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Preface 

Wetenschap is meer dan het object dat zij bestudeert. 
Wetenschap is ook de weg naar de ontdekking, en bovendien, 

wetenschap is ook het verhaaJ van de ontdekkingsreis. 
-Po Thielen Focus research, Nr 10-11, juli 1991. 

The numerical solution of a parabolic partial differential equation is usually calcu­
lated by using a time-stepping method. This precludes the efficient use of parallelism 
and vectorization, unless the problem to be solved at each time-level is very large. This 
monograph investigates the use of an algorithm that overcomes the limitations of the 
standard schemes by calculating the solution at many time-levels, or along a continuous 
time-window simultaneously. The algorithm is based on waveform relazation, a highly 
parallel technique for solving very large systems of ordinary differential equations, and 
multigrid, a very fast method for solving elliptic partial differential equations. The 
resulting multigrid waveform relazation method is applicable to both initial boundary 
value and time-periodic parabolic problems. 

We analyse in this book theoretical and practical aspects of the multigrid waveform 
relaxation algorithm. Its implementation on a distributed memory message-passing 
computer and its computational complexity (arithmetic complexity, communication 
complexity and potential for vectorization) are studied. The method has been im­
plemented and extensively tested on a hypercube multiprocessor with vector nodes. 
Results of numerical experiments are given, which illustrate a severalfold performance 
gain when compared to parallel implementations of a variety of standard initial bound­
ary value and time-periodic solvers. 

This monograph is based on my PhD-thesis, obtained at the Katholieke Universiteit 
Leuven in Belgium. It is a pleasure to express my gratitude to the many people that 
have played vital roles in all stages of this work. 

First of all, I wish to express my gratitude to Prof. R. Piessens for giving me the 
opportunity to do research in the very active field of parallel computing and applied 
mathematics. I wish to thank Prof. D. Roose, Prof. P. Dierckx, Prof. R. Piessens, 
Prof. H. Van de Vel and Prof. W. Hackbusch as members of the reading committee 
and thesis jury for the careful and critical reading of the manuscript. 

This work has greatly benefited from numerous discussions held at conferences, and 
from an intense e-mail correspondence with people working in closely related areas. 
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These discussions have influenced, defined and sometimes altered the course of my 
research. I would like to thank my colleagues in Leuven and abroad for many fruitful 
discussions and for creating the cordial atmosphere in which this work could grow. 

At the beginning of my research I was given the opportunity to be a special graduate 
student at the California Institute of Technology. For this, I sincerely wish to thank 
Prof. G. Fox and dr. Eric Van de Velde. It is with great pleasure that I remember those 
L.A.-days. Part of the computing experiments discussed in this work were obtained 
during a stay at the Gesellschaft fur Mathematik und Datenverarbeitung mbH, Sankt 
Augustin, Germany. I gratefully acknowledge dr. K. Stuben and dr. R. Hempel for 
making this possible. 

I recognize the financial support of the Belgian National Science Foundation (Na­
tionaal Fonds voor Wetenschappelijk Onderzoek). I was on their payroll, initially as a 
research assistant, and later on as a senior research assistant. 

Special thanks go to Nele Geurden, who carefully corrected and anglicized the 
language of the preliminary version of this text. Any errors that remain are certainly 
to blame on myself. Finally, I wish to dedicate this dissertation to my wife, Ann, for 
her great love, her patience and understanding, displayed throughout the duration of 
this work. 

Stefan Vandewalle 
Leuven, November 1992 
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Notations 

He examined the engraved characters ... 
They looked like the footprints of a spider 

that had had one too many of whatever it is 
that spiders have on a night out. 

-D. Adams "The restaurant at the end of the Universe" 
(ISBN 0-671-66494-8, p. 176) 

Below we present lists of symbols and abbreviations used in the text, together with 
a very brief explanation of their meaning. We have added the number of the page on 
which they are first used, and numbers of pages where a more detailed explanation is 
given. The symbol list is restricted to symbols that are used more or less frequently, 
e.g., in different sections and on different pages. Symbols with a generally well-known 
meaning are excluded from the list, e.g.: number spaces (IN,~, JR, ([J), differentia­
tion operators (d/dt, a/ax, a2 / ax2 , ... ), relational operators (E, C,~, ::;, ... ), various 
abbreviations (min, inf, sup, lim, det, mod), etc. 

List of symbols 

* 
* 
\\ 

(.)h 
(. )T 

On 
()m 
() 
(. )(v) 

{·}~=o 
[.]1 

( ...... h 
\.\ 

convolution operator, p.38 

don't care symbol, p. 128 

bit concatenation, p. 129 

function, operator defined on nh (e.g. xh), p.17 

a sequence or vector (e.g. x T ), p.41 

Fourier series coefficient (e.g. xn ), p. 94 

discrete Fourier series coefficient (e.g. ::em), p. 100 

bit complement (e.g. x), p.127 

v'th iterate (e.g. xCV»), p.25 

sequence with N+1 elements (e.g. {Xn}~=o), p.41 

transposition operator, p. 25 

binary representation, p. 127 

modulus of complex number, p. 39 
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11·11 

II· lip 
II . lib 
II· liT 
1I·lIx 

arg z 

A (=D-L-U) 

Ac 

bW 
it' 
C,C[O,T] 

CV,Cp,CR, .. 
e(v) e(v) e(v) 

, T , k 

Ep 

F(t,u,v) 

:F 

G 

h,h;,H 

I 
IH ]H I h.-1 
h' h' h; 

I h Ih- I-h-
H, ~-l' h;_l 

J.k 
K(z) 
K,k 
K.,.,k.,. 
lC, k 
lC.,., k.,. 
L; 
L\LH,Lh• 

Lp, Lp(O, T) 
Ip,lp(O .. N) 

C 

vector- and induced matrix-norm in IRd , (])I, p. 30 

p-norm in Lp, p. 35, and in lp, p. 36 

exponentially scaled norm, p. 31 

maximum-norm, p. 30 

general Banach space norm, p. 30 

CONTENTS 

first characteristic polynomial of linear multistep method, p. 41 

argument of complex number z, p. 72 

matrix (diagonal, lower- and upper-triangular parts), p.37 

accuracy order, p. 33 

second characteristic polynomial of linear multistep method, p. 41 

set of complex numbers with point at infinity, p. 41 

space of continuous functions on [O,T], p. 30 

multigrid cycle and operator cost factors, p. 185 

error of v-th iterate (continuous, discrete), component at tk , p.55 

parallel efficiency, p. 133 

waveform iteration function, p. 28 

waveform relaxation operator, p.28 

static iteration matrix, p. 37 

mesh sizes, p.17, p.59, p. 61 

unit matrix, p. 39 

restriction operators, p. 60, p. 79 

prolongation operators, p. 60, p.61 

k'th column of matrix J, p. 119 

symbol of convolution operator K, p. 39 

continuous-time initial value WR operator, kernel, p. 38 

discrete-time initial value WR operator, kernel, p. 43 

continuous-time time-periodic WR operator, kernel, p. 92 

discrete-time time-periodic WR operator, kernel, p.105 

total message length in one cycle on Oh. , p. 191 

discretized elliptic operator, p.17, p. 50, p. 61 

space of p'th power Lebesgue integrable functions, p.35 

space of p-summable sequences, p. 36 

elliptic PDE operator, p.17, p.49 
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Chapter 1 

Introduction 

The successful solution of a realistic problem in applied mathematics 
requires the fusion of four distinct ingredients: 

1. knowledge of the subject area of the problem 

2. knowledge of the relevant mathematics 

3. knowledge of the relevant computer science 

4. a talent for selecting just what part of all this knowledge will actually 
solve the problem, and ignoring the rest 

-George E. Forsythe, in [36] 

We emphasize the increasing importance of parallel supercomputers for the solution 
of large-scale scientific and engineering problems. A sequential bottleneck which limits 
the obtainable parallelism and performance when simulating time-dependent processes 
with standard time-marching schemes is identified. Some of the approaches that have 
been suggested in the literature for eliminating or alleviating this fundamental problem 
are reviewed. Finally, we present an overview of the book. 

1.1 Numerical simulation and parallel processing 

Over the years the roles of mathematical modelling, numerical simulation and predic­
tion have dramatically increased in both science and engineering. In science, more and 
more, conventional experimental testing is being replaced by simulation on computers. 
Theoretical analysis is being complemented with computer generated data. In the air­
craft and automobile industry complicated fluid flow problems are numerically solved 
in order to optimize the design of wings and engines. The construction of very high 
density integrated circuits has only become possible thanks to availability of simulation 
tools that allow the verification of the circuit before its actual fabrication. Geophysical 
exploration is guided by computer analysis of seismic data combined with extensive oil 
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16 CHAPTER 1. INTRODUCTION 

reservoir simulation. Numerical simulation allows the study of nuclear power plants 
and weapons in operating conditions which exceed the safety limits for the practical 
experiment. 

More accurate predictions require a more accurate modelling of the physics in­
volved. This necessitates, for instance, the incorporation of more species and interre­
acting chemical substances, and the use of finer discrete meshes with a larger number 
of sampling points. All of this leads to a corresponding explosion in the number of 
equations and unknowns that are to be solved for. As such, the computational com­
plexity often renders the modelling and simulation task very difficult and extremely 
time-consuming. Therefore, many of the recent developments have only become feasible 
thanks to advances in both computer architectures and numerical algorithms. 

The development of faster electronic switching devices has made current-day per­
sonal computers comparable in speed to the large main-frames of a decade ago. The 
introduction of powerful vector processors has led to severalfold increases in speed 
over conventional serial architectures. Yet, a great number of problems remains be­
yond the reach of these so-called mono-processor vector-supercomputers. Furthermore, 
additional orders of magnitude increase in computational power is mandatory for ad­
dressing some of the future "Grand-Challenges"-projects. For instance, unprecedented 
computational problems are faced by the scientists involved in Global Climate Change 
research. Equally formidable are the goals of the so-called Human Genome project, 
which aims at deciphering the nucleotide sequence of human DNA. Because of phys­
ical and engineering limitations the increase in single-processor speed as required by 
these problems is no longer feasible. It is only the use of systems consisting of many 
cooperating processors which is expected to match the computational needs. 

Several architectures of such machines have emerged. Some consist of a small num­
ber of powerful processors cooperating through the use of a vast shared memory (e.g., 
Cray, IBM, Sequent). Others provide a large number of processors each with a local 
memory, communicating and exchanging data over an interconnection network (e.g., 
Intel iPSC, Ncube, Meiko Computing Surface). Still others consist of a massive num­
ber of very simple processing elements operating in a lock-step mode, i.e., executing an 
identical sequence of instructions on their local data (e.g., Distributed Array Processor, 
Connection Machine, Masspar). 

Since about one decade, we have witnessed this evolution towards parallelization. 
Only recently however have massively parallel systems proven to outdo the vectorpro­
cessors on non-academic problems. This delay is to some extent due to the difficulty of 
programming such machines. In particular, sequential algorithms have to be analysed 
and possibly reformulated in such a way that as many operations as possible can be 
executed concurfently. This is to be done with the additional goal of minimizing the 
amount of data that is to be shared by different processors, in order to reduce message 
exchange or common memory access costs. New algorithms have to be devised when 
the parallel execution of standard serial approaches is inefficient. Very often this has 
to be done with the hardware characteristics of the target architecture in mind. All of 
this constitutes an additional burden for the algorithm developer who can no longer 
be solely concerned with the mathematics of the problem. 

It is fair to say that most standard serial algorithms have nowadays been analysed 
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1.2. THE SIMULATION OF TIME-DEPENDENT PROCESSES 17 

for their parallel potential, and implemented on parallel machines. We refer to [31,94] 
for an overview of (some of) the literature. Many standard sequential techniques have 
found efficient parallel counterparts, especially in the fields of linear algebra and partial 
differential equations. More and more, parallel computing research is nowadays spe­
cializing towards the implementation of algorithms for complicated real-life problems. 
Such problems raise important new issues related to adaptivity and load-balancing. 
Considerable effort is also focussed towards the construction of parallel software de­
velopment tools, such as automatic code parallelizers, load-balancing and monitoring 
tools. Finally, a lot of people continue to work on the parallelization of the inherently 
sequential algorithms that have withstood the first wave of parallel computing research. 
One example of such a problem, to be discussed in the next section, is the simulation 
of time-dependent processes, modelled by ordinary or partial differential equations. 

1.2 The simulation of time-dependent processes 

This book deals with the numerical simulation of time-evolving physical processes mod­
elled by parabolic partial differential equations (parabolic PDEs). Such problems are 
frequently encountered in the study of diffusion, convection and reaction phenomena, 
and arise in such diverse fields like thermodynamics, chemistry, hydrodynamics, aero­
dynamics etc. They are generally modelled by one or more equations of the form 

au at = C(u) + f· (1.1) 

The unknown function u is a function of the spatial variable x and of the time­
coordinate t, i.e., u = u(t,x), and is defined on some compact spatial domain, x E G, 
and some interval of time, to ~ t ~ tf. The same holds for the right-hand side forcing 
function f. C( . ) is a general time-dependent uniformly elliptic operator comprising 
diffusion, reaction and convection terms. Equation (1.1) is usually complemented with 
suitable boundary conditions, specifying for instance a given temperature or particle 
flux along the boundary of G. Finally the equations are completed with a "boundary 
condition" in the time-dimension, like a given initial condition on to, or a demand for 
time-periodicity, u( to, x) = u( t" x). 

The solution of the partial differential equation is approximated by constructing a 
discrete counterpart, obtained by finite differences, finite elements or finite volumes. 
The solution is then found by solving a system with a finite number of unknowns, 
which, for instance, approximate the continuous solution in a discrete set of points 
laying on a grid t~at covers the domain. A commonly used approach, which will be 
followed in a large part of this book, is the so-called numerical method of lines. The 
spatial derivatives in C are replaced by discrete analogues obtained by using finite 
differences on a spatial mesh. This transforms (1.1) into a large system of ordinary 
differential equations (ODEs), 

(1.2) 

where uh is a vector of functions which approximate u at the grid points Xi. Standard 
techniques for solving ordinary differential equations can then be applied. 
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1.2.1 The serial bottleneck of time-marching 

Standard numerical methods for solving the equations (1.1) and (1.2) are based on the 
time-stepping or time-marching idea. Starting from a given solution at to the solution is 
advanced time-step per time-step with a time-increment t..t" between successive time­
levels t"-l and t". On each time-level a discrete set of variables which approximate 
u(t", Xi) is solved for. This may be done by ezplicit methods, in which each variable 
can be calculated independently, or by implicit methods, which require the solution of 
a large (non)linear system of equations in each time-step. The time-marching process 
is graphically illustrated for a rectangular two-dimensional domain in figure 1.1. 

x y AI2f <,s~~ii fitt~t~ s > 

&If <,s*~iittt~iit~s"," 

Figure 1.1: Standard time-marching methods calculate the solution variables in a se­
quential manner, time-level after time-level. 

The standard approach to parallelizing the time-marching process consists of ap­
plying a spatial grid partitioning on each time-level. By that, each processor is assigned 
to the grid points in a subset of the computational domain, for which it gets the update 
right. In each time-step each processor has to calculate the new values at its grid points. 
In a distributed memory machine this requires a cooperation with the other proces­
sors through message passing. When the number of spatial grid points per processor 
is sufficiently large, both explicit and implicit methods can be parallelized with high 
efficiency, i.e., the losses due to parallel overheads are negligible. When the number 
of grid points per processor is relatively small, due to the use of coarse computational 
meshes, or, more importantly, due to the availability of a large number of processors, 
only explicit methods retain their parallel efficiency. However, they suffer from a se­
vere stability constraint which forces the use of very small time-steps. This makes them 
unattractive for solving problems on fine meshes. For relatively small problems, the 
performance of the implicit methods is also very unsatisfactory. This is especially so 
when very fast multigrid solvers are applied for solving the system in each time-step. 
The computation at each time-level is then easily dominated by parallel overheads due 
to communication, processor idling or load imbalance. 
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The serial nature of classic time-marching schemes imposes severe restrictions on 
the obtainable parallel performance. The parallelism is limited to the parallelism in­
herent in the relatively small problems defined on the time-levels, even though the total 
number of variables and the corresponding arithmetic complexity may be formidable. 
Furthermore, the comparison of explicit to implicit methods shows that parallel effi­
ciency must usually be traded off against numerical efficiency. 

1.2.2 Accelerating the time-marching process 

Several approaches have been suggested for accelerating the parallel simulation of time­
dependent processes modelled by parabolic partial differential equations. In the fol­
lowing overview we discern basically three classes: methods that start from the PDE 
formulation (1.1), methods that start from the ODE formulation (1.2), and, finally, 
methods that entirely circumvent the mathematical PDE and ODE formulation, but 
directly simulate the underlying physics instead. Note however that this classification 
is to be taken rather loosely as some methods do fit in more than one class. 

Methods based on the PDE formulation 

If one retains the standard time and space discretization principles, two obvious re­
search directions arise. One may start from standard explicit techniques which paral­
lelize well, and try to improve their numerical quality. Alternatively, one may wish to 
keep the numerical quality of the implicit methods, and try to improve their parallel 
performance. 

The number of time-steps required by an explicit technique can be reduced if its 
stability boundary is enlarged. For instance, Rodrigue and Wolitzer have devised fully 
explicit methods which require about the same amount of computational work as the 
explicit Euler method, and yet have a stability interval several times as large. Their 
method, preconditioned time-differencing, also called the predictor corrector iterative 
method, is based on the use of a classical explicit corrector to yield an initial guess, 
and the use of a fixed number of iterations of a standard relaxation scheme applied 
to an implicit corrector, [105]. Evans and coworkers have developed stable explicit 
schemes, the alternating group ezplicit methods, in which the unknowns are explicitly 
computed in groups of two, four or eight, [28]. In [122], Sommeijer shows how to 
increase the stability boundary by combining extrapolation techniques for bridging the 
largest part of a time-step, and simple explicit techniques to perform the remaining 
part. The author illustrates a trade-off between stability and accuracy. This seems to 
be a general characteristic for methods of this type. 

Others aim at improving the parallel performance of implicit methods by applying 
iterative techniques on several time-levels simultaneously, instead of by iterating until 
convergence over each time-step before moving on to the next. In the windowed block 
relazation methods of Saltz and Naik, each processor iterates in its own subdomain over 
a number of time-steps, a so-called window. This is shown to allow an efficient over­
lap of computation with communication, and to lead to a reduction in the number of 
messages, [1101. In Womble's parallel time-stepping method processors that otherwise 
would be idle are used to improve the initial guess at time-levels tk+l, tkH," ., tk+N, 
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while the solution is being computed at time-level tk, [149). He illustrates his algorithm 
with timing results obtained on a 1024-processor Ncube. In 1984 Hackbusch proposed 
the parabolic multigrid method, a multigrid technique with typical multigrid conver­
gence rates, which calculates the unknowns on several time-levels simultaneously, [43). 
A parallel smoothing variant allows most calculations on different time levels to be 
performed independently. The method was first implemented on a parallel processor 
by Bastian, Burmeister and Horton, [5) and later on extensively studied by Horton, 
Burmeister and Knirsch [14, 59, 60, 58]. 

Finally, some techniques were suggested that are based on the domain decomposition 
principle, which is well-known as a parallel method for solving elliptic partial differential 
equations. The computational domain is then split into several possibly overlapping 
subdomains on which computations may proceed independently. Of course, special pre­
cautions are to be taken along sub domain interfaces. In [26], Dawson, Du and Dupont 
present non-overlapping domain decomposition procedures for parabolic problems in 
which the interfacial degrees of freedom are advanced explicitly. The sub domains are 
advanced implicitly and independently. A domain splitting scheme that is locally im­
plicit on slightly overlapping sub domains is analysed by Blum, Lisky and Rannacher in 
[7]. The local sub domain boundary data is propagated by a simple explicit process. In 
[114], Scroggs studies a certain class of convection diffusion equations. An asymptotic 
analysis allows him to identify regions where simplified versions of the equation may 
be solved. In such a way he arrives at a physically motivated domain decomposition 
which allows different regions to be treated simultaneously. 

Methods based on the ODE formulation 

A second class of methods starts from the equations derived by the method of lines. 
They apply parallel ODE techniques such as time-discretization schemes with high 
inherent degree of parallelism, extrapolation methods, or waveform relaxation tech­
niques. Gallopoulos and Saad analyse in [33, 34] the use of rational Chebyshev and 
Pade ezpansions to the matrix exponential which arises in the analytical solution of 
(1.2). (They deal with the constant coefficient case.) They derive formulae of very high 
degree the computations of which can be parallelized through the use of a partial frac­
tion expansion. In [60], Horton and Knirsch combine a parallel time-stepping method 
with eztrapolation techniques in order to solve the Navier-Stokes equations. Solutions 
obtained with different magnitudes of the step-size are calculated concurrently. 

The waveform relazation method is conceptually very similar to the Gauss-Seidel 
and Jacobi relaxation methods for iteratively solving systems of (non)linear equations. 
Instead of successively solving equations in one unknown value, one successively solves 
(non)linear ODEs in one unknown function. The use of this method for solving certain 
semi-discretized parabolic PDEs was first considered by Miekkala and Nevanlinna in 
[84]. A multigrid acceleration was analysed by Lubich and Ostermann, [78]. 

Methods that circumvent the PDE and ODE formulation 

Partial differential equations of reaction-convection-diffusion type often represent a 
mathematical idealization of a large population of particles, cells, organisms, etc., 
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which are interacting locally while diffusing and drifting in space. Whereas the PDE 
formulation is ideally suited for symbolic manipulation and theoretical analysis, sev­
eral researchers have expressed doubts whether it should be kept as the starting point 
for numerical simulation. Instead, they have suggested a direct simulation of simple 
physical models which closely approximate the microscopic dynamics of the studied 
phenomena. Such moving point and particle methods, or cellular automata techniques 
are discussed, e.g., by Hebert [50], and by Rees and Morton [103]. Simulations of this 
type require large numbers of simple local computations and are therefore excellently 
suited for implementation on massively parallel systems. 

1.3 Outline 

We analyse and illustrate in this monograph the use of waveform relaxation methods 
for solving parabolic partial differential equations on parallel computers. The central 
algorithm is the multigrid waveform relaxation method. This technique combines the 
very fast convergence of multigrid, a method originally developed for solving elliptic 
partial differential equations, with the high parallel efficiency of waveform relaxation, 
an algorithm for solving very large systems of ordinary differential equations. 

The multigrid waveform relaxation algorithm 

The multigrid waveform relaxation algorithm for solving linear problems was first pub­
lished by Lubich and Ostermann, in an article which appeared in 1987, [78]. These 
authors pointed out the potential for parallelism, and illustrated their theoretical re­
sults with a sequential implementation for a one-dimensional model problem. 

Independently of the previous authors, the current author arrived at the same 
algorithm which he first documented in [129]. A nonlinear variant based on the multi­
grid full approximation scheme was presented in [140]. The method was implemented 
on a parallel machine, [133, 141], and also vectorized on a vector-multiprocessor [134]. 
From the start substantial interest was focused on comparing waveform relaxation with 
standard parabolic solvers. To this end a careful implementation was made of a large 
number of standard time-stepping techniques, [142, 143, 144]. These implementations 
were mainly based on a program library for solving linear second order elliptic partial 
differential equations on two-dimensional, rectangular domains, [131, 132]. The com­
parisons established the real performance of the waveform relaxation method, as they 
showed a severalfold reduction in computing time over the parallel implementation of 
the standard techniques. The numerical evidence is largely surveyed in [136, 137]. 

Apart from initial boundary value problems also time-periodic parabolic partial 
differential equations were considered, for which a new time-periodic multigrid wave­
form relaxation method was developed. To the author's initial surprise an experimental 
comparison with standard time-periodic solvers showed that the new method outdid 
the best standard technique with a factor 2.5 on a sequential machine, [130, 135]. As 
such, the quest for better parallel algorithms had led to a more efficient sequential 
algorithm. Later on, a theoretical framework was developed for the study of the time­
periodic waveform relaxation algorithms, [139], and results were proven similar to the 
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ones for the initial value iteration developed by Miekkala and Nevanlinna, [84, 85] and 
by. Lubich and Ostermann, [78]. Finally, in cooperation with D. Roose a waveform 
relaxation based technique was studied for calculating the time-periodic solutions to 
autonomous, nonlinear systems of parabolic partial differential equations, [106]. 

Overview of the text 

In chapter 2 we present an overview of standard waveform relaxation results and we 
direct the interested reader to further references. A qualitative analysis of convergence 
results, mainly found in the electrical engineering literature, is presented first. A 
quantitative analysis for linear constant coefficient ordinary differential equations is 
given next. We also enumerate a number of techniques that have been suggested for 
accelerating the waveform iteration. 

Chapter 3 deals with waveform relaxation methods for initial boundary value prob­
lems. The convergence behaviour and the deficiencies of standard waveform relaxation 
methods are analysed in detail. The linear and nonlinear multigrid waveform relaxation 
methods are introduced and illustrated by numerical examples. 

In chapter 4 the applicability of the waveform technique is extended to time-periodic 
problems. We theoretically analyse the time-periodic waveform relaxation method 
and prove a number of convergence results for the continuous-time and discrete-time 
iteration. It is shown that the convergence is intimately related to the convergence of 
the initial value iteration, as discussed by Miekkala and Nevanlinna, and by Lubich 
and Ostermann. We also present a modified shooting method for solving autonomous 
time-periodic problems. 

Chapter 5 provides a short introduction to parallel computers and parallel com­
puting. We discuss one architecture and one machine in particular: the Intel iPSC/2 
hypercube multiprocessor, which is the machine used in our experiments. 

The parallel implementation and the parallel performance of standard parabolic 
time-stepping schemes form the subject of chapter 6. We discuss various explicit, im­
plicit and line-implicit time-discretization schemes. In particular, we detail the parallel 
implementation of an explicit update step, the solution of a system of equations by a 
multigrid method, and the parallel solution of tridiagonal linear systems. 

The parallel computational complexity of the waveform relaxation method is dis­
cussed in chapter 7. We analyse the arithmetic complexity and the communication 
complexity, and we discuss the vectorization of waveform relaxation methods. 

A large number of case studies is presented in chapter 8. For each example we 
compare the performance of the best standard method with that of the appropriate 
waveform relaxation variant. It is shown that for many problems multigrid waveform 
relaxation leads to a many-fold reduction in computing time. 

Finally, in chapter 9 some general conclusions are given and some possible directions 
for future research are suggested. 
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Chapter 2 

Waveform Relaxation Methods 

Watson: "You have formed a theory, then ?" 

Holmes: "At least I have got a grip of the essential facts of the case. I shall enu­
merate them to you, for nothing clears up a case so much as stating it to 
another person, and I can hardly expect your cooperation if I do not show 
you the position from which we start." 

-Sir Arthur Conan Doyle, Silver Blaze 
(borrowed from [51, p.740J ) 

We survey standard waveform relaxation results, mainly for future reference. The 
method is introduced and its use for solving ordinary differential equations is illustrated. 
The convergence theorems based on a contraction mapping argument are recalled and 
some alternative proofs are presented. A detailed analysis for linear constant coefficient 
ordinary differential equations is given. Finally, we enumerate techniques which have 
been proposed for accelerating the computational process. 

2.1 Introduction 

Standard numerical solvers for stiff ordinary differential equations usually implement 
a three-stage process that is executed in every consecutive time-step. 

• To start with, the differential equations are discretized with an implicit and stable 
time-discretization scheme. This leads to a nonlinear system of equations in a 
set of variables which approximate the ODE solution at a particular time-level. 

• This nonlinear system is linearized by the Newton-Raphson procedure or by a 
related technique. This results in a large linear system of equations. 

• This linear system is solved by using the well-known direct Gaussian elimination 
algorithm or any of its many variants. 

(Note that the latter two stages may have to be performed a number of times in order 
to ens'ure convergence.) 
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While this procedure has proven to be adequate for solving systems consisting of 
a relatively small number of equations, say of the order of a hundred, it has shown 
to fail for systems consisting of thousands of equations. The reasons are twofold. 
First, the time-stepping nature forces each variable to be discretized on an identical 
set of time points. As such, the time-step is restricted to one which is fine enough 
to resolve the most rapidly changing component. Very often though, large systems of 
differential equations have variables which change at very different rates. The resolution 
of the slowly changing variables is then unnecessarily accurate, and computation time 
is wasted. Secondly, the cost of the Gaussian elimination at each time-level rapidly 
increases with an increasing number of variables. Even if sophisticated sparse matrix 
solvers are used in order to avoid substantial matrix fill-in, this elimination step soon 
becomes prohibitively expensive. 

These shortcomings are strongly felt by researchers and engineers involved in the 
numerical simulation of very large-scale integrated circuits. Such electrical circuits 
often comprise hundreds or thousands of components like transistors and capacitors. 
Their numerical simulation gives rise to very large nonlinear systems of ordinary dif­
ferential or differential-algebraic equations. These systems are characterized by a very 
loose coupling of the variables, which reflects the limited and local coupling between 
the electrical components. Moreover, very often only a small number of the com­
ponents are active, while most other components are latent, i.e., not changing state. 
By consequence, in the electrical engineering community substantial effort has been 
focussed towards the development of numerical techniques that overcome the deficien­
cies of standard time-stepping schemes. Various methods have been proposed which 
effectively exploit the typical latency and multi-rate behaviour of such electrical cir­
cuits. Most of these techniques are iterative techniques, and based on relazation, either 
at the level of the linear systems (linear relazation), or at the level of the nonlinear 
systems (nonlinear relazation), or at the differential equation level (waveform relaz­
ation). We refer to a paper of Newton and Sangiovanni, [92J, and a book by White and 
Sangiovanni, [147J, for an extensive overview of the various relaxation-based electrical 
simulation techniques and for a large number of pointers into the relevant literature. 

The waveform relaxation method as a computational procedure was first proposed 
by Lelarasmee in his PhD-thesis, [74J, which appeared in 1982. Convergence results for 
fairly general nonlinear systems were published in the electrical engineering literature 
in articles by Lelarasmee, Ruehli and Sangiovanni, [75J, and by White et aI., [148J. 
The convergence for linear ordinary differential equations was extensively studied by 
Miekkala and Nevanlinna, [84, 85], and by Nevanlinna, [88, 89, 90, 91J. The latter 
author has pointed out the correspondence of the waveform relaxation method to a 
technique introduced a century ago by Picard and Lindelof in studies to prove the ex­
istence of solutions of differential equations. The waveform method is correspondingly 
called the Picard-Lindelof iteration, see [88J. Miekkala and Nevanlinna also introduced 
the alternative name dynamic iteration. The method is then opposed to standard 
relaxation methods, which they named static iteration methods. 

We explain the basic principles behind the waveform relaxation method and intro­
duce the Gauss-Seidel and Jacobi algorithms in section 2.2. A classification of waveform 
methods is given in section 2.3. We survey a number of general convergence results 
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for waveform relaxation applied to nonlinear systems of ordinary differential equations 
in section 2.4. The theoretical framework for linear systems as developed by Miekkala 
and Nevanlinna is overviewed in some detail in section 2.5. Acceleration techniques 
for improving the convergence and for speeding up the waveform computations are 
reported in section 2.6. We end this chapter in section 2.7 weighing the waveform 
relaxation pros and cons. 

2.2 Waveform relaxation: basic ideas 

Consider a general nonlinear system of d ordinary differential equations with associated 
initial conditions, 

d 
dtY=f(t,y), y(O)=Yo, tE[O,T], (2.1) 

where T > 0, f : [0, T] x lRd ~ lRd, Yo = [Yl.0 Y2.0 ... Yd.O]t E lRd is a vector which 
contains the initial values, and y(t) = [Yl(t) Y2(t) ... Yd(tW E lRd is the solution 
vector. Componentwise, this system is written as follows, 

d 
dtY1 = fl(t,Yl,Y2,Y3,···,Yd) 
d 
dtY2 = h(t,Yl,Y2,Y3, ... ,Yd) with 

Yl(O) = Yl.0 

Y2(0) = Y2.0 

The waveform relaxation method for solving (2.1) is a continuous-time iterative 
method. That is to say, given a function which approximates the solution, it calculates 
a new approximation along the whole time-interval of interest. Obviously it differs 
from most standard iterative techniques in that its iterates are functions in time (i.e., 
waveforms) instead of scalar values. The iteration formula is chosen in such a way 
that one avoids having to solve a large system of differential equations. A particularly 
simple, but often very effective iteration scheme is written below. It maps the "old" 
iterate y(II-l) into the "new" iterate y(II). 

d (II) f (t (II) (II-I) (II-I) (II-I») 
dtY1 = 1 'Yl 'Y2 'Y3 '···'Yd 

d (II) f: ( (II) (II) (II-I) (II-I») 
dtY2 = 2 t, Yl , Y2 , Y3 , ... , Yd with 

d (II) I ( (II) (II) (II) (II») 
dtYd =Jd t 'Yl 'Y2 'Y3 '···,Yd 

y~")(O) = Yl.0 

y~")(O) = Y2.0 
(2.2) 

It is called the Gauss-Seidel waveform relazation scheme because of its obvious resem­
blance to the Gauss-Seidel method for iteratively solving linear and nonlinear systems 
of algebraic equations. It converts the task of solving a differential equation in d vari­
ables into the task of solving a sequence of differential equations in a single variable. 
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In an actual computer implementation these differential equations are solved by using 
a standard numerical ODE integration method. The time-step of the numerical inte­
gration ~cheme may then be chosen to reflect the behaviour of the local variable, as in 
a genuine multi-rate time-integration method. A closely related iteration is the Jacobi 
waveform relazation scheme, the iteration formula of which is given by, 

~ (v) _ f (t (v) (v-I) (v-I) (V-I») 
dtY1 - 1 , Y1 , Y2 , Y3 , ..• , Yd 

~ (v) _ f (t (v-I) (v) (v-I) (V-I») 
dtY2 - 2 , Y1 , Y2 , Y3 , ... , Yd with 

~ (v) _ I (t (v-I) (v-I) (v-I) (v») 
dtYd - Jd 'Y1 'Y2 'Y3 , ... 'Yd 

y~v)(O) = Y1,O 

y~v)(O) = Y2,O 
(2.3) 

Both iterations are started with an initial approximation y(O)(t) defined along the 
whole time-interval. A natural choice is to take this approximation constant and equal 
to the values specified by the initial condition, 

y~O)(t)=y.,O, tE[O,T], i=l, ... ,d. (2.4) 

Alternatively, one could start from the solution of a related problem, for instance, one 
obtained with a slightly different (possibly simplified) right-hand side, or one calculated 
with slightly different initial conditions1 . 

The Gauss-Seidel waveform relaxation algorithm is formulated in alg. 2.1. The 
Jacobi algorithm is very similar. Note that the Gauss-Seidel process is typically se­
quential. The equations are solved the one after the other. The Jacobi algorithm on 
the contrary is fully parallel. The equations can be solved simultaneously. Finally, 
the waveform relaxation methods are not necessarily tied to finite time-intervals [0, T]. 
The principle is equally applicable to ODEs defined on the infinite interval [0,00). 

Algorithm 2.1: Gauss-Seidel Waveform Relaxation 

/1:= 0; choose y~O)(t) for t E [O,T], i = 1, ... ,d 
repeat 

/I := /I + 1 
for i = 1, ... , d 

I d (v) _ f.( (v) (v) (v) (v-I) (V-I») 
so ve dt Y' - ,t'Y1 , ... 'Y'-1,Y' 'Y'+1 , ... 'Yd 

with y~v) (0) = Y"O 
endfor 

until convergence 

1 An example of the latter will be given in section 4.7 where we discuss the use of waveform 
relaxation inside a shooting procedure. 
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Example 2.2.1 We shall apply the Gauss-Seidel waveform relaxation method to the 
following system of two differential equations, which we solve for t 2:: 0, 

(2.5) 

The reader will certainly recognise (2.5) as the equations defining the "sine" and "co­
sine" functions. The iterates y1v), y~v), satisfying y1v)(0) = 0 and y~v) = 1 are calculated 
as below. But first, the iteration is started by choosing an initial approximation. 

{ 
(O)()_ . .... YI t - 0 

• InitIalIzatIon: (0) 
Y2 (t) = 1 

{ .!!y(I) _ yeO) 
• iteration 1: 

dt 1 - 2 
d (1) _ (1) 
diY2 - -YI 

{ .!!y(2) _ y(I) 
• iteration 2: 

dt 1 - 2 
d (2) _ (2) 
diY2 - -YI 

Y(2)(t) - t _ E 
1 - 3! 

y~2)(t) = 1 - t + t 

{ 
d (3) (2) 
diYI = Y2 

• iteration 3: d (3) _ (3) 
diY2 - -YI 

Y(3)(t) - t _ E + E 
1 - 3! 5! 

Y(3)(t) = 1 _ ~ + ~ _ E 
2 2 4! 6! 

• 
{ 

d (v) (v-I) 

• iteration II: diYI = Y2 .!!y(V) _ _ y(v) 
dt 2 - 1 

{ 
(V)(t) = "V-I(_l)i t20+ 1 

YI L.",=O (2i+I)! 

(1')( ) _ "I' ( l)i t2' Y2 t - L."i=O - (2i)! 

The iteration obviously converges to y100 ) = sin(t) and y~oo) = cos(t) as each 
iterate picks up one additional term of the Taylor expansion. Independent of the 
length of the time-interval there is convergence. The successive iterates y1v)(t), y~v)(t) 
for 11=0,1,2,3,4 are graphically displayed in figure 2.1. 

The convergence behaviour observed in the above example is fairly typical. It is 
also found in the case of more complicated problems. We summarize: 

• The error is not uniform along the interval of integration. The approximation is 
usually good at the beginning but deteriorates for increasing values of t. 

• Each iteration lengthens the time interval where the computed waveform is close 
to the exact solution. 

• The difference between the computed waveform and the exact solution is not 
necessarily reduced at every time-point. From one iteration to another the error 
may even increase, especially for large values of t. 

It will be shown further on that this qualitative behaviour is in agreement with the 
general convergence theory. 
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Figure 2.1: Iterates yiv)(t) (left) and y~v)(t) (right) for t E [0,5] (example 2.2.1). 

2.3 A classification of waveform methods 

The Gauss-Seidel and Jacobi waveform relaxation methods are members of the more 
general class of so-called waveform iteration methods. These methods are character­
ized by the fact that they iterate on functions, that is to say, they can be defined 
without reference to time-discretization. In [118]' Skeel defines a waveform iteration as 
a continuous-time iterative method for solving ordinary differential equations in some 
part of the interval of integration. Analogously, one can define a discretized waveform 
iteration as an iterative method on discrete representations of approximations to the 
ODE solution along part of the integration interval. In the sequel we shall refer to these 
methods also by the names of continuous-time and discrete-time iteration methods. 

Let :F denote the waveform iteration operator which maps an "old" iterate into a 
"new" one, i.e., 

(2.6) 

For our present purposes it suffices to consider operators that are independent of the 
iteration number II. In addition, we only consider "one-step" iterations; that is, y(v) 
depends in an explicit way on y(V-l) only, and not on the previous iterates. An impor­
tant class of waveform iteration methods can be characterized by the following iteration 
formula, 

(2.7) 

The iteration function F(t, u, v) is chosen so that F(t, v, v) = f(t, v). This guaran­
tees the consistence of (2.7) with (2.1). Furthermore, the choice of F(t,u,v) is aimed 
towards achieving the following two (possibly conflicting) goals: the differential equa­
tion ftv = F( t, u, v) should be easy to solve, and the iteration (2.7) should be rapidly 
convergent. Some of the more important waveform iteration methods are given below . 

• The waveform Picard method. The Picard iteration is characterized by the 
simplest of iteration functions, F(t,u,v) = f(t,u) ,or, componentwise, 

F,(t,u,v) = f,(t,ul,u2, ... ,u" ... ,Ud) . 
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This well-known iteration is named after E. Picard, who used the iteration in his exis­
tence proof for solutions of ordinary differential equations. The scheme is particularly 
amenable to parallel computing since each differential equation can be integrated si­
multaneously. In the corresponding discrete-time iteration each equation's right-hand 
side can be evaluated in parallel across the time-steps. 

• The waveform relaxation methods. In the relaxation methods F( t, u, v) is 
chosen so that its Jacobian, aFjav, is block diagonal or block lower triangular. In that 
case, the differential equation (2.7) is effectively decoupled into subsystems that can be 
solved independently or in sequence. The pointwise Jacobi and Gauss-Seidel schemes 
introduced previously are characterized by, 

Fi(t,u,v)=fi(t,Ul,U2, ... ,Ui-l,Vi,Ui+l, ... ,Ud) (Jacobi), (2.8) 

Fi(t, u, v) = J;(t, vl, V2, . .. , Vi-l, Vi, Ui+l, ... , Ud) (Gauss-Seidel). (2.9) 

Blockwise Jacobi and Gauss-Seidel iterations can be defined in a straightforward way. 
For instance, a two by two block Jacobi waveform relaxation method is given by func­
tion F( t, u, v) specified below. (The number of equations is assumed to be even.) 

F2i- l( t, u, v) = hi-l (t, Ul, ... , U2i-2, V2i-l, V2i, U2i+l, ... , Ud) 
F2i( t, u, v) = f2i(t, Ul, ... , U2i-2, V2i-l, V2i, U2i+l, ... , Ud) . 

In the pointwise and blockwise relaxation methods groups of unknowns are relaxed 
in order to make them satisfy groups of equations. This may require the solution of 
nonlinear systems of ordinary differential equations. These nonlinear equations need 
not be solved exactly. A good approximation often satisfies to ensure convergence of 
the waveform iteration. In the waveform relazation Newton methods each equation is 
first linearized by a Newton-Raphson procedure, and only then solved. The iteration 
function for the Gauss-Seidel waveform relaxation Newton method is given by, 

aJ; 
Fi(t,u,v) = J;(t,Vl, ... ,Vi-l,Ui,··· ,Ud) + -a (t,Vl,'" ,Vi-l,Ui,··· ,Ud)(Vi - Ui) . 

V· , 

In the blockwise relaxation methods linearization is applied subsystem per subsystem . 

• The waveform Newton method. The waveform Newton method implements 
a global Newton-Raphson linearization of the original system of ordinary differential 
equations. This leads to the following iteration function, 

af 
F(t,u,v) = f(t,u) + av (t,u)(v - u) . 

It requires analytical differentiation to compute the Jacobian af jav, and it does not 
decouple the system into easily solvable subsystems. Yet, it is rapidly convergent and 
it allows the parallel evaluation of f(t, u) and af jav(t, u) across time-levels. Note that 
analytical differentiation can be avoided by numerically approximating the Jacobian. 
The use of such methods leads to waveform quasi-Newton methods, see e.g. [118]. 
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There are several waveform iteration techniques which do not fit the iteration for­
mula (2.7), or even (2.6). E.g., in [118] Skeel studies the accelerated and shifted wave­
form Picard methods which require dynamic determination of iteration parameters. In 
[90] Nevanlinna analyses linearly accelerated waveform methods, in which a new iterate 
explicitly depends on more than one previous iterate. 

2.4 General convergence results 

A theoretical analysis of waveform relaxation methods is presented in [147, 148]. There, 
convergence is proven for certain nonlinear systems which are more general than (2.1) 
and which are typically encountered in circuit simulation problems. (The left-hand 
side is pre-multiplied by a matrix which depends on the solution y(t).) We do feel 
that a closer look at these convergence proofs is both illuminating and required for 
a good understanding of the waveform relaxation idea. As the mentioned analysis 
immediately applies to the equations that we consider, we could suffice by referring 
to the proofs supplied in the above references. However, the generality technically 
complicates the proofs, and it is not required for our present purposes. Consequently, 
we shall reformulate some of the ideas and present some simplified or alternative proofs. 

2.4.1 The contraction mapping principle 

The waveform relaxation method generates an infinite sequence of functions, {y(")}:'o. 
The convergence of such sequences is generally studied in the context of Banach spaces, 
i.e. complete, normed, linear spaces. The discussion in the current section employs one 
such space, namely the space of continuous vector-valued functions defined on [0, T], 
denoted by C([O, T]j JRd), or C[O, T] for short. It is a Banach space when equipped 
with the maximum norm, 

II Y liT = tTr~111 yet) II , (2.10) 

where II . II denotes any of the usual vector norms in JRd. 
Central to many convergence theorems for sequences in Banach spaces is the con­

traction mapping or fized point principle. The definition of contraction map and the 
contraction mapping theorem are recalled below. They were taken from [24, p. 20]. 

Definition 2.4.1 Let (X , II . IIx) be a normed linear space and the associated norm. 
A n operator U : X -+ X is called a contraction if there ezists a '"Y, with 0 ::; '"Y < I, such 
that 

IIU(x)-U(y)lIx ::; '"Y Ilx-yllx, for all x,yEX. 

Theorem 2.4.1 Let X be a Banach space and U a contraction. Then there is a 
unique x* EX, such that U(x*) = x*. Moreover, if x(O) is any point in X, and we 
define the sequence {x(")}:'o by X(I) = U(x(O», x(2) = U(x(I», ... then x(,,) -+ x* as 
/I -+ 00. 
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2.4.2 Waveform relaxation as a contraction map 
In [147, 148], it is shown that the Jacobi and Gauss-Seidel waveform relaxation methods 
are convergent iterations. The proofs are based on a contraction mapping argument 
applied in 0[0, T], equipped with an exponentially scaled norm, 

II Y lib = max e-bC II yet) II, 
tE[O,T] 

(2.11) 

for some positive value b. In particular, it is demonstrated that the iteration is a 
contraction for the derivative of the iterates, see e.g. [147, eq. 4.18], 

d d d d . II _y(n+1) - _y(lo+l) II < 'Y II _yen) - _y(A:) II WIth 'Y < 1 . 
dt dt b - dt dt b' 

(2.12) 

Below we prove a similar result. We demonstrate that the Gauss-Seidel and Jacobi 
waveform relaxation operators F are contractions. Our proof differs from the one in 
the above references in that it proves contractivity for the iterates directly, without 
passing by (2.12). The proof is very similar to the standard approach for proving 
existence of solutions to ordinary differential equations, see e.g. [24, p.21 and p.120]. 

Theorem 2.4.2 Oonsider (2.1) where f(t,y) is continuous on D = [O,T] X JR:l, and 
satisfies a Lipschitz condition, that is, II f(t,y) - f(t,z) II~ LilY - z II, for all 
(t,y),(t,z) E D and for some positive constant L. Then, the Jacobi and Gauss-Seidel 
waveform relazation methods converge. 

Proof. For notational convenience, we set y to denote the result obtained after apply­
ing one Gauss-Seidel or Jacobi waveform relaxation step to a continuous function 
y, i.e., y := F(y). By the continuity assumption, each differential equation in 
(2.2) or (2.3) can be integrated to yield the following expression for y, 

yet) = Yo + l F(s,y(s),y(s))ds . 

Introducing a second continuous function z, and setting z := F(z), we derive, 

II yet) - z(t) II = Ill(F(s,y(s),y(s)) - F(s,z(s),z(s)))ds II 

~ III F(s,y(s),y(s)) - F(s,z(s),z(s)) II ds. (2.13) 

We now use a result, [147, eq. (4.12)], which states that the Lipschitz condition 
on f( t, y) induces a Lipschitz condition on F( t, u, v). More precisely, there exist 
positive constants II and '2 such that for all UI, U2, VI, V2 E JR:l, t E [0, T], 

By using this Lipschitz condition for F, (2.13) can be bounded further, 

II yet) - z(t) II ~ II III yes) - z(s) II ds + 12111 yes) - z(s) II ds. (2.14) 
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We multiply left- and right-hand sides by e-bl , and maximize over [0, T], 

max e-bl II y(t) - z(t) II ~ 11 max e-bl rl eb• max e-b{ II y(o - z(o II ds 
IE[O,T] IE[O,T] Jo {E[O,T] 

+ 12 max e-bl rl eb• max e-b{ II y(O - z(e) II ds . 
IE[O,T] Jo {E[O,T] 

We switch to II . lib-notation and take into account that max e-bl reb. ds ~ lib. 
IE[O,T] Jo 

For a sufficiently large value of b we get, 

ldb II y - z lib ~ '"( II y - z lib with '"( = 1 _ ldb < 1 . (2.15) 

This proves that :F is a contraction. Convergence follows by Th. 2.4.1. 0 

Remark 2.4.1 Note that the continuity and Lipschitz assumptions for f(t,y) are 
sufficient conditions to ensure the existence of a solution of the initial value problem 
(2.1), see e.g. [71, p. 2j. These conditions are not necessary. The global Lipschitz 
condition may e.g. be replaced by a local one, see e.g. [24, p.120j. 

The theorem shows that the error of the approximation gets reduced from iteration 
to iteration, when measured in the b-norm. Indeed, application of equation (2.15) to 
the iterate y(v-1) and the ODE solution y gives, 

II y(v) - y lib ~ '"( II y(V-1) - y lib' for some 0 ~ '"( < 1 and b > 0 . (2.16) 

Note that this does not require the error to decrease in every iteration at every point in 
time. Indeed, because of the exponential weighting the error may significantly increase, 
especially for large values of t, without affecting the decrease of the error in the b-norm. 
Therefore, the theory does not contradict the behaviour observed in example 2.2.1. In 
addition to (2.16), it can be shown that there is always an interval of time where the 
error decreases in the maximum norm (2.10), [147, p.109j. To this end the notion of 
strict contractivity is introduced, [147, p.105j. 

Definition 2.4.2 A differential system is said to have the strict WR contractivity 
property on [0, T], if the waveform relaxation algorithm applied to the system contracts 
in the maximum norm on [0, T], i.e., 

II y(v+1) - y(v) liT ~ '"( II y(v) - y(v-1) liT' '"( < 1, v ~ 1 . (2.17) 

Theorem 2.4.3 For any system (2.1) which satisfies the assumptions of the conver­
gence theorem 2.4.2 there exists aT> 0 such that the system has the strict WR 
contractivity property on [0, Tj. 
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Proof. We start from (2.14) with y = y(v) and Z = y(V-l), 

Taking the maximum over [0, T], we derive, 

Consequently, for a sufficiently small value of T we get the result, 

o 

2.4.3 On the order of accuracy 

An entirely different approach to analysing convergence is developed in the PhD-thesis 
of Juang, [66], and in a paper by Gear and Juang, [37]. Their analysis allows to quantify 
different convergence properties of different iteration methods, and to measure the 
influence of equation ordering within the Gauss-Seidel procedure. To this end, they 
define the order of accuracy of an approximation, [66, p.21]. Let Yi(t) be the i-th 
component of the exact solution y(t) of (2.1), and Zi(t) the i-th component of an 
approximation. 

Definition 2.4.3 If Zi( t) - Yi( t) = O( tMi+l) over a fiud, finite interval [0, TJ, then 
the order of accuracy, Ac(Zi), of Zi(t) is Mi. The order of accuracy of z(t), denoted by 
Ac(z), is defined as minlSiSdAc(Zi). 

Loosely speaking, the accuracy order of an approximation is one less than the 
number of matching terms in the Taylor expansions of the approximation and of the 
solution to the differential equation. Two basic theorems of Juang are summarized 
below, [66, Th. 3.2 and Th. 3.6]. They relate the accuracy order of successive waveform 
iterates. 

Theorem 2.4.4 Let y(v) and y(V-l) be two successive waveform iterates. Under the 
conditions mentioned in [66, Th.3.2 and Th. 3.6]), the following holds: 
in the case of Jacobi or Gauss-Seidel waveform relazation: 

in the case of waveform Newton iteration: 

(2.19) 

As the iteration continues more and more terms of the Taylor expansion of each 
iterate coincide with terms of the Taylor expansion of the exact solution. This accounts 
for the phenomena mentioned at the end of section 2.2. In particular, it explains why 
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the accuracy of the approximation is usually higher at the beginning of the integration 
interval, and why the length of the "converged" interval, where the approximation is 
close to the solution, grows as more iterations are applied. 

Throughout the electrical engineering literature on waveform relaxation methods 
the importance of the equation orderinl within the waveform relaxation Gauss-Seidel 
procedure is stressed. While some update orderings lead to rapidly convergent iter­
ations, others lead to slowly, almost stalling iterative processes. This behaviour is 
adequately explained by the following theorem of Juang, [66, Th.4.1]. 

Theorem 2.4.5 Under the conditions mentioned in [66, Th.4.1} and in the case of 
Gauss-Seidel waveform relaxation, the following property is satisfied, 

A ( (v») > . (A ( (v») A ( (v») A ( (V-I») A (V-I»)) 1 
c Yi _ mill c Yl , ... , c Yi-l, c Yi+l , ... , c Yd +. (2.20) 

The accuracy order of each solution component is at least one larger than the smallest 
accuracy order of any of the "input" variables in the right-hand side of the differential 
equation associated with the particular component. As mentioned in [66] the "~" is 
usually an "=" unless there is a fortuitous cancellation. We illustrate the importance 
of this theorem by an example. 

Example 2.4.1 We consider the following system of four differential equations, 

We assume the initial conditions, the right-hand side functions and the integration 
interval to be such that theorem 2.4.5 can be applied and that (2.20) is an equality. 
The Gauss-Seidel waveform relaxation is started with an initial approximation equal 
to the initial condition. The accuracy order of each component is then equal to zero. 

v II 0 11 I 2 I 3 I 4 I 5 I v II 0 11 I 2 I 3 I 4 I 5 I 
Ac(Y~V») 0 1 3 5 7 9 Ac(Y~V») 0 1 4 7 10 13 

Ac(Y~v») 0 1 3 5 7 9 Ac(Y~v») 0 2 5 8 11 14 

Ac(Y~v») 0 2 4 6 8 10 Ac(y~vJ) 0 2 5 8 11 14 

Ac(yiv») 0 2 4 6 8 10 Ac(yiv») 0 3 6 9 12 15 

Table 2.1: Gauss-Seidel waveform relaxation accuracy increase for example 2.4.1 with 
natural equation ordering (left) and with ord~ring Yl, Y3, Y2, Y4 (right). 

Table 2.1 displays the evolution of the accuracy order of each solution component 
in the first five iterations. The left part of the table shows the results obtained with 
natural equation ordering, i.e., the functions are updated in the order Yl, Y2, Y3, Y4. 
After the iteration has stabilized, the accuracy order of each component is increased 
by two per iteration. In the right-hand side part of the table the results obtained with 

2Different orderings correspond to different numberings of equations and unknowns. 
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an alternative update ordering are reported. We first update Yl, then Y3, then Y2, and, 
finally, y4. The accuracy increase per iteration has now become equal to three. 

Note that this observed behaviour is closely related to certain properties of the de­
pendency graph, which pictures the coupling between the differential equation variables. 
This important topic is discussed at length in [66]. 

2.5 Convergence analysis for linear systems 

The convergence analysis for nonlinear systems as presented in the previous section 
is rather restricted. It provides some insight in the qualitative convergence behaviour 
of waveform relaxation methods. However, it is of little practical use when one is 
interested in predicting actual convergence rates, e.g., in order to compare the per­
formance of different waveform relaxation variants. The theory for linear systems is 
much further developed. It is analysed in the papers of Miekkala and Nevanlinna, 
[84,85,88,89]. We survey some of their results below. But first, we recollect some def­
initions and properties which can be found in standard functional analysis text-books, 
e.g. [24, 39, 67]. 

2.5.1 Functional analysis preliminaries 

Some more Banach spaces 

The convergence of linear waveform relaxation is studied in more general Banach spaces 
than the space of continuous functions. In particular, the spaces of complex-valued 
Lebesgue measurable functions which are p-th power integrable are considered, see e.g. 
[39, p. 269]. These spaces are denoted by Lp((O, T)j (Ol), or Lp(O, T) for short, where T 
may be equal to 00. They are Banach spaces with the following norms, 

(2.21) 

Here, II . II denotes a norm in a;d and the integral is the Lebesgue integral. For the 
sake of completeness, one technicality is to be mentioned. Observe that II x lip = 0 
does not necessarily imply x(t) = 0 everywhere, since x(t) may be different from zero 
in a set of isolated points (more precisely, in a set of measure zero). Consequently, as it 
stands, (2.21) does not satisfy the requirements of a norm. To remedy the situation it 
is customary not to distinguish between functions that differ only on a set of measure 
zero. That is, "x = Y" means x(t) = yet) almost everywhere, and is written as "x(t) = 
yet) a.e.". A member of Lp is then an equivalence class of functions equal a.e. 

Closely related is the space of essentially bounded functions, i.e., the set of Lebesgue 
measurable functions x such that II x(t) II::; M < 00 almost everywhere. This space is 
denoted by Loo((O, T)j (Ol), or Loo(O, T), and its norm is given by, 

II x 1100= ess sup II x(t) 11:= inf{M : II x(t) II::; M a.e. on (0, T)} . 
tE(O,T) 

(2.22) 

The discussion on discretized waveform relaxation methods will involve operations 
on complex-valued, possibly infinite-length sequences x = {Xi}~o, with Xi E a;d. The 
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analysis is then considered in the spaces of p-summable sequences, Ip(O .. Nj (Vi). These 
are Banach spaces with norms given by, 

l~p<oo 

p = 00 

Spectrum and spectral radius of linear operators 

(2.23) 

The convergence of relaxation methods for linear systems in finite-dimensional vector 
spaces is determined by the spectral radius of the iteration operator (a matrix). A 
similar property holds for iteration methods defined in infinite-dimensional Banach 
spaces. Before stating the theorem, we shall recall some useful definitions. 

Definition 2.5.1 A linear operator U in a normed space X is said to be bounded if 
there exists a finite constant K such that II Ux IIx ~ KII xlix , for all x E X 

Definition 2.5.2 The norm of a bounded linear operator U in X is defined by, 

II U IIx = sup {II Ux Ilx III x IIx } = sup II Ux Ilx 
O;>!:rEX 1I:rllx =1 

(2.24) 

Definition 2.5.3 Consider a linear operator U in a normed space X. The spectrum 
of U, denoted by a(U), consists of those scalars A for which the operator A - U does 
not have a bounded inverse of which the domain is a dense subset of X . 

Definition 2.5.4 Suppose the spectrum a(U) to be non-empty and bounded. The spec­
tral radius of U is defined by, 

p(U) = sup IAI. 
).Eu(U) 

(2.25) 

Particular elements of the spectrum are the eigenvalues of U, i.e., the scalars A for 
which there exist a non-trivial x E X such that Ux = AX. However, contrary to 
the case of finite-dimensional vector spaces, the spectrum of U may also contain other 
elements, and the spectral radius may be different from the modulus of the largest 
eigenvalue. The following property further characterizes p(U), see e.g. [67, p. 378]. 

Property 2.5.1 Consider a bounded linear operatorU in a complex Banach space X . 
Then, 

p(U) = J~~ viII un Ilx . (2.26) 

We now state the main theorem of this introduction. It deals with the convergence 
of the successive approximation scheme. It is found e.g. in [70, p.149] or [67, p.382]. 

Theorem 2.5.2 Let U be a bounded linear operator in a Banach space X. 

- Suppose p(U) < 1. Then, for all <p E X the successive approximations 

xlv) = Ux(v-1) + <p, /I = 1,2, ... (2.27) 

with arbitrary x(O) E X converge to the unique solution of x - Ux = <po 
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- Suppose p(U) > 1. Then, (2.27) with z(O) = 0 cannot converge for all!p EX. 

Note that the theorem does not cover the case p(U) = 1. However, in that case the 
following property applies, see e.g. [67, p.382, remark 1]. 

Property 2.5.3 Assume the operatorU is such that all non-zero points of the spectrum 
are eigenvalues. Then, a necessary and sufficient condition for convergence of the 
successive approzimations (2.27) is that all eigenvalues ofU satisfy 1.\1 < 1. 

2.5.2 Waveform relaxation for linear systems 

We consider a system of d linear constant-coefficient ordinary differential equations, 

! z + Az = f, with z(O) = Zo t > 0 , (2.28) 

where A is a complex d x d matrix, and z and fare C'-valued functions of time. A 
splitting is applied to the coefficient matrix, A = P - Q, and the system of differential 
equations is rewritten into an equivalent form, 

! z + pz = Qz + f, with z(O) = Zo t > 0 . 

