difference representation
isintegrally tied to point distribution functions. The order is determined by the error
behavior as the spacing varies with the points fixed in a certain distribution, either by
increasing the number of points or by changing a parameter in the distribution, not simply by
consideration of the points used in the difference expression as being unrelated to each other.
Actualy, global order is meaningful only in the first sense, since as the spacing is reduced
locally with afixed number of pointsin the field, the spacing somewhere else must certainly
increase. This second sense of order on a nonuniform grid then is relevant only locally in
regions where the spacing does in fact decrease as the point distribution is changed.

In the following sections an illustrative error analysisis given. The general
development from which thisis taken appearsin Ref. [17], together with references to
related work.

1. Order On Nonuniform Spacing

A genera one-dimensional point distribution function can be written in the form
x(g) = q(%) 0<ELN (1)

In the following analysis, x will be considered to vary from O to |. (Any other range of x can
be constructed simply by multiplying the distribution functions given here by an appropriate
constant.) With this form for the distribution function, the effect of increasing the number of
pointsin adiscretization of the field can be seen explicitly by defining the values of £ at the
points to be successive integers from 0 to N. In thisform, N+1 is then the number of points

in the discretization, so that the dependence of the error expressions on the number of points
in the field will be displayed explicitly by N. This form removes the confusion that can arise

0=E=1)



in interpretation of analyses based on afixed interval *~ = = = */ where variation of the

number of points is represented by variation of theinterval A . The form of the distribution
function, i.e., the relative concentration of pointsin certain areas while the total number of
pointsin thefield isfixed, isvaried by changing parametersin the function.

Considering the first derivative in one dimension:

Lo = 'Ri (2

£

with acentral difference for f  we have the following difference expression (with & E=las
noted above):

ty = ﬁg (Fleg ~ Fyq} + T 3)
where T, isthe truncation error. A Taylor series expansion then yields

f f

T1--l_§£§.—1_m w-ra (4)
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Here the metric coefficient, X € is considered to be evaluated analytically, and hence has no

error. (The case of numerical evaluation of the metric coefficientsis considered in alater
section.)

The seriesin (4) cannot be truncated without further consideration since the
E -derivatives of f are dependent on the point distribution. Thusiif the point distribution is
changed, either through the addition of more points or through a change in the form of the
distribution function, these derivatives will change. Since the terms of the series do not
contain a power of some quantity less than unity, there is no indication that the successive
terms become progressively smaller.

It is thus not meaningful to give the truncation error in terms of & -derivatives of f.

Rather, it is necessary to transform these £ -derivatives to x-derivatives, which, of course, are
not dependent on the point distribution. The first € -derivative follows from (2):

g = Xgfi (5)
Then
2
Tgg = Xgefy * %(fedg = Xggfe * ¥ Tux (6)

and

3
free = %gpefy * 3eXpelpx * ¥F Tuxx (7)



Eachterminf ¢ ¢ £ containsthree ¢ -differentiations. This holds true for all higher
derivatives also, so that each termin f EEEEE will contain five & -differentiations, etc.

A. Order with fixed distribution function

From Eq. (1) we have
X, = 9% L L -4
ETw Tee T TEEE T T3 (8)

Therefore if the number of pointsin the grid isincreased while keeping the same relative
point distribution, it is clear that eachterminf ¢ = will be proportional to 1/N3 and each

terminf ¢ ¢ £ ¢ ¢ will be proportional to 1/N>, etc.

It then follows that the seriesin Eq. (4) can be truncated in this case, so that the
truncation error is given by the first term, which is, using Eq. (6),

- -1 _ 1 _1
T g_igifx ExEEfxx Ex‘gfnx (©)

The first two terms arise from the nonuniform spacing, while the last term is the familiar
term that occurs with uniform spacing as well.

From (9) it is clear that the difference representation (3) is second-order regardless of
the form of the point distribution function, in the sense that the truncation error goes to zero

as 1/N? as the number of points increases. This means that the error will be quartered when
the number of pointsis doubled in the same distribution function. Thus all difference
representations maintain their order on a nonuniform grid with any distribution of pointsin
the formal sense of the truncation error decreasing as the number of pointsisincreased while
maintaining the same relative point distribution over the field.

The critical point hereis that the same relative point distribution, i.e., the same
distribution function, is used as the number of pointsin the field isincreased. If thisisthe
case, then the error will be decreased by afactor that is a power of the inverse of the number
of pointsin the field as this number isincreased. Random addition of pointswill, however,
not maintain order. In apractical vein this means that with twice as many points the solution
will exhibit one-fourth of the error (for second-order representations in the transformed
plane) when the same point distribution function is used. However, if the number of pointsis
doubled without maintaining the same relative distribution, the error reduction may not be as
great as one-fourth.

From the standpoint of formal order in this sense there is no need for concern over the
form of the point distribution. However, formal order in this sense relates only to the
behavior of the truncation error as the number of pointsisincreased, and the coefficients in
the series may become large as the parameters in the distribution are altered to reduce the
local spacing with a given number of pointsin the field. Thus, athough the error will be



reduced by the same order for al point distributions as the number of pointsisincreased,
certain distributions will have smaller error than others with a given number of pointsin the
field, since the coefficients in the series, while independent of the number of points, are
dependenton the distribution function.

B. Order with fixed number of points

An alternate sense of order for point distributions is based on expansion of the
truncation error in a series in ascending powers of the spacing, X  , with the number of

pointsin the grid kept fixed and the point distribution changed to decrease the local spacing.
From Eq. (9) second-order requires that
2

- .
Xegg T X, and Xgg T X (10)

Thisisasevererestriction that is unlikely to be satisfied. This is understandable, however,
since with afixed number of points the spacing must necessarily increase somewhere when
the local spacing is decreased.

The difference between these two approaches to order should be kept clear. The first
approach concerns the behavior of the truncation error as the number of pointsin the field
increases with afixed relative distribution of points. The seriesthereis a power seriesin the
inverse of the number of pointsin the field, and formal order is maintained for all point
distributions. The coefficients in the series may, however, become large for some
distribution functions as the local spacing decreases for any given number of points. The
other approach concerns the behavior of the error as the local spacing decreases with afixed
number of pointsin the field. This second sense of order isthus more stringent, but the
conditions seem to be unattainable.

2. Effect of Numerical Metric Coefficients

The above analysis has assumed the use of exact values of x ¢ the metric coefficient.

If the metric coefficient is evaluated numerically, we have, in place of Eq. (3), the difference
expression

The Taylor expansion yields
Ty = Ty = {f0xqu07 %)+ Sy [ixgay= 207 — {xg0= %)
* %fzxx“xi-b-l_ xi:I3 - (xypq- xijgn‘f{xiﬂ' xy-1)

or
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The coefficient of f,, hereisthe difference representation of x ¢ whilethat of f, . reduces

2
to adifference expression of *. We thus have T, given by the |ast two terms of T, and the
first term of T, has been eliminated from the truncation error by evalutating the metric
coefficient numerically rather than analytically.

Thus the use of numerical evaluation of the coordinate derivative, rather than exact
analytical evaluation, eliminates the f, term from the truncation error. Since thisterm isthe

most troublesome part of the error, being dependent on the derivative being represented, it is
clear that numerical evaluation of the metric coefficients by the same difference
representation used for the function whose derivative is being represented is preferable over
exact analytical evaluation. It should be understood that there is no incentive, per se, for
accuracy in the metric coefficients, since the object is simply to represent a discrete solution
accurately, not to represent the solution on some particular coordinate system. The only
reason for using any function at all to define the point distribution isto ensure a smooth
distribution. There is no reason that the representations of the coordinate derivatives have to
be accurate representations of the analytical derivatives of that particular distribution
function.

We are thus left with truncation error of the form

1
) xEEfxx - 3 !Efxxx (13)

when the metric coefficient is evaluated numerically. As noted above, the last term occurs
even with uniform spacing. The first term is proportional to the second derivative of the
solution and hence represents a numerical diffusion, which is dependent on the
rate-of-change of the grid point spacing. This numerical diffusion may even be negative and
hence destabilizing. Attention must therefore be paid to the variation of the spacing, and
large changes in spacing from point to point cannot be tolerated, else significant truncation
error will be introduced.

3. Evauation of Distribution Functions

In Ref. [17] and Ref. [18] several distribution functions are evaluated on the basis of the size
of the coefficientsin the error expression. Some of this evaluation procedure isillustrated in
the exercises. It appears that the following conclusions can be reached on basis of these
comparisons:

(1) The exponential is not as good as the hyperbolic tangent or the hyperbolic sine.
(Implementation procedures for al three of these are given in Chapter VI1I1.)



(2) The hyperbolic sineisthe best function in the lower part of the boundary layer.
Otherwise this function is not as good as the hyperbolic tangent.

(3) The error function and the hyperbolic tangent are the best functions outside the
boundary layer. Between these two, the hyperbolic tangent is the better inside, while the
error function is the better outside. The error function is, however, more difficult to use.

(4) The logarithm, sine, tangent, arctangent, inverse hyperbolic tangent, quadratic, and
the inverse hyperbolic sine are not suitable.

Although, as has been shown, all distribution functions maintain order in the formal
sense with nonuniform spacing as the number of pointsin the field isincreased, these
comparisons of particular distribution functions show that considerable error can arise with
nonuniform spacing in actual applications. If the spacing doubles from one point to the next
we have, approximately, X ¢ ¢ =2X¢ -X ¢ =X ¢ sothat theratio of thefirst termin Eq.

(13) to the second is inversely proportional to the spacing X & . Thus for small spacing, such

arate-of-change of spacing would clearly be much too large. Obvioudly, all of the error
terms are of less concern where the solution does not vary greatly. The important point is
that the spacing not be allowed to change too rapidly in high gradient regions such as
boundary layers or shocks.

4. Two-Dimensions Forms

The two-dimensional transformation of the first derivativeis given by

£, = (¥ - 7T 38 (14)

where the Jacobian of the transformation is
YE = Xgy, ~ X¥e (15)

With two-point central difference representations for all derivatives the leading term of the
truncation error is

1 . ! -
Tx ® s72Ye¥ntim ~ Xen¥ee! Tx * 00’ U T Ve Tyy

2/g YePn%nn ~ *ee) * Xq¥e¥mn T Fe¥n¥eg-ixy

+ gecond-order terms ln the apacing

where the coordinate derivatives are to be understood here to represent central difference
expressions,e.g.,
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These contributions to the truncation error arise from the nonuniform spacing. The familiar
terms proportional to a power of the spacing occur in addition to these terms as has been
noted.

Sufficient conditions can now be stated for maintaining the order of the difference
representations, with a fixed number of pointsin each distribution. First, asin the
one-dimensional case, the ratios

e  Yeg *im . _¥un_
] > o 2
T ET N L 3 L L

must be bounded asX ¢, X v, Y £, Y v approach zero. A second condition must be imposed

which limits the rate at which the Jacobian approaches zero. This condition can be met by
simply requiring that cot® remain bounded, where & is the angle between the € and 1
coordinate lines. The fact that this bound on the nonorthogonality imposes the correct lower

bound on the Jacobian follows from the fact that |2t #] = ¥ jmplies
1 |2

M2+

With these conditions on the ratios of second to first derivatives, and the limit on the
nonorthogonality satisfied, the order of the first derivative approximationsis maintained in
the sense that the contributions to the truncation error arising for the nonuniform spacing will
be second-order terms in the grid spacing.

2
g2 leg | =z, (17)

The truncation error terms for second derivatives that are introduced when using a
curvilinear coordinate system are very lengthy and involve both second and third derivatives
of the function f. However, it can be shown that the same sufficient conditions, together with
the condition that

¥
*En and

{ee |- legl g | =[xy
remain bounded, will insure that the order of the difference representations is maintained.

It was noted above that alimit on the nonorthogonality, imposed by (17), is required
for maintaining the order of difference representations. The degree to which
nonorthogonality affects truncation error can be stated more precisely, asfollows. The
truncation error for afirst derivative f , can be written
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whereT ¢ and T ,, are the truncation errors for the difference expressions of f - and f ,
Now all coordinate derivatives ncan be expressed using direction cosines of the angles of
inclination, ¥ £ and ? 1, of the § and M coordinate lines. After some simplification, the
truncation error has the form

T T
1 - n
T = i ain (] J
b Binqun - ¢E] (= mﬂﬂﬂﬂg 'xé' ¢E 5¢n x“ (19)

Therefore the truncation error, in general, varies inversely with the sine of the angle between
the coordinate lines. Note that there is also a dependence on the direction of the coordinate
lines. To further clarify the effect of nonorthogonality, the truncation error terms arising
from nonuniform spacing are considered.

The contribution from nonorthogonality can be isolated by considering the case of

skewed parallel lineswithX ; =X ¢y =X g =Yg & =Y ¢ = 0 asdiagrammed below:

=

| &

Here (16) reducesto

E
oot = f—:‘i
Since £, thismay be written
1 1 -
T, = > xEEfxx + £y {Yﬂnf]r:r xEEfxy}cetﬁ (20)

Thisfirst term occurs even on an orthogonal system and corresponds to the first termin (13).
The last two terms arise from the departure from orthogonality. For 8 <= 45° these terms are
no greater than those from the nonuniform spacing. Reasonable departure from orthogonality
istherefore of little concern when the rate-of-change of grid spacing is reasonable. Large
departure from orthogonality may be more of a problem at boundaries where one-sided



difference expressions are needed. Therefore grids should probably be made as nearly
orthogonal at the boundaries asis practical. Note that the contribution from nonorthogonality
vanishes on a skewed uniform grid.

Exercises
1. Verify Eq. (4).
2. Derive Eq. (6) and (7) by repeated differentiation of Eq. (5).
3. Verify Eq. (12).

4. Show that the coefficient of f,, . in Eq. (12) can be reduced to a difference representation

2
of *¢.

5. (a) Show that with an exponential distribution function,

x(E} - EXP[IIEfH:I -1 DLEZLN
axp{a) — 1

the ratio of the second term in Eq. (9) to the third term for very small spacing, s, at £ = 0is
approximately equal to 1/Nsat € =0andtolat & =N. Hint: Notethat s= (X ¢ )

approaches zero as a approaches infinity, and that for large &, a/(ea -1) approaches 1/e“.

(b) Show also that the average value of thisratio over thefield is[NsIn (1/Ns)] L. Hint: Note
that

1 [N X 4 1 1 1
i e L L : ]
N Ju xE N (HE)D {xE}H

(c) Finally, show that the first term in Eq. (9) causes a fractional error of approximately
-1/6N2In? (UNs) in f, that does not vary over the field. (Recall that this term can be
eliminated by using numerical metrics, however.)

6. Show that with a hyperbolic sine distribution function,

sinh (aE/N) 0< g <N
x(g) = alnh a

the ratio of the second term in Eq. (9) to the third term for very small spacing, s, at & =0
vanishesat & =0 and is approximately equal to 1 at € = N. Show also, however, that the
maximum value of this ratio occurs near /N = 0.9/In (2/Ns) and is approximately equal to
1/2Ns. Finally, show that the average value of theratio over thefield is equal to[Ns
INn(2/Ns)]-1. Hint: See the preceding exercise. (Note that this distribution gives a smaller



error due to the rate-of-change in the spacing than does the exponential distribution of the
preceding exercise and is particularly advantageous near & = 0 where the spacing is the
smallest.)

7. Show that with a hyperbolic tangent distribution function,

x(g) = 1 - tanh[w(1=E/M)] o < g < K

tanh a

the ratio of the second term in Eqé (9) to the third term for very small spacing, s, at € =0is
approximately equal to 1/2Nsat 5 = 0 and vanishesat & = N. Show also that the average of
thisratio over the field is the same as for the hyperbolic sine distribution of the preceding
exercise. Thisdistribution is thus also superior to the exponential distribution.

8. With the distribution function of the form of Eqg. (1), show that the truncation error in Eq.
(3) isapower seriesininverse powers of N. (Hint: see Ref. [17]).

9. Verify Eq. (17).

10. Expand the differencesf ¢ and f 4, of Eq. (14) in Taylor series about the grid point X; i

Substitute these expansions back in Eqg. (14) thereby verifying Eq. (16). Certain identities
will be useful, such as

- 2 .2
(Xy41,5 ~ ’i.J’E - ey, %y, XXk

L= |3: ||L |cosn5'
13 n

,
11. Usetheidentity ¢ "~ # cosB to verify the inequality in (17):

12. Use the following relations to write the truncation error in EqQ. (18) in the form of Eq.
(19).

g~ |[:E| ain ¢gs  Xg T lnﬁi aos ég



VI.ELLIPTIC GENERATION SYSTEMS

As noted in Chapter 1, the generation of a boundary-conforming coordinate systemis
accomplished by the determination of the values of the curvilinear coordinates in the interior
of aphysical region from specified values (and/or slopes of the coordinate lines intersecting
the boundary) on the boundary of the region:

fﬂ= fonstant

Specified
menotontc
variation
of £

Y

L=

One coordinate will be constant on each segement of the physical boundary curve (surfacein
3D), while the other varies monotonically along the segment (cf. Chapter 11).

The equivalent problem in the transformed region is the determination of values of the
physical (cartesian or other) coordinates in the interior of the transformed region from
specified values and/or slopes on the boundary of this region, as discussed in Chapter I1:

/
_J' ‘_] x(f“)
. ¥y(EM ), f‘..

2 ,"

f T —

I“ X,¥ specified
]

X

Thisisamore amenable problem for computation, since the boundary of the transformed
region is comprised of horizontal and vertical segments, so that this region is composed of
rectangular blocks which are contiguous, at least in the sense of being joined by re-entrant
boundaries (branch cuts), as described in Chapter I1.

The generation of field values of afunction from boundary values can be donein
various ways, e.g., by interpolation between the boundaries, etc., asis discussed in Chapter
VII1. The solution of such a boundary-value problem, however, is a classic problem of
partial differential equations, so that it islogical to take the coordinates to be solutions of a
system of partial differential equations. If the coordinate points (and/or slopes) are specified
on the entire closed boundary of the physical region, the equations must be eliptic, while if
the specification is on only a portion of the boundary the equations would be parabolic or
hyperbolic. This latter case would occur, for instance, when an inner boundary of a physical
region is specified, but a surrounding outer boundary is arbitrary. The present chapter,
however, treats the general case of a completely specified boundary, which requires an



elliptic partial differential system. Hyperbolic and parabolic generation systems are
discussed in Chapter VII.

Some general discussion of elliptic generation systems has been given in Ref. [19],
and numerous references to the application thereof appear in the surveys given by Ref. [1]
and [5].

1. Generation Equations

The extremum principles, i.e., that extrema of solutions cannot occur within the
field,that are exhibited by some elliptic systems can serve to guarantee a one-to-one mapping
between the physical and transformed regions (cf. Ref. [20] and [21]). Thus, since the
variation of the curvilinear coordinate along a physical boundary segment must be
monotonic, and is over the same range along facing boundary segments (cf. Chapter 11), it
clearly follows that extrema of the curvilinear coordinates cannot be allowed in the interior
of the physical region, else overlapping of the coordinate system will occur. Note that it is
the extremum principles of the partial differential system in the physical space, i.e., with the
curvilinear coordinates as the dependent variables, that isrelevant sinceit is the curvilinear
coordinates, not the cartesian coordinates, that must be constant or monotonic on the
boundaries. Thusit isthe form of the partial differential equationsin the physical space, i.e.,
containing derivatives with respect to the cartesian coordinates, that isimportant.

Another important property in regard to coordinate system generation is the inherent
smoothness that prevailsin the solutions of elliptic systems. Furthermore, boundary slope
discontinuities are not propagated into the field. Finally, the smoothing tendencies of elliptic
operators, and the extremum principles, allow grids to be generated for any configurations
without overlap of grid lines. Some examples appear below:

\\\\5\5 [TE)
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There are thus a number of advantages to using a system of elliptic partial differential
equations as a means of coordinate system generation. A disadvantage, of course, isthat a
system of partial differential equations must be solved to generate the coordinate system.

The historical progress of the form of elliptic systems used for grid generation has
been traced in Ref. [1]. Consequently, referencesto all earlier work will not be made here.
Numerous examples of the generation and application of coordinate systems generated from
elliptic partial differential equations are covered in the above reference, aswell asin Ref.

[2].
A. Laplace system



The most simple eliptic partial differential system, and one that does exhibit an
extremum principle and considerable smoothness is the Laplace system:

?Egi = 0 1)

This generation system guarantees a one-to-one mapping for boundary-conforming
curvilinear coordinate systems on general closed boundaries.

These equations can, in fact, be obtained from the Euler equations for the
minimization of the integral

- [ 4 e e @

asisdiscussed further in Chapter X1. Since the coordinate lines are located at equal
increments of the curvilinear coordinate, the quantity |¥ Ei | can be considered a measure of
the grid point density along the coordinate line on which &' varies, i.e., &' must change
rapidly in physical space where grid points are clustered. Minimization of thisintegral thus
leads to the smoothest coordinate line distribution over the field.

With this generating system the coordinate lines will tend to be equally spaced in the
absence of boundary curvature because of the strong smoothing effect of the Laplacian, but
will become more closely spaced over convex boundaries, and less so over concave
boundaries, asillustrated below. (In this and other illustrations and applications in two

dimensions, &1 and &2 will be denoted & and ", respectively, while x and y will be used for
X4 and x,.)

In the | eft figure we have "I, > 0 because of the convex (to the interior) curvature of the
lines of constant "l ("-lines). Therefore it follows that "’Iyy < 0, and hence the spacing

between the 'l -lines must increase with y. The 'l -lines thus will tend to be more closely
spaced over such aconvex boundary segment. For concave segments, illustrated in the right
figure, wehave 'l |, <0, sothat yy Must be positive, and hence the spacing of the "l-lines

must decrease outward from this concave boundary. Some examples of grids generated from
the Laplace system are shown below. The inherent smoothness and the behavior near
concave and convex boundaries are evident in these examples.
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B. Poisson system

Control of the coordinate line distribution in the field can be exercised by generalizing
the elliptic generating system to Poisson equations:

v2gl - pl (€©)

in which the "control functions' P' can be fashioned to control the spacing and orientation of
the coordinate lines. The extremum principles may be weakened or lost completely with
such a system, but the existence of an extremum principleis a sufficient, but not a necessary,

condition for a one-to-one mapping, so that some latitude can be taken in the form of the
control functions.

Considering the equation ¥2" = Q and the figures above (P! = Pand P2 = Q in the

illustrations here), since a negative value of the control function would tend to make vy
more negative, it follows that negative values of Q will tend to cause the coordinate line

spacing in the cases shown above to increase more rapidly outward from the boundary.
Generalizing, negative values of the control function Q will cause the " -linesto tend to
move in the direction of decreasing ", while negative values of Pin ¥27 = Pwill cause

£ -lines to tend to move in the direction of decreasing & . These effects are illustrated below
for an " -line boundary:

a<o

With the boundary values fixed, the & -lines here cannot change the intersection with the
boundary. The effect of the control function P in this case is to change the angle of
intersection at the boundary, causing the £ _linesto lean in the direction of decreasi ng g,



These effects are illustrated in the following figures:

Herethe & -lines are radial and the " -lines are circumferential. In the left illustration the
control function Q islocally non-zero near a portion of the inner boundary as indicated, so
the "l-lines move closer to that portion of the boundary whilein theright figure, Pislocally
non-zero, resulting in a change in intersection angle of the £ -lines with that portion of the
boundary. If the intersection angle, instead of the point location, on the boundary is
specified, so that the points are free to move along the boundary, then the & -lineswould
move toward lines with lower values of & :

In general, a negative value of the Laplacian of one of the curvilinear coordinates
causes the lines on which that coordinate is constant to move in the direction in which that
coordinate decreases. Positive values of the Laplacian naturally result in the opposite effect.

C. Effect of boundary point distribution

Because of the strong smoothing tendencies that are inherent in the Laplacian
operator, in the absence of the control functions, i.e., with P, = 0, the coordinate lines will

tend to be generally equally spaced away from the boundaries regardless of the boundary
point distribution. For example, the simple case of a coordinate system comprised of
horizontal and vertical linesin arectangular physical region, (cf. the right figure below)
cannot be obtained as a solution of Eqg. (3) with P=Q=0 unless the boundary points are
equally spaced.
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With & W= I =0, Eq. (3) reducesto

EH‘P’ T‘I}r}r=q

and thus P and Q cannot vanish if the point distribution is not uniform on the horizontal and
vertical boundaries, respectively. With P=Q=0 the lines tend to be equally-spaced away from
the boundary. These effects are illustrated further in the figures below. Here the control
functions are zero in the left figure.

Although the spacing is not uniform on the semi-circular outer boundary in thisfigure, the
angular spacing is essentially uniform away from the boundary. By contrast, nonzero control
functionsin the right figure, evaluated from the boundary point distribution, cause the field
spacing to follow that on the boundary. Thus, if the coordinate linesin the interior of the
region are to have the same general spacing as the point distributions on the boundaries
which these lines connect, it is necessary to evaluate the control functions to be compatible
with the boundary point distribution. This evaluation of the control functions from the
boundary point distribution is discussed more fully in Section 2 of this chapter.

D. General Poisson-type systems

If acurvilinear coordinate system, £i (i=1,2,3), which satisfies the Laplace system
v2gl = o
istransformed to another coordinate system, & (i = 1,2,3), then the new curvilinear
coordinates, &' satisfy the inhomogeneous elliptic system (cf. Ref. [19])

vl . pl (4)



where
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with the Pk defined by the transformation from Eio El

2.1
Fi - g % BEm BEH d L. (6)
Jk o1 n-1 ‘agJ BEk SETOE

(It may be noted that if the subsequent transformation is one-dimensiondl, i.e., if
ThaET = &1 qft g i
a5 /85 & affat then only the three functions Zi with i=1,2,3, are nonzero.)
These results show that a grid with lines concentrated by applying a subsequent
transformation (often called a "stretching” transformation) to a grid generated as the solution

of the Laplace system could have been generated directly as the solution of the Poisson
system (4) with appropriate "control functions”, i derived from the subsequent
concentrating transformation according to Eq. (6). Therefore, it is appropriate to adopt this
Poisson system (4) as the generation system, but with the control functions specified directly
rather than through a subsequent transformation.

Thus an appropriate generation system can be defined by Egs. (4) and (5):

2-1 2 Jk pi (7)
rd - P
3 JZ1 121 e JK

with the control functions, it considered to be specified. The basis of the generation system
(7) isthat it produces a coordinate system that corresponds to the subsequent application of a
stretching transformation to a coordinate system generated for maximum smoothness. From

Eqg. (6), the three control functions B (i = 1,2,3) correspond to one-dimensional stretching

in each coordinate direction and thus are the most important of the control functions. In

applications, in fact, the other control functions have been taken to be zero, i.e.,

P =86, P;
ik PR

so that the generation system becomes
It may be noted that, using Eq. (111-37), Eqg. (7) can be written as
24 . 3 % 1 (ged - 95%) = 0 9
= P - E -
Ve JL x=1 JK I ©

Actual computation isto be done in the rectangular transformed field, as discussed in
Chapter 11, where the curvilinear coordinates, El arethei ndependent variables, with the



cartesian coordinates, x;, as dependent variables. The transformation of Eq. (9) is obtained
using Eq. (111-71). Thus we have

3 3 3
2 1] 2.k
Vr = 10
r 121 jZ,I g :Eiﬁ“] + l{=2=1 (V™) I:Ek (10)

But ¥2Z =0 and then using Eq. (7), we have

3 3 3
i] pk a D (11)
4 ,121 8 Rty o P Cgw

Thisthen isthe quasi-linear éliptic partial differential equation which isto be solved to
generate the coordinate system. (In computation, the Jacobian squared, g, can be omitted
from the evaluation of the metric coefficients, g' in this equation since it would cancel
anyway, cf. Eq. 111-38.) As noted above, the more common form in actual use has been that
with only three control functions, Eq. (8), which in the transformed region is

3 3 3
13 . Kk p -0 (12)
121 JZ1 &7 Ll k-zs‘[ B Tk Tk

Most of the following discussion therefore will center on the use of this last equation as the
generation system. This form becomes particularly ssmple in one dimension, since then we
have

Xege * Pxp = 0 (23)

which can be integrated to give, with (© = & = 1)

E g
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The one-dimensional control function corresponding to a distribution x(E ) thusis given by
x
P(E) = - 55 (14)
x
£
In two dimensions, Eq. (11) reduces to the following form, using the two-dimensional

relations given in Section 8 of Chapter 111 (with 51 =5 and £2="T)

where



2 2 52 8 9
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& - 522":1 - 2“12"12 * -511”122 (178)
T - g, P, - 28,5P00 * B1P3s (17b)
with Z = Zx+ Ly and

g1 = XE + Ig (183)
Bya = KEJI“ * YE}'n (18¢)

This corresponds to the following system in the physical space, from (7),
?25 = -'E' (199)
?211 - -E (19b)

whereg=(x gy 1 -X 1y §)2

The two-dimensional form of the smpler generation system (12) with only two control
functionsis

822{Lgg * Prg) + g19(Lyy * Qey) -~ 2815 gy = O (20)

for which the system in the physical spaceis, from (8),

a
veg = 22 | (21a)
g
gy
ven ™ = (21b)

This generation system has been widely used, and a number of applications are noted in Ref.
[1] and [5]. Severa examples appear in Ref. [2].

Substitution of (3) in (10) gives the transformation of the original Poisson system (3)
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This generation system has also been widely used, cf. Ref. [1] and [2], and the
two-dimensional formis

822 Tgp * Byy Cppy = 2813 Lg, * 8(P2 + Q) = © (23)

corresponding in the physical space to
Ve = P (249)

v2n = Q (24b)

This system has also been widely used (cf. Ref. [1] and [5]), and its use predates that
of EQ. (21). In general, however, the form of (12), corresponding to the system (8), is
probably preferable over that of (22), which corresponds to (3), because of the simple form
to which the former reduces in one dimension, and because the control functionsin (8) are
orders of magnitude smaller than thosein (3) for similar effects.

E. Other systems

Other elliptic systems of the general form (4) have been considered, such aswith

P'=gP, where the P, are the specified control functions, and with © '= - (¥D-X&)/D

where D isthe control function. The latter form puts Eq. (4) in the form of adiffusion
equation with the control function in the role of avariable diffusivity:

Y « (pgel) = 0 (25)

This system also corresponds to the Euler equations for maximization of the smoothness, but
now with the coefficient, D, serving as aweight function, i.e., multiplying the integrand in
Eq. (2), so that the smoothness is emphasized where D islarge. Both of these systems have
actually been implemented only in two dimensions, although the formulations are general.
Specific references to these and other related systems are given in Ref. [1] and [5].

Another elliptic system for the generation of an orthogonal grid has been constructed
by combining the orthogonality conditions, g — 00 = 3') with a specified distribution of
the Jacobian over the field, *¥ = /(%) (This system is discussed further in Chapter X.)
Some two-dimensional applications appear in Ref. [2], as noted in Ref. [5].

The second-order systems allow the specification of either the point distribution on the
boundary (Dirichlet problem):



T oo,

or the coordinate line slope at the boundary (Neumann problem):

but not both. Thusit is not possible with such systems to generate grids which are orthogonal
at the boundary with specified point distribution thereon. (This assumes that the control
functions are specified. It is possible to adjust the control functions to achieve orthogonality
at the boundary asis discussed in Section 2.)

A fourth-order elliptic system can be formulated by replacing the Laplacian operator,
¥2, with the biharmonic operator, ¥ 4. The analogous form to (4) then is

vhﬁi = pl (26)

which can be implemented as a system of two second-order equations:

v2gl - re (27a)
g2pl . pl (27b)
From (I111-71) and (22) above, the transformed system is
3 3 3
ij gl + r¥ Rl - pl 283
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i] + rK =0 (28b)
121 JZ1 87 Tpigd kz1 Cek

This generation system, being of higher order, allows more boundary conditions, so that the
coordinate line intersection angles, as well as the point locations, can be specified on the
boundary. It is therefore possible with this system to generate a coordinate system which is
orthogonal at the boundary with the point distribution on the boundary specified, and for
which the first coordinate surface off the boundary is at a specified distance from the



boundary:

This allows segmented grids to be patched together with slope continuity as discussed in
Chapter 1.

In the above discussions, generation systems have been formulated based on linear
differential operatorsin the physical space, e.g., the Laplacian with respect to the cartesian
coordinates, resulting in quasi-linear equations in the transformed space where the
computation is actually performed. It is also possible to formulate the generation system
using linear differential operators in the transformed space, e.g., the Laplacian with respect
to the curvilinear coordinates:

3

i

= P (29)
121 Celgt

The use of some such generation systemsis noted in Ref. [1], and such a biharmonic system
isnoted in Ref. [5]. Although this certainly produces simpler equations to be solved, since
the computation is done in the transformed space, such systems transform to quasi-linear
equationsin the physical space, and hence the extremum principles are lost in the physical
space. Thismeans that there is a possiblity of coordinate lines overlapping in general
configurations. Therefore it is generally best to formulate the generation system using linear
operators in the physical space.

As noted above, other variations of elliptic systems of the type discussed here are
noted in Ref. [1] and [5]. Elliptic generation systems may also be produced from the Euler
equations resulting from the application of variational principles to produce adpative grids,
asisdiscussed in Chapter XI. Still another system, based on the successive generation of
curved surfaces in the three-dimensional region, is given in Section 3B of this chapter.
Finally, quasiconformal mapping (Ref. [22] and [23]) is another example of an elliptic
generation system.

2. Control Functions

For the elliptic generation system given by Eq. (12), the control functions that will
produce a specified line distribution for a rectangular region, and for an annular region, are
given as Eq. (14) and in Exercise 8, respectively. These functions could be used in other
regions, of course, with the same general effect. In such extended use, the former would be



more appropriate for ssmply-connected regions, while the latter would be appropriate for
multiply-connected regions. Use of the rectangular function in a multiply-connected region
produces a stronger concentration than was intended because of the concentration over
convex boundaries that is inherent in Poisson-type generation systems (cf. Section 1A).

