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Abstract-A general, numerical, marching procedure is presented for the calculation of the transport 
processes in three-dimensional flows characterised by the presence of one coordinate in which physical 
influences are exerted in only one direction. Such flows give rise to parabolic differential equations and so 
can be called three-dimensional parabolic flows. The procedure can be regarded as a boundary-layer 
method. provided it is recognised that. unlike earlier published methods with this name. it takes full account 
of the cross-stream diffusion of momentum, etc., and of the pressure variation in the cross-stream plane. 
The pressure field is determined by: first calculating an intermediate velocity field based on an estimated 
pressure field; and then obtaining appropriate correction so as to satisfy the continuity equation To 
illustrate the procedure, calculations are presented for the developing laminar Ilow and heat transfer in a 

square duct with a laterally-moving wall. 

NO~ENCLA~~ 

A, 
B, 

coefticients in the t~nitedifferent equa- 

c, 
tions: 

d, dimension of the duct cross-section 
(Fig. 6); 

D. coefficient of the pressure-gradient term; 
F” a body force, equation (2.2) etc.; 
F “, forward flow at upstream station, equa- 

tion (3.3); 
F D, forward flow at downstream station, 

equation (3.3); 
J, diffusion flux, equation (2.5); 

LY, 
LZ, 

lateral flows defined by equation (3.3); 

mp, a mass source defined by equation (2.13); 
Gl. mass-flow rate through the duct ; 

P* pressure in the cross-stream momentum 
equations ; 

I7 pressure in the main~irection momen- 
tum equation ; 

Pr, the Prandtl number ; 

RET 

S, 
S w 
S PI t, t-, 
TY, ‘I 

a Reynolds number based on the duct 
side d ; 
the source term in equation (2.5); 
finite-difference expressions represent- 
ing the source term equation (3.3); 
temperature; 
the bulk temperature ; 
transport coeffr&ents defined by equa- 

T’. j tion (3.3); 
TI a modified form of T defined by equa- 

tion (3.6); 
u, velocity component in the x direction; 
U. velocity component in the y direction; 
W. velocity component in the z direction ; 
X, distance in the main-flow direction ; 

Y- 

:Y. 
> 

the cross-stream co-ordinates; 

1 
distances between neighbouring grid 

52, points (Fig 5) ; 
Ax, size of the forward step (Fig. 4) ; 
by, cross-stream dimensions of the control 
AZ, volume (Fig. 5); 
f, transport property in equation (3.1); 

1787 



1788 S. V. PATANKAR and D. B. SPALDING 

P- density; 
z. shear stress ; 

49 a general dependent variable. 

Superscripts 

P. pressure ; 

u. 

4 

corresponding velocity components ; 

z: the dependent variable 4; 
* . a.n estimated pressure; 

i 
the correction; 
first phase of the double sweep ; 

II, second phase of the double sweep. 

Subscripts 
D, downstream station : 

z. 
the point e in Fig. 5 ; 
the point E in Fig. 3 or 5 ; 

in, inlet to the duct ; 
max. m~imum over the duct cross-section ; 

;. 
P. the corresponding points in Figs. 3 or 5 ; 

the velocity u; 
upstream station ; 
the velocity V; 
the velocity w, or the point win Fig. 5 ; 
the point W in Fig. 3 or 5 ; 

wall, the moving wall ; 

XY. 
XZ. 

the corresponding co-ordinate planes ; 

Cp. the dependent variable 4. 

1. INTRODUCTION 

1.1 The purpose of the present paper 
BOUNDARY-LAYER theory is one of the most 
advanced and popular of all the branches of 
fluid mechanics. Text-books describe it; re- 
search workers add daily to its repertoire of 
methods and store of experimental knowledge; 
and students and their teachers find it an un- 
failing source of educational exercises and of 

subjects for minor publications. Yet. from the 
point of view of engineering practice, the fruits 
of boundary-layer theory must be judged dis- 
appointing; despite the decades of development. 
the flow in an engine intake or over an aircraft 
fuselage, for example, must be determined, if at 
all, from experiment rather than calculation. 

The reason is that almost all practically 
important boundary layers are three-dimen- 
sional. Even in the laboratory, the efforts of 
skilled experimenters fail to achieve sufficient 
twodimensionality to allow adequate com- 
parison with two-dimensional prediction pro- 
cedures. (Extensive evidence of this is to be 
found, for example, in the proceedings of the 
1968 Stanford Conference [I].) General tech- 
niques that are currently available for predicting 
boundary-layer phenomena on the other hand 
are exclusively two-dimensional in character. 

It is true that a few techniques exist which 
may be applied to some special three-dimen- 
sional flows, and that these may have a limited 
success in predicting phenomena of the relevant 
class. However, the engineer needs general and 
flexible techniques, to which arbitrary initial and 
boundary conditions can be supplied in a 
straightforward way; and which yield predic- 
tions of velocities, of temperatures, of concentra- 
tions, and of the corresponding fluxes, without 
fuss or the supply of special insight. 

It is in the nature of the problem that such 
techniques can be only of the finite-difference 
variety. Such numerical techniques exist for 
two-dimensional flows (e.g. Patankar and 
Spalding [2]); it is the purpose of the present 
paper to report the development of, and to 
describe and illustrate. a nunleri~al procedure 
for predicting boundary-layer phenomena which 
are three-dimensional. 

I .2 Statement of the problem 
Definition. Here it must be made clear that we 

use the term “boundary layer” in a more general 
sense than is usual in the literature. We apply the 
term to all the flows which can be adequately 
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described by differential equations that are 
parabolic in one distance co-ordinate. Thus, we 
call a flow a boundary layer, 

(a) if there exists a predominant direction of 
flow (i.e. there is no reverse flow in that direc- 
tion), 

(b) if the diffusion of momentum heat, mass, 
etc. is negligible in that direction, and 

(c) if the downstream pressure field has little 
influence on the upstream flow conditions. 
When these conditions are satisfied, the co- 
ordinate in the main flow direction becomes a 
“one-way” co-ordinate; i.e. the upstream condi- 
tions can determine the downstream flow 
properties, but not vice versa. It is this convenient 
behaviour of the boundary-layer flows that 
enables us to employ a marching integration 
from an upstream station to a downstream one. 