In a natural way, this equation leads us to consider the following waveform iteration, 

(2.29) 

which is started with an initial approximation z(O)(t) = Zo, for t ~ O. 
The convergence and the computational complexity of the iteration obviously de­

pend on the nature of the splitting matrices. Some of the splittings (P, Q) that have 
been proposed in the literature for use with (2.29) are given below. We assume the 
coefficient matrix A to be decomposed as -L + D - U, where D is a diagonal matrix, 
and L and U are strictly lower respectively strictly upper triangular matrices. Let ] 
denote the identity matrix. 

- Richardson: 

- Jacobi: 

- Gauss-Seidel: 

- JOR: 

- SOR: 

P = 1.], Q = 1.] - A 
'" '" 

P=D, Q=L+U 

P = -L+D, Q = U 

P = ~D, Q = 1:'" D + L + U 

P = ~D - L, Q = 1:'" D + U 

These splittings correspond to the splittings that are typically used when solving linear 
systems of the form Ax = b by standard relaxation methods. For instance, 

(2.30) 
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in which G is called the iteration matriz. In [84] this type of iteration is called static 
iteration, whereas (2.29) is called dynamic iteration. 

It is straightforward to verify that (2.29) with Jacobi or Gauss-Seidel matrix split­
ting corresponds to the Jacobi or Gauss-Seidel waveform relaxation method as defined 
in section 2.2. Note also that with use of each of the above-mentioned splittings the 
iterative procedure consists of solving a sequence of linear constant coefficient ordinary 
differential equations in a single unknown. These equations are of the form, 

(2.31) 

where Pi,i is the i-th diagonal element of P, and 9i is a sum of known functions. 

2.5.3 Continuous-time convergence results 

The continuous-time waveform relaxation operator 

The solution to the linear ordinary differential equation (2.28) is given by the following 
well-known formula, see e.g. [24, p.119], 

(2.32) 

This formula can be applied to (2.29) in order to derive an explicit relation between suc­
cessive waveform relaxation iterates. The following successive approximation scheme 
results, 

(2.33) 

with 

{ 
X:x(t) = l e{·-t)PQx(s)ds 

'1'( t) = e-tP Xo + l e{·-t)P f( s) ds 
(2.34) 

Equation (2.33) defines the continuous-time waveform relazation operator X:. From 
(2.34) it can be seen that this operator is a linear Volterra convolution operator with 
a continuous matrix-valued kernel. More precisely, 

X:x (t) = k * x (t):= l k(t - s) xes) ds with k(t) = e-tPQ (2.35) 

Superlinear convergence on finite time-intervals 

Because of the contraction mapping argument presented in the previous section one 
might suspect the convergence of the waveform relaxation method to be linear. That 
is, the error (or its norm) is multiplied in each iteration by a constant bounded by'Y, 
see (2.16), smaller than one. However, it has been shown that the rate of convergence 
on bounded time intervals is ultimately faster than linear. This superlinear convergence 
result is given in the following theorem, which is proven in [88, p. 333]. 
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Theorem 2.5.4 Let the constant C be such that II Ie liT = C, where Ie is the leer.nel of 
the waveform relazation operator. The conve'Yence of (2.29) is characterized by, 

(2.36) 

This result corresponds to a zero value for the spectral radius of JC, see [84, p.461). 

Theorem 2.5.5 Consider JC as an operator in the space of continuous functions on 
[0, T), equipped with the mazimum norm. Then, p(JC) = 0 . 

Note that the spectral radius corresponds to an asymptotic value of the convergence 
factor. This can be understood from property 2.5.1. For large values of C, and for 
long time intervals [0, T), the multiplier in the right-hand side of formula (2.36) will 
become very large, before starting to decrease. In those cases the observed convergence 
behaviour does more closely correspond to the behaviour predicted by the analysis for 
infinite time-intervals, which is surveyed below. 

Convergence on infinite time-intervals 

In [84, Th.2.2), Miekkala and Nevanlinna relate the spectral radius of the integral 
operator JC to the spectral radius of the Laplace transform of its kernel. It is easily 
verified that the latter is a complex matrix which is a function of the Laplace transform 
variable z, and equal to 

K(z) = (zl + Pt1Q , (2.37) 

where 1 denotes the identity matrix. The matrix K(z) is frequently called the symbol 
of the integral operator. 

Theorem 2.5.6 Consider JC as an operator in Lp(O, 00) with 1 ~ p ~ 00, and assume 
that all eigenvalues of P have positive real parts. Then, 

p(JC) = sup p( K(z)) = maxp( K(i{)), with i = V-I . 
Re( .. )~o eEIl 

(2.38) 

Remark 2.5.1 The second equality follows from the fact that p(K(z)) satisfies the 
mazimum principle (If f( z) is analytic inside and on a simple closed curve r, then 
If(z)1 attains its maximum on r, unless f(z) is a constant). 

Remark 2.5.2 Note that (iU +P)-lQ evaluated at { = 0 corresponds to the iteration 
matrix G of the static iteration (2.30). Consequently, if we assume the conditions of 
the theorem to be satisfied, p(G) ~ p(JC). The spectral radii coincide, p(G) = p(JC), 
when the maximum in (2.38) is found at the origin. 

In order to determine the spectral radius of JC the spectral radius of the matrix K(z) 
is to be calculated for every value of z along the imaginary axis. This is generally a very 
difficult task and defies any further theoretical analysis. However, there are some cases 
where p(JC) can be calculated explicitly. One such case arises when A is a consistently 
ordered matrix with a positive constant diagonal. Since this case is important in view 
of the discussion in the next chapter, we shall mention some corresponding results. 
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We set KJAC , KGS and KSOR to denote the Jacobi, Gauss-Seidel and SOR waveform 
relaxation operators. We assume A to be decomposed in the usual way (A = - L + 
D - U). The following corollary, [84, Cor. 4.1], deals with the Jacobi and Gauss-Seidel 
iterations. It illustrates a case where the maximum in (2.38) is found at the origin. 

Corollary 2.5.7 Let A be a consistently ordered matriz with positive constant diago­
nal. Then, 

(2.39) 

The analysis of the SOR waveform relaxation method centers around the following 
formula which relates the eigenvalues A, of the SOR symbol K(z) to the eigenvalues 1-', 
of the Jacobi static iteration matrix, D-l(L + U), with D = 51, see [85, eq.2.23], 

(1 + ZW/6)A, + w - 1 = j>:.WI-" . (2.40) 

For any complex number z, when given the spectral radius I-' of D-1 (L + U) this 
formula allows to calculate the spectral radius of K(z). In fact, to determine p(K(z)) 
the knowledge of the triple (IL, 6, w) suffices; precise knowledge of the elements of A is 
not required. Alternatively, given I-' the formula allows to determine what values of z 
lead to a particular value of p(K(z)). This allows one to compute contour lines of the 
function p( K(z)). We have plotted such lines in figure 2.2. The two pictures visualize 
the function for 6=10, 1-'=0.95, and for two values of the SOR parameter, w = 1, and 
w = 1.3. Observe that in the case of w=1 (Gauss-Seidel) the maximum of p(K(z)) 
taken over the imaginary axis is found at the origin. This agrees with corollary 2.5.7. 
In the case of overrelaxation with sufficiently large w, the maximum is taken in a point 
away from the origin. The location of this point may be calculated analytically and 
yields an explicit expression for the spectral radius of the SOR waveform relaxation 
operator. We refer to [84, Th.4.2] for the precise formula. 

For future reference we mention one further result, which relates the norm of K to 
the norm of its symbol, see e.g. [91, p.491]. 

Theorem 2.5.8 Denote by II . 112 the 12-norm and by II . II the standard Euclidean 
vector norm. Assume that all eigenvalues of P have positive real parts. Then, 

11K 112 = sup II K(z) 11= max II K(ie) II 
Re(z)~O eER 

(2.41 ) 

2.5.4 Discrete-time convergence results 

Linear multistep methods 

For the reader's convenience we recall the general linear multistep formula for calcu­
lating the solution to the ordinary differential equation (2.1), see e.g. [71, p.ll], 

1 Ie Ie 

- L QiYn+i = L (Jifn+i . 
T i=O i=O 

(2.42) 
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-30 5 

Figure 2.2: Visualization of the function p(K(z)) by contour lines p = 0.4,0.5, .. . ,1.2. 
The matrix A is a consistently ordered matrix with positive constant diagonal, and 
SOR splitting is applied. The pictures correspond to the parameter sets (p., 6, w) = 
(0.95,10,1) (left) and (0.95,10,1.3) (right) . 

Here, " denotes a constant step-size; cxi and f3i are real constants; Yi approximates 
the ODE solution at the time-level ti = j" , and Ii = f(ti, Yi)' We shall further use 
the "subscript ,," notation to denote sequences of values associated with successive 
time-levels, e.g. y.,. = {Yi}f:,o, where N denotes the number of time-steps (possibly 
infinite). 

We also introduce the characteristic polynomials of the linear multistep method, 

k k 

a(e) = Lcxie and b(e) = Lf3ie . (2.43) 
i=o i=o 

We adhere to the usual assumptions: a(O, b(O have no common roots (irreducibility); 
a(l) = 0 and a'(I) = b(l) (consistency); all roots of a(O are inside the closed unit 
disk and every root with modulus one is simple (zero-stability). Finally, we recall the 
definition of the stability region of a multistep method, e.g. [47, p. 257] or [85, p. 576]. 

Definition 2.5 .5 The stability region S consists of those p. E C for which the poly­
nomial a(O - p.b(O (around p. = 00 : p.-1a() - b(O) satisfies the root condition: all 
roots satisfy leil ~ 1 and those of modulus 1 are simple. 

Note that the boundary of the stability region, denoted by as, is a subset of the 
so-called root locus curve, denoted by r, i.e. , 

as e r = {z = a(Ojb(O : lei = I} , (2.44) 

see [47, p. 259] . For most methods used in actual practice, the inclusion "e" becomes 
an equality, see e.g. [47, p. 311] . 
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Example 2.5.1 By way of illustration, we have plotted the boundaries of the stability 
regions of the so-called backward differentiation formulae in figure 2.3, see e.g. [47, p. 
264]. These methods have good stability characteristics, and are especially appropri­
ate for solving stiff systems of differential equations. They will be considered in the 
later chapters for solving semi-discretized parabolic partial differential equations. The 
formulae of the methods of order one to four are given below, [71, p. 242], 

- BDF(l) : 

- BDF(2) : 

- BDF(3) : 

- BDF(4) : 

Another method which will be used frequently further on is the trapezoidal rule, 
also known (mainly in the context of solving partial differential equations) by the 
name of Crank-Nicolson method (CN). The method is a second order accurate time­
discretization. Its stability region boundary equals the imaginary axis. 

- CN: 

Figure 2.3: Boundary of the stability region for the BDF methods of order 1 up to 4. 
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The discrete-time waveform relaxation operator 

In the analysis presented in [85, 89] it is assumed that a constant time-step is used for all 
of the differential equations. (Consequently, the theory does not cover the case where 
the multi-rate property of the waveform relaxation method is exploited.) Application 
of the linear multistep formula to the basic waveform iteration (2.29) leads to, 

1 1: 1: 1: 1: 

- E Ct;X~~; + E {3;Px~~; = E (3;Qx~;;l) + E (3;!n+; , n ~ 0 . 
r ;=0 ;=0 ;=0 ;=0 

(2.45) 

For simrlicity's sake, we assume that there are k fixed starting values supplied, i.e., 
x~.,) = X~"-l = x;, for j < k - we do not iterate on the starting values-. Observe that 
upon convergence, i.e., when xr) = xr-1 ) = x,., formula (2.45) becomes, 

1 1: 1: 1: 1: 

- E Ct;Xn +; + E {3;Pxn +; = E {3;Qxn+; + E {3;!n+; , n ~ 0 , 
r ;=0 ;=0 ;=0 ;=0 

(2.46) 

or, 
1 1: 1: 1: 

- E Ct;Xn+; + E ,B;Axn +; = E (3;!n+; , n ~ 0 . (2.47) 
r ;=0 ;=0 ;=0 

The solution of the discretized waveform relaxation method is identical to the solu­
tion obtained by the corresponding time-stepping method applied to the "non-split" 
ordinary differential equation (2.28). 

Equation (2.45) implicitly relates the discrete waveforms xr-1 ) and xr). As in the 
previous section, this relationship may be written in an explicit way, 

xr) = K:,.xr- 1 ) + cP,. . (2.48) 

In [85, 89] the nature of K:,. and of the right-hand side sequence cP,. is fully described. In 
particular it turns out that K:,. is a linear discrete convolution operator. More precisely, 
there exists a matrix-valued kernel k.. = {A;}~o with A; E ([)'Xd, such that, 

; 
(K:,.x,.); = (k,. * X,.); := E k;_iXi • 

i=O 

(2.49) 

In [89, eq. (4.13) and eq. (4.16)] it is shown that k.. is related to the symbol of the 
integral operator K: by the so-called Z-transform (or discrete Laplace transform), 

00 0 1 a E A;z-' = K( --(z» . 
i=O or b 

(2.50) 

Convergence on finite time-intervals 

The properties of K:,. as an operator in the space Ip(O .. N) are characterized by the 
theorem given below, which is proven in [89, Th.4.1]. It basically states that the 
spectral radius of K:,. is equal to the spectral radius of the symbol K(z) evaluated in a 
point located on the real axis. The precise location of this point depends on the linear 
multistep method. 
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Theorem 2.5.9 Assume that o.k/(3k rf. a( -T P), and let the number of time-steps, N, 
be finite. Then, Kr has the spectral radius, 

lOok 
p(Kr) = p( K( --(3 )) . 

T k 
(2.51) 

Remark 2.5.3 The spectral radius is independent of the number of time-steps! 

Since the space in which Kr operates is finite-dimensional, the above result may also 
be derived by standard linear algebra techniques. We outline such a proof below. 

Proof. Let Xi denote the value of the discrete-time solution at time-step i. Let e~v) 
be the error of the v-th approximation, i.e., e~v) = Xi - x~v). It follows that, 

1 k k k 
~ (v) ~(3 P (v) ~(3 Q (V-I) 

- L..J o.jen+j + L..J ; en +; = L..J ; en +; , 
T ;=0 j=O ;=0 

with e;v) = 0 , j < k , 

for n = 0, ... ,N - k. This is rewritten as, 

k k 
~ C. (v) - ~ D. (V-I) 
L..J ,en+j - L..J ,en +; , 
;=0 ;=0 

with C· - 10.1 + (3.p and D· - (3.Q We set E(v) - [e(v) e(v) e(v)jt and 
, - r " 1 - , . - k k+l· .. N , 

define the following (N-k+l) X (N-k+l) block matrices C and D, 

Ch Dh 
C._1 C. Dh-1 D. 

Ch-1 C. Dh- 1 Dh 
c= and D = 

Co Do 

Co Ch-1 Ch Do 

Consequently, 

C E(v) = D E(v-l) , or E(v) = C-1 D E(v-l) . 

Convergence of the iteration is therefore determined by the spectral radius of 
C- 1 D. It can easily be verified that this matrix is a block lower triangular 
matrix with a constant diagonal the blocks of which are equal to Ck 1 D k • By 
consequence, 

which is identical to (2.51). o 

lucianoaraki@yahoo.com.br



2.6. WAVEFORM RELAXATION ACCELERATION TECHNIQUES 45 

Convergence on infinite time-intervals 

As said before, the spectral radius determines the asymptotic convergence factor. It 
may be of little use when the convergence factor is to be determined in the early stages 
of the iteration. Numerical experience shows that this is indeed so, especially when 
large time-intervals are considered. It turns out that an infinite time-interval analysis 
is then more appropriate. The theorem below can be found in [85, Th.3.1). 

Theorem 2.5.10 Suppose 0'( -T P) C int S, and consider K:.,. as an operator in Ip(JN) 
with 1 ~ p ~ 00. Then, 

p(K:.,.) = sup{p( K(z» TZ E C\ intS} , (2.52) 

or (by the mazimum principle), 

1a 
p(K:.,.) = max p( K( --b(O» = max p( K(z) ) . 

lel=1 T "'&E8S 
(2.53) 

In order to determine the spectral radius of K:.,. by formula (2.53), the spectral 
radius of the symbol K(z) is to be determined for all values z = ~~(e), lei = 1. These 
complex values are located on the root locus curve scaled by the constant ~. The second 
equality in (2.53) shows that it suffices to take the maximum over the boundary of the 
(scaled) stability region of the linear multistep method. 

The following corollary, [85, Th. 3.4], can be readily verified by the reader. 

Corollary 2.5.11 If the multistep method is A-stable then p(K:.,.) ~ p(K:), where K: is 
the waveform relazation operator on (0,00). 

Finally, for future reference, we recall a formula for the norm of K:.,., see [91, p.491). 

Theorem 2.5.12 Suppose 0'( -T P) E int S. Let II . 112 denote the 12-norm and II . II 
the Euclidean matriz norm. Then, 

(2.54) 

2.6 Waveform relaxation acceleration techniques 

The multi-rate integration properties of waveform relaxation are central to its success 
as an integration method for solving very large systems of ordinary differential equa­
tions. Throughout the years many implementations of the method have been made, 
especially tailored towards specialized circuit simulation problems, see e.g. Lelarasmee 
[74), Mattison [80), Dumlugol [27], Odent [93), Raman et al. [102), and there are many 
others. These programs do not naively implement the algorithms as they were pre­
sented in the previous sections. Instead, they are extended with various sophisticated 
acceleration techniques. The more important ones are briefly discussed below. 
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Ordering of the equations 

It has already been mentioned that the ordering of the equations strongly affects the 
number of iterations required to achieve convergence. The determination of an optimal 
ordering for arbitrary systems is in general very difficult, or impossible. There are some 
guidelines though, which very often lead to good orderings. In particular one should 
number the equations in such a way that the Jacobian matrix of the right-hand side 
I( t, y) is "as lower triangular as possible", and large off-diagonal elements in the upper 
triangular part should be avoided, [147]. This rule is based on the following observation. 
If the Jacobian is truly lower triangular, the Gauss-Seidel waveform relaxation method 
solves the system in one iteration only. 

In the VLSI-simulation programs the update ordering is usually aimed at following 
the signal flow through the electronic circuit. To this end various optimization tech­
niques based on circuit dependency graph and circuit component characteristics are 
employed. This has led to further waveform relaxation variants. E.g., in the hierarchi­
cal GatlSs-Seidel method certain variables (in tightly coupled loops of the dependency 
graph) are updated more frequently than others, see e.g. Juang [66]. 

Partitioning and blockwise iteration 

Experience has demonstrated the advantage of merging tightly coupled variables into 
subsystems of differential equations which are solved as a whole (with standard ODE 
integration techniques). This leads to more rapidly converging blockwise Gauss-Seidel 
techniques with blocks of varying size. The blocks need not necessarily be disjoint. An 
overlapping block waveform relaxation method is analysed by Pohl and Jeltsch in [61]. 

In the electrical engineering applications the partitioning is naturally associated to 
the physical system. It is then based on topological circuit properties and quantita­
tive information about circuit components. This "grouping" of unknowns may either 
be done manually, or automatically. A survey and analysis of various partitioning 
strategies is presented by Peterson and Mattison in [99], and the references therein. 

Windowing 

In an implementation it is necessary to store discrete representations of the waveforms. 
Such a representation may for instance consist of a linked list of (time,value) pairs 
(one for every function), combined with an interpolation routine to provide intermedi­
ate function values. Obviously, the memory requirements of the waveform relaxation 
methods are very high, especially for large systems and long time-intervals. These 
requirements can be reduced if the time-interval of interest is divided into several 
subintervals, so-called windows, on which the differential equations are solved in se­
quence. It is important to choose these windows as long as possible, in order to fully 
profit from the multi-rate characteristics of the waveform method, and in order to avoid 
algorithmic startup costs, which are inevitably associated with every new window. 

Besides affecting considerable savings in memory requirements, windowing also af­
fects the computational costs. As was illustrated before, the error of the waveform 
relaxation iterates is far from uniform. Large errors are found at the end of long 
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time-intervals, and these errors do not necessarily get reduced in magnitude from one 
iteration to the next. If so, the calculations on these parts of the interval are wasted. 
The use of a windowing strategy should avoid these superfluous computations. Various 
dynamic windowing strategies have been proposed for automatically selecting appropri­
ate window lengths, e.g. by monitoring the convergence and, based on this information, 
deciding whether to shorten or lengthen a current window-size, see e.g. [147, 152]. 

Partial waveform convergence 

The computed waveforms are often very accurate near the beginning of a time-window, 
see e.g. the discussion on the accuracy order. In such a subwindow additional waveform 
iterations will not reduce the approximation error any further. Recomputation of these 
"converged parts" may be avoided by implementing a strategy for locating the starting 
point of re-integration. Such strategies are usually based on monitoring the input 
functions in the right-hand side f( t, y). The computation on a particular differential 
equation is then skipped, as long as the input functions have not changed significantly 
from their values in previous iterates. 

Inaccurate iteration 

The waveform relaxation method is an iterative procedure. As in many iterative meth­
ods, it is not necessary to compute all iterates to a similar precision in order to ensure 
convergence. Inaccurate iteration may lead to great computational savings, especially 
when computing the initial iterates which are far from the converged solution anyway. 

In the waveform relaxation method, one could think of calculating the initial iterates 
with large error tolerance, e.g. by using large step sizes, and gradually reducing the 
error tolerance, e.g. by refining the step size, as the computation proceeds. Such non­
stationary iterations have been theoretically studied by Nevanlinna in [89, 91], who 
suggests a "tolerance game" based on balancing discretization and iteration errors. 
Related results are also found in the electrical engineering literature, [147, Ch. 6.3]. 

Parallel implementation 

The subsystems that are to be solved in the waveform relaxation method are often 
decoupled, and therefore, solvable in parallel. This is trivially so in the Jacobi method. 
Parallelism is also possible with Gauss-Seidel relaxation, at least when adequate order­
ing schemes are used, e.g: based on the concept of dependency graph colouring. One 
may also consider the use of block-Jacobi point-Gauss-Seidel relaxation schemes, in 
which large subsystems (often called chains in the electrical engineering literature) are 
treated in parallel. The solution to the equations of each subsystem are approximated 
by a sequential waveform relaxation Gauss-Seidel iteration. 

Implementations have been made on a variety of both shared memory and dis­
tributed memory parallel computers, see e.g. Peterson and Mattison ([99], Intel hy­
percube, Symult), Odent ([93], Sequent), Xia ([152]' Alliant), Raman et al. ([102], 
hypercube). In these references various further optimizations have been suggested for 
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increasing the parallelism inherent in the basic waveform relaxation method (like time­
segment pipelining, parallel mode evaluation, dynamic decoupling, etc.). We refer to 
the PhD thesis of Odent, [93], for a very detailed overview. 

2.7 Some concluding remarks 

The waveform relaxation method has proven to be very successful for solving certain 
systems of ordinary differential equations that arise in the simulation of very large scale 
integrated circuits. With a good partitioning and ordering of the equations only very 
few iterations are required to obtain convergence (typically 5 to 10, [147]). The compu­
tation cost is further reduced by taking particular waveform convergence characteristics 
into account. When compared with standard time-integration software currently used 
by circuit simulation practitioners, waveform relaxation (often) offers an improvement 
of one up to two orders of magnitude in speed, [147]. Implementation on a parallel 
machine is conceptually straightforward -although many technical details complicate 
the matter-, and reduces the simulation time even further. All of this is obtained at 
the cost of having to provide a substantial amount of memory. 

However, the favourable convergence characteristics strongly depend on the exis­
tence of good orderings and partitionings, and our ability of finding them. This has 
shown to be feasible for circuit simulation problems only by taking the electronic circuit 
parameters and signal flow properties into account. The method has also been success­
fully applied for simulating certain chemical distillation processes, see the PhD-thesis of 
Skjellum, [119]. The differential equations that arise there have similar characteristics 
to those found in circuits simulation problems, and again, the performance crucially 
depends on the knowledge of the underlying physical system. The use of waveform 
relaxation for solving semi-discretized parabolic partial differential equations is the 
subject of the following chapter. It will be shown that the method is very effective. 
Yet, again, the very special characteristics of these systems are to be taken into account. 
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Chapter 3 

Waveform Relaxation Methods for 
Initial Boundary Value Problems 

In VLSI-simulation this type of approach, called waveform relaxation method, 
seems to result in considerable savings in computing time. 

It would not be surprising if an efficient implementation of the idea 
appeared also to applications outside circuit equations. 

-U. Miekkala and O. Nevanlinna, in [84, 1987}. 

We comment on the use of waveform relaxation techniques for solving parabolic 
initial boundary value problems. It is illustrated that the Jacobi, Gauss-Seidel and 
SOR methods do not lead to satisfactory, rapidly convergent algorithms. A linear 
multigrid acceleration is presented, and illustrated by a numerical example. An analysis 
of the continuous-time and discrete-time variants is given. The method is extended to 
nonlinear problems and related to a multigrid method on a space-time grid. 

3.1 Introduction and notations 

A parabolic initial boundary value problem is generally characterized by a parabolic 
partial differential equation (or a system of differential equations), a set of boundary 
conditions, and given initial values, 

{ 
~;(t,x) = C(u(t,x)) + f(t,x) t > 0, x E n 
B(u(t,x))=g(t,x) t>O, xEan 
u(O,x)=uo(x) xEn 

(3.1) 

Here, C(.) is a linear or nonlinear, uniformly elliptic operator; B(.) is a linear or nonlin­
ear boundary operator; f and 9 are known functions of the time and space coordinates, 
and Uo is a given function of x. n denotes the compact spatial domain. We assume 
that the solution u exists and that it is unique. 

The numerical method of lines replaces any spatial derivatives in the above equa­
tions by finite differences. After elimination of the boundary conditions, one gets a 
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large set of ordinary differential equations (see e.g. appendix A), 

d 
dt uh(t) = Lh(uh(t)) + fh(t) , uh(O) = u~, t > 0 . (3.2) 

We use the superscript-h notation to denote quantities defined on a discrete mesh or 
grid nh , which covers the domain n. The value h is a measure of the mesh size, 
e.g., the distance between grid lines or grid points. As before we set d to denote the 
number of differential equations. Thus, the semi-discrete solution uh is of the form, 

The system of differential equations (3.2) is known to be stiff for a sufficiently 
small h. The eigenvalues of the Jacobian of Lh (.) lie close to the real axis and have 
negative real parts. The computation of the solution normally proceeds by discretizing 
(3.2) with an appropriate time-integration method which takes the characteristics of 
the problem into account. In this chapter we shall consider the use of the backward 
differentiation formulae and the trapezoidal rule (Crank-Nicolson method). This leads 
to a fully discrete solution, which we denote by u~, with 

u~ = { ut }f=o, with ut = [ ut,1 ut,2 ... ut,d 1t . 
N denotes the number of time-steps. In the case of problems defined on two-dimensional 
rectangular domains we shall often use a more intuitive notation, e.g. u~;(t) and Ui,i,; , 
to refer to functions and scalars defined at (Xi, y;) , a coordinate in a discrete mesh. 

The disadvantages associated with the above time-stepping approach, in partic­
ular w.r.t. parallelism and the exploitation of multi-rate behaviour, have led us to 
investigate the use of waveform relaxation techniques. The use of "simple" waveform 
relaxation methods (Jacobi, Gauss-Seidel and SOR) for solving the equations derived 
by the numerical method of lines is considered in section 3.2. The convergence prop­
erties are illustrated with extensive experimental results. Multigrid acceleration of 
the waveform relaxation method is the subject of section 3.3, where we discuss linear 
parabolic problems. The convergence properties of both the continuous-time and the 
discrete-time iteration are studied in section 3.4. Section 3.5 includes a selection of 
experimental results, which allow to verify the theory. The linear algorithm easily ex­
tends to nonlinear parabolic partial differential equations, as we showed in [136, 1401. 
The nonlinear multigrid method is given in section 3.6. In section 3.7, we argue that a 
particular version of multigrid waveform relaxation corresponds to standard multigrid 
on a so-called space-time grid. We end the chapter with some concluding remarks. 

3.2 Standard waveform relaxation 

In this section, we concentrate on a linear model problem: the two-dimensional' heat 
equation defined on the unit square. The treatment of a model problem allows the 
derivation of analytical expressions which would be difficult to obtain when dealing with 
more complicated, e.g. variable-coefficient or nonlinear differential equations. More­
over, the case studies in chapter 8 provide ample evidence that the behaviour of the 
algorithms in more complicated situations is qualitatively very similar. 
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3.2.1 A model problem: the two-dimensional heat equation 

Consider the following model problem, 

au a 2u lJ2u 
at = ax2 + ay2' (x,y) E n = [0,1] x [0,1], t > 0, 

completed with Dirichlet boundary conditions and an initial condition chosen in such a 
way that the analytical solution is given by u(t, x, y) = 1 + sin( 'n/2) sin( 1Ty /2)e-w't/2 . 
The equation is discretized with standard central differences on an equidistant rectan­
gular mesh, with equal mesh size h in x-direction and y-direction, 

nh={(Xi,Yj): xi=ih, yj=jh, with O~i,j~l/h}, 

This leads to an equation of the following type defined at each interior grid point, 

d h 1 h h h h h h 
dt Ui,j = h 2 (Ui_l,j + Ui,j_l - 4Ui,j + Ui,j+1 + Ui+l,j), Ui)O) = UO(Xi, yj) , 

Note that the right-hand side corresponds to the well-known five-point star discretiza­
tion of the Laplace operator. After elimination of the Dirichlet boundaries, this can be 
rewritten as a large linear system of d = (l/h - 1)2 equations, 

(3.3) 

When the equations are numbered lexicographically, the matrix Lh is a well-studied 
block-tridiagonal matrix. fh contains the contribution of the boundary functions. 

3.2.2 Standard waveform relaxation methods 

Following the notation and the ideas expressed in chapter 2, section 2.5.2, a splitting 
is applied to the coefficient matrix, _Lh = ph - Qh, and (3.3) is solved iteratively, 

d _uh,(v) + phuh,(v) = Qhu h,(v-l) + fh . 
dt 

As before, we shall use uh,(O)(t) = uh(O) as the initial iterate. In order not to overload 
the notation we shall omit the superscript h when dealing with waveform relaxation 
iterates, e.g., we write u(v) instead of uh,(v). 

The use of the Jacobi, Gauss-Seidel and SOR splittings leads one to solve the 
following equations. In the case of the Jacobi splitting, 

d (v) _ 1 (V-I) (v-I) . (v) (v-I) (V-I») 
dt Ui,j - h2 Ui_l,j + Ui,j_l - 4Ui,j + Ui,j+1 + ui+1,j . 

Note that the equations at the different grid points can be solved simultaneously. 
There are two standard ways of defining a Gauss-Seidel relaxation for partial dif­

ferential equations. They correspond to different orderings of the equations. In the 
lexicographic Gauss-Seidel waveform relaxation method the iteration is as follows, 

d (v) _ 1 ( (v) (v) (v) (v-I) (V-I») 
dt Ui,j - h 2 Ui_l,j + Ui,j_l - 4Ui,j + ui,;+1 + ui+l,; . 
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The grid points are visited in a sequential way from the left to the right, and from the 
bottom to the top. The red/black Gauss-Seidel waveform relaxation method on the 
contrary is a two-stage procedure. First, the equations are updated for which i + j is 
even (the so-called "red" grid points). This is followed by the update of the equations 
for which i + j is odd (the "black" grid points), 

i + j even: d (v) _ 1 (V-l) (v-l) (v) (v-l) (V-l)) 
dt Ui,j - h2 Ui_l,j + Ui,j_l - 4Ui,j + Ui,j+1 + ui+1,j , 

i + j odd: d (v) _ 1 ( (v) (v) 4 (v) (v) (v)) 
dt Ui,j - h2 ui_l,; + Ui,j_l - Ui,j + Ui,j+1 + ui+l,j . 

Observe that the equations in each stage can be solved simultaneously. 
The successive overrelaxation method allows the same two variants. We mention 

the lexicographic SOR waveform relaxation equations, and leave the definition of the 
red/black SOR waveform method to the reader. 

3.2.3 Some convergence results 

The continuous-time iteration 

The linear theory of section 2.5 is immediately applicable. We consider the continuous­
time iteration first. The superlinear convergence of waveform relaxation on finite time­
intervals is based on taking the limit II --t 00 in equation (2.36). In this formula a 
constant C appears. The magnitude of this constant in the case of the above model 
problem and the use of Jacobi iteration can be calculated as follows (e.g. with the 
II . 1100 matrix norm). First, we recall the format of the Jacobi splitting matrices 
(P\ Qh) (which satisfy _Lh = ph _ Qh), 

C:= II k II = max II e-tPhQh 1100 = max II e-4t/h2 Qh 1100 =11 Qh 1100= 4/h2 • 
T tE[O,Tj tE[O,Tj 

(The final step requires the knowledge of the precise format of Q\ which has four non­
zero (off-) diagonals of which the elements take the values zero or 1/ h2 .) Thus C is 
inversely proportional to the square of spatial mesh size. Consequently, when T is not 
too small, it takes a large number of waveform relaxation steps before the multiplier 
(CT)V / II! in (2.36) starts going to zero. A finite-interval analysis may therefore not 
be appropriate to describe the convergence behaviour in the initial iterates. 

The matrix - Lh satisfies the conditions for applicability of corollary 2.5.7. As such, 
the spectral radius of the infinite-interval operator is equal to that of the static iteration 
operator. The latter has a value which is well-known from the theory of relaxation 
methods for elliptic equations. The result is formulated below, [84, p. 473]. Note that 
the formulae are valid for the one-, two- and three-dimensional model problem. 
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Property 3.2.1 The spectral radii of the (infinite-interval) Jacobi and Gauss-Seidel 
waveform relazation operators in the case of the model problem are given by the follow­
ing formulae, valid for small h, 

(3.4) 

The SOR waveform relaxation method applied to the model problem is studied by 
Miekkala and Nevanlinna in [84, Th. 4.2 and p. 473]. In particular, they derive the 
following property, based on an analysis of equation (2.40). 

Property 3.2.2 The spectral radius of the (infinite-interval) SOR waveform relazation 
operator with optimal overrelazation factor Wupt in the case of the model problem is 
given by the following formula, valid for small h, 

(3.5) 

Recall that the spectral radius of the static SOR matrix with optimal W is given by 
1 - 27rh (for small h), which is much smaller than (3.5). Consequently, we may not 
expect SOR to be as successful for parabolic problems as it was for elliptic ones. 

The discrete-time iteration 

The discrete-time iteration remains to be considered. When the time-step is sufficiently 
small the finite-interval iteration converges. Indeed, taking the limit in (2.51), 

Analogously, when the time-step is sufficiently large the spectral radius of the finite­
interval operator approaches that of the static iteration operator, and (3.4) applies. 

Qualitative information about the infinite-interval iteration can be derived by con­
sidering contour-line figures like fig. 2.2, and plots of the scaled stability region bound­
aries as in fig. 2.3. By way of illustration we consider the trapezoidal rule and the 
backward differentiation formulae. 

In the case of the trapezoidal rule, the boundary of the stability region is pre­
cisely the imaginary axis. Consequently, by a comparison of formulae (2.38) and 
(2.53): p(JC) = p(JC.,.). As such, the formulae in the above properties also apply to 
the discrete-time iteration. Following corollary 2.5.11, we find that p(JC.,.) ~ p(JC) for 
the A-stable BDF(1) and BDF(2) methods, with equality for the Gauss-Seidel and 
Jacobi methods. Furthermore, when T ---t 0, then p(JC.,.) ---t p(JC) (e.g. for the SOR 
method) as the complement of the scaled stability region expands to fill up the entire 
complex right half-plane. The stability region boundary of the higher order backward 
differentiation methods runs into the complex left half-plane. As such, the convergence 
properties cannot be related to those of the continuous-time operators in a similarly 
straightforward way. 
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3.2.4 Numerical experiments 

Successive waveform relaxation iterates 

Figure 3.1 depicts waveform relaxation iterates obtained with the red/black Gauss­
Seidel method. Of each iterate u{v) the component associated with the grid point at 
the center of the domain is plotted. The upper picture displays the successive iterates 
for a coarse spatial discretization with h = 1/6. The lower picture shows every 20-th 
iterate obtained with the discretization h = 1/32. In both cases the trapezoidal rule is 
used with T = 1/100 and 100 time-steps. The fine-grid iteration obviously converges a 
lot more slowly than the coarse-grid one does. 

Gauss-Seidel waveform relaxation, heat equation, h=1I6 (25 ODEs) 

1.6....---------------------------, 

v-() 

1.5 ~=======::::::;;;;;:;:=============1 
v=2 

1.4 
v=3 

IJ v=4 

1.2 v=S 
V=6 

1.1 

v=lS 

0 0.1 0.2 OJ 0.4 0.5 0.6 0.7 0.8 0.9 

Gauss-Seidel waveform relaxation, heat equation, h=1I32 (961 ODEs) 
1.6....-------------------------, 

v=360 

o 0.1 0.2 OJ 0.4 0.5 0 .6 0.7 0.8 0.9 

Figure 3.1: Successive Gauss-Seidel waveform relaxation iterates u{v)(t), t E [0,11 for 
different mesh sizes h. Only the component at the center of the domain is shown. 
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Measured convergence factors 

In table 3.1 we report averaged convergence factors, p, for the Jacobi and Gauss-Seidel 
waveform relaxation methods applied to the discretized heat equation with different 
mesh sizes h. In each waveform iteration we have determined the 12-norm of the 
algebraic error, i.e., er) = 'U~-'Ur), and calculated the iteration convergence factor /v) 
as the following ratio, 

(3.6) 

After a sufficiently large number of iterations this factor takes a nearly constant value. 
An average taken over a large number of iterations in the region of nearly constant 
behaviour defines the averaged convergence factor, which is the value specified in the 
table. Observe that the measured values closely correspond to the theoretically deter­
mined spectral radii of the infinite-interval waveform relaxation operator. 

Table 3.1: Jacobi and Gauss-Seidel waveform relaxation convergence factors. 

h II 1/5 11/10 I 1/15 I 1/20 I 1/30 I 1/40 11/50 I 
PJAC 0.803 0.949 0.977 0.986 0.993 0.997 0.998 

1-7r2h2/2 0.803 0.951 0.978 0.988 0.995 0.997 0.998 

PGS 0.644 0.900 0.955 0.974 0.988 0.993 0.996 

1-7r2h2 0.605 0.901 0.956 0.975 0.989 0.994 0.996 

Similar convergence factors for the SOR waveform relaxation method are plotted in 
figure 3.2. They depict the measured value of P as a function of w, for three different 
mesh sizes. The observed minima are in close agreement with formula (3.5). Contrary 
to the case of using SOR for elliptic problems, waveform SOR does not converge for 
all w E (0,2). The range of allowable w is clearly more restricted. 

2 2 
1.8 1.8 
1.6 b= 115 b=lIlO b=1120 1.6 
1.4 1.4 
1.2 1.2 

P 1 1 P 
0.8 0.8 
0.6 0.6 
0.4 0.4 
0.2 0.2 

0 0 

0 0 .5 1.5 2 0 0.5 1.5 2 0 0.5 1.5 2 
CD CD CD 

Figure 3.2: SOR waveform relaxation convergence factors as a function w and h. 
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Finite-interval versus infinite-interval convergence 

In any computer implementation of the waveform relaxation method the number of 
time-steps is of necessity finite. As such, convergence is determined by the finite­
interval convergence analysis. Yet, it has been illustrated above that the numerical 
results seem to correspond to those predicted by the infinite-interval analysis. 

This problem is resolved by considering the time-level convergence factors, which 
correspond to formula (3.6) evaluated for each time-level separately, e.g., 

( .... ) _II ( .... ) II / II ( .... -1) II Pie - ele 2 ele 2· (3.7) 

In figure 3.3, we have plotted such convergence factors, geometrically averaged over a 
suitable number of iterations (in casu, over iterations v=21 to v=28), for different time­
increments. The problem solved is the semi-discretized model problem with h = 1/16 
and t E [0,1], and the red/black Gauss-Seidel waveform method is used. 

The stable plateau corresponds to the spectral radius value derived in the infinite­
time analysis, eq. (3.4). Observe that its height does not depend on T. The factor 
measured at the first time-level obviously corresponds to the value specified by the 
finite-interval analysis. Observe that its magnitude decreases with decreasing T. In­
between the two extremes (convergence factor at the first time-level and the plateau) 
there is a region with intermediate convergence factors. It can be shown that this region 
gradually extends, and that the stable plateau recedes backwards as more and more 
iterations are applied. That is, asymptotically, after a very large number of iterations, 
the time-level convergence factor at each time-level will correspond to that of the first 
time-step. This will be illustrated in the next example. 

Divergent behaviour 

It may happen that the infinite-interval analysis conflicts with the finite-interval anal­
ysis. For instance, the former may predict divergence while the latter ensures conver­
gence. Such a case is illustrated in figure 3.4. We consider the SOR waveform relaxation 
method with parameters w=4/3 and h=I/20, and with BDF( 4) time-discretization. It 
can be shown that the spectral radius of the corresponding continuous-time infinite­
interval waveform operator is smaller than one. The spectral radius of the finite interval 
operator K.,. is also below one, as it is equal to p(K(z)) evaluated for a z on the posi­
tive real axis, and, therefore, smaller than p(K). The infinite-interval discrete iteration 
however diverges. It can be shown that the scaled stability boundary intersects the 
"p( K(z) )=I"-contour-line. 

The figure displays the time-level convergence factors for different waveform iterates. 
The "o"'s in the lower left-hand corner of each picture correspond to "converged" time­
levels, i.e., their solution values remain constant (in the finite-precision arithmetic of the 
implementation). The pictures illustrate the occurrence of oscillations which rapidly 
explode. However, as more and more iterations are applied, the region of divergent 
behaviour moves to the right, and, eventually, it is forced out of the finite-length 
time-window! Afterwards, the iteration converges rapidly. Note that when the same 
problem is solved with BDF(2) or trapezoidal discretization no such (initially) divergent 
behaviour occurs. 
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Figure 3.3: Averaged time-level convergence factors plotted for each time-level in the 
time-window [0, IJ, for different values of the time-increment. (red/black Gauss-Seidel 
waveform relaxation, h = 1/16, trapezoidal rule) 
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Figure 3.4: Time-level convergence factors, pr), plotted for each time-level in the time­
window [0,0.6]' for different iterates ur). (red/black SOR waveform relaxation, w=4/3, 
h=1/16, T=0.015, and BDF(4) discretization.) 
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3.2.5 Further remarks 

The Jacobi, Gauss-Seidel and SOR waveform relaxation algorithms are slowly conver­
gent, especially for small spatial mesh sizes. In addition, the trivial selection of the 
starting approximation leads to large initial errors, except perhaps at the beginning of 
the time-interval. The reduction of this error requires a very large number of iterations. 

The standard acceleration techniques discussed in section 2.6 offer little hope for 
turning waveform relaxation into a computationally effective procedure. Because of 
the homogeneous coupling between the unknowns, there is no preferential ordering or 
partitioning of the differential equations. The use of windowing and partial waveform 
convergence, in order to restrict the computations to the time-interval where the itera­
tion is doing "useful" work, would lead to the use of small time-windows. As such, this 
would reintroduce the problems related to parallelism and the exploitation of multi-rate 
behaviour encountered when using time-stepping methods. Inaccurate iteration and 
parallel implementation may reduce the cost of each iteration, but they will usually 
not alter the number of iterations. 

3.3 Linear multigrid acceleration 

The convergence of the waveform relaxation method can be accelerated following the 
multigrid idea. The resulting linear multigrid waveform relazation method was first 
published by Lubich and Ostermann in [78], and independently developed in [129,140]. 

We refer to the book by Hackbusch, [44], and the paper by Stiiben and Trotten­
berg, [125], for a detailed analysis of the multigrid method for solving elliptic partial 
differential equations. A quick overview of the basic idea is presented below. 

3.3.1 The multigrid principle 

The multigrid method for solving elliptic partial differential equations differs from other 
iterative techniques in that it uses a set of nested discrete meshes (grids). The grid 
with smallest mesh spacing (the fine grid) is the grid on which one wants to obtain the 
solution, and corresponds to the grid normally considered by single grid methods. The 
efficiency of the method is based on the interplay of fine grid smoothing and coarse grid 
correction. That is, certain error components are attenuated on the fine grid, while 
other components are attenuated on the coarser grids. 

The two-grid method 

Consider a linear elliptic partial differential equation, Cu = f . Discretization on grid 
nh leads to a linear system of equations, 

(3.8) 

Let v h be an arbitrary approximation to the solution uh , and let eh denote the corre­
sponding error, i.e., eh = v h - u h . This error will usually consist of a combination of 
smooth error components (low-frequency Fourier modes) and oscillatory components 
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(high-frequency Fourier modes). Note that the error satisfies the so-called defect equa­
tion given below, where dh is called the defect, 

(3.9) 

Application of a standard relaxation method to update approximation v h usually 
shows a rapid decrease of the error during the early iterations. Soon after, convergence 
slows down and the iteration appears to stall. A Fourier analysis shows that the 
initial phase corresponds to the elimination of the oscillatory error components. Once 
they have been removed eh is a smooth function on nh, and the iteration becomes 
much less effective. Relaxation methods which show such a behaviour are often called 
smoothers. Effective smoot hers are, for instance, the Gauss-Seidel relaxation method 
and the Jacobi overrelaxation method with suitable overrelaxation parameter. 

The smooth error components cannot be removed efficiently by applying further 
relaxation steps. A different technique is called for. If we were able to calculate an 
approximation to eh , this could be used to improve v h . The computation of such an 
approximation is possible based on using the defect equation. Observe that eh , being 
a smooth function on nh, can be represented fairly accurately on a coarser grid nH 
(c nh). This allows the calculation of a coarse grid approzimation eH to the fine grid 
error eh by solving the following equation on nH, 

(3.10) 

Here, LH is a coarse grid discretization of the elliptic operator £, and dH is a coarse 
grid approximation of the defect dh . dH is calculated by applying a restriction operator 
to dh . This is an inter-grid transfer operator which transfers information from a fine 
grid to a coarse grid. It is often denoted by the symbol If!, as e.g. in dH = If! dh , and 
it corresponds to an averaging operator. 

As the number of grid points on nH is usually much smaller than the number of 
grid points on nh, equation (3.10) can be solved much more rapidly than (3.8). For 
instance, with the use of standard coarsening, i.e., H = 2h, the number of grid points 
is divided by four in going from nh to nH (for two-dimensional problems on regular 
grids). The computed coarse grid function eH may then be used to correct the current 
approximation v h , 

v h := vh _ Ij{eH . 

The operator Ij{ is called the prolongation operator. It is an interpolation operator from 
the coarse grid to the fine grid. A Fourier analysis shows that the above procedure 
(defect calculation, coarse grid problem solution, and correction) is very efficient at 
reducing smooth error components, but hardly changes the oscillatory ones. 

The two-grid cycle combines the advantages of the smoothing and coarse grid tech­
niques. It start by applying a number of smoothing steps in order to reduce the high­
frequency error components, and continues by doing a coarse grid correction in order 
to eliminate the low-frequency components. Often, this is followed by some additional 
smoothing in order to further dampen the high frequency errors (possibly reintroduced 
by the coarse grid correction step). 
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The multigrid method 

The coarse grid problem (3.10) is of similar nature as the original problem, (3.8), 
defined on the fine grid. It can be solved in a similar way, i.e., by introducing a third 
grid, coarser than nH, and by executing a number of two-grid cycles. Extension of this 
idea in a recursive way leads to the multigrid algorithm. This algorithm is defined on 
a nested sequence of grids 

where nhk is the fine grid. The coarsest grid n"" usually consists of very few grid 
points, often only one. Such a grid hierarchy is displayed in figure 3.5. 

In the multigrid method a starting approximation is selected for the fine grid solu­
tion, v,hk, and a procedure like "procedure mgrid" given in algorithm 3.1 is iteratively 
called "mgrid( k, fh k , v,hk )"1, until convergence of the approximation. This procedure is 
completely defined by specifying the grid sequence n"", ... , nhk , the discretized oper­
ators L"', the operators 1:::-1 and 1k:_" the nature of the smoothing relaxations, and 
by assigning values to Ill, 112 and 'Yi. The latter defines the nature of the multigrid 
cycle and the number of times each grid level is visited. A choice of 'Y;=1 leads to 
the V-cycle. 'Yi=2 gives the W-cycle. (When the n""-problem is solved exactly, then 
one can take 'Y1 equal to one instead of equal to two, without any change in numerical 
results.) A third cycle, the F -cycle, does not fit so easily into to above format. Instead, 
an F-cycle on n hi is defined recursively as follows: its coarse grid part consists of an 
F -cycle on n hi- 1 followed by a V -cycle on nhi-l. An F -cycle on n h, is just a V -cycle. 
The three standard cycles are illustrated in figure 3.6. Note that with proper choice 
of parameters the multigrid iteration is rapidly convergent, with a convergence rate 
bounded by a small constant which does not depend on the spatial mesh size. 

Nested iteration or full multigrid 

In order to provide a good approximation for starting the iteration one often implements 
the so-called nested iteration idea. The initial approximation to the fine grid solution 
is then obtained by interpolation of (an approximation of) the solution obtained on the 
next coarser grid. A recursive extension of this idea leads to the full multigrid method, 
see algorithm 3.2 

Remark that the operator ik:_, used in the full multigrid method may be different 

from the operator Ik:_, used in the multigrid procedure. The former is often biquadratic 
or bicubic, while bilinear interpolation mostly satisfies for the latter. The constant 6; is 
a small integer, usually one or two. The full multigrid scheme is illustrated in figure 3.7. 
There we show schemes that apply one V-cycle or one F-cycle per grid level (6i = 1). 

Finally, we recall the following important property. Let N be the number of un­
knowns on the fine grid. With proper choice of parameters the full multigrid method 
calculates an approximation to the solution of an elliptic problem with algebraic error 
smaller than the discretization error in O(N) operations. 

'The variables are considered in the computer science sense, i.e., their value may change during 
the computation. 
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Figure 3.5: A set of nested grids (standard coarsening). 

Figure 3.6: Standard multigrid cycles: V, Wand F. 

Figure 3.7: Full multi grid with 1 V-cycle (left) or 1 F-cycle (right) per grid level. 

lucianoaraki@yahoo.com.br



3.3. LINEAR MULTIGRID ACCELERATION 

Algorithm 3.1: Multigrid method. 

PROCEDURE mgrid (i,fh;,Uhi ) 

if i=O then solve Lhouho = fho 

else 
- perform Vl smoothing steps. 

- compute the defect: d hi := LhiUh; - fh;. 

- project the defect on nh;-1: fh;-1:= 1:::-1 dh;. 

_ solve on n hi- 1: Lh;-1 Uhi-1 = f hi - 1 : 

repeat 'Yi times mgrid (i_l,fh;-1,uhi- 1), starting with Uh;-1 = 0 . 

- interpolate the correction to nh; and correct: Uh; := uh; - 1~ Uh;-1. 
, .. -1 

- perform V2 smoothing steps. 

endif 

Algorithm 3.2: Full multigrid method. 

solve the coarse grid problem: Lhouho = fho 

for i = 1 to k 
- interpolate the solution on nh;-1 to nhi: 

Uhi .= jhi u hi- 1 . h;-1 . 

- solve the problem on nhi: 

repeat 8, times mgrid(i,fhi,uhi ) . 

endfor 

63 
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3.3.2 Linear multigrid waveform relaxation 

The multigrid principle can be extended to time-dependent problems in essentially 
the same way as the classical relaxation methods are extended. Each of the elliptic 
multigrid operators is replaced by a similar operation defined to operate on functions. 
In this section, we consider the linear equivalent of (3.2), 

~ uh(t) = Lhuh(t) + fh(t) , uh(O) = u~, t> 0 . (3.11) 

The multigrid waveform relaxation operators 

• Smoothing. Pre-smoothing and post-smoothing are performed by applying one or 
more standard waveform relaxation steps. Particularly straightforward is the use of 
Gauss-Seidel relaxation (lexicographic or red/black), or the use of a suitably damped 
Jacobi method (JOR-method). One could also think of using waveform relaxation 
equivalents of the standard line-relaxation methods. 

• Defect calculation. The defect of an approximation i],h to the solution of the 
differential equation is defined as, 

dh := ~ i],h _ Lhi],h - fh . 

This can be elaborated further to get rid of the derivative operator when i],h is an 
iterate of a waveform relaxation process, i.e., when i],h = u(v) for some v > o. Indeed, 
with use of the splitting matrices ph and Qh (_Lh = ph _ Qh), 

dh := ~ u(v) _ Lhu(v) _ fh = ~ u(v) + phu(v) _ fh _ Qhu(v) = Qh(u(V-l) - u(v)) . 

As an example we consider the model problem and the use of the red/black Gauss-Seidel 
smoother. Let vh be equal to U(v-l) _u(v). The defect calculation then corresponds to, 

{ 
i + j even : d~j(t) = I;. (vL,j(t) + Vf.j_l(t) + Vf.j+l(t) + vf+1,j(t)) 

i+j odd: d~j(t)=O 
(3.12) 

Note that in complete analogy to (3.9) the error eh (= i],h - u h ) satisfies a defect 
equation, 

• Restriction. Assume the coarse grid is derived from the fine grid by standard 
coarsening (H = 2h). Let (1, J) and (i,j) be coarse grid and fine grid indices of the 
same physical grid point on a two-dimensional domain. The full-weighting waveform 
restriction operator is defined by the following formula, which we write componentwise 
in stencil notation (see e.g. appendix A), 

[ 
1 2 1 1 H 1 h 

ur,At) = 16 2 4 2 Ui,;(t) , 

1 2 1 

t 2: 0 . (3.13) 
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The injection waveform operator is the simplest of restriction operators, 

(3.14) 

Inbetween is the hal/-weighting restriction, specified below. The formula becomes very 
simple when used to restrict the defect after a red/black smoothing step since the defect 
at the black points vanishes. The resulting formula is given between the brackets. 

(3.15) 

Prolongation. The prolongation formulae are similar to those used in the multigrid 
method for solving elliptic problems, yet the arguments are functions instead of scalar 
values. We do not repeat the bilinear, biquadratic and bicubic interpolation formulae 
here, but refer to [44, Ch. 3.4]. 

A two-grid and multi-grid cycle 

A two-grid waveform relcnation cycle for solving equation (3.11) is stated below. It 
starts with a fine grid approximation, u(v-1), and determines the next iterate, u(v), in 
three steps: pre-smoothing, coarse grid correction, and post-smoothing. 

• Pre-smoothing. Set x(O) = U(v-1). Perform 111 standard waveform relaxation steps, 

• Coarse grid correction. Compute the defect, 

Solve the coarse grid equivalent of the defect equation, 

Interpolate the correction vH to nh , and correct the current approximation, 

xh = x(v,.) - IIivH • 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

• Post-smoothing. Perform 112 more smoothing relaxations of type (3.16), starting 
with x(O) = xh, and set u(v) = X(II2). 

This two-grid cycle can be applied in recursive way to solve the coarse grid problem 
(3.18). This leads to the multigrid waveform relcnation algorithm. This algorithm 
consists of a repeated application of a procedure like procedure "mgm" displayed in 
algorithm 3.3 to an initial approximation of the solution on the fine grid. 
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Algorithm 3.3: Waveform relaxation multigrid. 

PROCEDURE mgm (i,f"',u"') 

if i=O then 
d 

- solve dt uho = Lhouho + fho , e.g., by a standard ODE method. 

else 
- perform Vl smoothing steps. 

_ compute the defect: d"'·- d u'" L'" '" f'" .- dt - u - . 

- project the defect on nh'- 1 : f "'-l .- /"'-ld'" .- '" . 

- solve on n"'-l: :t U"'-l = L "'-1 U"'-l + f"'-l , U"'-l (0) = 0 : 

repeat 'Yi times mgm (i-1,fh'-1 ,uh'-1), starting with U"'-l(t) == 0 . 

- interpolate the correction to nh• and correct: 

- perform V2 smoothing steps. 

endif 

Full multigrid waveform relaxation 

It will be shown later on that the multigrid acceleration solves the problem of the slow 
convergence of the standard waveform relaxation methods. As with solving elliptic 
equations, the problem of selecting a satisfactory starting approximation is addressed 
by considering the nested iteration of full multigrid idea, see Alg. 3.4. 

Note a slight difference in the full multigrid algorithms 3.2 and 3.4. The second 
term in the coarse to fine grid interpolation formula in Alg.3.4 is needed in order to 
satisfy the initial condition, uh·(O) = u~. This "correction" is, of course, not present 
in the full multigrid algorithm for solving elliptic problems. 

A numerical example 

We reconsider the model problem, with a spatial discretization h = 1/32. In figure 3.8 
successive multigrid waveform relaxation iterates are plotted obtained with a multigrid 
V-cycle, one red/black Gauss-Seidel waveform pre-smoothing step, one similar post­
smoothing step, full weighting restriction, bilinear interpolation and a grid sequence 
obtained by standard coarsening down to a coarse grid with mesh size 1/2. The up­
per picture shows the result obtained with multigrid cycling, starting from a constant 
initial profile. The cost of each iterate is about the same as the cost of 8/3 wave­
form Gauss-Seidel steps. The lower picture shows the starting fine grid approximation 
obtained with full multigrid, i.e., before the V-cycle on the fine grid is performed. 
This approximation is computed at the cost of about 8/9 waveform Gauss-Seidel steps. 
Graphically, the subsequent iterates cannot be distinguished from the initial one. 
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Algorithm 3.4: Full multigrid waveform relaxation. 

solve the coarse grid problem: 

d 
dt uho = Lhouho + fho, uho(O) = u:;O . 

for i = 1 to k 
- interpolate the solution on n"'-l to n"': 

u"'(t):= I'" U"'-l(t) + (u'" _I'" U"'-'). 
h._1 0 "'-1 0 

- solve the problem on n"': 
repeat 0, times mgm(i,f"',u"') 

endfor 

Multigrid waveform relaxation, h=1/32 (961 ODEs) 
1.6.------------------.., 
1.5 +-______ v=<l'---'-___________ -I 

1.4 

1.3 

1.2 

1.1 

1 

0.9+--,.-_,-,--r--.--r-~_,r__,-~ 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Full multigrid waveform relaxation, h=1I32 (961 ODEs) 
1.6.------------------.., 

1.5 

1.4 

1.3 

1.2 

1.1 

0.9+--.--.-.--,--,--.-.---.--.--1 
0.1 0.2 0.3 0.4 0.5 0 .6 0 .7 0.8 0.9 

67 

Figure 3.8: Successive multigrid and full multigrid waveform relaxation iterates U(II)(t), 
t E [0,1] for h = 1/32. Only the component at the center of the domain is shown. 
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3.4 Convergence analysis 

The analysis of linear multigrid waveform relaxation is qualitatively very similar to the 
analysis of section 2.5. The only change in most formulae is the replacement of the 
matrix K(z) by a different matrix M(z). 

3.4.1 Continuous-time convergence analysis 

The continuous-time two-grid waveform relaxation operator 

Let e("') be the error of the II-th waveform relaxation iterate, i.e., eH =u("'Luh • Denote 
by e("')(z) its Laplace-transform, where z is the complex Laplace-transform variable. 
Laplace-transforming the equations of the two-grid cycle2 , (3.16) to (3.19), one can 
derive the relation: 

with { 
M(z) = 

S(z) = 

e("')(z) = M(z) e( ... -l)(z) , 

SI'2(z) (I - I:HzI - LHt1 If!(zI - Lh)) S"'(z) 

(zI + p h)-lQh 

(3.20) 

(3.21 ) 

By considering the inverse Laplace-transform it follows that there is a linear convolution 
operator M, such that e("') 0:= Me( ... -l) ([78, eq. (2.6)]), with 

Mx(t) = m*x(t):= l m(t - s)x(s)ds, t > O. (3.22) 

Its kernel m is defined via its Laplace-transform, which equals M(z). 