With generation systems of the Poisson type, negative values of the control function =
>in Eq. (4), or P in Eq. (8) (since @' > 0), will cause the &' coordinate lines to concentrate

in the direction of decreasing Ei (cf. Section 1B). Several approaches to the determination of
these control functions are discussed below.

A. Attraction to coordinate lines/points

This effect can be utilized to achieve attraction of coordinate lines to other coordinate
lines and/or points by taking the form of the control functionsto be, in 2D, (again with 3=
E , € Z:TI, P]-:P, PZ:Q)
N
P{g,n) = "1E1 a; sign(g - £;) exp(-cy|&-€;|)
30
. (30)

- L by sten(g - g9 expl=d, [ (£-£4Y+(n-n; 121172}

and an analogous form for Q(5,™) with & and " interchanged. (Here the subscripts identify
particular & -lines and are not to be confused with the superscripts used to refer to the
curvilinear coordinates in general.) In this form, the control functions are functions only of
the curvilinear coordinates.

In the P function, the effect of the amplitude g isto attract & -linestoward the & -line:

&=& Attraction 1ine

while the effect of the amplitude b, isto attract & -lines toward the single point (& o h):
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Note that this attraction to a point is actually attraction of E-linestoa point on another

£ -line, and as such acts normal to the & -line through the point. There is no attraction of
"I-lines to this point viathe P function. In each case the effect of the attraction decays with
distancein -7l space from the attraction site according to the decay factors, ¢, and d.. This

decay depends only on the distance from the 5 i-linein the first term, so that entire £ lines
are attracted to the entire i line. In the second term, however, the decay depends on both
the € and " distances from the attraction point (% ;,,), so that the effect islimited to

portions of the £ -lines. With the inclusion of the s gn changing function, the attraction
occurs on both sides of the & -line, or the (E 1) point, as the case may be. Without this

function, attraction occurs only on the side toward increasing £ with repulsion occuring on
the other side. A negative amplitude simply reverses all of these effects, i.e., attraction
becomes repulsion, and vice versa. The effect of the Q function on "l -lines follows
analogoudly.

In the case of aboundary that is an "-line, positive amplitudesin the Q function will
cause "l -lines off the boundary to move closer to the boundary, assuming that "' increases off
the boundary. The effect of the P function will be to alter the angle at which the & -lines
intersect the boundary, if the points on the boundary are fixed, with the £ -lines tendi ng to
lean in the direction of decreasing & . These effects have been noted in figures above, and
further examples are given below:
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The first two figures here show the result of attraction to the two circled points, in
comparison with the case with no control function. The last figure illustrates strong attraction
to the coordinate line coincident with the inner boundary and the branch cut in this C-type
system. If the boundary is such that " decreases off the boundary, then the amplitudes in the
Q function must be negative to achieve attraction to the boundary. In any case, the
amplitudes a cause the effects to occur al along the boundary (asin the last figure above),

while the effects of the amplitudes b; occur only near selected points on the boundary
(second figure above).

In configurations involving branch cuts, the attraction lines and/or pointsin this type
of evaluation of the control function strictly should be considered to exist on al sheets. In
the O-type configuration shown on p. 29, where the two sides of the cut are on opposite sides
of the transformed region, the control function P for attraction to the & i-line must be

constructed as follows: In the figure below,
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when the attraction lineis the & =2 line, the £ =|-1 line experiences a counterclockwise
attraction to this line at a distance of (I-1)-2. However, the & ;=2 attraction line also appears
asal +(E i-1)=1+(2-1)=1+1 attraction line on the next sheet as the cut is crossed. Therefore,

the & =I-1 line also experiences a clockwise attraction to this [+1 line at a distance of
(1+1)-(1-1)=2, and this attraction is, of course, stronger than the first mentioned. In fact, since
the attraction line is repeated on all sheets there strictly must be a summation over al sheets
in Eq. (30), i.e., asummation over k, with g  replaced by 5 i+k&E where A & isthejumpin

& at the cut (4 5 =I-1in the above figure). Thus 5 ; in Eq. (30) would be replaced by the
& .+k A, and the rightside would be summed from k=- to += . However, because of the

exponential decay, the terms decrease rapidly as k increases, so that only the term with the
smallest distance in the k summation really needsto be included, i.e., only the term giving
clockwise attraction at a distance of 2 from the attraction line for the " =I-1 line in the above
figure. Sincethereisno jumpin 'l across the cut in this configuration, the evaluation of Q is
affected by this out only through the replacement of 'l; as above in the term for the point

attraction, with summation over k of only this part of the right side. Again only the term with
the smallest distance need actually be included.

For the C-type configuration on p. 30, with the two sides of the out on the same side of
the transformed region, " isreflected in the cut, and the construction of the control function
Qisasfollows. With reference to the figure below,
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the attraction line, =2, islocated on both sides of the cut in this configuration. Now the
"1=3 line above the cut experiences a downward attraction toward the 'l.=2 attraction line at

adistance of 3-2=1. Strictly speaking, thisline above the cut should also experience a
downward attraction toward the portion of the 'l,.=2 attraction line below the cut as it appears

on the next sheet (and, in fact, on al other sheets), i.e,, at " -("-" ), where Tl . isthe
value of 'l onthe cut (" , ;=1 here). This attraction line on the next sheet is at adistance ' -[
o (-1 ] from the Tl-line of interest, i.e., at 3-[1-(2-1)]=3 from the "1=3 line above the

cut. This attraction line on the next sheet is therefore farther away and hence its effect can
perhaps be neglected. However, for lines between the attraction line and the cut, the effect of
the attraction line on the next sheet should be considered. In any case it is necessary to take
into account the attraction lines appearing on the next sheet, those on al other sheets being
too far away to be of consequence. Here the evaluation of the control function P is affected
by the cut only through the point attraction part, with '”i replaced as above.

The third type of cut, illustrated on p. 40, for which the two sides of the cut face across
avoid of the transformed region, is treated by replacing " with ".- A in both the control

functions, where # "-1 isthe number of " -linesin the void. Thereis no additional
summation in this case.

The case on p.52, where the coordinate species changes sign at the cut, requires

individual attention at each cut. For example, the contribution to the control functionsin
region A at apoint (E ,'1) from an attraction site (E i,"’l ;) in region B would be evaluated

using distances of (5 -5 )+(", - and (1-5;) in place of &-5; and "-T, respectively.
B. Attraction to lines/pointsin space

If the attraction line and/or points are in the field, rather than on a boundary, then the



above attraction is not to afixed line or point in space, since the attraction line or points are
themselves determined by the solution of the generation system and hence are free to move.
Itis, of course, aso possible to take the control functions to be funtions of x and y instead of
£ and T, and thus achieve attraction to fixed lines and/or pointsin the physical field. This
case becomes somewhat more complicated, since it must be ensured that coordinate lines are
not attracted parallel to themselves.

With the attraction discussed in the previous section, "l-lines are attracted to other
Ml-lines, and & -lines are attracted to other & -lines. It is unreasonable, of course, to attempt to
attract "-linesto & -lines, since that would have the effect of collapsing the coordinate
system. When, however, the attraction is to be to certain fixed linesin the physical region,
defined by curves y=f(x), care must be exercised to avoid attempting to attract coordinate
lines to specified curves that cut the coordinate lines at large angles. Thus, in the figure
below,

_Y=1{x Attraction line

£

it isunreasonable to attract g-lines to the curvey f(x), whileit is natural to attract the g-lines
to this curve.

However, in the general situation, the specified line y=f(x) will not necessarily be
aligned with either a € or " line along its entire length. Since it is unreasonable to attract a
line tangentially to itself, some provision is necessary to decrease the attraction to zero asthe
angle between the coordinate line and the given line y=f(x) approaches 90°. This can be
accomplished by multiplying the attraction function by the cosine of the angle between the
coordinate line and the line y=f(x). It is also necessary to change the sign on the attraction
function on either side of the line y=f(x). This can be done by multiplying by the sine of the
angle between the line y=f(x) and the vector to the point on the coordinate line.

These two purposes can be accomplished as follows. Let a general point on the E.line
be located by the vector £ (x,y), and let the attraction line y=f(x) be specified by the
collection of points S(x;,y;) i=1,2,...N. Let the unit tangent to the attraction line be L (Xi:Y;),

and the unit tangent to a E-linebe £ € ). Then, with % the unit vector normal to the
two-dimensional plane, and with reference to the following figure,
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the control functions, P(x,y) and Q(X,y), may logically be taken as
(£)) [Lix(B-Sy) ]k
|B-5q |

N
P(x,y) = -121 as(kyx exp(-d; |R-8;]) 31

The equation for Q simply has & replaced by T in the above. These functions depend on x

and y through both £ and © %) or £ (" ), and thus must be recalculated at each point as the
iterative solution proceeds. Thisform of coordinate control will therefore be more expensive
to implement than that based on attraction to other coordinate lines.

Thereisno real distinction between "line" and "point" attraction with this type of
attraction. "Line" attraction hereis simply attraction to a group of pointsthat form aline,
y=f(x). If line attraction is specified then the tangent to the line y=f(x) is computed from the
adjacent points on the line. If point attraction is specified, then the "tangent™ must be input
for each point. The unit tangents to the coordinate lines are computed from Eq. (111-3):

(E) 1
T - (1x_ + 1y )
'7""822 n n

(ny _ 1
ol —7;-1—(35 + Jyg)

The presence of branch cuts introduces no complication with this type of attraction
since the distances involved are in terms of the cartesian coordinates, rather than the
curvilinear coordinates. Thisform of attraction makes the control functions dependent on
both the curvilinear and cartesian coordinates, and thus attraction to space lines and/or points
involves more complicated equations in the transformed region than does attraction to other
coordinate lines and/or points, since for the former, coefficients of the first derivatives are
functions of the dependent variables. Attraction to lines and/or points in space has not been
widely used, and the use of Eq. (31) has not been fully tested.

C. Evaluation along a coordinate line



As has been noted above, if it is desired that the spacing of the coordinate linesin the
field generally follow that of the points on the boundary, the control functions must be
evaluated so as to correspond to this boundary point distribution. This can be accomplished
asfollows. (The developments in this and the next two sections are generalizations of that
given in Ref. [12], and other works cited therein and in Ref. [5].)

The projection of Eq. (12) along a coordinate line on which &! variesis found by

ot = F
forming the dot product of this equation with the base vector ¢ ¢ ", whichis tangent to
theline.

Thus we have
3 3
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Now assume for the moment that the two coordinate lines crossing the coordinate line of
interest do so orthogonally. Then on this line we have

and

CatCk ™A a = 81 = 91811

which leads to an explicit equation for P, on the coordinate line of interest:
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If it isfurther assumed for the moment that the two coordinate lines crossing the
coordinate line of interest are also orthogonal to each other, i.e., complete orthogonality on
theline of interest,

we have on thislinegl = & ;G and g;; = o g Also, from Eq. (111-38),

11 - gnzm) - '13' Som@nn

g = J!- (gmmgnn

since 7 # 7 But also by Eq. (111-16) g = g8,y SO thet ¢''g,=1. Then Eq. (33) becomes

1 * L i (34)
121 811 E glgt

which can aso be written, using Eq. (111-3), as

3
I 1 « {a;) 35
Py 121 LT 2, i 51 (35)

By Eq. (111-7) the derivative of arc length along the coordinate line on which & lvariesis

a P 36
1lall (36)

Then
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so that the logarithmic derivative of arc length along this coordinate line is given by
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which is exactly the i=1 term in the summation in Eq. (34).

The unit tangent to a coordinate line on which & M variesis

. =J—|'—— (39)

and the derivative of this unit tangent with respect to arc length is a vector that is normal to
thisline, the magnitude of which isthe curvature, K, of the line. The unit vector in this

normal direction is the principal normal, ‘E, totheline.

Thus, using Eq. (36),

™
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Then
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s0 that the curvatureis
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The component of K™ Hmg ong the coordinate line on which & Ivaries
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since “¢' "%:® = Y for m = 1 Then the two terms of the summation in Eq. (34) for which
m # 1 can be written as

glgl Ingllﬂ{mum)(n N }—“311 {Kmn“’)(l) (mAl) (44)
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Thus Eq. (34) can be written
P, = - §; - /a7 L™+ aym (1

where (I,m,n) are cyclic, and using Eqg. (111-3), we have
(g1) (g1}
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with an analogous equation for (K" o n)(1). The arc length in the expressions (45) for the

(45)

(46)

(47)

control function P, along the coordinate line on which £l varies can be determined enti rely

from the grid point distribution on the line using Eq. (46). The other two termsin P,
however, involve derivatives off thisline and therefore must either be determined by

specifications of the components of the curvature, K a , of the crossing lines along the line of
interest, or by interpolation between values evaluated on coordinate surfaces intersecting the

ends of thisline.

If it isassumed that the curvatures of these crossing lines vanish on the coordinate line of

interest, then the last two termsin EqQ. (45) are zero, and the control function becomes simply

PL="%1

(48)



and then can be evaluated entirely from the specified point distribution on the coordinate line
of interest.

The neglect of the curvature terms, however, isill-advised since the éliptic system
already has a strong tendency to concentrate lines over a convex boundary, as has been
discussed earlier in this chapter. Therefore neglect of the curvature termswill result in
control functions which will produce a stronger concentration than intended over convex
boundaries (and weaker over concave). When interpolation from the end pointsis used to

determine the curvature term, the entire term (K {f) should be interpolated, since individual
interpolation of the vectors <, and () ¢ m can give an inappropriate value for the dot

product.

It should be noted that the assumptions of orthogonality, and perhaps vanishing
curvature, that were made in the course of the development of these expressions for the
control functions on a coordinate line are not actually enforced on the resulting coordinate
system, but merely served to allow some reasonable relations for these control functions
corresponding to a specified point distribution on a coordinate line to be developed. This
should not be considered a source of error since the control functions are arbitrary in the
generation system (12).

D. Evaluation on a coordinate surface

In asimilar fashion, expressions for the control functions on a coordinate surface on
which & is constant can be obtained from the projections of EQ. (12) along the two

coordinate lines lying on the surface, i.e., the lines on which EMand EN vary, (I,m,n) being
cyclic.

These projections are given by Eq. (32) with | replaced by m and n, respectively. If itis
assumed for the moment that the coordinate line crossing the coordinate surface of interest is
orthogonal to the surface



then 2! “Lam = LT =9 gina P, is removed from both of these two equations to
yield the equation
% 2 1] gy p + glflg P =0
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and an analogous eguation with m and n interchanged. Solution of these two equations for
P, and P thenyields
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with an analogous equation for P, with m and n interchanged. Since g,,, = g, = 0, we have

by Eq. (111-38), g'm = g'” = 0. Therefore only the five terms, Il, mm, nn, mn, nm, are
non-zero in the summation. Also from Eq. (111-38) we have
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) Anana ogous equation for g"" is obtained by

Then Eq. (49) can be rewritten as
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and an anal ogous equation for P, with m and n interchanged. But, again using Eq. (111-38),

we have
gll - 1 and Emn = Emn- s
11 EumEnn ~ Emn
Therefore
1 Bmn
P m - - .+
T T T N
_ {na‘“ Zon Cgh )
2
Enm€nn T Smn
* (&an Tnen * Bam Tpnen ~ Pan Fyngn)

and the anal ogous equation with m and n interchanged. This can also be written as
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and the analogous equation for P,,.
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All of the terms, except the first, in the above equations can be evaluated completely

from the point distribution on the coordinate surface of interest.




From Eq. (47) thefirst term in (52) can be written
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where (KI H')m and (KI o I)n are the components of the curvature K 2 for the coordinate line
crossing the coordinate surface of interest along the two coordinate lines on the surface.

These quantities must be either specified on the surface or interpolated from values
evaluated on its intersections with the other coordinate surfaces. If it is further assumed that
the curvature of the crossing line vanishes at the surface, then thisfirst term in Eq. (52)
vanishes al so.

Aswas noted for the control functions on aline, the curvature terms should not be
neglected, however, else the concentration will be stronger than intended over convex

boundaries and weaker over concave. Also, it isthe entireterm K o which should be
interpolated, not the individual vectorsinvolved, else the dot product can have inappropriate
values.

E. Evaluation from boundary point distribution

Using the relations devel oped in the previous two sections for the control functions on
a coordinate line and on a coordinate surface, an interpolation procedure can be formulated
for evaluation of the control functionsin the entire field. If the point distribution is specified
on al the boundary surfaces of athree-dimensional field, the control functions can be
evaluated on these boundaries using the relations in Section D, and then the control functions
in the entire three-dimensional field can be interpolated from these values on the bounding
surfaces using transfinite interpolation (discussed in connection with algebraic grid
generation in Chapter V111.)

To be definite, consider a general three-dimensional region bounded by six curved
sides:



with curvilinear coordinates as shown, which transforms to a rectangular block. From Eq.
(52) the two control functions, Pj and P,, can be evaluated from the specified boundary-point

distribution on the two faces on which &1 is constant, i.e., the left and right facesin the
figure. Similar evaluations yield two control functions on each face, with the result that the

control function Py will be known on the four faces on which ¥ varies, i.e., the front, back,
|left, and right facesin the figure. Thus, in general, interpolation for the control function P, in

the interior of the region is done from the boundary values on the four faces on which Ek
varies:
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Herell isthe maximum value of 51, etc,, i.e, (1} = & =) i=12 3. In an analogous manner
all three control functions can be determined in the interior of the region.

It may be desirable in some cases to generate a two-dimensional coordinate system on
acurved surface, as discussed in Section 3, rather than specifing the point distribution on the
surface. The two control functions needed on the surface for this purpose can be determined
by interpolation from values evaluated on the four edges of the surface:



R

Eq. (45) alows the control function P, to be evaluated on the edges on which Elvaries, i.e,

the top and bottom edges in the figure. This control function on the surface can then be
evaluated by interpolation between these two edges:

P (E EJ k:. __{JJ____F [£ IJ 3 ;H-M.P {Ei 1,E ) (55)
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Both of the necessary control functions on the surface can thus be determined from the
specified boundary point distributions on the edges of the surface.

F. lterative determination

As noted above, a second-order elliptic generation system allows either the point
locations on the boundary or the coordinate line slope at the boundary to be specified, but
not both. It is possible, however, to iteratively adjust the control functionsin the generation
system of the Poisson type discussed above until not only a specified line slope but also the
spacing of the first coordinate surface off the boundary is achieved, with the point locations

on the boundary specified.

In three dimensions the specification of the coordinate line slope at the boundary
requires the specification of two quantities, e.g., the direction cosines of the line with two
tangents to the boundary.



The specification of the spacing of the first coordinate surface off the boundary requires one
more quantity,

and therefore the three control functions in the system (12) are exactly sufficient to allow
these three specified quantities to be achieved, while the one boundary condition allowed by
the second-order system provides for the point locations on the boundary to be specified.

The capability for achieving a specified coordinate line slope at the boundary makes it
possible to generate a grid which is orthogonal at the boundary, with a specified point
distribution on the boundary, and also a specified spacing of the first coordinate surface off
the boundary. This feature isimportant in the patching together of segmented grids, with
slope continuity, as discussed in Chapter |1, for embedded systems.

An iterative procedure can be constructed for the determination of the control
functionsin two dimensions as follows (cf. Ref. [25]): Consider the generation system given
by Eqg. (20). On a boundary segment that is aline of constant " wehave ~ = and ~ & &

known from the specified boundary point distribution

¥

also % , the spacing off this boundary, is specified




asisthe condition of orthogonality at the boundary, i.e., S ,

¥ _ 2 2 L = =
But specification of |’”’*| R AL , together with the condition ¢~ 7 ~ &7 T =0
provides two equations for the determination of x 7 and y 1 in terms of the already known

valuesof thex t andy & . Therefore ~ 1 isknown on the boundary.

Because of the orthogonality at the boundary, Eg. (20) (Eq. (23) isused instead in Ref.
[25]) reduces to the following equation on the boundary:

Ifn|2{255 + Prg) + |:£IE(Enn *Qry) = 0

Dotting = & and ~ 1 into this equation, and again using the condition of orthogonality,
yields the following two equations for the control functions on the boundary:
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All of the quantities in these equations are known on the boundary except ~ 1 7. (Ona

boundary that isaline of constant &, the same equations for the control functions result, but
now with £ & t the unknown quantity.)

The iterative solution thus proceeds as follows:
(1). Assume values for the control function on the boundary.
(2). Solve Eqg. (20) to generate the grid in the field.

(3). Evaluate = 11, on & -line boundaries, and ~ & & on & -line boundaries, from the

result of Step (2), using one-sided difference representations. Then evaluate the control
functions on the boundary from Eq. (56).



Evaluate the control functionsin the field by interpolation from the boundary values.
Steps (2) and (3) are then repeated until convergence.

This type of iterative solution has been implemented in the GRAPE code of Ref. [24] -
[26], some results of which are shown below:

These grids are orthogonal at the boundary, and the spacing of the first coordinate surface
(linein 2D) off the boundary is specified at each boundary point, the locations of which are
specified.

An iterative solution procedure for the determination of the three control functions for
the general three-dimensional case can be constructed as follows. Eq.(52) gives the two

control functions, P, and P, for a coordinate surface on which Elis constant (1,m,n cyclic)
for the case where the coordinate line crossing the surface is normal to the surface. Taking

the projection of the generation equation (12) on the coordinate line along which Elvaries,
we have on this same surface,

3 3
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since g, = g, = 0 on the surface. Using the relations for the metric components obtained for
this situation in Section D, this equation reduces to
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Since the coordinate line intersecting the surface is to be normal to the surface, we



may write

g X 2p
e =8 =YBT———7
S L PR

_ B1; &y x . (58)
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since

2 - o2
|20 X 841" = Zmménn ~ Emn
using the identity (111-9). Eq. (57) can then be written

e1l,1 m
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* [Ban{Ba) o * Ennfen)n = 2€mm(2n’ n]

With the spacing along the coordinate line intersecting the surface specified at the

3 =
surface, we have | a | 52 known on the surface. Since all the quantities subscripted m or
nin Eq. (52) and (59) can be evaluated completely from the specified point distribution on
the surface, we then have al quantities in these equations for the three control functions on
the surface known except for (g;) =1 and () = 1. These two quantities are not independent,

and using Eq. (58), we have
/811

‘/Emmgnn - Kfm

(ﬂm i ﬂ.n) - {El]E]. (60)

{Ey) ;1 = 28, » {Bq) ; =
E11};1 1 171

Recall alsothat (2)) = r 11

Therefore, with the control functionsin the field determined from the values on the
boundary by interpolation, as discussed in the preceeding section, Eq. (52) and (59) can be
applied to determine the new boundary values of the control functions in terms of the new
values of (£ ) £1inaniterative solution. Upon convergence, the coordinate system then will

have the coordinate lines intersecting the boundary normally at fixed locations and with the
specified spacing on these lines off the boundary.



A similar iterative determination of the two control functions for use in generating a
coordinate system on a surface can be set up using only Eq. (52), and the analogous equation
for P, with the first term either omitted, amounting to the assumption of vanishing curvature

of the crossing line at the surface or with this term considered as specified on the surface,
either directly or by interpolation from the edges of the surface (the edges assumed to be on
coordinate lines) to provide two equations for the two control functions, P, and P,,, on these

edges. Here the two dimensional surface coordinate system is to be orthogonal on the
bounding edges of the surface with the spacing off the edges, and the point distribution
thereon, specified on these edges.

EI‘I
Em

Since the coordinate system is to be orthogonal on the edges, g,,,, = 0 there so that the

last term in the bracket in Eq. (52) vanishes. EQ. (52) then reduces to the following
expression

1
Pp E:Tm‘ an ° (amjzm -y 8n * ':an}gn (61)

and the analogous equation for P, is

Pp = '-gl—nﬂn * (8n) "'g;:;.;jin * (o) n 62)
These equations can a so be written
Pp = - %ﬂ' gt (@n)en (63
and

If the point distribution is specified along an edge on which & M varies, then O = 1y

and (5’5m £ mcan al be calculated on this edge. The specification of the spacing from this



edge to the first coordinate line off the edge determines g, on this edge. Also, because of
the orthogonality on the edge, we have

8 - /iﬁ N X a, (65)

where 2 is the unit normal to the surface. Note that 2 will vary along the edge if the

surface is curved. Since the surface normal, ‘E, will be known, al quantitiesin Eg. (63) and
(64) are known except (9,,) £ nand (z, £ n. These two quantities are not independent and,

infact,

{gnn)gn = 28, * (i_ln)En
- 2 ’%{ﬂ X g8g) * (En)gn

On edges along which & " varies, Eq. (65) and (66) are replaced by

to e % X @

(66)

and
fgmm
(gm}gm =2 T (ﬂn x N) « (H-m}gm (68)

and it is (gy,y) emand () £ mthat are not known.

The iterative solution then proceeds as described above, with the new control
functions being determined from Eg. (63) and (64), together with Eq. (65) and (66) on edges

along which & Mvaries, or with Eq. (67) and (68) on edges along which & " varies.
3. Surface Grid Generation Systems

The grid generation systems discussed in the preceeding sections of this chapter have
been for the generation of curvilinear coordinate systems in general three-dimensional
regions. Two-dimensional forms of these systems serve to generate curvilinear coordinate
systemsin general two-dimensional regionsin aplane. It isaso of interest, however, to
generate two-dimensional curvilinear coordinate systems on general curved surfaces.



Here the surface is specified, and the problem is to generate a two-dimensional grid on
that surface, the third curvilinear coordinate being constant on the surface. The
configurations of the transformed region will be the same as described in Chapter |1 for
two-dimensional systemsin genera, i.e., composed of contiguous rectangular blocksin a
plane, with point locations and/or coordinate line slopes specified on the boundaries. These
boundaries now correspond to bounding curves on the curved surface of the physical region.
The problem is thus essentially the same as that discussed above for two-dimensional plane
regions, except that the curvature of the surface must now enter the partial differential
equations which comprise the grid generation system.

Asfor general regions, algebraic generation systems based on interpolation can be
constructed, and such systems are discussed in Chapter V1I1. The problem can also be
considered as an €lliptic boundary-value problem on the surface with the same general
features discussed above being exhibited by the elliptic generation system.

A. Surface grid generation

An elliptic generation system for surface grids can be devised from the formulae of
Gauss and Beltrami, of. Ref. [27]. Some related, but less general, devel opments are noted in
Ref. [9] and [5]. The starting point is the set formed by the formulae of Gauss for a surface,

which for asurface, & V= constant, (v = 1,2, or 3) are given by Eq. (34) of Appendix A:

8 {v)
=3 T 0 . +b oD
'-'Euas g ap “gé ab (69)

where the variation of theindicies ¢, P and & is over the two coordinate indices different
from . (Greek coordinate indices are used here to set apart the coordinates generated on a
surface from those generated in a three-dimensional region in general).



The unit normal % 1, the coefficientsb ;[ and the surface Christoffels ( T) have dll been

defined in Eq. (15), (20), and (33) of Appendix A, respectively. Theindices @ f each assume
the two values different from « . For each v, with (¢,F, 1) taken in cyclic order, we have

- 8 (v)
:EuEu E Tuu EEG *a bua

(70a)
- 8 (v)
Fgag8 EHB%G+““%B (700)
r =Y 18 p .+ 0V
gBeh 5 B8 g8 BR (70c)

with & assuming the two values, ¢ .

A surface grid generation system that is analogous in form to that based on
Poisson-type equations in a plane given earlier can be constructed by multiplying Eq.

(70a,b,c), respectively, by G g‘:t ¢ 2G . gaﬁ, G, gﬁﬁ and adding. This given, after some

algebra,

L + o LafeT, ¢ (a5VEPE g1 - 0tVREY @

where

2
G, = Byy Bag ~ g = 88 " (72)



- & (73)
ROVY o g (V) + k{p)) (74)
k%“) + kﬂ') = g““bm * 23“31:“5 + gBBbBB (75)

. (2 (] -
The quantities ¥ and g arethe local principal curvatures of the surface &

1 =constant. It must be noted herethe R Y asdefined in (74) is based on theintrinsic values
of b 4. Thatis, theb ;3 are solely determined by the data and coordinates as availablein

the surface. If, however, it isdesired to use Eq. (71) for generating a series of surfacesin a
three-dimensional space, as in the following section, from the data of a given surface, then it
is desirable to have an extrinsic form for b ;2. To obtain the extrinsic form, we use Eq. (29)

of Appendix A, i.e.,

k
Coagh kL Tag Lok (76)

Equating the right hand sides of Eq. (69) and (76), taking the dot product with " on both

e

sides, and notingthat =~ *~ |, we get
by = Tog A (V) (772)
where
A I o) Cev (77b)
Thus
ROV o g (g2ery, « 2g*frY, + g*fry, 1Y) (78)

The operator 4, is called the Beltrami second-order differential operator, and in
general isdefined as
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alvige - _1_ [L(ﬂ-ﬁ] -2 (;'EE)J (80a)
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The generation system is now formed by taking, in analogy with the system (7),
ASVIeS - 5 EI g? P, (81a)
Agu}gﬂ - 121: ] gHo pﬁ (81b)

where I and @ each assume the two values ¢ £ in the summation. Here the “ are the
symmetric control functions. Thus the equations for the generation of surface grids are (with

F = ix + iy+ iTEZ)
D(\J‘)n = n(U)R(U} (82)
where
2 32 32
piv) . g -2 t 8
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(83)
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S = 8gg P, - 2Z.p Pop * Bac FgB (84)
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T = ESB oo EGB ai ox AR (85)



The left-hand side of EQ. (82) here corresponds exactly to that of Eq. (15) for the plane.
However, here we have in place of (18) the relations

2 2 2
a X + ¥ + Z (86&)
Eua gu E[I. Eu
2 2 2
=X + ¥y + Z 86b
Bap = X8 " Tgp T %8 (86b)
Bya ™ xEux g * !"E“.?Eg * ZE{:ZEB (86¢)

The effect of the surface curvature enters through the inhomogenous term, in
particular through R (") which is, in fact, equal to twice the product of /G, and the mean

&
curvature of the surface. Here, asfor the plane, the control functions, Far , are considered to
be specified. This system corresponds to the following system in the physical space, from
(81),

afVg - 2 (872)
v

A$VE® - E (87b)
W

Thus the Beltrami operator on the general surface replaces the Laplacian operator in the
plane. If the surface is a plane, the Beltrami operator reduces to the Laplacian.

a 8
If only the two control functions Pz gnd as are included, the surface grid generation
system reduces to the more practical system

Eaa{fgugu + F:Eu] * Euu{EEBEB * “EEﬁ’ " 2Byl .8

(88)
corresponding to the plane system given by Eq. (20). In the physical planethis systemis
v),a . Bgp
afvlen = 288 p (89a)
G
v
afVe8 - ua g (890)
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Clearly, we could also replace the system (89) with the ssmplier system

&gu}sﬂ- = P (QOa)
a$VIe® - q (o00)

in analogy with the sytem (24) in the plane, to obtain the surface grid generation system

g + L - 28, L + G (Pr . + QL g}
BB EEGEG gua EBEB gﬂﬂ EuEB W Eﬂ- EB (91)

- u{'\l}ﬁ{‘-‘)

which is analogous to the plane system (23).

Equation (71) isthe basic equation for the generation of curvilinear coordinatesin a

k

given surface. From (74) the function R(") depends on the principal curvatures “:" and

bt A . L

Z Thesum ! ¥ jstwice the mean curvature of the surface, and its value isinvariant
to the coordinates introduced in the given surface. If the equation of the surface in the form
X5 = f(X1,X,) is available, then from elementary differential geometry

k§V ¥ m [0+ P - 2pas ¢ (1 ¥ p2L1/(1 + p? + %372 (92)

where
p - fx_l. q = fxz, r = fx1x1, 5 = fx-'xz' t = t‘xﬂ:2

For arbitrary surfacesit is always possible to use a nummerical method, e.g., the least square
method, to fit anequation in the form x,=f(x;,X,) or F(X4,X5,X3)=0 and to obtain the needed

. o . o gle . .
partial derivativesto find ¥ + "2 asafunction of X1:X9,X3. (Surface grids have been

obtained for smply and double connected regions in a surface using the above method.)

It may be desired in some applications to generate a new coordinate system based on
an already existing coordinate system in a given surface. In the formulation of this problem

Eq. (71) can have the form of R(M) givenin (74), (75) or (78). Let the surface on which the
new grid isto be generated be specified parametrically by

r = pr(u,v) (93)

(For example, the parameters (u,v) might be latitude and longitude on a spherical surface.) If
the specified cartesian coordinates on the surface form afinite set of discrete points, a



smooth interpolation scheme is needed to recover the differentiable functionsin (93). To
attain the desired smoothness in the parametric representation (93), it is generally preferable
to divide the given surface into a suitable number of patches such that each patchis
representable by a bicubio spline with suitable blending functions. Having once established
the smooth parametric functions (93), it is now possible to introduce any other desired

coordinate system, say (5 “, & B) on the surface. For example, a surface coordinate system
£ tP of the configuration

i gﬂ

-

might be generated on a surface defined by the parametric coordinates (u,v) in a
latitude-longitude configuration:

Alternatively, a surface may be defined in terms of cross-sections, in which case one of the
parametric coordinates (u,v) runs around the section and the other connects the sections:

The fundamental equations for the generation of (5 “,& B) on the surface &
" =constant can be obtained from Eq. (75) intheform



L(U)E . P'EEu . Q'CEH - E(U]R(U} (94)

Here we have taken
Pl‘
ﬂg“)h‘“‘ = — (958)
Gv
afvleh - L0 (95b)
G‘U

Now using the chain rule of differentiation, wecanwrite = € F, £ ¢ o £ & a & P etc,, in
termsof = , =, =, etc. Thus,

v T uw
for example,
EE{I - Equu + cvaG (96)
EEGE.E = ':u“EuEE * :v“EuEB * ':Euu“EE * :uv"rEB)uEu
97)
+ 'f::u,‘,uEB + ;_-w'.rEﬂJvEu
Bag " Lon * Tpp " (ty * zu}uguugs + gy o rv}vguvgﬁ
* {Eu ' rv}{uEﬂ?Eﬂ- * uEBvECI} (98)

= guuuzaugﬂ * gﬂﬂvgu?gu * EuB(“EuVEE * uEBvau}

with the & guantities as defined below. Substituting these derivativesin (94), and also in the
expressions for 1 and £ we get

{ } T 1 { J ] T
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(99
=+ 2 = { } 2
32 TV 2 o) 7t

where
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G, - BapBan - Bap (102)
EEB - t-,‘.- - E‘V' _s-us = :u . I:-'-l‘ Eﬂ.ﬂ.- I:u . Ei.l (103)

To isolate the differential equations for u and v as dependent variables from (99), we
take the dot product of Eq. (99) with ~ , and then with ~ , and use the conditions

Eu - n{u) = u. Ev - 1,_1(\?} - D
Writing
P-PuB, Q-5 I, =4C

the required eguations are

auE“E“ - zbuaﬁr,“ + cuEBEE + .JE(P!.'IE“I + QUESJ = Jﬁﬂzu (104a)
Hpaga © Ebvaﬁ.t;u P OVeRg8 " JE(P?E“ ’ Qvgﬂ) - ISkaY (104)

where
a - {EBEYEB + EEuBuEBYEE + Emuzﬁ}fig (105a)

ra o T
D o= [gEBvEBvEu + gﬂB(uEBan + uEBvEnJ gcm EEuEu]f‘J (105b)

e = {EBB £o + 285U Ea' o * BaaV En}‘”z (105¢)
Ayu = [—{EBB} x —{g“BJJIJ (1063)
au J v .T
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Note that the metric quantities with an overbar relate to the surface definition in terms of the
parametric coordinates and therefore can be calculated directly from the surface



specification, Eqg. (92).