Some readers may feel that this extension of 
the term “boundary layer” is inconvenient or 
unwarranted. It is for this reason that we use, 
in the title of the paper, the more precise but 
unfamiliar term “parabolic flows”. 

Example. In order to appreciate the main 
features of these flows, it is useful to consider 
the situation illustrated in Fig. 1. Air flows 
steadily through a duct of rectangular cross- 
section; through the floor of the duct there 
penetrates a jet of a different fluid, say steam, 
which is blown obliquely along the wall. 
Downstream of the injection plane, the steam 
mixes with the air; and the interchanges of 
momentum between the two streams co-operate 
with the pressure gradient along the duct and 
the friction on the walls to produce in the mixture 
a swirling motion which decreases in intensity 
with longitudinal distance. The task of our three- 
dimensional boundary-layer theory is to predict 
this process, and all that is connected with it. 

Figure 2 clarifies the matter further, by 
exemplifying some of the quantities which the 
prediction procedure must supply. Figure 2a 
shows how the mixing of the steam and air 
produces variations of the steam concentration 
that would be detected by analysis of the mixture 
clinging to the floor of the duct. This lateral 

FIG. 1. Illustration of a three-dimensional parabolic flow. 

spread of steam is the result of both convection 
and diffusion in the z direction; so we must be 
sure that both these processes are represented 
in the equations which are solved. 

Figure 2b sketches the variation with longi- 
tudinal distance x of the space-average pressure 
across the duct, p. This quantity is indicated 
as rising at first, in response to the injector-like 
action of the jet; thereafter it falls, as a conse- 
quence of friction on the walls. The sketch 
reminds us that j must be calculated ; we do 
not know, as we do in some external boundary- 
layer situations, the pressure variation before 
the start of the computation. 

Also to be computed is the variation of the 
longitudinal velocity component, U. Figure 2c 
illustrates, by a contour diagram the probable 
form of this variation at the outlet section; the 
highest value of u appears in the bottom right- 
hand corner, because of the oblique injection of 
the fast-moving steam jet. The u variation is 
influenced by the gradient of the longitudinal 
momentum, by the shear stresses on the xy and 
xz planes, and by the convection of momentum 
from upstream. The differential equation govern- 
ing u must express these influences individually 
and in simultaneous action. 

Finally, Fig 2d represents, by way of a set 
of vectors, the motion of the fluid in the plane 
of the duct outlet; it shows a large general vortex, 
in the sense resulting from the oblique injection 
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of steam. with minor vortices of opposite sense Nash 171, Krause et al. [8], and Wang [9] have 
in two of the corners. The values of the velocity developed calculation procedures for the three- 
components, L: and w, are the result of the inter- dimensional boundary layer outside of a solid 
action with the convected momenta of the shear body. 
stresses and the normal stresses on the xy and Although satisfactory. no doubt. for the 
xz planes. It is therefore necessary to take these particular purposes which their authors had in 

(cl 

(b) 

Z 

(4 

FIG 2. Wustration of some ol the quantities to be predicted by the calculation procedure. (a) 
Contours of steam concentration at the tloor of the duct. (b) Variation of mean pressure with 
longitudinal distance. (c) Contours of longitudinal velocity at the outlet plane. (d) Velocity 

vectors in the outlet plane. 

stresses into account in the computations and 
the CaI~uIations of the pressure gradients will, 
it is clear, play a crucial part in the procedure. 

1.3 Some remarks about previous work 

There are a few papers in the literature which 
report finite-difference procedures for solving 
the three-dimensional boundary-layer equa- 
tions. The first appears to be that of Raetz [3]; 
but no use of the method has been reported, In 
recent years, Hall [4], Dwyer [Sj, Fannelop [6], 

mind, none of these methods will soIve our 
general problem. The reasons are: firstly, the 
procedures neglect the stresses and diffusion 
fluxes across either the xy or xz plane ; and 
secondly, they do not take full account of the 
pressure variations in the yz plane. These 
omissions rob the model of precisely those 
agents which, in many circumstances, have the 
most significant effect. Moreover, since all these 
procedures have been applied to only external 

boundary layers, they do not provide any means 
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of calculating the unknown pressure gradient 
in a confined flow. 

Miller [lo] has described a procedure which 
would indeed solve our general problem; he 
has applied it to the developing flow in ducts of 
arbitrary cross-section. His procedure, how- 
ever, does not take advantage of the boundary- 
layer character of the flow, but treats the equa- 
tions as elliptic in all the three space co-ordin- 
ates. Thus, Miller needs three-dimensional 
computer storage, the downstream boundary 
conditions. and excessive computer time. While 
looking for a method for boundary-layer flows, 
we should regard Miller’s method as unneces- 
sarily complex and hence unsuitable for our 
purposes. 

When the available procedures in the special 
field of our enquiry are so seriously restricted 
(or complicated), it is helpful to look for 
guidance in related fields. Specifically, since 
steady three-dimensional flows and unsteady 
two-dimensional ones have several mathe- 
matical features in common, it is useful to 
enquire as to what methods have been employed 
for the latter brand of parabolic differential 
equations. There is a large literature on this 
subject, usefully digested by Harlow [ll]. The 
papers most relevant to our present subject are 
those of Harlow and Welch [12], Amsden and 
Harlow [13], and Chorin [14]. These authors 
all use finite-difference procedures in which the 
dependent variables are the velocity components 
and the pressure (or a closely related quantity); 
the pressure is deduced from an equation which 
is obtained by the combination of the continuity 
equation and the momentum equations; and the 
idea is present of a first approximation to the 
solution, followed by a succeeding correction. 
It will later be seen that the method of the present 
paper shares these features. 