Remark 3.4.1 When (p\Qh) is a Gauss-Seidel splitting, then M(z) corresponds 
to the two-grid operator for solving the following (complex) elliptic partial differential 
equation: zvh - Lhvh = gh ([78, p. 220]). 

Remark 3-4_2 As in [78, eq. (2.9)] we require that the entries of the matrix M(z) are 
rational functions of z vanishing at infinity, with poles having a negative real part. 

Note that the remark ensures the continuity of m(t), t ~ 0, and the boundedness of 
M in any Lp(JR+)-space. The condition is easily satisfied when Lh and LH are derived 
by spatial discretization from an elliptic operator, and 111 + 112 ~ 1. 

Finite-interval analysis 

The next theorem is the multigrid equivalent of theorem 2.5.5. Its validity follows from 
a general functional analysis result, which states that the spectrum of a linear Volterra 
convolution operator with continuous kernel equals the singleton {O}, see e.g. [70, p. 
33]. For the reader's convenience we outline an elementary proof. 

Theorem 3-4.1 Consider M as an operator in the space of continuous functions 
equipped with the mazimum norm. Then p(M) = O. 

2Throughout this section we assume a linear con!tant-coefficient parabolic problem, i.e, Lh and 
LH are time-independent matrices. 
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Proof. Since M is a bounded operator, we may apply property 2.5.1 to calculate its 
spectral radius. Let :z: be in C([O, Tjj (Vi). Note that M:z:(t) is continuous. Since 
the vector-norm of a continuous vector-valued function is continuous, it follows 
that II :z:(t) II and II M:z:(t) II are continuous. 

Consider the following bounds, 

II M:z:(t)II=lIlm(t-s):z:(s)ds 11:5 II m liT l1ds 1I:z:IIT=lImIiTt 1I:z:IIT· 

II M 2:z:(t) 11=11 rt m(t-s)M:z:(s)ds 11:5 II m II~ rt sds 1I:z: liT = II m II~; 1I:z: liT Jo Jo 2. 
By induction one can prove that 

Maximizing over [0, Tj in left- and right-hand side we get, 

Thus, by definition of the operatornorm, Def. 2.5.2, 

Taking the limit n -+ 00 in the equation of property 2.5.1 proves the claim. 0 

Infinite-interval analysis 

The multigrid waveform analogues of theorems 2.5.6 and 2.5.8 are given below. The 
first equality of each theorem is proven in [78, p. 220j. The second equality follows from 
the fact that p(M(z» and II M(z) II are analytic in a set containing the complex right 
half-plane, and by application of the maximum principle. 

Theorem 3.4.2 Assume the condition in remark 3.4.2 satisfied, and consider M as 
an operator on Lp(IR+j evI) with 1 :5 p :5 00. Then, 

p(M) = sup p( M(z» = max p( M(ie}), with i = v'-I . (3.23) 
Re(z)~O tEll 

Theorem 3.4.3 Assume the condition in remark 3.4.2 satisfied, and consider M as 
operator on L 2(IR+j evI). Then, 

II M 112= sup II M(z) 11= max II M(ie) II . 
Re(z)~O tEll 

(3.24) 

Corollary 3.4.4 The spectral radius and the norm of the continuous-time two-grid 
waveform rela:z:ation operator are bounded by the spectral radius resp. norm of the cor­
responding elliptic two-grid operator, 

p(M) ~ p(M(O» and II M 112 ~ II M(O) II . (3.25) 
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Table 3.2: Model problem bounds for the spectral radius and the norm of M. 

11 II 1 2 3 4 5 

p{M) 0.25 0.162 0.129 0.111 0.098 

11M 112 - 0.437 0.378 0.345 0.322 

The above theorems show that the spectral radius and the norm of M are determined 
by maximizing the spectral radius and the norm of M{z) over the imaginary axis. This 
is a calculation that is amenable to a model problem analysis, as was demonstrated by 
Lubich and Ostermann in [78, p. 224]. There, the two-grid waveform relaxation cycle 
for the one-dimensional heat equation is analysed, with central differencing on a mesh 
with spacing h, standard coarsening, red/black smoothing, full-weighting and linear 
interpolation. The authors derive a bound for p{M{z)) (Re{z) ~ 0), 

p{M{z)) ~ ~1{1:S)2 ... 1 with s=zh2/2 and 1I=1I1+112~1. (3.26) 

They find that the maximum in (3.23) is attained in a point ie with e "V 1/h2. 
The model problem analysis leads to two properties, [78, p.223, p.225], which 

bound the spectral radius and norm of the two-grid operator. Table 3.2 displays the 
values of these bounds for different 11. It is conjectured in [78] that these bounds also 
hold in the case of the two-dimensional heat equation. 

Property 3.4.5 The spectral radius of the infinite-interval two-grid iteration operator 
for the one-dimensional heat equation with red/black Gauss-Seidel smoothing satisfies, 

p{M) ~ ~VT/{211 - 1) (3.27) 

with 11 = 111 + 112 ~ 1. This is the best possible bound independent of h. 

Property 3.4.6 The norm of the infinite-interval two-grid iteration operator for the 
one-dimensional heat equation with red/black Gauss-Seidel smoothing satisfies, 

(3.28) 

3.4.2 Discrete-time convergence analysis 

The discrete-time two-grid waveform relaxation operator 

Let each of the equations (3.16) to (3.19) be discretized with the same k-step linear 
multistep method using the same constant step-size, T. Assume k starting values 
supplied. Let erl denote the error of the II-th discrete two-grid waveform iterate. A 
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Z-transform analysis then proves the existence of a discrete convolution operator M .. , 
such that er) = M .. er-1), with, 

n 

(M .. x .. )n = (m .. * X .. )n := Lmn-;x;, n;::: 0 . 
;=0 

The kernel m .. is defined via its Z-transform, [78, eq. (6.8d)], 

00 • 1 a 
Lm;z-' = M(--(z)). 
;=0 T b 

Finite-interval analysis 

(3.29) 

The following theorem can be proven in a similar way as theorem 2.5.9 by using linear 
algebra arguments. Instead, we choose to follow the lines of a proof (for theorem 2.5.9) 
given by Nevanlinna in [89, p. 539]. As in section 2.5.4, QA: and (3A: denote the coefficients 
of the highest order term in the characteristic polynomials a(e) and bee). 
Theorem 3.4.7 Assume none of the poles of M(z) is equal to ~~, and let the number 
of time-steps, N, be finite. Then, 

(3.30) 

Proof. Since M .. is a linear operator in a finite-dimensional space, its spectrum con­
sists of eigenvalues only. We prove that its spectrum is equal to the spectrum of 
the matrix M(~~). To this end, we first prove that u(M .. ) c u(M(~~)). 
Let (>.,x .. ) satisfy M .. x .. = >,x .. , with x .. = {xd~o not identically zero, 

n 

(M .. x .. )n := Lmn-;x; = >'xn , n = 0, ... , N . 
;=0 

Let Xn be the first non-zero element of the sequence x... Then, 
n 

L mn-;x; = mOXn = >,xn . 
;=0 

Thus>. is an eigenvalue of mo, which we calculate by taking the limit in (3.29), 
00 

mo = lim" m;z-; = lim M( l~(z)) = M( l~) . 
.1--+00 L.J .1-+00'" U T ,.,11 

;=0 

Conversely, we prove that any eigenvalue of M( ~ ~) is also eigenvalue of M ... 
Let (>.,x) satisfy M(~~)x = >.x with x =F 0, and consider the 'N+l'-element 
vector x .. = [0 0 ... 0 xlt. Then, it follows that M.,.x .. = >,x .. , since, 

( ) ~ {o n = 0, ... , N - 1 
M'Tx'T n = L.J mn-iXi = 

;=0 >.x n = N 

Therefore, u(M .. ) = u(M(~~)) , and the claim (3.30) follows. o 

Remark 3.4.3 The spectral radius is independent of the number of time-steps. 
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Infinite-interval analysis 

The first part of the following theorem is proven in [78, p.229]. The second part, eq. 
(3.32), follows by the maximum principle. 

Theorem 3.4.8 Suppose all of the poles of M(z) are in the interior of the scaled 
stability region ~S, and consider M.,. as an operator in l,,(IN) with 1 ::; p ::; 00. Then, 

or, 

p(M.,.) = sup{p(M(z)) : rz E (1;'\ intS} , 

p(M.,.) = maxp(M(l~CO)) = maxp(M(z)). 
lel=1'" nEBS 

(3.31) 

(3.32) 

Corollary 3.4.9 The spectral radius of the discrete-time two-grid waveform relazation 
operator is bounded by the spectral radius of the corresponding elliptic two-grid operator, 

p(M.,.) ~ p(M(O)) (3.33) 

Bounds on the spectral radius of the infinite-interval operator may be derived by 
taking properties of the stability region into account. An important case is considered 
in the next theorem, [78, p.229]. 

Theorem 3.4.10 If the linear multistep method is A(o:}-stable, then, 

p(M.,.)::; sup p( M(z)) = max p( M(z)) , 
zEEw_ a zE8Ey_ a 

(3.34) 

with the sector E,..-a = {z : Jarg zJ ::; 7r - o:} U {O} . This is an optimal bound which 
holds without restriction on the ratio r / h2 • 

Corollary 3.4.11 If the multistep method is A-stable then p(M.,.)::; p(M), where M 
is the waveform operator on (0,00). 

Note that similar relations hold for the operator norm. 
The corollary can be used for completing the model problem analysis in the case 

of the trapezoidal rule and the BDF(I) and BDF(2) time-discretizations. Indeed, it 
follows that the bounds (3.27) and (3.28) also hold for the discrete-time iteration. In 
the case of a discretization with an A( 0: )-stable method, the right-hand side of formula 
(3.34) is to be determined. This requires finding the maximum of p(M(z)) over two 
half-lines in the complex plane. From the inequality in theorem 3.4.10 it follows that 
the bound is an increasing function for decreasing 0:. Consequently we may expect 
convergence to be slower with increasing order of the BDF-method. 
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3.5 Experimental results 

To start with, we reconsider the model problem, i.e., the two-dimensional heat equation 
defined on the unit square with initial values and Dirichlet boundary conditions chosen 
in such a way that the solution is equal to, 

u(t, x, y) = 1 + sin(7rX/2) sin(7ry/2)e-""1/2 . 

We shall apply the multigrid waveform relaxation method to this problem for different 
values of the spatial mesh size h and with different time-integration formulae using 
a constant, global time-step 7 . The parameters are as follows: red/black smoothing, 
full-weighting restriction, bilinear interpolation, standard coarsening down to a coarse 
grid with mesh size h=0.5 (i .e., the coarse grid problem consists of a single ODE). 

Figure 3.9 displays the evolution of the maximum norm (II . 11(0) of the algebraic 
error as a function of the iteration index. The lines correspond to different multigrid 
cycles. For instance, "W(2,1)" denotes the use of W-cycles with 2 pre-smoothing 
steps and 1 post-smoothing step. The very constant decrease allows the calculation 
of precise convergence factor values, see table 3.3. Similar factors for other linear 
multistep methods are given in table 3.4. Note that p increases, indicating slower 
convergence, when the order of the BDF method increases. This was to be expected 
from theorem 3.4.10, and the knowledge that the BDF methods are A(o:)-stable with 
0:=90° (BDF(l), BDF(2)), 0:=88° (BDF(3)), 0:=73° (BDF(4)), and 0:=51° (BDF(5)). 

error 
100 

10- 1 

10-1 

10-3 

10--< 

IO-s 

10-" 

10- 1 

10-'1 

10-9 

10- 1• 

10-" 
0 

discrelizalion: h = 1/64 

2 3 4 

A : WR Ve1.l ) 

B: WR V(2.1) 

C: WR wel.l) 

D: WR W(2.1) 

5 6 7 8 
i leralion index 

Figure 3.9: Maximum algebraic error of successive multigrid waveform relaxation iter­
ates (h=1/64, 7=1/100,100 time-steps, trapezoidal time-discretization) . 
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Table 3.3: Averaged convergence factor (h == 1/64, T == 1/100, trapezoidal rule). 

I II V(l,l) V(2,1) W(l,l) W(2,1) I 
I p II 0.115 0.079 0.060 0.043 I 

Table 3.4: Multigrid waveform V(l,l)-cycle averaged convergence factors for different 
linear multistep methods (h == 1/32, T == 1/200, 200 time-steps). 

I II C.-N. BDF(l) BDF(2) BDF(3) BDF(4) BDF(5) I 
I p II 0.11 0.10 0.10 0.11 0.23 0.83 I 

Averaged time-level convergence factors, fJk, are depicted in figure 3.10 (V(l,l)­
cycle, h == 1/32, Pic averaged over 5 iterations). They are qualitatively similar to the 
ones observed in figure 3.3. Quantitatively, they are, of course, much smaller. The 
iteration at the first time-level converges the fastest; there is a plateau, extending to 
infinity, with constant convergence factors, and there is a region of intermediate values 
inbetween. When the time-window is sufficiently large, the measured convergence 
factor p corresponds to the value that is dictated by the infinite-interval analysis. 

The experiment with 500 time-steps clearly shows that the numerical characteristics 
of the multigrid waveform relaxation method do not deteriorate as the length of the 
integration window or the number of time-steps increases. 

Below we consider the model problem with an oscillatory function f( t, x, y) added 
to the right-hand side of the partial differential equation. This function is chosen in 
such a way that the analytical PDE solution equals, 

u(t,x,y) == x(l- x)y(l- y) sin(75t) . 

For this problem the convergence behaviour of the algorithm is not as "straight-lined" 
as the behaviour shown in figure 3.9. This is illustrated in table 3.5. The iteration 
convergence factor, (3.6), starts off low, and gradually increases before stabilizing. 

From the discrete-time finite-interval analysis in section 3.4.2 we know that eventu­
ally p(v) should decrease again towards its finite-interval asymptotic value, (3.30). The 
latter is equal to the time-level convergence factor of the first time-level. However, this 
behaviour is usually not observed in the experiments. The number of iterations before 
convergence in finite-precision arithmetic (in casu, error ~ 10-16 ) is usually too low 
to attain this asymptotic convergence rate, especially when the time-window is large. 
The decrease is visible though when the interval of integration is very small. Most 
time-levels are then in the region of intermediate time-level convergence factors. 

Tables 3.6 and 3.7 report averaged convergence factors obtained with different values 
of hand T, a constant number of time-steps equal to 100, and the use of the trapezoidal 
and BDF(2) time-discretization. It can be seen that for a constant h, a constant number 
of time-steps and for decreasing T, the convergence factor starts off relatively low; it 
then increases and attains a maximum (plateau), before decreasing again. The value 
of T for which this maximum is first attained decreases with decreasing h. 
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Figure 3.10: Averaged time-level convergence factors plotted for each time-level in the 
time-window [0,5], for different values of the time-increment . (multigrid V(l,l)-cycles, 
h = 1/32, trapezoidal rule) 
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Table 3.5: Iteration convergence factors p(v), (3.6), of successive multigrid waveform 
W(l,l)-cycle iterates (trapezoidal rule, h = 1/16, T = 1/100, 100 time-steps). 

1 3.72e-2 4 8.34e-2 7 1.38e-1 10 1.42e-1 

2 4.44e-2 5 1.14e-1 8 1.3ge-1 11 1.43e-1 

3 5.90e-2 6 1.32e-1 9 1.41e-1 12 1.41e-1 

Table 3.6: Averaged convergence factors for multigrid waveform relaxation W(l,l)­
cycle as a function of hand T (trapezoidal rule, 100 time-steps). 

I h, T II 0.04 I 0.02 I 0.01 I 0.005 I 0.0025 I 0.001 I 0.0005 I 0.00025 I 
1/8 0.11 0.11 0.10 0.10 0.10 0.07 0.05 0.04 

1/16 0.12 0.13 0.14 0.14 0.14 0.14 0.14 0.11 

1/32 0.08 0.08 0.14 0.15 0.15 0.15 0.15 0.15 

1/64 0.06 0.06 0.09 0.12 0.14 0.15 0.15 0.15 

Table 3.7: Averaged convergence factors for multigrid waveform relaxation W(l,l)­
cycle as a function of hand T (BDF(2), 100 time-steps). 

I h, T II 0.04 I 0.02 I 0.01 I 0.005 I 0.0025 I 0.001 I 0.0005 I 0.00025 I 
1/8 0.06 0.06 0.09 0.10 0.10 0.07 0.04 0.02 

1/16 0.06 0.06 0.06 0.07 0.11 0.13 0.14 0.11 

1/32 0.06 0.06 0.06 0.06 0.06 0.10 0.12 0.14 

1/64 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.10 

An explanation of this behaviour is given below. But first, recall the relation 
between the Laplace-transforms of successive errors, (3.20). Asymptotically, any "fre­
quency" component of the initial error (i.e., any e(O)(z)) converges with the corre­
sponding convergence factor p(M(z)). The maximum of this factor is found for a 
"high-frequency" z on the imaginary axis. Consider a constant value of h . 

• When T is sufficiently large, we can apply the property lirn.,.-<oo p(M ... ) = p(M(O)), 
see e.g. also section 3.2.3. That is, the convergence is essentially similar to that of the 
elliptic multigrid iteration. Intuitively, we could argue that the high frequency compo­
nents where the maximum of p(M(z)) is found, cannot be represented adequately on 
the discrete mesh. The convergence factor more closely corresponds to the convergence 

lucianoaraki@yahoo.com.br



3.5. EXPERIMENTAL RESULTS 77 

factor of the low-frequency components. It is as if the maximum in (3.23) is found at 
the origin instead of at a point ie further away on the imaginary axis . 

• For smaller T-values higher frequency components can be represented; p increases, 
and finally reaches a maximum which is not further changed with decreasing T (at least, 
if time-windows are assumed that are much longer than the region of intermediate time­
level convergence factors). The measured value of the convergence factor corresponds 
to the value predicted by the continuous-time infinite-interval analysis . 

• When T decreases further while the number of time-levels remains constant (as 
is the case for the results in the tables), p will start to decrease. As the time-window 
gets shorter and shorter, every time-level will eventually be located in the region of 
intermediate time-level convergence factors. 

In the model problem analysis it was shown that the maximum in (3.23) is found 
for a value of z = ie '" i/h2. That is to say, the smaller the spatial mesh size, the 
higher the frequency of the error component which dictates the asymptotic convergence 
rate. Consequently, with decreasing h it will take a smaller T to represent the slowest 
converging error component. 

Observe that for a given hand T the waveform method with BDF(2) discretization is 
more rapidly converging than the one with the trapezoidal rule. This can be understood 
from the size and the shape of the stability regions together with theorem 3.4.8. 

The model anisotropic problem 

We consider the model anisotropic problem, with given initial value and with constant 
Dirichlet boundary conditions, 

8u 82u 8 2u 
8t = E 8x2 + 8y2' with u(O, x, y) = 1 + sin( 7rX/2) sin( 'Try /2) . (3.35) 

It is known that standard multigrid with pointwise red/black Gauss-Seidel relaxation 
does not perform satisfactorily for the model elliptic anisotropic problem when E ~ 1 
or E ~ 1. Since the spectral radius of the waveform multigrid operator is bounded by 
the spectral radius of the elliptic multigrid operator, i.e., p(M) ~ p(M(O)), we may 
expect a similar performance degradation. This is confirmed by the numerical results 
given in table 3.8. 

Table 3.8: Multigrid waveform V(1,l)-cycle convergence factors for the model 
anisotropic problem (h = 1/32, T = 0.01, trapezoidal rule, 100 time-steps). 

1 E 11 10- 4 10-3 10-2 0.1 0.5 1 2 10 102 103 104 

1 P II 0.978 0.974 0.934 0.660 0.213 0.116 0.213 0.661 0.935 0.974 0.978 
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A model convection-diffusion problem 

Finally, consider the following model convection-diffusion problem, 

(3.36) 

defined on the unit square n = [0,1] X [0,1], with Dirichlet boundary conditions, 

u(z,l,t)=u(O,y,t)=u(l,y,t)=O and u(z,O,t)= 5sin(n)sin(t) . 

The problem is discretized by using central differences for the diffusion terms and stable 
upwind differences for the convective part, i.e., 

(au) . . '" Ui,i(t) - Ui-1,i(t) d (au) .. '" Ui.;(t) - UiJ-1(t) 
oz"'- h an oy'''- h 

It is well-known that the standard multigrid method with pointwise red/black 
smoothing performs badly as a solver for the corresponding elliptic problem if ~ <:: I, 
see, e.g., [44, p. 220]. The situation is remedied in the elliptic case by using a pointwise 
lezicographic Gauss-Seidel smoother in which the update ordering of the grid points 
depends on the coefficients of the first order derivatives ~ and :;. In this particular 
case a good smoother would update the grid points from left to right and bottom to 
top. Numerical results displayed in table 3.9 show that the convergence behaviour of 
the waveform algorithm is similar. Note that the lexicographic smoother becomes a 
direct solver in the limiting case of ~ equal to zero. 

Table 3.9: Multigrid waveform V(l,l)-cycle convergence factors for the model 
convection-diffusion problem with pointwise red/black and lexicographic smoothing 
(h = 1/32, T = 0.025, trapezoidal rule, 40 time-steps,). 

10-1 10-2 10-3 10-4 10-5 

PRB 9.4 10-2 1.4 10-1 2.0 10-1 2.4 10-1 4.210-1 5.010-1 5.210-1 

hEX 1.4 10-1 1.6 10-1 2.0 10-1 1.0 10-1 8.110-2 1.110-4 1.310-6 

3.6 Nonlinear multigrid waveform relaxation 

A multigrid waveform relaxation algorithm for solving nonlinear parabolic problems can 
be derived from the well-known multigrid full approzimation scheme (FAS), which is a 
standard multigrid method for solving nonlinear elliptic partial differential equations 
introduced by Brandt, [9]. The basic equations of the FAS-method for solving elliptic 
problems are briefly recalled below. The waveform extension was first described in our 
paper [140], and more elaborated numerical results were reported in [135, 136]. 
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The FAS method for elliptic problems 

Consider a nonlinear elliptic problem C( u) = f. Discretization leads to a nonlinear 
system of equations, 

(3.37) 

Let v h be an approximation to the solution, and let eh be the corresponding error, 
eh = vh - uh . This error satisfies a nonlinear defect equation, 

(3.38) 

The FAS two-grid cycle is composed of similar steps as the two-grid cycle for solving 
linear problems. First, a few relaxation steps are executed with a standard nonlinear 
relaxation method (e.g. nonlinear Gauss-Seidel). Their effect is to dampen the high 
frequency components of the error. Secondly, a coarse grid approximation to eh is 
calculated by solving a coarse grid equivalent of the defect equation. In [9], it is 
suggested to use the following equation, 

LH(vH) _ LH(vH _ eH) = dH , with vH = If!vh and dH = If!dh . 

The operators If! and If! are two possibly different restriction operators. The coarse 
grid equation may be rewritten into the usual format of equation (3.37), 

(3.39) 

Having solved this equation for uH , one can correct approximation vh as follows, 

(3.40) 

This coarse grid step, which dampens the smooth error components, is usually 
followed by some more post-smoothing nonlinear relaxation steps. 

The convergence behaviour of the FAS two-grid cycle, and of the corresponding FAS 
multigrid and FAS full multigrid methods is very similar to that of the linear multigrid 
method. Convergence is usually very fast, and the convergence factor is bounded by a 
value which is independent of the spatial mesh size. 

The waveform relaxation FAS method 

The waveform FAS method uses the same building blocks, e.g., restriction and inter­
polation operators, as the linear multigrid waveform relaxation method. The two-grid 
FAS waveform rela:cation cycle for solving the nonlinear ODE system (3.2) derived 
by the numerical method of lines is stated below. It can easily be derived from the 
corresponding FAS method for solving elliptic problems. The algorithm starts with 
a fine-grid approximation, vh , which is updated to provide the next iterate in the 
standard three steps: pre-smoothing, coarse-grid correction, and post-smoothing. 

• Pre-smoothing. Perform VI nonlinear Gauss-Seidel waveform relaxation steps 
(lexicographic or red/black). Note that the ordinary differential equations need not 
be solved exactly. The use of a waveform relaxation Newton method (section 2.3) with 
a single Newton linearization will usually be sufficient. 
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• Coarse grid correction. Project the current approximation, v\ onto the coarse 
grid nH by using a restriction operator If!, 

vH = If!vh . (3.41) 

Calculate the right-hand side fH of the coarse grid problem, 

fH = .!!:..-vH _LH(vH) - If!('!!:"-vh-Lh(vh)-fh). 
dt dt 

(3.42) 

The restriction operator If! may be different from operator If!. However, in order 
to avoid the derivative calculation in (3.42) the use of the same operator may be 
advantageous. Indeed, in that case the two derivatives cancel out. 

Solve the following coarse grid initial value problem defined on nH , 

(3.43) 

Calculate the correction. Interpolate the correction to the fine grid by using a waveform 
prolongation formula, and correct the current fine grid approximation, 

(3.44) 

• Post-smoothing. Perform 112 more smoothing relaxations, e.g., again by nonlinear 
Gauss-Seidel waveform relaxation. 

This FAS two-grid cycle may be applied recursively to solve the coarse grid initial 
value problem. This eventually leads to the multigrid full approzimation scheme wave­
form relazation method. The algorithm is a straightforward adaptation of algorithm 
3.3 and therefore not repeated here. Note that the algorithm gives identical results as 
the linear multigrid waveform relaxation method when applied to a linear parabolic 
problem. 

Numerical examples are given in chapter 8. The convergence factors reported there 
are very similar in magnitude to the ones given in the previous section. 

3.7 A multigrid method on a space-time grid 

Multigrid waveform relaxation is a continuous-time iterative method. It can be defined 
without mention of a time-discretization technique. Actual time-levels and discretiza­
tion formulae are to be selected only when one starts implementing the method. In 
the discrete-time analysis of section 3.4.2 we considered the case of using global and 
constant time-steps. Each function is discretized on the same set of time-levels, be it 
a function on the fine grid, or on the coarse grid. Although the method is certainly 
not limited to such an approach, we shall argument in the present section that such a 
discretization arises in a very natural way. 

Consider the following anisotropic elliptic partial differential equation defined on a 
two-dimensional domain in (x, y)-space, 

cPu 82u 8u 
- 8x2 - € 8y2 + 8y = f, with € ~ 1 . (3.45) 
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In the limiting case, i.e., for f = 0, this equation becomes the one-dimensional parabolic 
heat equation. Let the problem be discretized on a regular spatial grid nh •• ,." with mesh 
size h", in the x-direction and hy in the y-direction. Multigrid operators for solving this 
anisotropic elliptic problem are selected as follows. 

A factor f which is either very small f ~ 1 or very large f ~ 1 in an operator 
like - ~:~ - f~;; disturbs the smoothing characteristics of the pointwise relaxation 
smoothers. For instance, when f is very small highly oscillatory error components in 
the y-direction are hardly changed by a pointwise smoothing method; only errors in 
the x-direction are smoothed. The standard remedy is to use either x-line smoothing, 
or semi-coarsening, [44, p. 202, p.226]. The former approach is a blockwise relaxation 
method, in which the equations corresponding to a grid line extending in the x-direction 
are grouped during relaxation. In the latter approach a standard pointwise smoother 
can be used, yet the mesh is only coarsened in the x-direction. The mesh spacing in 
the y-direction is kept unchanged. The coarse grid is then given by n2h •• h y. Semi­
coarsening is illustrated in figure 3.11. When semi-coarsening is used the restriction 
and prolongation operators should be altered correspondingly. In particular, one can 
use operators of which the stencils extend in the x-direction only. These are standard 
inter-grid operators for one-dimensional elliptic problems. 

fine grid 
~-4jl--l,l---<,}-Ij)--Q--<,}-Ij)-1i> 
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0-Ql--GJ--<9--Ql--GJ--<il--Ql-{I) 
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~ - 'i'- <;>- -? -'i'- <;>- -? -'i' - ~ 
~ - ~- -9- -4- -~- -9- -4- -~ - Q 
I I I I I I I I I 

@-Iil--GJ--<9--Iil--GJ--<il--Iil-{I) 
I I I I I I I I I 

~-~- ~-? -~- ~ -?-~-~ 

+3
~-~--9--4--~-4--4--~-Q 
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~ -0- -0- -0- -0- -0- -<!). -0- 0 

x 

coarse grid 
~- T- -Q- -r -4jl- '--<'}-T-1i> 
I I I I I I I I I 

CD- - + - -0- -I- -Q)- ~- -<&- - ... --4D 
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(i).-+- -0--1- -Ei}- .... - -G- - t--€) 
I I I I I I I I I 
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Figure 3.11: Semi-coarsening: fine grid nh •• hy and coarse grid n 2h •• hy . 

The first order derivative term ~~ is handled by backward differencing, i.e., only 
information from smaller y-values is used. Central differencing is avoided for reasons 
of stability. For adequate damping of errors a smoothing scheme is followed which pro­
ceeds from low y-values to high y-values. Possible smoot hers are, e.g., x-line smoothing 
from bottom to top, or lexicographic pointwise Gauss-Seidel smoothing from the left 
to the right and from bottom to top. Also y-line smoothing may be used. 

For the above anisotropic problem a suitable combination of a coarsening strategy 
and a smoother is to be found. It should take the effect of both the factor f and the 
term ~~ into account. Two natural selections are as follows: 

• standard coarsening combined with x-line smoothing from bottom to top, 
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• semi-coarsening combined with a smoothing process from bottom to top. 

In the limiting case of f = 0, the anisotropic problem becomes the model parabolic 
problem. The variable y acts as the time-coordinate t, and hl/ becomes the time­
increment T. The discrete mesh is then called a space-time grid. The x-line smoother 
in the first variant becomes a direct solver. In fact, the first variant is then a standard 
time-stepping scheme corresponding to the backward difference approximation used 
for the first order derivative term. Consider the second variant with y-line smoothing. 
In this case the multigrid procedure is i~entica.l to the discretized multigrid waveform 
relaxation method! The calculation of the discrete solution to the ordinary differentia.l 
equation at a grid point corresponds to the calculation of a "line" of y-va.lues. In addi­
tion, the waveform restriction and prolongation operators, which operate in the spatial 
direction only, are identical to the restriction and prolongation operators used with 
semi-coarsened meshes. Semi-coarsening combined with a smoothing process which 
proceeds time-level per time-level from low y-values to high y-va.lues corresponds to 
the so-called parabolic multigrid method with sequential smoothing developed by Hack­
busch in [43] and theoretically analysed for a model problem by Burmeister in [13]. In 
many cases their sequential smoothing procedure is identica.l to the y-line relaxation 
smoother. Then, the parabolic multigrid method becomes identical to the discretized 
multigrid waveform relaxation method, at least when the latter uses constant and globa.l 
time-steps. The theory surveyed in the current chapter is then immediately applicable 
to parabolic multigrid. 

3.8 Concluding remarks 

The multigrid acceleration of the standard waveform relaxation methods has proven to 
be rapidly convergent with typical multigrid convergence factors. An accurate starting 
approximation on the fine grid is obtained by using the nested iteration idea. The 
resulting full multigrid method finds an accurate approximation to the solution of the 
parabolic partial differential equation with minimal effort. In the case studies of chapter 
8 it will be shown that one V -cycle at each spatial grid level is often satisfactory. 

Note that we have not yet discussed the arithmetic complexity of the method, 
nor any parallel implementation issues. In addition, in order to assess the real com­
putational effectiveness of the method we have to compare the multigrid waveform 
algorithms with standard time-stepping methods. This discussion is postponed until 
chapter 7, with many examples following in chapter 8. First, we shall consider the 
extension of the waveform relaxation idea to time-periodic problems (chapter 4), and 
present a detailed discussion of parallel computing issues (chapters 5 and 6). 
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Chapter 4 

Waveform Relaxation for Solving 
Time-Periodic Problems 

Nothing is as practical as a good theory. 

- G. Dahlquist 

If we were to wait for convergence proofs and error estimates for the new methods, 
most of the computers now in use in technology and industry would come grinding to a halt. 

-R. Richtmyer 

We extend the applicability of waveform relaxation and discuss its use for solv­
ing time-periodic non-autonomous ordinary and partial differential equations. The 
convergence characteristics of both the continuous-time and the discrete-time time­
periodic iteration are analysed. It is shown that the convergence of the method is 
intimately related to the convergence of the corresponding initial value waveform re­
laxation method. The multigrid acceleration is discussed. Finally, an algorithm based 
on a modified shooting method is given for solving autonomous periodic problems. 

4.1 Introduction 

In this chapter, we consider parabolic partial differential equations, 

{
au 
at (t, x) = ,C( u( t, x)) + f( t, x) (t, x) E [0, T] x 11 

B(u(t,x))=g(t,x) (t,x)E[O,T]xa11 
( 4.1) 

where the standard initial value condition is replaced by a T-periodicity condition, 

u(O,x) = u(T,x), x E 11. ( 4.2) 

The constant T is called the period of the solution. We shall usually assume that T is 
the smallest strictly positive number for which (4.2) is satisfied (unless u is function 
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constant in time in which case (4.2) is satisfied for any T). As before, .c(.) denotes a 
possibly nonlinear and time-dependent uniformly elliptic operator; 8(.) is a boundary 
operator, and n is the compact spatial domain. It is often convenient and, actually, 
common practice to extend the domain of the operators .c(.) and 8(.), and of the 
functions u, f and g, by T-periodicity from [0, T] to the whole of JR, for instance, 
f(t) = f(t + T), t E JR. The T-periodicity condition (4.2) is then replaced by an 
equivalent condition, 

u(t,x) = u(t + T.x), (t,x) E JR x n . (4.3) 

The above problem is called a time-periodic or T-periodic parabolic partial dif­
ferential equation. If .c(.), 8(.), f and 9 are independent of the time-variable t, the 
problem is called autonomous. In that case the value of T is unknown and has to 
be calculated in addition to the periodic solution u. Most of this chapter will deal 
with non-autonomous problems, for which T is known a-priori. Furthermore, we shall 
usually assume that a solution exists and that it is locally unique. Explicit conditions 
that guarantee existence and uniqueness are studied elsewhere, e.g. in [107, 124]. 

Time-periodic differential equations govern the evolution of many systems arising 
in the physical, biological and social sciences. Consider the oscillations of electrons, 
heartbeats, vibrations of aircraft wings, the dynamics of economic crises, pulsation of 
stars, and even certain models of the universe [107, p.86]. The diverse nature and 
importance of these problems explain the great number of papers and works devoted 
to this subject. We present a number of examples. The (harmonic) steady-state 
solution of the one-dimensional heat equation with time-periodic boundary conditions 
is calculated in [126] by Tee and in [95, 96] by Osborne. In [112, 113], Schippers 
studies the rotating flow due to an infinite disk performing torsional oscillations at a 
given angular velocity. This problem is described by the Navier-Stokes equations. By 
means of the von Karman similarity transformation these equations are reduced to a 
time-periodic system of parabolic PDEs. In [124], Steuerwalt considers the temperature 
distribution in a long wire which is stretched across the face of a periodically pulsating 
meson beam. The same problem is also studied by Hackbusch in [41]. 

Various techniques for solving time-periodic problems have appeared throughout the 
literature. We briefly recall these methods in section 4.2 as they will later be compared 
to a new time-periodic waveform relaxation algorithm. The latter was introduced in 
the papers [130, 137] for linear problems, and in [136] for nonlinear problems. We 
briefly review the algorithm in section 4.3. A rigorous convergence analysis of the 
continuous-time algorithm is presented in section 4.4. The analysis is based on [139]. 
We show that the convergence of the algorithm is intimately related to the convergence 
of the corresponding initial value problem, as studied by Miekkala and Nevanlinna in 
[84]. The discrete-time analogue is considered in section 4.5. As with initial boundary 
value problems, a multigrid acceleration turns out to be possible. In section 4.6, we 
take up the analysis of Lubich and Ostermann, [78], and extend their results to the 
time-periodic case. Finally, we consider the case of autonomous problems. In these 
problems the periodic solution as well as the unknown period T have to be determined. 
In section 4.7 we report on the use of a modified shooting method which was developed 
in cooperation with D. Roose, and published in [106]. 
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4.2 Standard time-periodic PDE solvers 

Dynamic simulation 

A straightforward solution method is based on a dynamic simulation of the studied 
system. Starting form an arbitrary initial condition - or, better, starting from a 
physically motivated initial condition such as the fluid state of rest, steady-state tem­
perature distribution, etc. - the system is integrated over a sufficiently large time­
interval until the transient effects are eliminated. This approach is taken in [112, 1241. 
Mathematically, it can be interpreted as Picard's method for computing a fixed point 
of an operator. 

Let u( t, Xj uo( x)) denote the solution at time t of (4.1) with the initial condition 
u(O,x) = uo(x). Denote by S the operator which maps any uo(:z:) to u(T,xjuo(x)), i.e., 

S(uo(:Z:)) := u(T,:Z:juo(x)). 

Note that S corresponds to the so-called Poincare map. It can easily be seen that the 
solution of the periodic problem restricted to time-level t = ° corresponds to a fixed 
point of S, i.e., the solution satisfies u(O,:z:) = S(u(O, x)). If S is a contraction in a 
suitable Banach space X , the existence of a unique fixed point is guaranteed. The 
latter may be calculated by successive approximation, i.e., by constructing the Picard 
sequence, 

for uCO)(O, x) EX: calculate uC")(O, x) = S( UC"-l)(O, x)), /I = 1,2,.. . (4.4) 

It is well-known that the computation of a good approximation of a fixed point by 
successive approximation may be very expensive. In particular, integration over a very 
large number of periods may be required in the case of slowly decaying transients. 

Global discretization 

After selection of a space-time grid, finite differences or finite elements may be used 
to discretize the time-periodic problem. This leads to a system of equations, which 
may be solved by iterative or direct sparse solvers. The dimension of the system is 
usually very large. E.g., in the case of a problem on a rectangular two-dimensional 
domain with, say, 100 grid lines in each coordinate direction and a similar number 
along the time-axis, the number of equations is of the order 106 . An iterative method 
for solving this system is used in reference [126]. There, Tee analyses the structure 
of the coefficient matrix which is obtained when the one-dimensional heat equation 
with time-periodic boundary conditions is discretized using central finite differences in 
space and explicit or implicit Euler in time. It is shown that a p-cyclic matrix results, 
to which a p-cyclic SOR theory applies. The same problem is studied by Osborne in 
[95, 96], where a specialized direct solver is developed. The use of a direct solver that 
takes the almost banded structure of the coefficient matrix into account is, for instance, 
also reported by Holodniok et al. in [57]. 
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Reformulation as a two-point boundary value problem and shooting 

After semi-discretization a system of two-point boundary value ordinary differential 
equations with non-separated boundary conditions results, 

(4.5) 

The vast literature on two-point boundary value problems is applicable to the above 
problem. For an overview of this literature see e.g. the recent text-book of Asher, 
Mattheij and Russell, [3], and the references therein. A particularly popular approach 
for solving problems like (4.5) is the shooting method and also the multiple shoot­
ing method, which has better stability characteristics. We shall explain the shooting 
method in some detail in section 4.7, where it is used for solving autonomous periodic 
problems. The method is basically a Newton-Raphson procedure for calculating the 
solution, uh(O), of the residual equation, 

Evaluation of the residual requires the solution of an initial value problem correspond­
ing to (4.5). In addition, the calculation of a numerical approximation to the Jacobian 
matrix needed in the Newton steps requires as many initial value ODE-integrations 
as there are equations. In the case of a semi-discretized parabolic PDE, the ODE 
system has a very large number of equations, and, consequently, prohibitively many 
time-integrations of the corresponding initial value problem are needed. 

Multigrid method of the second kind 

A very fast algorithm for solving time-periodic PDEs was presented by Hackbusch, 
[41], and by Hemker and Schippers, [52, 113]. They reformulate the periodic problem 
into an integral equation and apply the multigrid method of the second kind. This is 
no doubt the fastest standard periodic solver; hence we shall discuss it in some more 
detail. It will further be used to evaluate the performance of our waveform relaxation 
algorithm. For an in depth analysis we refer to the above papers, and to [44, Ch. 16]. 

For simplicity, we describe the algorithm for linear problems. Consider (4.1) with 
the initial condition, u(O, x) = uo(x). Its solution, restricted to the time-level T, can 
be written as the outcome of an affine mapping applied to Uo, 

UT(X) = T uo(x) + k(x). 

T is a linear integral operator, so that Tuo(x) equals the solution at time T of the 
initial boundary value problem with homogeneous right-hand sides, (f = 0 and g = 0). 
The function k( x) equals the solution at time T of the initial boundary value problem 
with zero initial condition, (uo( x) = 0). With this notation, the periodicity condition 
(4.2) can be rewritten into the form uo( x) = T uo( x) + k( x) . The latter defines a linear 
Fredholm integral equation of the second kind, 

y(x) = T y(x) + k(x) , (4.6) 
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where y( z) is an unknown function defined on the spatial domain {l. The determination 
of y satisfying (4.6) is equivalent to the original problem of finding a u which satisfies 
the time-periodic equation. Indeed, if y satisfies (4.6), then the solution u of the initial 
boundary value problem with Uo = y, is the solution of the time-periodic problem. 

The integral equation may be solved by the multigrid method of the second kind. 
In a similar way as in the multigrid method for elliptic equations, (4.6) is discretized 
on a nested set of grids, {lh;, i = 0, ... ,k, which results in a set of discrete equations, 

(4.7) 

The problem on the fine grid {lh. is solved by chosing an initial approximation for 
yh. and iteratively calling a procedure like the one outlined in algorithm 4.1. The 
algorithm has the structure of a multigrid W-cycle. It requires the calculation of 
products like Th;yhi in the smoothing and defect calculation steps. Note, however, 
that no explicit representation of the discretized integral operator Th;, a dense matrix, 
is required. Indeed, application of Th; to a function yh; is equivalent to calculating the 
solution of one discrete initial boundary value problem defined on {lh;. The outcome 
of Th;yh; may be computed by using standard parabolic solvers, e.g. time-stepping. 

In [41], the convergence factor of the algorithm is shown to be of the order O( (hk)2), 
where hk is the fine grid mesh size. The finer the mesh the more rapidly the algorithm 
converges. (This result requires some mild restrictions on the size of time-increment in 
order to guarantee a sufficient smoothing behaviour of the time-discretization formula.) 
As such, one iteration applied to some suitably chosen starting approximation is often 
sufficient to solve the fine grid problem with small iteration error. It can be shown that 
the arithmetic complexity of one iteration of the algorithm is similar to that of solving 
only a few initial boundary value problems on the fine grid. 

Algorithm 4.1: Multigrid of the Second Kind 

PROCEDURE mgm2nd (i,Kh;,yh;) 

if i=O then 
_ solve yho = Tho yho + Kho . 

else 
_ smoothing: yh;:= Thiyhi + Kh; . 

- compute the defect: Dhi:= yhi - Th;yh; - Kh; . 

- project the defect on {lh;-,: Kh;-,:= 1:;:-' Dh; . 
_ solve on {lh;-,: yh;-, = Th;-, yh;-, + Kh;-, . 

repeat 2 times mgm2nd (i-1,Kh;-"yh;-,), starting with yh;-, == 0 . 

- interpolate the correction to {lhi and correct: yhi:= yh; - 11::_, yh;-, 

endif 
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4.3 Time-periodic waveform relaxation 

A straightforward extension of standard waveform relaxation leads to a waveform al­
gorithm for solving time-periodic problems. Consider the following system of d first 
order time-periodic ordinary differential equations, 

d 
dtY1 = !1(t,Y1,Y2,Y3,.·.,Yd) 

d 
dtY2 = h( t, Yl, Y2, Y3, ... , Yd) 

d 
dtYd = !d(t,Y1,Y2,Y3,'" ,Yd) 

with 

Y1(O) = Y1(T) 

Y2(O) = Y2(T) 
( 4.8) 

As before, the basic waveform idea is to apply a simple iteration on functions. This is 
performed in such a way that one avoids having to solve the system as a whole. E.g., 
in the case of the Gauss-Seidel algorithm, the functional iteration reads as follows, 

!!.- (v) _ ! (t (v) (1'-1) (1'-1) (1'-1») 
dtY1 - 1 'Y1 'Y2 'Y3 '''',Yd 

d (v) f ( (v) (v) (1'-1) (1'-1») 
dtY2 = 2 t, Y1 , Y2 , Y3 , ... , Yd with 

d (v) f ( (v) (v) (v) (v») 
dtYd = Jd t, Y1 , Y2 , Y3 , ... , Yd 

y~v)(O) = y~v\T) 
y~v)(O) = y~v)(T) 

( 4.9) 

This iteration is started with an approximation which is chosen arbitrarily or which is 
chosen based on experience obtained with related problems. Note that no "natural" 
initial choice is available here, as it was when solving initial value problems. There 
the initial approximates were chosen constant and equal to the value of the initial 
condition. 

The complete Gauss-Seidel algorithm is given in Alg. 4.2. The construction of the 
Jacobi variant is straightforward. An example of a linear time-periodic problem solved 
with the Gauss-Seidel technique is presented below. 

Example 4.3.1 Consider the following 27r-periodic ordinary differential equation: 

One iteration step of the 27r-periodic Gauss-Seidel waveform relaxation can be for­
mulated as below. (We did not explicitly rewrite the periodicity condition.) 
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Algorithm 4.2: Time-Periodic Gauss-Seidel Waveform Relaxation 

1/ := 0 j choose y~O)(t) for t E [0, T], i = 1, ... , d . 

repeat 
1/ := 1/ + 1 . 
for i = 1, ... ,d 

I d (v) _ J, «v) (v) (v) (v-I) (V-I» 
sove dt Yi - i t'Yl ""'Yi-l'Yi ,Yi+1 "",Yd , 

with y~v) (0) = y~v)(T) . 
endfor 

until convergence 

The successive iterates are written in the form, 

( 
U(V») (u~V) sin( t) + u~v) cos( t) ) 
v(v) = viI') sin(t) + viI') cos(t) 
w(V) w~v) sin(t) + w~v) cos(t) 

1/=0,1,2, ... 

The coefficients can be determined analytically. Their values are given below. 

1/ u(v) 
• 

u(v) 
c 

v(v) 
• 

v(v) 
c 

w(v) 
• 

w(v) 
c 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.4000 -0.2000 0.1000 -0.1000 -0.1000 0.1000 

2 0.4400 -0.3200 0.1000 -0.1400 -0.1000 0.1400 

3 0.4240 -0.3520 0.0920 -0.1480 -0.0920 0.1480 

4 0.4144 -0.3552 0.0888 -0.1480 -0.0888 0.1480 

5 0.4118 -0.3539 0.0882 -0.1474 -0.0882 0.1474 

6 0.4116 -0.3532 0.0882 -0.1471 -0.0882 0.1471 

7 0.4117 -0.3529 0.0882 -0.1471 -0.0882 0.1471 

8 0.4117 -0.3529 0.0882 -0.1471 -0.0882 0.1471 
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Note that the direct calculation of the analytical solution would require solving a 
linear system of dimension six. This is entirely avoided in the waveform relaxation 
process in which a sequence of smaller systems of size two by two have to be solved. 
(In each of the three steps of each iteration two coefficients are updated.) 
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At any stage of the algorithm the computational task consists of solving a single 
first-order two-point boundary-value problem of the form, 

~y = J(t,y) with y(O) = y(T). ( 4.10) 

This equation may be solved for instance by dynamic simulation, by shooting or by 
discretization. The latter is particularly efficient, here. Since we deal with a single 
equation, the dimension of the resulting algebraic system is small. In the general 
nonlinear case, discretization leads to a nonlinear system of equations, which may be 
solved by a Newton-Raphson procedure. Alternatively, (4.10) may be linearized first 
around an approximation, fj, of the solution - e.g. the previous iterate -, 

1tY = J( t, fj) + JIJ(fj)(y - fj) with y(O) = y(T) , (4.11) 

and solved next, by discretization and the use of a linear system solver. This lin­
earization process may be applied iteratively, until the solution of (4.11) has converged 
to the solution of (4.10). Or, linearization may be applied only once, which results 
in a waveform relaxation Newton type iteration. Numerical experiments suggest no 
performance degradation in the latter case. 

In each of the Newton-Raphson approaches it is imperative for convergence to start 
with a good initial approximation. The latter may be obtained from the solution of a 
related problem through a continuation procedure, or, in the case of a semi-discretized 
parabolic partial differential equation, by interpolation of a coarse grid solution. 

Finally, we mention the possibility of several further variants, such as blockwise 
iterations, overlapping-block iterations, successive overrelaxation, etc. The precise al­
gorithmic formulation of the variants is straightforward, and therefore omitted. 

4.4 Analysis of the continuous-time iteration 

4.4.1 The linear model problem 

We consider a linear constant-coefficient time-periodic ordinary differential equation, 

~x + Ax = J, with x(O) = x(T) t E [0, Tl , ( 4.12) 

or, after extension of the domain by T-periodicity, 

1tx+Ax=J, with x(t)=x(t+T), tElR. ( 4.13) 

A is a complex d x d-matrix. J belongs to a Banach space of functions defined on 
[0, TJ, e.g., the space of continuous functions C([O, Tlj (Cd), or the space of Lesbesgue 
measurable functions Lp([O, Tlj <Vl). A solution x is defined as an absolutely continuous 
function which satisfies the T-periodicity condition and which satisfies the differential 
equation a.e., see e.g. [24, p.122l. 
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The solution to the differential equation in (4.12) can be written in function of the 
unknown value of the solution at t = 0, as follows, 

:c(t) = e-tA:c(O) + fa' e<a-t)A f(s)ds . 

Using the periodicity condition, :c(0) = :c(T), we get 

:c(0) = e-TA:c(O) + loT e<a-T)Af(s)ds , 

(I - e-TA ) :c(0) = loT e<·-T)A f(s) ds , 

from which we may formally derive the value of :c(0), 

:c(0) = (I - e-TAt l loT e<·-T)Af(s)ds. 

This is used to eliminate :c(0) from (4.14) so that we obtain, 

:c(t) = e-tA(I - e-TAt l loT e<·-T)Af(s)ds + fa' e<·-t)Af(s)ds . 

( 4.14) 

(4.15) 

(4.16) 

Note that the same result is found when the derivation is based on the alternative 
periodicity condition, :c(t) = :c(t + T). 

The questions of existence and uniqueness of problems like (4.12) are studied in 
great generality in references like [79, Ch. 11]. There, A is assumed to be a general 
time-periodic operator belonging to a Banach algebra of linear bounded operators. Our 
lemmata given below may be derived from theorem 112.b in [79]. However, we do not 
need all of the technical machinery of [79] for our present purposes. Consequently, 
we give some elementary proofs of the basic properties that we shall need further on. 
First, we introduce a concept which plays a fundamental role in the analysis. 

Definition 4.4.1 ([107]) A complez matriz A is called non-critical w.r.t. T if the 
differential equation 1t:c + A:c = 0 admits no T -periodic solution ezcept the zero 
solution. The matm is called critical w.r.t. T otherwise. 

In the remainder of this chapter we shall often tacitly assume that we deal with 
T-periodic functions and equations, and therefore omit the "w.r.t. T". The following 
lemma characterizes non-critical matrices. Let u(A) denote the spectrum of matrix A. 

Lemma 4.4.1 A complez matriz A is non-critical w.r.t. T if and only if 

VnE~:inwf/.u(A), with w=27f/T i=H. 

Proof. Consider (4.12) with zero right-hand side, f == O. By (4.15), its solution 
restricted to t = 0 satisfies the homogeneous equation, (I - e-T A) :c( 0) = 0 . 
This equation has a unique solution, :c(0) = 0 if and only if det(I - e-TA ) =f O. 
Consequently, 1t:c + A:c = 0 has the trivial T-periodic solution only, iff 1 f/. 
u(e-TA). The latter is equivalent to the condition V>' E u(A) : 1 =f e-n , from 
which the condition in the lemma results. 0 
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Lemma 4.4.2 For any f E Ll(O, T) I, the solution to the T-periodic differential equa­
tion l,z + Az = f ezists and is unique if and only if A is non-critical w.r.t. T. 

Proof. The necessity of the condition is, of course, obvious. If for any n E 7l : inw E 
u(A), the homogeneous equation has an infinite number of T-periodic solutions. 
Therefore, a solution of l,z + Az = f cannot be unique. 

The sufficiency part follows from the observation that det( I - e-T A) =I- 0 if and 
only if A is non-critical. In that case, the solution is given by (4.16), which is 
well-defined and unique for any f. 0 

4.4.2 The time-periodic waveform iteration 

In the time-periodic waveform iteration method a splitting (P, Q) is applied to A, i.e., 
A = P - Q. This splitting defines the iteration scheme, 

( 4.17) 

where z(O) is an arbitrary starting iterate. The solution to (4.17) can be constructed 
in a similar way as we constructed the solution to the problem in the previous section. 
This immediately leads to the following relation between successive iterates2 , 

(4.18) 

( 4.20) 

Formula (4.18) formally defines the solution ofthe time-periodic problem. However, 
the formula is mainly of theoretical interest and will generally not be used in actual 
computations. Indeed, as before, the splitting matrices are chosen in such a way that 
they lead to simplified calculations. Examples are the familiar Jacobi and SOR split­
tings, which reduce the problem of solving a time-periodic system of d equations into 
a problem of solving d separate time-periodic equations in one unknown (repeatedly, 
until convergence). Each of these equations is of the type, 

( 4.21) 

where z~"") is the i-th component of :z;(")j Pi,i is the i-th diagonal element of P, and 9i 

is a linear combination of known functions, which are either a given component of f, 
solution components of Z(,,-I) or solution components of z(,,) already computed in the 
current iteration. As with the initial value iteration, the time-periodic SOR iteration 
is again a sequential process, whereas the JOR is fully parallel. 

lRemark that C[O, T] C Lp(O, T) C L1(O, T) ,I < p ~ co. 
2We use the U-H-notation to denote T-periodic operators (IC, M, ... ) 
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Contrary to the case of solving initial value problems, in the time-periodic case not 
every splitting defines a sequence of iterates. The theorem below sets the condition for 
acceptable splittings. For this, the following definition comes in handy. 

Definition 4.4.2 A splitting (P, Q) of a complez matriz is called non-critical w.r.t. T 
if P is a non-critical matriz w.r.t. T. 

Theorem 4.4.3 The time-periodic waveform iteration defined by the splitting (P, Q) 
and the functions x(O),f E Ll(O,T) is well-defined, i.e., the iterates x("),/I = 1,2, ... , 
ezist and are unique if and only if the splitting is non-critical. 

Proof. The proof is an immediate consequence of lemma 4.4.2. Since x(O), f E 
Ll(O, T) and since P is non-critical, existence and uniqueness of X(I) follow. More­
over, since X(I) is continuous on [O,T], it is integrable and belongs to Ll(O,l). The 
existence and uniqueness of the other iterates follow by induction. 0 

4.4.3 The time-periodic integral operator 

By construction, K; is the linear operator which maps the function v to the function w, 
where v and ware related by the equation few + Pw = Qv, w(O) = w(T). Some other 
ways of representing and characterizing K; are formulated below. They are helpful for a 
better understanding of the nature of K; and they will come in useful in the remainder of 
the analysis. They may be proven either directly, starting from the differential equation 
that defines K;, or by applying some algebra to formula (4.19). We have opted for the 
latter. The proofs make use of some elementary matrix properties which are stated 
and proven below. 

Property 4.4.4 Let A denote a complez matriz and 0, (3 E tV; assume that the inverses 
in the formulae below ezist, then 

a. e(a+.B)A = eaA e.BA 

b. e.BA(I - eaA )-1 = (I - eaAt 1e.BA 

c. eA(I - eAt 1 + 1 = (I - eAt 1 

d. f; e-tAdt = A-1(I - e-TA ) 

Proof. 

a. The result is an immediate consequence of the more general property proven 
in [145, p. 255]: "eA+B = eAeB if AB = BAli. 

h. e.BA(I - eaA )-1 = «(1 - eaA )e-.BAtl = (e-.BA(I - eaA ))-1 = (I _ eaA )-Ie.BA 

c. l.h.s. = eA(1 - eAt 1 + (I - eA)(I - eAt 1 = (eA + 1 - eA)(1 - eA)-1 = r.h.s. 

d. f; e-tA dt = A-l( -e-tA )15 = A-l(1 _ e-TA ) 

o 
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Theorem 4.4.5 iC is a periodic convolution operator, 

iCx(t) = k*x(t):= ~ loT k(t - s)x(s)ds (tEJR) ( 4.22) 

with a T-periodic matrix-valued kernel, k, of which the restriction to [0, T) is given by 

( 4.23) 

Proof. Assume first that 0 ~ t < T. 

We recall formula (4.19), which defines the operator iC 

With application of prop. 4.4.4.a and 4.4.4.b the right-hand side can be rewritten, 

By splitting the first integral into two parts, 0 ~ s ~ t and t < s ~ T, and adding 
the first term to the second integral we get, 

The left-hand term can be rewritten by application of property 4.4.4.c, 

l e-(t-')P(I - e-TPt1Qx(s) ds + iT e-(T+t-')P(I - e-TPt1Qx(s) ds . 

As 0 ~ t - s ~ t < T (first integral) and 0 ~ t ~ T + t - s ~ T (second integral), 

- 1t- 11T -Kx(t)= rlo kIlO,T)(t-s)x(s)ds+ r t kllO,T)(T+t-s)x(s)ds, 

1 rT 
=rlo k(t-s)x(s)ds. 

This proves the equivalence of iCx(t) and k * x(t) on [0, T). Taking into account 
that iCx(t) and k * x(t) are T-periodic proves their equivalence for t E JR. 0 

Note that k(t) is a bounded function which is continuous except at integer multiples of 
T. Note further that the theorem may also be proven by showing that k*x (0) = k*x (T) 
and verifying that the convolution satisfies the defining differential equation of iC. 

Theorem 4.4.6 The Fourier series coefficients of the kernel k, {kn}:=_oo' satisfy 

kn=(inwI+Pt1Q, w=27r/T, nE~. (4.24) 
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Proof • Following the definition of the Fourier series coefficients, we get 

kn:=.!.. IT k(t) e-· ..... t dt, w = 2?r/T, n E ~ 
TJo 

= faT e-tP(I - e-TP)-lQ e-· ..... t dt 

= faT e-(· ..... 1+P)t dt (I - e-TPt1Q 
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Since P is non-critical, the matrix (inwI + P) is invertible, and we may invoke 
property 4.4.4.d to arrive at, 

kn = (inwI + Pt1(I - e-(· ..... 1+P)T)(I - e-TPt1Q 

= (inwI + Pt1(I - e-PT)(I - e-TPt1Q 

= (inwI + P)-lQ . 

Remark 4.4.1 With use of K(z), defined in (2.37), we get, 

kn = K(inw). 

Theorem 4.4.7 K, is a linear Fredholm integral operator, 

K,x(t) = faT G(t,s)x(s)ds 

with 

o 

(4.25) 

(4.26) 

(4.27) 

Proof. By definition of G( t, s) it follows that J; G( t, s )x( s) ds can be expanded as, 

l e(·-t)P(I - e-TPtlQx(s)ds + iT e(·-t-T)P(I - e-TPtlQx(s)ds . 

This is equivalent to an expression found at the end of the proof of Th. 4.4.5. 0 

Note that G( t, s) is bounded on [0, T] x [0, T] and continuous everywhere except for 
the line s = t. This is a particular case of a so-called potential kernel. 

4.4.4 Convergence of the time-periodic waveform relaxation 

The error to the solution of (4.17), e(II) = X(II) - x, solves the time-periodic problem, 

d dt e(II) + Pe(lI) = Qe(lI-l), with e(II)(O) = e(II)(T) . 