Clearly we could redefine the control functions so that (104) is replaced by the
following system, which is analogousin form to the plane system (20):

- e J2
a(uEuEa + PuEu) + e(uEBEB + quEB} Ebugﬂ‘gﬂ J, Apu (1073)

2
a(vE“Eu * PvEu] + c(vEBEB + Q‘FEB} - Eb‘fﬁngg = dy AV (107b)

B. Three-dimensional grids

As mentioned earlier, the system of Eq. (71), or Eq. (82), is also capable of generating
three-dimensional grids. This capability in the set of equations is incorporated through £
(") as defined in (78).

The strategy of the method isto generate a series of surfaces on each of which two
curvilinear coordinates vary while the third remains fixed. The variation along the third
coordinate is specified as a surface derivative condition, which in turn depends on the given
boundary data.

A study of Eq. (82) - (84) showsimmediately that for the solution of Egs. (82) we
need to specify the values of ~ and = £ v on certain curves 5 ° =constant. To fix ideas, let

B = gb

us consider the problem of coordinate generation between two given surfaces 5 1 and
B — gf

57 = 5% asshown below:

The coordinates on these surfacesare & “ and & . To start solving these equations we

B — gf _
need thevaluesof =~ and = © v onthe surfaces 7% and & = &% Thesevaluesof ~

are the input conditions for the solution of Egs. (82), and are either prescribed analytically or
numerically. On the other hand, the valuesof ~ & v at B and = are available easily, based



on the values of =, simply by numerical differentiation. The valuesof r = v inthefield for

each surface to be generated are then obtained by interpolation between the available values
of (£ & V)gand (L & V). A simpleformulae which has been used with successis
- B B

where

£ (R =1, fp(ef) = 0

£,£8) = 0, f(g8) = 1

4. Implementation

The setup of the transformed region configuration is done as described in Chapter I1.
This includes the placing of the cartesian coordinates of the selected points on the boundary
of the physical region into - ik for each block and the setting of the interface

correspondence between points on the surrounding layer for each block and points inside the
same, or another, block viainput to an image-point array as described in Section 6 of
Chapter 11.

A. Difference equations

Implementation of an elliptic generation system then is accomplished by devising an
algorithm for the numerical solution of the partial differential equations comprising the
generation system. Recall that the use of the surrounding layer for each block, as described
in Section 6 of Chapter 11, allows the same difference representations that are used in the
interior to be used on the interfaces. The usual approach isto replace al derivativesin the
partial differential equations by second-order central difference expressions, asgivenin
Chapter 1V, and then to solve the resulting system of algebraic difference equations by
iteration. As noted above, most generation systems of interest are quasilinear, so that the
difference equations are nonlinear.

A number of different algorithms have been used for the soltuion of these equations,
including point and line SOR, ADI, and multi-grid iteration (cf. Ref. [1] and [5]). For general
configurations, point SOR is certainly the most convenient to code and has been found to be
rapid and dependable, using over-relaxation, for awide variety of configurations. The
optimum acceleration parameters and the convergence rate decrease as the control functions
increase in magnitude. Some consideration has been given to the calculation of afield of
locally-optimum accel eration parameters (cf. Ref. [1]), but the predicted values generally
tend to be too high, and the desired increases in convergence rate were not obtained.

Since the system is nonlinear, convergence depends on the initial guessin iterative



solutions. The algebraic grid generation procedures discussed in Chapter VI can serve to
generate thisinitial guess, and transfinite interpolation generally produces amore reliable
initial guess than does unidirectional interpolation because of the reduced skewnessin the
former. In fact with strong line concentration, convergence may not be possible from an
initial guess constructed from unidirectional interpolation, while rapid convergence occurs
from an initial guess formed with transfinite interpolation. With the slab and dlit
configurations, the interpolation must be unidirectional between the closest facing boundary
segments as illustrated below:

In ablock structure, however, the slab/dlit configuration can be avoided so that transfinite
interpolation can be used.

Since the coordinate lines tend to concentrate near a convex boundary, very sharp
convex corners may cause problems with the convergence of iterative solutions of the
generation equations. These equations are nonlinear, and therefore convergence of an
iterative procedure requires that the initial guess be within some neighborhood of the
solution. With control functions designed to cause attraction to the boundary, it is possible
for the coordinate lines to overlap avery sharp convex corner during the course of the
iteration, even though a solution with no overlap exists:

This problem may be handled by first converging the solution with the coordinate
lines artificially locked off the corner. Thus, if newly calculated values of the cartesian
coordinates at a point during the iteration would cause this point to move farther from its
present |ocation than the distance to the adjacent point on the curvilinear coordinate line
running to the corner, then these new values are replaced by the average of the coordinates
of the old point and the adjacent point. After convergence, thislock is removed and final
convergence to the solution is obtained. Note that this problem does not arise when the
curvilinear coordinate line emanating from the corner is the same as that on the boundary, as



in the C-type configuration on p. 30 since then the lines do not wrap around the corner.

With very large cell aspect ratio, e.g., for g;,>>0,,, the generation equation is

dominated by the term containing the second derivative along the curvilinear coordinate line
on which the shorter are length lies. This causes the cartesian coordinates to tend strongly
toward averages of adjacent points on this line during the course of the iteration. Therefore,
when strong control functions are used to attract coordinate lines to the boundary in a C-type
configuration,

---Curt

the points on the cut are very slow to move from the initial guess during the iteration.
Convergence in such acaseisvery slow, and it is expedient to artificially fix the points on
the cut asif it were aboundary. Thiswill cause the coordinate lines crossing the cut to have
discontinuous slopes at the cut, but since the spacing along these crossing linesis very small,
the error thus incurred in difference solutions on the coordinate system is small.

B. Control functions

Several types of control functions have been discussed in Section 2 which serve to
control the coordinate line spacing and orientation in the field. Most of these functions are
set before the solution algorithm begins, either directly through input or by calculation from
the boundary point distributions that have been input.

For the attraction to other coordinate lines/points, described in Section 2A, itis
necessary to input the indices of the lines/points, i.e., the & .and I of Eq. (30), to which

attraction isto be made. In the case of attraction to lines, the lineisidentified by the single
index which is constant thereon, while a point requires the specification of two indices (in
2D, with analogous generalization to 3D). The attraction amplitude and decay factor in EQ.
(30) must a'so be input for each line/point. The control functions are then calculated at each



point in the field (E , 1) by performing the summationsin Eqg. (30), those summations being
over all the attraction lines/points that have been input. As noted in Section 2A, these
summations must also extend over some lines/points on other sheets across branch cutsin
Some Cases.

Thistype of control function was used in the original TOMCAT code (cf. Ref. [1]),
but is not really suitable as a primary means of control function definition because it only
provides control--not control to achieve a specified spacing distribution, since the
appropriate values of the various parameters involved can only be determined by
experimentation. This form does, however, still serve as a useful addition to other types of
control, in that it allows particular ad hoc concentrations or adjustments of line spacing and
orientation to be made. This can be particularly useful near the special points discussed in
Chapter Il where the grid line configuration departs locally from the usual simple coordinate
line intersections.

The attraction to lines/points in space, implemented through Eq. (31), requires input
similar to that just described, except that here the location of the attraction lines must be
defined in the physical region by inputing a set of points along the line sufficient for its
definition in discrete form. For attraction to a point a unit vector must also be input with each
point. Again, attraction amplitude and decay factors must be inpuit.

More important is the evaluation of the control functions from the boundary point
distribution that has been input, as described in Section 2E. With the point distribution
specified on a boundary line, the control functions on this line can be evaluated from Eq.
(45)-(47). Here the derviativesin EQ.(46) are best calculated from Eq. (36) and (37), using
second-order, central difference expressions along the line:

/’5

— _ |,
(Recall that & ‘ ! | .) The curvature terms given by Eq. (47), if included, must either be
input at each point on the line, or, asis more likely, must be interpolated from values on the

ends of the line. In this latter case, the ™ and & " derivatives are off the line and are
evaluated from the point distribution on the other coordinate lines intersecting the line of
interest at its ends, using first-order one-sided difference expressions along these intersecting

T J




One-dimensional linear interpolation in £ then serves to define the curvature term guantities
at each point on the line of interest. Recall that it is the entire curvature term, rather than the
individual vectors involved, that should be interpol ated.

This evaluation determines the P, control function on a boundary line on which gl

varies. Such an evaluation can be made on each edge of a surface, corresponding to one face
of ablock in three dimensions (cf. Section 6 of Chapter I1). If it isdesired to generate a
two-dimensional grid on this surface, control functions on the surface can be evaluated by
interpolation from the function values on the edges, using linear interpolation between the

two edges on which & 'is constant to evaluate Pj, and between the two edges on which & lis
constant to evaluate P, (cf. the figure on p. 227). With the control functions thus defined on

the surface, atwo-dimensional grid on the surface can now be generated using a surface grid
generation system described asin Section 3. If the surface is a portion of the physical
boundary, then a parametric definition of the surface will need to be input, so that the system
defined by Eq. (107) can be applied. If, however, the surface is ssmply an interface between
blocks, then its position is arbitrary and either a plane two-dimensional generation system,
such as Eq. (20),can be used, or surface curvature values could be input at each point on the
surface and the surface system Eq. (82) used. The former isthe more likely choice.

With the grid points on all the block faces defined, either by surface generation
systems or by direct input, two control functions on each face can be evaluated from the
surface point distribution using Eq. (52). Here the m and n derivatives are along coordinate
lines on the surface and thus can be represented by second-order central differences between
points on the surface:

(Recall that (<) & m can be expanded to = & m& m for evaluation.) The I-derivatives are off

the surface and must either be specified by input at each point on the surface, or, asis more
likely, must be interpolated from values evaluated along the coordinate lines intersecting the
surface at its edges using first-order, one-sided difference expressions. The interpolation
would here properly be two-dimensional transfinite interpolation discussed in Chapter VIII.



This then serves to determine the two control functions Pj and P on asurface on

which &1 is constant (cf. thefigure on p. 226), so that each control function will be defined
on four faces of the block. Transfinite interpolation among these four faces then determines
this control function in the interior of the block (cf. p. 227).

Another possibility isto evaluate the radius of curvature, #, of the surface and to

o
replace the curvature termsin Eqg. (45) with [%lp (cf. Exercise 9). Here the radius of
curvature should be interpolated unidirectionally between facing surfaces, and the same

two-directional transfinite interpolation used for the first term of the control function should
<]

be used for the spacing

Still another approach is to solve the three generation system equations for the three
control functions at each point using an algebraic grid, but with the off-diagonal metric
elements set to zero. Thiswill produce a grid which will have a greater degree of smoothness
and orthogonality than the algebraic grid and yet has the same general spacing distribution.
Here the result of the Computer Exercise 6 in Appendix C must be considered since the
algebraic grid influences the spacing distribution.

In generation systems that iteratively adjust the control functions during the course of
the solution of the difference equations (Section 2F) to achieve a specified spacing and angle
of intersection, e.g., orthogonality, at the boundary, this spacing and intersection angle are
input for each boundary point and it is, of course, not necessary to calculate the control
functions beforehand. Several referencesto discussion of such systems are given in Ref. [5].
The GRAPE code is based on this approach, cf. the users manual Ref. [24].

C. Surface generation systems

A boundary surface in the physical region will typically be input by giving the
cartesian coordinates of points on a series of cross-sections, or other set of space curves.

0 0 0

These input points may then be splined to provide a functional definition of these curves.
These curves are then parameterized in terms of normalized arc length thereon, i.e., so that



this normalized parameter varies over the same range on each curve.

0 0 0

This normalized arc length then provides one parametric coordinate on the surface. The other
coordinate is defined by connecting points at the same value of the first coordinate on the
successive curves, again using a spline fit:

709

This second coordinate is then also expressed in terms of normalized arc length

)0

(On a sphere these two parametric surface coordinates could correspond to longitude and
latitude, the latter arising from the cross-sections and the former from the connecting

thereof.)

There are other techniques of surface definition and parameterization, cf. especially works
on computer-aided design, but the above decription is representative. The end result of this
stage in any caseis -~ (u,v), i.e., the cartesian coordinates on the surface in terms of two
surface parametric coordinates.

The two parametric coordinates (u,v) used to define the surface can also be adopted as
the curvilinear coordinates defining the surface grid. However it is more likely that these
coordinates were selected for convenience of input definition of the surface than for the



definition of an appropriate grid thereon. Thisis particularly true when two such intersection
surfaces, e.g., awing-body, are input, each with its own set of parametric coordinates.
Therefore, the surface grid generation system defined by Eq. (107) or (104) isused to

generate a new surface coordinate system (E “E B) by generating values of the parametric

coordinates (u,v) as functions of the curvilinear coordinates (5 “,& 6), analogous to the
plane generation systems which generate values of the cartesian coordinates as functions of
the curvilinear coordinates. In fact, as noted above, the surface generation system
degenerates to the plane system when the surface curvature vanishes.

With ~ (u,v) now available, as described above, the metric elements with overbars can

be calculated from the definitions in Eq. (103), using second-order central differences for all
derivatives as in the plane case. The quantities 4 ,u and 4 ,v are then calculated in the same

manner from Eq. (106). Also the control fucntions are evaluated from the same relations
given above for the plane case. All derivativesin the system (107) or (104) are represented
by second-order central difference epxressions, and the resulting nonlinear difference
equations are solved asin the plane case.

Exercises
1. Demonstrate the validity of Eq. (4) -- (6).

2. For plane polar coordinates (r,?) defined as

X=rcogf, ¥y =r sing
show that the curvilinear coordinates
Emg, n=1nr

are solutions of the Laplace equations ¥ 25 =0, ¥27 =0,

3. Show that the one-dimensional control function in Eq. (13) that is equivalent to the use of
a subsequent exponential stretching transformation by the function given by Eq. (V111-26) is

P=-a/l. Hint: x/L = ¥ (5 )

4. Show that the one-dimensional control function in Eq. (13) that correspondsto a
hyperbolic tangent stretching transformation by the function given by Eq. (VI11-32) is

(1 - A)u

-28 &E-1
P(E) EItanh[G(I 2}]+ T 1 - Ao

where uisgiven by Eq. (VI11-33) and
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5. Show that the one-dimensional control function for the generation system given by Eq.
(23) corresponding to a distribution x(5 ) is

P(E) = - x£51x53

Note that this control function will be considerably larger than that for Eq. (12) because of
the higher inverse power of x&

6. Show that a solution of Eq. (20), with P= P(E) and Q = Q(™), for arectangular region
with? =3 =X gnq0=y =% 0=5=7 00 =2 =7 jsgivenby

W FE) . 4y ()
S T )

where

"
F(g) = Iiexp[—Ji P(E")dEM]dE "

Gln) = JZexp[-Jz Q{n")dn™ldn!'

7. Show that a solution of Eq. (20), with P=P(5) and Q(™), for an annular region between
two concentric circles of radiusr, and r, isgiven, with © = 5 = and © =7 =7 py

r = R(n}[1 cos8(g) + § sine(g)]

where

G(n)]
G(J)

R(n) =rq(C2)
T

- 2 F(E)
8(¢) F(I)



with F(5) and G(") given in the preceding exercise. Show also that for P=pt t/p £ and Q
=qnmn/qn, R(") and 8 (%) become

q(n) = q{0q
ra, () - a(®)
ry

R(n) =1y

- p{g) - p(0)7
B(E) EWEP(I) o0}

8. From the result of the preceding exercise show that the control function Q(™) required to
produce a specified radial distribution r(') is given by

Q{n} = —:'11+ .r.j-
l"n r

9. Show that the first term in the control function Q(') given in the preceding exercise arises
from the first termin Eq. (45), and that the second term arises from curvature term in (45).

10. Consider the generating system (23) for plane curvilinear coordinates. Let the control
functions P and Q be defined as follows:

P =20

~ggq [2+ (n=ng) Inkl1Ink

Q-
g 1+{n-n1]1nk

where k > 0 isaconstant. Let it be desired to solve Eq. (23) for the generation of coordinates
in the region of acircular annuluswith ' = Tl,(r = 1) astheinner circleand 'l =l (r =R) as
the outer circle. Considering the clockwise traverse in the & -direction as positive, set

x = f{n)oos a(g -~ g,)

¥y = ~f(n)ain a(k - £,)

where

0g -k, <2/a



in Eg. (23), and show that

£(n) = exp[A{n = n;ik"]

where

A = in R
n
(ng = ngdk

o
11. Show that the control function P in Exercise 4 has the following values at the boundaries:

1 = JE .'ilan:.rh2 (‘%}]

P(0) = -3
tann (5)

2.5
1 = & sech (3)
ey =S 2

I
tanh(-g-]

Note that an iterative procedure could be set up in the manner of Section 2F in which & and
A are determined from P(0) and P(I) and then these are used in the P(E ) of Exercise4to
define the control function in the field, rather than interpolating from the boundary values.
12. Show that the Beltrami operator reduces to the Laplacian for a plane surface.

13. Verify Eq. (71).

14. Verify Eq. (774).

15. Consider a sphere of unit radiusin which it is desired to introduce a coordinate system (
tE ) insuch away that (i) is orthogonal, and (ii) the resulting metric coefficients g5 and
g4 are equal. (Such systems are known to be isothermic.)

(@) Verify by inspection that for isothermic coordinates Eg. (80) isidentically satisfied.

(b) To obtain the isothermic coordinates on a sphere set

x = ()., ¥ = flgleosg, =z = flr)aink.



and show that

tA -
£lg) = — 28 y(py =1 - et
1 + g<t 1-!-.5Ec

(c) Show that the relation between the standard longitude and latitude surface coordinates ¢
and © where0 =6 <2T and0< 8 < T js

E-¢.:-1ntan%.

16. Using Eq. (15), (20) and (21) of Appendix A, show that the sum of the principal
(2 2
curvatures, “ow Fa , of aprolate ellipsoid defined as

X =80038, ¥y= b 2inr cosg, T = b 8inz aing

2 2 2
€2 42 -a{asin’y + b(1 + cos’g)]

2 2. 2 }3!2

b{a sinzr;. + boos g

17. Verify the correspondence between Eqg. (90) and (91).
18. Verify Eq. (92).
19. Let (E ,'1) be the surface coordinates in the surface on which @ = constant. Then as

shown in Appendix A, Eq. (21),

+ b

k$3Y 4 k(3 L (0B = 20p0E;, + o8y

. 3
Let anew coordinate system (‘:LE ,7) beintroduced in the same surface such that £ =
£(5,M),and 7 = 7 (5 M) are admissible transformation functions.

(@) Use the chain rule of differentiation to show that the components of the normal * to the
surface are coordinate invariants, i.e.,

X=X, Y=Y, Za=7T

(b) Also show that on coordinate transformation



kp * kyp = kg * kg7

20. Let it be desired to obtain the 3D curvilinear coordinates in the region bounded by a
prolate ellipsoid as an inner boundary ("I = ",) and a sphere as an outer boundary (" =" ).

The (x,y,2) for both the inner and outer bodies are given below inwhich © and ', are the
parameters of the ellipsoid:

x = 1 coshn; co3, ¥ = 1 alnhny aing coag,
Zz = t3inhn; sing sing
il Mo Ny
X = e - Ccosg, y =@ sing cosg, Z =@ sing sing.

(@) First write Eq. (91) asthree equationsin X, y and z for the generation of those surfaces on
which & = constant. Also set P = Q = 0 and transform the three equations mentioned above
from " to 7, where T =TI, + TI(7).

(b) Assume the solutionis

x = £{n) o8z, ¥ = HF) sing oesE, =z = ¢(F) sing aing,

and compute all the needed derivativesto find g4, 91,5, 9,, While keeping T fixed. Also

using Eqg. (15), (20) and (21) of Appendix A obtain the expressions for the components of
7§(3) and RO,

(c) Use dl the quantities obtained in (b) in the equations written in (&), and show that

ﬂ‘.ﬂ‘} = A EBTI(H] +

o(m) = D eB(M

where



n
A= -:[(en':' - 1 coshny) sinhni]:"(e SR ainhnil

B=(n,-1lnrt asinhng)/{ng - ny)

L]
]

n
1[an°(naﬁhn1 - sinhni}]!(e - ¢ sinhni]

D

T sinhng
21. Let asurface in the xyz-space by given as
z = £{x,y)

Show the following:

(a) The components of the unit normal vector to the surface areaare

_zx I -2 ’
1 + zi + zi 1T+ 2, * zy
i
? =
2 2

T+ Zy + zF

(b) The element of area dA on the surfaceis

dA = /1 +Zi+z'§_d:dr
(c) The element of length ds of a surface curve is given by
ds? = (1 + zi} dx% + szz:Ir dxdy + (1 + zf,} dyz
(d) The sum of the principa curvaturesis given by

2 _ 2
(1 + a?}zxx szzyzxy + {1 + z:x}rz:,rj'r

ky + K =
I IT
(v 2+ 22372

22. (a) Show that the unit tangent vector L to the curve of intersection of two surfaces
F(x,y,z) =0, G(x,y,z) =0is



§ = 1dy + 1d, + kJg)/(aF + J5 + 0§12
where

J,. = F_ & - F G
k Im Xn In *m
and m,n,k arein the cyclic per mutations of 1,2,3.

(b) Using the formula for the normal vector  to F constant, .i,e.,

g = XF_
[2F|

find the Cartesian components of .

23. Veify Eq. (104).



VII. PARABOLIC AND HYPERBOLIC GENERATION SYSTEMS

It isalso possible to base a grid generation system on hyperbolic or parabolic partia
differential equations, rather than elliptic equations. In each of these easesthe grid is
generated by numerically solving the partial differential equations, marching in the direction
of one curvilinear coordinate between two boundary curves in two dimensions, or between
two boundary surfaces in three dimensions. In neither case can the entire boundaries of a
general region be specified -- only the elliptic equations allow that.

The parabolic system can be applied to generate the grid between the two boundaries
of a doubly-connected region with each of these boundaries specified. The hyperbolic case,
however, alows only one boundary to be specified, and is therefore of interest only for use
in calculation on physically unbounded regions where the precise location of a
computational outer boundary is not important. Both parabolic and hyperbolic grid
generation systems have the advantage of being generally faster than elliptic generation
systems, but, as just noted, are applicable only to certain configurations. Hyperbolic
generation systems can be used to generate orthogonal grids.

1. Hyperbolic Grid Generation

In two dimensions the condition of orthogonality is simply

Bz = 0 D

If either the cell area, /¢ or the cell diagonal length (squared), gy, + G, is aspecified
function of the curvilinear coordinates, i.e.,

/g = F(g,n) (28)

or

B4 * 8pp ™ F(£.n) (2b)

then the system consisting of Eqg. (1) and either (2a) or (2b), as appropriate, is hyperbolic.

A hyperbolic generation system based on Eg. (1) and (2a) is constructed as follows (cf.
Ref. [28-29]). Eq. (1) and (2a) become, with 1=5,52="1 x =x,x,=y,

XgXn * ¥g¥p = 0 (39)

Xe ¥y = Xp¥e * V{E,n) (3b)

where the cell volume distribution, V(5 ,), is specified. This system is hyperbolic and

therefore a non-iterative marching solution can be constructed proceeding in one coordinate
T



direction, say ", away from a specified boundary.

The equations are first locally linearized about a known solution denoted x°, y°. Thus

Apg + Br, = £ @

X [D ]
I:-}rt E v_!_vo
LN

vleoaal e

Then with second-order central differences for the 5 -derivatives and first-order backward
differences for the derivatives we have, with & =i and =J,

where

1 p=1 -
Ly 401 = Kag * 5 B MR, g0 T Bamn,gen)
5)
- 2
= B 1ri.J+1 + e(V345)70y

with V% =% 5 - = and &,=25 - 44 and where A and B, and v° in 7, are evaluated

aj,and the last term is an added fourth- order dlSSl pation term for stability. With % and yi

evauated using central differencesat j, “* and Yy can be evaluated by simulatenous solution
of Eq. (3a) and (3b). Eq. (5) then isa2x2 block tridiagonal equation which is solved on each
successive 'l -line, proceeding away from the specified boundary, to generate the grid.

The cell volume distribution in the field is controlled by the specified function,
V(5 ,M). Oneform of this specification is as follows. Let points be distributed on acircle
having a perimeter equal to that of the specified boundary at the same are length distribution
as on that boundary. Then specify aradial distribution of concentric circles about this circle
according to some distribution function, e.g., the hyperbolic tangent discussed in Chapter
VI1II. Then use the volume distribution from this unequally-spaced cylindrical coordinate
system as V(5 ,7), with & corresponding to the points around the circle, (5 ), and ™
corresponding to the radial distribution r("). An example of grids generated by this
procedure follows:



~—

The specification of the cell volume prevents the coordinate system from overlapping
even above a concave boundary. In this case the line spacing will expand rapidly away from
the boundary in order to keep the cell volume from vanishing, asin the Following figure.

Although this prevents overlap, the rapid expansion that occurs can lead to problems with
truncation error in some eases. This approach is extendable to 3-D with the coordinate lines
emanating from the boundary being orthogonal to the other two coordinates, but the latter
two lines not being orthogonal. There apparently is no system, hyperbolic or eliptic, that
will give complete orthogonality in 3-D.

This hyperbolic grid generation system is faster than the elliptic generation systems by
one or two orders of magnitude, the computational time required being equivalent to about
that for one iteration in a solution of the elliptic system. The specification of the cell volume
distribution avoids the grid line overlapping that otherwise can occur with concave
boundaries in a method involving projection away from a boundary. The grid may, however,
be somewhat distorted when concave boundaries are involved. The cell volume specification
also alows control of the gird line spacing, of course, asin the upper part of the second
figure on p. 275, but again concave boundaries may cause the intended spacing to occur in
the wrong coordinate direction, asin the lower part of thisfigure, sinceit isonly the volume,
and not the spacing in the two separate coordinate directions, that is controlled. As has been
noted, the grid is constructed to be orthgonal.



The hyperbolic generation system is not as general as the élliptic systems, however,
since the entire boundary of the region cannot be specified. As noted above, boundary slope
discontinuities are propagated into the field, so that the metric elements will be
discontinuous along coordinate lines emanating from boundary slope discontinuities. Finally,
since hyperbolic partial differential equations can have shock-like solutionsin some
circumstances, it is possible for very unsuitable grids to result with some specifications of
boundary point and cell volume distributions. Thisisin contrast with the elliptic generation
systems which tend to emphasize smoothness because of the nature of eliptic partia
differential equations.

2. Parabolic Grid Generation

Parabolic grid generation sytems may be constructed by modifying elliptic generation
systems so that the second derivatives in one coordinate direction do not appear. The
solution then can be marched away from a boundary in much the same manner as described
above for the hyperbolic systems. Here, however, some influence of the other boundary
toward which the marching progresses is retained in the equations.

In Ref. [30] such a parabolic generation system is formed essentially by first
representing all derivativesin an eliptic generation system with second-order central
differences and then replacing all values on the forward line in one coordinate direction, say
Tl = j+1, with values specified in some manner in terms of the values on the preceeding lines
and specified values on the outer boundary. This reduces the difference equations to a set of
2x2 block tridiagonal equations to be solved on each coordinate line in succession,
proceeding away from a specified boundary. Control of the coordinate line spacing can be
achieved by certain control functions that are drawn from some analogy with the elliptic
system. It is possible to use the functional specification of the forward values to cause the
grid to be nearly-orthogonal .

The parabolic generation system is also faster than the elliptic generation systemsto
the same degree as is the hyperbolic system, since again only a succession of tridiagonal
solutions is required. The functional specification of the forward values, with an influence of
an outer boundary, introduces a smoothing effect from this second boundary not present in
the hyperbolic system. Orthogonality is not achieved as directly as with the hyperbolic
system, however. The forms of the forward value specification, and of the control functions,
have not yet been well-devel oped.



VIII. ALGEBRAIC GENERATION SYSTEMS

As noted earlier, the problem of generating a curvilinear coordinate system can be
formulated as a problem of generating values of the cartesian coordinates in the interior of
the rectangular transformed region from specified values on the boundaries. This, of course,
can be done directly by interpolation from the boundaries, and such coordinate generation

procedures are referred to as algebraic generation systems. Thus = (51,52 E3) jsgiven asa
specific function of the curvilinear coordinates. This function contains certain coefficients
which are determined so that the function matches specified values of the cartesian
coordinates, and perhaps derivatives also, on the boundary and perhaps elsewhere.
Evaluation of this interpolation function at constant values of the curvilinear coordinates
then defines the coordinate system. Algebraic grid generation is discussed in Ref. [31] and
[8], aswell asin the surveys, Ref. [I], [5] and [37], and in detail in Ref. [32-36].

1. Unidirectional Interpolation

Unidirectional interpolation means the interpolation isin one curvilinear coordinate
direction only. In this section the cartesian coordinate vector ~ will be shown as a function
of the coordinate involved in the interpolation, as the unidirectional interpolation is
fundamentally between points. These points can, however, lie on boundary (and perhaps
interior) curves or surfaces, and in this sense the unidirectional interpolation can be
considered to be between these curves or surfaces. Therefore the single-variable functional
relationship = (5) used in this section can be considered to represent dependence on all
coordinates, the interpolation points =  being functions of the coordinates along the

boundary curves or surfaces.

A. Lagrange interpolation

The simplest type of unidirectional interpolation is Lagrange interpolation, which is
h 0=£= I’

based on polynomials. In the linear form we have, wit
zle) = 1 - Ay +§nz

)

Here = ;=% (0) and = ,=*=(I), so that = (5) is defined in terms of the two boundary values,
L ;and L ». The grid points are located at the successive integer values of € fromOto 1. One

family of grid lineswill be straight lines connecting corresponding boundary points with this
linear interpolation.

The general formis



N
p(g) = ] ¢nf%J En )
n=1

with £ =1 G o), and the functions ¢  being polynomials defined on the entire interval

U=2£&=1gichtha

E
=) = 3
() = 6 ®)

In the linear case given above we have, with N=2,
RAR —-E- and 4,43 - 2

From Eq. (2) and (3),

N En N
r{g ) = )21 .70 oy = nI1 8m Bn = In
1= -

so that the interpolation function matches ~ at the N points & = 5 |, &, ..., & \=l:

The specified interior points, = n for n=2,3,...N-1, are not necessarily grid points, since

the grid points are defined by evaluating the interpolation formula at successive integer
valuesof &, but ares mply additional parameters that serve to control the distribution. It is
possible to specify the locations of certain interior grids points, however, by taking the 5 n

corresponding to the specified -~ , to be the value of £ atthe grid point of interest.

The Lagrange interpolation polynomials, defined to satisfy by Eq. (3), arein general

Ng-¢g
¢rn{§-) =1 1 1) )
1= En - El

The quadratic forms thus are, with N=3, and & 5= 1/2.
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for which ~ (%) is defined in terms of the two boundary values, ~ ; and ~ 5, and one interior
value, ~ - It should be noted that the purpose of the inclusion of the interior pointsin grid

generation is control of the grid point distribution, not to increase the accuracy of the
interpolation asis normally the case. Thereis, in fact, no question of accuracy of the
interpolation here, since the aim isjust to generate a grid from the boundary values of the
coordinates.

B. Hermite interpolation

L agrange interpolation matches only function values. It is possible to match both
function, =, and first-derivative, =’ = X ¢, values using Hermite interpolation defined by

N £ lf E,
- & (B r + ¥ {=)r 5
r{g) nET n'l’ =n 2, m 1" =n ®)

where the Hermite inerpolation polynomials are defined on “ = & = I and satisfy the
conditions

En m
e = T m
o (3 = 8 0 BT = 0
g

Em it}
Yo () =0y Mp(7) = S,

These polynomials can be obtained from the Lagrange interpolation polynomials by
E L 3
By - - oDy D 2,8 6
1'“(1} [1 2¢n(1 ) I )] ¢n{I} (62)

E- %y
v (&) - (5 41D (60)




where the prime here indicates differentiation of the polynomial with respect to the
£

argument, Z . With N=2 we have

2
o, B -1+2hH -5
}
2
o, B -g-29 &
2
v, -0 -9H%3%
2
v - k-1 @

and the function matches the two boundary values, ~ ; and ~ ,, and the first derivatives, =,
and =, at the two boundaries.

