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Practical Extrapolation Methods

An important problem that arises in many scientific and engineering applications is
that of approximating limits of infinite sequences {Am}. In most cases, these sequences
converge very slowly. Thus, to approximate their limits with reasonable accuracy, one
must compute a large number of the terms of {Am}, and this is generally costly. These
limits can be approximated economically and with high accuracy by applying suitable
extrapolation (or convergence acceleration)methods to a small number of terms of {Am}.

This book is concerned with the coherent treatment, including derivation, analysis, and
applications, of the most useful scalar extrapolation methods. The methods it discusses
are geared toward problems that commonly arise in scientific and engineering disci-
plines. It differs from existing books on the subject in that it concentrates on the most
powerful nonlinear methods, presents in-depth treatments of them, and shows which
methods are most effective for different classes of practical nontrivial problems; it also
shows how to fine-tune these methods to obtain best numerical results.

This book is intended to serve as a state-of-the-art reference on the theory and practice of
extrapolation methods. It should be of interest to mathematicians interested in the theory
of the relevant methods and serve applied scientists and engineers as a practical guide
for applying speed-up methods in the solution of difficult computational problems.

Avram Sidi is Professor of Numerical Analysis in the Computer Science Department
at the Technion–Israel Institute of Technology and holds the Technion Administration
Chair in Computer Science. He has published extensively in various areas of numerical
analysis and approximation theory and in journals such asMathematics of Computation,
SIAM Review, SIAM Journal on Numerical Analysis, Journal of Approximation The-
ory, Journal of Computational and Applied Mathematics, Numerische Mathematik, and
Journal of Scientific Computing. Professor Sidi’s work has involved the development of
novel methods, their detailed mathematical analysis, design of efficient algorithms for
their implementation, and their application to difficult practical problems. His methods
and algorithms are successfully used in various scientific and engineering disciplines.
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17.8 Convergence of Padé Approximants from Meromorphic Functions 338

17.8.1 de Montessus’s Theorem and Extensions 338
17.8.2 Generalized Koenig’s Theorem and Extensions 341
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Preface

An important problem that arises in many scientific and engineering applications is that
of finding or approximating limits of infinite sequences {Am}. The elements Am of such
sequences can show up in the form of partial sums of infinite series, approximations from
fixed-point iterations of linear and nonlinear systems of equations, numerical quadrature
approximations to finite- or infinite-range integrals, whether simple or multiple, etc. In
most applications, these sequences converge very slowly, and this makes their direct
use to approximate limits an expensive proposition. There are important applications in
which they may even diverge. In such cases, the direct use of the Am to approximate
their so-called “antilimits” would be impossible. (Antilimits can be interpreted in appro-
priate ways depending on the nature of {Am}. In some cases they correspond to analytic
continuation in some parameter, for example.)
An effective remedy for these problems is via application of extrapolation methods

(or convergence acceleration methods) to the given sequences. (In the context of infinite
sequences, extrapolation methods are also referred to as sequence transformations.)
Loosely speaking, an extrapolation method takes a finite and hopefully small number of
the Am and processes them in some way. A good method is generally nonlinear in the
Am and takes into account, either explicitly or implicitly, their asymptotic behavior as
m →∞ in a clever fashion.
The importance of extrapolation methods as effective computational tools has long

been recognized. Indeed, the Richardson extrapolation and the Aitken �2-process, two
popular representatives, are discussed in some detail in almost all modern textbooks on
numerical analysis, and Padé approximants have become an integral part of approxi-
mation theory. During the last thirty years a few books were written on the subject and
various comparative studies were done in relation to some important subclasses of con-
vergence acceleration problems, pointing to the most effective methods. Finally, since
the 1970s, international conferences partly dedicated to extrapolationmethods have been
held on a regular basis.
The main purpose of this book is to present a unified account of the existing literature

on nonlinear extrapolation methods for scalar sequences that is as comprehensive and
up-to-date as possible. In this account, I include much of the literature that deals with
methods of practical importance whose effectiveness has been amply verified in various
surveys and comparative studies. Inevitably, the contents reflect my personal interests
and taste. Therefore, I apologize to those colleagues whose work has not been covered.