This leads to a linear relation between the errors of successive iterates, e(lI) = K,e(lI-l). 
By theorem 2.5.2, the error in the time-periodic waveform iteration will go to zero 
when the spectral radius of K, is smaller than one. Note that the boundedness of K, is 
immediately verified by considering a standard result on the boundedness of convolution 
operators. The theorem below is given for convolution operators in Lp-spaces, but a 
similar theorem holds for the space of continuous functions. 
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Theorem 4.4.8 ([153], p.235) Let the functions f(x) and k(x) have the period 1; 
let k(x) E L1(0,1) and f(x) E Lp(O, 1) (1 ~ p ~ 00). Then the periodic convolution 
h(x) = f~ k(x - y)f(y) dy belongs to Lp(O, 1) and II h lip ~ II kill II flip· 

Corollary 4.4.9 The time-periodic operator is bounded in Lp(O, T) and C[O, T]. 

The spectral radius of }( may now be calculated in a similar way as the spectral 
radius of the corresponding initial value waveform relaxation operator is calculated in 
[84]. However, the special nature of }( as a convolution operator allows a substantial 
simplification. The latter is based on the property of compactness, see e.g. [39, p. 237]. 

Definition 4.4.3 A linear operator U in a Banach space X is called compact if for 
every sequence {x n } in X with II Xn Ilx = 1, the sequence {Uxn } has a convergent 
subsequence. 

The compactness of }( is established by the following theorem. 

Theorem 4.4.10 ([154], p.320) Consider the linear convolution operator U , de­
fined by U f(x) = fJ k(x - y)f(y)dy, ° < x < T < 00. If the kernel is integrable on 
(-T, T) then U is compact on any of the spaces Lp(O, T) (1 ~ p ~ 00) and C[O, T]. 

Corollary 4.4.11 The time-periodic operator is compact in Lp(O, T) and C[O, T]. 

The compactness result may also be derived by considering }( as a Fredholm integral 
operator with bounded potential kernel, and by considering theorems that discuss the 
compactness of such operators, see e.g. [67, p. 328 and p. 397]. Compact operators 
may in some sense be regarded as infinite-dimensional extensions of the familiar finite­
dimensional linear operators. Indeed, some of their characteristics are very similar. An 
important example is given by the theorem below, which discusses the nature of the 
spectrum of a linear compact operator. 

Theorem 4.4.12 ([154], Th. 3.1) LetU be a compact operator acting in an infinite­
dimensional space. Then, 

a. The spectrum ofU consists of zero, and a denumerable set >'1,>'2, ... , with zero as 
its only accumulation-point 

h. every non-zero point>. of the spectrum is an eigenvalue of finite multiplicity. 

We may now state our main result, which relates the spectral radius of iC , an 
operator in an infinite-dimensional space, to the spectral radii of the Fourier series 
coefficients of its T-periodic kernel. It is the time-periodic equivalent of the initial 
value result in theorem 2.5.6, which related the spectral radius of K, to the spectral 
radius of the Laplace transform of its kernel. 

Theorem 4.4.13 Consider}( as an operator in Lp(O,T), 1 ~ p ~ 00, or C[O,T]. 
Assume (P, Q) is a non-critical splitting. Then, 

p(iC ) = max p( K(inw» with w = 27r IT . 
nEZ? 

( 4.28) 
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Proof. Since K is a compact operator, its spectrum, u(K), consists of zero and eigen­
values only. The latter can be calculated explicitly as follows. 

Let A be an eigenvalue of K and let x be a non-trivial function which satisfies 
Kx = AX. By calculating the Fourier series coefficients of left- and right-hand 
sides, and taking formula (4.25) into account, we come to the following identity, 

K(inw)xn = AXn , "In E ~ , ( 4.29) 

where xn is the n'th Fourier coefficient of x. (Note that the Fourier coefficients are 
well-defined for any integrable function.) The left-hand side is derived by applying 

the Fourier series convolution property (if f,g E L1(0,T) : (i;;)n = jn9n)' 
By (4.29), any eigenvalue of K is also an eigenvalue of a matrix K(inw), when a 
non-zero vector xn exists. The latter must be the case for at least one value of n. 
Otherwise, x would be equal a.e. to the zero-function. 

Conversely, any eigenvalue-eigenvector pair (An, Xn) of the matrix K(inw) defines 
an eigenfunction of K with eigenvalue An. Indeed, consider the function, 

This is an eigenfunction since KXn (t) = AnXn( t). This is readily checked by 
Fourier transforming the left- and right-hand sides. 

By consequence, the spectrum of K may be written explicitly as 

u(R:) = U u(K(inw)) U {O} , (4.30) 
nEZ 

from which the conclusion follows. (Note the use of "max" instead of "sup", since 
u(K) is bounded with zero as the only point of accumulation.) 0 

Remark 4.4.2 peR:) is the decay factor of the most slowly decaying harmonic in the 
Fourier expansion of the error. (This follows from erl = K(inw)er-1l .) 

Remark 4.4.3 When (P, Q) defines a Jacobi- or Gauss-Seidel splitting, it follows that 
p((inwI + P)-lQ) is equal to the spectral radius of the static iteration for solving a 
linear system of equations with coefficient matrix "inwI + A" . 

The splitting A = P - Q defines a classical (static) iterative method for solving 
the linear system of equations Ax = b, see eq. (2.30). Its convergence properties are 
related to those of the time-periodic waveform iteration in the following corollary. 

Corollary 4.4.14 Let (P, Q) be a non-critical splitting. It then follows that the spectral 
radius of the time-periodic operator is bounded from below by the spectral radius of the 
corresponding static iteration operator. 

Proof. Since P is non-critical, peR:) exists and P is invertible. Since the spectral 
radius of the static iteration operator is given by p(P-1Q), the conclusion follows. 

o 
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By comparing the result of theorem 4.4.13 to the formula (2.38) we can state an 
important corollary which links the convergence properties of the standard waveform 
relaxation method to those of the newly defined time-periodic method. 

Corollary 4.4.15 Let the splitting be such that all of the eigenvalues of P have positive 
real parts. It then follows that p(lC) :5 p(IC), that is, the spectral radius of the waveform 
relazation operator for solving the T-periodic ordinary differential equation is bounded 
by the spectral radius of the infinite-interval waveform relazation operator for solving 
the corresponding initial value problem. 

Proof • The condition on the eigenvalues of P is necessary (and sufficient) to guarantee 
the validity of theorem 2.5.6. It also ensures that the splitting is non-critical, so 
that p(lC) exists. The validity of corollary then follows immediately by comparison 
of formula (4.28) with the formula (2.38). 0 

A necessary condition for convergence of the time-periodic iteration is the con­
vergence of the corresponding static iteration. A sufficient condition is given by the 
convergence of the corresponding initial value waveform relaxation. As an immediate 
consequence several of the convergence related results of the reference [84) may be 
transposed to the time-periodic case. We shall not repeat these convergence results 
but refer the reader to the above reference. Note that the spectral radii of IC and IC 
coincide when the maximum in the formula for p(IC) is found in a value e = nw. The 
case n = 0 is not uncommon. An example of this will be given next. Let A be a 
consistently ordered matrix with positive constant diagonal D = cI. We decompose A 
as - L + D - U where L and U are strictly lower and upper triangular matrices. We set 
ICGS and ICGS to denote the time-periodic and initial value operators corresponding to 
the Gauss-Seidel splitting of A. Analogously, we define ICJAC and ICJAC corresponding 
to the Jacobi splitting. 

Corollary 4.4.16 

(4.31) 

Proof. In the case of a Jacobi splitting or a Gauss-Seidel splitting, the maximum of 
p((ieI + P)-lQ) is found at the origin, [84, Corollary 4.1). Therefore, p(ICGs ) = 
p(ICGs ) and p(ICJAC ) = p(ICJAC ). The remainder follows from corollary 2.5.7. 0 

In the case of an SOR-splitting with sufficiently large overrelaxation parameter the 
maximum is taken for some value e away from zero. In that case p(ICSOR):5 p(ICSOR ) 

where the unequality is strict unless the maximum is attained at an integer multiple 
of w. 

Finally, we derive a formula for the norm of IC . As with the spectral radius, also 
the norm is bounded from below and from above by the norms of the corresponding 
static iteration and initial value waveform operators. 

Theorem 4.4.17 Denote by II . 112 the L2-norm, and by II . II the standard Euclidean 
norm. Oonsider IC as an integral operator in L2(0, T). Assume P is non-critical. Then, 

IIIC 112= max II K(inw) II . 
nEZ 

(4.32) 
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Proof . We consider the L2-space as the proof is based on the Parseval relation. The 
latter relates the L2-norm of a function to the 12-norm of its Fourier coefficients, 

T +00 
II J II~:= L II J(t) 112 dt = T L II in WI 

o n=-oo 

Application of Parseval's equality to iCz, with z E L2 , gives, 

This can be bounded as follows. 

Consequently, II iC 112:£ sup II kn II. The "sup" may be replaced by "max", that 

is, II iC 112:£ max II kn II, since {II kn II}:'=-oo = {II (inwI + Pt1Q II}:'=-oo is 
bounded and has zero as the only point of accumulation. 

On the other hand, let the ~aximum b~ obtained for k N, and choose XN as a 
vector with II XN 11= 1 and II kNXN 11=11 kN II, then, 

II K 112 > II iC_XN~iNwt 112 = II k~XN.eiNwt 112 = II k~XN II =11 kN II 
- II ZNe,Nwt 112 II ZNe,Nwt 112 II ZN II 

Therefore, II iC 112=11 kN 11:= maJCne2Z II K(inw) II . o 

4.4.5 The existence of convergent and divergent splittings 

We shall complete the discussion on the continuous-time time-periodic waveform iter­
ation with an existence result. One additional definition is formulated first. 

Definition 4.4.4 A non-critical splitting (P, Q) is called convergent (w.r.t. T) if the 
spectral radius of the T-periodic waveform rela:r;ation operator satisfies p(iC ) < 1. It 
is called non-convergent otherwise. 

The precise meaning of this definition should be thought about by regarding theorem 
2.5.2 and property 2.5.3. When the splitting is convergent, the time-periodic iteration 
will converge for any right-hand side f and any starting approximation z{O). When the 
splitting is non-convergent (p(iC) ~ 1), there exist J and z{O) for which there will be 
no convergence. E.g., the iteration may diverge, or there may be a periodic cycle of 
recurring errors. 

The basic existence result is stated next. We refer to our report [138] for a con­
structive (but rather technical) proof. 

Theorem 4.4.18 Any non-critical complez matriz admits convergent and non-con­
vergent non-critical splittings. 

Remark 4.4.4 When solving intial value problems on [0, T] every splitting is conver­
gent (since p(1\:) = 0). This is obviously not the case for the time-periodic iteration. 
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4.5 Analysis of the discrete-time iteration 

4.5.1 Discretization and solution of the model problem 

We fix the time-increment r = T / N and formally discretize the differential equation of 
the model problem (4.12) by a linear multistep method so that we obtain the following 
difference equation, 

(4.33) 

(We use a slightly different (but equivalent) notation from the one in (2.42) in order to 
simplify some further computations.) The introduction of some additional notations 
will allow us to reformulate this equation into a more suitable form. Let fT denote the 
infinite ((;"i-valued sequence {fn}:=-oo, with fn = f(nr). Similarly, let XT denote the 
sequence {xn}:=_oo, where Xn is the O'-vector which approximates x(nr). If we write 
aUT for the sequence n:::~=o Ctj'Un-lc+i }:=-oo and buT for n:~=o (Jiun-lc+i }:=-oo, we may 
rewrite (4.33) as, 

(4.34) 

The T-periodicity condition of the continuous-time problem is taken into account 
by requiring N-periodicity of the sequences fT and XT. By this we mean that, 

'rIn E ;E: fn+N = fn and Xn+N = Xn . (4.35) 

As such, equation (4.34) becomes an equation in the space of N-periodic O'-sequences. 
The latter is a finite-dimensional Banach space, equivalent to Ip([O .. N -1]; a;oI). Note 
that its dimension equals N d. 

The main mathematical tool for analysing existence and uniqueness of a solution 
to (4.34) will be the concept of a discrete-time Fourier series (DFS), see e.g. [100]. 

Definition 4.5.1 The DFS transform-pair of an N -periodic complez sequence fT is 
given by 

N-l A 1 N-l . 
fn = L imeinm(2Tr/Nl with fm = - L fn e- mm(2Tr/Nl (i = H) . 

m=O N n=O 
( 4.36) 

In the case of a O'-valued sequence the formulae are applied componentwise. Formula 
(4.36) basically states that any N -periodic sequence may be uniquely expressed as a 
linear combination of N "basic" N-periodic sequences, eT,m, i.e., 

N-l 

f = ""' J,A e with e = {einm(2Tr/Nl}oo 
T' L.J m T,m T',m n=-oo . 

m=O 

The invertibility of ~aI + bA as an operator on the space of N-periodic sequences 
is specified in the following theorem, which states the discrete solvability condition. 
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Theorem 4.5.1 For any N -periodic f.,. the solution to the N -periodic difference equa­
tion ~ax.,. + bAx.,. = bf.,. exists and is unique if and only if 

~~(em) ¢ u( -A), m =0, ... , N - 1 with e = ei(21f/N) , 

where a( 0 = E~=o Qjej and b{e} = E~=o {3jej • 

(4.37) 

Proof. Set (ax.,.)n to denote the n'th element of ax.,. where x.,. is N-periodic. Since a is 
an operator which corresponds to a linear combination of N-periodic sequences, 
it is clear that ax.,. is also N-periodic. We denote its discrete Fourier series 
coefficients by ~m' They may be calculated as follows, 

_ 1 N-I 0 

(ax) '= - L (ax) e-mm(27f/N) 
.,. m' N n=O .,. n 

1 N-I k 

N L (L QjXn-k+j) e-inm(21f/N) 
n=O 1=0 

e-ikm(27f/N) ~ Q oeijm(21f/N) ~ ~l X oe-i(n-k+j)m(21f/N) 
L..J 1 N L..J n-k+1 
1=0 n=O 

= e-kma(em)xm with e = ei(21f/N) (4.38) 

a(e) denotes the first characteristic polynomial of the multistep method, (2.43). 
Analogously, with b(O denoting the second characteristic polynomial, we get, 

( 4.39) 

Let im denote the DFS coefficients of f.,.. By calculating the DFS coefficients of 
the left- and right-hand side of equation (4.34) we derive an identity which is to 
be satisfied by the Fourier coefficients of any solution x.,., 

(~a(em)I + b(em)A) xm = b(em ) im . 

If b(em ) = 0 then necessarily a(em ) :F 0, since a{e} and b(O have no common 
roots. Consequently, xm = O. Taking this into account we may further simplify 
the condition to, 

( 4.40) 

The remainder of the proof is straightforward. When the condition of the theorem 
is satisfied, the solution equals E;;::6 xmC.,..m, with xm uniquely defined by (4.40). 

Conversely, when ~~(em) E u( -A) for some m, equation (4.34) with zero right­
hand side has an infinite number of solutions (because (4.40) has an infinite 
number of solutions). Consequently, a solution of (4.34) cannot be unique. 0 

Corollary 4.5.2 If the discrete solvability condition (4.37) is satisfied, the solution of 
the N -periodic difference equation ~axT + bAxT = b fT is given by, 

N-l 
x.,. = L(~~(em)I+AtlimcT.m with e=ei(21f/N). (4.41 ) 

m=O 
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4.5.2 Reformulation as a linear algebra problem 

Equation (4.34) is a linear equation in a finite-dimensional vector-space. It is illustrative 
to reformulate this equation as a standard linear system of equations in ~d. To this 
end we rewrite (4.33) as follows, 

" " L C;Xn-k+; = L P;fn-k+; with C; = ~a;I + P;A . 
;=0 ;=0 

Consider the equations for the N successive unknowns xo, xl, ... , XN-l' When the N­
periodicity is taken into account, these equations may be assembled into matrix form 
and written as, 

CX=BF ( 4.42) 

with X [Xo Xl ... XN_l]t 

F [10 fl ... fN_l]t 

B bcirc(p"I, 0, ... , 0, Pol, P1I, ... , P"-lI) 
C bcirc(C", 0, ... ,0, Co, C l , ... , C,,-t} 

where "bcirc" stands for block-circulant. The definition of the latter is given below. 

Definition 4.5.2 A block-circulant matrix of type (r,s) is an rs x rs matrix, 

Ao Al A2 A.-l 
A._l Ao Al A.-2 

bcirc(Ao, . .. , A.-t} = 
A.-2 A.-l Ao A._3 

( 4.43) 

Ao 

where A l , A 2, .. . , A. are square matrices of order r. 

Definition 4.5.3 Thepolynomialp..,(z) = Ao+A1Z+A2Z2+ .. ·+A._lz·-l, associated 
with the s-tuple 'Y = (Ao, At, .. . , A.-l ), is called the representer of the block-circulant 
bcirc(Ao, . .. , A.-t}. 

These definitions, together with a wealth of properties and characteristics of cir­
culant and block-circulant matrices can be found in a book by Ph. Davis, [25]. The 
following theorem, which is the block matrix extension of theorem 3.2.2 in the above 
reference, will be useful further on. 

Theorem 4.5.3 The spectrum of a block-circulant matrix is given by 

a(bcirc(Ao, ... , A.-d) = ( 4.44) 
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Proof. Let (~, X) be an eigenvalue-eigenvector pair of A, with A = bcirc(Ao, ... , A.-1 ) 

and X = [:1:0' .. :I:._1]t. We write AX = ~X (block-)componentwise as, 

.-1 

(AX); := E AIe:l:lo+; = ~:I:;, j = 0, ... , s - 1 , 
1e=0 

where we have assumed the sequence X to be extended by s-periodicity. By 
applying the DFS-formulae for :l:lo+; and :1:;, we get, 

.-1 .-1 .-1 E Ale E :i:mei(Ie+;)m(2 ... /.) = ~ E :i:mei;m(2 ... /.) 
1e=0 m=O m=O 

.-1 .-1 .-1 E (E Aleeilcm(2"'/o):i:m)ei;m(2 ... /.) = E ~:i:mei;m(2 ... /.) . 
m=O 1e=0 m=O 

By the uniqueness of the DFS-decomposition we get the result, 

.-1 

p,.({m):i:m := E AIe({m)le:i:m = ~:i:m with {= ei(2"'/o) . 
1e=0 

Conversely, with any eigenvalue-eigenvector pair (Am, :i:m) of p,.({m) an eigenvalue­
eigenvector pair (~, X) of A corresponds. Indeed, consider 

It follows that AX = ~X since for any j, 

.-1 .-1 

(AX); = E AIe:!:m({ml+; = E AIe({m)1e :!:m({m); = ~m:!:m({m); = ~X; . 
1e=0 1e=0 

o 

Building on the above theorem, we can now derive the condition under which a 
solution of (4.42) exists. 

Theorem 4.5.4 The matriz C is invertible if and only if the discrete solvability con­
dition (4.37) is satisfied. 

Proof. The spectrum of C is given by formula (4.44), with 

p,.(z) = Cle + CIe_1 Z N- 1 + CIe_2 Z N- 2 + ... + CozN- 1e . 

Consequently, with { = ei (2 ... /N) and since {Nm = 1, 

p,.({m) = cle{Nm + CIe_1{(N-l)m + ... + Co{(N-Ie)m 

= ({m)N-Ie(CIe({m)1e + cle_1({m)le-l + ... + Co) 

= ({m)N-1e E~=o(~a;({m);I + ,B;A({m);) 

= ({m)N-Ie(~a({m)I + b({m)A) 
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C is invertible iff 0 f/. a(C), or, equivalently, since ~(N-k)m =I- 0, 

Note that, when b(~m)= 0, then a(~m)=l-O and the condition Of/.a(C) is satisfied. 
o 

As expected, the condition derived in the above theorem by linear algebra arguments 
is identical to the condition for existence of a solution to (4.33) derived in theorem 4.5.1 
by DFS properties. Similar analogies can be derived for most of the results that will 
be discussed in the remainder of this section. It will be possible to either consider 
the problems and operators as problems and operators in the space of N-dimensional 
sequences, and to derive results by DFS properties, or to study problems and operators 
in a standard linear algebra setting and apply standard matrix properties. We opt for 
the former approach, which more clearly exemplifies the close correspondence to the 
continuous-time analysis. 

4.5.3 The discrete-time time-periodic waveform iteration 

Discretization of (4.17) with a fixed time-step T results in 

k k k 
1 ~ ( ... ) ~ R P ( ... ) ~ R {Q ( ... -1) f, } 
:;: L..J CtiXn-k+i + L..J fJi Xn-k+i = L..J fJi Xn- k+i + n-k+i . ( 4.45) 

i=O i=O i=O 

By taking the N-periodicity into account, this can be rewritten as a successive approx­
imation scheme in the space of N-periodic sequences, 

lax("') + bPx("') = bQX( ... -I) + bf T T .,. .,. T • ( 4.46) 

The following theorem, analogous to theorem 4.4.3, deals with existence and uniqueness 
of the discrete-time time-periodic waveform relazation iterates. 

Theorem 4.5.5 The discrete-time time-periodic waveform iteration defined by the 
splitting (P,Q) and the N-periodic sequences x!,O),/.,. is well-defined, that is, the it­
erates xr), /I = 1, 2, . .. ezist and are unique il and only if P satisfies the discrete 
solvability condition, ~H~m) f/. a( -P), m = 0, .. , N - 1, ~ = ei (21f/N) • 

Proof. Since Qx~O) + I.,. is N-periodic, we may invoke theorem 4.5.1 to conclude that 
X~I) exists and that it is unique if and only if P satisfies the solvability condition. 
An induction argument extends this result to the subsequent iterates. 0 

If the discrete solvability condition is satisfied, we can introduce a linear operator 
K.,. and write the solution of (4.46) as follows, 

(4.4 7) 
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N-l 

with iTxT == L(~~(em)I + Pt1QXmeT,m ( 4.48) 
m=O 

N-l 

CPT == L (~~(em)I + Pt1 !meT,m ( 4.49) 
m=O 

which immediately results from the formula (4.41). In the discussion of the continuous­
time iteration, it was shown that the operator K is a convolution operator. The match­
ing discrete-time result is proven next. 

Theorem 4.5.6 iT is an N -periodic discrete convolution operator, 

with an N -periodic, matrix-valued kernel kT' defined by 

N-l 

kn == L (H(em)I + Pt1Q einm(27r/N) . ( 4.50) 
m=O 

Proof. By a comparison of (4.50) to (4.36) we can immediately identify the DFS­
transform coefficients of kT , 

(4.51 ) 

By (4.48) and by the DFS convolution property we find that, 

VxT : (Gr)m == (~Hem)I + Pt1Qxm == kmxm == (k::-;T)m . 

By the uniqueness of the DFS the correctness of the theorem follows. 0 

4.5.4 Convergence of the discrete-time iteration 

The convergence of the successive approximation scheme is determined by the spectral 
radius of iT> which is a linear operator in a finite dimensional space. The following 
theorem relates the spectral radius of iT to the spectral radii of the Fourier coefficients 
of its discrete convolution kernel. The proof proceeds along the same lines as the proof 
of the corresponding continuous-time theorem, i.e., theorem 4.4.13. We shall therefore 
only present the principal ideas. 

Theorem 4.5.7 Let P satisfy the discrete solvability condition. Then, 

P(iT) == max p( K(~Hem))) with e == ei(27r/N) • 
m=O, ... ,N-l 

( 4.52) 
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Proof. Since IC is a finite-dimensional linear operator its spectrum consists of eigen­
values only. Let A be an eigenvalue of itT and let XT be a non-trivial N-periodic 
sequence that satisfies itTXT = AXT • By calculating the discrete Fourier series 
coefficients of left- and right-hand side we get the identity, 

kmxm = Hm with km = (~Hem)I + Pt1Q = K(~~(em» . 

This shows that A is an eigenvalue of at least one matrix km • 

On the other hand, any eigenvalue-eigenvector pair (Am' Xm) of km defines a 
non-trivial N-periodic eigen-"sequence" of itT with eigenvalue Am, namely 

Therefore, 
U(itT) = U 

m=O .. N-l 

from which (4.52) immediately follows. o 

As in the continuous-time case we may state two corollaries which relate the con­
vergence properties of the static iteration and of the infinite-interval discrete waveform 
iteration for solving initial value problems to those of the discrete waveform iteration 
method for solving time-periodic problems. 

Corollary 4.5.8 Let P satisfy the discrete solvability condition. It then follows that 
the spectral radius of the discrete time-periodic iteration operator is bounded from below 
by the spectral radius of the corresponding static iteration operator. 

Proof. The discrete solvability condition ensures the existence of both P(itT) and 
p(P-lQ). If m = 0 then (H({m)I + P)-lQ = P-lQ because of the consistency 
condition a(1) = O. Therefore, the conclusion follows. 0 

Corollary 4.5.9 Let the splitting satisfy: u(-rP) C intS. It then/ollows that the 
spectral radius of the discrete waveform operator for solving the T-periodic ordinary 
differential equation is bounded by the spectral radius of the infinite-interval discrete 
waveform operator for solving the corresponding initial value problem. 

Proof. The condition on the splitting is necessary to guarantee the existence of p(IC), 
theorem 2.5.10. It also ensures that the splitting is non-critical. The result follows 
by a comparison of the result of theorem 4.5.7 to the formula (2.53). 0 

The norm of itT may be determined in essentially the same way as it was done for 
the continuous-time iteration. We shall therefore skip the proof, and only state the 
result. Since the proof is based on the Parseval relation for discrete Fourier series, only 
the '2([0 .. N - 1]i ([;d)-space is considered. 

Theorem 4.5.10 Consider itTas an operator in 12([0 .. N -1]i ([;d). Then, 

II itT 112 = m;R~-l II K(H({m» II (4.53) 

where II . 112 denotes the 12-norm and II . II the Euclidean matrix norm. 
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4.5.5 The spectral picture 

In order to calculate the spectral radius p of any of the waveform relaxation operators 
defined in this chapter or in the previous chapters, the spectral radius of the matrix 
K(z) = (zl + Pt1Q is to be calculated for a set of complex values of z, and the 
maximum has to be determined. More precisely, a general formula holds, of the form 

p = max p«zl + Pt1Q) , 
.leE 

(4.54) 

where the extent of set E is recalled in table 4.1. 

Table 4.1: Extent of the set E for different waveform operators. 

continuous-time discrete-time 

initial value, [0, T] {co} {1!!IJ.} 
r (3~ 

initial value, JR+ {ie : e E JR} HIW: e = eiS,8 E [0,21r)} 

time-periodic, [0, T] {inw: n E ~,w= ~} {*Hem ): e = ei (2w/N),m = 0, .. ,N-1} 

In addition to the sets specified in the table, note that the static iteration leads to 
the set E = {OJ. The set of points HW with e E (/7, lei = I} constitutes the root locus 
of the linear multistep method characterized by the polynomials (a, b). Consequently, 
the N points, *1(em ) , that have arisen in the theoretical analysis of the discrete­
time time-periodic waveform iteration lie on the root locus, scaled by a factor *. The 
precise values of these points may be calculated easily as is illustrated in the following 
examples. 

Example 4.5.1 The characteristic polynomials of the backward Euler method are 
given by a(e) = e - 1 and b(e) = e. The boundary of the stability region is the set 
of pointsz, given by 

z = i(e) = 1 -lIe = 1- e-iB = 1- cos(8) + isin(8), with 8 E [0,21r) . 

Consequently, to determine the spectral radius of the discrete-time time-periodic op­
erator, the following N points are to be considered, 

z = H(em) = *(1 - cos(m21rIN) + isin(m21rIN», m = O .. N -1 . 

They are equally spaced along a circle of radius lIT, centered at point (l/T,O). 

Example 4.5.2 The characteristic polynomials of the trapezoidal rule or Crank­
Nicolson method are a( e) = e - 1 and b( 0 = (e + 1) 12. The boundary of its stability 
region is given by, 

z = i(e) = 2(e -l)/(e + 1) = 2(eiB _l)/(e iB + 1) = 2tan(812)i with 8 E [0,21r) . 

The points H(em ) lie unequally spaced along the imaginary axis, according to the 
formula, 

z=*Hem)=~tan(m1rIN)i, m=O, ... ,N-l. 
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We illustrate some of these sets in the spectral picture, figure 4.1. We depicted the 
sets for the backward differentiation formulae of order 1 to 4, with N = 20 and with 
T = 1. The complex values * ~(em) are denoted by a".". The points * ~ (which 
are not shown in the picture) are located on the real axis, at values 1 (BDF(l)), ~ 
(BDF(2)), ¥ (BDF(3)), and ~ (BDF(4)). 

The use of the spectral picture for a graphical convergence check is illustrated in 
figure 4.2. We consider the case of a consistently ordered matrix A with constant 
positive diagonal and the use of the SOR splitting. As was discussed in section 2.5.3, 
in this case an explicit formula for p((zI + p)-lQ) exists. It depends on z and on 
the tuple (1', S, w), where S is the diagonal value of A, w is the overrelaxation factor 
and I' is the spectral radius of the corresponding Jacobi matrix. In the figure, the 
function p((zI + p)-lQ) is represented by a plot of some of its contour lines (p = 
0.4,0.5, ... ,1.0). This is done for the parameter values (I',S,w) = (0.951,200,4/3). 
(Note that the values of S and I' correspond to the matrix A obtained by a semi­
discretization of the one-dimensional heat equation on :z; E [0,1] with central differences 
and h = 0.1.) Superimposed on the contour lines is the spectral picture, scaled by the 
factor *, with T = 0.02. This construction allows the graphical study of the convergence 
of the waveform iterations and the (approximate) determination of the spectral radii 
of the waveform operators. Note that the waveform iteration converges when the 
associated set E is contained in the set of convergence, that is, the set of points z for 
which p(K(z)) < 1. 

By looking at the spectral picture the relation between the convergence characteris­
tics of the different operators can easily be verified, in particular the corollaries 4.4.14, 
4.4.15, 4.5.8 and 4.5.9. Finally, note the following relations between the different en­
tries of table 4.1. In the limiting case of T ~ 00 (with constant T in the discrete-time 
case) the time-periodic formulae lead to the initial value formulae. Additionally, note 
that the continuous-time results "naturally" follow from the discrete-time results. In 
the time-periodic case this is shown by application of the following property. 

Property 4.5.11 

For any jized m: lim .!.~(em) = imw and lim .!.~(eN-m) = -imw 
T~OTb T_orb ( 4.55) 

Proof. The result is easily checked by using I'Hospital's rule, the consistency condi­
tions a(l) = 0 and a'(l) = b(l) and by taking into account that e = ei (21r/N) = 
ei(21r/T)(TjN) = eiOlT . We calculate the first limit below. The second limit can be 
calculated similarly. 

. a(eimOlT ). a'(eimOlT)eimOlTimw a'(l)imw. 
l.h.s. = ~~ Tb(eimOlT ) = ~~ b(eimOlT)+Tb'(eimOlT)eimOlTimw = b(l) = zmw 

o 

lucianoaraki@yahoo.com.br



4.5. ANALYSIS OF THE DISCRETE-TIME ITERATION 109 

6 

7 g 

BDF(4) 

Figure 4.1: Position of the N points ~Hem) for BDF methods (N = 20,T = 1). 

Figure 4.2: Use of the spectral picture for graphical convergence check. 
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4.6 Multigrid acceleration 

4.6.1 Introduction 

The time-periodic waveform relaxation method can be used for solving the system of 
ordinary differential equations which is obtained by semi-discretizing a time-periodic 
partial differential equation. It will be shown in chapter 8 that the method applies to 
fairly general nonlinear problems and to systems of partial differential equations. In 
the current section we shall restrict the analysis to linear problems of the form, 

(4.56) 

where Lh is the discretization matrix of a linear elliptic partial differential operator; h 
represents the spatial mesh size. 

Classic relaxation methods such as Jacobi and SOR iteration for solving the linear 
systems derived from elliptic partial differential equations degrade in performance as 
the mesh size h is reduced. The time-periodic dynamic iteration method suffers from 
the same problem. Indeed, consider the heat equation ~~ = t:m in a one-, two-, or three­
dimensional domain with Dirichlet boundary conditions. Semi-discretization with the 
standard five-point star on an equidistant mesh leads to an ODE system coefficient 
matrix _Lh (= -L+D-U) that satisfies the conditions for application of corollary 
4.4.16. Application of (4.31) and the knowledge that p(D-l(L + U)) = cos(-7rh), leads 
to the time-periodic equivalent of (3.4), 

( -) 2 2 p J(JAC ~ 1 - 71" h /2 and ( -) 2 2 p J(GS ~ 1 - 71" h . (4.57) 

In the case of SOR waveform relaxation a spectral radius may be found which differs 
from that of the static iteration. For small h and for the overrelaxation parameter 
value which minimizes p(J(SOR) we get, 

( - ) 2 2 p J(SOR,wop.) ::; p(J(SOR,wop. ~ 1 - 271" h , (4.58) 

where the latter approximation is given in (3.5). The "$" is due to the fact that 
for calculating p(lCSOR ) by (4.28) the maximum is sought in a discrete set of equally 
spaced points on the imaginary axis, while the calculation of p(J(SOR) involves the 
whole imaginary axis. It is generally not a strong inequality though. Indeed, when w 

is not very large, say order of magnitude 1, the set of points E = {inw : n E ~} is 
sufficiently dense in order for both maxima to be close to each other. (The reader may 
wish to have a second look at figure 4.2 in the previous section.) 

4.6.2 Time-periodic multigrid waveform relaxation 

In chapter 3 we discussed a multigrid acceleration of the initial value waveform relax­
ation method. A small modification of this algorithm has led us to a similar multigrid 
extension for the time-periodic case. This extension was first proposed in our paper 
[130J. Numerical examples of linear and nonlinear problems, a complexity analysis of 
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a parallel implementation and a theoretical discussion followed in subsequent papers, 
[135, 136, 139, 137]. The basic steps of the algorithm are again very similar to those of 
the "elliptic" multigrid method, yet all of the operations are defined w.r.t. T-periodic 
functions instead of w.r.t. scalar values. Below, we formulate the two-grid iteration of 
the time-periodic multigrid scheme for linear problems. The two-grid cycle starts from 
an approximation U(,,-1) to the solution u of (4.56), and calculates the next iterate u(v) 

in the following series of three steps: 

• Pre-smoothing. Set x(O) = U(,,-l) and perform V1 time-periodic relaxation steps 
defined by the splitting _Lh = ph _ Qh, 

d 
dt xC,,) + phx(v) = Qhx (,,-1) + fh, x(")(O) = x(v)(T), for v = 1, ... , V1 . (4.59) 

The splitting corresponds to e.g. lexicographic or red/black Gauss-Seidel. 

• Coarse-grid correction. Compute the defect, 

( 4.60) 

Solve the time-periodic coarse-grid problem on nH, 

(4.61 ) 

Correct the current approximation , 

( 4.62) 

• Post-smoothing. Perform V2 smoothing relaxations starting with x(O) = iijh, 

d 
dt xCv) + phx(") = Qhx("-l) + fh, x(")(O) = x(v)(T), for v = 1, ... , V2 , ( 4.63) 

and set u(v) = x(..,) afterwards. 

Since the coarse-grid problem (4.61) is of similar nature as the fine-grid problem, 
it may be solved analogously. Recursive application of the above idea, extended with 
a suitable direct method for solving the problem on the coarsest grid leads to the 
time-periodic multigrid algorithm. Nonlinear time-periodic problems are again tackled 
with a waveform extension of the full approximation scheme. The necessary changes 
to the multigrid algorithm for solving nonlinear initial value problems are trivial, and 
therefore not given here. Examples of its use are given in chapter 8. In the time­
periodic nested iteration or full multigrid method, the initial approximation u(O) is 
obtained by interpolation of the time-periodic approximation found on a coarser grid. 
The algorithm is similar to alg. 3.4. However, since there is no initial condition to 
be satisfied, the special correction in the coarse-grid to fine-grid interpolation may be 
skipped. 
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4.6.3 Analysis of the continuous-time iteration 

The continuous-time analysis is qualitatively very similar to the analysis in section 
3.4. Let e(II) denote the error of the v'th iterate, and let e~) be its n'th Fourier-series 
coefficient. When the equations of the two-grid cycle are "Fourier-transformed", one 
easily derives the following relation between the Fourier coefficients of e(II) and e(II-1) 

e~) = M(inw) e~-1) (4.64) 

{ 
M(z) = S .... (z) (I - I:l(zI - LH)-1If!(zI - Lh)) SII1(z) 

S(z) = (zI + p h)-1Qh 
(4.65) 

Note that the matrix M(z) is identical to the symbol of the convolution operator 
that arose in the discussion of the initial value multigrid waveform relaxation, formula 
(3.21). We formally write e(II) = Me(II-1). The nature of M is specified below. 

Theorem 4.6.1 Let M(z) be given by (4.65); let the splitting (Ph, Qh) and the matriz 
LH be non-critical and assume V1 + V2 ~ 1. Then, M is a linear T -periodic convolution 
operator, that is, 

- 1 rT 
Mx(t)=m*x(t):= Tlo m(t-s)x(s)ds, 

of which the matriz-valued kernel, m, is the periodic function (E L1(0, T)) whose 
Fourier series coefficients are given by, 

fun = M( inw) . (4.66) 

The proof is based on the convolution property, see page 97. Before we present the 
proof we prove a lemma on which the integrability of m is based. 

Lemma 4.6.2 Let R(z) be a rational function of which none of the poles belongs to the 
set {inw: n E ~,w = 27r/T,i = V=l}, and which vanishes at infinity. Itfollows that 
{R(inw)}:,,=_co are the Fourier coefficients of a T-periodic function which is bounded 
and continuous on (0, T). 

Proof. Since R(z) is rational and vanishing at infinity, it may be written by partial 
fraction expansion as a finite sum of rationals of the form, 

r(z) - 1/ 
- (z + ~)m 

where 1/ is a complex number, ~ is complex but different from inw for all integers 
n, and m is a positive integer. If m = 1 then {r(inw)}:,,=_co are the Fourier 
coefficients of the T-periodic function whose restriction to [O,T) equals, 

1/T(I- e-,.Tt1e-,.t, 

which is bounded and continuous on (O,T). (Note that e-,.T f:. 1.) If m > 1, then 
E::-co Ir(inw)I < 00. By a standard property, e.g. [17, Th. 15.10), it follows 
that {r(inw)}:,,=_co are the Fourier coefficients of a periodic function which is 
continuous on JR. By the linearity of the Fourier transform the conclusion follows. 

o 
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Building on the above lemma and on the uniqueness of the Fourier series transfor­
mation, we can now prove theorem 4.6.l. 

Proof. The inverse of a d x d-matrix zI - A is given by, 

(zI - Atl = det(z~ _ A)adj(zI - A) 

Since det( zI - A) is a polynomial of exact degree d in z and since the entries 
of adj (zI - A) are polynomials of degree at most d - 1, all of the entries of 
(zI - A)-l are rational functions vanishing at infinity. Moreover, their poles are 
eigenvalues of A. Applying this result to the matrices zI - LH and zI + ph and 
taking the assumptions of the theorem into account, we may conclude that each 
of the matrix entries of M( z) satisfies the conditions of the lemma. Consequently, 
{M(inw)}::,=_oo are the Fourier coefficients of a function (m) which is integrable 
on (O,T). Consequently we may apply the convolution property to m * x, and 
taking also the definition of M (4.64) into account, we get, 

Therefore M is identical to the convolution operator with kernel m. 0 

Note that the conditions of the theorem are easily satisfied when Lh and LH are 
derived by discretization of a real elliptic operator. The main theorem about the 
convergence of the two-grid operator M can now be stated. 

Theorem 4.6.3 Assume the conditions of theorem 4.6.1 are satisfied. Consider M 
as an operator in Lp(O, T), 1 :::; p :::; 00, or C[O, T]. Then, 

p(M) = maxp( M(inw)) with w = 27r/T, i = v'-l. (4.67) 
nEZ'l" 

Proof. Since M is a convolution operator with integrable kernel, it is compact by 
theorem 4.4.10. Its spectrum consists of eigenvalues and zero only. The spectrum 
may be derived explicitly, in a similar way as in the proof of theorem 4.4.13, 

a(M) = U a(M(inw)) U {O} , 
nEZ'l" 

(compare with formula (4.30)) which directly leads to (4.67). o 

Consequently, we may conclude that p(M) is bounded from below by the spectral 
radius of the elliptic multigrid operator. By comparing formula (4.67) to the corre­
sponding formula (3.23), we may in addition conclude that the spectral radius of the 
time-periodic operator is bounded from above by the spectral radius of the initial value 
operator. Note that this bound is independent of the value of the period T. A corollary 
of property 3.4.5 exemplifies the above relation. 

Property 4.6.4 The two-grid operator for the T -periodic one-dimensional heat equa­
tion, with red-black Gauss-Seidel smoothing, satisfies 

p(M) :::; ~JTJ(211 - 1) with ( 4.68) 

with II = III + 112 ~ 1. This is the best possible bound which is independent of hand T. 
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4.6.4 Analysis of the discrete-time iteration 

We discretize (4.59) to (4.63) with a linear multistep method with constant time­
increment T = TIN. This defines a discrete-time two-grid cycle very similar to the 
continuous-time two-grid cycle. It differs from the latter in that the operations are 
defined on N-periodic sequences instead of on T-periodic functions. Let the multistep 
method again be specified by its characteristic polynomials aCe), bee) and let a, b denote 
the corresponding linear combination operators defined in section 4.5.1. The successive 
steps of one two-grid cycle read as follows. They map ur-1) to ur). 
• Pre-smoothing. Set Z}O) = ur-l ) and perform 111 discrete-time relaxations, 

~azr) + bphzr) = bQhzr- l ) + bf!:, II = 1, ... , "1 . 

• Coarse-grid correction. 

• Calculate the defect: 

• Solve the coarse-grid problem: ~av~ = bLHv~ + [f!bd~ . 

• Correct the current approzimation: x~ = Z}"') - [:Iv: . 

• Post-smoothing. Perform 112 post-smoothing relaxations starting with Z}O) = x~ 
and set ur) = Z}"') afterwards. 

Let e~) denote the moth discrete Fourier series coefficient of the error to the II-th 
iterate. DFS-transforming the equations of the discrete-time two-grid cycle, we get, 

e(") = M(l!!(tm» e(,,-l) t - ei (2fr/N) m - 0 N - 1 m .,.b ~ m , '- - , - , ••• , , 

with M given by (4.65). The derivation of formula (4.69) requires that, 

~t(em) ¢ u( _ph) U u(LH) . 

(4.69) 

(4.70) 

That is, none of the poles of the_matrix elements of M~z) equals ~t(em). Formula 
(4.69) defines a linear operator M .. for which, er) = M .. er- l ). The nature of this 
operator and its spectral radius are characterized in the following two theorems. We 
skip their proofs, since they are almost identical to the proofs of the corresponding 
theorems 4.5.6 and 4.5.7. (Replace matrix K by M, and kernel k by m.) 

Theorem 4.6.5 Assume (4.70). Nt .. is an N -periodic discrete convolution operator, 

_ 1 N-l 

(M .. z .. )n = (m .. *z .. )n:= N L mn-iZi, 
i=O 

with an N-periodic, matriz-valued kernel m .. , defined by, 

N-l 

mn = L M(H(em » einm(2fr/N) with e = ei(2fr/N) . 

m=O 
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Theorem 4.6.6 Assume (4.70). Then, 

p(M ... ) = max p( M(~:<em))) with e = ei (2,,/N} • 
m=O .. o.,N-l 

(4.71) 

The spectral radius of M ... is bounded by the spectral radius of the corresponding 
discrete-time infinite-interval two-grid operator for solving initial boundary value prob­
lems. This immediately allows us to transpose some of the results obtained by Lubich 
and Ostermann in [78J to the time-periodic case. We formulate the theorem corre­
sponding to theorem 3.4.10. 

Theorem 4.6.7 If the linear multistep method is A(a)-stable then 

p(M ... ) ~ max p(M(z)) with E,,-a = {z : largzl ~ 7r - a} U {O} . 
zEBE"_Q 

(4.72) 

This bound holds without restriction on h, T and T. 

4.6.5 Numerical example 

In order to illustrate the algorithms described in this chapter and to verify some of the 
results we shall calculate the solution of a parabolic partial differential equation with 
a time-periodic right-hand side. Other examples of time-periodic problems are treated 
in chapter 8. Consider the following problem on n = [0, 1 J X [0, 1 J for t E [0, 1 J , 

au a2u a2u 
at = ax2 + ay2 + f, with u(O, x, y) = u(l, x, y), (4.73) 

with homogeneous Dirichlet boundary conditions, and with f equal to the "sawtooth"­
function. The latter is defined as the periodic function of which the restriction to [0, T) 
satisfies fl[O,T}(t,x,y) = t. Here, the period T is equal to 1. The problem is discretized 
on a spatial mesh with mesh-size h equal to 1/4, 1/8, 1/16, 1/32 and 1/64. The result­
ing systems of ordinary differential equations are solved with time-periodic Jacobi and 
red-black Gauss-Seidel waveform relaxation, and also with the time-periodic multigrid 
waveform relaxation method. In the latter method we applied V-cycles with red-black 
Gauss-Seidel pre-smoothing and post-smoothing steps, standard coarsening down to a 
grid with only one grid point, full weighting restriction and bilinear interpolation. The 
trapezoidal rule was used for time-discretization, with a constant time-step T = 1/100. 
A constant zero profile was chosen as the starting iterate. 

In table 4.2 we report the observed averaged convergence factors. The ones for the 
Gauss-Seidel and Jacobi methods closely correspond to the factors that can be obtained 
by evaluation of the theoretically derived formula (4.57). The multigrid convergence 
factors are clearly bounded by a constant less than one, independent of h. 

Figure 4.3 pictures the evolution of the 12-norm of the discrete residual for successive 
iterates of the multigrid algorithm, with different numbers of smoothing iterations. 
Note the constant slope of the lines. Finally, in figure 4.4 we have plotted several 
iterates, U(k)(t, x, y), evaluated at (x, y) = (1/2,1/2), for t E [0,1 J and h = 1/16. With 
the Gauss-Seidel method about 120 iterates are to be calculated, before they can no 
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Table 4.2: Averaged convergence factors for time-periodic waveform relaxation (with 
theoretical values for Jacobi and Gauss-Seidel methods). 

h II 1/4 I 1/8 11/16 I 1/32 11/64 I 
Jacobi 0.640 0.916 0.979 0.995 0.999 

1 - 7f2h2/2 0.692 0.923 0.981 0.995 0.999 

Gauss-Seidel 0.498 0.853 0.962 0.990 0.997 

1 - 7f 2h2 0.383 0.846 0.961 0.990 0.998 

V(l,l) II 0.063 I 0.105 I 0.116 I 0.119 I 0.120 I 

longer be distinguished from one another in the figure. One iteration of the multigrid 
method suffices. In the case of the full multigrid procedure - which is not shown in 
the picture - the plot of the initial approximation on the fine grid coincides with the 
plots of the subsequent iterates. 

4.7 Autonomous time-periodic problems 

4.7.1 Introduction 

In this final section, we are interested in calculating periodic solutions to. systems of 
autonomous parabolic partial differential equations of the form, 

au 
at = £(u), (t,x) E JR x n, 

extended with suitable boundary conditions. The above system is called autonomous 
when the elliptic operator £(.) and the boundary conditions are not explicitly time­
dependent. Since there is no external "forcing" -function from which information about 
the period of the solution can be obtained, that period is generally an additional un­
known. Any non-constant solution of an autonomous problem generates an infinite 
number of "neigbouring" solutions. Indeed, when u( t, x) is a solution so is any func­
tion of the form u(t + "1,x), "1 E JR. To generate a particular unique solution, a 
supplementary so-called phase-condition is to be added to the system of equations. 

Below, we present a solution technique which is based on a modification of the 
shooting method suggested by D. Roose. The algorithm, combined with the wave­
form relaxation method, was published in [106]. The performance of the algorithm is 
superior to that of most other approaches suggested in the literature, e.g. dynamic 
simulation, global discretization and (standard) shooting. Moreover, the basic idea is 
appealingly simple, and opens up promising directions for future research. We shall 
present the method in its current status of development. That is, there is little theo­
retical foundation, and experience is limited to a few examples. 
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Figure 4.4: Waveform iterates u(k)(t, 1/2, 1/2), t E [0,11 (one period), with h = 1/16. 
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4.7.2 Shooting with coarse grid Jacobian approximation 

Semi-discretization and elimination of the boundary conditions lead to a large non­
linear autonomous system of n ordinary differential equations, 

(4.74) 

where uh denotes the vector of unknown functions located at the grid points. Let 
T denote the (unknown) period of the (unknown) periodic solution uh . By using 
the transformation s = Tt, and after adding a phase-condition, equation (4.74) is 
reformulated into the "standard" two-point boundary value form, 

{ 
duh/ds = TLh(uh) 

dT/ds = 0 
{ 

uh(1) - uh(O) = 0 
with boundary conditions h 

P(u ,T) = 0 
(4.75) 

The latter boundary condition represents the phase-condition and is, e.g., of the form 
P( uh, T) := uf(O) - c = 0 for some 1 $ i $ n and for a suitably chosen constant 
c. We refer to [98, 117] for a description of other phase-conditions, in particular for 
conditions that are appropriate in the context of a continuation procedure. 

Let cP(uh(O),T) denote the solution at s = 1 of the differential equation in (4.75) 
with (uh(O), T) as the initial condition at s = O. The shooting algorithm, written out 
in alg. 4.3, is based on the use of a Newton or Newton-like iteration for solving the 
so-called residual equation, 

Algorithm 4.3: The shooting method. 

choose starting values u(O)(O), T(O); v := 0 . 

repeat 
compute the residual r(u(")(O), T("») . 

solve j ( ~~) = -r. 

u("H)(O) := u(")(O) + >'!1uh (>.: damping factor) . 
T("H) := T(") + >'!1T . 

v:= v + 1. 
until convergence 

(4.76) 

The computation of the residual in each iteration step requires a time-integration 
of the differential equation from s = 0 to s = 1, with initial condition uh(O) = u(")(O) 
and with T = T("). The matrix j E lR(n+l)x(n+l) represents (an approximation of) the 
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Jacobian matrix of first-order partial derivatives of r. Theoretically, this matrix can be 
computed by integration of certain variational equations, see e.g. [57, 98]. However, it 
is often more economical to approximate the matrix by finite differencing. Denote the 
k-th column of the Jacobian by J.,,, with 

ar ar 
lie = au~ (k = 1, ... , n) and J. n+1 = aT . 

By finite differencing these columns are numerically approximated, for k = 1, ... , n, 

1 
J.1e ~ ;s:( r( '1.£"(0) + Dele, T) - r( '1.£"(0), T) ) . ( 4.77) 

ele is the vector with 1 as its k-th element and zero elements elsewhere. D is a small real 
scalar. A similarformula holds for In+l. The first n components of the (n+l)-element 
vector J. 1e are given by, 

~( 4>('1.£"(0) + Dele, T) - 4>('1.£"(0), T) - Dele) . (4.78) 

The calculation of the first n entries of each column of j corresponds to one time­
integration of (4.74). To avoid the cost of frequent matrix set-up, and to reduce the 
computational cost of the linear system solver in alg. 4.3, j is often kept fixed during 
a number of shooting iterations. This leads to a chord-Newton iteration. 

It should be clear that the standard shooting approach can be prohibitively expen­
sive, especially when fine meshes are used for semi-discretization and when the PDE is 
two- or three-dimensional. To reduce the cost of Jacobian set-up a coarse grid Jacobian 
approzimation was proposed in [106]. We briefly explain the basic idea. 

For notational convenience, we assume a one-dimensional parabolic problem on the 
unit interval, discretized in space with mesh size h = 1/2P , i.e., n = 2P - 1. Equation 
(4.78) indicates that the first n components of J. Ie (k = 1, ... ,n) can be considered 
to be approximately proportional to the perturbation of the state of the system after 
integration over time T, caused by a perturbation of the initial condition located in 
gridpoint Xle. In particular Ji,1e gives the resulting perturbation in gridpoint Xi. If 
the mesh size is sufficiently small, a perturbation of the initial condition in point Xle 
will have nearly the same effect in gridpoint Xi, as the effect in gridpoints Xi+1 and 
Xi-I caused by a perturbation of the initial condition in grid points XIe+1 and XIe-1 

respectively. In other words, the values of Ji,le, Ji-I,Ie-1 and Ji+1,Ie+1 are closely related. 
A coarse grid approximation of the Jacobian matrix can now be obtained by com­

puting J.1e for k odd using (4.78) and by approximating J.1e for k even by using a shifted 
interpolation between J. Ie-I and lle+1. With linear interpolation this leads to, 

Ji,1e = ~ (Ji-I,Ie-1 + Ji+I,lc+d (i = 2, ... , n - 1) j JI,1e = J2,1e+1 j In,1e = In-I,Ie-1 

Column J. n +1 must be computed by numerical differentiation. One can even further 
reduce the number of time-integrations required, by computing the columns that are 
associated with an even coarser grid, e.g. having 2P- 1 -1 equidistant points (in that 
case, however, extrapolation is required for some grid points near the PDE domain 
boundary, see [106]). 
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This technique can be generalized immediately to partial differential equations de­
fined on a two-dimensional domain. In that case the columns associated with gridpoint 
XIc,I can be computed by a shifted bilinear interpolation of the columns associated with 
the neighbouring gridpoints, i.e. XIc-l,1 , XIc+1,1 , XIc,I-l and XIc,I+1' 

4.7.3 The use of waveform relaxation within shooting 

The time-integrations in the shooting procedure may be performed by using waveform 
relaxation, and in this particular case by using the multigrid algorithm. Besides the 
advantages of high parallel efficiency and efficient vectorization, which will be discussed 
in chapter 7, another advantage can be brought about. 

Within a shooting approach a sequence of time-integrations is performed for the 
same differential equations with slightly perturbed initial conditions. In this case, the 
multigrid waveform relaxation algorithm can be started with the solution profile over 
the whole time interval, obtained in a previous step. This will significantly reduce the 
number of iterations needed to achieve a converged solution. This effect is illustrated in 
the example below. Note that classical time-stepping methods do not allow to exploit 
the availability of a good approximation of the solution over the whole time interval. 

4.7.4 A numerical example: the Brusselator 

We consider the Brusselator model, a model that has attracted considerable interest 
in the study of bifurcation phenomena. The two-dimensional Brusselator is described 
by a system of nonlinear partial differential equations defined over the unit square 
n = [0, 1] x [0, 1] : 

(4.79) 

The functions X(t,r,s) and Y(t,r,s) denote chemical concentrations. The homoge­
neous concentrations A and B and the diffusion coefficients D x and Dy are considered 
to be fixed control parameters; L denotes the reactor length and is often used as a 
bifurcation parameter. For the control parameters we use the following values: Dx 
= 0.004, D y = 0.008, A = 2.0 and B = 5.45, and we consider constant Dirichlet 
boundary conditions X = A, Y = B / A. It can be verified that for all values of L, 
a homogeneous steady state solution exists, equal to the boundary conditions. It is 
shown in [48] that a supercritical Hopf bifurcation occurs at L ~ 0.72; furthermore, 
stable periodic spatially symmetric solutions exist for L > 0.72, with T ~ 3.7 close to 
the Hopf point. 

The modified shooting technique was used to calculate the periodic solution of the 
Brusselator model for the values of L = 0.9 and L = 1.1. We used a second order 
finite difference discretization on an equidistant mesh, with mesh sizes h = 1/8, 1/16, 
resulting in a system of ODEs of dimension 98 and 450 respectively. For both grid­
sizes the coarse grid Jacobian approximation was obtained by computing the columns 
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Table 4.3: Computation of periodic solutions by shooting (two-dimensional Brussela­
tor with L = 1.1): convergence history of the damped Chord-Newton iteration with 
required number of waveform V(1,1)-cycles. 

h = 1/8 (7 x 7 grid points ) h = 1/16 (15 x 15 gridpoints ) 
iter. II resid. II lI.6.uh II number iter. II resid. II lI.6.uh II number 
step of cycles step of cycles 

0 0.26 E-1 5 0 0.51 E-1 I 9 

coarse grid approx of J 3t coarse grid approx of J 3t 
1 0.15 E-01 0.42 E-01 5 1 0.30 E-01 0.12 E 00 8 

2 0.11 E-01 0.31 E-01 5 2t 0.37 E-01 0.80 E-01 8 

3 0.78 E-02 0.20 E-01 5 2 0.74 E-02 0.40 E-01 8 

4 0.53 E-02 0.14 E-01 5 3 0.72 E-02 0.15 E-01 8 

5 0.34 E-02 0.91 E-02 4 4t 0.92 E-02 0.17 E-01 7 

'" ... 4 0.13 E-02 0.85 E-02 7 

10 0.24 E-03 0.69 E-03 4 5t 0.17 E-02 0.31 E-02 6 

11 0.12 E-03 0.37 E-03 3 5 0.30 E-03 0.15 E-02 6 

12 0.62 E-04 0.19 E-03 3 6t 0.38 E-03 0.70 E-03 6 

13 0.29 E-04 0.94 E-04 3 6 0.67 E-04 0.35 E-03 6 

t: average number of cycles for the 19 time-integrations needed to compute i 
t: increase of II residual II: result rejected; damping factor decreased. 

corresponding to a 3 x 3-grid by numerical differencing. The remaining columns were 
computed by interpolation ( and extrapolation near the PDE domain boundary). A 
total of 19 time-integrations were needed to calculate i, which was kept fixed during 
the chord-Newton iteration. 

The convergence history for the L = 1.1 problem is shown in table 4.3. As an 
initial approximation we used the solution to the L = 0.9 problem. As the shooting 
iteration proceeds, better starting profiles for the waveform relaxation process become 
available. This leads to a reduction in the number of multigrid cycles needed to achieve 
the requested accuracy for the time-integration (algebraic error equal to 10-7 ). For the 
time-integrations needed to compute i, by using formula (4.78) with Ii = 10-4, very 
good starting values are always available; hence only very few cycles are required. 

The convergence history for the L = 0.9 problem is similar and therefore omitted. 
Its solution is shown in figure 4.5 as a series of plots of X( t, T, s), evaluated at an 
equidistant set of points along the time-axis. 
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Figure 4.5: Periodic solution of the two-dimensional Brusselator with L=0.9 and 
h=1/32, represented by X( ti, T, s) (i = 0, ... ,23) (b.ti ~ 0.16, period T ~ 3.9). 
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Chapter 5 

A Short Introduction to Parallel 
Computers and Parallel 
Computing 

A major concern which is frequently voiced in connection with computing machines, 
particularly in view of the extremely high speed which may now be hoped for, 

is that they will do themselves out of business rapidly; that is, that they will 
out-run the planning and coding which they require and, therefore, run out of work. 

-John von Neumann, "The future of high speed computing", 
address presented at the IBM Seminar on Scientific Computing, November 1949. 

This chapter provides a short elementary introduction to parallel computers and 
parallel computing, and is a prerequisite for a good understanding of the following 
chapters. We present some architectural multiprocessor characteristics with the em­
phasis on distributed memory multicomputers. We discuss the hypercube topology 
in particular, and we illustrate its connectivity by recalling a number of well-known 
properties. A particular multicomputer with hypercube topology, the Intel iPSC/2, 
which will be used for the experiments in later chapters, is discussed in some more 
detail. Finally, a number of important performance parameters, such as speedup and 
parallel efficiency, are defined. 

5.1 Introduction 

It is becoming increasingly difficult for the developers of traditional mono-processor 
supercomputers to meet the computational requirements of complex present-day sci­
entific and engineering problems. One reason is the very high cost involved in the 
development of faster computing elements. Another reason has to do with physical 
barriers such as the finite speed of light, which necessitates further miniaturization in 
order to decrease signal travel times, and engineering limitations w.r.t. interconnec­
tion contacts and chip surface cooling, which inhibit such miniaturization. As a result, 

lucianoaraki@yahoo.com.br



124 CHAPTER 5. AN INTRODUCTION TO PARALLEL COMPUTING 

during the last decade a lot of effort has been put into the development of systems 
consisting of a number of cooperating processors. Some of these designs use a small 
number of very powerful (vector)-processors. Others interconnect a large number of 
off-the-shelf microprocessors, or custom-designed processors with mini-computer per­
formance. Still others provide a massive number of very simple (often 1 bit) processing 
elements. 