Extensions of polynomial interpolation to match higher-order derivativesis obviously
possible, the degree of the polynomial increasing with each additional condition or point to
be matched. The polynomials of high degree exhibit considerable oscillation, however, so
such procedures are not of great importance to grid generation. The general form again
includes matches at interior points, which can be used to control the coordinate line spacing,
since the first derivative, =’ =~ &, isameasure of the grid point spacing here, with 4 5

being unity between points by construction. As with Lagrange interpolation, these specified
interior points may or may not be grid points.

It isalso possible, of course, to omit points from either of the summationsin Eq. (5),
sothat £ and itsfirst derivatives are not both matched at all points (deficient Hermite
interpolation). Thus, with N=2 and the n=1 term omitted from the second summeation, the
two boundary values would be matched, but the first dervative at only the Eo boundary
would be matched. Clearly, the Hermite interpolation form, Eqg. (5), could be equivalently
defined in terms of the Lagrangian interpolation form, Eq. (2), with 2N points, since both are
polynomial representations. Obviously either approach can be used to control the grid point
spacing in the field.



The capability of specifying - &, aswell as -~ , can be used to make the grid
orthogonal at the boundary. From Eq. (111-33) the unit normal to a El_coordinate surfaceis
given by

y B 8y Xy

= - {1,3,k) eralia
|Eil Iﬁ'j x ﬂkl

Using Eq. (111-10) this becomes

2y X 2
al - j X 2y

bl
’%Jjﬁkk = EBjk

The condition for orthogonally at the boundary then is that -~ i beinthedirection of the
unit normal to the boundary:

E,‘] X 2

i
r.=|clp* -78
gl l E1| 11

5 v
Bjs8kk ~ Bjk

where * = ‘Lf" =I5 isthe spacing off the boundary to be specified. Since all the
quantities with j and k subscripts can be evaluated from the points on the boundary, it
remains only to specify the spacing, s, off the boundary and to use Eq. (7) for =~ & onthe

boundary in the Hermite expressions.

C. Other forms of polynomial interpolation

As noted above, Hermite interpolation, which matches = and ~ £ at N points, can be

equivalently constructed as an interpolant which matches = at 2N points. Another form of
expression of the polynomial interpolation uses the direct expression of the polynomial, so
that
N-1
rg) = I gz &7 ®)

n=g

Here we must have
N-1

=r I a -r
' neg M 1

where = o and L | e the boundaries. This form is not as straightforward as the Lagrange

form for use in grid generation, since in the latter form certain grid point locations can be
specified directly, while in the former the coefficients must be evaluated in terms of these



specified points.

Still another form isthat of Bezier, using Bernstein polynomials:

N
; NP (Eynqt - BN D g 9
e(e) = b T T T n 9)
with
€o ™ Lor gy ~ L1
Here we have
I - S
¢ ~ % "L Tlor O W1 Tl

Thus the coefficients = ;1 and £ N-1 SPecify the slopes at the boundaries. An advantage of the
Bezier form is that the coefficients define the vertices of an open polygon to which the curve
is an approximation. Thus the general shape of the curve can be inferred by considering the
coefficients to represent points in the field, with the lines from = to <, and from = ; to

£ N defining the slopes at the two ends. The shape of the curve can then be designed by the

placement of the verticesin the field as indicated below. Modifications of the curve can thus
be made by adjusting the positions of these vertices.

Still another form can be defined using piecewise polynomials for the interpolation
functions. Some degree of continuity must be lost in this case, of course. Continuity of the
grid lines can be achieved using the piecewise-linear polynomials shown below (truncated
versions apply at or near the end points):

fn—‘l gﬂ fl"l +1

while slope continuity can be gotten with the following piecewise polynomials:



f.-._z\_/fnq én §n+1\_//‘fn+2

Such piecewise polynomials alow a greater degree of local adjustment to be made, since the
polynomial b n Which multiplies the interpol ation point L n Vanishes except in the immediate

vicinity of - - BY the conditions (3), any interpolation function b , Must vanish at all the

. . . r . . .
interpol ation points except ~ , but need not vanish between the points. Adding more

interpolation points with global polynomials thus means increasing the degree of the
polynomials, since the numbers of zeros must increase, and hence the polynomial becomes
highly oscillitory.

D. Splines

The Lagrange and Hermite interpolation functions given above are completely
continuous at al points. Complete continuity, however, may be attained at the price of
oscillation. Both of these formsfit a single polynomial from one boundary to the other,
matching specified values of the coordinates and perhaps the derivatives thereof (i.e., the
point spacing). As more interior points are included, or asthe first derivatives are included,
the order of this global polynomial increases and thus oscillations become more likely. An
alternative approach isto fit alow-order polynomial between each of the specified interior
points, with continuity of as many derivatives asis possible enforced at the interior points.
The interpolation function is then a piecewise-continuous polynomial.

13
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Thistype of interpolation function is called a spline and is formed as follows for the most
common case of the cubic spline.

With a cubic polynomial fitted between points =, and -~ , we have alinear variation
of the second derivative between these points and thus

Epq "6 o BTE ob

re ot F . i
I e e

e - R (10)



After two integrations and eval uation of the two constants ofintegration such that -~ (E i):,t :
and Z(5,,.)=".,,, wehaveon §,=5 =%,
]3

t51+1 - E)a L] {E - Ei "
- + i
r(E) 6E s ~ &0 T Bl ,, - £y) -1+

E140 ~ &y @
! P - ) (Byyq — 8 (12)

+

Bgap T By

Ei""l - E_[ " B
L1+ __-_t")-_-E:I.H:l (€ E‘;I.)

+ (o———

iy T &t

Then, after differentiation and setting & =5, wehaveon 5, =5 =5,

v S T8y

n n 1 _
£y =2y *r) T g gy B T LY (12)
Similar evaluation on the adjacent interval 5, ;=5 =5 gives
T T o IV U 1 -
L (2r, + E:.-1:r * B, =~ 844 {ry E1-—1:' (13)

Equating these two expressionsin order to produce continuity of r’ at the interior points, we
have

m L n
(£y = &5 Tyy * 2Eg = &) Ly * (Byaq 7 890 Ty

(14)
Zsep " %1 Iy T Ty

)
Bier ~ B1 Fp T By

-6

which isatridiagonal equation for ~" at the interior points. It is necessary to set some
conditions on ~" on the boundaries in order to solve this system, and the "natural" spline

uses = 1= z " = 0. This choice minimizes the total curvature, and thus the natural splineis

the smoothest interpolant. This solution definesthe - j interms of the L i» SO that substitution
of these values for ~ ;" into Eq. (11) then gives the spline in the general form of Eq. (2),
except that the interpolation functions, ¢ o e, of course, different from the Lagrange

interpolation polynomials. It should be recalled again that the interior points may or may not
be grid points, the latter being defined by the interpolation formula evaluated at successive
integer values of £ after the spline has been constructed over the entire field.



E. Tension splines

The spline tends to give a very smooth point distribution. Stronger localized curvature
around the specified interior points can be obtained with the tension spline. Here Eq. (10) on
§.=5=5_ isreplaced by

Eiq—‘t - E

(1:‘11 - %)
Eij+1” &1

¢ (g} - o°r(E) =
- (15)
+_....._i.......(:1+1 - 52214_1)
Eiv1™ B3

where 2 js a constant to be specified. (The tension spline tends progressively toward a
linear function for large values of =, and toward a cubic spline for small values.) Integration
and evaluation of constantsthen yields, on &, =5 =&, ,

r (g) =
ainh[a(E1+1 -gJ] sinhCa(g -E;}] -

'
r - r

. ) -1+

i stnhlo(g, , = &) Loy sinh{a(E, . - §;)] (16)

+

1

1o By T8

_rIJ-_l:—'l—-i'
o U T

-I-{E—

1 n & - Ei
g2 Ul e
o i+9 i

The requirement of continuity of first derivatives at the interior points then yields the
tridiagonal equation

1 a n _J_ _ a m
[61_1 - Eiﬂh{uﬁl_1}] Piq * [51 sinh(aaii ! Li41
o _ 1 N o _ l_q P"
¥ [tanh(ubi_1) h,_, tanhCsa,) 4," -1 (17)

where A, =5, -5.and A, =5, -5, . Someapplication of tension splines are given in
Ref. [33)].

F. B-Splines



One further possibility is to use piecewise continuous functions which satisfy the
cardinality conditions by vanishing identically outside some interval around 5  as discussed
in Section C above. This type of function allows the interpolation to be modified locally
without affecting the interpolation function elsewhere. The B-splines are an example of this
approach.

From Eqg. (14) a cubic spline which matches the function at N points, with continuity
of second-derivatives, requires N+2 items of data, i.e., the N values of ~ n (n=1,2,..N) and

the values of =" at each boundary. Therefore acubic splinewhichhas = = 2" = Z" =0 at
each boundary can be defined over five pointsif = is specified at only asingle interior point
(since N+2=7 data items can be specified here). If such a spline over five pointsisjoined to
theline = = 0 outside these five points, we have a function which is non-zero only over four
intervals and yet which has contignuous second derivatives everywhere. Such afunction is
called a B-spline, denoted N 4 ( 1), where the end-points of the non-zero interval are & na

and & - Similarly, quadratic, linear and constant B-splines are non-zero over three, two, and
one intervals, respectively, and are denoted Nqn, whereq =3, 2, and 1. The end-points of the
interval of non-zero values for these splines are 5 n-q and & - 1he specification of asingle

valuein thisinterval is usualy replaced by the specification of the integral over the interval
so that

®n S S
[ mperee - (18)
Enq

The practical importance of B-splinesis that any spline of order g (the cubic splineis
of order 4) can be expressed as a sum of multiples of B-splines. Thus the cubic spline can be
written as

N
r{g) = 1 g, Wy,(E) (19)
=0

Since the B-splines are non-zero only over four intervals, the modification of one coefficient
here only affects the function over four intervals, thus allowing more localized control of the
resulting grid.

The B-splines can be calculated from the recurrence relation

(e -g, ) N o (B 4 (5, —E)N__,  (E)
- g’ "g-1,n1 n g-1,n
Nen (E) :

= (20)
n-1 En—q

Thus N4n(E ) requires the successive calculation of Ny 1, N5 1, N5 /N5 1, N5, and
finaly N, . The constant B-spline, NN, | ;, used to start this calculation, is given on the



interval 5 _,=5=%5_ by N .1=1 and vanishes elsewhere.

For the point ~ , We have, in view of the vanishing of the B-splines outside four
intervals,

n ™ En-1 Nll.n—‘it:EnL:' * 8 Ny alE) * Epay "H.nﬂign) (21)

which isatridiagonal relation (N+1 equations) for the coefficients =, = =~ jand < =" \.

Thus, even though the modification of a single coefficient only affects four intervals, the

modification of an interpolation point requires a re-determination of all the coefficients and
thus affects the function over the entire range.

The coefficients, =  iN the B-spline representation may be interpreted as the vertices

of an open polygon, to which the curve is an approximation, as for the Bezier form discussed
above. The slopes at the ends are defined by the directions < - and < -= ;. The curve

passes close to the mid-point of each side, with the exception of thefirst and last sides. The
curve also passes through the points (~ | _; + 4% + ~,,1)/6 for k = 2,3,...N-2. These points

are one-third of the way along the straight line joining =~ k to the mid-point of the line joining
L k.1 and L k+1- Since the B-splines are non-zero only on four intervals, the alteration of one

vertex only affectsthe curvein itsimmediate vicinity. An application of B-splinesin grid
generation isgiven in Ref. [39].

G. Multi-surface interpolation

The multi-surface method, discussed in Ref. [32]-[36], is aso a unidirectional
interpolation procedure. This procedure is constructed from an interpolation of a specified
vector field, followed by vector normalizations at each interpolation point in order to cause a
desired telescopic collapse so that the boundaries are matched. The specified vector field is
defined from piecewise-linear curves determined by the boundaries and successive
intermediate control surfaces. Normals to such surfaces are special cases. Polynomial
interpolants for the vector field yield all of the classical polynomial cases along with a
rational method for avoiding disasters such as can occur with direct Hermite interpolation
with excessively large or discontinuous derivatives. Here the immediate surfaces are not
coordinate surfaces, but are used only to define the vector field. These vectors are taken to be
tangents to the coordinate lines intersecting the surfaces, so that integration of this vector
field produces the position vector field for the grid points.

A collection of subroutines which automatically perform the necessary parts of grid
construction using this multi-surface procedure has been written and is described in Ref.
[34]. Some of the automation features of this collection are applicable to other grid
construction procedures as well. These subroutines can rotate and move curves, prospect one
curve from another, normalize and parameterize curves, cluster points on a curve, and
perform other such utilitarian functions to aid in the setup of an overall configuration.



In the multi-surface interpolation we have

No1 G, (E) B
E(E) = Eq + nZ'[ —G-n-—(-I-j-{En.pT En) (228.)
where
G, (&) = JE,,,“(ELM;- (22b)
oI

and where the £ , are specified points, with £ 1=~ (0) and Z n=" (1), on the boundary

surfaces. (Recall the discussion at the beginning of this section, i.e., that the points can be
considered to lie on curves or surfaces and thus the interpolation, while being fundamentally
between points, can be considered to be between the surfaces on which those pointslie.)
Here the telescopic collapse for the series for & =I matches the boundary at = - The

intermediate points here, £ o £ e £ N1, &€ not grid points, but serve only to define the

dopes ~ &, asgiven by Eq. (24) below. Eq. (22) is apolynomial if the functions P nare
polynomials, but such is not required.

Since, by differentiation of Eqg. (22),
) NE1 ﬂ-‘n {%)

r — (P4 ~ B (23)
3 n=1 g (1) n
n
we have, for 0=5 ;<5 <..<5 _=l,
P —_
~n+1 ~n
r(g ) =——m— o

if the functions ¥ , Satisfy the cardinality conditions

&
mn[l_m} - ﬁm n=- 1I2l-l!H'1! m = 1'2""1‘_1 (25)

The polynomials that satisfy these conditions are simply the Lagrange polynomials given by
Eq. (4), here stated as
N-1 E - &
4"11 {%} a | __l_

(1én)
11T - (26)

Using Eq. (24), Eq. (23) can be written as



N-1
£g(8) = L vn® rgley) (27)

This form thusis based on an interpolation of the first-derivatives = &, instead of ~, the

interpolation expression for £ coming from an integration of the interpolation function for
~ & . Note, however, that this amounts to the specification of the slope = = at particular

values of the curvilinear coordinate &  and not at a specified position in space asis donein
the Hermite form. It is clear from Eq. (24) that the intermediate points, 2 pforn=23,....,N-2,
serve to definethe slopes ~ & (5 ):

Because of the integration involved, the degree of the interpolation polynomial will be one
greater than that of the functions ¥ .

Also with Eq. (24), the interpolation for =, Eq. (22), can be written
-1
r(g) = p(o) + nL GnlE) nglEy) (28)

and thusis equivalent to aform of deficient Hermite interpolation. In implementation,
however, it is the points ﬁn that are specified, asin Eq. (22). Again it should be recalled that

. P . . . . _ _
the point = isnot the grid point at 5 v execept for the boundaries 5 1=0and 5 Nl

As has been noted, £ ,and En are determined by the boundaries:

By = x(0), By = e(I) (29a)

For N=4, ﬁzand EN_l are determined by the intended values of ~ & at the boundaries
through Eq. (24):
By = (D) + tE(ﬂ}G-'(IJ
(29Db)
EN_-l - ttIJ - :E{I)GH-'!{I)

For N=3 only one of the above equations can be used, i.e., = & can be specified at either
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boundary but not at both. The use of the intermediate surfaces, instead of direct specification
of the derivatives ~ ¢ asin classical Hermite interpolation, provides a geometric

interpretation that serves to help avoid the overlapping of grid lines that can occur if too
large avalueisgiven for = t.

Following Ref. [35], consider now for the ¥ , the piecewise-linear functions
diagramed below:

i
|
&na €n £

with the normalization

2 -
-t Y—15Ep=1)
v Eqd 2E;" N-13N-30 T e

2 o= 2,3, 0e0a,0-2

Ynlta) = T

where 4§ n= 5 el 5 n SO that each P , Integrates to unity. These functions are given by,
for n=2,3,....,N-2,



—'-—2 {EE-E} E1$E£E2

2
A
g ey =1 0
0 Ex £ £ £ Eyeg
0 By £ E £ €y
1’“-1 {E} = £k
2 {E = Ey-») Eg-2 £ & N-1
MER-» (30)
L E & Eqn
. £ n-1
2 A R
AEp-1 + AEn 4En-q En1 £ E <5y
(£} = -
¥n 2 (En E+-|) En & E S Bpsy
5511-1 * Il"'Eﬂ I!"'En
o fne1 S & < Eumt

With these functions we have



_ gy - 8)%

Y
Gy (E) = ‘

0

EH_1(E} - (ﬁ - EH-E}E

8E§-2

0

{E - Eﬂ?1]2
{ﬂgn—T * ﬁEnJﬂﬁn—1

G,{E) =
(En+1 = E]E

T {ﬂEn—1 + ﬁgn)ﬁﬁn

Note that G(1) = 1 herefor al n and that G(5 ;) =0,

Gy—1(Exy—q) =1 and GnlEp) =

These interpolation functions have the form

E1 S B L&

§2 S B € &y

By £ E £ Ey-z

Ey-2 S £ S Ejq

E1 5 E S En—1

En-1 £ & £ &y

En LE4 En+T

Env1 £ & S Ly

L

ACp-1 * 8K,

(31)
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Gy.(&)
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Gn(&)
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Now on theinterval & n= g EEn+1weha\/e

Gm(E )=1for m=1,2,.....n-1 and Gm(E )=0 for m=n+2,n+3,....,N-1. Therefore, on thisinterval

n=1
e} = e(0) + F (Byoq - By) * Cull) (Rpuq

* Gpaq (8 (Bpsa = Bpaq)

which, because of the telescopic collapse of the summation, reducesto, for & =5 =&

:(E] - En + Gh[EJ {En+1 - En} + Gﬂ+1(£] {En+2 - En+1)

Then

(AEL By + (RE 4 )B4

C(g,)
; 881 * 8%y

and

(h£n+1}En+] + cﬁEn}En+2

rlEneq? =
n+1 ﬁEn + hEn-}‘l

Also, from Eqg. (32), for 5 n= E=E N+l

- By}

n+1’

(32)

(333a)

(33b)



EEEn-}T - E}

- ( - B}
:E{E} {ﬁﬁn_T . ﬂﬁn}ﬁﬁn 2n'l*'] EI'.I.
2(g - £,) (39
= {Bpsz ~ Epe1?
{AE, + AEp+1)A5g
so that
elEy,) = - I B
E*Sn 8E,_q * 2E, n+1 n (35a)
and
tglneg) = 2 (Bp+g = Epar) (35h)

ﬁﬁn + AEn4

We thus have on thisinterva

Thusontheinterval & =5=5  Z(%)isaffectedonlyby £ £ and Z .

Conversely £ _ affects only the grid point locationson theiinterval & ,=5=5 ..

Therefore local adjustmentsin the grid point locations can be made without affecting all of
the points.

With the grid points located at unity increments of &, so that | is the total number of
points, we have, from Eq. (33), the grid points given by

I:n - 12‘{En * En-l-'l)

The local control provided by these piecewise linear interpolants can be used to
restrict undesirable mesh forms or to embed desirable ones within a global system with
continuous first derivatives (cf. Ref. [34]-[35]). The second derivatives are, however,
discontinuous. As examples, the propagation of boundary slope discontinuities can be
arbitrarily restricted and general rectilinear Cartesian systems can be embedded to ssimplify
problems over alarge part of their domain.

In afurther development (cf. Ref. [36]) the procedure is extended to use piecewise



guadratic local interpolants, thus achieving continuity of second derivatives, with
discontinuous third derivatives. The conceptual extension to higher order piecewise
polynomial local interpolants, with consequent higher degree of continuity, is also discussed.
Note that because of the integration of ¥ o thelevel of derivative continuity is aways one

greater than that of the piecewise polynomials.
H. Uniformity

It may be desirable for purposes of control of the grid point distribution to have a
uniform distribution of the relative pro)ection of = (E )-~ (0) along the straight line
connecting the boundary points, i.e., = (1)-~ (0). This property has been called "uniformity"
by Eiseman, cf. Ref. [32] - [36], and can be realized as follows. The unit vector along this
straight lineis

p(I) - pldd
je(1) - x(0)]

so that the relative pro)ection of = (5)-Z (0) along this lineis given by
(1) = (o)

[p(g) - g(02] - J-—-—-—-:"L‘—“

et - O rotey - w7 - 1 (36)

S{E} =
|ei1) - elo}]

where

L - & - £(0)

37
(D) - 2|2 (37)

Uniformity is then achieved by choosing the interpolation parameters such that S(E )is
linear. This does not completely determine all the interpolation parameters, however, so that
some remain to be specified as desired. Uniformity istrivially assumed for linear
interpolation of course.

For Lagrange interpolation we have, from Eq. (2),

N
ste) = 1 on(® [y = g(o)] » x (38)

=

so that uniformity is achieved by selecting the ~  forn=2,3,....,N-1, to cause all of the terms
in Sthat are quadratic or higher to vanish. For Hermite interpolation, (5),

N N £y
stg) = I #a) [2q - 2(03] - 2+ RRANCESEE (39)

For the multi-surface interpolation defined by Eq. (22) we have



¥-1 5 &)
s(g) = § =

{Pooq ~ Byt * 3
n=1 GntI] Eﬂ 1 n (40)

For S(5) to be linear we must have

S(E)Y - &
or
-1 v (&)
HE1 1'1'1 I {En+1 - En} + I - Eﬂﬂﬂtﬂ.ﬂt (41)
n=1 Gu{I)
But, using Eq. (25), we then have
G (L)
(Bpeq ~ Ep? * 1 *TH(E\; (42)
1

as the uniformity condition on the En’s (cf. Ref. [35]). Both the En (for n=2,3,....,N-1) and
the & q (for n=2.3,....,N-2) are free to be chosen in order to satisfy the uniformity conditions

(42). Thus a one-parameter family of cubic forms (N=4) results, a two-parametric family of
quartic forms, etc. Substitution of Eq. (42) back into (41) yields arestriction on the choice of
the functions ¥ n Since these must satisfy the relation

H-1 9,8

= (43)

Uniformity is particularly useful when the distribution function, such as those
discussed in the next section, is used to redistribute the points on the grid lines set up by the
interpolation (cf. Ref. [34]-[36]). Thus the interpolation isfirst applied with =1 and with the
uniformity conditions enforced. The final grid points then are placed according to the
distribution function on the grid lines set up by the interpolation variable in place of the arc
length, s, in the distribution function s(5 ).

I. Functions other than polynomials
The interpolation functions in the general forms given by Eq. (2), (5), and (22) do not

have to be polynomials, and, in fact, if the variation in spacing over thefield islarge, other
functions are better suited for grid generation. With N=2, Eq. (2) can be written in the form

r(e) = o r, + [1 - ¢®1r, (44)

where ¥ can be any function such that ¢ (0)=0and ¢ (1)=1. Here we have taken ¢ 1:1-¢ and



5 5
¢2:¢ . The linear polynomial case is obtained here with ‘1’(1r ) = £ . Thefunction Y inthis

form may contain parameters which can be determined so as to match the slope at the
boundary, or to match interior points and slopes.

The interpolation function, ¢ inthisform is often referred to as a"stretching"
function, and the most widely used function has been the exponential:

axp(Eil -1
¢Li.) i (45)
expla) — 1t

where @ isaparameter that can be determined to match the slope at a boundary. Thus, since,
from Eq. (44)

Lg = 1? (£ - Lq) ¢° (46)

we can determine ¢ from the equation

Bz Ly o
I exp{a) - 1

with (£ ), specified.

Asnoted in Chapter V, the truncation error is strongly affected by the point
distribution, and studies of distribution functions have been made in that regard. The
exponential, while reasonable, is not the best choice when the variation of spacing islarge,
and polynomials are not suitable in this case. The better choices are the hyperbolic tangent
and the hyperbolic sine. The hyperbolic sine gives amore uniform distribution in the
immediate vicinity of the minimum spacing, and thus has less error in this region, but the
hyperbolic tangent has the better overall distribution (cf. Section 3 of Chapter 5). These
functions are implemented as follows (following Ref. [18]), with the spacing specified at
either or both ends, or a point in the interior, of a point distribution on a curve.

Let arc length, s, vary from Oto 1 as & variesfrom 0to I: (0)=0, s(1)=1. Then let the
spacing be specified at £ =0 and & =I:

EE(U} = Adq, sE(I] = A8p (48)

The hyperbolic tangent distribution is then constructed as follows.

First,

(49)



1
B =
I 11"&.'31552 (50)

Then the following nonlinear equation is solved for & :

sinhd _

: B (51)

The arc length distribution then is given by

u(g)
5(6) = (WD) (52)

where

tann[s(% - 2]

w(g) = 5 {1+ (53)

tanh(%ﬂ

If thisis applied to astraight line on which ~ variesfrom = ; to = we have for the point
locations:

£(8) = g + (xp = Tg) S(8)

The points are then located by taking integer values of g

E - Df1'2...’I

Clearly the arc length distribution, s(E ), hereisthe function O of Eq. (44).

With the spacing hs specified at only & =0, the construction proceeds as follows. First
B is calculated from

B =g (55)

and Eq. (51) issolved for & . The arc length distribution then is given by
tanh[%{-i- - 1)1

a{E) = 1 + (56)

13
tanh( 21

With the spacing specified only at & =I the procedure is the same, except that Eq. (56) is
replaced by



8(g) = ——¢— (57)

If the spacing #sis specified at only an interior point s==, B isagain calculated from
Eq. (55), and then & is determined as the solution of

_ 1
NS I s (59
Bas ainh &

Thevalue of & at which s= & isobtained by solving the nonlinear equation

I -1 ainh &
X= % tanh ( )
¥ ri cosh 6 — 1 (59)
The arc length distribution then is given by
sinh[ﬁ(g—}l]
a(E) = af1 + X } (60)
ainh{&EJ

This last distribution is based on the hyperbolic sine. From this a distribution baaed on
the hyperbolic sine with the spacing specified at one end can be derived. Here B is evaluated
from Eq. (55), and then & is determined as the solution of

ainhg _

5 B (61)

The arc length distribution then is given by
sinh( ﬁ%}

(&) ainh & (62)
if the spacing is specified at & =0. With the specification at & =I, the distribution is
sinn[§(1 - &
s{g) = 1 - . (63)

sinh §

It isalso possible to construct a distribution based on the hyperbolic sine with
specified spacing on each end. Here A and B are again calculated from Eq. (49) and (50), but
3 is determined from



&
tanh(}
— " F (64)

2

The distribution is then given by Eq. (52), but with
sinhfs(® - 1—]]
I 2 }

8 inh{%]

Finally, a procedure for incorporating the effect of curvature into the distribution
function is given in Ref. [38], where the arc length distribution is given in the inverse form

by

F{s)
E(ay = I (66
F{stJ
where
F(z) = [:/1 + A(3) K(8)12 + [a' ()12 ds (67

5 isthetotal arc length, K(¥) isthe curvature, and A(¥) is any distribution function (in the
inverse form) that would be used without consideration of curvature.

2. Multi-Directional Interpolation
A. Transfinite interpolation

In two directions we may write alinear Lagrange interpolation function individually in
each curvilinear direction:

2 3
- £ , ~-_+-A{ (68a)
r{g,n) nz1 0n(2) £lEqmm) (
and
_._l_...--"'
2 ]
elgn) = I ¥pd eleimng) 1}"‘] (68b)

Thisinterpolation is now called "transfinite" since it matches the function on the entire
boundary defined by € =0 and & =I in the first equation, or by =0 and "=Jin the second,



i.e., a anondenumerable number of points, cf. Ref. [40] and [41]).

The tensor product form

2 2
rleen) = 5§ e ® e P, (69)
n=1 m=l

where 2 =~ (5 o+ |y matches the function at the four corners:

It does not, however, match the function on all the boundary.

The sum of Eq. (68a) and (68b),

2 2
S(g, ) = n§1¢nc%} Elepn) ¢ L ¥p(P ey (70)

when evaluated on the & =0 boundary gives

2
S(o,n) = £(o,n) + I v (5 rloymy) (71)
- m=1

This does not match the function on the & =0 boundary because of the second term on the
right, which is an interpolation between the ends of this boundary:

r{0,J)
ron) / ul
TI ’J' =

F

riot) €

Similar effects occur on all the other boundaries, and the discrepancy on the Eo boundary is



2
L ¥ rilng)
m=1

The discrepancies on both of these boundaries can be removed by subtracting from B (E )
afunction formed by interpolating the discrepancies between the two boundaries:

2 2 n
REgam) = L 6,6 [ 1 () £CEgny)] 72)
=

n=

But thisis simply the tensor product form given by Eq. (69), which matches the function at
the four corners.

The function = -£ then matches the function on all four sides of the boundary, so that
we have the transfinite interpolation form,

2 2
regn) - 1 ¢ (P rigm + 3 ¥ (D rE,ng?

(73)
2 2
m # o (P rig.m)
n§1m§1¢n§ m'a n'm
which matches the function on the entire boundary. By contrast, the tensor product form
2 2
£ n

rig,n) = I I ¢, v (P rlgmy) (74)

n=1 mw=l

matches the function only at the four corners on the boundary. This generalizes to the
interpolation from a set of N+M intersecting curves for which the univariate interpolation is
given by

N

p(Em) = ¥ ¢, (2) r(g ,n) (758)
n=1
and
M
etg,n) = I w0 nlemy) (750)
m=1

where now the "blending” functions, ¢ n and P my @€ any functions which satisfy the
cardinality conditions
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iy . - - 1,2,...,0
"'n':I ) 8.1 n= 1,3, JH, 1 =1

(76)
T 1=1,2y00s,M
"Pm{j“—] ﬂﬁml I:Il-'l,E,-n.Hp = plprRag
The general form of the transfinite interpolation then is
N M
r(em) = 1 6 () rlg,m v Ioe O nleany)
n=1 m=1
(77)
N H
Rt e R
n=1 m=1
while the tensor-product formis
N H £ P
r(&.n) = n_E_1 m§1 0,3 v (P 2 .mp) (78)

Eq. (77) can be written in the form
M

plE,n) = m§1 %(%}E{Elﬂm} +

N M
I 4y (E - 1 Y
nly ) Integ,m) mE1 wm{JJ t{Env i

But here the first term is the result at each point in the field of the unidirectional
interpolation in the direction, and the bracket is the difference between the specified values
onthe & =5 n lines and the result of the unidirectional interpolation on those lines. The

two-directional transfinite interpolation can thus be implemented in two unidirectional
interpolation steps by first performing the unidirectional interpolation in one direction, say

I, over the entire field, calling the result £ (5, 7):

M
E1EE|11:| = mg‘t ll'nl{%] ﬂtgsﬂm} (79a)

then interopolating the discrepancy on the & =5 , lines over the entire field in the other
direction, & here, calling the result £ 2(E ,:

N
Eo(g,n) = nE1 ¢ncff}[:ten.n> - £, (gp,m)] (79b)



and then adding £ | and £,

c{E.,n} = E1{E:TI) +* EE{E:TI) (79c)

The transfinite interpolation form given by Eq. (77) isthe algebraically best
approximation, while the tensor product from of Eq. (78) isthe algebraically worst (cf. Ref.
[40]). The difference between these two forms should be fully understood. The transfinite
interpolation form, Eq. (77), interpolates to the entirety of a set of intersecting arbitrary
curves, while the tensor product form, Eq. (78), interpolates only to the intersections of these
curves. Theinterpolation function defined by Eq. (77) with N=M=2, using the Lagrange
interpolation polynomials as the blending functions, is termed the transfinite bilinear
interpolant. With N=M=3, this form is the transfinite biquainterpolant. Other immediate
candidates for the blending functions are the Hermite interpolation polynomials and the
splines, since these all can be expressed in the form of Eq. (75). The spline-blended form
gives the smoothest grid with continuous second derivatives.

B. Projectors

Now let P & () be aone-dimensional interpolation function in the £ _direction which
matches - onthe N lines, & =5 , (=1.2,.N),:

ik

(Note that the subscript £ here does not denote differentiati on.) Similarly, let P+ (~) match
~ ontheM lines, =T (m=1,2,...M). These interpolations are performed by projectors, P
t and P 1, which are assumed to be idempotent linear n operators. Protectors are discussed

in more detail in Ref. [40]. Some discussion is also given in Ref. [37]. The product projector,
P & [P (£)], then matches the function P 1, (£), instead of Z, onthe N lines, & =5 o

1

Then, since P (<) matches £ onthe M lines, ="l _ it follows that the product projector
T m



will match ~ at the NxM points (5 ,™ ):

Clearly the same conclusion is reached for the product projector P+ [P & (£)], so that the
protectors P= and P r, commute.

The sum projector, P (£)+P (%) matches Z+P (£) ontheN lines € =5 _, and
matches = +P & () onthe M lines I="I It should be clear then that the projector, P &
(Z)+P 1 (Z)-PE[Pn(£)] will match ~ ontheN lines 5=5  since P& [P 1 (£ )] matches P
1(+) on these lines. Similarly, the projector P & (£ )+P 1 (< )-P [P & (+)] matches ~ on
theM lines =" . Therefore, sinceP & + P =P Pt the Boolean sum projector, P ¢ EP
1 =Pg+P7-P& Pr, will match ~ on the entirety of the N+M lines 5=5 _and =" _
which includes, of course, the entire boundary of the region.

In summary, the individual protectors, P & and P 1, interpolate undirectionally
between two opposing boundaries:

_-%—



The Boolean sum projector, P & & P 1, interpol ates from the entire boundary:

In three dimensions, the individual protectors, Pt , P 1, and P ¢, interpolate
undirectionally between two opposing faces of the six-sided region:

(matching = on each of the two faces in each case). The double product projector, Pt P 1,
interpolates in two directions from the four edges along which £ and " are constant:

(matching -~ on each of these edges). The Boolean sum projector

P, &P, = P + P~ PPy (80)

£

interpolates in two directions from the four faces on which either £ or  is constant:



(matching = on all of these faces).