It is appropriate to mention also some 
earlier work by the authors and their colleagues. 
Their twodimensional boundary-layer pro- 
cedure [2], when used for flows confined in 
ducts, involved calculating the pressure from 
the continuity equation by a non-iterative 

self-correcting process. This feature, not wholly 
unlike that of methods in the previous para- 
graph, will be employed below. Secondly, two 
procedures for three-dimensional boundary lay- 
ers have just recently been developed (Caretto, 
Cut-r and Spalding [ 151) ; one of these solves the 
same equations as the present method albeit 
in a different manner; the other suppresses the 
pressure as a main variable, in favour of the 
x-direction vorticity. The present method is a 
rival to these two recent methods, and, it now 
appears, a successful one. 

1.4 Outl$re of the present paper 
The description of a numerical procedure for 

solving simultaneous equations can have two 
distinct aims, which it is seldom possible to 
accomplish simultaneously. The first aim is to 
convey to the reader the main principles, and 
the crucial tricks, and to leave him with the 
feeling that he could work out the rest for him- 
self; the second is to present the particular 
equations, and to list the steps needed for their 
solution, with sufficient precision of detail to 
enable a computer programmer to begin his 
work. 

Because the latter aim requires the equations 
to be written out in full, and because this entails 
a proliferation of subscripts that impede smooth 
reading and inhibit understanding, its fulfilment 
is deferred to a later section (Section 3); and 
even there the treatment is curtailed. 

In Section 2 however, an attempt will be made 
to fultil the first aim. Just sufficient of the details 
will be presented to convey the essential ideas; 
and the inessential features will be suppressed. 

The second aim is difficult to fulfil within the 
normal length of a paper. Advantage is, there- 
fore, taken of the fact that the procedure to be 
described here has many details in common 
with the present authors’ two-dimensional pro- 
cedure, which has been more completely re- 
ported [2]. Thus, the details given in Section 3 
are by way of examples, and should be general- 
ized and completed by reference to [2]. 

Section 4 describes an application of the 
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procedure to the Ilow in a square duct with a 
laterally-moving wall. 

2. MAIN FEATURES OF THE CALCULATION 
PROCEDURE 

2.1 The dijjkrential equations 
The equations. We can now express the prob- 

lem described in Section 1.2 as that of solving 
the following equations, written with reference 
to the Cartesian co-ordinates x. y, z : 
Continuity : 

momentum : 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Other conservation equations (general form) : 

In regard to these equations. it is necessary 
to explain both what is included and what is 
omitted. As to symbols, p stands for density. z 
for shear stress, J for diffusion flux. F for a body 
force; the symbol (b can stand for any property 
which can be convected and diffused for 
example. stagnation enthalpy, chemical-species 

concentration, and turbulence energy: S, is the 
corresponding volumetric source rate. The 
subscripts u, L: and w indicate which component 
of the momentum is in question; the subscripts 
xy and xz denote the planes on which the 
stresses or fluxes act. 

The omissions from the equations are the 
shear stresses and diffusion fluxes acting on the 
yz plane. These omissions accord with our 
definition of a boundary layer and with the 
consequent necessity to ensure that no influence 
from downstream can penetrate upstream; 
stresses and fluxes on the yz plane would allow 
such an influence. 

The u~~o~p~i~ oj’ iongitudi~a~ and lateral 
~re.~sure ~r~ie~ts. A further point to note is that 
the symbol p used for the pressure in the 
x-momentum equation (2.2) is different from 
the symbol p in the two other momentum 
equations. This is a reminder of the fact that in 
our calculation procedure an inconsistency is 
deliberately introduced into the treatment of 
pressure. and that the quantities jj and p are 
calculated differently. The pressure p can be 
thought of as a form of space-averaged pressure 
over a cross-section, and the gradient @/ax 
is supposed to be known (or calculated) before 
we proceed to get the lateral pressure gradients 
Jp/c3y and ap/&. (The reader may find this point 
difficult to understand and appreciate at first; 
it should become clearer after perusal of 
Section 2.4 below.) 

This practice is implicit in two-dimensional 
boundary-layer theories also: but it escapes 
notice because there is no necessity to solve 
the momentum equation for the cross-stream 
direction. Here we have two cross-stream 
directions; and we must solve the momentum 
equations for both of them. in order to find out 
how the fluid distributes itself between these 
two directions. 

The practice is a necessary consequence of our 
intention to exploit the boundary-layer nature 
of the flow; it is the final step to be made in 
preventing downstre~ influences from propa- 
gating upstream. If the step is omitted, the result 
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is not increased in accuracy, as one might 
naively expect; it is often a solution which is 
wholly unrealistic physically. The inconsistency 
in the treatment of pressure, it may be said, 
is one part of the price we pay for making the 
equations parabolic; the gain is the freedom 
to employ marching integration, and to use 
two-dimensional computer storage, even though 
the flow is three-dimensional and the full 
equations are elliptic. 

Auxiliary information. The differential equa- 
tions do not alone specify the problem; we need 
additional information of two kinds : initial and 
boundary conditions for all the dependent 
variables (u, u, w, p, 4); and auxiliary equations 
allowing the density, sheer stresses, diffusion 
fluxes, body forces and sources to be computed 
in terms of the dependent variables at each point 
in the field. Since this information is of the same 
kind as is needed for twodimensional boundary 
layers, we shall treat it as well known, and allow 
it to be exemplified without preface in the sub- 
sequent discussion. 

2.2 Thefinite-dfference equations 
The “staggered grid”. Figure 3 shows how the 

points are arrayed in the yz plane at which are 
stored the variables y V, w, p and #. The boomer- 
ang-shaped envelopes enclose the triads of 
points denoted by a single letter, N, S, E, IX or 
P. This arrangement, which is similar to the one 
used by Harlow et al., has the convenient feature 

_ - w 

t - v 

.___. k 
, si t I 

Yt I t 

FIG. 3. The staggered grid. 

that the cross-stream velocities u and w are 
stored at just the points at which they are 
needed for the calculation of the convective 
contribution to the balances of u and (6; and the 
pressures are stored so as to make it easy to 
calculate the pressure gradients which affect 
v and w. 