The programming of such parallel machines differs significantly from that of mono­
processor or sequential computer systems. Various new programming issues have 
arisen. They involve techniques for distributing complex tasks onto several proces­
sors in such a way that load-balance is maintained. They deal with methods to share 
and pass information between processors, e.g., by mutual exclusion, synchronization 
and message passing constructs. New parallel languages and language extensions have 
been proposed. These issues, together with a description of past and present accom­
plishments in the field of parallel computing are discussed at length in several books, 
e.g., by Hockney and Jesshope [56], by Fox et al. [31], and by Quinn [101]. 

In this chapter we would like to present a brief overview of some topics that are 
important for a good understanding of the remainder of the text. Our discussion 
deals with one parallel computer in particular, the Intel iPSC/2 hypercube, which is 
the machine used in our experiments. A classification of parallel computers is given 
in section 5.2. This will allow the reader to situate the above machine in the wide 
range of possible hardware designs. Section 5.3 discusses the hypercube interconnection 
topology. Some hardware and software characteristics of the Intel iPSC/2 are reported 
in section 5.4. This section is necessary to appreciate the timing results given in later 
chapters. Basic parallel performance parameters, such as speedup and efficiency are 
defined in the final section, section 5.5. 

5.2 Classification of parallel computers 

The multiprocessor used in our study is a general purpose, large grain-size, distributed 
memory, MIMD multiprocessor with hypercube interconnection topology. We shall 
briefly elaborate on this definition and clarify each of its constituent components . 

• Classification of Flynn. In 1966 Flynn proposed a computer classification scheme 
based on instruction streams and data streams, that is, based on the way the processors 
operate and handle the data, [30]. He discerns the following four classes. 

SISD (single instruction stream - single data stream). This is a conventional 
computer, in which a single data stream is processed by a single instruction 
stream. That is, there is a single instruction unit which sequentially processes 
the data. This type of computer is also called a serial von Neumann computer. 

SIMD (single instruction stream - multiple data stream). Here, a single in­
struction stream processes many data streams. Typical realizations are the array 
computers, in which a multitude of small processors execute an identical sequence 
of operations in lock-step mode. Other examples are pipelined vector processors. 
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MISD (multiple instruction stream - single data stream). We quote from [56, 
p.28j: "This class seems to be void, because it implies that several instructions 
are operating on a data item simultaneously". Some authors include pipeline 
computers in this class, though it is doubtful whether this is appropriate. 

MIMD (multiple instruction stream - multiple data stream). Here, different 
processors work on different data streams. This class includes all multiprocessor 
systems in which each processor executes its own program on its own data. 

Flynn's classification does not fully satisfy the needs of computer architects because 
it is not fine enough and because the interpretation of the class MISD is not clear. 
A further difficulty occurs if a computer contains both parallelism and pipelining. A 
processor of a present-day MIMD machine is often an SIMD vector processor itself . 

• Distributed memory and shared memory machines. In shared memory ar­
chitectures processors are connected via a bus or via an interconnection network to 
a global common memory. They communicate by accessing the shared data in the 
common address space. A fundamental limitation of these configurations is that they 
are not scalable to a very high number of processors. This is due to the limited system 
bus or network capacity and the occurrence of memory access contention and collisions. 
Typical examples of this class consist of, say, 2 to 20 processors (e.g., Sequent, Alliant). 

In distributed memory multiprocessors each processor possesses a local memory, 
and data is exchanged by passing messages over an interconnection network. This type 
of architecture does not suffer as much from the scalability problem. When the num­
ber of processors increases so will the number of communication links and the total 
communication bandwidth. MIMD distributed memory machines have been built with 
more than a thousand processors (e.g., Ncube/2). Commercial SIMD distributed mem­
ory machines typically have even larger numbers of processors (e.g., the Connection 
Machine, with 65536 processors). 

• Small and large grain-size machines. Grain-size is sometimes considered a 
property of a parallel algorithm, e.g., [101, p.61j. It is then defined as the relative 
amount of work done between synchronizations or communications. Fine grain-size 
programs are programs in which very few instructions are executed inbetween two suc­
cessive synchronization or communication steps. They are opposed to coarse grain-size 
programs in which substantial program sections are executed before any such interpro­
cessor activity becomes necessary. 

Others define grain-size as a property of a parallel machine, e.g., [31, p.22ji more 
precisely, it is then related to the amount of local memory. Small grain-size processors 
are processors with very little memory, say a few Kbyte. They are mostly of SIMD 
type. Large grain-size processors typically have half a Mbyte or more local memory. 
Note that fine grain-size programs are usually executed on small grain-size processors, 
which provide the necessary hardware and software for very fast synchronization and 
communication. Coarse grain-size programs often require the memory provided only 
on large grain-size computers. The performance of the communication system is then 
often of lesser importance. 
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• General-purpose versus special-purpose machines. These characterizations 
are self-explanatory. Most modern multiprocessors are general-purpose machines. Some 
however have been built with one particular application in mind, e.g. the GF-ll, an 
IBM product designed for solving quantum field theory problems at Gflop speeds (1 
Gflop = 109 floating point operations per second). An important class of special pur­
pose parallel computers are the so-called systolic arrays. They are SIMD, small grain­
size, parallel machines characterized by a fixed topology and by processing elements 
that are specialized towards one particular application, such as matrix multiplication 
or image deconvolution. 

• Interconnection topologies. With a growing number of processors in a dis­
tributed memory machine it is getting more and more difficult to connect every proces­
sor to every other processor. When the full interconnect or crossbar is no longer feasible, 
one has to resort to restricted interconnection topologies with a smaller number of links. 
Popular topologies, because of the simplicity of the hardware implementation, are the 
linear array and the ring, the multi-dimensional array, the tree, and the hypercube. 

5.3 The hypercube topology 

In the current section we briefly characterize the hypercube topology. We recall its 
definition and mention without proof some of the basic properties. More detailed 
discussions can be found in a technical report by Saad and Schultz [108], and in papers 
by Johnsson [62], Chamberlain [16], and Chan and Schreiber [20]. 

5.3.1 Definition and properties 

Definition 5.3.1 An n-dimensional cube (hypercube, or boolean cube) is a graph of2n 

nodes labeled from 0 to 2n - 1 in such a way that there is an edge between any two 
nodes if and only if the binary representation of their labels differs in precisely one bit. 

This definition is illustrated in figure 5.1 where we show hypercubes of dimension 
zero up to four. We have numbered each node by its label. We shall often refer to 
that label as the node number, or the physical node number, when talking about the 
hypercube as the topology of a multiprocessor rather than as the topology of a graph. 
An equivalent definition is given below. It is constructive and defines the topology in 
a recursive manner. 

Definition 5.3.2 A zero-dimensional hypercube is just one node. A k-dimensional 
hypercube, with k greater than or equal to one, consists of two (k-l)-dimensional hy­
percubes with links between the corresponding processors in each half. 

The hypercube topology differs from many other topologies in that the distance 
between any two nodes is very small compared to the total number of nodes in the 
network. Equally important is that this is realized with a small number of connections 
per node. Both characteristics are particularized by the following two properties. 
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Figure 5.1: The zero-dimensional to four-dimensional hypercube topology 
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Property 5.3.1 The degree of an n-dimensional hypercube equals nj each node is di­
rectly connected to precisely n other nodes. 

Property 5.3.2 The diameter of an n-dimensional hypercube is nj to reach a node 
from any other node one needs to cross at most n internode connections. 

We shall denote the binary representation of the label of a node by the following 
bit sequence "(an-lan-2'" alaoh", where each ai is either zero or one. For notational 
convenience we shall usually omit the "( . )2" when labelling nodes in a figure. With 
definition 5.3.1, it is straightforward to identify the neighbouring nodes, i.e., the nodes 
connected by an edge to a given node. 

Property 5.3.3 The n neighbours of the node with label (an -lan -2 ... alaoh are nodes 
(an-I'" ai ... aoh, for all i E {O, 1,···, n -I}, where ai denotes the complement of ai. 

Example 5.3.1 The neighbours of node (0110h in a 4-cube are the nodes (OI11h, 
(OIOOh, (OOIOh and (1110h. This is easily verified by looking at figure 5.1. 

The following property discusses the distance between two given nodes, i.e., the 
minimum number of edges in a path connecting them. 

Property 5.3.4 The minimum distance between two nodes in an n-cube is given by 
the number of different bits in the binary representation of their labels. 
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Example 5.3.2 The distance between (0010h and (1001h equals 3. Paths of minimal 
length between both nodes can easily be derived by successively complementing the 
bits where the binary sequences differ. One such path is given below, 

(0010)2 ---+ (OOllh ---+ (0001)2 ---+ (1001)2 . 

Finally, it will sometimes be important to be able to identify certain collections of 
nodes, the so-called subcubes, which inherit the hypercube properties. 

Property 5.3.5 Let E be the symbol set {O, 1, *}, where * is a "don't care" symbol. 
Then, every subcube of a hypercube can be represented by a string of symbols in E. 
Such a string is called the address of the corresponding subcube. 

Example 5.3.3 Two three-dimensional subcubes which make up the four-dimensional 
cube of figure 5.1 have the addresses "0 * **" (outer cube) and "1 * **" (inner cube). 
The right-hand side plane of the outer cube consists of the nodes of subcube "0 * *1". 

5.3.2 Binary reflected Gray codes 

The use of so-called binary reflected Gray codes will be of importance when optimizing 
the processor allocation in various parallel applications. The definition is stated below. 

Definition 5.3.3 The k-bit binary reflected Gray code (BRG-code) denoted by Gk is re­
cursively defined: G1 = {O, I}; from the i-bit code Gi = {gO,gl,g2," .g2'-I}, the (i+l)­
bit code is generated as follows: Gi+1 = {Ogo, Ogl, Og2, ... , Og2'-I, 192'-I, Ig2'-2, ... , Igo}. 

Example 5.3.4 

G2 = {00,01,11,10} 
G3 = {000,001,011,010,110,111,101,100} 

The following two well-known properties are required for further reference. A proof 
of property 5.3.7 in given in [62, p. 138]. 

Property 5.3.6 The binary reflected Gray code is periodic, that is, the first and the 
last element in the code differ by precisely one bit. 

Property 5.3.7 If {go, gl, g2, ... g2Ll} is the k-bit binary reflected Gray code, then gj 
and g(i+2')mod2' differ in ezactly 2 bits for i ::::: 1. 

5.3.3 Topology embedding onto the hypercube 

One of the main reasons for the interest in hypercubes is that many classical topologies 
can be efficiently embedded onto it. This is important since certain classes of algo­
rithms fit particularly well on certain classes of topologies. For instance, algorithms 
based on the divide and conquer strategy fit well on the binary tree interconnection 
network. Matrix algorithms and various algorithms arising from problems in compu­
tational physics map naturally onto one-, two-, or three-dimensional arrays. When 
implementing these algorithms it is important that an embedding of their natural 
topology onto the hypercube is known. 
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• Embedding of a linear array. The embedding problem consists of finding a 
one-to-one mapping of linear-array-nodes onto hypercube-nodes in such a way that 
neighbouring relations are respected. More precisely, neighbouring nodes of the array 
should be mapped onto neighbouring nodes of the hypercube. The binary embedding 
strategy which maps array node i onto the hypercube node whose label is the binary 
representation of i, clearly does not respect the neighbouring relation. For instance, 
node one is then not directly connected to node two. They are at a distance two 
apart, since their hypercube labels differ in two bits. A strategy which does satisfy our 
requirement is the so-called binary reflected Gray code embedding, 

array node: i --+ hypercube node: gi . (5.1) 

Node i is then mapped onto the hypercube node whose label equals gi, the i'th element 
in a BRG code. The embedding of an 8-element array onto a 3-cube is illustrated in 
figure 5.2. Note that by the BRG periodicity property 5.3.6 the neighbouring relation 
is also satisfied between the first and last array element (indicated by the presence of 
the dashed line in the figure). 

• Embedding of a multi-dimensional array. A two-dimensional array with 21: 
rows and 2' columns can be embedded in a (k+I)-dimensional hypercube by assigning 
k bits to the row index and I bits to the column index. An example is given by the 
following rule, 

array node: (i,j) --+ hypercube node: gi II g; . (5.2) 

The node with logical coordinates (i,j) is mapped onto the hypercube node whose 
node number equals the concatenation ("II") of 9" the i-th number in a k-bit BRG 
code, and 9;, the j-th number in an I-bit BRG code. This is illustrated for a 2 x 4 
array in figure 5.2. 

Application of property 5.3.5 shows that any row or column of the array is mapped 
onto a subcube of the hypercube. Their addresses contain I "don't cares" (rows) or k 
"don't cares" (columns). In addition, the periodicity property establishes the existence 
of end-around connections for any row or column. Finally, the principle explained for 
embedding of a two dimensional array can be straightforwardly generalized to multi­
dimensional arrays. 

• Embedding of trees. The embedding of an unbalanced 3-ary tree rooted at node 
o is illustrated in figure 5.2. This tree topology is particularly useful. On a multipro­
cessor with hypercube topology it specifies the necessary interconnections to gather 
information from all of the nodes onto one node by the so-called subcube induction 
principle. In the above example the information flow would be as follows, 

* * 1 --+ * * 0; *10 --+ *00; 100 --+ 000 . 

The general embedding rule for such trees is, for instance, described in [82, p. s242]. 
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Figure 5.2: Topology embedding onto a three-dimensional hypercube 

5.4 The Intel iPSe /2 hypercube multiprocessor 

A hypercube multiprocessor is a parallel computing engine in which the processing 
elements are thought to lie on the nodes of an n-dimensional cube with physical inter­
connections spanning along the edges. The hypercube is the interconnection topology 
favoured by many hardware manufactures. This is because it balances node connec­
tivity, communication diameter, algorithm embeddability, and programming ease. The 
first such machine to be built was the Cosmic Cube, developed in 1983 by G. Fox and 
C. Seitz at Caltech [116]. A few years later, machines with hypercube topology be­
came commercially available from Intel, N cube, Ametek, Floating Point Systems and 
Thinking Machines. The machine used in our experiments is the second generation 
·machine from Intel, the Intel iPSC/2. 

5.4.1 System overview 

The basic node of the Intel iPSC /2 consists of an Intel 80386 processor extended with 
a 80387 co-processor. In addition, each node contains up to 16 Mbyte of memory, a 
64 Kbyte cache and a separate communication processor, called the Direct Oonnect 
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Module or DCM. The DCM supervises eight full duplex communication channels with 
performance of 2.8 Mbyte per second and per channel. Message routing and the set-up 
of communication paths between nodes is largely done by hardware. 

The nodes run a small operating system, the Node eXecutive/2 or NX/2, which 
provides for process management and message passing. A total of 20 processes can 
be handled on each processor. Communication between processes on the iPSC/2 is 
asynchronous. There is no rendez-vous between processes at the moment of message 
passing. When the destination process is not yet expecting a message at the time of 
its arrival, the message data is temporarily buffered by the operating system. The 
communication primitives exist in a blocking and non-blocking version. In the blocking 
mode, the sending or receiving process is halted until the message has been sent or 
received. In the non-blocking mode the process is allowed to proceed with further 
computations while the DCM handles the message request. 

The cube is controlled by a so-called intermediate host computer, the System Re­
source Manager or SRM. This is a small computer which operates standard software 
development tools, e.g., compiler, loader, debugger, etc. In addition, it provides for 
node monitoring and diagnostics, host to node communication, and it controls cube 
sharing, i.e., it allows different users to operate different sub cubes simultaneously. 

The cube is often programmed by providing two programs. A host program runs on 
the SRM or on another computer connected via a network to the SRM. This program 
takes care of I/O operations such as input from the keyboard and output to disks or 
graphics devices. A node program runs on each of the nodes, and performs the actual 
computations. Often the node programs are identical. Each node runs the same code. 
However, at any time nodes may be executing different sections of the code, according 
to their node numbers and their local data. 

5.4.2 Some computation benchmarks 

An extensive benchmark of various communication and computation parameters is 
found in the paper of Bomans and Roose [8J. We recollect some of their results . 

• Some double precision floating point operation times are presented in table 5.l. 
They were obtained with the use of the Greenhills C Compiler. Note that for se­
quences of floating-point operations the arithmetic unit can retain intermediate results 
in registers, and that a certain amount of pipelining is exploited in the mathematical 
co-processor. For these operations a much higher flop rate is attained than in the case 
of single operations (e.g. 211 Kflops for the sum of three products, compared to 151 
Kflops for a single addition and 117 Kflops for a single multiplication). The timing 
results for the copy operations include indexing and loop overhead, i.e., the cost of 
incrementing a counter for each pass through the loop in which the copy operation is 
executed . 

• The cost of sending a message between neighbouring processors as a function of 
the message length is often modeled as follows, 

t( n) = t.tartup + nt.end , (5.3) 

where n is the number of bytes transferred. On the iPSC/2, different values for t.tartup 

and t.end are found for short and long messages, see table 5.2. Note that t.tartup is 

lucianoaraki@yahoo.com.br



132 CHAPTER 5. AN INTRODUCTION TO PARALLEL COMPUTING 

Table 5.1: Computation parameters for the Intel iPSC/2 

+ x x+x+x ali] = b[iJ, a[i][j] = b[i]Ul 

6.64 J-LS 8.52 J-LS 23.65 J-LS 3.5 J-LS 5.4 J-LS 

Table 5.2: Communication parameters for the Intel iPSC/2 

t otartup( J-LS ) t.end(J-Ls) 

short messages (:::; 100 bytes) 350 0.2 

long messages (> 100 bytes) 660 0.36 

rather large. It is therefore extremely important to structure the parallel algorithms 
in such a way that as few communication steps as possible are used . 

• Messages to non-neighbouring nodes (so-called multi-hop messages) do not inter­
fere with the computation going on in the intermediate nodes along the communication 
path. Communication with a far away node is therefore almost as fast as communi­
cation with a neighbouring node, provided there is a free communication path to that 
node. This is e.g. illustrated in [8, fig.4]. The same reference illustrates the potential 
for communication with calculation overlap when the non-blocking primitives are ap­
plied. When the message length is sufficiently large a substantial fraction of the cost 
associated with the nt.end term in (5.3) can be overlapped, see [8, fig.8]. Finally, we 
want to point at the full duplex nature of the channels, i.e., communication can occur 
simultaneously in both channel directions. This is advantageous when information is 
to be exchanged by two neighbouring processes. It is shown in [8, table 9] that the cost 
of an exchange, i.e., two simultaneous send/receive pairs, is only about 60% of that 
of two consecutive send/receive pairs. Note however that this is valid only when both 
processors start their exchange operations at about the same time. Otherwise, due 
to some architectural details, the overlap will be limited to part of t.tartup, [15, 115], 
unless special software precautions are taken (e.g. use of the so-called "force-types"). 

5.5 Parallel performance parameters 

Speedup and efficiency are two measures of the quality of an algorithm implemented 
on a parallel computer. The speedup achieved by a parallel algorithm running on p 
processors is often defined as the ratio of the time taken by that parallel computer 
executing the fastest known sequential algorithm and the time taken by the same 
parallel computer executing the parallel algorithm on p processors. The efficiency is 
equal to the speedup divided by p. With n denoting the problem size, this reads like, 

S( ) = Tbe.t(n) 
n,p T(n,p) and E(n,p) = S(n,p) = Tbeot(n) . 

p pT(n,p) 
(5.4) 

Practical considerations limit the usefulness of these definitions. First of all, it is 
often very difficult to determine what algorithm is the best sequential one; this may 
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depend on the problem size n, on the particular hardware used, on implementation 
issues, etc. Moreover, the notion of "best" algorithm may change in time, as better 
algorithms become available. Also, a good implementation of that algorithm is not 
always available. All this has led to an alternative and more practical definition of 
speedup. It is called the relative speedup, the multiprocessor speedup, or parallel speedup 
opposed to (5.4) which defines the absolute speedup. 

S( ) = T(n, 1) d E( ) = S(n,p) = T(n, 1) 
n, p T( ) an n, p T( ). n,p p p n,p 

(5.5) 

Here, T(n,l) is the execution time of the parallel algorithm on a single processor. 
These will be the definitions used in the remainder of the text. For annotation in 
figures and tables, we shall further denote speedup and efficiency by Sp and Ep, where 
p is replaced by the actual number of processors used in the experiment. 

Note that (5.5) does not give any information about the quality of an algorithm. It 
solely measures how well an algorithm has been parallelized. As such, it should always 
be complemented with data which indicate the numerical efficiency of the parallel algo­
rithm. This could for instance be the following ratio of single processor execution times: 
T_(n)/T(n, 1), where T.eq(n) is the execution time of a good sequential algorithm, or 
of a well-known numerical library routine. 

If we assume that a p-processor machine cannot execute more than p times faster 
than a single processor machine, we obviously have that Sp ~ p and Ep ~ 100%. (An 
example of superlinear speedup, Sp > p, will be given and explained in section 6.7.) 
We enumerate some overheads that may cause a deviation from linear speedup. 

• the sequential fraction. The speedup achievable on a parallel computer can 
significantly be limited by the existence of a small fraction of inherently sequential 
code which cannot be parallelized. This is expressed by Amdahl's law, see [2]: 

Let a be the fraction of operations in a computation that must be performed 
sequentially, where 0 ~ a ~ 1. The maximum speedup achievable by a 
parallel computer with p processors is then limited as follows, 

1 1 
S < < -. 

p - a + (1 - a)/p - a 
(5.6) 

For example, when 10% of the code must be executed sequentially, the maximum 
speedup is limited by 10, independent of the number of processors available. 

Amdahl's law has been a central argument of people doubting the usefulness of 
massively parallel systems. Their criticism is justified as long as one considers solving 
a particular problem of a fixed size (i.e., with a constant value of a). In actual practice, 
however, this is rarely the case, as problem sizes tend to scale with the number of 
processors and with the computing power available. (Large-scale parallel processors are 
used to solved bigger problems than the ones solved on small-scale parallel processors.) 

For many computational problems the sequential fraction a rapidly goes to zero as 
the problem size increases. Consequently, when problem scaling is in effect, a depends 
on the number of processors, and (5.6) looses much of its significance. An alternative 
to Amdahl's law was formulated in the paper by Gustafson, Montry and Benner [40]. 
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Let a denote the sequential fraction of the time spent during a computation 
on a parallel system with p processors. The maximum speedup achievable 
is then limited as follows, 

s; $ p (1 - a) + a . (5.7) 

Here, the "speedup" S~ is usually called the scaled speedup. It is equal to the ratio 
T{ over Tp, where T{ is the time the parallel program would take to run on a single 
processor if sufficient resources (memory) were available. In actual practice a is often a 
small number, and very high speedups are attainable on large-scale parallel processors. 
Several examples are reported in the above-mentioned paper. 

• non-optimal algorithm and algorithmic overhead. The best sequential algo­
rithm may often be difficult or impossible to parallelize. We shall encounter an example 
of such an algorithm in chapter 6 (Gaussian elimination for solving tridiagonal linear 
systems). In that case the parallel algorithm may have a larger operation count than 
the sequential one. Additionally, in order to avoid communication overhead a pro­
grammer may wish to duplicate some calculations on different processors, rather than 
having one processor doing the calculation and then distributing the result. 

• software overhead. Parallelization based on the data decomposition approach 
often results in an increase of software overheads such as the overheads associated with 
indexing, procedure calls, etc. Also, this approach usually results in shorter loops, thus 
restricting vector lengths. This reduces the potential gain of using vectorization. 

• load imbalance. The execution time of a parallel algorithm is determined by 
the execution time of the processor having the largest amount of work. As soon as 
the computational workload is not evenly distributed, load imbalance will result, and 
processor idling will occur. That is, processors will waste valuable computation time 
while waiting for other processors to finish a particular computation. 

• communication overhead. Finally, any time spent in communicating results be­
tween processors is pure overhead. 

Obviously, it is one of the major goals of parallel computing research to develop 
algorithms with low sequential fractions, which have similar complexity as the best 
sequential ones, which can efficiently be distributed onto a large number of processors 
and which require small communication overhead. Some of the many subtle issues 
involved towards achieving this goal will be illustrated in the next chapter. 
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Chapter 6 

Parallel Implementation of 
Standard Parabolic Marching 
Schemes 

We are on the threshold of a new era in computer architecture . .. 
A number of worth wile ideas have been formulated and implemented to some extent. 

Substantial further progress at this point requires results from real programs. 

-G. S. Almasi, in "Overview of parallel processing" 
Parallel Computing, Volume 2 (1985) pp. 191 -203. 

To the uninitiated the entire area of multiprocessor algorithms research 
appears to be a mundane exercise in code implementation, or a "support activity". 

-Anthony Skjellum, [119, p. 141] 

We analyse the parallel characteristics of several time-stepping schemes for linear 
parabolic partial differential equations. We discuss the classical explicit methods (for­
ward Euler, Heun and DuFort-Frankel), three standard implicit methods (the first and 
second order backward differentiation formulae, and the Crank-Nicolson rule), the line 
hopscotch technique and the ADI formula of McKee and Mitchell. Three numerical 
kernels are identified and studied in particular: the explicit update step, the solution 
of a linear system by means of the multigrid method, and the solution of tridiagonal 
systems of equations by means of substructured Gaussian elimination. It is shown that 
numerical efficiency must usually be traded off against parallel efficiency. 

6.1 Introduction 

The time-accurate numerical solution of parabolic partial differential equations is com­
putationally expensive, even on moderate grid sizes. As a result, considerable effort has 
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been expended in formulating accurate and efficient numerical approximation meth­
ods. With the advent of parallel computing systems, efforts have been directed to­
wards the development of new methods with a high inherent degree of parallelism, 
e.g. [28,33, 105, 110, 140], and towards the implementation of the classical techniques 
on the novel hardware, e.g. [65, 77, 82, 109]. For the latter, attention is focused on 
the efficient implementation of a variety of linear algebra kernels, ranging from matrix 
vector products to sophisticated multigrid based linear system solvers. 

When selecting an appropriate algorithm for a given parabolic problem on a par­
ticular machine one is often hampered· by the lack of efficiency results for the total 
computational process. This should not only include the parallel characteristics of the 
numerical kernels and various other costs such as initialization, coefficient evaluation 
and matrix setup. The basic questions of numerical stability, consistency and accuracy 
should also be addressed. A selection based on a literature survey is further com­
plicated by widely varying machine characteristics, the use of different programming 
languages and operating systems, different complexities of problems being solved, etc ... 
As to our knowledge a systematic comparison on one machine of different parabolic 
marching schemes was lacking. 

In this chapter we would like to present such a comparison of several well-known 
numerical methods, implemented for solving a fairly general problem class on a mul­
tiprocessor. The text is based on [144] and the companion report [143]. In the next 
section we briefly review some of the mathematical characteristics of the solution meth­
ods. We also identify the numerical kernels which serve as the basic building blocks 
for constructing the parabolic solvers. Starting in section 6.3, we give a detailed de­
scription of their parallel implementation. We discuss in particular the parallelization 
of an ezplicit update step (section 6.4), of the multigrid method (section 6.5), and of 
tridiagonal system solvers (section 6.6). Speedup and efficiency figures obtained on 
the Intel iPSC/2 hypercube are reported in section 6.7. Some numerical examples are 
presented in section 6.8. We end in section 6.9 with some concluding remarks. 

6.2 Problem class and discretization 

6.2.1 Problem class 

We consider a general, linear, second order, parabolic partial differential equation, 

au a2u a2u a2u au au 
at = C"'''' ax2 + Czv axay + Cw ay2 + C'" ax + ClI ay + Cu + I, (6.1) 

defined on a rectangular domain 0 = [a,b] x [c,d], for t E [to,t!], with a given initial 
value of u at time to, and with boundary conditions of type 

u = g (Dirichlet), :: + r u = s (Mixed) or periodic. (6.2) 

(a / an denotes the derivative in the outside normal direction.) On each side of 0, we 
allow one type of boundary condition. The differential equation coefficients and the 
functions I, g, rand s depend on x,y and t. 
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6.2.2 Discretization 

We discretize (6.1) and (6.2) by using standard second order central finite differences 
on a rectangular grid, nh.,h", with (I+1)x(J+1) grid points, 

h { . b - a . d - c} n .,h" = (Xi, y;) I Xi = a + zh." h., = -1- and y; = c + Jhll , hll = ---y- . (6.3) 

We refer to appendix A for a detailed description of some technical issues related to 
the construction of the matrix stencils, the treatment of the boundary conditions, and 
so on. In the sequel we shall assume square mesh sizes, i.e., h=h.,=hll , for notational 
convenience. Application of the numerical method of lines leads to a linear system of 
ordinary differential equations, 

duh _ Lh h fh 
dt- u+, (6.4) 

where uh is a vector, the components u~;( t) of which approximate u( t, Xi, y;). The vector 
fh and the discretized operator Lh are time-dependent. Lh is typically a large matrix 
with five or nine diagonals, corresponding to the standard five-point and nine-point 
discretization stencils. 

The methods for solving (6.1) or (6.4) are generally classified as either ezplicit, 
implicit or semi-implicit, depending on the time-discretization. An overview of some 
standard marching schemes of the three types is given below, mainly for setting the 
notation and in order to recall some basic properties. They may be found in stan­
dard text-books such as [72, 86]. Throughout this chapter, we assume that the time­
increment for the underlying finite difference approximation, denoted by "1''', is a priori 
known and constant. In the formulae a subscript k will denote function values at time­
level tic = to + kr. For instance, u~ is the set of grid point values U~,i';' 0 $ i $ 1 and 
o $ j $ J, which approximate the ODE solution values Uf,;(tlc) or the PDE solution 
values U(tlc, Xi, y;). 

• A method is classified as ezplicit, if the values at a new time-level may be 
calculated directly from known values at previous time-levels (without having to solve 
a system of equations). Well-known is the forward Euler method, which is first order 
accurate in time, 

U~+l = u~ + l' (L~ u~ + f:) . (6.5) 

Of higher accuracy is the second order explicit Runge Kutta formula, also known as 
the explicit method of Heun, 

(6.6) 

in which U~+lo is the solution obtained by Euler's formula. A careful analysis of (6.6) 
shows that it can be computed by applying a formula of similar nature as (6.5) twice. 
Both explicit schemes suffer from a severe stability constraint. The time-step has to 
be chosen very small in order to restrict excessive error growth. As such, the optimal 
time-step is restricted by stability, rather than by accuracy. An explicit algorithm that 
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uses the values at two previous time-steps was presented by DuFort and Frankel. They 
start from the unconditionally unstable Richardson formula, 

(6.7) 

and derive a new formula by replacing U~.i.; by HU~+1.i.; + U~_l.i';} in the equation 
at the (i,j)-th grid point, for every i and j. The modified scheme is unconditionally 
stable. The consistency order is O( h2 + 72 + (7/ h )2) and as such, convergence is only 
guaranteed if lim,._o 7/ h = o. 

• We consider three implicit methods. As they are unconditionally stable the time­
increment is limited by accuracy requirements only. The A-stable method of order two 
which supplies the smallest error constant is the trapezoidal rule, also known as the 
Crank-Nicolson method, 

(6.8) 

It is of interest to note that (6.8) may be considered as a combination of the condition­
ally stable explicit scheme and an unconditionally stable implicit scheme, as expressed 
by formulae (6.9) and (6.10), 

(6.9) 

(6.10) 

The trapezoidal rule performs less satisfactorily for solving equations in which high 
frequency components occur in the solution, e.g., when a discontinuity between the 
initial values and boundary values exists. It may be shown that for adequate damping 
of these components 7 must be of order O(h), [73]. A family of methods based on 
backward differentiation does not suffer from this problem and allows arbitrarily large 
time-steps (from the viewpoint of stability). The simplest method in this family is the 
first order backward differentiation formula, BDF(l), or backward Euler method, 

(6.11) 

The following second order formula, BDF(2), belongs to the same class, 

(6.12) 

• The alternating direction implicit method (AD!) and the line hopscotch tech­
nique are classified as semi-implicit methods. In the ADI approach, a single cycle of 
computation requires the solution of two different sets of tridiagonal systems. In a first 
step an intermediate solution is obtained through a line-by-line solution of tridiagonal 
systems in the x-direction. The second step involves a line-by-line calculation in the 
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y-direction. Out of the few ADI formulae that can handle such general problems as 
(6.1), we implemented a generalized form of the formula of McKee and Mitchell, 

(6.14) 

in which the subscript n+1/2 denotes the average of the function values at tn and tn+!' 
The directional operators Lxh (Lyh) and Lxyh are given by 

(6.15) 

The method is first order accurate in time and unconditionally stable. Second order 
accuracy is obtained when OXII is identically zero. 

In the line hopscotch method a red-black colouring is applied to the grid lines in 
either x-direction or y-direction. In a given time-step the forward Euler method (6.5) 
is used to calculate the new values on, say, the red grid lines. The backward Euler 
method (6.11) is then applied to compute the values on the black grid lines. One first 
uses the explicit formula. The implicit step then amounts to solving tridiagonal systems 
defined along the black grid lines. In the next step the role of red and black grid lines 
are interchanged. The method is stable but only conditionally consistent, just like the 
DuFort-Frankel formula. Except from the very first step the explicit evaluation can be 
done very efficiently. Indeed, the following relation holds on the grid lines along which 
the explicit formula is to be evaluated, 

(6.16) 

6.2.3 The numerical kernels 

We now identify the numerical kernels that are central to the discussed marching 
schemes . 

• In an explicit computation a value at a grid point is calculated as a linear com­
bination of known values at previous time-levels, 

1 

uh .. = '"' {an. uh . .} + (.In h n+I",1 L...J ",kl n,.+k,1+1 iJi; Un-I,i,; . (6.17) 
k,I=-l 

This linear combination extends across nine grid points (five, if OXII == 0). The com­
putational complexity of the linear combination does not depend on the particular 
method. Indeed, {3Ij vanishes in the Euler method and in the two computational stages 
of the Heun method, and aij,oo is zero by construction in the DuFort-Frankel scheme . 

• The implicit methods transform the parabolic problem into a sequence of elliptic 
partial differential equations to be solved at the successive time-levels. The multigrid 
method has shown to be well-suited as a general iterative technique for solving these 
problems. It was applied successfully in the parabolic solvers described in [11, 38, 120, 
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123]. For a general discussion of the multigrid algorithm we refer to [44]. A short 
(minimal) introduction was presented in section 3.3.1. 

As with any iterative algorithm it is important to supply a good initial approxima­
tion in order to restrict the number of iterations necessary for obtaining convergence. 
In a time-dependent problem the value of the solution at the previous time-level is 
usually adequate, especially when the time-step is small. If the solution is known to 
have a smooth time behaviour a low order extrapolation of the solution at previous 
time-levels may provide an even better approximation, see e.g. [120, 123]. A third pos­
sibility is based on the idea of nested iteration or full multigrid (and is usually opted 
for when solving elliptic partial differential equations). The initial approximation on 
the fine grid is then determined by interpolation of an approximation of the solution 
obtained by solving a coarse grid discretization of the problem . 

• In the semi-implicit techniques tridiagonal systems of linear equations defined 
along grid lines are to be solved. In the case of a periodic boundary condition the 
tridiagonal coefficient matrix is extended with non-zero values in the upper right and 
lower left corners. The general format of the coefficient matrix for a system with N 
unknowns is given below in figure 6.1. The well-known tridiagonal Gaussian elimina­
tion algorithm, also known by the name of Thomas algorithm, is the fastest known 
solution method when the matrix is genuinely tridiagonal, i.e., when eo=bN-1=0. The 
computational complexity is then of order SN. This simple scheme is however not ap­
plicable in the case of periodic boundary conditions. In that case Gaussian elimination 
becomes about twice as expensive, i.e., order 17 N. 

ao bo Co 

Cl al b1 

C2 a2 b2 

CN-2 aN-2 bN-2 

bN - 1 CN-l aN-l 

Figure 6.1: A periodic tridiagonal coefficient matrix 

6.3 Parallel implementation: preliminaries 

6.3.1 The parallel computer model 

The algorithms have been implemented on a Intel iPSC/2 hypercube multiprocessor. 
Our implementation is specialized towards the hypercube topology, and makes exten­
sive use of the properties detailed in chapter 5. However, many of the ideas that are 
developed in the following sections immediately extend to other distributed memory, 
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MIMD computers. We envision in particular the use of the two-dimensional proces­
sor mesh. This processor structure has recently regained importance as the penalty for 
non-adjacent message exchanges was seriously reduced thanks to various improvements 
in communication hardware. Consequently, we shall try to keep the discussion as ma­
chine independent as possible. In particular, when discussing various communication 
schemes, e.g., based on rings, arrays or trees, we shall refer to the processors by their 
logical indices. We shall only refer to the hypercube-specific, i.e., Gray-encoded node 
numbers, when the hypercube properties allow for an optimized implementation. 

Basic to the machines envisaged is that node processors independently execute their 
own program and that coordination and synchronization is performed by exchanging 
messages. To each message a communication cost is associated, part of which is inde­
pendent of the message length, the startup time, and part of which is proportional to 
the message length. Messages can be sent from any processor to any other processor, 
but the communication cost, or at least a fraction of it, is proportional to the commu­
nication distance. Messages may float concurrently and undisturbed in distinct parts 
of the network. However, a penalty is to be paid if communication paths intersect. In 
this model it is of crucial importance to reduce the communication requirements of an 
algorithm by minimizing the number of messages, the length of each message and the 
distance between sending and receiving processors. The latter will minimize message 
travel times and avoid excessive communication channel contention (different messages 
wanting to use the same physical communication link). 

6.3.2 The grid partitioning approach 

For distributing the workload to the processors a grid partitioning strategy is to be 
selected. It should balance the computational workload, in the sense of keeping as many 
processors as possible computationally occupied at any time and it should minimize 
the communication overhead. One obvious possibility for achieving the first goal is a 
static decomposition in which a given processor is assigned the task of all computations 
associated with mesh points located in some a priori determined subset of the domain. 
The importance of the second goal is heavily dependent on the problem considered 
(amount of work to be performed per grid point, number of grid points per processor) 
and on the machine characteristics (relative cost of message transfer versus arithmetic, 
communication cost as a function of communication distance, etc.). 

For our application we have implemented the standard decomposition that has 
been used successfully by many authors on a variety of multiprocessors, see e.g. [19, 
21,53,81,82, 121]. The processors are arranged in a rectangular array structure and 
are mapped onto the domain of the partial differential equation, see figure 6.2. Each 
processor is held responsible for doing all computations on the grid points in the interior 
of its part of the physical domain and on some of its boundaries (e.g. the south and 
west boundaries). With the terminology of [54], the processor is said to have the update 
right for the grid points in its subregion. Since the sizes of the sub domains are equal, 
an almost balanced load distribution will be guaranteed. However, when the number of 
processors is large and when the number of grid points is small, it may happen that some 
processors have no grid points in their subdomain. These processors are then called 
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inactive or idle on that particular grid. The existence of inactive processors may lead 
to programming difficulties and a performance deterioration, as will be exemplified in 
the next sections. In particular, the neighbouring active processors are not necessarily 
adjacent processors in the processor mesh. Furthermore, their logical distances in the 
mesh may differ depending on the direction, see figure 6.3 for an example. 

On the hypercube an optimal processor mapping can be performed following the 
binary reflected Gray code array embedding technique discussed in section 5.3.3. Each 
hypercube processor is then physically adjacent to its logically neighbouring processors 
in the processor mesh. Additionally, by the periodicity property 5.3.6, we know that a 
processor that is on the border of the mesh is physically connected to the processor that 
has the same row or column index on the opposite border. This end-around connection 
is especially important for problems with periodic boundary conditions. 

The values at neighbouring grid points are often needed in the computations at a 
given grid point, e.g., when evaluating a discretization stencil or when calculating an 
average of grid point values. When that point is situated on the border of a processor's 
sub domain , values are needed that are treated by neighbouring processors. In order to 
avoid message passing each time such a value is referenced, we use the classical trick 
of storing in the processor's local memory a copy of the neighbouring grid line along 
each interior subdomain border. In the sequel we shall refer to these as the grid lines 
in the overlap area. The overlap area and the local sub domain together constitute the 
eztended subdomain of a processor. This data decomposition is graphically represented 
in figure 6.2. We call a grid consistent if the grid points in the overlap area have their 
correct values, i.e., when they duplicate the values of the corresponding grid lines in 
the neighbouring processors. An inconsistent grid can be made consistent by issuing 
the appropriate message passing commands which will be discussed in the next section. 

The calculations at each time-level can be divided into two separate steps. First, 
stencil coefficients are evaluated, matrices and right-hand sides are computed. This 
step requires no communication. Possible loss of full parallel efficiency is due to the 
load imbalance that may arise from an uneven distribution of grid points or is due to 
operations that have different arithmetic complexities for different grid points, e.g., in 
the treatment of boundary conditions. In the second step we either explicitly update 
the grid point values, or solve a linear system by means of the multigrid method, or 
solve a number of tridiagonal linear systems. The communication structure needed for 
each of these numerical kernels will be discussed next. 

6.4 The explicit update step 

The evaluation of the explicit update formula (6.17) can proceed concurrently at each 
grid point. No communication is needed provided that one starts with a consistent grid. 
If a consistent grid is needed for subsequent calculations, the values in the overlap area 
have to be communicated afterwards. This is not always necessary. E.g., the formula 
(6.9) is used to calculate the right-hand side in the Crank-Nicolson method. For the 
parallel solution of the resulting linear system, (6.10), the values in the overlap area of 
the right-hand side grid are not needed. 

The values in the overlap area can be made consistent by exchanging the border 
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(0,0) (O,l) (0,2) (0,3) 

,2) 0,3) 

Figure 6.2: Grid partitioning and a processor's sub domain with overlap area. 

Figure 6.3: Active and inactive processors on a coarse grid; the neighbouring active 
processors of an active processor are not necessarily logically adjacent. 

grid lines. Information is sent to and received from the neighbouring processors in the 
processor mesh. (End-around connections are used to identify neighbouring processors 
in the case of periodic boundary conditions.) The exchange of information for a five­
point stencil grid is displayed in figure 6.4. The grid points depicted with "." belong 
to the interior of the sub domain. The "0" grid points belong to the overlap region. 
The message exchanges may proceed concurrently in the four directions. Note that 
the same scheme is used whenever the corner values of the extended domain are not 
further needed. A different scheme is used in the case of a nine-point stencil update or, 
more in general, when the corner values of the extended region are needed in subsequent 
computations. To ensure correctness of the corner points, communication with diagonal 
neighbours is required, which is achieved with the communication scheme of figure 6.5. 
A horizontal exchange is followed by an exchange in the vertical direction. 

Both communication schemes require a total of four message exchanges, one along 
each side. With the scheme of figure 6.4 the four messages may overlap and take place 
at the same time, at least in theory. The scheme of figure 6.5 requires two sequential 
steps in each of which two messages may proceed concurrently. In practice however -
as was noted in section 5.4.2 and in reference [8]- only part of the message cost can be 
overlapped. In particular, the message startup time, which is often dominant, cannot 
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be overlapped. Consequently, it is expected that the difference in communication time 
between both schemes will be minimal; this is confirmed by timing experiments. 

In our implementation full advantage is taken of communication with calculation 
overlap by using the nonblocking iPSC/2 communication primitives. We first update 
the border grid points and immediately send their new values to the neighbouring 
processors. The calculation of interior grid points may then take place while the values 
of border grid points are being sent and while the values of the overlap region are being 
received. For instance, in the case of a five-point stencil explicit update, the series of 
operations executed by each processor is displayed in algorithm 6.1. Its advantages 
are threefold. To start with, the communication cost is reduced as part of it becomes 
"invisible" to the user. Secondly, by issuing the receive commands at such an early 
stage in the algorithm a possible copy operation of message data from a system buffer 
into the user message buffer is avoided, see section 5.4.1. Thirdly, when the number 
of interior grid points is large enough, chances are high that the messages will have 
been received when their data is needed. This avoids processors having to wait for 
information to arrive. 

Algorithm 6.1: five-point stencil explicit update 

update: 
-initiate receive operation from north, south, east and west neighbours 
-update the grid points on the local boundaries 
-initiate the send operation to the south, north, west and east neighbours 
-update the interior grid points 
-await the end of the receive operation 
-await the end of the send operation 

Finally, we would like to mention one further implementation issue. The iPSC /2 
communication primitives only support a send or receive operation of a vector stored 
contiguously in memory. By that, a copy operation transferring the message data to 
a temporary message buffer may have to take place before the actual send operation 
can be issued. Similarly, message data may have to be copied from the message buffer 
into the grid data structure after the receive operation has been completed. Our data 
structures are such that we store the grid points values by columns. Consequently, 
copy operations are required for the messages going in the north or south directions. 

6.5 The multigrid solver 

6.5.1 Introduction 

The parallel implementation of multigrid has attracted a great deal of attention in 
the last decade, and a vast number of papers and reports have been devoted to the 
subject. This is so because of the ever growing importance of multigrid as a very 
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Figure 6.4: Concurrent exchange of local boundaries without update of the overlap 
corner grid points. 
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Figure 6.5: Two-step exchange of local boundaries with update of the overlap corner 
grid points. 

lucianoaraki@yahoo.com.br



146 CHAPTER 6. STANDARD PARABOLIC MARCHING SCHEMES 

efficient technique for solving complicated partial differential equations, and because of 
the many interesting computer science problems that arise in its implementation. We 
do not intend to overview the existing literature in any significant detail here. Instead, 
we refer to the overview papers of Chan and Tuminaro [23], who cover the state of 
the art in parallel multigrid until 1987, and of McBryan et al., [81], who also address 
more recent developments. A reference to some basic papers will suffice for our current 
purposes. 

An early reference is the one by Brandt [10], which already discusses many of the 
essential issues in parallelizing multigrid. The experience with actual implementations 
was described soon after the first multiprocessor machines became available, e.g. by 
Thole [127], McBryan and Van de Velde [82], Bassett [4], Naik and Ta'asan [87], and 
Chan and Tuminaro [21]. Within the German SUPRENUM project substantial ef­
fort was put in the systematic development of highly efficient and portable multigrid 
codes, based on the so-called PARMACS (parallel macros) and the SUPRENUM com­
munications library, see [53]. In particular we would like to mention the successful 
MGDEMO-code developed by Hempel and Schiiller, [54]. 

The parallel inefficiency of the coarse grid multigrid operations was soon realized to 
be the main bottleneck in achieving good parallel performance. This inefficiency is due 
to the imbalance of communication and arithmetic complexities on these grids, and is 
due to the idling of many processors. This so-called coarse grid problem led to the devel­
opment of various techniques for reducing the coarse grid communication complexity, 
such as agglomeration and shifting region partitionings [54,87, 132] or multigrid vari­
ants in which some of the communication is skipped [54]. Other researchers developed 
parallel multigrid algorithms in which all of the processors are kept busy at all times, 
e.g., by simultaneous relaxations on different grid levels, or by having multiple coarse 
grids. We mention the concurrent iteration technique of Gannon and van Rosendale 
[35], the superconvergent multigrid method of Frederickson and McBryan [32], and the 
residual splitting technique of Chan and Tuminaro [22]. Recently, a lot of effort has 
been put into the parallelization of multigrid methods for solving complicated prob­
lems on irregular domains, such as 3D anisotropic problems, equations on general block 
structured domains and codes that incorporate adaptivity and irregular grid structures. 

The goals of the current section are much more modest, though. We describe 
the implementation principles and we detail the communication requirements of some 
basic multigrid operators. They have been integrated in a library for solving linear 
variable-coefficient elliptic and parabolic problems defined on a rectangular domain, 
see [131, 132]. In particular, we do not seek to develop a theoretical model for the 
prediction and analysis of obtainable speedups and parallel efficiencies. Such studies 
have appeared elsewhere by numerous authors, e.g. [12, 21, 81, 150]. 

6.5.2 Parallelizing the multigrid components 

• Pre-smoothing and post-smoothing are often performed by pointwise Gauss­
Seidel relaxation, which shows good smoothing properties for a large class of isotropic 
and slightly anisotropic elliptic operators. The scheme that is usually preferred for the 
parallel implementation uses colouring, see e.g. [10] for an early reference. In the case 
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of a five-point stencil, the grid points are divided into two subsets which are generally 
referred to as the red subset and the black subset. This division can be done in such a 
way that in order to calculate the update to a red point, only values of neighbouring 
black points are needed and vice versa, see e.g. the left picture in figure 6.6. The order 
of updating within a given subset is arbitrary; the calculation at one grid point does 
not influence the calculation at another. Consequently, the points with the same colour 
can be updated in parallel. A similar colouring scheme with four colours can be used 
to parallelize the nine-point stencil pointwise Gauss-Seidel relaxation, see the picture 
to the right. In conclusion, the global relaxation step is divided into two or four partial 
relaxation steps, which are ex~cuted in sequence. 

In order to update the values in the overlap region, communication is needed after 
each partial relaxation step. The schemes depicted in figures 6.4 and 6.5 are used, but 
only values at grid points with the correct colour are sent. With the red/black scheme 
a total of eight messages is to be sent per processor, each with a length equal to half the 
number of grid points along one edge of the subdomain. The communication complexity 
of the four colour scheme varies according to the colouring strategy and the order of 
updating. A discussion of possible schemes and optimality results are presented in the 
papers by Kolp [68] and Alef [1]. We shall illustrate some of their ideas by counting 
the number of messages in two alternative four-colour strategies. Both algorithms start 
and end with a consistent grid. Consider figure 6.6 and the update order "+", "x", 
"0", ".", that is, first the "+" set is updated, then the "x" set, and so on. In this 
case the complexity is similar to that of the two-colour scheme. Two messages are to 
be sent in each direction. (We disregard issues of overlapping and synchronization, 
and only count the number of messages and their lengths.) Alternatively, consider the 
the ordering "+", "0", ".", "x". Observe that the processor to the north requires the 
updated values of the overlap "+" points only during the third partial relaxation step. 
By that, the message containing the "+" values, which would normally be sent after 
the first step, can be postponed. It can be combined with the message containing "0" 
grid points, and sent as one large message after the second partial relaxation step. The 
messages containing "." and "x" grid points, destined to the southern processor can be 
grouped in a similar way. Compared to the previous scheme, the number of messages 
is reduced by two. The total message volume is unchanged. Our implementation of 
the four-colour relaxation employs the first ordering scheme, i.e., the one with two­
colour scheme complexity. It allows for a more straightforward implementation as each 
boundary is treated similarly. 

It has been mentioned before that the iPSC/2 communication primitives only sup­
port a send or a receive operation of a vector stored contiguously in memory. As such, 
the coloured subsets of the local boundaries are to be compressed to and decompressed 
from a contiguous message buffer before and after a communication step. In our data 
structures the vertical grid lines are contiguous. Consequently, it may be advantageous 
to send them as a whole, without first extracting the coloured subset. It is our expe­
rience that avoiding the copy operation outweighs the overhead of sending twice the 
amount of data actually needed . 

• The defect or residual can be calculated in parallel at each grid point. Whether 
the values in the overlap region are to be communicated depends on the operation that 
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Figure 6.6: Grid colouring with two (left) and four (right) colours. 
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Figure 6.7: Dependence of coarse grid on fine grid values in full weighting. 

Oi: ~ ~ • ~ A 

t 
' , , , , , , , , , , , , , , , 

I '-~I '-~I '-J/ '-, , , , , , 
Oi-I: 6 t t t 0 

Figure 6.8: Dependence of fine grid on coarse grid values in a linear prolongation. 

'- ~-~"-T"~~ ,_ ' _ ', _!.. " J 
, , , , , , 1 , , 

r"1 ,-... ,- r-, r"1 

L ~J* ,_ .l~*,_ L ..J~* L j , , , , , , 1 , , 

r ' - '-r , 1 
I-~' _ ' _ ~ . : ~ 

, 1 , , , , 1 , , 

11* ,- T *,- r -'* ,- I 
f- -tj- +~ - t- -i f-"i 
'- 1 ,_ , ,_!.. 1 , J , ' ": , -: , 
r- ' - -, ' , 
L J _,_ .l _,_ L ..J _ L j 

~ -.- "l1!m- ~ --..-- ~ _ ~_ ..lU!J __ .J!lL _ , , , , , , , , , 
r OIm- 1!it!il- r- ,... "1 
L .i!ilI_ At!l_ L ___ J , , , " , 
r """iim- 11m - r ____ 1 

I- ~- ~ - I- -=- ~ , , , , , , , , , 
,- "1!m- "lml- r ~ -, 
f- ~- ~ - t- -j!!!l4- "i , , , , , , , , , 

~.= .. =~ .~ L J _ ,_ .l _ , _ L ..J _ L j 

Figure 6.9: The reviving of idle processors in two steps, during the prolongation. 
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follows, i.e., the nature of the restriction. When the restriction is a full weighting, a 
consistent grid is required. Then the communication scheme of figure 6.5 is to be used . 

• The restriction is an inter-grid operation. It transfers information from a fine 
grid ni to a coarse grid ni - 1 • A one-dimensional processor-sub domain on ni and ni - 1 

is drawn by the solid lines in figure 6.7. The grid points that are indicated by a symbol 
"0" belong to the overlap region. The dependence of coarse on fine grid values in the 
case of a full weighting restriction operator is shown by means of the arrows. All interior 
coarse grid points can be calculated in parallel with the use of local information only, 
i.e., with grid point values that are readily available in memory. When the values in 
the overlap area are required in subsequent calculations, they must be communicated. 
This is normally not the case in the standard linear multigrid scheme. In the multigrid 
full approximation scheme, however, communication is required after the restriction of 
the fine grid approximation . 

• An analogous picture, figure 6.8, clarifies the dependence of values of the fine grid 
points on the values of the coarse grid points in the case of a linear interpolation 
or prolongation formula. In this case the extended sub domain associated with the 
fine grid is completely contained in the extended region of the coarse grid. All prolon­
gated grid point values, interior ones as well as the ones in the overlap region, can be 
calculated without any message passing. 

A complication arises though, when a processor is inactive or idle on the coarse 
grid, but active on the fine grid. In that case, it has not participated in any of the 
coarse grid operations, and therefore it lacks the necessary information to calculate 
the interpolated values. A possible situation is displayed in the picture of figure 6.9. 
The coarse grid points are indicated by a "." and the fine grid points that have no 
coarse grid counterpart by a "*". The subdomains are indicated by the squares. The 
active processors are the ones that are associated with shaded regions. The picture 
to the left shows the active processors on the coarse grid. Each of these can calculate 
the prolongated grid point values in their extended sub domains. The idle processors 
have entered a waiting state in a downward branch of a multigrid cycle, and need to 
be revived. This is done in two communication steps as is shown in the picture. First, 
the active processors awaken their "sleeping" neighbours in the horizontal direction. 
Those can afterwards calculate their interior fine grid points. This step is followed by 
a communication step in the vertical direction in order to revive the remaining idle 
processors. Observe that the communication operations are not necessarily of nearest 
neighbour type, and that the communication distances may vary in different directions. 

In the full multigrid algorithm a bicubic interpolation formula is often used to 
prolongate the coarse grid approximation to the fine grid. Its parallel implementation 
is not as straightforward as that of the bilinear interpolation. Indeed, application 
of the bicubic formula requires a minimum number of four by four grid points. This 
complicates implementation on very coarse grids. For parallelizing this formula we have 
followed a similar approach as the one of Hempel and Schiiller in [54]. When there are 
too few grid points in a processor's subdomain a biquadratic formula is applied, and 
unsymmetric formulae are used near processor boundaries. As in the above reference, 
this is the only place in which the parallel code returns results which are slightly 
different from those of the sequential code. 
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6.5.3 Agglomeration/ deagglomeration strategies 

Basic idea of agglomeration/ deagglomeration 

In a multigrid application a sequence of fine grids to coarse ones has to be mapped 
onto the processor structure. Several different mapping schemes have been suggested, 
such as schemes that map different grid levels on different processors [18, 20, 35] and 
schemes that map each grid level on all processors. In the latter case a distinction 
is made between schemes in which each processor is assigned to a fixed part of the 
domain, independent of the mesh size (so-called jized region partitioning [87]), and 
schemes in which the sub domain of a processor differs from grid level to grid level (e.g. 
agglomeration [53, 54, 132] or shifting region partitioning [87]). In this section we shall 
discuss an approach based on agglomeration. 

In the fixed region partitioning strategy each processor is associated with a fixed 
region of the computational domain, irrespective of the size of the discrete mesh. This 
has some definite implementation advantages. For instance, when a coarse grid point 
belongs to the subdomain of a processor, so will the corresponding grid points that 
belong to the finer grids. The only communication required in the multigrid operators 
is then of "intra-grid" type, that is, there is no communication across multigrid levels. 
With this strategy however some processors may have very few grid points on the coarse 
grids, or even no grid points at all. By that, this conceptually simple decomposition 
scheme results in a substantial reduction of performance. Indeed, it is known that small 
problems cannot be solved efficiently on systems with a large number of processors. 
The communication and various sequential overheads largely dominate the calculation. 
In particular, this is due to the fact that the number of messages and the associated 
message startup cost do not decrease with a decreasing number of grid points. (This 
is true only as long as the processors have two-colour boundaries in each coordinate 
direction. In addition on coarse grids a change in communication protocol (on the 
iPSC/2) may occur, leading to a shorter startup time.) 

As a result it may be advantageous to compute the multigrid coarse grid operations 
with a smaller number of processors than the number of processors used on the fine 
grid. At a certain stage in the multigrid algorithm it is then necessary to gather the grid 
point values and reconstruct the grid on a subsystem of processors. The strategy by 
which the grid is collected is commonly called an agglomeration strategy. The opposite 
operation, by which a grid is expanded or scattered to a system with a larger number 
of processors, is called deagglomeration. The use of agglomeration/deagglomeration 
generally reduces communication distances and the number of send/receive operations 
in the remaining part of the multigrid algorithm. As an added advantage, possible 
programming difficulties associated with processors that do not have any grid points 
or very few grid points in their domain do not occur. The latter was an important 
argument for implementing agglomeration subroutines in the study [6]. Agglomeration 
implies moving to another processor for a large part of the grid points. It gives rise to a 
large amount of message traffic. This communication cost can be minimized by a careful 
choice of the active processors and the way they are mapped onto the agglomerated 
grids. This is particularly easy on a hypercube system, as will be illustrated below. 
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Some agglomeration/ deagglomeration guidelines 

We shall first derive some guidelines by looking at a few deficient assignment schemes 
shown in figure 6.10. The processors of a three-dimensional hypercube, arranged into 
a four-by-two processor mesh, are mapped onto a discretized domain (picture a). The 
sub domain each processor is originally assigned to is marked out by a rectangle, in 
which we have written the binary node number. (Note that we use the Gray code 
array embedding.) Suppose the considered grid has too few grid points to be efficiently 
distributed to eight processors. It might then be decided to reduce the number of 
processors and to continue on a two-by-two subcube. For this, the grid defined on 
the eight-processor system has to be redistributed to a four-processor system. A first 
possible assignment is illustrated in picture b. To arrive at this decomposition four 
nearest neighbour messages are required, initiated by the processors that lose their 
update rights. The latter send all of their grid point values to the remaining processors 
«010h -t (OOOh, (Ollh -t (OOlh, (100h -t (llOh and (101h -t (l11h). These 
messages can proceed concurrently. The resulting four-processor system however does 
not have the hypercube topology, a connectivity which we may wish to keep. A scheme 
which requires the same amount of communication and retains the hypercube nature 
of the system is displayed in picture c. It has the drawback that the mapping of 
the processor grid onto the computational grid logically differs from the original one. 
Consequently, subroutines written for the original partitioning could not be used for the 
agglomerated partitioning. A scheme which retains both the hypercube nature and the 
logical processor mapping is presented in picture d. The required number of messages 
however has increased to six, with a corresponding increase in total communication 
volume, and communication is no longer of nearest neighbour type. 