The Boolean sum projector

\EB'IP'z = P P‘n * PC - PEPTIPE

£

PEPn

(81)

interpolates in three directions, matching = on the four edges on which & and T are constant

and also on the two faces on which © is constant:

.........

............

The Boolean sum projector

PEPn @ FnFc @ F;FE = PEF“ + PnP; + P;PE - EPEPTIP:

interpolates in three directions, with = matched on all twelve edges:

‘T—.-- pr— e ———
1

(82)



The triple product projector, & T &, interpolates ~ from the eight corners:

Finally the Boolean sum projector

PE @'P“ @ PE = PE + FTI + PC - PEPI"I - PTIPE - PCPE + FEPHPC (83)

matches = on the entire boundary.

Much cancellation occurs in the algebraic manipulation of the projectorsinvolved in
developing the aboverelations, sinceP: Pt =P &, etc. Thus, for example,

P, &@P.P =P

E £Pn +PI-"-'-PF‘EF*I_I-F’E+l"‘EPTI-'F'E]"“--PE

£ £€n &
Thisisto be expected since interpolation by P & matches the function on all of the two sides

onwhich & is constant, while P £ P 1, matches the function on the four edges on which &

and "l are constant. But these edges are contained on the two sides cited, so that nothing is
changed by adding Pt P 1 to P £ in the Boolean sense. The projector formed as the Boolean

sum of all three of the individual projectorsis algebraically maximum, while the triple
product projector is algebraically minimal.

The importance of the projectorsis that the structure given above allows
multi-directional interpolation to be constructed systematically from unidirectional forms.
With one-dimensional interpolation of the form of Eqg. (75) we have

N

Pec) = 1 ¢, (3 rlg,.n) (844)
" i

P (x) = m§1 v (P rlEny) (84b)

s0 that



PP (x) = PLP (r)]

H £ M n
- nE‘I *n{I} [m§=1 ""m(E} E[En:ﬂm]]

(85)
N M
=1 b 0, v, e m)

which isjust the tensor product form given previously in Eq. (78), so that the two-directional
transfinite interpolation corresponding to the projector P & &P 1 isjust that given by Eq.
(77). As noted above, spline interpolation aso falls directly into this form, so that the

multi-directional transfinite interpolation based on splines requires only the determination of
the splines separately in the individual directions.

Although Hermite interpolation can be defined in terms of additional points, and thus
be put in this same form also, the use of projectors allows a more direct statement as follows.
For the projectors we have, following Eq. (5),

N E N £
P (r) = nzt 0, (3) rlE M) + nL 0,(3) £, (5 (862)
and
M M 1
P (r) = m£1 () ClEan) + n§1 Tl O l8imy) (86b)

Now



PP (£} = PP (r)]

H M
i\
- 3o L 0P ooy

M
+ 1 ¥ (P (g ,mg)]
m=1

=+

N M
a8 L] wth rleuny
n=1 m=1

(87)

M
n

-

N M
I oI Do B P oy

n=1 m=t

+

¢n(§} 9, (3 £ (6 n,) * wni-i-) Vg (B £e(8y0my)

+

n
8 (3 v (P r (5mp)]

Then the two-directional transfinite interpolation can be constructed by substitution of Eq.
(86) and (87) into the projector P & P 1. Here the tensor product form, P & P 1, interpolates

from the values of the function, itstwo first derivatives, and the cross-derivative at the four
corners of the boundary. The transfinite interpolation form, P £ ©& P 1, however, interpol ates

from the value of the function and its normal derivative on the entire boundary.

The triple product corresponding to EqQ. (84) issimply
N H L E n L
PePyPD) = L mL 1§-1 PCORRC NN ON JCY W2y (88)

Recall that with the unidirectional form given by Eq. (44), we have in these relations
L=M=N=2 and



¢; =1 -t b = 9
=1 -0 ¥y =¥

51-1—9, By = 8

The above evaluations of the product projectors serve to illustrate the evaluation of
such products for general projectors, i.e., that the effect of the product protectorsis simply an
interpolation in one-direction of an interpolant in another direction. This allows the
multi-directional transfinite interpolation to be constructed from the Boolean sums of the
protectors given above using any appropriate unidirectional interpolation forms as the basis
projectors. It should also be noted that the unidirectional interpolation does not have to be of
the same form in all the directions. Thus Lagrange interpolation could be used in one of the
directions while Hermite is used in the other direction of atwo-directional construction. As
noted above, the blending functions do not have to be polynomials. In fact, all of the
unidirectional interpolation that was discussed earlier in this chapter can be applied in the
context of multi-directional interpolation based on the protectors. This freedom to combine
different types of univariate interpolation gives considerable flexibility to transfinite
interpolation based on the projector structure, and allows attention to be focused on
devel oping appropriate unidirectional interpolations, the multi-directional format then
following automatically.

The protectors alow the transfinite interpolation to be easily set up as a sequence of
unidirectional interpolations, in the manner discussed above. Thusin the two-directional
case, Eqg. (80) can be written as

Pe®P =P + P (I=P5) (89)

where | indicates the identity operation. But here the first termis clearly the unidirectional
interpolation in the & _direction, while the parenthesis (I-P &) isthe discrepancy on the

"l-lines on which Z is specified that results from this & -interpolation. The second term then
isthe unidirectional interpolation of this descrepancy interpolated in the 'l -direction.

The two-directional interpolation thus can be implemented by: (1) interpolating -~ in
the & -direction, (2) calculating the discrepancy between -~ and this result on the "l-lines that
areto be used in the "l -interpolation, (3) interpolating this discrepancy in the "l -direction,
and (4) adding the result of this & -interpolation to that of the interpolation. Symbolically
these steps can be stated as the following:

E1 = PE r

Ep = P, (£ - Ey) (90)

clE,n) = E-] + EE



Obvioudly, the order of the unidirectional interpolation isimmaterial.

Similarly, Eq. (83) can be written as

g

The three-directional interpolation thus can be implemented by (1) interpolating = in the

& _direction, (2) calculating the discrepancy between ~ and this result on the " -surfaces and
L -surfaces that are to be used in the interpolation in those directions, (3) interpolating this
discrepancy by two-directional interpolation, and (4) adding this result to that of the

£ -interpolation. These operations can be stated as

E1 = PE L

Fo = P (- Ey)
(92)
Ey ~ Py 4 il - Fy)

:{Elﬂ] = E1 + Eg + EB

Exercises

1. Show that with N=2 and ¥ , constant, the multi-surface interpolation is equivalent to the

linear Lagrange interpolation. Mote that the Lagrange polynomials here satisfy Eq. (25) with
2 _ 1

I 2 For other choices of & o, Other quadratic polynomials result from Eq. (25), so that

there exists a one-parameter family of cubic forms of the multi-surface interpolation.
Similarly, atwo-parameter family of quadratic forms exists, etc.

2. Show that the quadratic form of the multi-surface interpolation is given by
ee) = (1 -2%p(0) + 220 -2 g+ ()2 p(1)

3. Show that the quadratic forms of the multi-surface and Bezier interpolations are
equivalent.

4. Show that with N=4 and ¥ , the quadradic L agrange interpolation polynomial's given on p.
282, the interpolation functions for the multi-surface interpolation are given by
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the multi-surface interpolation is equivalent to the cubic Hermite interpolation.
5. Show that S(% ) is given by Eq. (38) for Lagrange interpolation. (Hint: If all the ~ nin Eq.

(2) are the same, the interpolation must reproduce this value, hence the Lagrange
interpolation polynomials satisfy

3 E
nz1 n tIJ =7

6. Show that for quadratic Lagrange interpolation, uniformity requires that = - be selected
such that

an L] = 1—
[EE e{0d] =~ 1 >

Note that this does not completely determine = o

e |

RN

7. Show that uniformity is achieved with cubic Hermite interpolation with with

orthogonality at the boundaries if the spacings at the boundaries are given by

1
n+*1

5-

where Z isthe unit normal to the boundary. This completely specifies the interpolation in
this case. However, as noted in Exercise 1, & o isafree parameter.

|1

b2 =

8. Show that for multi-surface interpolation with N=4 and
with

uniformity is achieved
[B, - c(0)] » 1 = [e{I) - Bzl + 1z -%

9. Show also that with orthogonality at the boundary the result of Exercise 8 completely
determines al of the interpolation parameters, i.e., that



Po wp(0) + — 1 nto)d
2 60(0) - = |

Pg = p(I) —— 1 __n(I
3 oDy o o

where % isthe unit normal to the boundary. Hint: Use Eq. (7) and (29). For general 5 - the
1/6 isreplaced by 1/2 - 1/[6(5 ,/1)] and 1/2 - 1/[6(1-5 ,/1)] in the above expressions involving
Z »and 2 3 respectively. Some effects of the choice of 5 - are shown in Ref. [32].

10. Show that local uniformity ontheinterval & =5 =5 for the multi-surface
interpolation based on piecewise-linear functions requires that

“n__ 5an T S

Cn+1 En+z ~ &p

where &= = Favt = F)r T \with £

11. Consider arectangular physical region with equally-spaced points on the bottom and top,
but with unequal spacing on the left and right sides (but with the same point distribution on
both of these sides). Show that horizontal interpolation will reflect the unequal spacing of the
horizontal grid linesin the field, but that vertical interpolation will not. Show also that the
unequal spacing is reflected with transfinite interpolation.

12. Show that transfinite interpolation based on linear blending functions will reflect the
unequal boundary point spacing in the field for the rectangular physical region of Exercise
11, but will not for a C-grid. From the consideration of transfinite interpolation as a sequence
of unidirectional interpolations, explain why thisis so.

13. Show that with cubic Lagrange interpolation the locations of the two intermediate
surfaces, ~ »and L 5 arerelated to the slopes at both ends. Note the contrast between this

and the multi-surface interpolation where each of the intermediate surfaces depends on only
the slope at one end.

14. Give the cubic form of Lagrange interpolation.

15. Show that in two dimensions transfinite interpolation is equivalent to a generation system
based on the fourth - order partial differential equation

Eggnn ~ ©

(Thisisaso equivalent to the quadral aterial isoparemetric elements often used to construct
finite element meshes.)



IX. ORTHOGONAL SYSTEMS

Orthogonal coordinate systems produce fewer additional terms in transformed partial
differential equations, and thus reduce the amount of computation required. Also, as has
been noted in Chapter V, severe departure from orthogonality will introduce truncation error
in difference expressions. A general discussion of orthogonal systems on planes and curved
surfacesis given in Ref. [42], and various generation procedures are surveyed in Ref. [42]
and Ref. [1].

In numerical solutions, the concept of numerical orthogonality, i.e., that the
off-diagonal metric coefficients vanish when evaluated numerically, is usually more
important than strict analytical orthogonality, especially when the equations to be solved on
the system are in the conservative law form.

There are basically two types of orthogonal generation systems, those based on the
construction of an orthogonal system from a non-orthogona system, and those involving
field solutions of partial differential equations. The first approach involves the construction
of orthogonal tragjectories on a given non-orthogonal system. Here one set of coordinate lines
of the non-orthogonal system is retained, while the other set is replaced by lines emanating
from a boundary and constructed by integration across the field so asto cross each line of the
retained set orthogonally. Control of the line spacing is exercised through the generation of
the non-orthogonal system and through the point distribution on the boundary from which
the trajectories start. The point distributions on only three of the four boundaries can be
specified. Several methods for the construction of orthogonal trajectories are discussed in
Ref. [42] and Ref. [1]. If point distributions are to be specified on all boundaries, the field
approach must be taken, and it isto this approach that this chapter is primarily directed.

1. Genera Formulation

The characteristic criterion for orthogonal coordinates is the vanishing of the
off-diagonal elements of the metric tensor, i.e., g; | = g’ =0fori = j. Thusthe Jacobian of the
transformation is ssimply

/8 = 7811822833 (1)

For brevity, writing

- 2,

it is easy to show from Eq. (111-74) that

h4h (i,).k) cyelle
?Egi - 1__§_{_J_k) )
..‘i'g a;i hi 1=1,2,3

The general differential equations satisfied in the transformed region are, from Eqg. (VI-10),
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Substituting Eg. (2) in (3) for the Laplacians, these grid generation equations take the
following ssmpler form for an orthogonal system:

3 h.h - 1ie
E [Ed_lir 1} i 0 {1,j,k:| Gy (4)
i1=1 h!_ E E

where L isthe cartesian coordinate vector.

On the other hand, starting from Eq. (2), by writing

H, = 1h (1,],k} eyelic
k1 -1,2,3

and using the chain rule of differentiation, we get the generation equations in the physical
region as

3
j 2 {Hi.EETJ =0 (5)
i=1 axi 31{1

Another fundamental set of equations for orthogonal coordinates are known asLame’'s
equations, stated as

1 8h, 3n
9 {Lank)+ 9 (LEJ.)+__..-1_.L‘.;}
| ] k K 2 .rl (6a)
oel 'nysel e mooe by egt 3
#°n, 1 an ah. 1 2n, 3h
———t g, 1k
Tk T K h o) (6b)
oL~ ok hJ 4~ ak h 3 g

where (i,j,k) are cyclic. Equations (6) express essentially the condition that the curvilinear
coordinates are to be introduced in an Euclidean space. (cf. Ref. [27]). In three dimensions,
Eq. (6) represents six equations, although thereare only three distinct metric coefficients,

hl,hz,h3.

In summary the equations (2), (4), (5) and (6), together with the vanishing of the
off-diagonal metric elements, are the fundamental equations which any orthogonal
coordinate system must satisfy.



2. Two-Dimensional Orthogonal Coordinates

The fundamental equations for two-dimensional orthogonal coordinates are collected
below as a particular case of the equations (2) - (6):

|. Transformed plane: g,,=0 and (78)
h h
9 2 3 1 -
. &r )t E—r ,) =0 (7b)
2l Ty g 22 Dy g
ah ah
a 2 a_ .1 1
( ) + (~—=) =0 7c
se! M oag' ae? M2 agf (70
I1. Physical plane: g12=0 and (82)
h h
a1 3 1elyan
T, By ) T xg B, Fx,) (8
3 J2 2 L 2.2y
3, B, &, " T, 5, °x,’ ()

2 1 1 B 2
kb 351 n, (9a)
h
2.2 1 g 1
v - =) 9
B, 52 T (9b)

Considering Eq. (7a) and (8a), either of which provide the orthogonality condition, it
isastraightforward matter to conclude that there exists a positive function F such that
ax dx ox dx
1 2 2
5 “F—, 5 = F 1 (20
3k at ag 21

and the Eq. (7a) isidentically satisfied. In the same manner, from Eq. (8a),

1 2 1 il
88 _ _pSE_ 9k _ p JE 11
Elxz Bx1 ! 3::1 3::2 (11)

It is obvious that the positive function F is related to the grid aspect ratio:
F o= hy/hy = vE,/8, (12)



The choice of the sign in Eq. (10) and (11) follows from the right-handedness of the system
£1t2

Introducing (12) into Eq. (7b), while using Eq. (9), we get

21 3 2
Banl + g4I * geaBasll (¥E + 1 SVEET) = O
22T, 1,1 11Le2.2 1182218 1 g2 (13)

which forms the basic generation system for plane orthogonal coordinates. Though the
generating equations (7b) and (13) are completely equivalent, nevertheless, the apparent
difference in their structures must be taken into consideration to decide about the type of
boundary conditions for their solution.

With Eq. (7b) as the generating system then the two options are: (i) Specify F=h,/h, as

aknown function of & L &2, This case covers the cases F=¢ and ' = #1057 " #2(5") \where

¢.=constant. For any constant ¢, Eq. (9) reduce to the Laplace equations ¥ 25 1=0, ¥2E 2=0,
and Eqg. (7b) becomes

2
acr + 0 =0
gle!  Te2g? (14)

For @=1, the coordinates 5 1,5 2 are isothermic, i.e., h,=h,, and so are conformal. Casesin
which ¢ # 1 have also been considered, and specific references are given in Ref. [1]. It is
also of interest to state that starting from a conformal system (£ 1, 2), yet another system
(51,4 2) can be established by transforming the Laplace equations ¥ 25 1=0, ¥25 2=0, such

that F = 1and F isaproduct of afunction of & L and afunction of £ 2. (cf. Ref. [1]). (ii)
The other option isto calculate F iteratively. In this case the field values of F are updated by
iteratively changing its values at the boundaries under the orthogonality condition g,,=0.

With Eq. (13) as the generating system, the two Laplacians ¥25 1 and V252 have to
be specified. Following the nonorthogonal case, let

v2g! = ——(ayPy * Bp2P)

1822 (153)
£ P 119 * Baz (15b)

where P,,....,Q, are arbitrary specified functions of & 1,5 2. Using Egs. (9) and (12) one can
rewrite these equations as
BF . p,/F + FPp

ag! (16a)



F .- Fg - r3q,

3r2 (16b)

Thusif Py,....,Q, are specified, the above equations provide away to determine F. (Using the
condition
32F  _ 5°F
ag'ag?  agag!

one can establish afourth order algebraic equation in F.) It is therefore concluded that the
use of Eq. (13) with P;,....,Q, specified is equivalent to using Eq. (7b) in which F has

explicitly been specified.

The above noted considerations are important in deciding about the type of boundary
data needed for the solution of either Eq. (7b) or Eq. (13). The solution of Eqg. (7b) with
specified F, or the solution of Eq. (13) with specified P;,....,Q,, does not allow an arbitrary

point distribution on the domain boundaries. The reason for this as follows: For example, on
2 2
a boundary segment & 2=52 =constant if x,(5 1,57 ) is prescribed, then from Eq. (10) the

normal derivative #2/%" becomes available. If in addition to x,(* 155 onealso specifies

XZ(E 1,‘55 which amounts to specifying the complete boundary point distribution, then the

problem becomes overdetermined. Thus for the cases under consideration, specification of
the complete boundary point distribution is not possible. That is, Eq. (7b) with F specified,
or Eg. (13) with specified P;,....,Q,, cannot be solved when the complete boundary point

distribution is prescribed. The appropriate boundary conditions for such problems are
discussed in the context of conformal coordinatesin Section A.

The specification of the complete boundary point distribution is possible in the case
when Eg. (7b) is solved without specifying F. An iterative approach can be used to update
the values of F based on the changed values at the boudnaries. (cf. Section B).

A. Conformal systems

Considering first conformal systems, i.e., with h,=h, and F=1, the basic equations
from (9a,b) are
v2e! =0, 92 =0 (17a)

2
ey, " Cayr  Exy T R, (17b)

L et the domain in which the conformal coordinates are to be generated be bounded by
a piecewise-smooth curve on which sisthe arc length and n the outward normal. The
Cauchy-Riemann equations (17b) on the boundary take the form



1 —
gl -, En = ~E3 (18)

Referring to the figure below, let the curves I'; and I, be those portions on which

5 1=constant, and the curves I' ; and I" , be those on which & 2=constant. From Eq. (18) we
readily find that on T'; and T, the condition £=0 andon I'yand ', the condition

&7 = U aretobe imposed, where the subscript n indicates the normal derivative.

| I

T, Iz

L L

Therefore, for the generation of conformal coordinates, the properly posed boundary value
problems are

1
onl andl,:51= S 1 £tz , respectively
onljand I £2=0 (19)
v2e2 - 0
onT and T, £5=0
2 2
onl and T, §2= Sin E2= Sl respectively (20)

In the transformed plane the governing equations for conformal coordinates are
obtained from (13):

T T2t 0 (21a)
ax1 sz ax.' ) BxE
1T .2 2~ 1 (21b)
13 oF 13 3t



Taking Eland §2as monotonically increasing parameters having the ranges,

1 1 2 2
S =E1= 5 5 =€ 2= 5 the given equations of the curves T vl e Ty
respectively, can be expressed .in parametric form as

1 2
P % = Xl £ X = () B

n

e %y = xqly, €0 % = xplElsy &)

(22)

P3= I1 - 31(E1: 5%1]}1 xE x2{51l 5%1}]

Pu: H1 = K1E£1| E%E}]’ 12 12{51- E%E)]

The specification of the boundary datain the form of (21) should at best be regarded
as a statement of the problem, rather than as a procedure, since the exact boundary
point-distribution in this form is not possible & priori. To develop the procedure itself we
regard the specification in (22) as an initial guess. However, this type of specification

1 1
produces an overdetermined situation. For example, if on I' ; both x,( Sty , 52 and Xof Sy :

£2) are specified, then from the first equation in (21b), “/?€" can be calculated on this
boundary. Thus both

(%) and {3x,/3£1)
R 1 ¢l-e]

5(1) £(1)

become specified, which makes the problem overdetermined. Following this logic, we can
isolate the proper arbitrarily specifed boundary values for Eq. (21) as follows: specifying x, (

1 1 2 2
S0 E2onT N xl(‘gle 52 0on T, x5, 5111) on [ g andx, (51, 52y on I',. Thus, for
the x;-equation the normal derivative conditions on r 3 and r 4 are provided by the second
equation in (21b) through the specified X, values. Similarly, for the x,-equation the normal

derivative conditionson I 1 and r » are provided by the second equation in (21b) through the
specified x,-values.

In any numerical procedure, the values of x, are determined by integration through the
formula

J ax
2 dEE
31 ¢!

(11}J - (31]J_1 - I (23)

and these valuesin turn give the new values of X, through the exact functional relations
between x, and x,, for these curves. Similarly, the values of x,, are calculated by the formula
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and then the new values of x, are determined by the functional relations between x; and x,
for these curves. Further discussion of conformal systemsis given in Chapter X.

B. Other systems

For general orthogonal systems, the basic equations for x; and x, remain Eq. (13). As
noted earlier, the other constraint besides orthogonality (g,,=0) is now to specify the

function F defined in Eq.(12), which isthe ratio of the scale factors, i.e., the grid aspect ratio.
One approach is to specify the function F explicitly, in which case, as with the conformal

coordinates, it is not possible to specify an arbitrary point distribution on the boundaries. The
set of equationsin (7a) must be used to find the proper x; and x, values by integration on the

appropriate boundaries. Another alternative isto specify an arbitrary point distribution on the
boundaries, and |eave the function F to be determined iteratively in the course of the solution
for the grid. Thisis done in amanner similar to that used in the GRAPE code, discussed in
Chapter VI, with new boundary values of the function F being cal culated from the present
iterate for the coordinates. The function F in the field is then determined from these
boundary values by either transfinite interpolation or as the solution of Laplace’' s equations,
the former being found preferable in the cases considered. (With more distorted boundaries
the Laplace solution might be more reliable than the interpolation.) Different forms of
interpolation, or an equation other than the Laplace, for the determination of the control
function in the field would allow some control of coordinate line spacing in the field.
However, since only a single control function isinvolved, it is not possible to exercise
control of the coordinate line spacing in the field in both directions.

Another approach in which the boundary point distribution can only be fixed in a
specified manner isto take the basic generation equation to be Eg. (7c¢) which for conformal
coordinates (h,=h,) takes the form

P + B = [}
glg!  e%? (25)

where P=2 In(h,). An exact solution of Eq. (25) can be obtained if appropriate values of P

are known at the boundaries. The important problem then becomes the choice of those points
at the inner and outer boundaries which can be put in orthogonal correspondence with one
another. This can be accomplished if the & 1-coordinate, both at the inner and outer
boundaries is selected to satisfy the Laplace equation ¥251=0, This condition can be

satisfied by taking & 1 as the angle traced out by the common radii of those concentric circles
which are the conformal maps of the contoursin the physical plane. The solution of Eqg. (25)
under these conditions then can be used to generate non-conformal coordinates by a

coordinate transformation of the other coordinate & 2.

An orthogonal grid can be generated by solving the Laplace equations (21a) provided



that the boundary point distribution is compatible. Since a conforma mapping generates an
orthogonal grid, a compatible boundary point distribution can be obtained by conformally
mapping the boundary contour as follows (cf. Ref. [43]): Consider an open physical
boundary contour

where &4 and €D areto be lines of constant & 2, while €' and a connecting line <12 to be
generated are to be lines of constant & 1.

Each point of the set that defines this contour is successively mapped onto the real axis
in the complex plane by a hinge point transformation (such atransformation has the effect of
mapping one point onto the real axis while points already on the real axis remain there):

The straight line 2254 on the real axisisthen mapped conformally onto an open rectangle
in the complex plane:

|

B A

Points are then placed as desired along the sides B4 and BC of this rectangle, these points

on #4 and BC bei ng assigned successive integer values of Eland €2 respectively. (This

placement of points on these two sidesis arbitrary and may be done by any distribution

function desired.) The key to the construction of a compatible boundary point distribution is

then that the points on the other sides of the rectangle, i.e., €2 and <12 | are placed with the
BA BC



same distributions chosen for ~~ and <. The points in the physical plane that correspond
to these boundary points on the rectangle in the complex plane are then determined by
exponential spline interpolation among the values at the original set of points defining the
contour, except for the open side of the rectangle where the points in the conformal
transformations. Finally the orthogonal grid is generated by solving the Laplace equations
(21a) with this fixed boundary point distribution.

C. Systems based on first-order equations

Equations (10) are formally related to the Cauchy-Riemann equations (with F=1), but
otherwise form a set of first order nonlinear partial differential equations. In order to
preserve the orientation of coordinates, the sign of F is taken to be positive throughout the
domain. For certain choices of the function F the system is hyperbolic, and the complete
initial-value problem isthen

xn-—FyE. ¥ =FxE F>»q

? (26)

x(E.ny) = x(E£):  ylEyng) = ¥(£)

Here "l =T isthe given body contour, and, unlike the elliptic problem, the data on another
boundary cannot be specified.

This system may be shown to exhibit the following important properties:

(i). First, g,, in principle can be expressed as a function of g,,. <.p> (ii) Because of (i), F>0
isafunction of 5,52 and gy, i.e,

F = F(E1152|E11)

For brevity, writing

we have

F = F{E1 IEErz}

(iii). For awell-posed initial value problem the system of equationsin (26) must be
hyperbolic.

A test for the well-posedness is that small perturbations produce small effects. Using
thistest, for Egs. (26) to be hyperbolic, the function f(z), defined as

f{z) = zF

must be a strictly decreasing function of z.



3. Three-Dimensiona Orthogonal Coordinates

The problem of three-dimensional orthogonal coordinate generation, though of much
importance in many practical problems, has received little attention in comparison to its
two-dimensional counterpart. The reason is not so much in the complicated form of the
governing equations but rather in the prescription of the boundary conditions and in their
numerical implementation.

Orthogonality in three dimensionsis difficult to achieve, and only exists when the
coordinate lines on the bounding surfaces follow lines of curvature, i.e., linesin the direction
of maximum or minimum curvature of the surface. Therefore, three dimensional orthogonal
coordinates will not be available in most cases with nontrivial geometry. It is possible,
however, to have the system locally orthogonal at boundaries, and/or to have orthogonality
of surface coordinates.

The governing equations for generation of orthogonal coordinates are obtained in a
straightforward manner and have been listed above as Eq. (4) - (6). The set of equations
which are to be solved for x;,X5,X5 and h;,h,,hs has Eq. (4) and (6). The set (6) has six

equations for the three unknowns. On the other hand, without imposing the orthogonality
condition, g; = 0 (i = j), there are six equations for the determination of six unknowns. Thus

the orthogonality does not reduce the number of the equations which govern the distribution
of the metric coefficients, and it would be wrong to try to select a set of three equations out
of the available six.

4. Nearly-Orthogonal Systems

Since a part of the truncation error is decreased as the grid becomes more orthogonal,
it is of interest to generate grids which are "nearly-orthogonal". Such grids do not
approximate orthogonality sufficiently well, however, for the terms arising from
nonorthogonality in transformation relations to be dropped. The generation of
nearly-orthogonal grids naturally follows some of the procedures discussed above in this
chapter, but with the conditions for orthogonality only partialy satisfied. Several procedures
are discussed in Ref. [1] and Ref. [42].

A simple procedure for generating a nearly-orthogonal system from a nonorthogonal
system isto first generate curves of a nonorthogonal system by connecting points obtained
by any specified distribution function along straight lines connecting boundary points on two
arbitrary closed boundaries. Coordinate lines connecting points on each succeeding pair of
curves from the original coordinate system then are constructed as follows: At selected
points on the inner curve, normals are constructed, and the points of intersection with the
next curve outward are determined. Normal directions form the intersection point are
determined and trandlated to the original point in the inner curve. Then a second point on the
outer curve is determined as before. Finally, the new coordinate lines are constructed as
straight lines joining the selected points on the inner curve with points located halfway
between the corresponding pair of points on the outer curve located as described above. The
resulting lines will not actually be orthogonal to either the inner or outer curve, and the
slopes of these lines will, in fact, be discontinuous at each curve. The observed departures
from orthgonality, however, have been small and the departure may be made arbitrarily



small by the addition of more curves. Since the procedure is applied successively between
pairs of coordinate lines, concave bodies can be treated as well.

Exercises

1. The unit tangent vector on a curve C defined in the parametric form =~ = Z (s), with sas

the arc length along C, is given by L =dZ /ds. Let C beaplane curvein the Xy-plane having
7 asthe unit normal vector. Using the condition Z = £ =  and the convention that (-, %,
F’Tf), in the order shown, form aright-handed triad of vectors, find the components of . Here

£ isthe constant unit vector along the z-axis.

2. Let & (x,y) and " (x,y) be the conformal coordinates in the xy-plane so that the
Cauchy-Riemann equations
Ex = n}r’ E}I’ - -ﬂx

are satisfied. Consider the curve C defined in excercise 1 and the normal derivative operator
3
— =1 ¥
an

and show that the Cauchy-Riemann equations in the natural coordinates (s,n) are

Bs = Npr & = "My

3. Let F(5 1) be ascalar function of position and ¥ (5 ')=constant be a surface.

(a) Show that the unit normal vector * to the surface % =constant in curvilinear coordinates
is given by

_ 1 3¢ 1
n = ] g
fgrad ¢| 5 5zl

(b) Prove that the normal derivative of F on the surface » =congtant is

.E'.E.'.) -1 E ;51‘1 2% JF
M/ y-constant |grad ¢| sgl  gd

(c) In particular, for two-dimensional curvilinear coordinates show that



3F
ar 1 F _ 3F
(an) = (8 =T B2

1.
£ =gconstant @E 3E 5
oF ) 1 3F 3F
an = ( - Byp =)
( on 52=con5tant. m 11 BEE 12 351

A2 = —F(F + zF,)

(d) Particularize the resultsin (c) for orthogonal curvilinear coordinates. Write the partial
L
derivative operator ” for orthogonal coordinates.

4. Consider Eqg. (26) of this chapter, which form a system of first-order partial differential
equations for two-dimensional orthogonal coordinates. It was stated subsequently that these
equations form a hyperbolic system if the initial value problem iswell-posed. To prove this

assertion consider the perturbed state x+& x, y+3y, F(5,1,z+5Z), where © s
Retaining only the first order terms, develop a system of algebraic equationsin (5 x)& ,(dy)
£, (5Xx)1, (fy)n, and show that the resulting matrix has eigenval ues given by

2 —
12 = -F(F + zF)

Show from the preceding result that the eigenvalues are real only when zF isa strictly
decreasing function of z.



X. CONFORMAL MAPPING

Innovations in conformal mapping continue to extend this classical technique to more
complicated configurations, and surveys of the various techniques available are given in Ref.
[7] and Ref. [1]. Some specific recommendations of techniques and tools are given in Ref.
[7]. Conformal systems have advantage the of introducing the fewest additional termsin
transformed partial differential equations. Considerable understanding of the theory of
functions of a complex variable may be necessary for effective applications, though.

Although the complex variable techniques by which conformal transformations are
usually generated are inherently two-dimensional, certain more general cases can be treated
by rotating or stacking two-dimensional systems:

Systems can also be generated on curved surfaces, as has been done by cartographers,
for stacking. Examples of the use of conformal mapping in the construction of
three-dimensional configurations are noted in Ref. [5].

A curvilinear coordinate system generated by a conformal mapping is very rigid in the
sense that little control can be exerted over the distribution of the grid points. Conformal
mappings also do not exist in three dimensions (except for trivial cases). Furthermore, the
coordinate system tends to be more difficult to construct than when using algebraic or
elliptic systems. In spite of these facts, conformal mappings continue to play a significant
rolein grid generation. A number of recent developments and applications of conformal
transformations are noted in Ref. [1], [5], and [7].

The desirability of a coordinate system generated by a conformal transformation liesin
the form of the transformed equations. For example, consider the diffusion equation
Ay = HV2A (1)

Now & and " satisfy the Cauchy-Riemann equations

2



or equivalently

g = ¥n
- - ©)
) g
It follows that in this case g,,=0,,=0 and gllzgzzzf 5. Equation (1) can be written in
curvilinear coordinates, using Eq. (111-46), as
Ay = {u/g) VoA (4)

where the Laplacian is defined in terms of the curvilinear coordinates. Thereforeit is
observed that the diffusion equation remains essentially unchanged. The only effect of the
transformation is a change in the diffusion coefficient. Neumann boundary conditions are
also unchanged in conformal coordinates. The boundary condition

A, = B
where Z isnormal to a & =constant coordinate line, is expressed in curvilinear coordinates as

EE;'JEB

1. Construction by Finite-Differences

The literature abounds with methods for constructing conformal mappings. As can be
seen in thereview article, Ref. [1], these methods may include the construction of
Schwarz-Christoffel transformations, the solution of integral equations, or expansionsin
terms of power series or Fourier series. Since this chapter is not intended to be a
comprehensive treatment of conformal mapping, only the simple, yet frequently used, finite
difference method based on €lliptic systemsis discussed here.