Thefinite-difference equations. The differential 
equations of Section 2.1 can be expressed in the 
following finite-difference form : 

CVPh - Wpl + CVPW)E - @44 

= CVP),,, - (P&J,). (2.6) 

up = A”,+ f A;u, + A& + A+, 

+ B” + 0 (~~/~x~, (2.7) 

up = A$, + A@, + A$, + A&J, 

+ B” + ““(pp - ps). (2.8) 

wP = A”,w, + A;w, + A;w, + A”www 

+ B” + D”(pp - pw), (2.9) 

(PP = A@, + 4% + A%+ 

+ A$& + B”. (2.10) 

Here the A coefficients contain mass fluxes, 
viscosities, diffusion coefficients, etc. ; the B 
coefficients express the effects of convection 
from the upstream x station, and of source 
terms (including body forces); the C’s are areas 
across which the &id flows; and the D’s involve 
areas, mass flow rates, and other quantities. 
Subscripts D and U in equation (2.6) distinguish 
downstream (larger-x) values from upstream 
(smaller-x) ones; but, where neither is subscribed 
to a variable, thedownstream value is meant. 

The problem is to solve equations (2.6)- 
(2.10) simultaneously for all the u’s, v’s, w’s, 
p’s and 4’s at the downstream x station; the 
A’s, B’s, C’s and D’s can be taken as known, 
because they can be evaluated with sufficient 
accuracy from values prevailing at the upstream 
station. We seek if possible a non-iterative 
means of solution. 

2.3 An ~tli~ of the solution procedure 
The central idea. If the pressures were known, 

C 
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there would be little difficulty; for then the 
momentum equations would be uncoupled. and 
could be solved individually. They are not 
known in advance, but we can guess the pres- 
sures. obtain a tirst approximation to the 
velocity field, and then make corrections to the 
pressure field in such a sense as to bring 
the velocity field into conformity with the 
continuity equation. 

The confined-flow procedure of the authors’ 
two-dimensional boundary-layer theory has 
this guess-and-correct feature; but the correc- 
tion is applied at the next step downstream. 
This deferred~orrection technique could be 
adopted here; instead however, influenced by 
the examples of Chorin jr141 and Amsden and 
Harlow [13], we have preferred to make the 
correction before proceeding to the next step. 

The cross-stream pressure and velocities. Let 
us for the time being assume that we know 
(~~/~x) and that we have solved equation (2.7) 
to get the downstre~ values of U. Now, the 
next step in our procedure is to obtain a pre- 
liminary set of u and w from: 

I$ = A$_$ + &I; + &VE* + Abu$ 

+ B” + D” (p$ - p$), (2.11) 

w; = Al;;w; f A;w,* + A;w$ + A”,w$ 

+ I?“’ + D” (p; - p;c), (2.12) 

where the superscript * given to v and w denotes 
that these are based on an estimated pressure 
field p* ; usually the upstream values of p are a 
good estimate. 

The starred velocities u* and w* will in 
general not satisfy the continuity equation (2.6) 
but will produce a net mass source m, for the 
point P. This is defined by : 

mp - C”{(w*), - (P*)~} + Cw{(pw*), 

- (PW*),) + cw4,,, - bb, d. (2.13) 

Now our aim is to correct the pressure and 
velocities so as to annihilate this mass source. 
For this, we write: 

p = p* + p: (2.14) 

where p’ is the pressure correction. The velocity 
corrections then follow: 

Up = tl; + D“ (pb - p$). (2.15) 

wp = wf + D” (p;, - p;y). (2.16) 

It should be noted that the last two are not 
rigorously derived from equations (2.8) and 
(2.9); we are using approximate forms* of the 
momentum equations to give us our pressure 
corrections, just as we did in the two-dimensional 
confined-flow procedure; and we may expect 
the practice to suffice here, just as it did before. 

The substitution of equations (2.15) and (2.16) 
into (2.6) gives : 

p; = A{p’, + A,Pp$ + A&& + A&p;V + B”, 

(2.17) 

where t the A’s involve C’s, D’s and p’s, and the 
mass source mp has been incorporated into B”. 
This equation can now be solved to yield the 
p”s. Thereupon the p’s, u’s and w’s are com- 
puted from equations (2.14H2.16). 

The ‘longitudinal pressure gradient. The fore- 
going procedure for the calculation of p, v and 
w was based on the assumption that we knew 
(@/lax) and could solve equation (2.7) for U. 
Here we disclose how (@/ax) can be obtained. 
For this purpose, we need to distinguish 
between external and confined flows. In external 
flows, (@/ax) is taken to be the same as the 
longitudinal pressure gradient prevailing in the 
irrotational free stream adjacent to the bound- 
ary layer. Then the solution of equation (2.7) 
is straightforward. In confined flow, we regard 
(@/tjlax) as uniform over a cross-section and 
obtain it from the integral mass-conservation 
equation in the following manner. 

* A correct implication of equation (2.8) would be : 

r?, = a; + D’(/$ - r),:) + .A&(UN - vl;) + &(I$ - l’s*) 
+ A;(tlE - t$) + &(vw - I&). 

By dropping the Iast four terms on the right-hand side of 
this equation, we get equation (2.15). 

t If there are appreciable compressibility effects, care is 
needed in calculating the densities. This point will not 
however be elaborated here. 
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At first, we make an estimate of (@/lax), which 
is denoted by (@/ax)*. This enables us to 
compute a u* field from 

u; = A;U; + &us* + Ai@ + A”,u$ 

+ B” + D” (@/ax)*. (2.18) 

This preliminary velocity field will imply a total 
mass-flow rate C pu* AyAz (taken over the duct 
cross-section) which will in general be different 
from the true mass-flow rate through the duct, 
ti which can be computed directly from the 
inlet and boundary conditions. The difference 
can be used to lead us to the correct values of 
(@/ax). For this, we write: 

(@/ax) = @$/ax)* + (@/ax)‘, (2.19) 

up = u; + D” (~~/~x),. (2.20) 

Since we want 

XppuAyAz = lit, (2.21) 

we get, by the substitution of equation (2.20) 
into (2.21) 

(ajyaxy = 
ti - Cpu*AyAz 

XpD”AyAz 
. (2.22) 

This gives us the required correction to the 
longitudinal pressure gradient; so now it is a 
simple matter to obtain (@/lax) and u from 
equations (2.19) and (2.20). The similarity 
between the equation set (2.11) (2.14) (2.15) 
and the set (2.18) (2.19) (2.20) should be very 
obvious. The important difference, however, is 
that, whereas p’ is obtained from the local 
continuity equation, (@/lx)’ is the outcome of 
the overall continuity equation. 