This example illustrates some conditions which are to be imposed on the selection 
of a subsystem of processors. The subsystem has to be a hypercube, in order to allow 
a simple recursive application of agglomeration steps. The subsystem must be mapped 
onto the computational domain in the same way as the original grid, so as to facilitate 
code development. To minimize the communication overheads each processor of the 
agglomerated grid should retain the sub domain that it was originally assigned to. This 
will reduce the communication volume and the communication distances. 

The reduce and exchange type agglomeration strategies 

An agglomeration which satisfies the above requirements is stated below as algorithm 
6.2. We call it reduce type agglomeration, since the dimension of the active cube is 
reduced by one after each agglomeration step. Note first that we assume a 'k+l'­
dimensional hypercube, the nodes of which are arranged in an array with 2k rows 
and 2' columns. By formula (5.2), the node number of processor (i,j) is then to 
be interpreted as the concatenation of k bit number (bk - 1bk - 2 •.. b1boh, and an I-bit 
number, (al-la,-2 ... alaoh- Algorithm 6.2 specifies the necessary actions by each 
processor for an agglomeration in the vertical direction, that is to say, the number of 
rows in the processor mesh is halved. An agglomeration in the horizontal direction 
proceeds analogously, though bit ao should be considered. 

The subcube of processors with bit bo equal to zero remains active, whereas the 
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Figure 6.10: Grid agglomeration: different subgrid assignment schemes. 
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Figure 6.11: Reduce type agglomeration: in each agglomeration step half of the pro­
cessors go idle; communication is required in the agglomeration and deagglomeration 
phases. (The underlined bits must be removed from the binary node representation 
when applying the agglomeration algorithm given in the text.) 
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Figure 6.12: Exchange type agglomeration: no processor is idle; computations are 
duplicated in order to avoid communication in the deagglomeration phase. 
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Algorithm 6.2: reduce type agglomeration in the vertical direction. 

(My node number is (bk - 1 ••• b1boal-l ... alaoh in a 'k+I'-dimensional cube.) 

if bit bo = 1 then 
- send all grid point values to processor (bk - 1 ••• b10al_l ... alaoh 
- become inactive 

else 
- receive all grid point values from processor (bk - 1 ••• b11al_l ... alaoh 
- assemble the agglomerated grid 
- continue execution in the 'k+l-l'-dimensional subcube of processors 

of which bit bo equals O. 
endif 
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complementary subcube goes idle. The latter will be "revived" later on in an ascending 
branch of a multigrid cycle during a deagglomeration step. It can easily be seen that 
the communication is of nearest neighbour type, since communicating processors differ 
in precisely one bit. The total communication volume is equal to half the total number 
of grid points. Each processor of the "surviving" subcube doubles its sub domain by 
joining its grid points with those of a neighbouring region. When the zero bo-bit 
is deleted from the binary node representation of the processors in the active ' k + 
1-1' -dimensional hypercube, further agglomeration can be performed with the same 
algorithm. Such an agglomeration sequence is illustrated in figure 6.1l. In this figure 
we have underlined the "deleted bits", i.e., the bits which must be removed from the 
binary node representation when applying the agglomeration algorithm. 

An alternative agglomeration rule is suggested in the algorithm 6.3. It defines the 
so-called ezchange type agglomeration, which is related to the modified shifting region 
partitioning scheme [87], and to a technique mentioned in [150]. Each processor sends 
all its values to and receives all the values from a companion processor, the binary 
representation of which differs in only one bit. Afterwards, when the two sub cubes 
have assembled the entire grid, they separately continue with identical computations. 
As before, further agglomeration to still lower dimensional subcubes is possible, as is 
illustrated by an example in figure 6.12. Note that with this scheme no communication 
is necessary in the deagglomeration. Indeed, the local part of the deagglomerated grid 
is a subset of the local part of the agglomerated grid, with roughly half the number 
of grid points. So, each processor may locally assemble its part of the deagglomerated 
grid from values which it has readily available. 

To conclude, in each agglomeration/deagglomeration step with exchange type ag­
glomeration one nearest neighbour message exchange is executed per processor. As 
the communication between different pairs of processors may occur simultaneously, 
and since the communication paths do not intersect, the total communication cost is 
precisely the cost of one exchange operation. In the reduce type scheme there is one 
communication step in the agglomeration phase and one in the deagglomeration phase. 
This is slightly less efficient as will be shown by the timing results in section 6.7.2. 
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Algorithm 6.3: exchange type agglomeration in the vertical direction 

(My node number is (bk - 1 ... b1boa,_l.' .alaoh in a 'k+l'-dimensional cube.) 

- exchange (send+receive) all the grid point values with the grid point 
values of processor (bk- 1 ... b1boa,-l." alaoh, 

- assemble the agglomerated grid 
- continue execution in the 'k+l-1'-dimensional subcube of processors 

that have the same value of the bo-bit 

6.6 The tridiagonal systems solver 

6.6.1 Introduction 

The solution of tridiagonal systems of linear equations is central to many numerical al­
gorithms. Consequently, the parallel implementation of tridiagonal solvers has received 
a lot of attention, e.g. in [19, 55, 63, 65,69,77,109, 146J. In the ADI and line-hopscotch 
methods we are faced with the problem of solving tridiagonal systems defined along 
horizontal or vertical grid lines. The decomposition of each such system is predeter­
mined by the overall decomposition chosen for the domain of the partial differential 
equation. From section 6.3.2, one sees that each system is evenly distributed over a 
linear array of processors. From the discussion about Gray code embedded processor 
meshes it is clear that (in a hypercube-optimized implementation) each of these linear 
arrays is actually a subcube of the hypercube. 

Let P denote the number of processors in the linear array, and let d denote the 
corresponding sub cube dimension, i.e., P = 2d. We set M to the number of tridiagonal 
systems distributed over the linear array, and N to the number of equations per system. 
The equations are written as follows 1 , 

(6.18) 

where any unknown Xi with index i for which i < 0 or i > N - 1 is identified with the 
unknown XimodN. The coefficient matrix was given in figure 6.1. 

The classical Thomas algorithm is inherently sequential and cannot be parallelized 
efficiently. (The two-processor case is an exception to this rule, see e.g. [55, 69J, a 
special case which we shall not consider further.) In the multiple system case paral­
lelization can be performed by using pipelining [55, 63J, at the cost of a large number of 
messages, or by using a different decomposition scheme, called scattered decomposition 
[19, 65J. However, neither of the two is adequate in our application. A variety of other 
methods have been proposed, most of which are based on the ideas of substructuring 
and multifrontal elimination. The equations are locally condensed and reduced to a 
small tridiagonal system with one or two equations per processor. This intermediate 
system is solved in one way or another and the remaining variables are determined in 

IFor notational convenience we assume the coefficients /li, b;, C; to be variables in the computer 
science sense. That is to say, their value may change during the computations. 
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a backsubstitution step. The algorithm that we have implemented is commonly called 
the algorithm of Wang [146]. A similar algorithm based on the substructuring idea 
appeared earlier in a paper by Sameh and Kuck [111]. In the next section we shall 
review the algorithm of Wang. Note that we consider a more general case than in the 
above references, since we allow the matrix to be periodic. 

6.6.2 Substructured Gaussian elimination 

We shall first describe the algorithm as it is applied for solving a single tridiagonal 
system of equations and afterwards make the extension to the case of multiple systems. 
Throughout the discussion we shall assume that the number of equations, N, is evenly 
divisible by the number of processors, P. The extension to the more general case does 
not pose any significant problems. The distribution of the tridiagonal system, derived 
from the overall domain decomposition, is such that each processor has n contiguous 
rows, with n=N / P. If the processors of the linear array are consecutively numbered 
from 0 to P -1, processor k is assigned to the following equations : 

eq, : CiX,-l + a,x, + b,Xi+l = r, with i = kn, ... , (k + l)n - 1 (6.19) 

The distribution of a sixteen-equation system onto four processors is shown by way of 
illustration in figure 6.13 (upper left). Each processor is assigned to one contiguous 
block of equations as indicated by the dashed horizontal lines. 

The system is reduced to a tridiagonal system with only one equation per processor 
in three steps. 

• In the first step each processor k eliminates its lower diagonal elements Ci, with 
i = kn + 1, ... , (k+ l)n -1, a process which introduces fill-in elements t. below 
the main diagonal. The resulting coefficient matrix is shown in figure 6.13 (upper 
right). The elimination can proceed concurrently on each processor and requires 
no communication. 

• In the second step the upper diagonal elements b" with i = (k+l)n-3, ... ,kn, 
are eliminated, which is illustrated in the lower left figure. This step is again fully 
parallel. It introduces the fill-in elements gi, situated above the main diagonal. 

• In the final step the corner elements b(k+1)n-l are eliminated. For this, inter­
processor communication is necessary. Each processor sends and receives one 
equation to and from a processor responsible for an adjacent set of equations. 
More precisely, processor k sends equation eqkn to its "upper" neighbour, proces­
sor (k -1) mod P, and receives equation eq(k+l)nmodP from its "lower" neighbour, 
processor (k + 1) mod P. The reduced coefficient matrix is shown in figure 6.13 
(lower right). 

The equations eq(k+l)n-l, for k = 0, ... , P -1, constitute a decoupled linear system 
with one equation per processor. This system can be solved separately from the other 
unknowns. We postpone the discussion about how to solve this intermediate system 
to the next section. After this system has been solved, each processor can determine 
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Figure 6.13: Substructured Gaussian elimination. 
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its remaining unknowns if it knows, besides the value of its local unknown Z(A:+l)n-l, 

also the value of Z(ln-l)modP, a value which was calculated by processor (k-1)modP. 
Each processor therefore sends its local value Z(A:+l)n-l to the lower neighbour processor 
and receives the corresponding value from the upper neighbour. Backsubstitution for 
the interior unknowns can then proceed in parallel, without further message passing. 

The algorithm immediately extends to the case of multiple tridiagonal systems. To 
minimize communication overhead each of the steps should be applied to all systems 
before proceeding to the next step. The message exchanges in the elimination phase 
can be grouped together and are sent as one large message. The message exchanges 
in the backsubstitution step can be treated similarly. The substructured Gaussian 
elimination algorithm is executed on each of the horizontal (or vertical) sub cubes of the 
processor mesh simultaneously, with no communication between processors of different 
rows (or columns). The consistency of the grid of solution values must be guaranteed 
afterwards by updating the values in the overlap area. One of the additional border 
grid lines is already filled out correctly by the communication in the backsubstitution 
step. Consequently three additional messages are needed. 

6.6.3 Solution of the intermediate system 

In this section we shall give a brief characterization of three techniques that may 
be used to solve the intermediate system. They are interesting in that they introduce 
communication schemes different from the ones discussed previously. The intermediate 
system is first rewritten as 

with k = 0, ... , P - 1. (6.20) 

For notational convenience, we have renumbered the unknowns and re-used the symbols 
aA:, bA:, c" and rio. From the discussion in the previous section we recall that equation 
eq" is stored by processor k, which is the "k+1"-th processor of the linear processor 
array. We first concentrate on the case eo=bp - 1 =0. The changes to include periodic 
boundary conditions are discussed afterwards. 

The use of recursive doubling 

In the first step of the recursive doubling method each equation eq" is combined with 
eq"-1 and eqA:+l in order to eliminate the values of c" and b". The original system of P 
equations is then decoupled into two systems of P/2 equations each. This is illustrated 
in figure 6.14. The two systems may be decoupled further by a recursive application 
of the same procedure. After logiP) steps; (6.20) is reduced to P systems of one 
equation only, which can be solved immediately. The basic step of the algorithm is 
mathematically formulated in the following remark. 

Remark 6.6.1 In step j, with j = 1, ... , log2(P), of the recursive doubling algorithm 
equation eq" is combined with the equations at distance 2j - 1 , i.e., with eq. and with eqt 
where s = k - 2j - 1 and t = k + 2j - 1 , in order to eliminate its coefficients c" and b". (To 
be formally correct the tridiagonal system is assumed to be extended with equations 
eqr for r<O and r>P-l such that Cr=br=O and ar=1.) 
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a'o 0 b'o Xo r'o 

0 a', 0 b', x, r', 

c', 0 a', 0 b', x, r', 

<', 0 a', 0 b', x, r', 

c', 0 a', 0 b', x, r', 

C'P_3 0 0'1'_3 0 b'P_3 xp_) rp_3 

Cp_2 0 0'1'-2 0 XP_2 r'p-2 

Cp_l 0 a'p_1 Xp_1 r'p_1 

Figure 6.14: Coefficient matrix after the first step of the recursive doubling procedure. 

The parallelization of the recursive doubling procedure is straightforward. Each 
processor is assigned one equation to which it applies all elimination steps. In every 
step all eliminations are performed simultaneously and a good load balance is achieved. 
Communication is needed to make the necessary equations available to each processer. 
In step j processor k needs the equation from the processors k + 2;-1 and k - 2;-1. In 
this step the latter two processors need the equation of processor k. Two exchanges 
are therefore needed per processor in every step. In the last step, however, only two 
equations remain and one exchange suffices. The extension to the case of M tridiagonal 
systems of equations is obvious. The number of messages remains the same; their length 
is multiplied by the factor M. 

The overall complexity of a parallel algorithm is determined by the processors that 
have the largest amount of work in each algorithmic step. In the parallel implementa­
tion of recursive doubling the processors responsible for the first and last equation in 
each system have a somewhat lesser arithmetic and communication complexity than 
the processors responsible for the other equations. Only the work of the latter proces­
sors should therefore be analysed. It can be shown by straightforward counting that 
the arithmetic cost of an elimination step is 12 floating point operations (flops) in each 
of the first log2(P)-1 steps and 5 flops in the final step. The final step reduces the 
problem to one equation in one unknown, which is solved in one operation. The total 
computational cost is therefore equal to (12log 2(P) - 6)M flops. In this operation 
count we have included the right-hand side computations along with the coefficient 
matrix elimination. A total of 2log2(P) - 1 messages are exchanged, each of length 
4M doubles (three equation coefficients and one right-hand side, for each tridiagonal 
system). From Gray code property 5.3.7, it is clear that the physical distance between 
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the communicating processors is two, except for the first step when the processors are 
adjacent. 

The use of balanced cyclic reduction 

The cyclic reduction algorithm for solving (6.20) is very similar to the recursive doubling 
technique. It differs in that the elimination of coefficients is applied to half of the 
equations only. In figure 6.15 we have depicted the coefficient matrix after the first 
elimination step, in which the even equations are used to eliminate the off-diagonal 
elements of the odd equations. The resulting system is a tridiagonal system, involving 
the P /2 odd variables. It can be further reduced by the same reduction process. 
The reduction phase terminates when one equation with one unknown remains. A 
backsubstitution process is needed to determine the remaining unknowns. 

a. b. 

0 0', 0 b', 

c, a, b, 

c', 0 a', 

c, 

x. 

x, 

x, 
0 b', x, 

a, b, x, 

CP-2 0,_2 bP_2 X'P_2 

c"_1 0 0',_, XP_l 

l 

I::: ::: ::; b', I [:: I [ ~: I 
,'" .;, ~:, x 

'. 
1', 

" 
1', 

" 

r,_2 

1',_, 

Figure 6.15: Coefficient matrix after the first step of the cyclic reduction procedure. 

In every reduction step one may select the odd or the even equations to construct 
the reduced system. The choices made will eventually determine the equation to which 
the tridiagonal system converges. Two possible reduction sequences for solving an 
eight-equation system are presented in figure 6.16. With "eq" -+ eqb" we denote that 
equation eq" is used to eliminate coefficients in equation eqb. In the first example the 
reduction process converges to equation seven. In each step the "odd" equations are 
retained. (In all but the first step the equations should actually be renumbered prior to 
identifying the even and odd equations.) In the second example the process converges 
to equation two. The even equations are retained in the first and in the third step, 
while the odd equations are retained in the second step. Generalizing from the two 
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examples we may state the rule to have the cyclic reduction process converge to an 
arbitrary equation. 

Remark 6.6.2 In each reduction step j, with j = 1, ... ,log2(P), of a cyclic reduction 
process which converges to eq" the off-diagonal elements are eliminated in the equations 
eqa where 10 - vi is a multiple of 2;. To this end equation eqa is combined with eq., 
S = 0 - 2;-1, and with equation eqt, t = 0 + 2;-1. 

eq3------------·· eq7 

Figure 6.16: Two reduction sequences to reduce an eight-equation system. 

When the cyclic reduction algorithm is applied to solve a single tridiagonal system of 
P equations on P processors, performance will suffer from a severe load imbalance. In 
each step half of the active processors are turned inactive until one processor remains, 
namely the one that has the equation to which the process converges. The other 
processors are reactivated in the backsubstitution step. Only one processor participates 
in all reduction steps and as such it is the bottle-neck. In the case of multiple tridiagonal 
systems it is possible to obtain a very good load balance by having different systems 
converge to different processors. This approach is called balanced cyclic reduction in 
[65] and is opposed to the naive cyclic reduction process that is obtained when every 
system converges to the same equation. 

The M systems are divided into P sets, h, which contain M/P tridiagonal systems 
defined on consecutively numbered grid lines. (For simplicity, we only consider the 
case that M is evenly divisible by P). A first strategy is to have the set h converge to 
equation eqk. The resulting balanced cyclic reduction process is graphically represented 
in the left three pictures of figure 6.17, for a configuration with eight processors. The 
figures should be understood in the following way. The tridiagonal systems extend from 
the left to the right. They are grouped into the P sets h, represented as horizontal 
strips separated by dotted lines. Each processor k, with k = 0, ... , P-l, holds precisely 
one equation of each system, namely equation eqk, and as such is responsible for doing 
the computations in one column of the figure. 

The reduction of the equation of each set Ik to equation eqk is displayed in a similar 
manner as was done in figure 6.16. However, the arrows are not emanating from one 
single equation but from a set of equations (the dashed rectangles), indicating that 
all of them are needed in the elimination process of the set of equations to which the 
arrows point. In this example, three steps are needed to reduce each system to one 
single equation. The equations that are retained or eliminated in each step for each 
set can be determined by the rule that was mentioned in remark 6.6.2 2. We observe 
that no processor is idle at any time and that load balance is good. Backsubstitution 
is carried out afterwards in the reverse order compared to the reduction phase. 

~Before continuing, the reader may wish to verify that the three steps of the two examples of figure 
6.16 correspond to the three left-hand pictures (rows 17 and 1~) in figure 6.17. 
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Figure 6.17: Three communication steps with balanced cyclic reduction. The left three 
pictures illustrate a simple balancing scheme. The scheme in the three pictures to the 
right is optimized and has minimal data transfer demands . 

From figure 6.17 we can identify the necessary communication. By way of illus­
tration we shall look at the communication performed by processor 3 (which handles 
column eq3). In the first step it sends its equations that belong to the union set 
10 U 12 U 14 U Is to its left and right neighbours . At the same time it receives from these 
neighbours the equations eq2 and eq4 that belong to II U 13 U Is U 17 • In the second step 
processor 3 sends the equations that belong to II U Is to its neighbours at distance two, 
i.e. , to the processors 1 and 5. From these processors it receives the equations eql and 
eqs that belong to 13 U 17 . In the final step processor 3 exchanges its equations of set 
11 for the equations eq1 of set 13, with its sole neighbour at distance four, processor 7. 

This simple scheme has one definite disadvantage. The equations of the different 
systems are normally stored contiguously in memory, the one after the other, starting 
with those of 10, then those of II and so on. Consequently the sets that are to be sent 
are not contiguous. As such either one message has to be sent per set lie or the different 
sets are to be copied first to a buffer and sent afterwards. Either solution introduces an 
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additional overhead. This overhead of sending additional messages or copying to and 
from message buffers can be avoided when the equation to which each set converges is 
chosen differently. In the three graphs on the right-hand side of figure 6.17 we adopt 
a scheme suggested by Van Driessche in [128], expressed in the following property for 
which we present a simple proof. 

Property 6.6.1 Oonsider the balanced cyclic reduction process where set lie is made 
to converye to equation eqp with the binary representation of p being the reverse of that 
of k. Then, the equations of all messages that are to be sent or received are contiguous. 

Proof . It suffices to show that in every step of the cyclic reduction algorithm every 
message contains the equations of a union of consecutive sets lie. 

From remark 6.6.2, it follows that in step j, with 1 ~ j ~ log2(P), any processor 
p receives sets of equations from the processors p ± 2;-1. These are the equations 
involved in the cyclic reduction processes which converge to the equations eq" 
where 

III - pi is a multiple of 2;. (6.21) 

Let the binary representation of p be given by 

P = (Pd-1Pd-2'" P1Poh , 

where d=log2(P), The II-values that satisfy (6.21) have the representation 

II = (lId-1I1d-2'" II;P;-l ... P1Poh , 

where IId-1I1d-2 ... II; is an arbitrary sequence of d - j zeroes and ones. 

By the rule set out in the proposition, the equations associated to any such value 
of II belong to the set lie, with 

Consequently, the equations received by processor P in step j are those belonging 
to the following union of sets, which is contiguous in memory, 

U la+i, with ex = (POP1 ... P;-100·· ·OOh . 
i=0, .. ,2"-;-1 

o 

Remark 6.6.3 The property is valid for a linear array of processors. It does not 
rely on any hypercube or Gray code characteristic. However, if the array is Gray code 
embedded in a hypercube, it can easily be seen by property 5.3.7 that the physical 
distance between the communicating processors is two, except for the first step, in 
which it is one. 
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We can now determine the parallel computational complexity of the balanced cyclic 
reduction algorithm. In each step i, with i = 1, ... ,log2(P) - I, elimination is per­
formed on M /2; systems at the cost of 12 operations per system. Five operations are 
needed per system in the corresponding backsubstitution step. In the final reduction 
and first backsubstitution step a total of 9 flops are executed on each of M / P systems. 
This amounts to 17 M- 25M / P flops, for the algorithm as a whole. In each step of the 
reduction and the backsubstitution two messages are exchanged, except for one step 
in which only one message is needed. This leads to a total of 410g2(P) - 2 exchanges. 
The message length is 4 doubles per system in the reduction step and one double in 
the backsubstitution. With the number of systems per step as determined above, this 
amounts to a total of 10M -15M / P doubles. 

The Transpose - Gaussian Elimination - Transpose algorithm 

Both recursive doubling and cyclic reduction compute the solution in place, i.e., the 
equations remain in their original location throughout the computation. An alterna­
tive is to collect all equations for a single system in one processor, a data movement 
which is similar to a transpose. The system may then locally be solved by using the 
sequential Thomas algorithm. A second transpose sends the solution variables back to 
the processors from which the equations were collected. This scheme was considered 
in [55, 63, 65, 109] where it is called algorithm TGET (Transpose - Gaussian Elimina­
tion - Transpose). A similar algorithm, under a different name, was studied in [69] to 
solve for an intermediate system with two equations per processor, obtained by using a 
different substructuring technique. The algorithm that we have implemented is based 
on the transposition by reflection, see e.g. [62, 64, 82], and is optimized for use on a 
hypercube. The process is graphically explained by means of an example in figure 6.18. 

The algorithm may be used to transpose matrices of size 2d by 2d. In each of d 
steps successively larger blocks of data, drawn in the double sided boxes, are reflected 
through one of their corner points, indicated by a".". For our purposes, the matrix 
transposition is used to collect M/P intermediate systems to each computing node. 
Throughout the process each entire column of the matrix is located on one processor. 
An elementary block of matrix data, denoted in the figure by "z - y", contains those 
equations of processor z that are to be collected by processor y. The necessary routing 
on a P processor machine is performed in log2(P) steps. In each step each processor 
communicates half of its local data to a processor that is situated successively further 
away in the linear array. For clarity's sake we have graphically connected the com­
municating processors by arrows. When the processors are labeled by their Gray code 
numbers it can be seen that the communicating processors differ in precisely one bit. 
Thus communication is of nearest neighbour type. For this reason transposition by 
reflection is perfectly suited for implementation on a hypercube. 

The complexity of the algorithm may be determined as follows. After the transpo­
sition, each processor solves M/ P systems of size P by the Thomas algorithm, which 
requires 8P - 7 flops per system. This amounts to a total of 8M - 7 M / P flops. A 
total of 210g2 ( P) messages are exchanged, half of which are of length 2M doubles (first 
transpose) and half of which are of length M /2 doubles (second transpose). The total 
length of the messages sent by any processor is 5/2 M log2(P) doubles. 
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First set of reflections 

0-0 1-0 ~ 3-0 4-0 5-0 ~ 7-0 

B 1-1 2-1 3-1 ~ 5-1 6-1 7-1 
0===; 

B 1-2 ~ 1-2 2-2 3-2 5-2 6-2 

0-3 [!j ~ 3-3 4-3 ~ @J 7-3 

0-4 1-4 [g 3-4 4-4 5-4 B 7-4 

~ 1-5 2-5 3-5 ~ 5-5 6-5 7-5 
0===; 

~ ~ ~ 1-6 2-6 3-6 5-6 6-6 

0-7 1-7 ~ 3-7 4-7 5-7 B 7-7 

Third set of reflections 

0-0 0-1 0-2 0-3 7-3 7-2 7-1 7-0 

1-0 1-1 1-2 1-3 6-3 6-2 6-1 6-0 

2-0 2-1 2-2 2-3 5-3 5-2 5-1 5-0 

3~O ·3~·i ·3~2 ·3~·3· ~.~3" 4~i" 4~i· 4~O 

3-7 3-6 3-5 3-4 4-4 4-5 4-6 4-7 

2-7 2-6 2-5 2-4 5-4 5-5 5-6 5-7 

1-7 1-6 1-5 1-4 6-4 6-5 6-6 6-7 

0-7 0-6 0-5 0-4 7-4 7-5 7-6 7-7 

t t t t t 

Second set of reflections 

0-0 0-1 3-1 3-0 4-0 4-1 7-1 7-0 

1-0 1-1 2-1 2-0 5-0 5-1 6-1 6-0 

1-3 1-2 2-2 2-3 5-3 5-2 6-2 6-3 
......................................... 
~-3 0-2 3-2 3-3 4-3 4-2 7-2 7-3 

0-4 0-5 3-5 3-4 4-4 4-5 7-5 7-4 

1-4 1-5 2-5 2-4 5-4 5-5 6-5 6-4 

1-7 1-6 2-6 2-7 5-7 5-6 6-6 6-7 

O~7 O~6 3~6 ·3~7 ~·~7· 4~6 7~6 7~7 

t~tt~t 

Transposed matrix 

0-0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 

1-0 1-1 1-2 1-3 1-4 1-5 1-6 1-7 

2-0 2-1 2-2 2-3 2-4 2-5 2-6 2-7 

3-0 3-1 3-2 3-3 3-4 3-5 3-6 3-7 

4-0 4-1 4-2 4-3 4-4 4-5 4-6 4-7 

5-0 5-1 5-2 5-3 5-4 5-5 5-6 5-7 

6-0 6-1 6-2 6-3 6-4 6-5 6-6 6-7 

7-0 7-1 7-2 7-3 7-4 7-5 7-6 7-7 

Figure 6.18: Matrix transposition by reflection. 

The local data reordering should be considered carefully as it may have an appre­
ciable cost. In each of log2(P) steps, each processor sends and receives messages equal 
to half its local data. Each message has to be copied to a message buffer prior to a 
send operation in order to make it contiguous, and is copied from the receive buffer 
afterwards, which amounts to 5M log2(P) copy operations. This may be an important 
source of performance degradation and, for large P, will outweigh the arithmetic cost, 
which is (almost) independent of the number of processors! However, several short-cuts 
are possible at the cost of some memory for additional communication buffers. The re­
ceived information need not be copied back into the matrix but may be copied directly 
into a send buffer if it is part of a future message. The last message of the transpose 
may be received directly into the data structure of the transposed matrix. A careful 
count of the number of copy operations then leads to a total of 5/2 M(log2(P) + 1). 
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Some concluding remarks 

The complexity of the three intermediate solvers is given in table 6.1. 

Table 6.1: Computational cost of intermediate system solvers (no periodic bc). 

method arithmetic exchanges total length local copies 

rec.doub. (12Iog2(P)-6)M 2Iog2(P)-1 (8Iog2(P)-4)M 0 

cycl.red. 17M-25M/P 4Iog2(P)-2 10M-15M/P 0 

TGET 8M-7M/P 2Iog2(P) 5/2Iog2(P)M 5/2(log2(P)+1)M 

The solvers easily extend to the case of periodic boundary conditions. In the re­
cursive doubling and cyclic reduction algorithms, special attention should be paid to 
correctly handling the eliminations in which an equation eqi is involved with index i < 0 
or i > P -1. That equation should be identified with eqimodP. Similar consideration 
should be given to the message exchanges. For the above mentioned index values they 
will cross the borders of the processor array. The computational complexity remains 
the same on a hypercube multiprocessor, as the end-around connections can be used. 
The communication in the TGET algorithm is not changed at all. The arithmetic 
complexity however increases to approximately 17M as the simple Thomas algorithm 
can no longer be used. 

Finally, one might wonder whether, perhaps, it would be more appropriate to skip 
the entire substructuring phase, and to apply any of the three solvers (TGET, cyclic 
reduction, recursive doubling) to the original system instead. This turns out not to be 
the case. The application of a TGET algorithm to the original set of tridiagonal systems 
was considered in [69]. There it was shown that the algorithm is inefficient because 
of the very high communication requirements of the transposition operations. Indeed, 
without the substructuring phase a very large matrix is to be transposed instead of a 
very small one. The increase in communication cost exceeds the reduction in arithmetic 
(which arises from the use of the sequential Thomas algorithm). The application of 
cyclic reduction to the original system would not reduce the arithmetic complexity 
(both cyclic reduction and substructuring require about 17 N floating point operations 
per system). However, it would significantly increase the communication cost. Without 
substructering, communication is required throughout the computation, whereas with 
substructuring, communication is restricted to a very limited part of the computation. 
Similarly, application of recursive doubling to the original system would increase both 
the arithmetic and the communication costs. 

6.7 Timing results on the Intel hypercube 

6.7.1 The explicit update step 

The speedup of a nine-point stencil explicit update step with different processor num­
bers is displayed in figure 6.19. The number of grid lines was taken equal in both 
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directions. The following processor configurations were used: a 4 X 4 mesh, a 4 X 2 
mesh, a 2 X 2 mesh and a 2 X 1 mesh. 

The left figure shows the speedup that is achieved if the grid is not made consistent 
after the update step. This is the case, for instance, in the calculation of the right-hand 
side of the Crank-Nicolson method with formula (6.9). Then, no communication will 
be needed. However, full parallel efficiency is not always obtained, for various reasons. 
The load imbalance that arises when the number of grid lines is not evenly divisible 
by the number of processors is undoubtedly the most important one. Sequential over­
heads such as procedure calls and loop overheads have a noticeable influence when 
each processor is allocated very few grid points. A superlinear speedup is observed for 
each of the processor configurations. This is not an uncommon case in highly parallel 
algorithms and is due to the use of a cache memory in each processor. Programs that 
get their data from cache generally execute much faster than similar programs that 
have to fetch their data from the main memory. The larger the number of processors 
the larger the problem that entirely fits into the fast memory. This also explains why 
the region of superlinear speedup grows with an increasing number of processors. 

The figure to the right supplies the speedups that are obtained with the explicit 
update formula when communication is applied to update the grid lines in the overlap 
area. The jagged effect is again due to load imbalance. The large jump in the 16-
processor curve is caused by the difference in communication strategy of the iPSC/2 
node operating system for short and for long messages. As discussed in section 5.4.2, 
the change in strategy occurs at message lengths of 100 bytes, which is approximately 
13 double precision numbers. A sudden decrease of efficiency will therefore occur for 
grid sizes that have 13 grid lines per processor in x-direction or y-direction (or at sizes 
of 11 grid lines if values of the overlap lines are also sent). This is consistent with 
the single jump observed for the 4x4, 2x2 and 2x1 meshes, and with the two jumps 
observed in the case of a 4x2 processor mesh. 

6.7.2 The multigrid solver 

In figure 6.20 we have plotted the speedup versus the problem size for the standard 
multigrid cycles (V-, W-, F-cycle). The particular cycles that have been timed are 
characterized by one four-colour pre-smoothing step, one similar post-smoothing step, 
full-weighting restriction, bilinear prolongation and standard coarsening down to the 
coarsest grid (one unknown). Agglomeration was used to improve the parallel efficiency 
on the coarse grid. 

The parallel efficiency of the multigrid method depends on the kind of cycle, more 
precisely on the number of times that the coarse grids are visited. In a V-cycle each 
grid is visited once in the descending branch and once in the ascending branch. The 
inefficiency of the coarse grid operations reduces the overall efficiency only slightly. 
During one W-cycle on a fine grid with 1 additional coarse grid levels the coarsest 
grid is visited 2'-1 times. The coarse grid operations largely deteriorate the global 
performance. During each F-cycle the coarse grid 'is visited 1 times. The efficiency of 
the F-cycle therefore takes values between those for the V- and the W-cycles. 

Observe that the speedup rapidly increases with an increasing number of grid lines. 
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Figure 6.19: Speedup of the nine-point stencil explicit update. 

Obviously, the same is true for the parallel efficiency. Next, by a comparison of the 
measured speedup to the number of processors, it can be derived that the parallel 
efficiency decreases with an increasing number of processors when the problem size is 
kept fixed . Both these observations have been made over and over again throughout 
the parallel computing literature. 

The importance of using an agglomeration strategy in order to increase the parallel 
performance of the coarse grid operations is illustrated in table 6.2 and in figure 6.21. 
They were taken from our paper [132], in which we consider various multigrid strategies 
for solving elliptic partial differential equations. The conclusions of the paper however 
immediately apply to the current case of solving a parabolic problem with a time­
stepping method. The timings reported in table 6.2 are the execution times on 16 
processors (a 4x4 mesh) of standard multigrid cycles for solving the elliptic problem, 

on n == [1,3] x [0,1] with a D irichlet condition on the western boundary, a mixed 
boundary condition to the east, and periodicity in north and south direction. (This 
problem was taken from a report of W. Hackbusch [42] .) We used the same standard 
multigrid operators as above, and coarsening was applied to a grid with 4x2 unknowns. 
The coarse grid problem is solved by 10 Gauss-Seidel iterations. 
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Figure 6.20: Speedup of the standard multigrid cycles for different numbers of proces­
sors as a function of the number of grid lines. 

V{l ,1) CYCLE 
100 -,-------------__ --, 

90 

80 

70 

60 

E'6 50 
(%) 

40 

30 

20 

,.:.;;,:",}", ,,, .,.. 
.i 

.; 
.; 

.; 
, . ., 

: , 
} 
:. 

,:'1 

number of unknowns 

F( 1.1 ) CYCLE 

lOS 
number of unknowns 

W( I.I) CYCLE 
,--------------,100 

lOS 
number of unknowns 

90 

80 

70 

60 

50 E 16 
(%) 

40 

30 

20 

10 

Figure 6.21: Comparison of parallel efficiency for processor idling and agglomeration 
(solid line: processor idling; dashed line: exchange agglomeration; dotted line: opti­
mized exchange agglomeration) . 
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Table 6.2: Comparison of agglomeration methods on 16 processors; coarse grid problem 
has 4x2 unknowns, and is solved by 10 Gauss-Seidel iterations. 

V(l,l) multigrid cycle (execution time in seconds) 

fine grid Idling reduce aggl. exchange aggl. optimized aggl. 

16x8 0.110 0.068 0.065 0.050 

32x16 0.140 0.098 0.095 0.079 

64x32 0.202 0.159 0.156 0.140 

128x64 0.401 0.357 0.355 0.339 

256x 128 1.093 1.050 1.047 1.033 

512x256 3.750 3.713 3.710 3.688 

F(l,l) multigrid cycle (execution time in seconds) 

fine grid Idling reduce aggl. exchange aggl. optimized aggl. 

16x8 0.200 0.108 0.105 0.075 

32x16 0.339 0.205 0.200 0.153 

64x32 0.540 0.359 0.354 0.292 

128x64 0.938 0.714 0.706 0.628 

256x128 2.021 1.750 1.740 1.650 

512x256 5.734 5.430 5.417 5.296 

W(l,l) multigrid cycle (execution time in seconds) 

fine grid Idling reduce aggl. exchange aggl. optimized aggl. 

16x8 0.200 0.108 0.105 0.075 

32x16 0.428 0.245 0.239 0.177 

64x32 0.918 0.549 0.538 0.416 

128x64 2.034 1.293 1.273 1.025 

256x 128 4.752 3.263 3.224 2.741 

512x256 12.148 9.183 9.111 8.104 
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The first column with timing results displays the execution time of a multigrid 
cycle in which no agglomeration is used. The grid partitioning is fixed, and some 
processors go idle on the coarsest grid. The second and third column illustrate the 
improvement when an agglomeration strategy is used. In this particular case the 
coarse grid problem is solved on a single processor, the second coarsest grid on a 
2x1 processer mesh, while the remaining grids are treated by all 16 processors. Note 
that the decrease in execution time is almost independent of the number of grid points 
in the case of a V-cycle; it increases linearly in the case of an F-cycle, and it doubles 
from row to row in the case of a W-cycle. This observation is consistent with the 
remark made above on the number of times the coarse grid is visited per cycle. Note 
further that exchange agglomeration is always somewhat faster than the reduce type 
agglomeration, albeit that the actual difference is negligible. In one V-cycle on a four­
dimensional hypercube four agglomeration steps are to be executed. From the timings 
in table 6.2, we may conclude that one exchange agglomeration step is about 0.75 
msec. faster than one reduce agglomeration step. This is due both to the difference in 
communication time between a send-receive pair and an exchange, see section 5.4.2, 
and to a somewhat smaller internal data transfer demand (less copying to and from 
message buffers is necessary in the exchange versus the reduce type communication). 
The final column reports the execution time of an optimized exchange agglomeration 
scheme. As the coarse grid problem is executed on a single processor, we need not 
use the four-colour Gauss-Seidel method which was used to obtain the results in the 
other columns. Instead of applying the same subroutine on the coarse grid as on the 
other grids, we applied an optimized sequential lexicographic scheme. By that we avoid 
the overhead associated with colouring as well as various other overheads related to 
the introduction of parallelism in the code (e.g. first updating boundary grid points, 
checking whether there are neighbours to which messages have to be sent, etc.). As 
the results illustrate, the additional gain is considerable, especially, as expected, for 
the W-cycle. Figure 6.21 further illustrates the above in a graphical way. 

6.7.3 The tridiagonal system solver 

The three solvers for the intermediate tridiagonal systems with one equation per pro­
cessor have been integrated into the sub structured Gaussian elimination solver. A few 
changes are needed to the analysis of section 6.6.3. To start with, they must cater 
for the fact that the intermediate systems are not in the desired format for further 
processing after the first step of Wang's algorithm has been executed. Additionally, 
the solutions have to be copied back into the grid data structure afterwards. In the 
recursive doubling and cyclic reduction method 5M local copy operations are required 
to collect the intermediate equations in a contiguous workspace (which is necessary to 
facilitate the sending of the messages) and to get the solutions back afterwards. In the 
TGET algorithm the equations can be copied immediately to the send buffers from 
the equation data structure and the solutions can be copied directly from the receive 
buffers into the grid data structure. As such, no local copies are required additional to 
the ones already counted in section 6.6.3. 

The solution of the intermediate systems is followed by one communication step to 
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get the solution values which were calculated by the upper neighbour and which are 
needed in the backsubstitution step. This can be avoided in the TGET algorithm by a 
small extension to the second transpose (the transpose that sends the solution values 
back to the processors the corresponding equations were collected from). Each block of 
data "x - y"in figure 6.18 is then enlarged so that it also contains the data "x - (y-l)", 
which are precisely the additional values that are needed in the backsubstitution. By 
this extension one message of M doubles is avoided at the cost of a more expensive 
transpose. The total message length is increased with M/210giP) doubles and the 
number of local copies increases with 1/2(log2(P) + I)M. 

In figure 6.22 we consider the case of Dirichlet or mixed boundary conditions. We 
compare the execution time of the three solvers on 4, 8 and 16 processors. The timings 
include the copying of the equations from the equation data structure, the solution 
of the intermediate system and the communication necessary prior to the start of 
the backsubstitution. The cost of the remaining parts of the substructured Gaussian 
elimination algorithm is identical for each of the three methods. 

4 processors 8 processors 16 processors 

100 100 

RD 
90 90 

80 80 

Execution 
70 time RD 70 

(msec) 
60 60 

SO RD SO 

40 40 

30 30 

20 20 

10 10 
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Figure 6.22: Comparison of three intermediate system solvers: recursive doubling, 
balanced cyclic reduction and "transpose-Gaussian elimination-transpose". 

Parallel recursive doubling is especially uncompetitive if the number of systems is 
large in comparison to the number of processors. The method suffers from a high 

lucianoaraki@yahoo.com.br



172 CHAPTER 6. STANDARD PARABOLIC MARCHING SCHEMES 

arithmetic cost, proportional to log2(P), The arithmetic cost of cyclic reduction and 
TGET, on the contrary, is essentially independent of P. The cost of TGET is, however, 
only half of the cost of cyclic reduction. A cyclic reduction step requires approximately 
twice as many message startups as a step of the transpose algorithm. However, each 
step requires transferring only half as much data as the previous step, in contrast to 
the transpose where the amount of data transferred is the same for all steps. From 
our experimental results we may conclude that the TGET algorithm performs best, at 
least for the processor numbers that we consider. For higher processor numbers TGET 
might be outperformed by the cyclic reduction method because of its "log2(P)M"­
dependence of the local data movement and the message length. This is, however, not 
obvious from figure 6.22. Due to its superior performance we shall use TGET as the 
intermediate system solver throughout the rest of this chapter. 

The complexity of substructured Gaussian elimination is approximately 17 N oper­
ations per tridiagonal system, where N is the number of equations. The best sequential 
algorithm in the case of Dirichlet or mixed boundary conditions, which is the Thomas 
algorithm, requires only 8N operations. The obtainable efficiency is therefore restricted 
to 8/17, or 47%. This low upper limit raises the question of how to decompose the 
data. For the line hopscotch algorithm, in which tridiagonal systems have to be solved 
in one coordinate direction only, a strip decomposition is clearly beneficial. The op­
timal sequential algorithm may then be used. In the ADI method a choice has to be 
made between square or strip decomposition. In the former case the substructured 
algorithm is used in both directions. The efficiency is then limited to 47%. In the 
latter case half of the systems are solved by the Thomas algorithm, half of the systems 
by substructuring. The upper limit to the efficiency is then (8+8)/(17+8), or 64%. 

We have measured the execution time for solving the tridiagonal systems t~at arise 
in the ADI algorithm on a N by N grid. A 16 x 1 and a 4 x 4 processor mesh were 
used, leading to a strip and a square decomposition. The efficiencies are presented 
in figure 6.23. Observe that both decompositions are competitive for small problems, 
while strip decomposition is to be preferred for larger problem sizes. The theoretically 
derived maximum efficiencies of 47% and 64% are not reached. This is partly due to fact 
that two unary negation operators (a = -b) are usually disregarded in the operation 
count for the substructuring algorithm. They reduce the obtainable efficiency by a 
small percentage. From figure 6.23 we may conclude that strip decomposition is also 
to be preferred in the ADI case, except perhaps for small problem sizes. 

For the results depicted in figure 6.24 we have separately timed that set of ADI 
tridiagonal solves in which sub structuring is applied. The second set of solves as well 
as the solves in the hopscotch algorithm are executed at almost 100% efficiency, if we 
disregard load imbalance. Strip decomposition is used and the number of grid lines 
is equal in both directions. In the case of periodic boundary conditions, the best 
sequential algorithm has a complexity similar to the complexity of the substructuring 
algorithm. The obtainable speedup, shown in the left figure, is then limited by the 
number of processors only. In the case of Dirichlet or mixed boundary conditions the 
speedup is limited to 0.47 times the number of processors, as was explained above. 
This is illustrated in the figure to the right. 
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Figure 6.23: Strip decomposition versus square decomposition (on 16 processors). 
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Figure 6.24: Speedup of substructered Gaussian elimination. 
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6.8 Numerical examples 

6.S.1 Introduction 

The numerical quality of the discretization method, characterized by its stability, con­
sistency and convergence properties, should be taken into account when choosing an 
appropriate method for a particular problem. Some general guidelines may be derived 
from the theoretical discussion in section 6.2. The precise characteristics, however, are 
to a large extent problem dependent. They can only be determined by a theoretical 
analysis of the specific problem or by numerical experimentation. In this section we 
shall solve three non-trivial examples. They were carefully chosen to illustrate some 
mathematical properties and to give some insight in the relative performance of the 
eight methods discussed in section 6.2. We hope that they are general enough to be 
representative for the other problems that one might want to solve. 

Each problem is discretized and solved on meshes with 17 by 17, 33 by 33 and 65 by 
65 grid lines, distributed over 16 processors. Strip decomposition is used for the ADI 
and hopscotch methods, square decomposition otherwise. For each method and each 
grid size we have determined the time-increment, r, in the following way. First, the 
solution of the system of ODEs (6.4) is computed by solving the equation with a second 
order method using very small time-steps. This is the theoretical solution to which all 
of the methods converge if r is very small. The difference between this ODE solution 
and the solution of the parabolic PDE is the error due to space discretization. The 
difference between the ODE solution and a solution obtained with a finite time-step is 
the error due to time discretization. A solution is considered sufficiently accurate if the 
error due to time discretization is dominated by the error due to space discretization. 
To be more specific, we select the largest time-increment which leads to a solution of 
which the former error component is an order of magnitude less than the latter. Both 
errors are measured at the end point of the time-interval. A further restriction of the 
time-step will not significantly reduce the error any further. 

The results are tabulated in the tables 6.3, 6.4 and 6.5. In those tables the follow­
ing symbols are used: nt for the minimum number of time-steps needed to satisfy the 
time-step criterion, t I6 for the execution time (in seconds) per time-step on 16 proces­
sors, totI6 for the total execution time (in seconds) and E I6 for the parallel efficiency. 
The timings reflect the total computational process including dynamic allocation of the 
data structures, automatic discretization, evaluation of stencils, calculation of matrices 
and right-hand sides and execution of the numerical kernels. The implementation of 
the solvers is optimized in various ways. Problems without cross derivative are solved 
by using the more economical five-point stencil discretization. Time-independent func­
tions, e.g. coefficients of the differential equation or functions defined in the boundary 
conditions, are evaluated only once. In the header of each table we have added a 
measure of the accuracy of the discrete solution. It is denoted by error, with 

(6.22) 

where K is the index of the final time-level, i.e., tf = to + Kr. 
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6.8.2 Test problem one 

The first example is a parabolic equation with variable, but time-independent coeffi­
cients and with a mixed derivative, 

11z3 - 1Oz2 + 2 8u 3 282u 5 82u 5 282u 9z3 - 6z2 5 2 2 -t 
Z3 _ 2Z2 + 1 8t = 2"z 8z2 - 2"zy 8z8y + 3Y 8y2 - Z3 _ 2Z2 + 1 u - 3z y e 

(6.23) 
defined on the unit square, for t E [0,1], and with the following boundary conditions 
along the north (N), east (E), south (S) and west (W) sides: 

N: u(t,z,I)=:z:3-2z2+1 E: u(t,l,y)=y(l-y)(I-y2)e-t 

s: :;(t,z,0)-u(t,z,0)=-z3+2:z:2 -1+z2e- t W: ~:(t,O,y)=O 

Its solution is equal to 

(6.24) 

The problem is discretized with central finite differences for spatial discretization and 
with each of the eight time-stepping methods. The timing and efficiency results are 
tabulated in table 6.3. Correctness of the discretization may be verified by looking at 
the evolution of the number of time-steps needed to satisfy the error criterion for an 
increasing number of grid lines. When the spatial mesh size is halved the value of nt 
is multiplied by 4 in the case of a first order method, and multiplied by 2 otherwise. 

The Euler and Heun methods are severely restricted by stability constraints and 
need very small values of T. No advantage can be taken of the second order accuracy of 
Heun's method. Both schemes are highly parallel, even for the coarsest discretization. 

A small time-step is to be selected for the BDF(I) method for reason of accuracy. 
At each time-level we use a linear extrapolation of the solution at two previous time­
levels as the initial approximation that is input to the multigrid algorithm. This is 
a valid and frequently used approach in a time-stepping scheme if the solution of the 
parabolic differential equation is known to have a smooth time behaviour and if the 
time-step is small, see e.g. [120, 123]. The resulting initial approximation is very close 
to the true solution and consequently, one V-cycle with one pre-smoothing and one 
post-smoothing step is sufficient to solve the linear system. Multigrid V(I,I)-cycles 
also showed to be the most effective for solving the linear system in the second order 
implicit methods. Due to the larger time-steps three cycles are necessary in the case of 
the 17 by 17 mesh and four cycles in the case of the 33 by 33 and 65 by 65 mesh. Low 
efficiency values are measured for the implicit methods. This is due to the inefficient 
multigrid operations on the coarse grids. One time-step of BDF(I) on the 17 by 17 grid 
with 16 processors is ten times more expensive than an explicit Euler step, although 
it is only three times more expensive on a single processor. The comparison is even 
worse with Crank-Nicolson and BDF(2), as their parallel efficiency is lower due to the 
larger number of multigrid cycles. 

The unconditionally stable DuFort-Frankel and hopscotch methods need very little 
time per time-step and can be parallelized well. As such they outperform the other 
methods on the coarse 17 by 17 grid. They are only conditionally consistent though, 
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and a small time-step is needed to achieve the desired accuracy on the finer grids. The 
relatively low efficiency of the hopscotch method for the 17 by 17 grid may be explained 
by load imbalance. In each of the two steps of the hopscotch algorithm an operation 
is to be performed on half of the grid lines only. Consequently, at any given time only 
half the number of processors are active. 

The ADI formula is of first order accuracy for problems with a mixed derivative. 
(This is verified by the different values of nc.) For this reason it is substantially slower 
than Crank-Nicolson and BDF(2), notwithstanding the much lower cost per time-step 
and the higher parallel efficiency. 

We plotted the parallel efficiencies of the eight solvers as a function of problem 
size and number of processors in figure 6.25. Each of the methods may be parallelized 
up to almost 100% efficiency when the problem is large. The only exception is ADI. 
The parallel efficiency of its kernel is restricted to 64%. The overall efficiency may be 
somewhat larger. This is due to the set-up of the tridiagonal systems and right-hand 
sides, operations which are fully parallel. 

6.8.3 Test problem two 

The second example has time-dependent coefficients but no mixed derivative, 

8u t 82u t 82u t 8u t 8u - = + - - -:-;---:-= 8t 4(x + 1)2 8x2 4(y + 1)2 8y2 4(x + 1)3 8x 4(y + 1)3 8y· 
(6.25) 

It is again defined on the unit square, for t E [0,1], and has four Dirichlet boundary 
conditions. The solution is equal to 

u(t, x, y) = sin«x + 1)2 + (y + 1)2)e-c2 • (6.26) 

The problem is solved with a five-point discretization. The timing results are given 
in table 6.4. This example is such that the stability constraint is more easily dealt 
with than the accuracy requirement. This explains why the performance of the Heun 
method is superior to the performance of the Euler method. It also explains why the 
number of time-steps for explicit Euler and for BDF(l) are approximately equal. 

The linear system in BDF(l) is again solved by using one V(l,l)-cycle. In the 
case of the second order implicit schemes we derived the initial approximation at each 
new time-level by the full multigrid or nested iteration technique. In this case the 
initial approximation on the fine grid is derived by interpolation from an approximate 
solution on the next coarser grid. Full multigrid significantly reduces the parallel 
efficiency because of the frequent visits to the coarse grid. However, for this problem, 
it still proved to be faster than the use of straightforward multigrid cycling. Line 
hopscotch and DuFort-frankel are very effective on the 17 by 17 mesh. They are 
however surpassed on the finer grids. The ADI method is second order accurate for 
this example. Some more time-steps are needed to satisfy the error criterion than the 
number of time-steps that are needed when Crank-Nicolson is used. However, the ADI 
time-steps are less costly and more parallel, which is why ADI is faster than the second 
order implicit methods. The relative difference between the methods will however 
decrease when the grid is further refined. 
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Figure 6.25: Efficiency of the eight parabolic solvers as a function of the problem size. 
The number of processors is equal to 2, 4, 8 or 16 (top curve to bottom curve). 
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6.8.4 Test problem three 

As a final problem we consider the numerical solution of the general heat equation, 
with two Dirichlet and two mixed boundary conditions, on the same problem domain 
as in the two previous examples, 

8T 8 8T 8 8T 
a(x,Y)Ft = 8x(k(x,y) 8x) + 8/k(x,y) 8y) + Q(t,x,y) 

N: T(t,x,I)=g(t,x) E: T(t,l,y) = h(t,y) 

s: :!,(t,x,O) + T(t,x,O) = p(t,x) W: ~~(t,O,y) + T(t,O,y) = q(t,y). 
The two functions a and k are chosen arbitrarily as, 

a( x, y) = 1 + x + y and k( x, y) = e4(z-l/J)2H(II-l/J)2. 

The functions Q, g, h, p and q are chosen such that the solution is equal to 

T(t, x, y) = 2 + sin(5xy) e-21(z+II). 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

The timing results are presented in table 6.5. The problem is characterized by 
a source function Q(x, y, t) which is expensive to evaluate. The evaluation of this 
function may proceed in parallel at each grid point. This explains the execution times 
and efficiency values, which are both higher than the values measured for the previous 
test problems. In the hopscotch method the source function has to be evaluated only 
at those grid lines where a tridiagonal system is to be solved (i.e. at half the number 
of grid lines in each step). The single step execution time is therefore low compared to 
that of other methods. 

The explicit methods, BDF(I), and hopscotch need a large number of time-steps. 
They are not competitive as the cost per time-step is dominated not by the com­
plexity of the numerical kernel, but by the evaluation of the function Q. The second 
order implicit methods perform very well. The initial solution to the linear system 
in each time-step is again determined by full multigrid. Two V(2,1)-cycles are ap­
plied afterwards. The Crank-Nicolson method, which is not strongly A-stable, suffers 
from the presence of high frequency components in the solution. A minimal num­
ber of time-steps is necessary to sufficiently reduce these components, which explains 
the high number of time-steps needed on the 17 by 17 mesh. AD! is initially faster 
than Crank-Nicolson thanks to its parallel efficiency, which is up to 3 times higher. 
With an increasing problem size, however, the relative difference decreases, and ADI 
is eventually outperformed. 

6.9 Concluding remarks 

In this chapter we first briefly recalled some of the standard parabolic marching schemes. 
The overview was by no means exhaustive as we excluded some important subjects such 
as the L.O.D. techniques, methods based on extrapolation and local or global combi­
nation, and so on. In addition we did not pursue some matters that are of great impor­
tance to the development of robust software. By assuming a constant time-increment, 
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we evaded the question of how to select step-sizes so as to attain a desired accuracy. 
We experimentally determined an optimal multigrid parameter choice for each of the 
problems and each of the grid sizes. This should be determined automatically in any 
robust solver. However, most of the constituent components of the solvers currently in 
use can be related to the schemes and numerical kernels discussed. The results should 
therefore also be of practical use to anyone developing fully automatic software. 

Each of the time-marching methods considered can be parallelized with close to 
100% efficiency, if the problem is large enough. The only exception is the ADI method, 
as the efficiency of a parallel implementation of its numerical kernel is restricted to 
64%. For large problems the performance of each method is entirely determined by its 
numerical properties. The introduction of parallelism does not alter their ranking. As 
such the unconditionally stable second order methods largely outperform the methods 
with more limited stability or consistency characteristics. 

For "small" problems (small with respect to the number of processors) the require­
ment of high parallel efficiency contradicts the requirement of high numerical quality. 
Differences in execution time, which may be large on one processor, are reduced and 
formerly uncompetitive methods may become competitive. The performance of the 
ADI and of the implicit methods is seriously degraded by their parallel inefficiency. 
The degradation is especially prominent for the methods using a multigrid based linear 
system solver. The explicit methods as well as the hopscotch method remain highly 
parallel. As such, they may surpass the second order methods on coarse grids. 

As the number of processors in commercially available multiprocessor systems is 
constantly increasing, the number of interesting problems that may be classified as 
"small" continuously grows. Consequently, new parallel algorithms are needed to tackle 
the problems with a limited number of grid points per processor. These methods 
should either increase the parallel efficiency of the fast second order implicit methods, 
or improve the numerical quality of the explicit methods. The latter could be achieved 
by extending the stability region and thus reducing the time-step constraint of the 
classical techniques, see e.g. [28, 105]. The former can be obtained by calculating the 
solution on several or on all time-levels at once, e.g., by using windowed relazation 
techniques or waveform relazation [110, 140]. The parallel efficiency of the latter will 
be the main subject of the next chapter. 
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Table 6.3: Timing results for test problem one (in seconds). 

I Problem 1: 17 by 17 discretization (16 by 16 unknowns), error = 1.7e-41 

method nt tl t I6 tOtl tOtl6 El6 

Forward Euler 533 0.071 0.008 38.2 4.14 57.7% 

Heun 533 0.107 0.013 57.1 7.06 50.6% 

DuForl-Frankel 155 0.079 0.008 12.3 1.31 58.7% 

BDF(l) 167 0.237 0.084 39.8 14.00 17.8% 

BDF(2) 12 0.495 0.213 6.1 2.58 14.9% 

Crank-Nicolson 7 0.522 0.218 3.9 1.56 15.5% 

AD! 2lO 0.139 0.029 29.4 6.15 29.9% 

Hopscotch 112 0.064 O.OlO 7.3 1.16 39.7% 

Problem 1: 33 by 33 discretization (32 by 32 unknowns), error = 4.4e-5 

method nt tl t l6 tOtl tOtl6 El6 

Forward Euler 2475 0.271 0.021 671.8 51.6 81.4% 

Heun 2475 O.4lO 0.032 1014.7 80.3 79.0% 

DuFort-Frankel 615 0.298 0.023 183.9 14.0 82.0% 

BDF(l) 820 0.856 0.144 702.3 118.5 37.0% 

BDF(2) 25 2.288 0.463 58.0 11.6 31.1% 

Crank-Nicolson 13 2.402 0.476 32.0 6.3 32.0% 

AD! 955 0.532 0.066 508.8 62.9 50.5% 

Hopscotch 460 0.234 0.022 108.5 10.1 67.3% 

I Problem 1: 65 by 65 discretization (64 by 64 unknowns), error = LIe-51 

method nt tl t l6 totl tot l6 El6 

Forward Euler lO700 1.060 0.072 11349 775 91.5% 

Heun lO700 1.610 0.112 17234 1202 89.6% 

DuFort-Frankel 2400 1.163 0.079 2793 190 91.8% 

BDF(l) 3460 3.268 0.326 11309 1127 62.7% 

BDF(2) 50 8.901 1.004 448 50 55.6% 

Crank-Nicolson 25 9.340 1.045 237 26 56.1% 

AD! 3950 2.099 0.194 8295 768 67.5% 

Hopscotch 1800 0.893 0.071 1611 127 79.0% 
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Table 6.4: Timing results for test problem two (in seconds). 