Consider the problem of conformally mapping the interior of the contour ' onto the
interior of arectangle. The Riemann Mapping Theorem states that such a mapping exists,
and it also implies that the mapping is uniquely determined by specifying three real
parameters. Suppose we wish to indicate four specific pointson I which are to map to the
vertices of the rectangle. If the rectangle is fixed, then the problem is over-determined and
no conformal mapping exists. Therefore, the mapping must determine one of the dimensions
of the rectangular region which we will now denote as the set

0LeE <1, DE{n<M

Rather than allow arectangle with variable width, one can equivalently introduce the
parameter M in (3) so that



Mg = ¥

5
*n = MY ©

where

0gE <L, 0 <n<i

The mapping is no longer conformal, but the conformal mapping can be easily obtained by
simply multiplying the "I coordinate by M. On the unit square the functions x and y now
satisfy

HExEE + xn“ = 0

(6)

HZ?EE =

+
Ynn

Two boundary conditions are needed in order to determine a unique solution for this
elliptic system. One condition is derived from the equation of the boundary curve | which
might be

Flx,¥) = 0 (7)

The other condition comes from applying the orthgonality equation, g,,=0. This condition

also follows on eliminating the parameter M in Eq. (5). The implementation of the boundary
conditionsis donein the following order. First a boundary value for x or y is computed from
the orthogonality constraint. If the boundary point lies along £=0, then we may use

Xp = “¥g¥p/Ey OF ¥g = “Xg¥p/¥q (8)

A forward difference is used to approximate the derivatives and central differences for the
& _derivatives, The same equations are used along & = 1 with backward differences for the
£ -derivatives. Once an X or y value has been computed from Eq. (8), the other coordinate
valueis given by writing (7) in the form
¥y = G(x} or x = H{y) 9)

Although either equation in (8) could be used, it is advisable to choose either the first or
second equation, depending on whether X v or y r; has the largest absolute value. This

avoids not only the possibility of division by zero but also problems with the solvability of
the implicit equation (7). The same techniques are used along an "l =constant coordinate line.
In this case the orthogonality constraint can be written as

Xy = “¥g¥p/Eg OT ¥y = XX /¥ (10)

Now the parameter M must also be determined. It follows from Eq. (5) that
Xy = “¥g¥p/Eg OT ¥y = XX /¥ (10)



An iterative algorithm is used to construct the mapping, and any algorithm which can
be used for the elliptic systems in Chapter VI can also be used here. At each iteration a new
set of boundary values for x and y are computed using Eq. (8)-(10). There are two optionsin
computing avalue for M. Either adifferent value at each point can be computed from Eq.
(11), or a constant value can be computed from arelation such as

M = [x(17,n) - x(0,n)]1") IL ¥n(EsnldE (12)

where 0= "l = 1. Eq. (12) is derived from the equation in Eq. (5) by integrating along an
constant coordinate line. This same technique can also be used to derive an alternate formula
for finding the boundary values at x andy. Along "l = 0, for example, we have

x(g,0) = x(0,0) + 1/M Iz ]rn(E,ﬂ)dl;

The constant M, called the conformal module of the region by complex analysts, has a
simple geometric interpretation. From Eq. (11) it is noted that M is simply the aspect ratio of
the grid cells. There exist highly accurate numerical methods for computing both M and the
boundary valuesfor x and y. If these values are computed first, then the system (6) can be
solved by adirect eliptic solver.

The only control over the distribution of grid points with a nonformal mapping is by
changing the points which map to the vertices of the rectangular region. However, most of
the advantageous features are retained when the conformal mapping is combined with
one-dimensional stretching transformations. Thus we will consider a new set of
computational variables, 5 and &, with & and " serving as intermediate variables defined by
the one-dimensional equations

E=1f(x), n = hig) (13)

If x and y are solutions of Eg. (6), then in terms of the new computational variables,

LEI:. +—1.2.r- —mt _h_H':;}_: :0 (14)
L X ) T e oP T e Y gy,
E '
M2 - =22 p£0{x)y2 15
B11 ni(g) &)

In EQ. (15), the covariant metric tensor components are defined relative to the transformation
from the physical x,y variables to the computational *,% variables.

The application of this transformation to the diffusion equation (1) resultsin the
following transformed equation:
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Note that the coefficients of the * and © derivativesin Eq. (16) are functionsof = and © ,
respectively. Therefore, only one-dimensional arrays are needed to store these coefficients. It
can be further noted that the steady-state equation (A=0) is a separable elliptic equation

which can be solved using a direct elliptic solver.

In the above development the stretching functions given by Eq. (13) are used to
control the grid point distribution. Clearly the derivatives of these functions must be
nonvanishing, and these derivatives may as well be taken to be positive so that the
orientation of the physical boundary is preserved. The function f(*) is a contraction mapping
if f'(¥) < 1 and an expansion mapping if f'(:*) > 1. Therefore, relative to a conformal
mapping, the & =constant coordinate lines will be closer together where ' () < 1 and farther
apart when (%) > 1. The same control over the & =constant coordinate lines is exerted by
the function h(%). Several one-dimensional functions are discussed in Chapter V111.

On any particular boundary segment, say £ =0, it isin theory possible to match any
desired distribution of grid points provided the correct stretching function f(<) can be
determined. However, there is no known way of generating this stretching function so that
Eq. (14), together with the boundary conditions given by Eq. (7) and g,,=0, will have a
solution with the prescribed boundary values along & =0. The solution to this problem liesin
the implicit determination of the stretching function in the solution of the elliptic system.
Suppose that h(%) = &, so that Eq. (15) can be written as

M .2 _ B2

£7(x} i 811 (17)

This equation alows Eq. (14) to be written as

Epp 1,822
== r +r + L [—==) r, =0 18
g AKX R g XX (18)

This quasilinear system can be solved with the orthogonality condition on all boundary
components except & = 0 where we will now impose the Dirichlet condition

r(x,0) = B{x)

where £ defines the desired distribution of grid points.



The ability to specify grid points along a boundary component extends the usefulness
of conformal mappings. For example, one can assign coordinates around an airfoil and along
the branch cut in a C-type coordinate system so that the coordinate lines pass smoothly
through the cut. In many segmented systems the grid points can be chosen so that coordinate
lines pass smoothly from one sub-region into the next. One disadvantage of this method is
the reported slow convergence in the iterative solution of (18) for certain problems. An
alternate method of achieving the same result would be to generate a conformal mapping
from Eq. (6) and then use interpolation to redistribute the grid lines. Note that the
interpolation scheme may affect the orthogonality of the coordinate system to some degree.

2. Schwarz-Christoffel Transformation

Conformal mappings of circular disks or half-planes onto polygonal regions are
defined by the Schwarz-Christoffel formula. Suppose the points &, ..., ., lieon the real

axis of the & -plane. Then the mapping defined by

[ n T
-4+ B J n {g; - ) dg (19)
z o 1= <1 [

e}

transforms the upper half plane onto a polygonal region with interior anglesof T - @, = ..

However thisis not exactly what is needed in most grid generation problems. Presumably
one would be given apolygonal region with vertices z,, z,,...,z,,. Thus the parameters

AB,5,,5,..... 5, must be determined so that the real axis maps onto the given polygon:

There are several numerical techniques for the approximation of the parametersin the
Schwarz-Christoffel transformations. Since a conformal mapping of a simply-connected
region has three degrees of freedom, three of these parameters must be given in order for the
mapping to be uniquely determined. In certain infinite regions, the value of B can be

calculated from the asymptotic behavior of the mapping function. We can also set zn:§ 7=0,
which implies that A=0 from Eqg. (19). The remaining parameters to be determined are

g 1 8 2yeees ¢ n.1- Alternately, asis commonly done in bounded regions, we can choose the
values ©,%,,% 5 which are to map the points z,,,z,. In this case the parameters to be

determined are A,B, ¢ 4 4 e L - The basic algorithm for determining the unknown



parameters consists of computing the distances 1241 = 7] , using EqQ. (19) and a quadrature
formulato approximate the integral, and then iterating on the parameters until these
distances are correct. Once these parameters in the transformation have been computed to the

desired accuracy, the image of any point t in the upper half-plane is formed by numerically
evaluating the integral in Eq. (19).

Sohwarz-Christoffel transformations are not limited to regions with polygonal
boundaries. They can be used in composition with other conforma mapping methods to map
regions with curved boundaries onto various computational regions. For example, an integral
eguation method can be used to map a physical region with curved boundary components
onto the unit disk, which can be easily transformed onto the upper half-plane. Now the upper
half-plane can be mapped onto the computation region, which may consist of several
rectangular blocks, by Eq. (19). There are also direct generalizations of the
Schwarz-Christoffel transformation for regions with curved boundaries. These are obtained
by considering the limiting case of Eq. (19) asn-> .

Recent extensions of the Schwarz-Christoffel transformation to curved contours have
made this procedure a powerful tool for treating complicated internal and other
configurations. These improvements also lead to smoother metric coefficients for boundaries
with slope discontinuities than in older methods for the Schwarz-Christoffel transformation.
This procedure for the Schwarz-Christoffel transformation may also be more efficient than
other conformal procedures involving an intermediate mapping of a near-circle for mapping
contours and circles in some eases. Several sources on the recent developments and
applications of the Schwarz-Christoffel transformation are cited in Ref. [1] and [5].

3. Construction from Integral Equations

Integral equations have played a major role in the solution of partial differential
eguations. Mathematicians have often resorted to integral equations when attempting to
prove the existence and unigqueness of solutions. Numerical analysts turned to the so-called
panel methods for solving partial differential equationsin two and three-dimensional
regions. These mehtods replaced the partial differential equations by a set of integral
equations and thereby reduced the dimension of the problem, since panel methods only
involve boundary integrals. The application of integral equations depends on the availability
of fundamental solutions of the partial differential equation. Therefore they are especialy
useful in the solution of Laplace' s equation. Numerous solutions of Laplace's equation can
be generated by determining the real and imaginary parts of analytic functions. As most
conformal mappings can be reduced to the solution of boundary-value problems for
Laplace’ s equation, it should come as no surprise that integral equations can be avauable
tool in the construction of conformal mappings. Only the basic integral equation method of
Symm (cf. Ref. [1]) will be presented here. This method has proven to be robust, yet is easily
derived and involves only the solution of a system of linear equations.

Suppose the simply-connected region D, bounded by the contour I, isto be &1«
Let z=z, be the point in D which maps to the origin |21=0. If the Dirichlet problem



‘?Eq =0 in D
(20)
q = -log|z - 2,| on T

can be solved and the harmonic conjugate h of g can be found, then it can be directly verified
that the analytic function

g = (z - ZGJ explq{z) + in(z)] (21)

maps [ onto |21<1. Dueto the form of the series expansion for the exponential, it can aso
be shown that this function has a nonvanishing derivative, and hence the conformal mapping
of D onto the unit disk is given by Eq. (21). We now turn to the problem of solving the
boundary value problem in Eq. (20). Suppose there exists a solution of the form

q(z) = Jrn(cl log{z - g]ds (22)

for zon I'. Regardless of the value of the function (%), the function g(z) is harmonic on D.
In order that q(z) satisfy the boundary condition, it is clear that we need to choose @ () such
that, forzon I,

-log|z — zg4] = jru(;} log|z ~ r|da 23)

Thisisthen the integral equation for determining the unknown function & (%). The harmonic
conjugate of 1217 | jsarg(z). Thus the function of h(z) can be expressed as

h{z) - Irg{l;} BZ‘E[Z = Elds (24)

Note that the function h(z) is only unigue up to an addition constant. The addition of a
constant to h(z) resultsin arotation of the conformal mapping defined in Eqg. (21).

The practicality of this method depends on the efficient solution of the integral
equation in Eq. (23). In order to solve this equation numerically, divide I' into nintervals,
Fj, j=1,2,...,n and assume < () has a constant value 7, on Fj. Let z; be afixed point of r i

Now Eq. (23) can be approximated by the linear system of equations

n - =1 ,2,.null
JI GJ Ir 1°Elz‘i - ;lda - —lﬂsl Z4 zol y 1 1,2, ¥ (25)
J

There are two alternatives in computing the coefficients in this system. If the I jae assumed
to be straight lines, then the integrals can be calculated analytically. Otherwise, each integral



must be computed numerically. Once these coefficients have been computed, the system can
be solved to yield a step function which approximates the function (£ ). The values of © j

are now used to estimate the functions g(z) and h(z):

1
a(z) = I a5 Irjloglz - ¢fds

J-
Il
ntz) = Lo [I,Jar-stz - g)as (26)

Again the above integrals would, in general, be computed numerically. These values of g(z)
and h(z) would be substituted in Eq. (21) to yield the image in the unit disk of any given
point z in the region D.

Thisintegral equation method is a very efficient and accurate method. However, it has
one deficiency in regard to grid generation and the numerical solution of partial differential
equations. The transformation which is constructed maps the physical region D onto the
canonical region, which in this case is the unit disk. The unit disk could be the computational
region, or it could be mapped onto a rectangular region by an auxiliary transformation. In
any case, what is needed is the mapping from the unit disk onto the physical region.
Therefore an interpolation scheme would be needed to approximate the inverse of the
computed mapping.

It is sometimes more efficient to generate the final grid by solving the Laplace system
numerically with Dirichlet boundary conditions from the conformal transformations,
especialy if afast Poisson solver can be applied.

4. Elementary Complex Transformations

An extensive list of complex mappingsis compiled in Ref. [44]. However, these
mappings are only for regions with special boundary curves. If astrictly conformal
transformation is not necessary, then these mappings may be used to create what are called
nearly conformal mappings. For example, suppose an airfoil shape can be modeled as the
image of acircle under the Joukowski transformation

z=C+ /T (27)

Under the inverse transformation, a given airfoil will map to a curve which is nearly circular.
The region about the nearly circular curve can be mapped onto the region about a circular
region by a simple algebraic transformation. One scheme for accomplishing thisfinal
mapping would be to divide each complex number on a given ray from the center by the
modulus of the complex number on the curve. The composite mapping in this case would be
a nearly-conformal mapping of the exterior of the airfoil onto the exterior of acircle. The
inverse mapping, which could be explicitly defined, would define a nearly-orthogonal O-type
grid about the airfoil.



Analytic functions are not only of value in mapping regions about airfoils, but are also
helpful in the more general problem of generating grids in the neighborhood of boundary
points with slope discontinuities. With most algebraic methods of grid generation, these
slope discontinuities will propagate into the physical region resulting in non-smooth grid
lines and the associated increase in truncation error in the numerical solution of partial
differential equations. The general idea can be conveyed with the following example.
Suppose we have a region where the boundary has an interior angle of © at the point z,.

Under the mapping

/e
g = {z- zn)w (28)

the corner is eliminated. While this ssmple mapping may be useful in transforming the
interior of a contour, the mapping of the exterior region would not be one-to-one. The
elimination of corners for regions surrounding a contour can be effected by applying the
Karman-Trefftz mapping defined by

Tl NI z“‘iu

¢+ o+ B

(29)

where % isthe conjugate of z,. The exponent a depends on the exterior angle and the region
should be translated, if necessary, so that “ isan interior point of the contour.

This transformation may be applied sucoessively to eliminate any number of corners on the
boundary of the physical region.

Elementary complex functions can therefore serve to precondition aregion. Corners
which are to map to sides of a computational rectangle can be eliminated. Conversely,
right-angle corners can be formed at points of the physical reigon which are to map to
vertices of the computational region thereby eliminating problems of extreme
nonorthogonality.

The trend in treating more complicated regions is to break the mapping up into a
sequence of more simple mappings. Contours, such as airfoils, are generally mapped to
near-circles by one or more simple transformations, and then the near-circle is mapped to a
circle by a series transformation, e.g., the Theodorsen procedure. It is necessary for
convergence that the near circle be sufficiently near to being acircle. A seriesfor the
differential form is generally superior to the usual Theodorsen form for general bodies. This



series appears in terms of arc length and surface angle, rather than the polar coordinates of
the Theodorsen form which can lead to infinite derivatives and multiple values. The ordering
of the points can break down in the Theodorsen form for closely spaced points aso. The
differential form is applicable, however, aslong as there are no corners, even for twisted
contours. In this and other series transformations, the differential form is usually more
tolerant of odd shapes.

Multiple-body configurations can be treated by a sequence of transformations which
map each body to acircle in succession, while maintaining previously established circles.
Another procedure, invovles iteratively mapping each body to a circle with no specia
consideration of the others. This process generally requires only afew iterations to converge.
Some recent applications are noted in Ref. [1] and [5].



X1. ADAPTIVE GRIDS

In an adaptive grid, the physics of the problem at hand must ultimately direct the grid
points to distribute themselves so that a functional relationship on these points can represent
the physical solution with sufficient accuracy. The ideaisto have the grid points move as the
physical solution develops, concentrating in regions of large variation in the solution as they
emerge. The mathematics controls the points by sensing the gradients in the evolving
physical solution, evaluating the accuracy of the discrete representation of the solution,
communicating the needs of the physics to the points, and finally by providing mutual
communication among the points as they respond to the physics. The basic techniques
involved then are as follows:

(1) ameans of distributing points over the field in an orderly fashion, so that neighbors
may be easily identified and data can be stored and handled efficiently.

(2) ameans of communication between points so that a smooth distribution is
maintained as points shift their position.

(3) ameans of representing continuous functions by discrete values on a collection of
points with sufficient accuracy, and a means for evaluation of the error in this representation.

(4) ameans for communicating the need for aredistribution of pointsin the light of the
error evaluation, and a means of controlling this redistribution.

Several considerations are involved here, some of which are conflicting. The points
must concentrate, and yet no region can be allowed to become devoid of points. The
distribution also must retain a sufficient degree of smoothness, and the grid must not become
too skewed, else the truncation error will be increased as noted in Chapter V. This means
that points must not move independently, but rather each point must somehow be coupled at
least to its neighbors. Also, the grid points must not move too far or too fast, else oscillations
may occur. Finally the solution error, or other driving measure, must be sensed, and there
must be a mechanism for tranglating this into motion of the grid. The need for a mutual
influence among the points calls to mind either some €lliptic system, thinking continuously,
of some sort of attraction (repulsion) between points, thinking discretely. Both approaches
have been taken with some success, and both are discussed below. It should be noted that the
use of an adaptive grid may not necessarily increase the computer time, even though more
computations are necessary, since convergence properties of the solution may be improved,
and certainly fewer points will be required.

With the time derivatives at fixed values of the physical coordinates transformed to
time derivatives taken at fixed values of the curvilinear coordinates, no interpolation is
required when the adaptive grid moves. Thus, as given by Eq. (111-116),
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where x; and 5 . are the cartesian and curvilinear coordinates, respectively. The computation



thus can be done on afixed grid in the transformed space, without need of interpolation,
even though the grid points are in motion in physical space. The influence of the motion of
the grid pointsis registered through the grid speeds, (x;);, appearing in the transformed time

derivative. Thisisthe appropriate approach when the grid evolves with the solution at each
time step. Some methods, however, change the grid only at selected time steps, and here
interpolation must be used to transfer the values from the old grid to the new since the grid
movement is not continuous.

In the following discussion, the problem of grid adaption will be formulated as a
variational problem, the ideas being developed first in one dimension and then extended to
multiple dimensions.

1. One-Dimensional Adaption
A. Equidistribution
A number of studies of numerical solutions of boundary-value problemsin ordinary

differential equations have shown that the error can be reduced by distributing the grid points
so that some positive weight function, w(x), is equally distributed over the field, i.e.,

f+1
J w(x)dx = constant 2
Xy
or, in discrete form,
ﬁxiwi = pongatant (3)

where Ax; isthegridinterval, i.e., &x; =X;,4 - X;. (The subscript here indicates position on

thelinein this one-dimensional case.) With this condition, the grid interval will, of course,
be small where the weight function islarge, and vice versa. Thusif the weight function is
some measure of the error, or the solution variation, the grid points will be closely spaced in
regions of large error, or solution variation, and widely spaced where the solution is smooth.
(It may be more appropriate in some cases to replace the equal signin Eqg. (2) and (3) with
"less than or equal”, and thus to "sub-equidistribute” the weight function.)

This approach has also been applied to redistribute the grid points (or to add points) at
each time step, or at certain intervals, in numerical solutions of initial/boundary-value
problems in one-dimensional partial differential equations. A number of references to the use
of equidistribution are cited in Ref. [45]. It can be shown that the point distribution is
asymptotically optimal if some error measure is distributed evenly, and that this optimum
error israther stable under perturbations of the point distribution. Thusit is not necessary to
locate the grid points with excessive accuracy.

B. Equidistribution by transformation

The nonuniform goi nt distribution can be consiEdered to be atransformation, x(5 ),



from a uniform grid in & -space, with the coordinate 5 serving to identify the grid points.
The grid points are conveniently defined by successive integer values of &, making A5 =1
by construction and the maximum value of £, i.e., N, equal to the total number points on the
line. Then Ax =X At =x sothat x ¢ representsthe variation in x between grid points.

Hence the equidistribution statement, Eq. (3), can be represented as
XEU = ponatant (4)

With the weight function w taken as afunction of & thisisjust the Euler equation for the
minimization of the integral

1
2
I, = jnﬂg]xEdE (5)

(From the calculus of variations, the function x(5 ) for which the integral | F(x,x & )d& isan

extremum is given by the solution of the differential equation /45 (9F/ %) — dF/dx =0
This equation is called the Euler’ s variational equation.) The integral (5) can be taken to
represent the energy of a system of springs, with spring constants w(& ), spanning each grid
interval, considering all the points to have been expanded from a common point so that x &

is the extension of the spring at £ The grid point distribution resulting from the
equidistribution thus represents the equilibrium state of such a spring system, i.e., the state of
minimum energy. Since X t represents the distance between grid points, this variational

problem can aso be interpreted as the minimization of the cumulative spacing between the
grid points in the least-squares sense, subject to the weight function w(5 ).

If the weight function is taken to be afunction of x, instead of £ thenthe integral for
which Eq. (4) isthe Euler equation is

:
I, = Io [w(x)xtlzdz (6)

The variational problem in this case is the least-squares minimization over the grid of the
cummulative grid point spacing weighted by the weight function.

Integration over &, asin both these cases, constitutes a summation over the grid
points, with X & representing the spacing between grid points. In the first case above, i.e.,

Eq. (5), the weight function W(E ), being afunction of is associated with the grid points
themselves, not with their locations. In the second case, Eq. (6), however, the weight
function w(x) is associated with the locations of the grid points, rather than directly with the
points. Since thereis arelation x(5 ) representing the locations of the grid points, any weight
function can obviously be transformed from one argument to the other. However, in deriving
the Euler equations for avariational problem it is only the direct dependence that is

considered in the partial derivatives ¢/@x or #¥/95 i e, whether the weight function is

determined by the identity of the grid point or by the location of the grid point, w(x),
d/dE(OF ;)
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although implicit differentiation is used in the total derivatives and
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The constant in Eq. (4) can be evaluated by normalizing x to the interval (O,L). If & is
normalized to (1,N) we have from Eq. (4),
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Since & ~LUX g, the transformation is then determined by

IR PI - L
E(x) = 1 +E(andx}{J1-1-§- ©)
Thus
Xi+1 N
1 d
a5 = L f xiwdx}{ f 1 ?'i) (10)

so that Eq. (2) is realized by taking equal incrementsin &, i.e., € varying by equal
increments between grid points as was stated initially. From Eq. (8) the grid point spacing is
given by

.ﬂzi = H_
wj' dE (11)

An alternative viewpoint results from integrating over x, instead of over & | i.e,,
summing over the grid intervals rather than over the grid points. Since £ identifiesthe grid
points, &, represents the changein & ,i.e., the number of grid points per unit distance, and

hence is the grid point density. EQ. (4) is how the Euler equation for minimization of the
integral
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Herethe integral in question is ) F(E . g )dx, so that the Euler equation is given by
d/dx(8F/8E,) — aF /35 =0

Since & » can be considered to represent the point density, this variational problem

represents a minimization over the field of the density of grid points in the |east-squares
sense, subject to the weight function, and thus produces the smoothest point distribution
attainable. Here the weight function w(x) is associated with the grid point locations, not
directly with the points. If the weight function is associated with the points themselves,
rather than the locations, then w = w(5 ) and the integral for which Eq. (4) isthe Euler
equation is

L
ax R d-x
Ly ID w(E)] (13)

This variational problem is the least-squares minimization over the field of the cumulative
point density weighted by the weight function.

The constant in Eg. (4) is evaluated in this form by writing,

= =
s0 that with the normalization as defined above,
1 [L
C = 5 Dwdx (14)
The transformation then is given by
X
wdx
£(x) = 1 + (N-1) E (15)
welx
0
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so0 that again Eq. (2) is realized by taking equal incrementsin & . The point spacing is now

given by
L
J wdx

9 (17)
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The grid and solution may be determined separately, perhaps even in an iterative
fashion. However, the transformation allows the grid and solution to be dynamically coupled
so that both evolve together. With the spring analogy approach, Eq. (8) supplies the
following differential equation for the grid:

-l
I N ag (18)

1 w

wa =

which supplies an additional differential equation to be solved simultaneously with the
differential equation system of the physical problem at hand, with the grid point location x as
the independent variable. Similarly, with the smoothness approach, the differential equation
for thegridis

1 L
xpw = —— | wax (19)
N-1 ‘%

Eq. (18) and (19) really differ only by the way the constant is evaluated, i.e., whether
by integration over & or over x. Thisisareal difference in implementation, though, since
integration over Eis dependent on the grid, but integration over x isnot. Thus, with the
spring analogy approach, the weight function is associated with the grid points, i.e., with g,
and the grid adjusts to achieve a uniform value of w £ x. The uniform value reached,
however, is dependent on the grid since the right-hand side of Eq. (18) is dependent on the
point distribution. In contrast, in the smoothness approach, where the weight function is
associated with the the grid points, i.e., with X, the grid adjusts to achieve a specified
uniform value of w £ x, since the right-hand side of Eqg. (19) isan integral in physical space,
independent of the grid. In the first approach, the points move to change the spacing x &

between points, while in the second the points move to change the point density g « (Note
that Eq. (4) can also be written as & <Jw=constant.) Either approach isviable, unlessit is

intended that the uniform value of w £ x be fixed beforehand, as would be the case if the
weight function is taken to be representative of truncation error and a certain bound isto be
imposed on this error. The smoothness approach, i.e., integration over x, has been the most
widely used because it is natural in most physical problems to associate the weight function
with some physical property which variesin space.

Implementation of the two forms proceeds as follows: The form based on the grid
point density isimplemented using Eq. (15). With the solution u(E ) known on the current
grid points at a given time step, the weight function is evaluated at each point and then the



integral in the denominator of Eq. (15) is evaluated by numerical quadrature, i.e., by
summing the product w /4 x over the grid points using coefficients in the summation
appropriate to whatever type of numerical quadrature isintended. The integral in the
numerator is similarly evaluated out to values of the upper limit x that produce the
successive integral values of which define the grid points. Thus we have x; defined by

x
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These vaues of x; then are the new grid point locations, and the solution proceeds to the next
time step.

The spring analogy form, however, requires iteration. Here we have, from Eqg. (8), the
point locations x; defined by
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With the solution known at a given time step, the weight function is evaluated at each grid
point, and the integral in the denominator is evaluated numerically as before. Then the
integral in the numerator is evaluated with the upper limit set at the successive integral
values of & asindicated, and this defines a changed point distribution, x.. The complication

here is that the integral in the denominator, i.e., the constant in Eqg. (4), depends on the point
distribution, amounting to a sum of 1/w over the points since & £=1 by construction
regardless of the distribution.

(By contrast, the corresponding integral in Eqg. (20), i.e., the constant in Eq. (4), does not
depend on the point distribution, being smply an integral of afunction in physical space.)
Therefore, thisintegral must be re-evaluated using the changed point distribution.

The integral in the numerator is then also re-evaluated for each point, thus changing the point
distribution again. This process must be continued until convergence before the final new
point distribution is obtained. The solution then proceeds to the next time step. The necessity
for iteration with the spring analogy form clearly makes this form more difficult to
implement than the grid point density form. Since no particular advantages of the former
have been noted, preference naturally falls to the latter.

A number of examples of both the point density form and the spring analogy form, as
well as other applications of the use of one-dimensional equidistribution are cited in the
survey of adaptive grids given as Ref. [45].

C. Weight functions



As noted above, the effect of the weight function w is to reduce the point spacing x

where w is large, and therefore the weight function should be set as some measure of the
solution error, or as some measure of the solution variation. The simplest choice isjust the

solution gradient, i.e.,
W= Uy (22)

Inthis case, EQ. (4) becomes
Iruy = constant

which then reduces to
ug = conatant

With the solution gradient as the weight function the point distribution adjusts so that the
same change in the solution occurs over each grid interval, asillustrated below:
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This choice for the weight function has the disadvantage of making the spacing infinitely
large where the solution is flat, however.

A closely-related choice, also based on the solution gradient, isthe form

W = T L ui (23)

An increment of arc length, ds, on the solution curve u(x) is given by

ds? = dx€ + du? = (1+u§}dx2

so that this form of the weight function may be written
W - Ex

and then Eq. (4) becomes



IEEK = gonatant

which reducesto
aE = gonatant

Thus, with the weight function defined by Eq. (23), the grid point distribution is such that the
same increment in arc length on the solution curve occurs over each grid interval. For the
curve shown above this gives the following point distribution:
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Unlike the previous choice, this weight function gives uniform spacing when the
solution is flat. The concentration of pointsin the high-gradient region, however, isnot as
great. This concentration can be increased, while still maintaining uniform spacing where the
solution isflat, by altering the weight function to

w =1+ “2“)2: (24)

where ¢ isaparameter to be specified. Considering u to be plotted against x/<, we have for
an increment of arc length on this solution curve

45 = [d(x/2)]° + du® = [1 +u ][d(xm}]z
(x/a)

so that this weight function is equivalent to

¥ = Stx/a)

and Eq. (4) becomes

— constant

which reducesto



EE = gonstant

Thus we have equal increments of arc length on the solution curve with u plotted
against x/¢ inthis case. Now division of the abscissa by afor aflat curve would simply
reduce the spacing by the same factor. However, since the slope stegpens asthe curveis
compressed to the left by this change of scale, the effect on the spacing where the curveis
not flat will be a greater reduction in spacing.

In fact, since the 1 in the weight function given by Eq. (24) tends to produce equal spacing,
while the @ 2ux2 tends to produce concentration in the high-gradient regions, with infinite

spacing in flat regions, this weight function involves a weighted average between the
tendency toward equal spacing and that toward concentration entirely in the high-gradient
regions. The larger the value of @, the stronger will be the concentration in the high-gradient
regions and the wider the spacing in the flat regions.

Now a disadvantage of al the above forms of the weight function is that regions near
solution extrema, i.e., where u,=0 locally, are treated similar to flat regions, asisillustrated

below for the form given by Eq. (22):

k)

Although the distributions produced by the solution arc length forms, Eq. (23) and (24),
would have closer spacings near the extrema, the effect is still the same, i.e., to concentrate
points only near gradients, not extrema.

Concentration near solution extrema can be achieved by incorporating some effect of
the second derivative u,, into the weight function. A logical approach isto include this

effect through consideration of the curvature of the solution curve:
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If the weight function is taken as

w=1+a°K| (25)



then points will be concentrated in regions of high curvature of the solution curve, e.g., near
extrema, with atendency toward equal spacing in regions of zero curvature, i.e., where the
solution curveis straight (not necessarily flat). This weight function, however, has the
serious disadvantage of treating high-gradient regions with little curvature essentially the
same as regions where the curveisflat. Thusin the curve shown above, nearly al the points
would be concentrated near the maximum in the curve, with very wide spacing in the
high-gradient regions on both sides.

A combination of the weight functions given by Eq. (24) and (25) provides the desired
tendency toward concentration both in regions of high gradient and near extrema. The effect

of the inclusion of the curvature isillustrated below (cf. Ref. [37]) with the function
following):

[ "1 H ng A )
H . T -
- = R He -
B N H -
H FH- Runs = =
| ] - | Tt
we (1« 82|K]) /1 vaPu (26)

where @ and P are parameters to be specified. Clearly, concentration near high gradientsis
emphasized by large values of ¢, while concentration near extrema (or other regions of large
curvature) is emphasized by large P,

Another approach to the inclusion of the second derivative is ssimply to take the weight
function as

W=t 4 afuy| 4 Biuxxl (27)

where @ and P are non-negative parameters to be specified.

With this form, (cf. Ref. [46] we have by Eq. (15), with (© = & = 1) gng (0 = * = 1)
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Since A & = 1N, where 1+1 is the number of points on the coordinate line, the maximum
percentage change in the solution over agrid interval,

. fux | ax
1 (32)
dx
J Tl
isrelated to the ratio R;, which measures the relative emphasis put on concentration of
points according to the solution gradient by
o< 1 (33)

NR ,

A guidefor the choice of ¢ to limit the maximum percentage solution change over an
interval to avaluer can then be obtained using an equality in Eg. (33) with R; from Eq. (30)

and neglecting the effect of the F term:
1

1
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(34)

The smallest possible value of r is 1/N.

With the second derivative term included, the value of P can be continual ly updated to
keep the same relative emphasis on concentration according to thisterm, as measured by the
ratio R,,.
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The transformation can then be written as
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where R, is considered to be constant. In this form, the transformation appears as the

weighted average of one based on the solution gradient and one related to the second
derivative.

The replacement of Eq. (24) with the form given by Eq. (27), with P = 0, till leaves a
reasonable form for the weight function, but the clear association with the geometric
properties of the solution curve are lost. In this case the weight function corresponding to Eg.
(23) would, after substitution in Eq. (4), leads to the condition

xE + uE = ponatant

which corresponds to an equal distribution of the distance between points on the solution
curve along aright-angle path formed by #x and 4 u from one point to the next. While this
distance has some indirect relation to arc length on the solution curve (the chord length being
the hypotenuse of the right triangle formed by this 4 x and £ u), the direct association with
arc length would seem to be preferable. Following the same reasoning, the use of solution
curve curvature, rather than ssmply the second derivative, is also preferable. Therefore, the
form given by Eq. (26) is probably more appropriate than that of Eq. (27). A number of other
variations have been used, of course, asis noted in Ref. [45].

Since the numerical evaluation of higher derivatives can be subject to considerable
computational noise, the use of formal truncation error expressions as the weight function is
usually not practical, hence the emphasis above on solution gradients and curvature. Some
problems may arise even with solution curvature, i.e., with second derivatives, in rough
trangits. It iscommon in any case to limit the grid point movement at each time step and/or
to smooth the new point distribution.