xix



xx Preface

I have left out completely the important subject of extrapolation methods for vector
sequences, even though I have been actively involved in this subject for the last twenty
years. I regret this, especially in view of the fact that vector extrapolation methods have
had numerous successful applications in the solution of large-scale nonlinear as well as
linear problems. I believe only a fully dedicated book would do justice to them.
The Introduction gives an overview of convergence acceleration within the frame-

work of infinite sequences. It includes a discussion of the concept of antilimit through
examples. Following that, it discusses, both in general terms and by example, the devel-
opment of methods, their analysis, and accompanying algorithms. It also gives a detailed
discussion of stability in extrapolation. A proper understanding of this subject is very
helpful in devising effective strategies for extrapolation methods in situations of inherent
instability. The reader is advised to study this part of the Introduction carefully.
Following the Introduction, the book is divided into three main parts:

(i) Part I dealswith theRichardson extrapolation and its generalizations. It also prepares
some of the background material and techniques relevant to Part II. Chapters 1 and
2 give a complete treatment of the Richardson extrapolation process (REP) that
is only partly described in previous works. Following that, Chapter 3 gives a first
generalization of REP with some amount of theory. The rest of Part I is devoted
to the generalized Richardson extrapolation process (GREP) of Sidi, the Levin–
Sidi D-transformation for infinite-range integrals, the Levin–Sidi d-transformation
for infinite series, Sidi’s variants of the D-transformation for oscillatory infinite-
range integrals, the Sidi–Levin rational d-approximants, and efficient summation
of power series and (generalized) Fourier series by the d-transformation. (Two
important topics covered in connection with these transformations are the class
of functions denoted B(m) and the class of sequences denoted b(m). Both of these
classes are more comprehensive than those considered in other works.) Efficient
implementation of GREP is the subject of a chapter that includes the W-algorithm
of Sidi and the W(m)-algorithm of Ford and Sidi. Also, there are two chapters that
provide a detailed convergence and stability analysis of GREP(1), a prototype of
GREP, whose results point to effective strategies for applying these methods in
different situations. The strategies denoted arithmetic progression sampling (APS)
and geometric progression sampling (GPS) are especially useful in this connection.

(ii) Part II is devoted to development and analysis of a number of effective sequence
transformations. I begin with three classical methods that are important historically
and that have been quite successful in many problems: the Euler transformation (the
only linear method included in this book), the Aitken �2-process, and the Lubkin
transformation. I next give an extended treatment of theShanks transformation along
with Padé approximants and their generalizations, continued fractions, and the qd-
algorithm. Finally, I treat other importantmethods such as theG-transformation, the
Wynn ρ-algorithm and its modifications, the Brezinski θ -algorithm, the Levin L-
and Sidi S-transformations, and the methods of Overholt and of Wimp. I also give
the confluent forms of some of these methods. In this treatment, I include known
results on the application of these transformations to so-called linear and logarithmic
sequences and quite a few new results, including some pertaining to stability. I use
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the latter to draw conclusions on how to apply sequence transformations more
effectively in different situations. In this respect APS of Part I turns out to be an
effective strategy when applying the methods of Part II to linear sequences.

(iii) Part III comprises a single chapter that provides a number of applications to problems
in numerical analysis that are not considered in Parts I and II.