I Problem 2: 17 by 17 discretization (15 by 15 unknowns), error = 1.7e-31 

method nt tl t l6 totl tot l6 El6 

Forward Euler 691 0.086 0.009 59.2 6.18 60.3% 

Heun 144 0.108 0.014 15.6 2.00 48.9% 

DuFort-Frankel 71 0.091 0.009 6.5 0.67 60.8% 

BDF(l) 687 0.178 0.054 122.5 36.89 20.8% 

BDF(2) 52 0.220 0.099 11.5 5.17 13.9% 

Crank-Nicolson 26 0.233 0.102 6.2 2.65 14.6% 

AD! 31 0.167 0.033 5.3 1.05 31.6% 

Hopscotch 64 0.062 0.010 4.1 0.66 38.6% 

I Problem 2: 33 by 33 discretization (31 by 31 unknowns), error = 4.3e-4 I 
method nt tl t l6 tOtl tOtl6 El6 

Forward Euler 2735 0.343 0.026 938.5 71.8 81.7% 

Heun 735 0.432 0.035 317.7 25.8 77.0% 

DuFort-Frankel 280 0.368 0.028 103.1 7.8 82.6% 

BDF(l) 2725 0.716 0.102 1952.6 279.1 43.7% 

BDF(2) 104 0.858 0.192 89.5 19.9 28.0% 

Crank-Nicolson 52 0.913 0.197 48.0 10.2 29.2% 

AD! 61 0.669 0.079 41.3 4.9 53.0% 

Hopscotch 211 0.242 0.022 51.3 4.7 68.0% 

I Problem 2: 65 by 65 discretization (63 by 63 unknowns), error = 1.1e-4 I 
method nt tl t l6 tOtl tOtl6 El6 

Forward Euler 10850 1.382 0.095 14999 1029 91.1% 

Heun 3365 1.748 0.123 5882 415 88.5% 

DuFort-Frankel 1103 1.484 0.101 1638 112 91.6% 

BDF(l) 10800 2.902 0.263 31346 2838 69.0% 

BDF(2) 207 3.421 0.431 709 89 49.6% 

Crank-Nicolson 104 3.649 0.448 382 47 51.0% 

AD! 122 2.705 0.234 332 29 72.2% 

Hopscotch 800 0.957 0.072 766 58 83.1% 
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Table 6.5: Timing results for test problem three (in seconds). 

I Problem 3: 17 by 17 discretization (16 by 16 unknowns), error = 8.5e-4! 

method nc tl t I6 totl totI6 EI6 

Forward Euler 5535 0.216 0.016 1196.8 90.90 82.3% 

Heun 5535 0.241 0.021 1336.7 116.71 71.6% 

DuFort-Frankel 299 0.222 0.017 66.6 5.07 82.2% 

BDF(1) 142 0.309 0.066 44.2 9.35 29.5% 

BDF(2) 13 0.476 0.191 6.5 2.35 16.1% 

Crank-Nicolson 30 0.503 0.204 15.6 6.17 15.8% 

ADI 82 0.286 0.039 23.9 3.22 46.4% 

Hopscotch 209 0.129 0.014 27.4 2.93 58.5% 

Problem 3: 33 by 33 discretization (32 by 32 unknowns), error = 2.1e-4 

method nc tl t I6 tOtl totI6 EI6 

Forward Euler 24000 0.846 0.057 20315.2 1357.7 93.5% 

Heun 24000 0.942 0.066 22603.1 1572.6 89.8% 

DuFort-frankel 1190 0.869 0.058 1035.4 69.0 93.8% 

BDF(1) 540 1.178 0.133 637.3 71.9 55.4% 

BDF(2) 25 1.776 0.367 45.7 9.3 30.7% 

Crank-Nicolson 36 1.856 0.387 68.7 14.1 30.5% 

ADI 165 1.118 0.102 186.1 17.0 68.3% 

Hopscotch 840 0.497 0.038 418.8 32.0 81.8% 

I Problem 3: 65 by 65 discretization (64 by 64 unknowns), error = 5.0e-5 ! 

method nc tl t I6 tOtl tOtI6 EI6 

Forward Euler 104000 3.359 0.217 349000 22548 96.8% 

Heun 104000 3.740 0.246 389000 25546 95.1% 

DuFort-Frankel 4750 3.447 0.222 16377 1055 97.0% 

BDF(1) 2140 4.615 0.366 9880 783 78.9% 

BDF(2) 48 6.906 0.828 337 40 52.5% 

Crank-Nicolson 50 7.192 0.865 367 44 52.5% 

ADI 330 4.436 0.342 1471 113 81.1% 

Hopscotch 3360 1.953 0.134 6568 450 91.3% 
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Chapter 7 

Computational Complexity of 
Multigrid Waveform Relaxation 

... we give below one-equation or one-line descriptions of a variety of computers. 

C(CRAY - 1) = IV12[12E~2 - 16M50]r; 12Ep = {3Fp64,9B} 

C(CY BER - 205) = Iv12[4Fp64 - 512M~g:'32) 
C(HY P ERCU BE) = 1(246); 6 = C(2 * 1 NT EL8080) 

More complex structures may require the extension of the formula into the 
second dimension, in the manner of a structural chemical formula. 

-R.W. Hockney and C.R. Jesshope, [56}. 

We detail the arithmetic complexity of the multigrid waveform relaxation method. 
It is shown that the complexity is comparable to that of the best sequential solvers in 
the case of initial boundary value problems. It is better by a factor of 2.5 in the case of 
time-periodic problems. The communication complexity of a parallel implementation 
based on a spatial grid partitioning approach is analysed and compared to that of a 
similar implementation of standard initial value and time-periodic solvers. Finally, we 
discuss the vectorization of the waveform relaxation method. 

7.1 Introduction 

A theoretical analysis of multigrid waveform relaxation was given in chapters 3 and 
4. It was shown that the method is a rapidly converging iterative procedure. We also 
compared its performance to the performance of standard waveform relaxation methods 
(Gauss-Seidel, Jacobi, and SOR). In order to compute the solution to a parabolic partial 
differential equation multigrid waveform relaxation requires only a marginal fraction of 
the work of the standard waveform relaxation methods. In the current chapter we shall 
complete the picture, and motivate the real computational effectiveness of multigrid 
waveform relaxation. That is, we shall analyse its computational complexity, and 
compare our findings to similar complexity estimates for standard parabolic solvers. 
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We restrict the analysis to the case where constant global time-steps are used. We 
do not consider the exploitation of multi-rate integration. If we did, it would be very 
difficult to derive general quantitative results. Indeed, the effectiveness of multi-rate 
integration strongly depends on the characteristics of the partial differential equation, 
and in particular on the smoothness of the solution. We shall also assume that the 
standard solvers use similar time-steps and similar time-discretization formulae as the 
waveform relaxation methods. That is to say, they derive a solution on the same 
space-time grid. Such a grid is displayed in figure 7.1. It can be interpreted as a set of 
discretized functions located at the grid points of the discrete spatial domain. This is 
the viewpoint taken by the waveform relaxation methods. Or, it can be interpreted as 
a sequence of spatial grids defined on successive time-levels. This corresponds to the 
viewpoint of the time-marching schemes, and was pictured in figure 1.1, chapter 1. 

y 

. ' . 

: ~~: .:::.: .• ::' ... : •... ::.: .; •.. :' .,:: ',:::; :ii x 

':: , , " 

~ H : : ~ 

••• . ' ••• " 

.. 
,. .. 
, . .. 

.' .' 

Figure 7.1 : A space-time grid, considered as a set of vectors located at the grid points 
of the discrete spatial mesh. 

We determine the arithmetic complexity of the initial value and time-periodic wave­
form methods in section 7.2. The parallel implementation and communication com­
plexityare discussed in section 7.3. Finally, vectorization is dealt with in section 7.4. 

7.2 Arithmetic complexity 

7.2.1 Initial boundary value problems 

The basic operation in the waveform relaxation smoothing step corresponds to calcu­
lating the solution to a linear ordinary differential equation in a single unknown, 

dx 
dt + v x = w, x(O) = xo . (7.1) 

x is an unknown function located at a grid point . The right-hand side w is a linear 
combination of known functions, either located at the same grid point as x, or at 
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neighbouring grid points. v is derived from the discretization of the PDE coefficients. 
Depending on the problem, v may either be a constant, or a function of time. 

With the use of a linear multistep method for time-discretization, (7.1) becomes, 

~ E:=o Q;Zn-lo+; + E:=o {3;vn-Io+;Zn-lo+; = E:=o {3;wn -Ic+;, n = 0,1,2,. . . (7.2) 

We assume that k starting values (denoted by negative indices) are given. (7.2) can be 
rewritten into a k-th order recurrence relation, and used for step-by-step determination 
of the discrete solution. For instance, with the trapezoidal rule we get the following 
first order recurrence, 

. h I-Vn_lT/2 d (Wn +Wn-l)T/2 
Zn = a..Zn-l + Tn Wit a.. = / an Tn = /. 

1 + VnT 2 1 + VnT 2 
(7.3) 

The remaining discrete-time multigrid waveform relaxation operators (restriction, 
prolongation, correction, and defect calculation) are linear combination operators which 
operate on discretized functions, i.e., on vectors. For instance, the discrete-time equiv­
alent to the continuous-time full weighting formula is given by, 

[ 
1 2 1 1 H 1 h 

unIJ = - 2 4 2 un,'," n = 0,1,2" .. . . 16 .. 
121 

(7.4) 

Before we can estimate the cost of a method, we have to specify precisely what 
problems that we consider. Indeed, the number of operations strongly depends on the 
characteristics of the differential equation, on the discretization, and on the solution 
procedure. For the analysis below we consider two-dimensional parabolic PDEs with 
variable but time-independent coefficients. Spatial discretization is by standard 5-
point or 9-point stencils, and time-discretization is by the trapezoidal rule or Crank­
Nicolson method. We use standard multigrid parameters: multi-colour smoothing 
(red/black in the case of 5-point stencils, 4-colour in the case of 9-point stencils), 
bilinear interpolation and full-weighting. The hierarchy of grids is derived by standard 
coarsening from a regular fine grid Oh., 

We assume that the cost of solving the coarse grid (Oho) problem can be neglected. 

Floating point operation counts 

The number of floating point operations (flops) involved in each discrete-time multigrid 
waveform relaxation operation is proportional to the number of grid points in the space­
time grid. Let the proportionality constants be denoted by Cs (smoothing), CD (defect 
calculation), CR (restriction), Cp (prolongation), and Co (correction). A count of the 
number of operations leads to the numbers specified in table 7.1 1. 

IThese values correspond to the operators as they are implemented in our programs used for getting 
the timing results in chapter 8. The implementation is fairly optimized. 
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Table 7.1: Number of floating point operations (averaged over the number of grid 
points) for discrete-time multigrid waveform relaxation operators. 

I stencil I Cs I CD I CR I Cp I Cc I 
5-point 12 4 1.5 1.5 1 

9-point 20 8 2.25 1.5 1 

By way of illustration we shall determine the numbers for the smoothing and the 
defect calculation steps. The calculation of the discrete function w in (7.1) requires 8 
flops for a 5-point stencil and 16 flops for 9-point stencil (per grid point). Calculation 
of each r" in (7.3) requires 2 flops. More precisely, it requires one addition and one 
multiplication (by the factor (r/2)/(1 + v"r/2)). This factor is a constant and has to 
be calculated only once, since v is a constant. (The PDE coefficients do not depend 
on t.) Note that also a" is a constant. Two additional flops are required for each :z:". 
Summing up leads to the counts 12 and 20 for Cs. We shall now calculate CD. In the 
case of a 5-point stencil the defect to be calculated after a red/black smoothing step is 
zero at half the number of the grid points. The non-zero defects can be calculated at a 
cost of 8 flops per grid point. This leads to an average cost of 4 flops (CD =4). In the 
case of a 9-point stencil, the defect is zero in one fourth of the grid points only. The 
determination of the non-zero defects requires 7 flops at one half of the grid points, 
and 15 flops at the remaining one fourth. In addition, at 3/4 of the grid points two 
successive smoothing iterates are to be subtracted. This leads to an average of 8 flops. 

Given the above cost factors one can easily estimate the cost of the multigrid 
algorithm, based on the formulae 4.3.6 and 5.3.1 in the book by Hackbusch [44]. Assume 
the multigrid algorithm performs a total of aWR V-(I,I)-cycles, aWR W(I,I)-cycles, 
or 1 full multigrid waveform cycle using 1 V(I,I)-cycle at each grid level. The average 
cost per grid point on the fine (space-time) grid is determined as follows2 • 

Cv ~ 4/3 (2Cs + CD + CR + Cp + Cc) aWR ~ 43 aWR (5pt) 

Cw ~ 2 (2CS+CD+CR +Cp +CC ) aWR ~ 64 aWR (5pt) 

CFMG 16/9 (2Cs + CD + CR + CP + Cc) 57 (5pt) 

CFMG ~ 16/9 (2Cs + CD + CR + Cp + Cc) ~ 94 (9pt) 

Comparison with standard time-stepping 

In each time-step with a time-marching scheme a discretized elliptic partial differential 
equation is solved by using multigrid. The cost of the elliptic problem set-up, i.e., right­
hand side vector calculation, is proportional to the number of fine-grid grid points at 
the time-level. (Note that the coefficient matrix has to be calculated only once.) The 
value of the proportionality constant (CE) is given in table 7.2. This table also displays 
the values of proportionality constants for the (elliptic) multigrid operators. 

2We neglect the costs of the full multigrid interpolation and of the coarse grid solver. 

lucianoaraki@yahoo.com.br



7.2. ARITHMETIC COMPLEXITY 187 

Table 7.2: Number of floating point operations (averaged over the number of grid 
points) for Crank-Nicolson time-stepping multigrid operators. 

I stencil I CE I Cs I CD I CR I Cp I Ce I 
5-point 14 9 5 1.5 1.5 1 

9-point 22 17 13.5 2.25 1.5 1 

For simplicity's sake we consider a Crank-Nicolson method which applies the same 
number of multigrid cycles at each time-level (e.g., one FMG step, or two V(1,1)­
cycles). Under this assumption (which is not unrealistic) we can derive estimates for 
the total number of floating point operations executed in the algorithm. Obviously, it 
is equal to the cost per time-level multiplied by the number of time-levels. Below we 
consider the time-stepping method with use of OE elliptic multigrid V(1,1)- or W(l,l)­
cycles applied to an initial approximation equal to the value obtained in the previous 
time-step, and with use of full multigrid with 1 V(l,l)-cycle on each grid level. The 
numbers given are the average cost per grid point on the whole of the space-time grid. 

Cv 

Cw CE + 2 (2Cs + CD + CR + Cp + Ce ) 0E 

CFMG ~ CE + 16/9 (2Cs + CD + CR + Cp + Ce) 

CFMG ~ CE + 16/9 (2Cs + CD + CR + Cp + Ce ) 

14 + 360E (5pt) 

14+540E (5pt) 

~ 62 

115 

(5pt) 

(9pt) 

It will be illustrated in chapter 8 that the use of the full multigrid procedure in 
both the waveform relaxation and the Crank-Nicolson method often leads to an ap­
proximation with algebraic error smaller than the discretization error. In that case 
additional iterations do not reduce the actual error any further. When the use of one 
full multigrid step is satisfactory, waveform relaxation is about 10% to 20% faster than 
the Crank-Nicolson method. Note, however, that the estimates do not include the cost 
of PDE-coefficient and PDE right-hand side evaluation. This cost does not depend on 
the choice of the particular algorithm (waveform or time-stepping) and may constitute 
an important fraction of the total computation time. The relative difference in exe­
cution time between waveform relaxation and time-stepping will correspondingly be 
diminished. 

When a small algebraic error is wanted, or when pure multigrid cycling is used, 
Crank-Nicolson will be more efficient. The convergence factor of Crank-Nicolson is 
usually smaller, as it corresponds to the time-level convergence factor of the first time­
level in the multigrid waveform relaxation method. In addition, using information from 
previous time-levels, good initial approximations may be obtained with small initial 
error. As such we can expect OE to be smaller than 0WR. 

7.2.2 Time-periodic problems 

The only difference between the initial value and the time-periodic waveform algorithms 
is the ODE solver used in the smoother. While an initial value problem is to be solved 
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in the former case, the latter requires the solution of a boundary value problem, 

dx 
dt + vx = W, x(O) = x(T) . (7.5) 

This equation can be solved with standard techniques such as shooting, discretization 
or dynamic simulation. In the case of discretization with a linear multistep method 
and a constant time-increment T = T/N, we get a linear system of N equations of the 
form (7.2). (As before, we extend the discrete solution by N-periodicity.) 

In the sequel, we shall consider the special case of a discretization by the trapezoidal 
rule. Then, we get the equations, 

an,n-lXn-l + an,nxn = bn, n = 0, ... ,N -1 , 

with an,n-l = -~ + Vn-l, an,n = ~ + Vn, bn = Wn-l + Wn . 

With x:= [Xo Xl ... XN_l)t, b := [bo bl ..• bN_l)t, and aO,N-l := aO,-l, these equations 
can be assembled into the form Ax = b, with 

aO,O ao,N-l 

al,O al,l 

A = 
a2,l a2,2 

aN-l,N-2 aN-l,N-l 

This is a bidiagonal circulant matrix, if v is a constant. In the case of a k-step 
multistep method the resulting matrix will be of similar form, yet with k+l diagonals. 
The particular matrix displayed above allows a straightforward LU-decomposition, i.e., 
A= L.U, with L and U having the format shown below. 

The coefficients Ii, Ui and ei can be calculated as follows. 

{ 
i = 0 : Uo = ao,o; eo = aO,N-l 

i = 1, ... , N -2 : Ii = ai,i-t!ui-l; Ui' = ai,i; ei = -liei-l 

i = N -1 : IN-l = aN-l,N-2/UN-2; UN-l = aN-l,N-l - IN-leN-2 

In order to solve the system A x = b, the LU-decomposition step is followed by the usual 
two-stage back-substitution step, i.e., solve L y = b and then U x = y. The necessary 
arithmetic is detailed below. 

yo=bo; Yi=bi-liYi-l, i=I, ... ,N-l 

XN-l = YN-t!UN-l; Xi = (Yi - eiXN-l)/Ui, i = 0, ... , N - 2 

lucianoaraki@yahoo.com.br



7.2. ARITHMETIC COMPLEXITY 189 

A count of the floating-point operations reveals that the complexity of solving the 
system is about 7 N if we include the cost of the LU-decomposition, and 5N if we 
don't. When v is a constant, these counts become 6N and 5N. However, this is only 
the cost of the core of the ODE-integrator. If the other operations are taken into 
account (construction of the right-hand side w, of the "A"-matrix coefficients and of 
the right-hand side "b"), we get a total of 14N (or 15 with LU-decomposition). This 
leads to the constant Cs = 14 (or, Os = 15). This should be compared with the value 
Os=12 derived in the previous section. 

These counts are for five-point stencils and variable but time-independent PDE 
coefficients. In the case of more general problems the counts for the time-periodic and 
for the initial value waveform relaxation smoothers are relatively even closer. 

Finally, if the costs of restriction, prolongation, correction, defect calculation, ini­
tialization, PDE-coefficient and right-hand side evaluation (which are method indepen­
dent) are taken into account, we may safely state that the cost of one time-periodic 
multigrid waveform cycle is (almost) equal to that of an initial value cycle. Since the 
convergence properties of both algorithms are very similar, we can conclude that the 
cost of solving a time-periodic problem is (almost) equal to that of solving the corre­
sponding initial value problem. This conclusion holds also for other time-discretizations 
(e.g., more general multistep methods), as long as a method is used that solves (7.5) 
at a cost similar to that of solving only a few initial value problems. 

Comparison with standard time-periodic solvers 

We already argumented in chapter 4 that the cost of solving a time-periodic problem 
by dynamic simulation, by global discretization and the use of a direct sparse solver, 
or by shooting is substantially higher than the cost of solving an initial boundary value 
problem. It remains to consider the multigrid method of the second kind. 

To this end we introduce some additional notation. Let Wi(IBVP) and Wi(TPP) 
denote the cost of solving an initial boundary value problem and a time-periodic prob­
lem on nh;. Let Ot.M be the number of cycles of the multigrid method of the second 
kind required for solving a time-periodic problem on nk •. In the multigrid method of 
the second kind several initial boundary value problems are to be solved at each grid 
level (these are the calculations of type yh; := Th;yh; + Kki in algorithm 4.1). Since 
the algorithm is based on a W -cycle, every grid nh; is visited precisely 2"-i times in a 
descending W-cycle branch during each cycle on nk •. In half of these visits two initial 
boundary value problems are to be solved (one in the smoothing and one in the defect 
calculation step). In the other half the problem in the smoothing step can be skipped. 
Indeed, when the initial condition is zero, the smoothing step simplifies to yh; := Kh;. 
The total number of initial boundary problems, ni, to be solved on grid nh; (O<i<k) 
in one cycle of the multigrid method of the second kind on nk., is therefore equal to 

n · - ~ 2"-i 
• - 2 . (7.6) 

On nho a time-periodic problem is to be solved. This is to be done 2"-1 times. 
If in the multigrid method of the second kind a time-discretization method is used 

with sufficient smoothing behaviour, e.g. a backward differentiation formula, the num­
ber of time-steps may be decreased in going from one grid level to a coarser one. In 
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our implementation we have considered the BDF(2) formula with b.t = const. h. That 
is, the number of time-steps is halved from one grid level to the next. Let nt,i denote 
the number of time-levels on grid {lh;. Then, 

nl,i = 2i-A:nt,A: (0 ~ i ~ k) . (7.7) 

Consequently, the total number of grid points (in space and time) differs by a factor 
of (about) 8 between successive grids. From this, it follows that we may take 

Wi(IBVP) = 8i -A: WA:(IBVP) (0 ~ i ~ k) . (7.8) 

when an algorithm is used the cost of which is proportional to the number of grid 
points. We can now calculate the cost of the multigrid method of the second kind. In 
the derivation below we neglect the costs of restriction, prolongation and correction, 
and the cost of the coarse grid solver 3. 

WA:(TPP) = (2 WA:(IBVP) + E~':lniWi(IBVP)) aM 

(2 + E~;l! 2A:-i 8i-A: ) WA:(I BV P) aM 

( ~ - 2· 4-k ) Wk(IBVP) aM 

~ 2.5 Wk(I BV P) aM 

Experience shows that aM = 1 is often sufficient to solve the time-periodic problem 
to discretization accuracy. In that case, the cost of the multigrid method of the second 
kind is about 2.5 times the cost of solving a single initial boundary value problem. 
This is substantially better than the other standard time-periodic solvers. Yet, it is 2.5 
times slower than the full multigrid time-periodic waveform relaxation method, which 
calculates the solution to the time-periodic problem to similar accuracy. 

7.S Parallel implementation 

7.3.1 Grid partitioning 

The parallelization of the multigrid waveform relaxation method is based on an iden­
tical grid partitioning strategy as discussed in chapter 6. The spatial grid is divided 
into subgrids which are distributed over the processors. Each processor has the update 
right for all the grid point functions which are located in its sub domain. As such, 
each processor is in fact responsible for doing the calculations on a boz of grid points 
of the space-time grid. Note that even for relatively coarse spatial meshes the num­
ber of space-time grid points per processor (and, associated with this, the arithmetic 
complexity per processor) may be fairly large. 

When function values at neighbouring grid points are needed, they are obtained 
by message passing. The communication structures are identical to the ones used in 
the parallelization of the elliptic multigrid method, see chapter 6. The only difference 
is the length of each message. Instead of transferring sets of scalars, sets of discrete 
functions are moved from one processor to another. 

3If we include the cost of the coarse grid solver and assume that Wo(T P P) = Wo(l BV P) then we 
get W~(TPP) = (~ - ~4-·)W.(lBV P)aM. 
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7.3.2 Communication complexity 

Initial boundary value problem solvers 

Let Mi denote the total number of messages sent by each processor in one multigrid 
cycle (V, W, FMG) applied to an elliptic problem on grid nla; (e.g., at one time-level of 
the space-time grid). If Mi differs from processor to processor, we take the maximum 
value. Let Li denote the corresponding total message length. We set T~(I BV P) and 
T~(I BV P) to denote the total number of messages and the total message length in 
the algorithm as a whole for solving a parabolic problem on nla;. 

The communication complexity of the time-stepping methods is easy to determine. 
It equals the complexity per time-level (Mias and LiaS) multiplied by the number 
of time-levels nt,i' The number of messages sent in one multigrid waveform relazation 
cycle is precisely equal to the number of messages sent in one elliptic multigrid cycle. 
The length of the messages in one waveform cycle is equal to the length in one elliptic 
cycle multiplied by nt,i, the length of a discretized function. The cost of both methods 
for solving a problem on the fine grid, nn., is reported in table 7.3. 

Table 7.3: Communication complexity of initial boundary value problem solvers 

time-stepping algorithm multigrid waveform relaxation 

TM,.(IBVP) nt,,.M,.as M,.awR 
TL,.(IBVP) nt,,.L,.as nt,,.L,.awR 

In the case of the full multigrid approach a value of 1 for as and aWR is often 
satisfactory. The total message length in both solvers is then identical, whereas the 
number of messages differs by a factor of nt,'" 

Time-periodic problem solvers 

The communication complexity of a time-periodic multigrid waveform relaxation cycle 
is identical to that of an initial value multigrid waveform relaxation cycle. The commu­
nication cost is reported in table 7.4, where we have used aWR to denote the number 
of time-periodic multigrid waveform relaxation cycles. 

The derivation of the communication complexity of the multigrid method of the 
second kind is much more involved. Some further assumptions are helpful. We assume 
in particular that the length of the messages in each of the multigrid operators is pro­
portional to I/h, and that the number of messages is independent of h. These are very 
natural assumptions for 2D problems. In addition, we assume that no communication 
is required for solving the coarse grid problem, i.e., Mo=O and Lo=O. (For instance, we 
assume that the coarse problem is solved on a single processor, and we neglect certain 
anomalies on the very coarse grids.) Furthermore, we restrict the analysis to multigrid 
V-cycles. This leads to, 

(7.9) 
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The total message length per cycle can be determined by considering the following 
second order recurrence relation, Li+1 - Li = 2 (Li - Li- 1) or Li+1 - 3Li + 2Li- 1 = 0 . 
Its solution, satisfying Lo = 0, is easily found to be, 

2i -1 
Li = -k--Lk (~ 2i - k Lk if i and k are sufficiently large) . 

2 -1 
(7.10) 

The total length TLk(T P P) and the total number of messages TMk(T P P) for 
solving a time-periodic problem by aM cycles of the multigrid method of the second 
kind can now be calculated. 

TMk(T P P) = (2 TMk(I BV P) + L:~':-~ ni TM;(I BV P)) aM 

= (2 nt,k Mk aE + L:~':-~ ni nt,i Mi aE) aM 

(2 M + "k-1 32k- i 2i- k i M ) = nt,k k aE L..i=O"2 nt,k k k aE aM 

= (2 + L:~~ ~ t) nt,k Mk aE aM 

5+3k M = 4 nt,k k aE aM 

TLk(TPP) = (2 TLk(IBVP) + L::':-~ ni TLi(IBVP)) aM 

(2 L "k-1 L) = nt,k k aE + L..i=O ni nt,i i aE aM 

= (2 nt,k Lk aE + "k-1 32k - i 2i - k 2'_1 L ) L...=o "2 nt,k 2"-1 k aE aM 

(2 + "k-1 3 2'-1) L = L..i=O "2 2"-1 nl,k k aE aM 

= (2 + ~ (1 - 2"~1)) nl,k Lk aE aM 

~ ~ nt,k Lk aE aM 

Because of its importance in actual implementations we also derive the communi­
cation complexity of the full multigrid approach. Note that no time-coarsening is used 
in the full multigrid waveform relaxation method. The length of each vector (function) 
is independent of the grid level and equal to nt,k. 

TMk(T P P) = L::=o Mi = L::=o tMk = k~l Mk 

TLk(T P P) = L::=o nl,k Li = (2 - 2"~1) nl,k Lk ~ 2 nt,k Lk 

(7.11 ) 

(7.12) 

The results are collected in table 7.4. Note that the communication complexity 
of the periodic multigrid waveform relaxation algorithm is much smaller than that of 
the multigrid method of the second kind. Consider e.g. the following typical set of 
parameters, taken from one of the case studies in chapter 8: k=4, nt,4 = 32, aE=2, 
aM=1. With these parameters the number of messages required by the multigrid 
method of the second kind is larger than that of the full multigrid waveform method 
by a factor of more than 100. In addition, the length differs by a factor of 3.5. 
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Table 7.4: Communication complexity of time-periodic problem solvers. 

multigrid second kind waveform multigrid waveform fmg 

TM,,(TPP) (5 + 3k)/4nt."M"OEOM M"awR (k + 1)/2M" 

TL,,(TPP) 7/2n,."L"OEOM n,."L" aWR 2nt."L" 

7.4 Vectorization 

The use of vector processors for executing the multigrid waveform relaxation algorithm 
results in an important reduction in computing time, as we first illustrated in [134]. 
Indeed, as mentioned in section 7.2 most waveform relaxation operators are linear 
combination operators which operate on discretized functions or vectors. Consequently, 
waveform relaxation methods naturally vectorize in the time-direction. This contrasts 
to the standard vectorization approach, which vectorizes across space. (The vectors 
contain values of grid points that belong to the same time-level). 

With use of waveform vectorization the vector speedup of the arithmetic strongly 
depends on the number of time-levels. It is virtually independent of the size of the 
spatial grid, the number of multigrid levels, the multigrid cycle used, and the num­
ber of processors. This is verified by extensive timing experiments obtained on an 
Intel iPSC/2 VX hypercube, reported in chapter 8. This grid size independence con­
trasts sharply to standard multigrid vectorization results, see e.g. McBryan et al. [81] 
which discusses vectorized multigrid implementations on the Intel hypercube and the 
SUPRENUM, and Lemke [76], which deals with multigrid on vector-supercomputers, 
CDC 205, CRAY X-MP and Fujitsu VP200. Standard vectorization does not lead to 
any speedup unless the number of points per processor is very large. The use of stan­
dard spatial vectorization is therefore of limited use on a large-scale parallel processor. 

A second advantage of waveform vectorization is the ease of implementation. As 
the vector operations at a grid point involve the vectors at neighbouring grid points 
only, no complicated grid restructuring (as in the standard approach) is required. 

The only operation in the waveform relaxation method which is not perfectly vec­
torizable is the core of the ODE integrator used in the smoothing step. It consists of 
one first order recurrence relation in the case of an initial boundary value problem, 
and two first order recurrence relations in the case of a time-periodic problem. Since 
these recurrence relations are inherently sequential they diminish the achievable vector 
speedup. We can easily calculate their influence on the highest possible gain through 
vectorization. The latter value is expressed by Amdahl's law as the inverse of the 
sequential fraction, or, 

S _ nvector + n.equenlial 
vector - • 

n .equenlial 

Here, nveclor denotes the total number of operations that can be executed in vector­
mode. The remaining number of operations is given by n.equential. Assume, for instance, 
that the non-vectorizable fraction of the algorithm is about 5 to 10%. By Amdahl's law 
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Svector is then a value between 10 and 20. The actual speedup of an implementation 
will be smaller due to the finite cost of a vector operation, due to vector-pipe startup 
costs, and various other sequential overheads. 

It can be seen that the cost of the recurrence relation makes out only a small fraction 
of the total computation cost. By way of illustration we consider again the Crank­
Nicolson discretization. The number of floating operations involved in the recurrence 
can be counted. It equals 2 (IBVP) or 3 (TPP) per grid point. This should be 
compared to the number of flops required by the vectorizable parts of the algorithms. 
For instance, with the values of table 7.1 the non-vectorizable fraction is given by 4/32 
(5pt, IBVP) or 4/53 (9pt, IBVP) for any cycle with two smoothing steps. Note that 
most of the initialization operations, such as the PDE right-hand side evaluation, are 
perfectly vectorizable. They further decrease the sequential fraction. 

Finally, we would like to mention that the vector speedup can be improved even 
further. For instance, one could vectorize the recurrence relation by techniques based 
on cyclic reduction. One could also increase the vector lengths by combining the 
waveform vectorization with spatial vectorization. 

7.5 Concluding remarks 

We have shown that the arithmetic complexity of the waveform relaxation method for 
solving an initial boundary value problem is essentially similar to that of the standard 
time-stepping schemes. Waveform relaxation for solving time-periodic problems is 
substantially faster than any other method. These statements are true as long as the 
multigrid acceleration leads to a rapidly convergent waveform relaxation algorithm. We 
may have to reconsider the ranking of the methods when the multigrid acceleration is 
not as successful, e.g. in the case of strongly anisotropic elliptic operators. 

Waveform relaxation generally leads to much higher parallel efficiencies than the 
parallel implementation of standard techniques. This is due to the much lower number 
of messages and, correspondingly, the tremendous reduction in communication startup 
costs. As such, waveform relaxation will especially be successful for use on parallel 
machines that are characterized by a high value of t.tartup (see chapter 5), the Intel 
machine being a notorious example. We may also mention that waveform relaxation 
allows a better exploitation of communication with calculation overlap. This is due to 
the large message lengths. (The message lengths are equal to the message lengths in 
standard time-stepping methods multiplied by the number of time-levels.) 

Finally, we would like to direct the reader's attention to a paper by P. Worley [151]. 
He suggests using a parallelized cyclic reduction method for evaluating the recurrence 
relations in the ODE solvers. This would lead to a space-time grid partitioning in 
both the space- and the time-direction, and would allow efficient implementation of 
multigrid waveform relaxation on truly massively parallel systems. 

lucianoaraki@yahoo.com.br



Chapter 8 

Case Studies 

Suppose you want to teach the "cat" concept to a very young child. 
Do you explain that a cat is a relatively small, primarily carnivorous mammal 

with retractile claws, a distinctive sonic output, etc.? I bet not. 
You probably show the kid a lot of different cats, saying "kitty" each time, 

until it gets the idea. To put it more generally, 
generalizations are best made by abstraction from experience. 

-R.P. Boas, "Can we make mathematics intelligible" 
(Am. Math. Monthly 10, p. 727, Dec. 1981). 

Although their work differs from the experimental research associated with, say, test 
tubes and noxious chemicals, mathematicians, like chemists and other researchers, 

often collect piles of data - whether prime numbers or diagrams of knots - before they 
can begin to extract and abstract the principles that account for their observations. 

-I. Peterson, "Searching for new mathematics", 
(SIAM Review Vol. 33, No.1, pp. 37-42, March 1991). 

We present a number of non-trivial, linear and nonlinear examples of initial bound­
ary value and time-periodic parabolic partial differential equations. Each problem is 
solved with the appropriate variant of the multigrid waveform relaxation method as 
well as with "the best" standard parabolic solver. The differences in performance are 
explained and the theoretical results obtained in the previous chapters are illustrated. 
It is shown that the waveform relaxation methods are competitive on sequential pro­
cessors, and that they outperform the standard techniques on parallel machines. In 
particular we illustrate that on a 16-processor vector hypercube waveform relaxation 
can be faster than any of the standard approaches by a factor of ten up to forty. 

8.1 Introduction 

In the previous chapter we analysed the parallel efficiency of the waveform relaxation 
method and we discussed the potential for vectorization. It was evidenced that the 
use of waveform relaxation generally leads to higher parallel and vector speedups than 
the use of the corresponding standard time-marching methods. High processor usages, 
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however, are not what the practitioner of numerical simulation aims at. Instead, he 
wants to obtain the solution to his particular problem in as short a time as possible. 
Consequently, numerical characteristics have to be taken into account when evaluat­
ing the waveform approach as a means for solving partial differential equations on 
sequential and on parallel computers. 

In the present chapter we intend to complete the view of the waveform methods by 
exemplifying their numerical performance. This is done by means of a careful selection 
of case studies which are chosen so as to illustrate the wide applicability of the methods. 
The numerical results allow to verify a number of properties previously mentioned or 
analysed, such as the sequential and parallel complexities, the effects of linearization 
and windowing, the speedup due to vectorization, and so on. The main emphasis will 
be put on the comparison of the waveform relaxation algorithms with the standard 
parabolic problem solvers. To this end we have implemented for each problem class a 
good, if not the best, standard solution method. In particular, in the case of initial 
boundary value problems we compare the waveform approach with the Crank-Nicolson 
method; in the case of time-periodic problems, the comparison is with the multigrid 
method of the second kind and with the dynamic simulation method, see section 4.2. 

In the next two sections, we briefly talk about some important issues that were taken 
into account when implementing the programs, and we discuss the presentation of the 
results. Section 8.4 contains an extensive comparison of the linear initial boundary 
value solvers. Two examples are reported: one with and one without a cross deriva­
tive term; both have Dirichlet and mixed boundary conditions. Two nonlinear initial 
boundary value problems one of which is a system of equations are considered in section 
8.5. Section 8.6 deals with linear time-periodic equations, where the time-periodicity 
is either due to a time-periodic PDE right-hand side or due to a time-periodic bound­
ary condition. A nonlinear time-periodic system of two equations constitutes the final 
example and is given in section 8.7. We end in section 8.8 where we briefly discuss the 
class of problems that can be solved efficiently with waveform relaxation. 

8.2 Programming considerations 

In an experimental comparison one inevitably compares particular implementations on 
particular machines. A comparison of different algorithms is therefore bounded to fail 
unless the programs are very carefully implemented. The following precautions were 
taken to ensure the fairness of our study. 

• The programs are such that they solve exactly the same class of problems. For 
instance, all of our linear solvers are made to handle the class of linear second or­
der partial differential equations with variable but time-independent coefficients, 
on a two-dimensional rectangular domain with boundary conditions of Dirich­
let, mixed or periodic type. Note that the programs used for the comparison of 
the standard parabolic marching schemes in chapter 6 allow the more general 
time-dependent coefficient case . 

• We use a consistent programming style, with comparable optimizations and a sim­
ilar program complexity throughout. The code optimizations are the usual ones 
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that any programmer is expected to perform. Any unusual optimizations that 
are expected to be absent in a standard implementation are avoided. Sometimes, 
this results in a somewhat different implementation style for different algorithms. 
For instance, in a time-stepping method it is standard to evaluate the PDE right­
hand side time-level per time-level, although often some savings could be made if 
the right-hand side were evaluated for all time-levels simultaneously. The latter 
is the natural "standard" approach in a waveform relaxation context. 

• We compare codes that solve a same problem to a similar accuracy. To this end 
the same discretization techniques and parameters (time-step, spatial mesh size, 
etc.) are applied. We have shown in previous chapters that in that case waveform 
relaxation and time-stepping are merely two different techniques for solving the 
same system of equations. The two solutions are then identical, and the residual 
of approximate solutions may fairly be compared. 

Within the framework sketched above, we have tried to select for each method 
good and possibly optimal parameters. Some of these parameters must be selected 
depending on the particular hardware platform on which the programs are executed. 
For instance, the choice of when and how to agglomerate is highly machine- (and 
algorithm-) dependent. Other parameters have to do with the numerical characteristics 
of the methods, such as the type of multigrid cycle, the required number of cycles, the 
number of smoothing steps, and so on. It is very difficult, if not impossible, to determine 
a priori what selection will lead to the smallest execution time for solving a particular 
problem to a particular accuracy. This is a problem on a sequential machine, and it 
is even more problematic on a parallel processor. To do justice to each algorithm, we 
shall therefore always present results for several different parameter sets. As an added 
advantage, this will allow the reader to judge the sensitivity of the execution time and 
the accuracy with regard to the parameters. 

8.3 Representation of the results 

The results of the experiments are displayed in the figures of the following sections. 
Some of these figures show diagrams where the accuracy of an approximation is plotted 
versus the ezecution time needed for its computation. This "accuracy" is defined as 
follows. Let tt, tt~, and iI.~ denote respectively the true solution of the PDE, the exact 
solution of the discretized problem, and an approximation of the discrete solution. 
When tt is known, or when a very good approximation is available (e.g. obtained on a 
very fine mesh), the accuracy will be given by some norm of the error, tt - iI.~. E.g., 

(max. norm) 

(Eucl. norm) 

where the indices i,j, k run through each of the n", x nil x nt unknowns. n", and nil 
denote the number of unknowns along the x- and y-axis, and nt is the number of time­
steps. In the case of a time-periodic problem standard methods aim at finding the 
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solution at one time-level only, e.g., t = 0 or t = T. They solve a problem with no: X nil 
variables. In that case, the k-index should be deleted from the above formulae. 

When the true solution is not known, "accuracy" will either indicate the norm of 
the discrete residual, or the norm of the algebraic error. The former is obtained upon 
substitution of the approximation in the discrete set of equations. The latter is defined 
as the difference between the true discrete solution and the approximation, i.e., u~-ii.~. 

Finally, we want to explain how the results are presented. With the waveform 
relaxation method an initial approximation is defined along the whole time-interval 
and is iteratively updated by applying multigrid cycles. Each iterate achieves a certain 
accuracy and its computation requires a certain amount of computing time. Every 
such iterate is represented by an "o"-symbol in the diagrams. Successive iterates are 
connected by lines. These lines are annotated with, e.g., "WR, V{l,l) FMG", which 
signifies the use of waveform relaxation with V-cycles with one pre-smoothing and 
one post-smoothing step, and the full multigrid procedure to determine the initial 
approximation. When a constant initial profile is selected, equal to the value of the 
initial condition, the letters "FMG" are omitted. 

The results obtained with the standard ti~e-stepping schemes show up as discrete 
points. With each parameter set the solution is advanced time-step per time-step, 
in a total of t seconds. The resulting approximation is represented by a "+"-symbol 
at the coordinate (t,accuracy) in the diagram. The annotation is as follows. E.g., 
"CN, 2 V{l,l)" means the use of the Crank-Nicolson method, where the problem at 
each time-level is solved by applying 2 V{l,l)-cycles to an initial approximation. That 
initial approximation is either calculated by extrapolation of the solution at one or at 
two previous time-levels, or it is calculated by using the full multigrid method. In the 
latter case the letters "FMG" are added to the annotation. E.g., with "MGM 2nd, 
BDF(2), 1 V{l,l) FMG" we indicate the use of the multigrid method of the second kind; 
the time-integrations in the algorithm are performed by the second order backward 
differentiation method; in each time-step the initial approximation is determined by 
the full multigrid method and corrected by one V{l,l)-cycle. 

8.4 Linear initial boundary value problems 

8.4.1 Example 1 

Our first example is a linear problem with a cross derivative term, 

8u 82u 82u 82u 
8t = 8x2 +xY8x8y + 8y2 +f, (x,y) E [0,1] x [0,1], t E [0,0.5]. (8.1) 

This equation is supplemented with Dirichlet conditions on the north (N), east (E) and 
south (S) boundaries, and a Neumann condition on the boundary to the west (W), 

N: u{t,x, 1) = sin{5x + 1 + lOt) e-4t 

S: u{t, x, 0) = sin{5x + lOt) e-4t 

E: u{t, 1, y) = sin{5 + y + lOt) e-4t 

W: ~~(t,O,y) = 5cos{y + lOt) e-4t 

The function f{t,x,y) and the initial condition are such that the solution of (8.1) 
equals u{t,x,y) = sin{5x+y+1O) e-4t • 
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The problem will be solved for several grid sizes. The spatial mesh is always chosen 
equidistant and with equal mesh size, h, in x- and y-direction. Three values of h were 
considered, namely 1/16, 1/32 and 1/64. The time-step, T, is set to 0.01, independent 
of the spatial discretization. This leads to a vector length nt of 50. Because of the 
Neumann boundary condition, there is one more grid line with unknows parallel to the 
y-axis than there are parallel to the x-axis, see appendix A. Therefore, the values of 
n .. and nil are given by 16, 32, 64 and 15, 31, 63. Spatial discretization is done with 
second order central differences. This leads to a general nine-point stencil. 

We shall compare the performance of multigrid waveform relaxation with that of the 
Crank-Nicolson method. In both approaches the multigrid method uses a four-colour 
nine-point Gauss-Seidel smoother, standard coarsening down to a coarse grid with 
mesh size h = 1/2 (that is with n", = 2 and nil = 1), full-weighting restriction, bilinear 
interpolation and a coarse grid solver that performs two Gauss-Seidel iterations. In 
order to guarantee identical solutions the trapezoidal rule is used for time-integration 
in the waveform technique. The timing results are depicted in the graphs of figure 8.l. 
They were obtained on a 16-processor Intel iPSC/2-VX hypercube with vecto7'-nodes. 
Load distribution was performed by means of a two-dimensional partitioning with 4 
processors in each coordinate direction. Two sets of results are given for the waveform 
method. The solid line indicates timings obtained in scalar execution mode, while the 
dashed lines represent the results in vector mode. 

For the largest problem, an error of the order of the discretization error 1 is obtained 
with 4 WR V(l,l)-cycles or 3 WR F(l,l)-cycles. If full multigrid is used to determine 
the starting solution, only one additional V(l,l)- or F(l,l)-cycle is needed. In the 
Crank-Nicolson method, the initial approximation at each time-level is determined 
either by the full multigrid method, or as a linear extrapolation of the solution at two 
previous time-levels. In the former case only one additional cycle is needed at each 
grid level. In the latter case a fairly accurate initial approximation is also obtained and 
consequently two additional V(l,l)- or F(l,l)-cycles suffice to solve the linear system 
at each time step. For the h=1/16 discretization, a single V-cycle or F-cycle at each 
time-level turns out to be sufficient. rhis is due to the small time-step (too small 
compared to the spatial mesh size) the very smooth time behaviour of the solution and 
the use of the extrapolation procedure. Note that in practice it is difficult to know in 
advance how many cycles are needed at each time-level. One will therefore often do 
several cycles in excess, to be on the safe side, or use the full multigrid approach with 
one or two cycles on the fine grid. 2 

On the 16-processor vector hypercube, waveform relaxation turns out to be faster 
than the Crank-Nicolson method by a factor of about 7 (and even higher, up to a 
factor of 10, when the corresponding full multigrid approaches are compared). This is 
due to the smaller arithmetic complezity of the waveform method, its superior parallel 
characteristics and the use of vectorization. We shall briefly analyse each of these. 

1 Additional iterations do not reduce the actual error, u - u;, any further. They only reduce the 
algebraic error, u; - u; and the residual. 

2We refer to section 8.5 for two examples where the residual in each time-level is driven to zero by 
executing many multigrid cycles. 

lucianoaraki@yahoo.com.br



200 CHAPTER 8. CASE STUDIES 
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Figure 8.1: Example 1: comparison of Crank-Nicolson time-stepping and linear multi­
grid waveform relaxation, on 16 processors (solid lines: without vectorization, dashed 
lines: with vectorization). The horizontal dotted line indicates the discretization error, 
i.e., the error of the fully converged discrete solution 

lucianoaraki@yahoo.com.br



8.4. LINEAR INITIAL BOUNDARY VALUE PROBLEMS 201 

Table 8.1: Example 1: execution time, in seconds, of the full multigrid waveform 
relaxation method and of the Crank-Nicolson method with full multigrid solution of 
the linear problem at each time-level (resp. "A" and "b" in figure 8.1). 

n", = 16, nil = 15, nt = 50 n", = 32, nil = 31, nt = 50 

method 1 proc. 16 proc. S16 1 proc. 16 proc. S16 

Waveform Relaxation 9.53 1.91 5.0 36.00 4.30 8.4 

Crank-Nicolson 12.90 6.32 2.0 48.29 12.52 3.9 

Table 8.2: Example 1: execution time, in seconds, of multigrid waveform relaxation 
(three V(I,I)-cycles) and of Crank-Nicolson with three V(I,I)-cycles at each time-level. 

n", = 16, n ll = 15, nt = 50 n", = 32, n ll = 31, nt = 50 

method 1 proc. 16 proc. S16 1 proc. 16 proc. S16 

Waveform Relaxation 15.64 2.36 6.6 62.05 6.00 10.3 

Crank-Nicolson 21.49 9.30 2.3 82.41 16.55 5.0 

In table 8.1 we have tabulated the execution time of the full multigrid solvers with 
one V(l,l)-cycle at each grid level, on 1 and on 16 processors. In table 8.2 we report 
similar results obtained when 3 V(l ,1 )-cycles are applied. In both tables we have added 
the parallel speedup, S16. On a single processor our implementation of the waveform 
method shows to be faster than the implementation of the standard approach by a fac­
tor of about 1.33. This is partly due to the lower arithmetic complexity of the numerical 
kernels, as was discussed in chapter 7. But, it is also due to particular implementation 
aspects, which, as we feel, are inherent in the waveform approach. E.g., there is the 
smaller initialization cost in evaluating the PDE right-hand side f and the boundary 
conditions. In the waveform approach these evaluations appear grid-point-function 
per grid-point-function. Some intermediate results, e.g. expressions involving the x, y­
variables only, may be retained and need not be re-evaluated at every time-level. This 
is not possible when the evaluations proceed time-step per time-step. Additionally, 
there is the much lower computational overhead associated with program control, such 
as loop overhead, procedure call overhead, and, most importantly, indexing overhead. 
In the Crank-Nicolson method the data structures are two-dimensional grids. To access 
a variable two indexing operations are required. With waveform relaxation the data 
structures are two-dimensional grids of vectors. Two indexing operations are required 
to access a vector, but only one further indexing operation is required to access a 
particular element. On the average two indexing operations accompany every floating 
point operation in the Crank-Nicolson method. In the waveform approach calculations 
are performed with functions (or vectors). Therefore only slightly more than one index 
operation is required per floating point operation. (The cost of accessing the vector is 
amortized over the cost of accessing the nt vector elements.) The importance of the 
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above can be appreciated when it is realized that the cost of a floating point operation 
lies in the range of 4 to 6 JL-seconds, while the cost of an index operation is about 1 
JL-second. 

The higher parallel efficiency of the waveform relaxation method results in a sup­
plementary speedup factor of 2 to 2.5. This immediately follows from the S16-values 
in tables 8.1 and 8.2. The speedup of a multigrid V{l,l)-cycle, executed on a 4 by 4 
processor mesh, is displayed in figure 8.2 as a function of the number of time-levels, 
nt. As expected, speedup is an increasing function of nt. For sufficiently large func­
tion lengths an asymptotic S16 value is approached, the magnitude of which is mainly 
determined by the effect of load imbalance and coarse mesh processor idling. Also 
indicated in the figure is the speedup obtained with a parallel implementation of the 
Crank-Nicolson algorithm. This speedup is, of course, independent of the number of 
time-levels. As explained in chapter 7, the Crank-Nicolson speedup is much smaller, 
because of the much higher communication cost. 

16 
nx=16.ny=15 nx=32.ny=31 nx=64.ny=63 

16 
15 15 
14 14 
13 r 13 
12 12 
11 11 
10 

~ 
10 

9 ---------------- 9 
Sp 8 8 Sp 

7 7 
6 6 
5 ---------------- 5 
4 4 
3 3 
2 ---------------- 2 
I I 
0 0 

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 
number of time-levels number of time-levels number of time-levels 

Figure 8.2: Example 1: speedup of a multigrid waveform V{l,l)-cycle on a 16 pro­
cessors. The dashed horizontal line indicates the speedup of a V{l,l)-cycle in the 
Crank-Nicolson time-stepping scheme. 

The remaining performance difference is due to vectorization. Note first that for the 
problem sizes and the number of processors considered here, vectorization in the Crank­
Nicolson method would not lead to any speedup. In table 8.3 we give the execution 
times for a small problem, a discretization with 9 by 9 grid lines, solved on a single 
processor in scalar and vector mode. The values represent the time in seconds for the 
execution of the full multigrid solver with V- or F-cycles, and the cost of a single V- and 
F -cycle applied to the fine grid. The low values of the vector speedup are due to the 
high startup time of the vector operations on the iPSC /2. The speedup would be higher 
on a processor with more specialized vector hardware. The dependence of the vector 
speedup on the vector length is obvious. As expected from the discussion in chapter 7, 
the vector speedup turns out to be virtually independent of the multigrid cycle type. 
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The full multigrid speedups are higher than the single cycle vector speedups. This is 
because the initialization cost of the ODE system, a highly vectorizable operation, was 
included in the full multigrid execution times. 

In tables 8.4 and 8.5 we report the execution times of the full multigrid waveform 
solver on 16 and on 32 processors. (The letters "na" indicate values that are not 
available, as they could not be obtained due to lack of memory on the vector board.) 
Note that the vector speedup is lower than in the single processor case. This was to be 
expected. Indeed, vectorization only speeds up the arithmetic part of the computation, 
while the communication part remains unaffected. 

Table 8.3: Example 1: single processor execution time, in seconds, of different vector­
ized multigrid waveform relaxation cycles (n", = 8, nil = 7). 

WR FMG V(l,l) WR FMG F(l,l) WR V(l,l) WR F(l,l) 

nt scalar vector Sp scalar vector Sp scalar vector Sp scalar vector Sp 

100 5.41 1.09 5.0 5.78 1.18 4.9 1.86 0.45 4.1 2.27 0.54 4.1 

50 2.75 0.67 4.1 2.94 0.73 4.0 0.95 0.28 3.4 1.14 0.34 3.3 

25 1.43 0.48 3.0 1.53 0.52 3.0 0.49 0.20 2.5 0.59 0.24 2.5 

10 0.63 0.36 1.8 0.68 0.39 1.8 0.22 0.14 1.6 0.27 0.18 1.5 

Table 8.4: Example 1: execution time, in seconds, of the vectorized full multigrid 
waveform relaxation method on 16 processors. 

n", = 16, nil = 15 no; = 32, nil = 31 no; = 64, nil = 63 

n, scalar vector Sp scalar vector Sp scalar vector Sp 

100 3.54 1.12 3.16 8.20 2.42 3.39 (na) (na) (na) 

50 1.91 0.76 2.51 4.30 1.59 2.70 11.88 4.02 2.96 

25 1.10 0.59 1.86 2.43 1.20 2.03 6.53 2.91 2.24 

10 0.62 0.49 1.27 1.29 0.97 1.33 3.21 2.25 1.43 

Table 8.5: Example 1: execution time, in seconds, of the vectorized full multigrid 
waveform relaxation method on 32 processors. 

n", = 16, nil = 15 n", = 32, nil = 31 no; = 64, nil = 63 

n, scalar vector Sp scalar vector Sp scalar vector Sp 

100 3.05 0.99 3.08 6.00 1.89 3.18 14.50 4.17 3.48 

50 1.66 0.68 2.44 3.22 1.27 2.53 7.61 2.71 2.80 

25 0.98 0.54 1.80 1.85 0.99 1.87 4.20 2.03 2.07 

10 0.58 0.46 1.25 1.04 0.82 1.27 2.18 1.61 1.35 
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8.4.2 Example 2 

We consider the following, variable coefficient heat flow equation, 

au a au a au 
a(:Z:'Y)at = a:z:k(:Z:'Y)a:z:+a/(:Z:'Y)ay+ Q , (:z:,y)e[O,l]x[O,l], (8.2) 

where the material properties a(:z:, y) and k(:z:, y) denote the heat capacity of the ma­
terial per unit volume and the thermal conductivity. They were arbitrarily chosen as 
follows, 

a(:z:,y)=l+:z:+y and k(:z:, y) = e4(Z-O.5)2H(II-0.5)2 • 

We impose Dirichlet conditions on the north and east boundaries, and mixed conditions 
on the boundaries to the south and to the west, 

N: u(t,:z:,1)=2+sin(5:z:)e-2t(Z+1} E: u(t,1,y)=2+sin(5y)e-2t(1+II} 

s: :;(t,:z:,O) + u(t,:z:,O) = 2 + 5:z: e-21'" W: ~:(t,O,y) + u(t,O,y) = 2 + 5y e-2tll 

The initial condition and the source function Q( t, :z:, y) are chosen in such a way that 
the solution to the problem becomes, 

u(t,:z:, y) = 2 + sin(5:z:y) e-21(z+lI} . (8.3) 

The problem is discretized on a regular grid for two different values of the mesh 
size, namely h= 1/16 and h = 1/128. The time-increment is taken equal to 0.04 for 
the coarse problem, and 0.01 for the fine problem. In both cases 25 time-steps are 
performed. Discretization of the spatial operator leads to a five-point stencil. To de­
termine the solution we selected the following standard multigrid operators: coarsening 
to a grid with size h=1/2 (n",=nll=2), red/black smoothing, half-weighting, bilinear 
interpolation, and a coarse grid solver that applies two Gauss-Seidel relaxations. 

The timing results are presented in figure 8.3. From this figure we can read the 
appropriate multigrid parameter choices. Observe, for instance, that the full multigrid 
approach is sufficient to obtain an error of the order of the discretization error, in 
both the waveform relaxation and the Crank-Nicolson methods. It can also be seen 
that the the multigrid waveform cycling process is rapidly convergent. The averaged 
V-cycle convergence factor was measured to be around 0.09. When full multigrid was 
not used in the Crank-Nicolson method, the initial approximation at each time-level 
was taken equal to the solution at the previous time-level, i.e., we used a zero-th order 
extrapolation. For this particular problem this turned out to be more efficient than a 
first order extrapolation. 

Execution times for the full multigrid solvers are reported in table 8.6. The single 
processor values between brackets are values which were not actually measured due 
to a lack of computer memory. Instead, they were determined by extrapolation of 
smaller sized results. The four rows in the table represent different algorithms, different 
optimizations and different execution modes. The first row corresponds to the standard 
Crank-Nicolson time-stepping method. The second row represents waveform relaxation 
results. In determining these values, we did not fully exploit the potential of the 
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Figure 8.3: Example 2: comparison of Crank-Nicolson time-stepping and linear multi­
grid waveform relaxation, on 16 processors (solid lines: without vectorization, dashed 
lines: with vectorization). The horizontal dotted line indicates the discretization error, 
i.e., the error of the fully converged discrete solution 
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waveform relaxation method. We did not store intermediate results in order to reduce 
the initialization cost associated with evaluating PDE right-hand side and boundary 
conditions. The differences in single processor execution times between the "C-N" and 
"WR" rows - approximately 20% - are therefore mainly due to the lower arithmetic 
complexity and the smaller indexing-overhead of the waveform kernels. The PDE right­
hand side Q is a complicated function, costly to evaluate. Here, substantial economies 
are possible in the waveform method by transferring t-independent expressions out 
of the inner loops. The third row shows the effect of this optimization. Finally, the 
fourth row gives the execution times of the optimized waveform code, run in vector 
mode. (Remark that the solid lines in figure 8.3 correspond to the values in the second 
row, and the dashed lines correspond to the optimized vector results of the fourth row.) 

Table 8.6 enables us to illustrate a variety of further topics as, e.g., the depen­
dence of the speedup on the problem size. The larger the problems the higher the 
speedups. It is interesting to note the decrease in speedup for the same problem sizes 
in rows 2, 3 and 4. As the code is optimized and vectorized, only the cost of the arith­
metic decreases. Consequently, the communication overhead, which remains constant 
in absolute terms, becomes relatively more important, and the parallel efficiency dete­
riorates. The speedups due to parallelization are higher than those reported in table 
8.1. This is partly because of the expensive evaluation of the right-hand side function, 
which is included in the timings and which is an entirely parallel operation that needs 
no communication. In addition, it is due to a better load balance, since the number of 
unknowns in x- and y-direction is evenly divisible by the number of processors (four) 
in those directions. Further, note the low speedup due to vectorization. This is due to 
the short vector length of 25. For the large 128 x 128 problem, waveform relaxation 
loses much of its advantage of being more parallel, since also the time-stepping method 
has become highly (parallel) efficient. However, the waveform method retains any of 
its other advantages. 

Table 8.6: Example 2: execution time, in seconds, of the full multigrid Crank-Nicolson 
and waveform relaxation methods on 1 and on 16 processors. 

n.,=nll =16, nt=25 n.,=nll =32, nt=25 n., = nil = 128, nt=25 

method 1 proc 16 proc S16 1 proc 16 proc S16 1 proc 16 proc S16 

C.-N. 7.11 2.55 2.80 26.4 5.11 5.17 396 33.0 12.0 

WR 5.70 0.85 6.73 21.8 2.20 9.91 (328) 23.4 (14.1) 

WRopt 4.04 0.69 5.83 15.4 1.71 9.02 (232) 16.9 (13.7) 

WRvec 2.15 0.51 4.25 8.0 1.13 7.08 (120) 9.0 (13.3) 
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8.5 Nonlinear initial boundary value problems 

8.5.1 Example 3 

207 

A solid body with initial temperature uo, is submerged into the environment with 
temperature U oo and starts losing energy through radiation along its sides. This heat 
flow problem is governed by a quasi-linear parabolic partial differential equation, 

pc ~~ = div{ k{u) grad{u) ) , (8.4) 

~d is supplemented by the nonlinear radiation boundary condition, 

au 
k{ u) an = e f ( u!., - u4 ) , (8.5) 

where u is the temperature distribution [K], p is the density [kg/m3], c is the specific 
heat [J /kg K], k is the thermal conductivity [W /m K], e is the emissivity [-] and f is the 
Stefan-Boltzmann constant (5.7510-sW/m2 K4), see e.g. [97]. With a/an we denote 
the outside normal derivation operator. 