For systems of equations involving more than one physical variable, one approach is
to use the most rapidly-varying or dominant physical variable in the definition of the weight
function. Another is to use some average of the variations of the severa variables. It isalso
possible to use entirely different grids for different physical variables, with values transfered
among the grids by interpolation. Examples of each of these approaches are cited in Ref.
[45] and [5].

2. Multiple-Dimensional Adaption



A. Adaption along fixed lines

In multiple dimensions, adaption should in general occur in all directionsin a mutually
dependent manner. However, when the solution varies predominately in a single direction,
one-dimensional adaption of the forms discussed above can be applied with the grid points
constrained to move along one family of fixed curvilinear coordinate lines, and applications
of this approach are noted in Ref. [45].

The fixed family of linesis established by first generating a full multi-dimensional
grid by any of the grid generation techniques discussed in the earlier chapters, with the
curvilinear coordinate lines of one family therein then being taken as the fixed lines. The
points generated for thisinitia grid, together with some interpolation procedure, e.g., cubic
splines, serve to define the fixed lines along which the points will move during the adaption.
The one-dimensional adaption discussed above is then applied with x replaced by arc length
aong these lines.

Examples (cf. Ref. [46]) of application of the point density form discussed abovein
this manner are shown in the following figures. The first figure shows an adaptive grid for a
combustion problem, where the adaption is along fixed radia lines. The flamefront is
clearly visable here because of the strong concentration of points therein:
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The oscillations evident with the fixed grid are removed by the grid adaption. An extension
of this problem appears next with a flowing gas. This gives an example of the use of separate
adaptive grids for different physical variables of the problem, one for the combustion and
one for the fluid mechanics, with values transferred between the two grids by interpolation.
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Adaption through the spring analogy isillustrated next with adaption along fixed lines
between the body and outer boundary in a hypersonic flow problem (cf. Gnoffo in Ref. [45]).
Here the concentration of points makes the shock location evident in the grid:

Another obvious application of adaption along fixed lines is adaption of boundary
points along a fixed boundary in two dimensions (cf. Nakamurain Ref. [45]). An example of
such adaption along a boundary as a shock forms appears below:
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B. Uncoupled adaption

One step beyond this one-dimensional adaption along fixed lines is the application of
successive one-dimensional adaptions separately in each of the curvilinear coordinate
directions. This proceeds in the same manner as for the adaption on the fixed lines, smply



using the latest grid to re-define the coordinate linesto serve as the "fixed" lines in the next
direction of adaption, cf. Ref. [56] and [57]. In the latter atorsion spring analogy is used, as
well as the tension springs discussed above, incorporating resistance to movement away

from orthogonality. Thisis done in effect by adding the term V(E )(x-x0)2 to the integral of
Eq. (5), where v(5) is a second weight function and X, isthe arc length location of the

intersection of the normal from the adjacent grid line with the line on which the adaption is
occurring.

C. Coupled adaption

Thefinal grid in the one-dimensional adaption discussed above will, of course, be the
result of the grid point movement along the one family of fixed lines, and therefore the
smoothness of the original grid may not be preserved as the grid adapts. Some restrictions on
the point movement have generally been necessary in order to prevent excessive grid
distortion.

In multiple dimensions, in genera it is desirable to couple the adaption in the different
directions in order to maintain sufficient smoothness in the grid. One approach to such
coupling isto generate the entire grid anew at each stage of the adaption from some basic
grid generation system, be it algebraic or based on partial differential equations. The
structure of the grid generation system serves to maintain smoothness in the grid as the
adaption proceeds. In this approach, which is analogous to the one-dimensional
equidistribution discussed above, the new point locations are determined directly from the

grid generation system, and then the grid point speeds, * , for use in the transformed time
derivatives, Eq. (1), are calculated from the change in the point locations by difference
expressions. Another approach is to determine the grid point speeds directly through some
process and then to cal cul ate the new point locations by integrating these point speeds.

D. Weight functions

The one-dimensional weight function, Eq. (23), based on arc length on the solution
curve can be generalized to higher dimensions as follows: Consider a hyperspace of
dimensionality one greater than that of the physical space, with the solution, u, being the

extra coordinate. L et the unit vector in the solution direction be < , this being orthogonal to
the physical space. Then the position vector in this hyperspaceis given by

B=Ix+]Jy+ Kz +gu=1p+gu (37)

where ~ isthe position vector in physical space. Now, following Eg. (111-5), the covariant

metric element, denoted G, T in the hyperspace will be

Gij = E.Ei " EEJ = {['Ei + ﬁuf,j‘) . {:ﬁj + ﬁuﬁj]
(38)
=8y uEi qu



where g; j isthe metric element in physical space. Now

s0 that
o= (Ju o+ r ¥ Tu - £ 1)
and then
GiJ = Ei;l + {¥u - Ezinﬂu 'I:Ej] (40)
It can be shown that
det|Ggy| = (1 + [Zu|)det]gy ] (42)

(This has been verified for one and two dimensions.)

In one dimension this reduces to the expression for arc length on the solution curve,

f"ﬁ-f'1 +u§xE

i.e,

In two dimensions Eq. (41) gives an expression for area on the solution surface:

i"a = 41 + |E|_|,|2 E (42)

Thus the extension of the one-dimensional weight function based on arc length on the
solution curve to two dimensionsis that based on area on the solution surface:

w =71+ |guj? (43)

The extension of this form to three dimensions would also seem logical, but has not been
verified.

3. Variational Approach

Considering the grid from a continuous viewpoint, it occurs that something should be
minimized by the grid rearrangement, and thus a variational approach islogical. Thisisthe
natural extension of the equidistribution concept discussed above to multiple dimensions.
The development in this section is a generalization of that in Ref. [47]. (cf. Ref. [1] for
earlier related work.)

A. Variationa formulation



The variational formulation for multiple dimensions can be constructed in analogy
with the one-dimensional equidistribution discussed in Section 1. Thusin general aweighted
integral measure of the accumulation of some grid property Q, either over the grid points,
i.e,

1 = [wodg (44)

or over the physical field, i.e,,

r - {waax (45)

where w is the weight function, will be minimized. The resulting Euler equations then will
constitute the grid generation system. In formulating the variational problem there are
basically three decision points.

First, if theintegration is taken over £ then the integral represents a summation over
the grid points, while integration over X represents a summation over cell volumesin
physical space. With integration over £ it isthus the accumulation of some property over the
grid points that is minimized, while with integration over x the accumulation over the
physical cell volumesis minimized.

The second question concerns the weight function. If the weight function is directly
dependent on £, then the weight is associated with the grid points, while with weight
functions dependent directly on x the weight is associated with location in physical space. As
noted in Section 1 it is this direct dependence of the weight function that figuresin the
partial derivatives #F/2x and %5'/9 in the Euler equations, the fact that a change of variable
could be effected by the transformation x(& ) notwithstanding. In most applications the
weight function will be based on some solution gradient and hence will be naturally taken as
afunction of position in physical space, x.

Finally, thereis the choice of what property isto be accumulated to be minimized.
This choice depends, of course, on what is expected from the grid. Among the grid
properties that might be considered are the following in computational space (integration
over grid points, i.e., d& ):

(). square of cell volume:

Q= [ry + (mp x £3)12 = det|gyy|= g

(2). inverse cell volume:
Q = 1/

(3). sum sguares of cell edge lengths (average of squares of diagonal lengths):



g o= E[EI'EI}‘ ggﬂ

(4). cell area squared/volume ratio:
I ry 1 g%
i

1 -
. - E;‘EJJEI‘:]‘ Eik}
(i,1.k)eyelic

Qg =

(5). cell skewness based on edge tangents:

Q= Itz - p?
i

- Iefk (Ldikdeyelfe
i

(6). cell skewness based on face normals:

Q= Iy xzy) + (o x 202
i
) {Eijgik - Eiisjk}z {(1.f.k}eyellc
i

In two dimensions the two orthogonaly properties, (5) and (6), are equivalent.

These six properties correspond in order to the use of the following propertiesin
physical space, where the integration is over the physical field (dx):

(2). inverse point density:

Q= JE - —1___,
Yaet|gld|
(2). square of point density:
= 3
Q==

3).
Q=/2 3 (gdigkk - gdkzl {1,j,k)ecyeclic
i

(4).



i 1

(5).

g = g3/2 7 {Eijsik - ghtiglky2 f1,].kloyclic
i

(6).
Q-3 k2

1
= Eyg I {EEJ . EEk}E {1,1,k} ecyelic
i

Similar representations of other grid properties can aso be considered, of course. The

one-dimensional forms of properties (1) and (3) in the computational space reduce to x; ,
while those of properties (2) and (4) become 1/x & . Therefore, in analogy with the

one-dimensional equidistribution in Section 1, aweight function with properties (1) and (3)
that is afunction of x should actually be squared in the integral (cf. Eqg. (6)), i.e.,

I-[v2xiode (1) and (3) (462)

while w(x) with properties (2) and (4) appears as (cf. Eq. (12))

-t 9

Similarly, weight functions that are functions of € should appear as (cf. Eq. (5) and (13))

r - [wigiaag (1) and (3) (472)
I = —Q—.d£ (2) and (4}
szc_g_} )

The construction for integration in the physical space is analogous, but noting that (1) and
2

(3) correspond to /& w While (2) and (4) correspond to 5 , inone dimension (cf. (5), (6),

(13) and (12), respectively):

I= Iw{iludz or I = IHE{EJQL‘IE (1) and (3) (484)
Il = . de— I = .EEL
e or j h @ ana () (48D)



The grid for which the weighted accumulation of the property Q is minimized is
obtained, by the calculus of variations, as the solution of the Euler variational equations for

2
theintegra I. If the integration is over 5 these eguations are

3 _F  _3F g

J=1 E H{xiigj axy (1=1,2,3} (49)

where F isthe integrand of the integral |. With integration over x the variational equations
are

d aF aF
- =0 (1=1,2,3)

These partial differential equations then constitute the generation system for the grid. Note
that the equations resulting from Eq. (50) must be transformed using the relations in Chapter
I11 so that the curvilinear coordinates become the independent variables. The equations given
by Eq. (49), however, will already be in thisform.

A grid generation system which involves competitive emphasis on various grid
properties can be constructed by casting the integral to be minimized as aweighted average
of several of the above integrals, each of which represents an accumulation of a different
grid property. Since the various grid properties do not all have the same dimensions, it is
necessary to scale the various integralsinvolved, as is done below for the Brackbill-Saltzman
construction.

There clearly is no unique construction of the variational formulation for adaptive
grids, and thisis an areathat is not yet fully developed. The constructions given later in this
chapter are logical and illustrative of the procedure, but should not be considered definitive.

B. Euler equations

The derivation of the Euler equations, hence the grid generation system, is
straightforward but may be algebraically involved. The following developments ssimplify the
derivation somewhat. Consider first the integral over the grid points

I = [F[g_, wix)lag (51)

where g is the covariant metric tensor, with elements 9j defined by Eq. (111-5), and w(X) isa
weight function dependent on x. The Euler equations then are given by Eq. (49). As shown

in Appendix B, the Euler equations produce the following generation system (with &£/
writtenas F'):



_‘z‘_ 3 [Ajkg + Ajk{?w . r_-EJ}r_:Ek
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JK
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where

_ _8F aF
T TR T (33)

&

Here the gradient of the weight function in the last term is expressed using Eq. (111-42), with
£1 given by Eq. (111-33). It should be noted that if the weight function in the integral (51)
had been defined as a function of & instead of x, aresult different from Eq.(52) would have
been obtained for the generation system (cf. EQ. (9) of Appendix B). The two-dimensional
form of Eq. (52) is given as Eq. (10) of Appendix B.

With the variational problem formulated in the physical space, and the weight
functions dependent on x, we have the integral

I - JF[G, w(x} dx (54)

where G is the contravariant metric tensor, i.e., with elements gij from Eq.(I11-37). Then
from the Euler equations given by Eq. (50), cf. Appendix B, the generation system is (with

/8 \written as F),

3 9 ¥ 3 3&
I (A 9268 + (a0 - 1851 + I I1
! i net g™ (55)
[(e™ « veM1 « ¥E¥) = 0 (1-1,2,3)
with
aF aF
A = +
e gk agkl

C. Brackhill-Saltzman construction



Asnoted in Chapter V thereis aneed for smoothnessin the grid in order to reduce

certain terms in the truncation error of a solution done on the grid. The quantity Y& ¥E

the extension to multiple dimensions of the 5 used above with the smoothness form in Eq.
(12). Therefore to maximize the smoothness of the grid it islogical to minimize the integral
of this quantity over the physical field:

- [ et - wet - J]] 3 stter

This amounts to a minimization of the linear point density in the least-squares sense. The
property used hereisthat given as (4) on p.396, which corresponds to the ratio of the squares
of the cell face areas to the cell volume when the accumulation is over the grid points, as
given by property (4) on p. 395. The corresponding integral over the grid pointsis

3
.= ||

Substitution of F from Eq. (57) into Eqg. (19) of Appendix B then yieldsthe elliptic grid
generation system

vZel = o (59)

Thus the smoothest grid is that for which the curvilinear coordinates satisfy Laplace’s
equation.

Emphasis on orthogonality and/or on concentration of grid lines can aso be
incorporated into the grid generation system by basing the system on the Euler equations for
additional variational principles. Orthogonality can be emphasized by minimizing the
integral |, defined with property (6) on p. 396 as

fo - HLismweJ 20 ax
- (60)
) ”[EEIE 131. (g9%)%ax  (4,4,k) cyelie

since each of these dot products vanishes for an orthogonal grid. (Recall that ¥ & lis normal

to the coordinate surface on which &' is constant, cf. Chapter 111.) Theinclusion of the g2,
the cube of the Jacobian of the transformation, as aweight functionin I j is somewhat

arbitrary, and causes orthogonality to be emphasized more strongly in the larger cells. With
the accumulation over the grid points, this corresponds to the use of the square of the dot
product of the cell face normalsin the variationa statement (property (6) on p.395). The
corresponding integral over the grid pointsis



3
Io = ”JIL (Byj85K ~ Eiigjk}zd-"i (61)

Finally, concentration can be emphasized by minimizing the integral |, defined by

I, - ”JHE( xWE dx (62)

where w(x) is a specified weight function. This causes the cells to be small where the weight
function islarge, and uses property (1) on p. 396, i.e., the inverse point density. With the
accumulation over the grid points this corresponds to the use of the square of the cell volume
(property (1) on p. 395), and theintegral over the grid pointsis

I, = J ”wa{xlgdg (63)

The grid generation system is obtained by minimizing aweighted sum | of these three
integrals:

(| 5
a LOGAE 64
IeI_ 42, (D I+ 3,00 7w (64)

where N is a characteristic number of points, L is acharacteristic length, and W isthe
average weight function over the field:

. =Hjj$@ (65)

with V being the volume of the field. This sealing in the weighted sum is obtained as
follows: From the above expressionsfor I, |, and I, we have
2 5 13 3

- 3 ;
I - 212, I W= L
= 2 ' [n] NE L) H3

Therefore, the three termsin Eqg. (64) should stand in the ratios given. In two dimensions the
factorson |, and I, both become (N/L)?, since the Jacobian is then proportional to (L/N)3,
rather than to (L/N)3. The characteristic length and number of points might logically be

taken as the cube roots of the volume and the total number of pointsin the field,
respectively, in three dimensions, the square root being used in two dimensions.

Emphasisis varied among the competing features of smoothness, orthogonality, and
adaptivity by the choice of the coefficients * jand . For example, alarge 5 oWill resultin

agrid that is nearly orthogonal, at the cost of smoothness and concentration, with an
analogous effect of * . The Euler equations for this variational problem, which will be the

weighted sums of those for the individual integrals, form the system of partial differential
equations from which the coordinate system is generated. These equations will be



quasilinear, second-order partia differential equations, with coefficients which are quadratic
functions of the first derivatives, and are derived in general as described in the preceeding
section and Appendix B.

Clearly theintegral |5, Eq. (57), isthe multi-dimensional generalization of the
one-dimensional smoothnessintegra |5, Eq. (12), without the weight function, and the
integral I, in Eq. (63), isthe extension of the one-dimensional spring analogy integral |4,
Eqg. (5), to multiple dimensions, with the spring extension x t generalizing to the volume,
i.e., (the Jacobian fe in three dimensions, areain two). This variational approach thusisa
generalization of the one-dimensional equidistribution discussed above to multiple

dimensions. All of the discussion of weight functions given above in regard to
equidistribution therefore has relevance here to the weight function of the integral |, Eq.

(63). (Therole of the constant in the equidistribution weight function, e.g., the 1 in Eq. (23),
etc., which tends to produce alinear transformation, is taken by the smoothness integral | of

Eqg. (57), which tends to produce an equally-spaced grid in multiple dimensions.)

For the three integrals given by Eq. (58), (61), and (63) we have, respectively, with
(i.j.k) cyclic,

3

3
P - S Y. (811 B ~ £5.) (66)
s =vG 1 &' -T= iy 835 Bk T Ejk
3 1312 3 5
Fo - kZ1 (E 13 )& - I{Z'I (Eklgkj - Ekksij] (67)
F, = gw(x) (68)

Here, of course, from Eq. (111-14), ¥ ~ det|gy |

In two dimensions, g,5 = 9,3 = 0 and g5 = 1, so that these functionals reduce to

S
Fo= 511 " E22

] 69)
_ 2 (
B11822 ~ B9z
Fo = 852 (70)
Foy = (B1q 820 - 3%2]"2{"1#2? (71)

(Here an additive constant in F, has been dropped since only derivatives of F contribute to

the Euler equations.) Then using Eq. (1) of (Appendix B) the two-dimensional generation
system based on concentration aloneis



EHZ'EEEEEE;E * E11Bnn ~ 28128gn ~ (Bg ¢ mgpleg
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(72)
* Bwlgaa(¥w ¢ nglee + gy (Tw - e,
- gpl{Ww - pple, + (Tw < £ dep]) - 2gwiv = 0
and the generation system based only on orthgonality is
2[23122En + (:E . Enn}ce + {nn " EEE}EH
(73)

+ (rg » :E“}r“ « (o, - EEnmE] =D

The generation system based on smoothness (from Eq. (66)) is more complicated, but may
be constructed from the relations given in Appendix B. The complete generation system then
Is obtained as the linear combination of the concentration system, Eq. (72), the orthgonality
system, Eq. (73), and the smoothness system.

In Ref. [47] this combination is written in the form

h'leE + bExEn * b?]xnn + a'|:'rEE. + azygn + 23¥nn +ALEEW, O _ (748_)
aqXgg * 2p%gn * Agkyy T O¥ge T O2¥gn * Cg¥nn T AaEWy = O (74b)
where
8y = agy * Wiy * Aot
by = byy + WokIbyy * Afbgy
Gy = Cgy * Wiy + 28001
with
3gy A Dy =D Sqq=Cats
8gp=2AR, b.,=-2E4, Cgu=2CR,

asa-_ATl haa-EY. 053.GT-
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Here the coefficients subscripted s, 0, and w, arise from the smoothness, orthogonality, and
concentration integral's, respectively. The coefficients ' and A o are, taking account of the

scaling discussed above in connection with Eq. (64),

N4
AL =, D (759)
Ay = Y (750)

In one dimension, withy © =x 1 =0, we have

J o= Xy Y =
En 2
Xe¥n
Also, for the smoothness integral:
A9 = Bgp ™ 853 = 0
¥ 1
il
b - b L] D. b
81 o3 * Tap a3 Y
£
X
1 E
- « o, =0, e, ==
s1 xgyﬂ 82 83 Yﬁ



For the concentration integral :

E'H‘I =0
%z = *c¥y
aHB -0

and for the orthogonality integral:

acﬂ =0

Then

Now also
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Yeg = Xpn = Xgp = ¥ " O

and, taking the & -direction to be the one of interest, we also havey 1,1 = 0.

The generation system in one dimension then reduces to



¥ 2 ; 2
[x_; + Hzl"‘.y“)xgﬁ + iH(xEyﬂl ww, = 0
E

The”" canbe made a part of Aw i 4w = 27 oo that the one-dimensional generation system
finaly is

1 T 52
Ex— WA e + T X Wy = 0 (76)

with, for the scaling,

La M3
AL .IH(E] w (77)

Thisthen isthe differential equation that can be applied on a boundary curve,interpreting x
asarc length and & asthe curvilinear coordinate that varies along the particular boundary.

In three dimensions the calculation of the required partial derivatives of Fin Eq. (52)
for the concentration integral, i.e., F,,, given by Eq. (68), may be expedited by noting that

since £ = detlel,

) S A
g, U 91938y By

where G is the signed cofactor of Gij These second derivatives vanish if k=i or I=j, and are
equa to + g, otherwise, where (i,k,m) and (j,I,n) are cyclic, the sign being negative when
the progression from i to k is opposite to that fromj to l.

D. Applications

The dynamically-adaptive grid is applied by constructing the partial differential
equations which constitute the grid generation system from the Euler equations as discussed
above. These equations are solved numerically by replacing all derivatives with difference
expressions (typically second-order, central differences) in the same manner as discussed in
Chapter 1V. As noted in Chapter |11, the time derivatives in the equations of the physical
problem to be solved on the grid are transformed according to Eqg. (111-116), with the result
that, the grid point speeds appear in the difference equations of the physical problem. The
grid isre-generated at each time step, and these grid point speeds are determined from
difference representations between time steps. Although the difference equations for the grid
and those for the physical solution could be iterated together at each time step, the more
common procedure isto solve each separately at each time step.

Grid points on boundaries may, of course, be held fixed, but it is more appropriate in



most cases to alow the points to move along the boundary to adapt asin the field. This can
be accomplished either by using Neumann boundary conditions in the grid generation
systems, i.e., making the system orthogonal at the boundary (cf. Chapter V1), or by applying
the one-dimensional form of the grid generation equations, Eq. (76), in terms of arc length,
along the boundary.

Some rather spectacular two-dimensional results of the grid adapting to areflected
shock are shown below for supersonic internal flow over a step. The formation and multiple
reflections of the shock are made evident by the grid adaption into the shock as it develops.
Here the magnitude of the pressure gradient was used in the weight function, and both
smoothing and bounding was applied to the weight function to control grid distortion.

E. Extensions

In two dimensions, the departure of the grid from conformality can be controlled by
basing F on the Cauchy-Riemann conditions;

Fo = ”[(EJIt - n],}z gy t n,]aldxdr (79)

and some applications are noted in Ref. [45].

Finally, another very useful addition to this composite variational system isa control
on the grid point movement, which can be incorporated by taking F as

where u; isthe fluid velocity and * isthe grid speed. With * represented by adifference

form, and with the fluid velocity evaluated at the previous time step, this F can be considered
to be afunction of x;. Again some applications are noted in Ref. [45]. The following

exampl e shows the effectivenss of such control of the grid point movement:
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4. Other Approaches

Several other approaches are discussed in Ref. [45], three of which follow here.

A. Attraction-Repulsion

Another approach to adaptive gridsisto let the grid points all move asif under the
mutual influence of forces between all points. Here instead of generating new grid point
locations through the solution of partial differential equations, the grid points move directly
under the influence of mutual attraction or repulsion between points. Thisis accomplished
by assigning to each point an attraction proportional to the difference between the magnitude
of some measure of error (or solution variation) and the average magnitude of this measure
over al the points. This causes points with values of this measure that exceed the average to
attract other points, and thus to reduce the local spacing, while points with a measure less
than the average will repel other points and hence increase the spacing.
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This attraction is attenuated by an inverse power of the point separation distance in the
transformed field. The collective attraction of all other pointsisthen made to induce a
velocity for each grid point. Since each point is influenced by al other points, thisis
effectively atype of liptic generation system. Details of implementation are given in Ref.
[48] and other references cited therein.

Smoothing through the addition of diffusion -- like termsin the calculation of the grid
evolution from the grid speeds has also been used. Reflections in boundariesin the
transformed field are used to provide smooth grid motion near and on the boundaries. Since
the transformed field is rectangular, this reflection is not complicated by the shape of the
physical boundaries. A means of including terms that will induce rotational motion into the
grid has been devised to cause the grid lines to align with lines of high gradients such as
shocks.

This procedure does not exercise any control over either the smoothness or
orthogonality of the grid, so that distortion is possible. Collapse of pointsinto each other is,
however, impeded because attraction will become repulsion as the points approach each
other, since the measure which drives the motion will drop below the average as the spacing
decreases. Collapse is further impeded by the fact that the grid velocity decreases with the
spacing. It has been found necessary to apply some limits and some damping of the grid
speeds to prevent grid oscillation and distortion. In practice, the computed grid speeds are
scaled so that the maximum over the field is a set value, but with the maximum sealing also
limited. Provision is also made for exponential damping of the grid speeds according to the
ratio of the maximum Jacobian to a specified value.

Since this procedure has all grid points moving to cause some measure to approach
uniformity over thefield, it can be considered an iterative approach to the equidiatribution of
this measure over the field. This occurs because the grid ceases to move when the measure is
uniform, i.e., when the local valueis equal to the average value everywhere. Therefore, the
grid can be considered to move so as to minimize the variation in the measure over the field.

B. Reaction analogy

A different, but somewhat related, approach was noted in Ref. [45] and [5] based on a
chemical reaction analogy. Here each grid interval is taken to represent a species



concentration, and the reaction rate constants are made dependent on the difference between
alocal error measure for one grid interval compared with another. Each grid interval thenis
coupled with every other grid interval through reaction rate equations, so that each interval
grows at the expense of others, and vice versa. A system of ordinary differential equationsis
solved for the intervals. This approach, as given, is somewhat inefficient, since thereis no
provision for limiting the effect to the nearer points. With each point affected equally by all
other points, the number of ordinary differential equations to be solved is equal to the square
of the total number of points.

The rate constants also contain factors designed to limit the range of variation of the
grid intervals. The two-dimensional form given involves essentially applying the
one-dimensional form separately along each family of curvilinear coordinate lines, with
spacing in one cartesian coordinate being adjusted along one family of curvilinear lines, and
the other cartesian coordinate being adjusted along the other family.

C. Moving finite elements

The moving finite element method of Miller (Ref. [49] -- [50]) isa
dynamically-adaptive finite element grid method in which the grid point locations are made
additional dependent variablesin a Galerkin formulation. The solution is expanded in
piecewise linear functions, in terms of its values at the grid points and those of the grid point
locations on each element. The residual is then required to be orthogonal to all the basis
functions for both the solution and the grid. The grid point locations are thus obtained as part
of the finite element solution. An internodal viscosity isintroduced to penalize the relative
motion between the grid points. This does not penalize the absolute motion of the points. An
internodal repulsive force was also introduced to maintain a minimum point separation. Both
of these effects are strong but of short range. A small long range attractive forceis also
introduced to keep the nodes more equally spaced in the absence of solution gradients. Small
time steps are used in the initial development of the solution. The results show that the
oscillations typically associated with shocks with fixed grids are removed with the adaptive
grid, and that dispersion and dissipation are essentially eliminated. An order-of-magnitude
increase in stability was also realized over conventional methods.

5. Corréelations

The ultimate answer to numerical solution of partial differential equations may well be
dynamically-adaptive grids, rather than more elaborate difference representations and
solution methods. It has been noted by several authors that when the grid is right, most
numerical solution methods work well. Oscillations associated with cell Reynolds number
and with shocks in fluid mechanics computations have been shown to be eliminated with
adaptive grids. Even the numerical viscosity introduced by upwind differencing is reduced as
the grid adapts to regions of large solution variation. The results have clearly indicated that
accurate numerical solutions can be obtained when the grid points are properly located.

It isalso clear that there is considerable commonality among the various approaches to
adaptive grids. All are essentially variational methods for the extremization of some solution
property. The explicit use of varational principles allows effective control to be exercised
over the conflicting requirements of smoothness, orthogonality, and concentration, and this



Is probably the most promising approach in multiple dimensions.

The adaptive grid is most effective when it is dynamically coupled with the physical
solution, so that the solution and the grid are solved for together in a single continuous
problem. The most fruitful directions for future effort thus are probably in the development
and direct application of variational principles and in intimate coupling of the grid with the
physical solution.

Exercises

1. Show that Eq. (4) isthe Euler equation for the minimization of the integrals (5), (6), (12),

and (13). Hint: For (6) note that in the term dfas(aFfox) , W must be differentiated with
respect to & implicity, i.e, w & =w,X & . A similar situation occurs with (13). Note, however,

that implicit differentiation is not to be used in the term ¢/ for (5) or in “5/9 for (12).
2. Show that Eq. (4) isaso the Euler equation for the integrals

1
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3. With the weight function given by w(x)=sin("*x/L), find the grid point locations from Eq.
(20). Note the concentration near x=L/2 where the weight function has its maximum value.

4. For u(x)=(L/™)sin( x/L), obtain the point distribution from Eq. (20) using the weight
functions from Eq. (22), (23), (25), (26) and (27). Use @=F=1. Plot and compare.

& i

5. Show that the average of the squares of the diagonal lengthsis ¢

6. Verify the correspondence between the six grid properties listed on p. 395 with the six
listed on p. 396. Hint: Recall that dx="% d© .

7. Verify that the one-dimensional forms of the first four properties on pp. 395-396 are as
stated on p. 396-397. Hint: In one dimension take

xE 0 0
0 4] 1

8. Show that Eqg. (59) is the Euler equation resulting from the integral given by Eq. (57).



9. Verify Eq. (72) and (73).

10. Show that with

the generation system is

3
v2ed o - K2ly 421 w o 26X v zel
¢ {k§1 12671 W Lj gk

Hint: Use Eq. (19) of Appendix B.

11. Show that with © = #1(5") " #2(5%) the generation system consists of Laplace equations
in the computational space.

12. Show that with

the generation system is

w2l < gy . gel
W

&

L, (i,j,k) cyclic, the generation system is

F pr—
13. Show that with i

Il [

3
2
127 [Eg'jkcEjE" T gkgh!Ce Heg o radgkmgk] =0

aFfdg. = (1 — )8, &F {08, = (1 — £;) 60,8y

Hint: Note that and



APPENDIX A
DIFFERENTIAL-GEOMETRIC CONCEPTS ON SPACE CURVES AND SURFACES
1. Theory of Curves
In this appendix we consider only those parts of the theory of curvesin space which
are needed in the theory of surface geometry for the purpose of coordinate generation. Let C

be a curve in space whose parametric equation is given as

r = (1)

where T is a parameter which takesvaluesin acertaininterval a= 7 = h.

it}

It is assumed that the real vector function = (%) isp = 1 times continuously differentiable for
all values of T in the specified interval, and at least one component of the first derivative

'-El:.
r
dt

is different from zero. Note that the parameter © can be replaced by some other parameter,
say s, provided that ds/d™ = 0.

A. Tangent vector

Let us consider the arc length s as a parameter. Then the coordinates of two
neighboring points on the curve are - (s) and ~ (s+h). The vector L (s) defined as

= 11p E€=+h) - pla) _ dr
L(e) = L1n n as (3)



is the unit tangent vector at the point s on the curve. Since [z | = ds

that |27 =1

, we immediately see

If the curve Cisreferred to ageneral coordinate system Ei thenits parametric
eguations are given as

gl = gl(a), 1=1,2,3

In this case, using the chain rule of differentiation, we can write

3 1
- a8
k() 121 31 e (4)

where ﬁi are the covariant base vectors defined in Eq. (111-1).
B. Principal normal
Since - "4~ = 1 asingle differentiation with respect to syields

R | RS
. da

so that the vector d-- /dsis orthogonal to - . The vector

g - 9k ©

is called the curvature vector. The unit principal normal vector isthen defined as
p - k/|k] (6)



ORI |

The magnitude ¢ =k and itsreciprocal © = 1/k(s) are, respectively, the
curvature and the radius of curvature of the curve at the point under consideration. Both the
curvature vector and the principal normal are directed toward the center of curvature of the

curve at that point.

C. Normal and osculating planes

Thetotality of all vectors which are bound at a point of the curve and which are
orthogonal to the unit tangent vector at that point lie in aplane. This planeis called the
normal plane. The plane formed by the unit tangent and the principal normal vector is called
the osculating plane.

D. Binormal vector

A unit vector 2 (s) which is orthogonal to both L and £ iscalled the binormal vector.
Its orientation is fixed by taking L 2 toform aright-handed triad as shown below:

=% xp (7)

Note that for plane curves the binormal £ isthe constant unit vector normal to the plane,
and the principal normal is the usual normal to the curve directed toward the center of
curvature at that point.

The twisted curves in space have their binormals as functions of s. Because of twisting



anew quantity called torsion appears, which is obtained as follows. Consider the obvious
equations

b.gai, b»t=0 (8)

Differentiating each equation with respect to s, we obtain

. db _
P de " (%)
b-SE+dB. g -0 (9b)
Thus
8 . g kp-p=0 (9c)

ds
From (9a,c) we find that dZ /dsisavector whichiis orthogonal to both L and 2. Thus
d” /dslies along the principal normal,

4ap - * TP
da —

To decide about the sign we take the cross product of £ with dZ /dsand takeit asa positive
rotation about - :

(s
-t

b
jdb
ds
Thus
h X ﬂ. = 1§ (10a)
cla
and
db

an TP (10Db)



E. Serret-Frenet equations

A set of equations known as the Serret-Frenet equations, which are the intrinsic
equations of a curve, are the following. Differentiating the equation

P = B x L
with respect to s, we have
4P = 4p ~ k
o TR T kb (11)

Equations (6), (10) and (11) are the Serret-Frenet equations, and are collected below:

d
Er; = kp , k = curvatura (129)
gh_; - _TE . T = toralon (12b)
dp -
EE' th - ki (12c)

For aplane curve, T = 0, so that
E = constant

ﬂ:kp' _g£=—Kh
da = da

(13)

2. Geometry of Two-Dimensional Surfaces Embedded in E3

Before taking up the main subject of surface theory, it isimportant to clarify the
notations which are to be used in the ensuing devel opment.