Other dependent variables. So far, we have 
looked at equations (2.6)--(2.9) and obtained the 
three velocity components and pressure. The 
equation (2.10) for any other dependent variable 
4 (such as stagnation enthalpy, chemical-species 
concentration etc.) does not offer any particular 
difficulty and can be solved straightaway. This 
completes one forward step. 

Solution of the finite-difference equations. In 
the above description, we referred to “solving” 

finite-difference equations like equation (2.10). 
The actual method of solution that we use can 
be summarized as follows: we employ two 
sweeps, one in the y and one in the z direction, 
of the standard tridiagonal matrix algorithm 
(TDMA), which is used in the two-dimensional 
procedure [2] also. Thus, for equation (2.10) 
& and C& are taken as constants when the 
sweep is in the y direction, and & and C& are 
held constant for the sweep in the z direction. 
More details of this method will be given in 
Section 3.3. 

2.4 Some general remarks 
The Poisson equation for pressure. At this 

stage, it will be clear that we obtain the velocity 
and pressure fields by the solution of the three 
momentum equations and of the equation (2.17) 
for the pressure correction p’, which is derived 
from the continuity equation. This equation 
for p’ is just a new form of what is known in the 
literature as the Poisson equation for pressure. 
This interpretation may enable the reader to 
see more clearly why we must treat (@/ax) 
differently from @play) and (ap/az). A general 
Poisson equation will be elliptic in all the three 
space co-ordinates and will not allow solution 
by a marching technique. To be able to march 
in the x direction, we must treat the term 
(a2p/ax2) as known and regard the equation as 
elliptic in only the y and z co-ordinates. This is 
precisely why we obtain (@/lax) before the 
Poisson equation for p’ is solved. 

The boundary conditions. One of the less 
obvious but important features of the present 
method is the ease with which the hydrodynamic 
boundary conditions can be applied. When we 
solve for the starred velocity field we can use 
the actual boundary conditions for velocity, 
as the starred velocities are expected to be very 
close to the true velocities. After this is done, 
the boundary conditions for the pressure cor- 
rection are also simple: at a wall boundary for 
example, there will be no velocity correction at 
the boundary, and so the gradient of p’ normal 
to that boundary must be zero ; at a boundary 
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adjacent to a free stream on the other hand, the 
pressure is known, and if p* is set equal to this 
pressure, the correction p’ at the boundary must 
be zero. In contrast to the present procedure. 
the methods that use vorticity as a variable 
require complicated derivations of the boundary 
conditions [15]. 

The non-iterative nature of the procedure. 
Numerical procedures for solving the partial 
differential equations in fluid dynamics tend to 
be iterative for three main reasons: (a) the 
equations are non-linear; (b) the pressure 
renders the continuity and momentum equations 
strongly linked; and (c) a direct solution of the 
implicit finite-difference equations, even when 
they are linear. is time-consuming. We have 
attempted to make the present procedure non- 
iterative by: (a) the calculation of the A. B. C 
and D coefficients in the finitedifference equa- 
tions from values at the upstream station; 
(Thus, we “force” the equations to be linear) ; 
(b) the use of approximate forms of momentum 
equations (equations (2.15), (2.16) and (2.20)); 
and (c) the solution of the finite-difference 
equations by the two sweeps of the TDMA. It is 
true that these three “tricks” introduce some 
errors in our solution compared to a solution 
produced by a fully iterative procedure. But, 
firstly, these errors are of the same kind as the 
“truncation” errors in any finite-difference 
procedure and hence can be reduced to an 
acceptable level by the use of small forward 
steps; and secondly, it is possible for us, at the 
end of each forward step. to calculate the error 
in satisfying each conservation equation (these 
can be considered as mass or momentum 
sources which our numerical approximations 
have introduced). and then to make a corres- 
ponding correction at the next step down- 
stream. Thus, by leaving errors which can be 
detected and, if necessary, corrected for, we 
enjoy the benefits of a non-iterative procedure 
without serious penalty. 

We hope by now to have conveyed to the 
reader the essential features of our calculation 
procedure. The actual algebraic details remain 

to be given. It is to this matter that we now turn. 

3. SOME DETAILS OF THE CALCULATION 
PROCEDURE 

3.1 Restrictions 
The general calculation procedure described 

so far is restricted only by those conditions 
which define parabolic flows, and which are 
described in Section 1.2. However, the algebraic 
details of the general procedure with various 
types of boundary conditions. grid systems, 
auxilliary information, etc. will be quite lengthy 
and tedious to report here. For this reason. we 
shall present the equations for a uniform- 
property laminar flow and give only the impor- 
tant details. The remaining details are either so 
straightforward that the reader could work them 
out himself, or are similar to the corresponding 
features of our two-dimensional procedure 121. 
We shall use a Cartesian coordinate system xyz. 

3.2 Thefinitedifference equations 
The differential equation considered. For a 

laminar uniform-property flow, equation (2.5) 
takes the form : 

& (PU4) + g w#d + & (PW4) 

(1) (2) (3) 

=~!f!t+~!?Y+S 
ay2 a22 &#? (3.1) 

(4) (5) (6) 

where r is the transport property such as 
viscosity. When 4 stands for a velocity com- 
ponent, the differential equation has the same 
form except that a pressure-gradient term 
appears on the right-hand side. (This term should 
be written separately, and not included in S,, 
as we treat the pressure as an unknown.) 
Therefore, it will be sufficient to describe here 
how equation (3.1) is transformed into a linite- 
difference equation. 