We shall numerically determine the evolution of the temperature for t E [0, T] of a 
square two-dimensional surface of size I, that is (:I:, y) E [-1/2,1/2] X [-1/2, 1/2], which 
satisfies (8.4) and (8.5). Thanks to symmetry the computational domain may be 
restricted to [0,1/2] x [0,1/2], with homogeneous flux boundary condition, Bu/8n=O, 
imposed along the sides x=O and y=O. The following values are chosen for the problem 
parameters: Uo=473, uoo =3, p=7000, c=400, e=1, k{u)=50{1-0.0008u), 1=0.5 and 
T=1545 seconds. The problem is discretized on an equidistant grid with 17 or 33 
grid lines in the :1:- and y-direction (n.,=nll). The time-discretization will be specified 
further on. 

In figure 8.4 we illustrate the convergence behaviour of waveform relaxation. The 
figure to the left shows the time-profile of successive approximations u<A:) evaluated 
at a corner point of the domain, (x,y)={1/2,1/2), and generated by the waveform 
Gauss-Seidel algorithm. For all grid points (n.,=nll=17 in this case) a constant time­
profile equal to the initial condition was used as the starting approximation. As can be 
seen from the figure the convergence of the algorithm is very slow. The time interval 
where the approximation is satisfactory only gradually extends as more relaxations are 
applied. Corresponding results obtained with multigrid waveform relaxation are shown 
in the middle figure, which clearly illustrates a dramatic improvement in convergence. 
Multigrid V-cycles are used with one red-black pre-smoothing step and one similar post­
smoothing step. Standard coarsening is performed down to a coarse level with mesh size 
h = 1/2, i.e., 3 x 3 unknowns. The differential equation at each grid point is integrated 
in the smoothing step by solving the linear equation that results after applying one 
Newton linearization. The computational cost of one such V-cycle is approximately 
equal to 8/3 work-units, with one work-unit being the cost of one waveform Gauss­
Seidel iteration. The observed averaged convergence rate corresponds to the value 
0.09. The figure to the right shows the starting approximation on the fine grid as it is 
obtained by the full multigrid procedure. The cost of this initial step is approximately 
8/9 work-units. The subsequent approximations cannot be distinguished graphically 
from the initial one. 
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Figure 8.4: Example 3: waveform relaxation iterates tP)(t, l/2, l/2) . 

The figures demonstrate the savings that could be achieved by using a windowing 
strategy (especially in the case of the Gauss-Seidel relaxation). In the initial iterations 
the calculations associated with time-levels for high t values are largely wasted. Later 
on, the time-levels for low t values have converged to the discrete solution. Further 
computations at these time-levels may be skipped, since additional iterations only 
improve the approximation at the end of the time-interval. A windowing strategy 
should take this typical convergence behaviour into account by limiting the length of 
the window and by gradually moving it forward as the computation advances. Observe 
that the use of windowing is of lesser importance in the case of multigrid cycling, and 
it is even less promising in combination with full multigrid. (However, example 4 will 
illustrate a situation where windowing is crucial even within the multigrid approach.) 

In figure 8.S the performance of the nonlinear multigrid waveform relaxation method 
and that of the Crank-Nicolson method are compared. The latter applies the multigrid 
full approximation scheme (FAS) to solve the nonlinear elliptic problems at each time­
level. In this example a variable step-size time-integration is used with 6ti (= t,-ti-d 
determined a priori. It is chosen equal to S seconds for the first 10 time-steps and it is 
doubled every 10 steps. A total of SO time-steps is applied. The accuracy, in casu the 
largest residual with respect to the discrete equations, is plotted versus the execution 
time on 1 and on 16 processors; no vectorization was used. We have applied the Crank­
Nicolson method in two different (but both common) ways. In one series of experiments 
a fixed number of V-cycles is applied to the initial approximation at each time-level, 
which, here, is chosen equal to the solution obtained in the previous time-step. The 
results are denoted by "a" (1 V-cycle), "b" (2 V-cycles), "c" (3 V-cycles), "d" (4 
V-cycles) or "e" (S V-cycles) . In the second series of experiments an accommodative 
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Figure 8.5: Example 3: maximum norm of the residual versus the execution time on 
1 and on 16 processors with multigrid waveform relaxation using V-cycles (solid lines) 
and with the Crank-Nicolson method with fixed number of V-cycles (+) or with full 
multigrid and a variable number of V-cycles (x). 
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scheme is implemented. The initial approximation at each time-level is determined by 
the full multigrid method and multigrid V-cycles are applied until the largest residual 
is below a certain specified tolerance. The corresponding results are denoted by "1" 
(tol. = 10-4 ), "2" (tol. = 10-5 ), "3" (tol. = 10-6 ) and "4" (tol. = 10-7 ). Note that a 
measure of the largest residual may be calculated at negligible cost, e.g. by calculating 
the residual on a subgrid of the fine grid. 

On one processor multigrid waveform relaxation turns out to be as efficient as 
Crank-Nicolson when the latter uses a fixed number of V-cycles. The Crank-Nicolson 
method with the accommodative scheme is somewhat faster. On 16 processors, how­
ever, waveform relaxation clearly outperforms Crank-Nicolson. In the case ofthe 17x 17 
discretization the speedup of waveform algorithm is about 7.5, whereas the the speedup 
of Crank-Nicolson is only 3. A speedup of 11 is achieved by waveform relaxation for 
the 33 x 33 problem, while the speedup of the standard approach is about 6.5. The 
speedup of the accommodative time-stepping scheme is even worse, which is mainly 
due to parallel overheads in the full multigrid phase. The latter consists of operations 
on coarse grids, which are difficult to parallel~ze efficiently. 

8.5.2 Example 4 

We shall calculate the numerical solution of the Brusselator, a nonlinear system of 
two parabolic partial differential equations which we have already encountered in a 
previous chapter, section 4.7. The two-dimensional Brusselator is described by the 
following equations defined over the unit square, n = [0,1] x [0,1], 

(8.6) 

The equations model a chemical reaction-diffusion process. X( t, x, y) and Y( t, x, y) 
denote chemical concentrations of reaction products. A( t, x, y) and B( t, x, y) are con­
centrations of input reagents, which in our experiments are taken constant, A=2.0 and 
B=5.45. The diffusion coefficients are given by Dx=0.004 and Dy=0.008. The value 
of the reactor length, L, is specified further. We consider Dirichlet conditions, 

X(t,x,y) = A with Y(t,x,y) = B/A, (x,y) E an. (8.7) 

For L = 0.9 we shall first calculate the time-evolution of the system for t E [0,3], 
starting from the following initial conditions, 

X(t,x,y) = A + 0.9sin(n)sin(1I"Y) and Y(t,x,y) = B/A - 0.9sin(1I"x)sin(1I"Y). 

Figure 8.6 illustrates the waveform relaxation convergence behaviour for a dis­
cretization with h=1/16. The multigrid results are obtained using V(l,l)-cycles, full­
weighting, bilinear interpolation, and standard coarsening to the mesh with h=1/2. 
The graphs are to be interpreted in a similar way as those in figure 8.4. They illustrate 
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Figure 8.6: Example 4: waveform relaxation for time-integration of the Brusse­
lator problem; the figure shows the profile of approximations X(k)(t, 1/2, 1/2) and 
y(k)(t, 1/2, 1/2). 
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the typical phenomenon that the largest error occurs at the end of the integration 
interval and they indicate the possible gain of windowing. 

In the waveform smoothing operation a nonlinear system of two ordinary differential 
equations is to be solved at each grid point. This can be done by first applying a 
Newton linearization around an approximation of the solution profile and then solving 
the resulting linear system of two ODEs (i.e., using a blockwise waveform Newton 
method). If necessary this process can be repeated. Often, though, the use of one 
linearization suffices and does not deteriorate the convergence of the outer iteration, 
e.g. the multigrid or Gauss-Seidel iteration. We have illustrated this Newton process 
on a 3 x 3 grid, i.e., with one set of unknowns, X(t, 1/2, 1/2) and Y(t, 1/2, 1/2). The 
successive Newton iterates Y(i)(t, 1/2, 1/2) are depicted in figure 8.7. 

5-.-------------------------------------. 
4.5 

4 

3.5 

3 

2.5 

2 

1.5 

o 2 3 4 5 6 7 8 9 

Figure 8.7: Example 4: successive Newton iterates, Y-component of the Brusselator 
on a h=I/2 grid. 

The Newton linearization is a rapidly converging iteration when a good approxi­
mation is available. This is, e.g., the case when problems are solved on relatively short 
time intervals with the use of full multigrid. When a good approximation is not avail­
able numerical divergence may result, e.g., the solution can become arbitrarily large, 
or it may take many iterates before convergence attains its full "speed". This effect is 
illustrated in table 8.7. We computed Gauss-Seidel waveform iterates for the Brusse­
lator starting from a constant initial approximation on a fairly long time-interval (the 
parameters are specified in the table header). The first line shows the evolution of the 
norm of the residual when the (discretized) ODEs in the smoother are solved exactly. 
The second line characterizes the effect of using a single Newton linearization. Because 
of the length of the time-interval the initial approximation bears little resemblance 
to the true solution profile. Linearization around this profile cannot be justified; the 
iteration diverges. The effect of applying more than one Newton step at each grid 
point is illustrated in the remaining two lines. If the successive solution profiles were 
plotted, it could be seen that the approximations are erroneous especially at the end 
of the time-window, where very large solution values are found . In order to avoid this 
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residual ,....--------------, 

10-1 

discretization: nz=ny=15. n,=25 
A 

1.7910-2 
10-2 -

10-3 

10-4 

lO-s 

I~ 

10-1 

10-$ 

10-'1 

10- 10 +-- ,--y-----,-*c..,- --rL---.--' 
o 10 20 30 40 50 60 

execution lime on 1 processor (sec) 

~i~al,--------------, 

10- 1 

18-2 
4.25 1 -3 

10-3 

10-4 

IO-s 

IO--<S 

10-1 

10-11 

10-9 

discretization: nz=ny=31. n,=50 

10- 10 +----.- --.---.---.---.--1 

.---------------, residual 
discretization: nz=ny=15. n,=25 

10- 1 

1.7Q 10-2 
10-1 

10-3 

I~ 

10-7 

10-11 

10-9 

I--,----,,--r......,,--r-,--r .. d'+ 10-10 

o 2 4 6 8 10 12 14 16 
execution time on 16 processors (sec) 

,--------------, residual 
discretization: nx=ny=31. n,=50 

10-1 

10-2 
4.25 10-3 

10-3 

10 ..... 

IO-s 

IO--<S 

10-1 

10-$ 

10-9 

I----.--,---r---r--I- 10- 10 

o 100 200 300 400 500 600 0 10 20 30 40 50 
execulion time on I processor (sec) execution time on 16 processors (sec) 

Figure 8.8: Example 4: Comparison of execution times on 1 and on 16 processors 
with multigrid waveform relaxation using V-cycles ("A" : standard cycling, "B": full 
multigrid plus cycling) and with the Crank-Nicolson method with a fixed number of 
V-cycles ("a":1 cycle, "b" :2 cycles, "c" :3 cycles, "d":4 cycles, "e" 1 cycle with FMG). 
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Table 8.7: Example 4: the use of long windows and the effect of Newton linearization: 
evolution of the Euclidean norm of the residual of successive Gauss-Seidel waveform 
relaxation iterates y(k) (Brusselator with L=0.9, n.,=nll=15, nt=60, 7=7/60). 

ODE solver II k = 0 k=8 k = 16 k = 24 k = 32 k = 40 k = 48 

exact solution 4.05e+2 8.43e+2 4.18e+2 1.98e+2 1.30e+2 2.27e-1 4.78e-5 

1 Newton step 4.05e+2 4.51e+2 inf inf inf inf inf 

2 Newton steps 4.05e+2 7.81e+2 2.5ge+18 2.38e+12 1.82e+8 9.66e-1 4.96e-5 

3 Newton steps 4.05e+2 8.38e+2 1.21e+12 8.66e+2 1.30e+1 2.29e-1 4.78e-5 

behaviour a possible remedy is to restrict the length of the window. A second way is 
to refrain from using the Newton linearization at the differential equation level, but 
to use a standard time-stepping approach instead, with a few Newton steps in each 
time-step. The latter is a safe choice, but it is more costly. Indeed, the Newton process 
has to be iterated to convergence; otherwise the algebraic errors may accumulate. 

In figure 8.8 the performance of the multigrid waveform relaxation and the Crank­
Nicolson methods are compared, for mesh sizes h=1/16 and h=1/32. Time-integration 
is performed for t E [0,1] with 25 and with 50 time-steps. The accuracy, in this case 
the largest residual w.r.t. the discrete equations, is plotted versus the execution time 
on 1 processor and on 16 processors. The dashed line indicates the residual of the "true 
PDE solution", approximated by the solution obtained on the mesh with h=I/64 and 
7=1/128. On a single processor multigrid waveform relaxation turns out to be as 
efficient as the Crank-Nicolson method if the problem is to be solved to discretization 
accuracy (which is indicated by the dashed line). The method is somewhat less efficient 
if the discrete equations are to be solved to a high accuracy. The ranking is reversed on 
the 16 processor machine. Thanks to its better parallel efficiency waveform relaxation 
outperforms Crank-Nicolson by a factor of two. Note that this difference would be 
even more pronounced if vectorization were used. 

8.6 Linear time-periodic problems 

8.6.1 Example 5 

We consider a parabolic partial differential equation with time-periodic right-hand side, 

8u 82u 82u 
8t = 8:r,2 + 8y2 + f , (8.8) 

defined on the unit square with four Dirichlet boundary conditions. The function f is 
chosen in such a way that the solution becomes I-periodic and equal to, 

(8.9) 

The problem will be solved for two different mesh sizes, with equal spacing in 
spatial and in time direction, namely h=7=1/64 and h=7=1/16. The 16-processor 
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timing results (without vectorization) are displayed in figure 8.9. Here, "error" signifies 
the largest error of the solution at time-level t=O. (Remember that standard periodic 
problem solvers, such as the shooting method and the multigrid method of the second 
kind, try to determine the value of the periodic solution at one time-level. They 
calculate one point on the periodic orbit.) 

error 
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Figure 8.9: Example 5: comparison of the linear time-periodic multigrid waveform 
relaxation algorithm and multigrid method of the second kind (maximum norm of the 
error versus execution time). 

Three methods are compared. The first method is a parallel implementation of 
the multigrid method of the second kind. The second order backward differentiation 
method, BDF(2), is used for time-integration because of its excellent smoothing prop­
erties, see [41]. The time-increments used for discretizing the initial boundary value 
problems on each grid level are chosen equal to the mesh size, which is determined by 
standard coarsening from the fine grid. The linear systems in each time-step of the 
BDF(2) scheme are solved by using standard multigrid with 2 V(1,1)-cycles or by full 
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multigrid with 1 V(l,l)-cycle at grid each level. The multigrid method of the second 
kind is rapidly convergent, and one iteration applied to the initial approximation proves 
to be sufficient to obtain a solution with an error equal to the discretization error. (In 
this section we started the iteration with the initial approximation of u.(x, y, 0) chosen 
equal to zero.) 

A related method is obtained when multigrid waveform relaxation is used as the 
initial boundary value problem solver inside the multigrid method of the second kind. 
The resulting algorithm is about 1.5 to 2 times as fast as the method with time-stepping 
as can be observed in figure 8.9. This was to be expected from the speedup values given 
in tables 8.1 and 8.2. 

Finally, we consider the time-periodic multigrid waveform relaxation method (with 
starting iterate equal to the zero-function). Our implementation of this method proves 
to be faster than the implementation of the best standard algorithm by a factor of 
7 to 10. This is due to the lower arithmetic complexity and the mu.ch better parallel 
characteristics of the waveform method. To verify the complexity estimates of both 
approaches determined in chapter 7 we report the one-processor times in table 8.8. The 
ratio of the execution times turns out to be close to 2.5, as theory had predicted. The 
same table shows that hardly any speedup is obtained with the multigrid method of 
the second kind. Yet, we applied several techniques to improve the parallel efficiency: 
agglomeration, unblocking message passing, communication-calculation overlap (see 
chapter 6). Whatever sophisticated techniques are used for speeding up the coarse grid 
operations, they remain a significant bottleneck. The multigrid method of the second 
kind visits these coarse grids very frequently, because of its "double multigrid" nature. 
It is basically a multigrid W-cycle, where in each smoothing step a time-stepping 
method is used which applies standard multigrid for solving the elliptic problems at 
each time-level. Consequently, the algorithm is not well-suited for implementation on 
a parallel computer. 

We would also like to remark that vectorization will lead to an additional speedup 
in the case of the waveform relaxation algorithm. The performance difference on the 
16-processor machine will then be in the range of 20 to 30, depending on the problem 
SIze. 

Table 8.8: Example 5: execution time, in seconds, of two time-periodic solvers: time­
periodic full multigrid waveform relaxation and 1 cycle of multigrid of the second kind. 

n", = nil = 15, nt = 16 n", = nil = 31, nt = 32 

method 1 proc. 16 proc. Sp 1 proc. 16 proc. Sp 

Waveform Relaxation 1.77 0.46 3.9 14.33 1.78 8.1 

Multigrid sec. kind 4.83 3.74 1.3 35.11 15.74 2.2 
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8.6.2 Example 6 

We consider the diffusion equation on the unit square, 

ou 02U 02U 

ot = ox2 + oy2 ' (8.10) 

with four Dirichlet boundary conditions, three of which are constant and homogeneous 
and one of which is a rapidly oscillating time-periodic function, 

N: u(t,x,l) = 0 

S: u(t,x,O) = sin(n) sin(107rt) 

E: u(t,l,y)=O 

W: u(t,O,y) = 0 

We calculate the stable periodic solution, the period of which equals T=0.2, on an 
equidistant grid with mesh size h=1/32 and with the time-interval, [0,0.2], being di­
vided into 65 time-levels. The solution is plotted in figure 8.10 for different values of 
t. The graphs show the generation of a trailing wave, which is strongly damped and 
eventually fades away while receding backwards (i.e., northwards). Later on, a similar 
wave is generated, but with the opposite amplitude. 

As in the previous example we shall compare three different algorithms for solving 
the above equation: multigrid of the second kind with BDF(2) time-stepping, multi­
grid of the second kind with waveform relaxation time-integration using the BDF(2) 
discretization, and time-periodic waveform relaxation. 

The multigrid method of the second kind attains its very good theoretical conver­
gence factor, which is of the order O(h2). This is evidenced by the numbers in table 
8.9. Consequently, one iteration of the method applied to a suitably chosen starting 
approximation will often be satisfactory. 

The successive iterates of the waveform method are illustrated in figure 8.11. They 
show the sinusoidal approximation at the grid point (x,y)=(1/2,3/16), which, by a 
process of amplitude growing and phase shifting, bends its shape towards the shape of 
the solution of the semi-discrete problem. 

The timing results on 1 and on 16 processors are presented in figure 8.12. (Here, 
the error is defined as the maximum difference at the grid points at time-level t=O, 
between the computed approximation and the solution of the problem obtained with 
h=1/64 and 7=1/128.) The one-processor results are interesting in their own right as 
they again confirm the arithmetic complexities calculated in chapter 7. The periodic 
multigrid waveform method outperforms the "best" standard method, multigrid of 
the second kind, with a factor of 2.5. The timings on 16 processors illustrate the 
parallel characteristics. A very low parallel efficiency is obtained with the multigrid 
method of the second kind (although we have again applied various techniques to 
optimize its parallel performance). The multigrid method of the second kind combined 
with waveform relaxation achieves a speedup of about 6. As such it outperforms the 
parallel implementation of the standard method by a factor of 3. The periodic multigrid 
waveform method is faster than the multigrid method of the second kind by a factor 
of 12. This is due to its lower arithmetic complexity and its much better parallel 
characteristics. Again, we should note that vectorization will lead to an additional 
speedup, and this (only) in the case of waveform relaxation. From the numbers in 
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Figure 8.10: Example 6: solution u(tle,x,y) at tie = 0.08, 0.088, 0.096 and 0.lO4. 
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Figure 8.11: Example 6: successive iterates u(k)(t, 1/2,3/16) with k = 0,5,10, .. , (upper 
picture) and k = 0,1,2 (lower picture). 
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Figure 8.12: Example 6: comparison of the linear time-periodic multigrid waveform 
relaxation algorithm and multigrid method of the second kind. 
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table 8.1 we may expect a vector speedup of about 3. This would bring the ratio of the 
execution times between the waveform method and the standard sequential method up 
to a factor of 40. 

Table 8.9: Example 6: averaged convergence factor of the multigrid method of the 
second kind with BDF(2) time-stepping. 

h=r=1/8 h=r=1/16 h=r=1/32 h=r=1/64 
2.72e-3 7.34e-4 1.87e-4 4.65e-5 

8.7 Example 7: a nonlinear periodic system 

In this final example we shall determine the stable periodic solution of the Brusselator 
model, equation (8.6), with a time-periodic concentration of the input reagents, 

A(t,x,y)=2+sin(4t) and B(t,x,y)=5.45. (8.11) 

We consider the standard Dirichlet boundary conditions (8.7), and the following pa­
rameter values: Dx=0.004, Dy =0.008, and L=0.15. The problem is discretized with 
central differences on an equidistant grid with mesh size h=1/32, and solved with peri­
odic multigrid waveform relaxation, using 5 multigrid levels. Smoothing is performed 
by blockwise periodic red/black waveform relaxation. The nonlinear system of two pe­
riodic differential equations at each grid point is solved with one Newton linearization 
step. The linear problem is discretized by the trapezoidal rule and solved by direct 
solution of the resulting cyclic block-bidiagonal matrix. The time-interval of inter­
est [0,11"/2]' one period, is discretized with constant time-increment r=7r /200, i.e., 100 
time-levels are computed simultaneously. 

The convergence is illustrated in figure 8.13, in which the Euclidean norm of the 
residual w.r.t. the set of discrete equations is plotted for consecutive approximations. 
The results indicated by solid lines are obtained by starting the iterative algorithm with 
a constant time-profile in each grid point, equal to the stable constant solution of the 
unperturbed problem, i.e., X =A, Y =B / A. The dashed lines represent the results with 
the full multi grid procedure. In addition we report in table 8.10 the experimentally 
observed convergence factors, averaged over 10 iterations. These convergence factors 
are similar to the ones obtained with the multigrid waveform relaxation method for 
solving PDEs of initial boundary value type. The computational complexity of solving 
the time-periodic parabolic equation is therefore similar to that of solving the corre­
sponding initial boundary value problem. 

The profile of the stable periodic solution at the mid-point of the chemical reactor 
is plotted in the upper two diagrams of figure 8.14. The figure to the left shows the 
time-behaviour, whereas the figure to the right illustrates the limit cycle in the state 
diagram. This solution can also be determined by a straightforward time integration of 
the equations starting from some initial condition. This dynamic simulation process is 
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Figure 8.13: Example 7: convergence of the time-periodic multigrid waveform relax­
ation full approximation scheme (Brusselator with L=0.15, h=1/32, T=7r /200). 

illustrated in the lower two diagrams of figure 8.14. The periodic solution is obtained 
when the transient part of the solution has decayed. Integration over a long time­
interval may be required when the periodic solution is not strongly attracting. In this 
example integration over a length of at least 5 periods is required, before the solution 
(graphically) remains on the limit cycle. Consequently, this brute force time-integration 
method is not competitive with the waveform relaxation method, as the latter requires 
only one time-integration. 

Table 8.10: Averaged convergence factors of different time-periodic multigrid waveform 
relaxation cycles (periodic Brusselator). 

V(l,l) V(2,1) W(l,l) W(2,1) F(l,l ) F(2,1 ) 

0.163 0.163 0.063 0.041 0.064 0.041 
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Figure 8.14: Example 7: comparison of time-periodic multigrid waveform relaxation 
(upper pictures) and dynamic simulation (lower pictures); evolution of two solution 
components in the time-domain (left) and in the phase-diagram (right) . 

8.8 Further remarks, limits of applicability 

We have provided a number of case studies in which waveform relaxation compares 
favourably with standard time-stepping. The equations of our example problems are 
characterized by the fact that they are strongly parabolic. They have dominant diffu­
sion terms and are more or less isotropic. For such problems both waveform multigrid 
and standard elliptic multigrid within a time-stepping code converge rapidly. Conver­
gence factors are typically of magnitude 0.1, and one step of the nested iteration or 
full multigrid algorithm is sufficient to get a good approximation to the solution. 

We do not claim, however, that waveform relaxation will always be superior to 
the classical techniques. We may expect that multigrid waveform relaxation for solv­
ing 8u/8t = .cu + f will perform unsatisfactorily whenever the corresponding elliptic 
multigrid method performs unsatisfactorily for solving .cu + f = 0 . This follows im­
mediately from corollary 3.4.4 in chapter 3, which states that the spectral radius of the 
waveform iteration operator is bounded from below by the spectral radius of the cor­
responding static iteration operator. Anisotropy, for instance, may cause a substantial 
performance degradation of the multi grid waveform relaxation algorithm (unless the 
red/black smoother is replaced by a more sophisticated one). Large convection terms in 
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the differential equation have a similar effect. This was illustrated for model problems 
in section 3.5. We should note, however, that for such problems the convergence of the 
multigrid cycles in the time-stepping scheme is also affected. 

Consider, e.g., the following problem, defined on the unit square, with Dirichlet 
boundary conditions and a given initial condition, 

(8.12) 

The convergence of the basic multigrid cycle (with red/black smoothing) applied to the 
corresponding elliptic problem is strongly deteriorated because of the PDE coefficients, 
which become zero on some of the domain boundaries. The deterioration increases 
with decreasing fine grid mesh size. Following corollary 3.4.4 the same is true in the 
waveform relaxation case. This is illustrated in table 8.8, the second row of which 
shows averaged waveform V(1,l)-cycle convergence factors. (The time-interval [0,1] is 
large enough so that the convergence factors are independent of the time-increment.) 
The third, fourth and fifth rows show V(l,l)-cycle convergence factors of the multigrid 
cycles encountered in the Crank-Nicolson time-stepping scheme. They are smaller than 
those of the waveform method, because of the presence of the" 2/T u "- term in the 
elliptic operator, 2/T U - Cu , which characterizes the problems at each time-level. 
Consequently, for certain combinations of hand 7 (i.e., small h and very small 7), 
we may expect the time-stepping scheme to outdo waveform relaxation. For instance, 
when h = 1/32 and 7 = 0.005 the residual reduction caused by 5 WR V(l,l)-cycles is 
only slightly better than that of a single V(l,l )-cycle in the Crank-Nicolson method. 

Table 8.11: Averaged V(l,l)-cycle convergence factors for waveform relaxation method 
(t E [0,1]) and Crank-Nicolson time-stepping. 

h II 1/8 11/16 11/32 11/64 11/128 I 
WR 0.23· 0.56 0.78 0.90 0.95 

CN (7 = 0.02) 0.018 0.21 0.59 0.83 0.94 

CN (7 = 0.01) 0.011 0.10 0.47 0.78 0.92 

CN (7 = 0.005) 0.004 0.035 0.31 0.70 0.89 

To conclude, for some classes of problems both time-stepping and waveform relax­
ation experience a performance degradation. This severest degradation occurs in the 
waveform algorithm, which may then be surpassed in performance by the time-stepping 
scheme. However, in this case the bad convergence factors indicate that the choice of 
multigrid operators is not optimal. In particular, one should look for more adequate 
smoothing operators, and, e.g., replace the simple red/black scheme by a smoother 
based on line-relaxation. This will improve the convergence characteristics of both 
approaches, the relative performance of which will then have to be re-evaluated. 
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Twelve Ways to Fool the Masses 
When Giving Performance Results on Parallel Computers 

David H. Bailey, Supercomputing Review, August 1991, pp. 54-55 
(condensed version, article 2180 of comp.parallel, 7 Jan 92) 

1. Quote 32-bit performance results, not 64-bit results, or compare your 32-bit results 
with others' 64-bit results. 

2. Present inner kernel performance figures as the performance of the entire application. 

3. Quietly employ assembly code and other low-level language constructs, or compare 
your assembly-coded results with others' Fortran or C implementations. 

4. Scale up the problem size with the number of processors, but don't clearly disclose this 
fact. 

5. Quote performance results linearly projected to a full system. 

6. Compare your results against scalar, unoptimized code on Crays. 

7. Compare with an old code on an obsolete system. 

8. Base MFLOPS operation counts on the parallel implementation instead of on the best 
sequential implementation. 

9. Quote performance in terms of processor utilization, parallel speedups or MFLOPS per 
dollar (peak MFLOPS, not sustained). 

10. Mutilate the algorithm used in the parallel implementation to match the architecture. 
In other words, employ algorithms that are numerically inefficient, compared to the best 
known serial or vector algorithms for this application, in order to exhibit artificially 
high MFLOPS rates. 

11. Measure parallel run times on a dedicated system, but measure conventional run times 
in a busy environment. 

12. If all else fails, show pretty pictures and animated videos, and don't talk about perfor­
mance. 
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Chapter 9 

Concluding Remarks and 
Suggestions for Future Research 

Mathematics is full of unanswered questions, 
which far outnumber known theorems and results ... 

It is its nature to pose more problems than it can solve. 
-I. Peterson, "Searching for new mathematics" 

(SIAM Review, Vol. 33, No.1,pp. 37-42, March 1991). 

We started this book with the observation that time-marching methods for solving 
parabolic problems are inherently sequential. The computation proceeds from time­
level to time-level, and the parallelism is limited to the parallelism inherent in the 
solvers applied in each time-step. It was further illustrated that standard solvers trade 
off numerical quality against parallel efficiency. Consequently, no time-stepping method 
proved to be really satisfactory for use on large-scale parallel processors. 

We suggested to use the waveform relaxation method. This technique had shown 
to be very successful for solving certain very large systems of ordinary differential 
equations. A straightforward application of this method to the equations derived by 
the numerical method of lines did not result in a satisfactory algorithm because of 
poor convergence. Fortunately, the waveform algorithm could be accelerated by using 
the multigrid idea, and several multigrid waveform relazation variants were developed. 
These methods proved to have good numerical performance, without sacrificing the 
favourable parallel characteristics of the waveform algorithm. 

In the previous chapter we gathered a number of case studies in order to illustrate 
our experience with waveform relaxation methods. It was shown that for a certain 
class of problems, and the use of certain discretizations the new techniques surpass any 
of the standard numerical solution methods. This performance is obtained at the sole 
cost of having to provide a large memory to store the computed waveforms. We recall 
the three important reasons for the success of the waveform method: 

• a good sequential complexity: For initial boundary value problems we were 
able to calculate solutions with algebraic error smaller than the discretization 
error at a similar cost as the cost involved when using standard time-stepping 
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methods. Due to some implementation details (lower indexing overheads, etc.) 
and due to a slightly lower sequential complexity waveform relaxation turned out 
to be even slightly superior. 

It was proven that with time-periodic waveform relaxation one can solve time­
periodic problems at the cost of solving a single initial value problem (by the cor­
responding initial value waveform method). We compared the new time-periodic 
multigrid waveform method with standard time-periodic problem solvers and il­
lustrated an actual performance improvement of at least a factor 2.5 . 

• a low communication complexity: The real advantage of using waveform 
relaxation techniques stems from their superior parallel characteristics. We theo­
retically verified that the algorithm strongly reduces the total number of messages 
required to solve a parabolic problem on a message-passing machine, possibly by 
orders of magnitude. The total message length remains unchanged (initial bound­
ary value problems), or is substantially reduced (time-periodic problems) . 

• vectorization in the time-direction: For use with waveform relaxation meth­
ods, vectorization in the time-direction has shown to be very valuable, and attain­
able at a negligible implementation cost. It was also noted that this vectorization 
in the time-direction can be combined with vectorization in the spatial direction 
in order to increase the vector-lengths even further. 

Many problems, questions and possible extensions to the methods discussed in this 
book require future attention. Some topics for future research are identified below. 

More demanding elliptic operators 

In the final section of the previous chapter, it was said that the multigrid waveform re­
laxation algorithm performs unsatisfactorily whenever the corresponding elliptic multi­
grid method performs unsatisfactorily for solving the elliptic problem LV. + f = 0 . 
Such elliptic problems can often be solved efficiently with multigrid by using different 
smoothing operators, e.g., based on line relaxation or incomplete LU decomposition, 
by using other coarsening strategies, e.g., semi-coarsening, or by using non-trivial op­
erator dependent intergrid transfer operators. Waveform equivalents of these multigrid 
operators still have to be studied. 

The applicability of the waveform relaxation method is tied to the applicability of 
the numerical method of lines. As such, the method does not seem to be suited for 
time-dependent problems that require dynamic grid adaptation, i.e., for problems that 
require different spatial discretizations at different time-levels. As a possible remedy 
one could try to combine the waveform method with so-called moving grid techniques. 
It is unclear, however, whether this is going to be possible, and if so, whether it can 
be made efficient. 

Three-dimensional domains 

One of the main reasons for using waveform relaxation on message passing parallel 
computers is the excellent communication complexity. The method almost completely 
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eliminates the cost associated with the "t,toreup"-parameter (thanks to the enormous 
reduction in the number of messages). It slightly reduces the communication cost 
associated with the Clt,entI"-parameter (thanks to the better communication/calculation 
overlap). As such, the reduction in communication cost will only be significant when 
the message startup costs are dominant. 

An analysis found in McBryan et al., [81], illustrates that the latter is often the 
case for two-dimensional problems solved on many present-day parallel architectures. 
However, it might be much less the case when three-dimensional problems are solved. 
With standard grid partitioning the message lengths in 3D-problem implementations 
are usually much longer than those encountered in 2D-problem implementations, and 
the influence of the startup cost is correspondingly reduced. We still have to analyse 
to what extent this will affect the overall performance of the waveform algorithm. 

Variable and independent time-stepping 

The use of variable and independent time-stepping to exploit multirate behaviour is 
conceptually straightforward, and, at first sight, it is expected to further improve the 
effectiveness of the multigrid waveform relaxation method. Many computational prob­
lems, however, must be resolved w.r.t. the data structures used to represent discrete 
functions and w.r.t. to the implementation of operators that manipulate such data 
structures. In addition, such an implementation will introduce additional problems re­
lated load balancing and message passing. It may also preclude efficient vectorization. 

A second reason for using variable time-stepping is the use of inaccurate iteration, 
which was explained in section 2.6. The initial iterates are then calculated to low 
accuracy, and the error tolerance threshold used in the time-integrator is made smaller 
as more and more iterations are applied. The possible advantages of using this scheme 
remain to be investigated. 

Autonomous time-periodic problems 

Autonomous time-periodic problems still defy efficient computation. The modified 
shooting method presented in section 4.7 significantly reduces the number of time­
integrations required by the standard shooting method. Yet, the algorithm still re­
quires the solution of a significant number of initial boundary value problems in order 
to calculate the solution to a time-periodic problem. As such, its performance is far 
below that of the time-periodic multigrid waveform relaxation algorithm for solving 
non-autonomous time-periodic problems. 

It is not clear whether a waveform relaxation algorithm can be found which calcu­
lates the periodic solution and the unknown period T with a cost comparable to the 
cost of solving a single initial boundary value problem. 

Space-time concurrent multigrid waveform relaxation 

The waveform relaxation method with spatial grid partitioning performs satisfactorily 
on medium scale parallel processors. On large-scale parallel processors (e.g., with a 
thousand processors) a loss of efficiency is caused by two reasons. First, the number 
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L. 
Figure 9.1: Grid partitioning used for parallelizing parabolic solvers on a two­
dimensional rectangular domain: time-stepping method (left), standard waveform re­
laxation (middle), space-time concurrent waveform relaxation (right). 

of nodes may exceed the number of spatial grid points, e.g., on coarse spatial grids 
encountered in a multigrid hierarchy. The resulting loss of efficiency is much more 
severe on large multicomputers than it is on small ones. Second, even on relatively fine 
grids the number of spatial grid points may be too small to rely only on spatial grid 
partitioning, in which case good load balance is difficult to achieve. 

The available computing power of large-scale parallel processors can be harnessed by 
using waveform relaxation methods that operate concurrently on different time levels. 
Each processor is then responsible for the calculations in a block of space-time grid 
points, see figure 9.1 . Most of the operations of the multigrid waveform relaxation 
algorithm can be parallelized straightforwardly in the time-direction (see, e.g., the 
discussion on the time-vectorization of the method in section 7.4). The only exception 
is a linear recurrence, arising in the core of the ODE solver, used to integrate the ODEs 
at every grid point. This step can be parallelized fairly efficiently by using a so-called 
partitioning method, a standard technique for vectorizing linear recurrence relations. 

For implementation on massively parallel systems, it was suggested by Worley in 
[lSI] to use a pointwise space-time grid partitioning, and to calculate the linear recur­
rence relations by a (parallelizable) cyclic reduction method. 

Comparison to parabolic multigrid with parallel smoothing 

In section 3.7 we have pointed out the close connection between the discrete-time 
multigrid waveform relaxation method and the parabolic multigrid method introduced 
by Hackbusch in [43] . Hackbusch also proposes an algorithm, called parabolic multigrid 
with parallel smoothing, in which a smoothing operator is executed concurrently on 
different time-levels. This time-parallel variant is analysed theoretically by Burmeister, 
[13], and later on further developed in papers by Horton and coworkers, [58, 59, 60]. 

Time-parallel parabolic multigrid corresponds to a discrete-time waveform relax­
ation method in which the differential equations are solved inaccurately. Instead of 
solving the recurrence relations exactly, they are solved approximately by applying a 
Jacobi relaxation step to an approximation of the solution. Instead of calculating (7.3) 
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Table 9.1: Averaged V(I,I)-cycle convergence factors of multigrid waveform relax­
ation and parabolic multigrid with parallel smoothing. (model problem of section 3.2, 
h=I/32, T=O.OI, nt=100) 

II BDF(I) I BDF(2) I c.-N·I 
waveform relaxation 0.10 0.10 0.11 

parallel smoothing 0.36 0.45 0.75 

as ztl = a,.Z~!l + r" , one computes ztl = a,.z~_11l + r" . This leads to an algorithm 
which is parallelizable in time, with one or more processors per time-level. 

Some impressive results have been obtained with this method, e.g., for solving 
the Navier-Stokes equations on parallel machines, [59, 14}. The method parallelizes 
very well because of a low communication complexity. The processors on different 
time-levels exchange a few large messages, instead of many small messages as is the 
case in a standard spatial grid partitioning. Furthermore, when only one processor is 
assigned per time-level, there are no problems with coarse grids or processor idling, 
and perfect load-balance is assured. Yet, the method has a number of serious disad­
vantages. Most importantly, the convergence behaviour is strongly dependent on the 
time-discretization method and the discretization parameters h and T. The convergence 
is also often worse than that of the waveform relaxation method. This shows, e.g., from 
the experimentally determined convergence factors displayed in table 9.1. Furthermore, 
the method does not allow local time-stepping or vectorization in the time-direction. 
It is also not clear whether the method can be used for solving time-periodic problems. 

It would be interesting to study the relative merits of multigrid waveform relax­
ation and parabolic multigrid with parallel smoothing, and to determine for which 
applications and computer systems the methods are most effective. 

Waveform Schwarz Iteration 

Schwarz iteration is well-known as an iterative method for solving elliptic partial dif­
ferential equations. The scheme is based on a decomposition of the spatial domain 
into several overlapping sub domains. When applied to a discretized elliptic problem it 
corresponds to a kind of overlapping-block Gauss-Seidel method. Its use as a smoother 
in a multigrid iteration is discussed in [44, section 15.3}. 

Overlapping-block waveform relaxation was studied by Jeltsch and Pohl in [61}. The 
application of this algorithm in the context of semi-discrete parabolic partial differential 
equations, and its behaviour as a smoother in a multigrid waveform algorithm remain to 
be studied. With use of the Schwarz iteration multigrid waveform relaxation could be 
implemented in a relatively straightforward way on certain block-structured domains 
(e.g. "L"-shapes, "T"-shapes, "H"-shapes, etc.). 
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Appendix A 

Discretization and Stencils 

We illustrate the construction of the ordinary differential equations that are solved 
within the numerical method of lines. In particular, we detail the discretization of the 
spatial derivatives, the construction of five-point and nine-point stencils and the treat­
ment of boundary conditions. The discussion is tailored towards the implementation 
that we used for obtaining the numerical results in previous chapters. We limit the 
discussion to linear parabolic partial differential equations. The treatment of nonlinear 
problems is qualitatively very similar. We consider the problem, 

(A.1) 

defined on a two-dimensional rectangular domain, n = [a, b] X [c, d] , with second-order, 
variable coefficient elliptic partial differential operator, 

82u 82u 82u 8u 8u 
Cu == G",,,, 8X2 + G"'II 8x8y + GIIII 8y2 + G", 8x + Gil 8y + Gu . 

Discretization of the elliptic operator 

In the finite differences method one places a regular mesh or grid over the domain. At 
each grid point one writes an ordinary differential equation which locally approximates 
the partial differential equation. Throughout the appendix we shall assume that the 
grid is rectangular with spacing h", in the x-direction and hll in the y-direction, 

nhc ,"" = {(Xi, Yi) I Xi = a + ih"" h", = b ~ a and Yi = c + jhll' hll = d; c}. (A.2) 

Let Ui,i(t) (or Ui,i for short) denote the unknown function which approximates 
u(t, Xi, Yi). The use of central differences to approximate the spatial derivatives leads 
to the following second-order accurate approximations at each grid point (Xi, Yi), 

8u 1 
-8 ~ 2 h (ui,i+1 - ui,i-l) 

Y II 

lucianoaraki@yahoo.com.br



232 APPENDIX A. DISCRETIZATION AND STENCILS 

When these finite difference approximations are used to replace the spatial deriva­
tives in equation (A.1) at (Xi, Yi), the following ordinary differential equation results, 

d c +n +e +' +w dt Ui,; = °i,jUi,; Qi,jUi,;+l Qi,jUi+l,; Qi,jUi,;-l Qi,jUi-l,; 

+ai,iui+1,i+1 + ai,'jui+1,i-1 + aijui-l,i-1 + a?iui-l,i+1 + Ai . 

Here, Ai(t) = f(t, Xi, Yi)' The coefficients, which are functions of t, are given by, 

ai,i = C(t, Xi, Yi) - 2(C",,,,(t, Xi, Yi)/ h~ + ClI1I(t, Xi, Yi)/h~) 

a?i = C.it, Xi, Yi)/2hl/ + Cw(t, Xi, Yi)/ h~ 

ai,i = C",(t, Xi, Yi)/2h", + C",,,,(t, Xi, Yi)/h! 

ai,i = -Cl/(t, Xi, Yi)/2hl/ + Cw(t,Xi'Yi)/h~ 
a~i = -C:s:(t,xi,Yi)/2h", + C:s::s:(t,Xi,Yi)/h! 

ai,i = C",y(t, Xi, Yi)/4h:s:hy 

ai:'; = -C:s:y(t,xi,Yi)/4h",hy 

a:j = C:s:y(t,xi,Yi)/4h",hy 

a?i = -C:s:y(t,xi,y;)/4h",hy 

This ordinary differential equation may be rewritten by using nine-point stencil nota­
tion for the discretized elliptic operator, 

[ 

an,!, a~ . ane 1 d I" '" I" 

-u' . - wee . . .. dt ',J - ai,i ai,; ai,; U',J + f',J . 
a-?U! no!. a<?e. 

',1 '" I" 

(A.3) 

When there is no cross-derivative term in the elliptic operator, i.e., when C:s:y == 0, 
coefficients ai,i, a:j, a:,j and ai,i are equal to zero. In that case, the equation IS 

somewhat shortened. Using jive-point stencil (or jive-point star) notation we get, 

a~· 1 ',J 
c e u' . . . a:,i ai,i ',J + f',J 

a· . ',J 

(A.4) 

Treatment of boundary conditions 

The incorporation of boundary conditions usually requires some special treatment of 
the equations at the grid points on the boundary or near the boundary. The choices 
that we have made in our implementation are discussed below. We assume that each 
side of the rectangular domain admits only one kind of boundary condition. 
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Dirichlet boundary conditions 

Dirichlet conditions specify the solution on the boundary. They are of the form, 

u(t,x,y) = g(t,x,y) , (x,y) E an. 
There are no unknowns associated with grid points on these boundaries since their 
value is known exactly. They are eliminated from the system of equations by adapting 
the stencil coefficients and the right-hand sides of the ODEs at the points adjacent to 
the boundary. Consider, e.g., the domain in figure A.I (upper picture) and assume an 
equation without cross-derivative term. Equation (A.4) at (Xi, yj) becomes, 

d [ -UiJ· = cr.'!'. dt' I,J 
(A.5) 

Mixed boundary conditions 

We consider mixed boundary conditions of the form, 

au 
an(t,x,y) + r(t,x,y)u(t,x,y) = s(t,x,y) , (x,y) En. (A.6) 

(a/an denotes the outward normal derivative operator.) If ret, X, y) == 0, this condition 
is called a Neumann boundary condition. It explicitly specifies the boundary flux. 

Consider the mesh in figure A.I (middle picture) with a mixed condition on the 
boundary to the east. At grid point (Xi, Yj), equation (A.6) is discretized with central 
differences to obtain, 

(A.7) 

This equation relates the solution at three grid points, one of which is located outside 
the PDE domain. The contribution of this fictitious grid point is eliminated by com­
bining (A.7) with the equations (A.3) or (A.4). For instance, in the case of a five-point 
stencil we get the following equation, 

(A.B) 

with Aj = li,j+2h",Si,jcr.i,j' O;i,j = cr.i,j-2h",ri,jcr.i,j , O;'!'. = cr.'!'+cr.~ .. 
'" I" ',J 

Periodic boundary conditions 

Periodicity along the horizontal or vertical coordinate direction implies the equality 
of the solution and of the first partial derivative of the solution on opposite borders. 
The location of the grid points and of the unknowns is illustrated in figure A.I (lower 
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picture). In this picture the variables at the eastern boundary are identified with the 
ones at the western boundary. The stencils at the adjacent grid points are adapted 
correspondingly. The equation at point (Xi,Y;) becomes, 

[ 
a~· 1 d loJ 

-Ui • = a~· ... a'!' . a~· 0 Ui • + !'i " . 
• w ~ ~ ~ w, 

a~ . 
I" 

Its stencil extends all the way to the western boundary. 

,.., r"""I ,.., ,.., ,.., 

, 
I 

I I I I I 

- - - ,- - -.,. - - -, - - -1" - - -, - --
I I I I I 

--- +- ---+ ---t----+- --_+~/!! , 
I 

I I I I I ---.- -- .... ---.--- ... ---.---
" I , , 
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I I 
I I 
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I 

Dirichlet 

Mixed 

Periodic 

(A.9) 

Figure A.I: The extent of the discrete grids in the case of different boundary conditions. 
The solid lines mark the boundary of domain O. ".": grid point with associated 
unknown. "0": grid point with known Dirichlet value. "0": fictitious grid point. 

Boundary conditions and corner points 

When using a nine-point stencil, special attention is needed at the corner points of the 
domain. Several combinations of boundary condition types are possible. The ones that 
require special action are depicted in figure A.2. We shall discuss in each of the three 
cases how coefficient ai,j can be eliminated from the stencil at grid point (Xi,Y;). The 
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elimination of the other boundary points, away from the corner, proceeds as has been 
explained in the previous section. 

When two Dirichlet boundaries meet, the value of 1.£;+1';+1 is usually known. In 
the case of conflicting boundary conditions its value may, e.g., be chosen equal to the 
average of the two conflicting values. The coefficient aij is eliminated by adding the 
term aij 1.£;+1';+1 to the ODE right-hand side Ai' 

Consider the case where a Dirichlet condition meets a mixed condition. Then, the 
mixed condition can be discretized at (x" Yj+1) which results in an algebraic equation 
in the unknowns 1.£;+1';+1, 1.£',;+1 and Ui-1,;+1' Since the latter two are known exactly 
by the Dirichlet condition, one can explicitly derive the value of 1.£,+1.1+1' This value is 
then easily eliminated. 

In the mixed-mixed case the contribution ofthe fictitious corner grid point (Xi+1' Yi+1) 

is taken into account by considering the identity, 

au au au 
an = ax n", + ay nil . (A.lO) 

Here, a I an denotes the directional derivative in the diagonal direction, from (Xi-I, Yj-1) 

to (X;+1,Y;+l)' (n",nll ) is the corresponding unit-length vector. The mixed boundary 
conditions can be used to replace ~ a~d ~ in (A.lO). When discretized by using central 
differences, this equation becomes an algebraic equation in the unknowns ui+1,i+1> Ui,; 

and 1.£;-1';-1. It can be used to eliminate aij from the stencil at grid point (Xi,Yj). 

Dirichlet Dirichlet Mixed 

I 

__ ~ ____ ~~X~,~j2 
I 

I I 

- - .. - - - - .. - - - -
I I 

Dirichlet n --- o 
I I 

__ ~ ____ ~X~,~j2~ . 
I I Mixed 
I I 

- - ~- - - - - - - - <p 
I I 

--0----0----0 
I I I 
I I I 

T1
'(~i~jJC( 

__ ~_ _ _ _ _ ___ ~ Mixed 

I I 

Figure A.2: Location of unknowns, known Dirichlet values and fictitious grid points 
near a corner of the domain. ("e", "0", "0": see figure A.I) 

N umber of equations 

Consider again grid nh.,h"., (A.2), with 1+1 grid lines in x-direction and J + I grid lines 
in the y-direction. The number of unknowns along a coordinate direction is determined 
as follows. For instance, along the x-direction it is equal to 1+1 (mixed conditions on 
both sides), I (one mixed and one Dirichlet condition, or a periodicity condition), or 
I-I (two Dirichlet conditions). 
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It is the man, not the method, 
that solves the problem. 

-H. Poincare. 

78% of all people who quote statistics 
make them up. 
-/bin/fortune. 

Performance: A statement of the speed at which a computer system works. 
Or rather, might work under certain circumstances. 

Or was rumored to work last month. 
-/bin/fortune. 

P=NP if N=1. 

-/bin/fortune . 

.. . many mathematicians still have the feeling 
that using a computer is akin to cheating 

and say that computation is merely an excuse 
for not thinking harder ... 

-Ivars Peterson. 
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and practice. But, in practice, there is. 

-JbinJfortune. 

Our present position on the use of advanced programming techniques is that, 
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the use of "simplified" pseudo-codes by the novice is dangerous, 
for he will produce too many solutions by improper methods to incorrect problems. 
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Gray code, 128 

embedding, 129-130 
grid, 17, 50, 137, 231 

partitioning, 18, 141, 190, 228 
strip or square, 172 

heat equation, 51, 178, 204, 207 
Heun method, 137, 175-182 
hypercube, 126-132 

implicit method, 18, 138 
infinite loop, see infinite loop 
initial boundary value problem, 49 

iPSC/2, 130-132 

Jacobi 
matrix, 40 
splitting, 37 

Jacobi WR, 26, 29 
accuracy increase, 34 
blockwise, 29 
convergence 

general, 31-33 
linear, 40 

iteration function, 29 
time-periodic, 88, 92 

convergence, 98 
Jacobi WR for PDEs, 51-55 

convergence, 53 
time-periodic, 110, 115, 116 

JOR splitting, 37 

Lebesgue, 35 

INDEX 

line hopscotch method, 139, 172, 175-
182 

linear multistep method, 40-42, 100 

maximum principle, 39 
mesh, 50 
MIMD,125 
model problem, 51 

anisotropic, 77 
convection-diffusion, 78 

multi-rate, 24, 26, 45, 46, 227 
multigrid, 59-63, 139 

cycle, 61, 73 
nonlinear, 79 
of the second kind, 86-87 

arithmetic complexity, 189-190 
communication complexity, 191-193 
timing results, 215-220 
with WR, 216 

on space-time grid, 80-82 
parallel implementation, 144-154 
procedure, 63 
timing results, 166-170 

multigrid WR, 21, 64-67 
arithmetic complexity, 184-187 
communication complexity, 191-193 

lucianoaraki@yahoo.com.br



INDEX 

convergence 
continuous-time, 68-70 
discrete-time, 70-72 

experimental results, 73-78 
full approximation scheme, 79-80 
limits of applicability, 222-223 
model problem analysis, 70, 72 
nonlinear, 78-80 
operator, 68, 71 
operators, 64-65 
procedure, 66 
time-periodic, see time-periodic multi­

grid WR 
vectorization, 193 

N-periodic, 100 
nested iteration, see full multigrid 
node, 126 
non-critical 

matrix, 91 
splitting, 93 

norm 
oo-norm,35 
exponentially scaled, 31 
maximum, 30 
of operator, 36 
p-norm,35 

numerical method of lines, 17, 49, 137 

operator 
bounded, 36 
compact, 96 
convolution, 38 
discrete convolution, 43 
discrete periodic convolution, 105 
Fredholm, 95 
periodic convolution, 94 

ordering of equations, 34, 46 
overlap 

area, 142, 143 
of computation and communication, 

19, 132, 144 
of messages, 143 

parabolic multigrid, 20 
with parallel smoothing, 20, 228 

with sequential smoothing, 82 
parabolic PDE, 17, 49, 83, 136 
parallel 

computer 
classification, 124-126 
model, 140 

computing, 123-134 
efficiency, 132 
speedup, 132-134 

period, 83 
Picard-Lindelof iteration, 24 
prolongation, 60, 65 
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parallel implementation, 148, 149 

recursive doubling, 157-158 
timing results, 170-172 

red/black, 52, 139, 148 
residual, 147, 198 

equation, 118 
restriction, 60 

full-weighting, 64, 185 
half-weighting, 65 
injection, 65 
parallel implementation, 148, 149 

Richardson splitting, 37 
root locus curve, 41 

semi-implicit method, 138 
shared memory, 125 
shifted interpolation, 119 
shooting, 26, 86, 118-122 
SIMD,124 
smoothing, 59, 64, 65, 79, 111, 114 

parallel implementation, 147 
x-line, 81 

SOR splitting, 37 
SOR WR, 37 

convergence, 40, 41 
time-periodic, 92 

SOR WR for PDEs, 52 
convergence 53, 55 
divergence, 56, 58 
time-periodic, 110 

space 
of p'th power integrable functions, 

35,90 
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of p-summable sequences, 36, 100 
of continuous functions, 30, 90 
of essentially bounded functions, 35 

space-time grid, 80-82, 85, 184, 228 
spectral 

picture, 107-109 
radius, 36 

spectrum, 36, 91 
of block circulant matrix, 102 
of compact operator, 96 
of convolution operator, 68 

speedup, 132-134 
splitting, 37 

convergent, 99 
non-critical, 93 

stability region, 41-42 
startup-time, 131, 141 
static iteration, 24, 38 
stencil, 64 

five-point, 232 
nine-point, 232 

strict contractivity, 32 
sub cube , 128 

induction, 129 
substructured Gaussian elimination, 155-

157 
timing results, 170-172 

successive approximation, 36 
superlinear 

convergence, 38 
speedup, 133, 166 

symbol, 39 

T-periodicity condition, 83 
TGET, 163-165 

timing results, 170-172 
Thomas algorithm, 140, 154 
time-marching, see time-stepping 
time-periodic multigrid WR, 21, 110-

117 
arithmetic complexity, 187-190 
communication complexity, 191 
convergence 

continuous-time, 112-113 
discrete-time, 114-115 

full approximation scheme, 111 

numerical example, 115-117 
operator, 112, 114 

time-periodic PDE, 83 
standard solvers, 85-87 

time-periodic WR, 88-89 
convergence 

continuous-time, 90-99 
discrete-time, 100-109 

Gauss-Seidel, 88-90, 98 
Jacobi, 88, 92, 98 
operator 

continuous-time, 94-95 
discrete-time, 105 

SOR, 92 

INDEX 

time-periodic WR for PDEs, 110-116 
time-stepping, 18, 50 

acceleration of, 19 
arithmetic complexity, 186-187 
as a multigrid method, 82 
communication complexity, 191 
numerical examples, 174-182 
parallel implementation, 135-182, 228 

transposition by reflection, 163, 164 
trapezoidal rule, 42 

stability region, 107 
tridiagonal system, 140 

parallel solution, 154-165 
timing results, 170-173 

two-grid method 
linear, 59-60 
nonlinear, 79 
time-periodic WR, 111, 114 
WR, 65, 79-80 

two-point boundary value problem, 86, 
90, 118 

update right, 18, 141 

V-cycle, 61, 62 
vectorization, 193 

W-cycle, 61, 62 
Wang's algorithm, 155 

timing results, 170-172 
waveform 

continuous, 25 
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discrete, 43 
vectorization, 193 

waveform iteration, 28 
classification of methods, 28-30 
linear, 37 
operator, 28 

waveform Newton method, 29 
accuracy increase, 33 

waveform Picard method, 28, 30 
waveform quasi-Newton method, 29 
waveform relaxation, 20, 23-48 

acceleration techniques, 45-48 
basic ideas, 25-28 
block-Jacobi point-Gauss-Seidel, 47 
convergence 

linear, 35-45 
nonlinear, 30-35 

for linear systems, 37 
for PDEs, see WR for PDEs 
Gauss-Seidel, see Gauss-Seidel WR 
hierarchical Gauss-Seidel, 46 
Jacobi, see Jacobi WR 
multigrid, see multigrid WR 
Newton method, 29,90 
operator 

continuous-time, 38 
discrete-time, 43 

overlapping block, 46, 229 
parallel implementation, 47 
shooting, 120 
SOR, see SOR WR 
time-periodic, see time-periodic WR 

waveform Schwarz method, 229 
waveform vectorization, 193 
window, 19, 46, 208, 214 
WR for PDEs, 49-82 

convergence 
continuous-time, 52-53 
discrete-time, 53 

Gauss-Seidel, see Gauss-Seidel WR 
for PDEs 

Jacobi, see Jacobi WR for PDEs 
multigrid, see multigrid WR 
numerical experiments, 54-58 
parallel implementation, 190-192,228 

SOR, see SOR WR for PDEs 
standard methods, 51-59 
time-periodic, 110-116 
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Wittum 
Filternde 
Zerlegungen 

Schnelle Loser fur groBe 
Gleichungssysteme 

Das Lbsen groSer Gleichungssysteme ist ein 
zentraler Bestandteil vieler Aufgaben in 
Naturwissenschaft und Technik. Insbeson­
dere die numerische Lbsung partieller 
Differentialgleichungen erfordert die schnelle 
Lbsung groSer Gleichungssysteme. In vielen 
Fallen ist der Gleichungslbser der zeit- und 
speicheraufwendigste Teil einer Simulation 
und begrenzt dam it deren Umfang. 
Das Buch stellt eine neue Klasse von 
schnellen Lbsern fOr groSe Gleichungs­
systerne vor, die filternden Zerlegungen, und 
ordnet sie vergleichend in die bestehende 
Landschaft von schnellen Lbsern ein. 
Filternde Zerlegungen sind eine Verallgemei­
nerung unvollstandiger Block-Zerlegungen. 
Sie ermbglichen die Konstruktion eines 
Verfahrens rnit Mehrgittereffizienz, das 
jedoch nur ein Gitter benbtigt. In verschiede­
nen Anwendungen wird der Vorteil dieses 
Vorgehens deutlich. 
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- Filternde Zerlegungen - Glatter-Korrektor­
Verfahren - Modellanalyse - Konvergenz­
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Problerne - Unsymmetrische Probleme -
Nichtlineare Probleme. 
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