In an Euclidean E3, a set of rectangular cartesian coordinates (x,y,z) can aways be .
introduced. As before, in E3 ageneral curvilinear coordinate system will be denoted by &1 (i

= 1,2,3). With these curvilinear coordinates, a surface in E3 will be denoted by & V=
constant, where v = 1,2,3. The following convention is adopted which maintains the

right-handedness of the two remaining current coordinates: On the surface & Y = constant,
the current coordinatesare & “ , & B, where (7, ¢ ) are cyclic.

A. First fundamental form

Let us consider the surface & = constant. In this surface an element of length dst™)
isthen given by



(as(¥)2 . de + dp

I I
a‘?ﬁ ag®  3F (14)

- . drqrb
a?ﬂ R e

¢k

By gn

where theindices ¢ and P will assume only the two values different from V. Eq. (14) is
called the first fundamental form of a surface.

B. Unit normal vector

The unit normal tothe surface 5 © = constant is defined as
plv) - _1 8y X dp

HEEW |a, x aﬂf' (15)

where again (v, ) are cyclic.

&f

C. Second fundamental form

")



A plane containing the normal 2 () to the surface at a point P cuts the surface in
different curves when rotated about the normal as an axis. Each curve so generated belongs

both the surface and to the space E3. A study of curvature properties of these curves reveals

the curvature properties of the surfaces in which they lie. We decompose the curvature
A

vector < at P of C, defined in Eq. (5), into avector £  normal to the surface and a vector
£
g

tangential to the surface as shown below:

Surface £'-const.

Thus
E{U) - klgl\l} + kg{u} (16)

The vector & n Isthe normal curvature vector at the point P, and is given by

Is:‘-:,“"] - g k;::lv] (17)

k

I . . . (2 . .
where “= isits magnitude. To find an expression for %2 we consider the equation

n(‘ﬂ}_t_ﬂ

and differentiate it with respect to s (the arc length along the curve C) to have

kV) o . an'¥? . de (18a)
" (ds)?

Also, differentiating the equation

g{u) - Eap D



with respectto &, we get

{n(“}}gﬂ « gy = 0tV . R (18b)
Further,
ﬂnt"h‘} - I Hg[uj dEﬂ-
a JE®
(18c)
dr = aL—dEB
v
Thus using Eqg. (18b) and (18c) in (18a), we get
@B
R{V) o T pgp U6 19
n u?ﬁ ’ (ds)? a9
where
byg = ¢V - & A (20)
£%

The two extreme values of 2y are called the principal curvaturesk; and k, and their sumis
given by

Theform

EEE bﬂﬂdﬁudgﬂ (22)

is called the second fundamental form.
3. Christoffel Symbols

Certain 3-index symbols, known as the Christoffel symbols, show up in anatural way
when vectors or tensors are differentiated with respect to general coordinates introduced in a
space. Here, by 'space’ we mean aregion in which arbitrary independent coordinates can be
introduced; the number of independent coordinates determines the dimensionsion of the
sapce. A space is termed Eulclidean when rectangular cartesian coordinates can be
introduced in it on aglobal scale. Examplesare 2D or 3D regionsin aplaneorina
rectangular box, respectively. It must, however, be pointed out that in an Euclidean space,
besides rectangular cartesian coordinates, any general coordinate system can be introduced



without disturbing the basic nature of the space itself. Since this book is mainly concerned
with the general coordinate systemsin either 2D or 3D Euclidean spaces, or to 2D surfaces
embedded in a 3D space, we shall restrict our attention to the Christoffel symbolsfor space
and for surfacesonly.

A. Space Christoffel symbols

From the definition of the base vectors ﬁi, we first note the following result. For any
two indicesi and k,

a2, ar ar
- _ai{-[—i) - 2=
aek  agf ag 3" 9E
Thus
a8 agk
- - —; (23)
BE aE

We now select any three indices. say i,j,k, and consider the following three equations,

BE
= D
3E 8L
Wi 3

i ST Y
13 JE
og

ik 3
——=—{a, * a)
aed  oppd 1K

Adding the second and third equations, and subtracting the first equation, while using Eq.
(23), we get

03,
=4 = Eidlk] (24)
gy K
where
o o . 98
[11,k] = %{—41£+ ik _ ;J} (25)

sl agd a

is called the Christoffel symbol of the first kind.



Eq. (24) implies that

93
ag—; - E [i, k1 atk? (26)

Taking the dot product on both sides of Eq. (26) by £ | we obtain

da; 1 1
— =« g - I"
HEJ ij (27)
where
Tiy = E gkl [13,k] 28)

is called the Christoffel symbol of the second kind.

Eq.(27) impliesthat
oa
=1 I l
— =, T, 2 (29)
grd 1 WL

It must be noted that both kinds of Christofiel symbols are symmetric in the first two indices,
viz.,

[13,k] = [34,k1, 71y = Iy

It is also easy to show, based on the definition of T that
i, -1 _Bg
E T35 " g el (30)

The Christoffel symbols T canbe computed by using the following expanded formulae:
2
ax_ 3 X
rl - I E gkl n 14 (31)
14 K o 1,]
kn 3" JEE
wheretheindicesl,i,j rangefrom 1to 3in 3D, or from 1to 2in 2D.

B. Christoffel symbolsin asurface

The Christoffel symbols, (25) and (28) are applicable both to 2D and 3D Euclidean
spaces. In fact, if we take (25) and (28) as the definitions of some 3-index symbols without



any consideration of an Euclidean space, then they are also applicable to an n-dimensiona
non-Euclidean space.

The Christoffel symbolsfor a2D surface embedded in a 3D Euclidean space are
defined exactly as for any other space. Since in a surface only two independent coordinates
can be introduced, we again use the Greek indices to emphasize this point and write

a5 , 25 ag,

1
[ap,8] = =¢ 32
28 2% o (32)
§
Tog = g g°° [ap,s] (33)

asthe Christoffel symbols of the first and second kind respectively, of a surface. Here the
indices assume only two values.

An important point to note here is that for a 2D space the metric coefficients g; j do not

depend on one of the cartesian coordinate, say z. On the other hand for a 2D space formed by
asurface in 3D Euclidean space the metric coefficients appearing in (32) and (33) depend on
all three cartesian coordinates.

Gauss indirectly introduced the definition of the Christoffel symobls by arguing that in
asurface the base vectors = ;, = [ and the unit normal * (Eq. (15)) form atriad of

independent vectors. Thus any other vector in the surface can be presented as alinear
¥

combination of = ,, ~ g, 2. Following this argument, the second derivative of the position
vector = can be expressed as
- 8
Cap = § Tag Ts * Pyg 0 (34)

which are called the formulae of Gauss. Thus, for a surface 5 3 = constant in which 51, 52
are the current coordinates, Eq. (34) iswritten as

Tap = T8 €5 ¢ byg 2V (35)

where Eq. (35) represents the second derivatives ZE1 &1 L £1c2 2 £2¢2



APPENDIX B
EULER EQUATIONS
1. Variationa Principle in Transformed Space

Consider the integral
I = JF[E,H(EJ Tdg

where £ isthe covariant metric tensor, with elements Oij defined by Eq. (111-5), and w(£) is
aweight function dependent on .

A. Grid Generation System

The Euler equations then are given by
§ o2 _aF e
- J o(x;} ox
J=1 BE i EJ i

=10 (i=1,2,3) (2)

as has been noted. Since

{xi}E"j - (Ej)i

and F depends on (x;) = j only through the elements of the metric tensor, £ , We have

3¢ __oF_ _aF %% ap ;
a{xiJEj Bla;)y 2y 3lay);  Bay 1 3)

where £ i isthe unit vector in the x;-direction. Here the operation indicated by the notation,

OF[04; ¢ i, is the simple replacement of ﬁj by < . in F. Also, since F depends on ﬁj only

through £ , We have

oF o %
Bay M T Ly 0% B B2y <L
3 als, = a,)
ar '8y * &
= E ) 2 .11

el 1=1 2Bkl 23



or

303 o
e Ll . (6,502 * &) * 8350, « e))

TR S R
S R S i BT (g, - )
1=1 985 1 k=1 “Bx)
Therefore,
3F T 8F_ L, 3F L o)
Lolgg - "R

EixI}EJ k=1 9Bk BEkJ

Since F depends on £ only through the weight function we have

BF_ _ 3F aw _ 3F - 9F .
3%, | dW aX B I " e & v
1 i
Then the Euler Equations can be written as
j=1 k=1 9Bgk OBy K

or as the vector equation

JF aF _&F )

3=1 k=1 8y ' BEkJ}EkJEJ ow v " 0 (6)

(Note that the symmetric elements of the metric tensor, i = 9y ae to be left as distinct
elementsin F until after the differentiation has been performed.)

Expanding the & J-derivative, we then have

3 3
F aF SF . 3F
D N (o Lampr ) I S| I L S
Ju1 k=1 OBy OBy Tedek 3By gy Tpd ek

- aF o _
Hw?-w ©



But also

3 3
aF a oF
(=) .= F I f 11{g )
Byy' gl meton=1 By By M
a3, OF
e Y )
agkj 8w EJ
S0 that
3 3 2
oF 2ZF
(o) , = ) ] sl (p T +p_en )
Wy g wet nm1 BBy g Telgh e Tt

d df
+ [Tkjfﬁ}] (Yw » EEJJ

Thus we have the grid generation system, with “£/%" written as F,

A + A, (Tw e p On
Ji k21[ Jk ng-jgk JK g g

3 3k
+ % I_‘E(Em'td
m=1 n=i 3g_ E E°E

et gl
where

A .- aF _, _oF

J ang BskJ

(")

(8)

Thisisaquasi-linear, second-order partial differential equation for the cartesian coordinates
r

If the weight function depends directly on & , instead of on £ in Eq. (1), then

aF foy =

“inEq. (2). Alsoin his case, the Lws Ly that appears on p. 439 and in the
development that leads to Eq. (7) isreplaced by simply wt . Then Eq. (7) isreplaced by



3 3 '
1 51 LAy Cggk ™ gk ¥pd Tk

e ©)
9
3 3 a4
K e e p +p P ‘r
* g ok PP L R L S

for aweight function W(i) in Eg. (2).
B. Two-Dimensional Examples

In two dimensions, the generation system (7) becomes (with 1 =5 and £2=T)
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If the weight function depends on fz, rather than on x, the terms "% and xw 7 in Eq.

(10) becomew: and wr,, respectively, and the last term, -- 1/2 F ¥ w, vanishes.

As an example, consider F,,, from Eq. (X1-71). Then we have



aF

2 2 F 2 F 2
— e WE WZy - -w'Eg,,, T——= “WE
T 22* Ig 11 36, 21" gy, 12
3k, | sy 2 B4y
3 = 0, 3 2W , 3 = 0
€11 Eaz %2
Ay 2 3y g
m = 29 , 3 a, 5 =0
811 B2 Bz
a2 Php ¥y

38,5 9By 385,

IF* 3F aF'  3F'

Awg — = 2 r mo ™ = ~2wg

58, 22" e,y 17 3, 98, 12

Then the generation system based on concentration by Eq. (7) is
2 1Boleg * €118qn = 2E128gn ~ (By * Lgedla
= ;g * Tydrg * ey ¢ tpg)Tp + (gt kgp)egd
(11)
* Mwlgpp(Uw « wplry *+ B (Bw - rpdoy,

= B12[{EH v :E}Cﬂ + (T E“]EE]} ~ 20g YW =D

With F taken to be a measure of orthogonality, i.e., F, from Eq. (X1-70), we have,



_ _ 2
o _ (61 " BpplByy ~ 28y,
3g — 2 .37z
" ey 8y, - oayy)

i -
aF__ (Bxp "~ erdEgy 28,

3
22 Bi18pp = 3.122]312

oF (B * ByplEy
3312 /2

2
28183 ~ £13)

aaF (81 + 255)8,,
2

The generation system based only on orthogonality thenis
2L2gatgn *+ (og = Toqdug * (g - RgdTy,

(12)
* leg o rpploy * (2 = mgplogl = 0

Finally, for the smoothness integral, Eq, (X1-69), the derivatives needed are

_ _ 2
o _ (61 " BpplByy ~ 28y,

3
LT
(B, - €18, - 28°

aF__ _Baz T B197Bqy T “Byp
5

22 a8, - 3122:'3!2
ar By ¥ 85008y

Bz 20 gy, - 6

gF (81 * Bypl85
By

_ 72
2(8) 1Byp " By,
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The complete generation system is then obtained as the linear combination of the
concentration system, Eq. (11), the orthogonality system, Eqg. (12), and the smoothness
system which is formed by substituting the above relations into the general equations (7).
The three-dimensional case follows in an analogous fashion.



2. Variational Principle in Physical Space
With the variational problem formulated in the physical space, consider the integral
I - [flE, wig)lax (13)

where ¢ isthe contravariant metric tensor, i.e., with elements gij from Eq. (111-37), and the
weight function is afunction of £

A. Grid Generation System

Then for the Euler equations, we have

3
3 __aF _@F
- =0 (1 =1,2,3}
3= % aeh_ gt ' (14)
J

Now,

cely = (zely, = (al)
XJ J J

and F depends on (& i)X_ only through # . Then
]

'&al
aF _ _ _®F___BF_ _"F aF

Bfﬁiix 3{2111 Bgl aﬂgiij ?gl 3
J

Also, since F depends on 2i only through gik (k = 1,2,3) we have
3 1k
aF E E dF dg
— E - —— e
sal 4 ket 1=1 2gF 22l Ty

atat « a)

3
3F ] .
- 11 g e et 8 eyl
km1 I=1 BE J



Therefore,

L_%af- aF

ki ik
a(gllx k=1 ag ag

d

Also, since F depends on £ only through the weight function, we have

aF 3F ow
BEI oW BE1

Then the Euler equations can be written

g 3 aF | K _BF dw_
[r - T 0
Jut Lj'ﬂ Bxy Hgki 17 W gl
(1 =1,2,3)
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,j BxJ E a ki oW HE_'i
Now
gy« @), -y - (T, = (£
J J j JCJ xdxj
and

g+ gy = (EkaJ

Then
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Then the generation system is, with “%/® written as P,

2k 'an 1 gk
E {Aik? E + Aik l EE EE

le=1 1=1 2g
3 JA
N G LA T S I P (15)
m=1 mn=1 Elg
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9E

where
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This can aso be written as

2 k _
k=1
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el oL § ¢ s
det[a] Ko1K (19)
where C,, isthe signed cofactor of A
If the weight function in the integral (13) isafunction of %, rather than =, then
4F {45 = U jn the Euler equation (14), and Eq. (15) is replaced by
' k
b {[nik_vzg" + 4, 9w+ V5]
k=1
(20)
3 3 3A
1§ e NI S -0
m=1 n-1 3g™
Inthiscase S, of Eq. (18) are redefined as
3 3k ' L
R S M I X2 Tt T TP IE U S T T B e
k=1 m=1 pn=1 ag“’“



APPENDIX C
CODE DEVELOPMENT AND COMPUTER EXERCISES
1. Code Development Exercises

1. Take the computational region to be a rectangle on which the curvilinear coordinates are
defined to be equal to the indices of the field arrays, i.e, & =1 and T = J, withx = X (1,J)
andy =Y (1,J).

Make provision for reading in values of x and y on any segments of the boundary of the
computational region. Generate x and y in the interior by interpolating linearly between the
top and bottom boundaries. Plot the grid.

2. Modify the code to allow horizontal (in the computational plane) interpolation, as well,
the choice being specified by input.

3. Now add the choice of interpolation from the four corners (tensor product interpolation).
4. Finaly add the choice of transfinite interpolation.

5. Generalize the interpolation to cubic Hermite interpolation, with the grid being orthogonal
at the boundary.

6. Generalize the interpolation to use the hyperbolic tangent distribution function, rather than
being linear, with specified relative spacing on each end.

7. Modify the code to provide for reading in x and y on any segment of any horizontal or
vertical line in the computational region. Also provide for the interpolation tion to be done
on any rectangular segment of the computational region (including a segment that isonly a
line))

8. Add another field array TYPE (I,J) which isaflag to identify each point as one for which
the x,y values are (1) fixed, e.g., specified points on the physical boundary, (2) out of the
computation, e.g., pointsinside aslab, or (3) to be generated. Provide for the designation (1)
and (2) to be made by input for any rectangular segment of the computational region, the
default being to the designation (3).

9. Modify the dimensions of the field arrays so that an extra layer of points surrounds the
computational region. Also add two more field arrays, ILINK (I,J) and JLINK (I,J). Provide
for any segments of any horizontal or vertical linesto be designated asimage pointsin
TYPE by input, i.e., points for which the values of x and y are set equal to those at some
other point. Also provide for the indices of these other pointsto be put in ILINK and JLINK
by input.

10. Add an €lliptic generator, based on Laplace equation, to the code. Use the algebraic
generator (the interpolation) to provide the initial guess for point SOR iteration.



11. Add control functions to the elliptic generator. Let the control function be evaluated on
the boundaries and interpolated into the field by transfinite interpolation.

2. Computer Exercises

1. Generate an algebraic grid between two concentric circles. Use linear interpolation
between the circles.

2. Generate an algebraic grid between two ellipses, both of which are centered at the origin
but which may have different eccentricities, using interpolation between the ellipses.
Compare grids generated using linear and Hermite interpolation, the latter being orthogonal
at the boundaries.

3. Generate a C-type algebraic grid for an ellipse inside an outer boundary formed by a
semicircle replacing one side of arectangle:

-

Compare (1) vertical interpolation in the computational region boundary, (2) horizontal
interpolation, (3) tensor product interpolation, and (4) transfinite interpolation, using linear
interpolation in each case. Note that (2) and (3) are totally unreasonable.

4. Generate an algebraic grid for acircular simply-connected region by (1) unidirectional
interpolation, (2) tensor product interpolation, and (3) transfinite interpolation. Note that here
only (3)gives areasonable grid. Compare linear and Hermite interpolation for (3).

5. Repeat Exercise 4 with atriangular boundary.

6. Using the boundary configuration of Exercise 3, but with a hyperbolic tangent point
distribution on the right-hand boundary of the physical region with smaller spacing at the
centerline than at the top and bottom. Compare algebraic grids generated using (1) linear
interpolation between the inner and outer boundaries, (2) nonlinear interpolation, based on
the hyperbolic tangent, between the inner and outer boundaries, (3) transfinite interpolation
with linear blending functions, and (4) transfinite interpolation using the boundary point
distribution (in terms of relative arc length) as the blending functions. Note that only (2) and
(4) preserve the boundary point distribution in the field.

7. Generate an algebraic grid for a square inside a rectangle using linear interpolation
between the inner and outer boundaries. Note the propagation of the boundary slope
discontinuitiesinto the field. Generate a grid from an elliptic generation system for the same
boundary point distribution and note the difference.

8. Generate an algebraic grid for asquare inside a circle using linear interpolation between



the inner and outer boundaries. Show that it is possible to position the points on the circle
such that the grid overlaps the corners of the square. Generate agrid from an elliptic
generation system for the same boundary point distribution and note the difference.

3. Listing of Routine for Computer Exercises

SUBROUTINE INTERP
PARAMETER (NI=20,NJ=20,N=5)
COMMON/COORD/X (NI, NJ) ,Y (NI, NJ)
COMMON/CONST/CHOICE, IMAX, JMAX,NA,DS1,DS2
COMMON/ATTR/IAL (N), IAX (N) , IAY (N) , JAL (M) , JAX (N) , JAY (N)
COMMON/COEF/AI (N) ,BI (N),CI(N),DI(N),AJ(N),BJ(N)
COMMON/COEF/CJ (N) , DJ (N)

DIMENSION P (NI,NJ),Q(NI,NJ),XX(0:NI,0:NJ),YY(0:MI,0:NJ)
DIMENSION X1 (NI,NJ),X2(NI,NJ),Y1l(NI,NJ),Y2(NI,NJ)
INTEGER CHOICE

c
c BOUNDARY INTERPOLATION
c
c X X ARRAY OF XI-ETA COORDINATE
c Y Y ARRAY OF XI-ETA COORDINATE
c IMAX MAX. NUMBER OF GRID IN XI AXIS
c JMAX MAX. NUMBER OF GRID IN ETA AXIS
c NA MAX. NUMBER OF ATTRACTIONS
c DS1 SPECIFIED LENGTH OF INITIAL INTERVAL
c DS2 SPECIFIED LENGTH OF FINAL INTERVAL
c ATTR ARRAY OF ATTRACTION TO LINES/POINTS
c COEF ARRAY OF COEFFICIENT FOR ATTRACTION
c
c CHOICE
c 1 VERTICAL INTERPOLATION
c 2 HORIZONTAL INTERPOLATION
c 3 TENSOR PRODUCT INTERPOLATION
c 4 TRANSFINITE INTERPOLATION
c 5 HERMITE CUBIC INTERPOLATION
c 6 HYPERBOLIC TANGENT INTERPOLATION
c 7 ELLIPTIC GRID GENERATION ( SOR ITERATION )
c 8 ATTRACTION TO COORDINATES
c
IF (CHOICE.EQ.1) GO TO 100
IF (CHOICE.EQ.2) GO TO 200
IF (CHOICE.EQ.3) GO TO 300
IF (CHOICE.EQ.H) GO TO 400
IF (CHOICE.EQ.5) GO TO 500
IF (CHOICE.EQ.6) GO TO 600
IF (CHOICE.EQ.7) GO TO 700
IF (CHOICE.EQ.S) GO TO 800

*%%% VERTICAL INTERPOLATION ***%*

QNN

100 DO 110 I 1,IMAX
DO 110 J 1,JMAX
RJ1=FLOAT (JMAX-J) /FLOAT (JMAX-1)
RJ2=FLOAT (J-1) /FLOAT (JMAX-1)

c **x*x (EQ. 8-1 )

X(I,J)=RJ1*X(I,1)+RJ2*X(I,JMAX)

110 Y(I,J) RJL*Y(I.1)+RJ2*Y(I,JMAX)
RETURN

c **x% HORIZONTAL INTERPOLATION ****
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QNN

200 DO 210 I=1,JMAX
DO 210 J=1,IMAX
RI1=FLOAT (IMAX-I) /FLOAT (IMAX-1)
RI2=FLOAT (I-1)/FLOAT (IMAX-1)
***% ( EQ. 8-1 )
X(I,J)=RI1*X(1,J)+RI2*X(IMAX,J)

210 Y(I,J)=RI1*Y(1,J)+RI2*Y(IMAX,J)
RETURN

**%x% TENSOR PRODUCT INTERPOLATION ***=*

300 DO 310 I=1,IMAX
DO 310 J=1,JMAX
RI1=FLOAT (IMAX-I) /FLOAT (IMAX-1)
RI2=FLOAT (I-1)/FLOAT (IMAX-1)
RJ1=FLOAT (JMAX-J) /FLOAT (JMAX-1)
RJ2=FLOAT (J-1) /FLOAT (JMAX-1)
**x* ( EQ. 8-69 )
X(I,J)=RI1*RJ1*X(1,1)+RI1*RJ2*X (1, IMAX)
*+RI2*RJ1*X (IMAX, 1) +RI2*RJ2*X (IMAX, JMAX)
Y(I,J)=RI1*RJ1*Y(1,1)+RI1*RJ2*Y (1, JMAX)
*+RI2*RJ1*Y (IMAX, 1) +RI2*RJ2*Y (IMAX, JMAX)
310 CONTINUE
RETURN

**%x% TRANSFINITE INTERPOLATION ***=*

400 DO 410 I=1,IMAX
DO 410 J=1,JMAX
RI1=FLOAT (I-1)/FLOAT (IMAX-1)
RI2=FLOAT (IMAX-I)/FLOAT (IMAX-1)
X1(I,J)=RI1*X(IMAX,J)+RI2*X(1,J)
410  Y1(I,J)=RI1*Y(IMAX,J)+RI2*Y(1,J)
DO 420 I=1,IMAX
DO 420 J=1,JMAX
RJ1=FLOAT (J-1) /FLOAT (JMAX-1)
RJ2=FLOAT (JMAX-J) /FLOAT (JMAX-1)
X2 (I,J)=RJ1* (X(I,JMAX)-X1(I,JIMAX))+RJ2* (X(I,1)-X1(I,1))
420  Y2(I,J)=RJ1* (Y (I,JMAX)-Y1(I,JMAX))+RJ2* (Y (I,1)-Y1(I,1))
*%% ( EQ. 8-73 )
DO 430 I=1,IMAX
DO 430 J=1,JMAX
X(I,J)=X1(I,J)+X2(I,J)
430  Y(I,J)=Y1(I,J)+Y2(I,J)
IF (CHOICE.NE.4) GO TO 740
RETURN

*%x* HERMITE CUBIC INTERPOLATION (ORTHOGONAL BOUNDARY) ***

500 DO 510 I=1,IMAX
DO 510 J=1,JMAX
XX (I,J)=X(I,J)
510 YY(I,J)=Y(I,J)
DO 520 J=1,JMAX
0,J) =XX (IMAX-1,J)
0,J) =YY (INAX-1,J)
IMAX+1,J) =XX(2,J)
IMAX+1,J) =YY (2,J)
DO 530 I=1,IMAX
DO 530 J=1,JMAX

XX (
YY (
XX (
YY (

520
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530

540

600

610

620

630

650
660

700

RJJ=FLOAT (J-1) /FLOAT (JMAX-1)

**%x ( EQ. 8-6 a and b, n=2 )
PHI1=(1.+42.*RJJ)* (1.-RJJ) *(1.-RJJ)
PHI2=(3.-2.*RJJ) *RIJT*RJIJ
PSI1=(1.-RJJ)*(1.-RJJ)*RJIJ
PSI2=(RJJ-1.) *RJIT*RJIT

** CAL. NORMAL DERIV. **

XXI1l=.5* (XX (I+1,1)-XX(I-1,1))

XXI2=.5* (XX (I+1,JMAX)-XX(I-1,JMAX))
YXI1=.5*(YY(I+1,1)-YY(I-1,1))

YXI2=.5* (YY(I+1,JMAX)-YY(I-1,JMAX))

UNIT1=SQRT (XXI1*XXI1+YXI1*YXI1)

UNIT2=SQRT (XXI2*XXI2+YXI2*YXI2)

**x* ( EQ. 3-108 )

XN1=-YXI1/UNIT1*DS1

XN2=-YXI2/UNIT2*DS2

YN1=XXI1/UNIT1*DS1

YN2=XXI2/UNIT2*DS2

*x* (EQ. 8-5 )

XX (I,J)=PHI1*XX(I,1l)+PHI2*XX(I,JMAX)+PSI1*XN1+PSI2*XN2
YY(I,J)=PHI1*YY(I,1)+PHI2*YY(I,JMAX)+PSI1*YN1+PSI2*YN2
DO 540 I=1,IMAX

DO 540 J=1,JMAX

X(I,J)=XX(I,J)

Y(I,J)=YY(I,J)

RETURN

*%%% HYPERBOLIC TANGENT SPACING INTERPOLATION ***%*

TOL=1.0E-10

**% ( EQ. 8-49, 50 and 51

A=SQRT (DS2/DS1)

B=1./ (FLOAT (JMAX-1) *SQORT (DS1*DS2) )
**%* INITIAL GUESS BY SERIES EXPANSION
DELTA=SQRT (6.* (B-1.))

DO 610 IT=1,20
RESID=SINH (DELTA) / (DELTA*B) -1.

IF (ABS (RESID)LT.TOL) GO TO 630

CALL AITKEN (DELTA,RESID,DELTO, RO, RSO)
PRINT 620, RESID,DELTA,IT-1

FORMAT (//, 5X, 'DELTA IS NOT CONVERGE ?’, 5X, 2E15.5,
*5X, I3, //)

GO TO 660

CONTINUE

***x ( EQ. 8-52, 53 and 54 )

DO 650 I=1,IMAX

DO 650 J=2,JMAX-1

RATIO FLOAT (J-1)/FLOAT (JMAX-1)

U=.5% (1.+TANH (DELTA" (RATIO-.5)) /TANH (.5*DELTA) )
S=U/ (A+ (1.-A) *U)
X(I,J)=X(I,1)+(X(I,JMAX)-X(I,1))*S
Y(I,J)=X(I,1)+(Y(I,JMAX)-Y(I,1))*S
RETURN

~

*%x** ELLIPTIC GRID GENERATION ( SOR ITERATION ) ***x*
**% CAL. P AND Q ON THE BOUNDARY =*=*

DO 710 I=1,IMAX
DO 710 J=1,JMAX
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710

720

740

XXI=.5% (X (I+1,J)-X(I-1,J))
XXIXI=X(I+1,J)-2.*X(I,J)+X(I-1,J)
XETA=.5% (X (I,J+1)-X(I,J-1))
XETA2=X (I,J+1)-2.*X(I,J)+X(I,J-1)
YXI=.5% (X(I+1,J)-Y(I-1,J))
XXIXI=Y(I+1,J)-2.*X(I,J)+Y(I-1,J)
YETA=.5% (Y(I,J+1)-Y(I,J-1))
YETA2-Y(I,J+1)-2.*Y(I,J)+Y(I,J-1)
IF (ABS (XETA2) .LT.10E-3) XETA2=0.
IF (ABS (YETA2) .LT.10E-3) YETA2=0.
RXI2=XXI*XXI+YXI*YXI
RETA2=XETA*XETA+YETA*YETA

*%% ( EQ. 8-70 )
P(I,J)=(XXI*XXIXI+XXI*YXIXI)/RXI2
Q(I,J)=(XETA*XETA2+YETA*YETA2) /RETA2
CONTINUE

* % INTERPOLATE P AND Q BETWEEN BOUNDARY **
P : VERTICAL, Q : HORIZONTAL

DO 720 I=1,IMAX

DO 720 J=1,JMAX
RJ1=FLOAT (JMAX-J) /FLOAT (JMAX-1)
RJ2=FLOAT (J-1) /FLOAT (JMAX-1)
RI1=FLOAT (IMAX-I)/FLOAT (IMAX-1)
RI2=FLOAT (I-1)/FLOAT (IMAX-1)
P(I,J)=RJ1*P(I,1)+RJ2*P(I,JMAX)
Q(I,J)=RI1*Q(1,J)+RI2*Q (IMAX,J)
CONTINUE

ol INITIAL GUESS WITH TRANSFINITE INTERPOLATION *¥*

GO TO 400
CONTINUE

*%x* TTERATION ( SOR ) ***

ITMAX=200

TOL=10.E-5

W=1.8

DO 760 IT=1,ITMAX

ERRX=0.

ERRY=0.

DO 750 J=2,JMAX-1

DO 750 I=2,IMAX-1
XXI=.5*% (X (I+1,J)-X(I-1,J))
YXI=.5*% (Y (I+1,J)-Y(I-1,J))
XXIXI=X(I+1,J)+X(I-1,J)

YXIXI=Y(I+1,J)+Y(I-1,J)
XETA=.5* (X (I,J+1)-X(I,J-1))

YETA .5% (Y(I,J+1)-Y(I,J-1))

XXIETA=.25* (X(I+1,J+1)-X(I+1,J-1)-X(I-1,J+1)
YXIETA=.25* (Y (I+1,J+1)-Y(I+1,J-1)-Y(I-1,J+1)
XETA2=X(I,J+1)+X(I,J-1)

YETA2=Y (I,J+1)+Y(I,J-1)

*x% ( EQ. 6-18 and 6-20 )
Gl1l=XXI*XXI+YXI*YXT

G22=XETA*XETA+YETA*YETA
Gl2=XXI*XETA+YXI*YETA

XTEMP=.5% (G22* (P (I,J) *XXI+XXIXI)+G1l1l*(Q(I,J)*XETA+XETA2)
*-2 *Ql2*XXIETA) / (G1l1+G22)



750

760

770

780
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800

810

820

830

YTENP=.5%* (G22* (P(I,J) *YXI+YXIXI)+G1l1l* (Q(I,J)*YETA+YETA2)
*-2 *GEf2*YXIETA) / (G11+G22)
XTENP=W*XTEMP+ (1.-W) *X(I,J)
YTEMP=W*YTEMP+ (1.-W) *Y (I, J)
ERRX=AMAXO (ERRX, ABS (XTEMP-X(I,J)))

ERRY=AMAXO (ERRY,ABS (YTEMP-Y (I, J)))

X (I,J)=XTEMP

Y (I,J)=YTEMP

CONTINUE

IF (ERRX.LT.TOL.AND.ERRY.LT.TOL) GO TO 780

CONTINUE

PRINT 770,ERRX,ERRY,IT-1

FORMAT (//, 5X, 'X AND Y ARE NOT CONVERGE ?’, 2E15.5,
*5X, I5, //)

CONTINUE

IF (CHOICE.EQ.8) GO TO 830

RETURN

*%%x% ATTRACTION TO COORDINATE LINE/POINT ***x%

DO 810 I=1,IMAX
DO 810 J=1,JMAX
P(I,J)=0.

Q(I,J)=0.

DO 820 NS=1,NA
DO 820 I=1,IMAX
DO 820 J=1,JMAX
XL=FLOAT (I-IAL(
XI=FLOAT (I-IAX(
XJ=FLOAT (J-IAY (
YL=FLOAT (J-JAL (
YI=FLOAT (I-JAX (
YJ=FLOAT (J-JAY (
**% ( EQ. 6-30

P(I ) J) -

P(I (XL/ABS
* BI( (XI/ABS

Q(I

* (

(NS) * (
XI))*EXP (-DI (
(NS) * (YL/ABS (
YJ) ) *EXP (-DJ (

) ) *EXP (-CI (NS) *ABS (XL) )
) *SORT (X I*XI+XJ*XJ))
) ) *EXP (-CJ (NS) *ABS (YL) )
) (

*SQHT YI*YI+YJ*YJ))

Q(I ) J) -
*BJ (N YJ/ABS
CONTINUE

GO TO 400
CONTINUE
RETURN

END

N
N
N
N
N
N
)
AI
(
AJ
(

4. Examples for Computer Exercises
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