Some basic decisions. We transform equation 
(3.1) into a finitedifference equation by inte- 
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grating it over the control volume shown in 
Fig. 4 by dotted lines. Figure 5 gives more details 
of the yz face of the control volume. The points 
n, s, e, ware the midpoints of the lines PN, PS, 
PE and PW respectively. (The “boomerangs” 
in Fig. 3 have disappeared in Figs. 4 and 5 ; 
there the points R s, e, w have been introduced. 

ty 

FIG. 4. The control volume used to obtain the finite- differ- 
ena: equation. 

UIS I I 
I i-----AZ' 1 

FIG. 5. The yz face of the control volume. 

which enable us to present the algebraic details 
more precisely.) We make the following assump- 
tions about the variation of C$ between the grid 
points : 
(a) In the x direction 9 varies in a stepwise 

manner; i.e. the downstream (x = xD) values of 
4 are supposed to prevail over the interval from 
xU to xD except at xu. This makes our finite- 
difference scheme a fully-implicit one. 
(b) For the calculation of the xdirection con- 
vection and of source terms that may depend on 
4. the variation of Cp in the yz plane is also taken 
to be stepwise. Thus, in the yz plane the value of 
b, is assumed to remain uniform and equal to 
r#+ over the dotted rectangle (Fig. 5) surrounding 
the point P and to change sharply to &, +s, 
& or & outside the rectangle. 
(c) For the cross-stream convection from the 
xy and xz faces of the control volume, the value 
of (p convected is taken to be the arithmetic 
mean of the Cp values on either side of that face, 
except when this practice is altered by the “high- 
lateral-flux modi~cation” mentioned below. 
Thus we use a convenient combination of the 
central-difference and upwind-difference formu- 
lae for the first-order derivatives. 
(d) For difision across the xy and xz faces of 
the control volume, we assume that I$ varies 
linearly between grid points, except when the 
high-lateral-~~ m~i~cation dictates otherwise. 

~e~~~~s of the main ~nitedi~eren~e emotion. 
When the above-mentioned decisions are taken, 
it is a simple matter to obtain the finite- 
difference equation by integration of equation 
(3.1) over the control volume. We get : 

(3) 

= %#Jn - &) - %f+ - #s) \ I 
(4) 

+ Su + S&p, (3.2) 

-%-- 



1798 S. V. PATANKAR and D. 8. SPALDING 

where the numbers in the parentheses indicate Here we merely state that the modification 
the corresponding terms in equation (3.1) and consists of replacing all the T’s by F’s defined 
the new symbols are defined as follows : by: 

F, = F, - 2L; + 2L; - 2L,z + 2L; 

7-Y = QAZ) 
6Y 

(&I + SP#P) = S,, #Y) W 

Rearranging the terms, we get : 

TE (f)fT+ IL1 -t- IT- 1-q I), (3.6) 

where the T and L should be the corresponding 
ones (e.g. Ti with Lz). It should be noted that 
this modification becomes “active” only when 
1 L 1 > T; T itself is always positive. 

Finite-difference equations for velocity com- 
ponents. As mentioned earlier, the difference 

(3.3) 
equations for u, v and w will be similar to 
equation (3.4) except for an additional pressure 
term. In deriving the equations for the cross- 
stream velocities tl and w, we must note that, 
since u and w have “staggered” storage locations. 
they require different control volumes. ~l‘he 
actual details, however, will not be given here. 

Finite-difference equation for pressure correc- 
tion. If we write equations (2.15) and (2.16) as : 

(PP = 4~4, + Ask + &rP, + A,#, + 3, 0” = 0: + D; tp; - P;1)5 

(3.4) v, = u; + 0: (pip - pi), 

where w, = w,* + &(p’E - pi)* 
(3.7) 

A, = Ah/A;. 7 ww=w~i-D;(p;-p~), 

B’ = F&J,,” + s,, 

A;, ZE A;y -k As + Al, + A;y + F, - S,. 

The high-laterial-flux modification. When the 
lateral flow (denoted by the symbol L) is large, 
some of the coefficients AN, As, A,, A, can 
become negative; this event leads to physically 
unrealistic results. The cure is a simple one and 
is discussed at length in [2], where it is given 
the name “the high-lateral-flux modification”. 

the continuity equation written for the control 
volume shown in Fig. 4 becomes: 

- 2 L;*+ PAZ 0; (p;J - p;) + pAz 0: (p$ 

- P;) + PAY D: @k - PZ) 

+ pAy D; (pk - p;,) = 0. (3.8) 

The superscript * on the L’s denotes that these 
are calculated from the starred velocity com- 
ponents. Now it is a mere matter of rearrange- 
ment to get equation (2.17). 

3.3 Solution of thefinite-difference equations 
The double sweep. The finite-difference equa- 

tions like (3.4) can be solved by the successive 
use of the TDMA in the y and z directions. For 
the y-direction sweep, we write: 
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+ (4 4~. u + A, b, u + 9. (3.9) 

where the expression in the parentheses is 
known and the TDMA can be applied. The 
superscript I denotes the values obtained from 
this first phase of solution. The second phase. 
namely the zdirection sweep, is the solution of: 

+ (AN 4,: + As 4: + B) (3.10) 

in a similar manner. 
Remarks. It is true that the above procedure 

does not give us an exact solution of the linite- 
difference equations; but its use is advocated 
on the following considerations : 
(1) It can be easily seen that, when the ydirec- 
tion coefficients A, As are much smaller or 
much larger in magnitude than A,, Aw, the 
above procedure does give a nearly correct 
solution. 
(2) When the forward step Ax is small, the 
equation is dominated by B which contains the 
upstream value f$P,u; then the use of slightly 
approximate values of &. &, &, & introduce 
a very small error in & 
(3) The last remark applies to all the Iinite- 
difference equations except the one for the 
pressure correction, which does not have an 
“upstream convection” term For the pressure- 
correction equation, therefore, it may be worth- 
while obtaining greater accuracy by repeating 
the double sweep a few times. Usually about 
three executions of the double sweep are 
sufficient. 
(4) Thus, to reduce the error resulting from the 
TDMA-double-sweep method of solution, we 
can use one or more of the following devices : 

(i) use smaller forward step; 
(ii) repeat the double sweep a small number of 

times ; 
(iii) calculate the error at the end of the forward 

step and correct for it during the next step. 

3.4 Some miscellaneous matters 
Many details of the calculation procedure 

still remain to be reported Here we merely 
draw attention to a few points and state that 
these can be handled by means similar to those 
in the authors’ two-dimensional procedure [2]. 

The turbulent boundary layer. When the flow 
is turbulent rather than laminar, the same 
calculation procedure is to be used except that 
the laminar viscosity and other transport 
properties are to be replaced by “effective” 
transport coefficients given by a “turbulence 
model”. 

The specified-Jlux boundary. When at a wall 
boundary the heat flux (rather than the tem- 
perature) is specified the finite-difference equa- 
tion for a control volume adjacent to that 
boundary must be rewritten in such a way that 
the coefficient of the boundary temperature is 
zero. 

The wallfunctions. Often the variations of the 
dependent variables are quite steep near a wall 
boundary and therefore the diffusion flux at the 
wall cannot be accurately obtained from a 
linear-profile assumption for 4. In such cases, 
one can employ a function (called the wall func- 
tion in [2]) for the flux at the wall; this takes 
into account the non-linearity of the 4 profile 
resulting from pressure gradient, mass transfer, 
transport-property variation etc. 

Adjusting grids. In this paper, we have used 
a Cartesian coordinate system throughout ; 
but it is possible to employ other coordinate 
systems which may be convenient for particular 
problems. For example, the flow in a duct of 
elliptic cross-section can be conveniently cal- 
culated on a curvilinear orthogonal coordinate 
system in the cross-stream plane. For external 
boundary layers, it is profitable to use a grid 
(as in [2]), which expands or contracts as the 
boundary-layer thickness increases or decreases. 

4. AN APPLICATION OF THE CALCULATION 
PROCEDURE 

4.1 Statement of the problem 
Here we illustrate the use of the present 

method by applying it to the developing flow 
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and heat transfer in a duct of square cross- 
section with a laterally-moving wall, as shown 
in Fig 6. This flow situation is found in screw 
extruders, bearing lubricators, membrane oxy- 
genators etc. Further, in regions of fully- 
developed flow, the cross-stream velocity and 
pressure fields are identical to those in a steady 

twodimensional flow in a square cavity with a 

FIG. 6. The flow situation considered. 

moving wall.* The latter problem has been 
analysed by many authors (for example, 
[l&18]), and we have their solutions for 
comparison. 

The flow is regarded as laminar, and the fluid 
properties as uniform. At the inlet, the velocity, 
pressure and temperature are taken to be 
uniform over the cross-section. The temperature 
of the moving wall is held at a fixed value, 
whereas the other three walls are considered 
aidabatic. Buoyancy effects are neglected. 

* This can be easily understood if we note that, in the 
fully-developed region, all the velocity components cease to 
vary with x. Then the cross-stream velocities v and w are 
governed by precisely the same equations as those for a 
twodimensional flow. 

4.2 Details of the computation 
The computations were performed on an 

IBM 7094 computer. A uniform rectangular 
grid of 16 x 16 nodes was used for all runs 
except those which were made to examine the 
effect of the grid size. Each forward step took 
2 s of computer time. About 100 forward steps 
were necessary to attain the fully-developed 
situation. 

4.3 Results 
The mean pressure. Figure 7 shows the varia- 

tion of the mean pressure with the distance 
along the duct for various velocities of the 
moving wall. For the case of the stationary wall, 
our predictions are compared with the experi- 
mental data of [19] ; the agreement can be seen 
to be very good. 

The effect of the grid size. In Fig 8 are plotted 
the predictions of mean-pressure variation for 
various grid sizes. As can be expected, the 
successive refinement of the grid takes us 
asymptotically towards the correct solution. 
We can conclude that a 16 x 16 grid gives us a 
sufficiently accurate solution for this problem. 

The velocityfield. Figure 9 shows the variation 
of the maximum longitudinal velocity with the 
distance along the duct. Once again, the pre- 
dictions for zero wall velocity are compared 
with the experimental data of [20] and the 
agreement is good. Figures 10 and 11 refer to 
the fully-developed (large-x) region of the flow. 
In Fig. 10 are presented the contours of the 
longitudinal velocity for various velocities of 
the moving wall. Figure 11 compares the 
variation of a cross-stream velocity (along a 
centre-line of the cross-section) with the numeri- 
cal results of Burggraf [ 161, who solved the 
steady two-dimensional square-cavity problem. 
Once again the agreement is very satisfactory. 

The temperature field. Figure 12 shows how 
the bulk temperature of the fluid rises with the 
longitudinal distance. As can be expected, the 
higher the wall velocity, the faster is the rise of 
the bulk temperature. Figure 13 shows the 
effect of the Prandtl number on the bulk- 
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FIG. 8. Effect of the grid size. (Here Revl,, = 100; the two symbols used for the 
5 x 5 grid refer to two different values of the forward step Ax.) 
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Ra. 13. Variation ot’bulk temperature l’or various Prandtl numbers(Re,,, = 100). 

x/d - ~0.10 
Re,” 

FIG. 14. Contours of(t - ti,)/t,l, - tin) for various wall velocities(Pr = I). 

temperature development. The temperature dis- 5. CONCLUDING REMARKS 

tribution in the cross-stream plane is presented (1) The present paper has described a generally 
in Fig 14 in the form of contours; it can be seen applicable, accurate and economical method 
how the swirl induced by the moving wall for calculating heat, mass and momentum 
distorts the temperature field. transfer in three-dimensional parabolic flows. 
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(2) 

(3) 

(4) 

(5) 

The uncoupling of the longitudinal and 
cross-stream pressure gradients is an im- 
portant feature of the method; it is essential 
for making the equations parabolic. 
The non-iterative nature of the method 
derives from the use of upstream convection 
fluxes, from the explicit corrections of 
pressure and velocity, and from the double- 
sweep-IDMA solution of the finite-difference 
equations. 
The procedure described here shares many 
useful features with the present authors’ 
twodimensional procedure [2]. 
Various applications of the present procedure 
are in progress, and will be reported else- 
where. Further advances in the prediction 
of three-dimensional parabolic flows would 
come from the development of the models 
for turbulence, radiation and chemical reac- 
tion. 
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UNE METHODE DE CALCUL DU TRANSFERT DE CHALEUR. DE MASSE ET DE QUANTITE 
DE MOUVEMENT DANS LES ECOULEMENTS PARABOLIQUES TRIDIMENSIONNELS 

R&sum& Une methode numerique generale est presented pour le calcul des processus de transport danq 
des Ccoulements tridimensionnels caracterises par la presence dune coordonnee pour laquelle les 
influences physiques sont sensibles dans une seule direction. De tels ecoulements donnent lieu a des Cqua- 
tions aux d&iv&es partielles paraboliques et ainsi peuvent &tre appelb tcoulements paraboliques tri- 
dimensionnels. La procedure peut Ctre conside& comme une mtthode de couche limite mais on remarque 
que. contrairement a des mtthodes anterieurement publites sous ce nom. elle tient entierement compte de 
la diffusion transversale de quantiti de mouvement etc. et de la variation de pression dans le plan perpen- 
diculaire a I’ecoulement. Le champ de pression est determine par: premierement le calcul d’un champ de 
vitesse intermediaire base sur un champ de pression estime; ensuite par I’obtention de corrections appro- 
prices de facon a satisfaire l’equation de continuite. Pour illustrer la methode. des calculs sont present&s 
pour le developpement d’un ecoulement laminaire et du transfert thermique dans un conduit carre aver 

une paroi mobile lattralement. 

EIN RECHENVERFAHREN FUR WARME-. STOFF- UND IMPULStiBERTRAGUNG IN 
DREIDIMENSIONALEN PARABOLISCHEN STRiiMUNGEN 

Zusammenfassung-Es wird ein allgemeines numerisches Verfahren gezeigt fur die Berechnung der 
Transportvorgange in dreidimensionalen Striimungen. die dadurch gekennzeichnet sind. dass in einer 
Koordinate physikalische Einfltisse nur in einer Richtung wirken. Solche Striimungen fiihren zu para- 
bolischen Diiferentialgleichungen, daher kann man von dreidimensionalen parabolischen Striimungen 
sprechen. Das Rechenverfahren kann als Grenzschichtmethode betrachtet werden, wobei allerdings im 
Unterschied zu friiher veroftentlichten Methoden mit diesem Namen der lmpulstransport u.2. senkrecht 
zur Stromung und such die Druckanderung in der Ebene senkrecht zur Striimung voll beriicksichtigt 
sind. Das Druckfeld wird wie folgt bestimmt : Die erste Berechnung eines mittleren Geschwindigkeits- 
feldes beruht auf einem angenommenen Druckfeld: dann werden passende Korrekturen ermittelt, so 
dass die Kontinuitatsgleichung erfiillt wird. Urn das Rechenverfahren zu demonstrieren. werden Berech- 
nungen fiir den Einlaufvorgang einer laminaren Striimung mit WBrmeiibergang in einem quadratischen 

Kanal mit einer querbewegten Wand angefiihrt. 

PACYET HEPEHOCA TEIIIJIA, MACCbI II MMHYJIbCA B TPEXMEPHbIX 
HAPAHOJIB=IECKBX HOTOHAX 

AEHOTaI(Ii~-HpenCTaBJIeH 06m~ti KOHeqHO-pa3HOCTHbIti MeTOR PaCYeTa IIpOI(eCCOB IIepeHOCa 

B TpexMepBbIx TeqeBtirtx, xapattTepn3ytomHxcn HannqneM OAHOrO npeHMyII(eCTBeHHOr0 

HanpaBneHm H3MeHeHHR, Ha KOTOPOM @I3HVeCKHe @$IeKTbl CKa3bIBaIOTCH TOJIbKO B 

xapaKTepmTnKe nepeaoca. 3~k1 TeveHm onkIcblBar0Tc~ napa60mNeCKHMH ~m#+epeHqaa- 

JlbHbIMIl ypaBHeHAFlMH M MOryT 6bITb Ha3BaHbITpeXMepHbIMIl napa60nasecKHhIM TeYeHHflMII. 

HpeflCTaBJIeHHbIti MeTOR hlO?fSHO PaCCMaTpGIBaTb KaK MeTOR paWeTa IIOJYpaHWfHOrO CJIOH, 

KOTOpbIti B OTJIWIHe OT H3BeCTHbIX PaHee MeTOAOB IIOJIHOCTbIO yWfTbIBaeT IIOnepeqHbIi 

nepeHoc KonmecTBa ~smKeHkm n T.A., a TaKme n3MekreHAe AaBneHm B IIJI~cKOCT~~, HopMa- 

JIbHOP K IIOTOKY. ~Pe~BapSITeJlbHO none JJaBneHaH 0npenemeTcfi nyTeM pacseTa noJrII 

CKOpOCTH II0 HanepeA 3aAaHHOMy nOJII0 RaBJIeHEIfI C IIOCJIeRyIOIqMM BBeAeHAeM COOTBBTCT- 

BylOwliX IIOnpaBOK C TeM, qTO6bI YROBJIeTBOpHTb ypaBHeHHl0 HenpepbIBHOCTH. ,@Wl 

mmocTpaqm npa~o~~~cfi pacseTbI pa3BHBaro~erocn nahmHapkor0 Te4emfl w nepewoca 

TellJIaBTpy6e KBaApaTHOrO CeqeHHRCLJB&DKylqeiCH FOpH30HTaJIbHOtiCTeHKOfi. 