Following these, I have also included as Part IV a sequence of appendices that provide
a lot of useful information recalled throughout the book. These appendices cover briefly
several important subjects, such as asymptotic expansions, Euler–Maclaurin expansions,
the Riemann Zeta function, and polynomial approximation theory, to name a few. In
particular, Appendix D puts together, for the first time, quite a few Euler–Maclaurin
expansions of importance in applications. Appendices G and H include a summary of the
extrapolation methods covered in the book and important tips on when and how to apply
them. Appendix I contains a FORTRAN 77 code that implements the d-transformation
and that is applied to a number of nontrivial examples. The user can run this code as is.
The readermay bewonderingwhy I separated the topic of REP and its generalizations,

especially GREP, from that of sequence transformations and treated it first. There are
two major reasons for this decision. First, the former is more general, covers more cases
of interest, and allows for more flexibility in a natural way. For most practical purposes,
the methods of Part I have a larger scope and achieve higher accuracy than the sequence
transformations studied in Part II. Next, some of the conclusions from the theory of
convergence and stability of extrapolation methods of Part I turn out to be valid for the
sequence transformations of Part II and help to improve their performance substantially.
Now, the treatment of REP and its generalizations concerns the problem of finding

the limit (or antilimit) as y → 0+ of a function A(y) known for y ∈ (0, b], b > 0. Here
y may be a continuous or discrete variable. Such functions arise in many applications in
a natural way. The analysis provided for them suggests to which problems they should
be applied, how they should be applied for best possible outcome in finite-precision
arithmetic, and what type of convergence and accuracy one should expect. All this also
has an impact on how sequence transformations should be applied to infinite sequences
{Am} that are not directly related to a function A(y). In such a case, we can always
draw the analogy A(y)↔ Am for some function A(y) with y ↔ m−1, and view the
relevant sequence transformations as extrapolation methods. When treated this way, it
becomes easier to see that APS improves the performance of these transformations on
linear sequences.
The present book differs from already existing works in various ways:

1. The classes of (scalar) sequences treated in it include many of those that arise in
scientific and engineering applications. They are more comprehensive than those
considered in previous books and include the latter as well.

2. Divergent sequences (such as those that arise from divergent infinite series or inte-
grals, for example) are treated on an equal footing with convergent ones. Suitable
interpretations of their antilimits are provided. It is shown rigorously, at least in some
cases, that extrapolation methods can be applied to such sequences, with no changes,
to produce excellent approximations to their antilimits.
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3. A thorough asymptotic analysis of “tails” of infinite series and infinite-range integrals
is given. Based on this analysis, detailed convergence studies for the differentmethods
are provided. Considerable effort is made to obtain the best possible results under the
smallest number of realistic conditions. These results either come in the form of
bona fide asymptotic expansions of the errors or they provide tight upper bounds on
errors. They are accompanied by complete proofs in most cases. The proofs chosen
for presentation are generally those that can be applied in more than one situation and
hence deserve special attention. When proofs are not provided, the reader is referred
to the relevant papers and books.

4. The stability issue is formalized and given full attention for the first time. Conclusions
are drawn from stability analyses to devise effective strategies that enable one to
obtain the best possible accuracy in finite-precision arithmetic, also in situations
where instabilities are built in. Immediate applications of this are to the summation
of so-called “very oscillatory” infinite-range integrals, logarithmically convergent (or
divergent) series, power series, Fourier series, etc., where most methods have not
done well in the past.

I hope the book will serve as a reference for researchers in the area of extrapolation
methods and for scientists and engineers in different computational disciplines and as a
textbook for students interested in the subject. I have kept the mathematical background
needed to cope with the material to a minimum. Most of what the reader needs and
is not covered by the standard academic curricula is summarized in the appendices. I
would like to emphasize here that the subject of asymptotics is of utmost importance to
any treatment of extrapolation methods. It would be impossible to appreciate the beauty
of the subject of extrapolation – the development of the methods and their mathemat-
ical analyses – without it. It is certainly impossible to produce any honest theory of
extrapolation methods without it. I urge the reader to acquire a good understanding of
asymptotics before everything else. The essentials of this subject are briefly discussed
in Appendix A.
I wish to express my gratitude to my friends and colleagues David Levin, William F.

Ford, Doron S. Lubinsky, Moshe Israeli, and Marius Ungarish for the interest they took
in this book and for their criticisms and comments in different stages of the writing. I
am also indebted to Yvonne Sagie and Hadas Heier for their expert typing of part of the
book.
Lastly, I owe a debt of gratitude to my wife Carmella for her constant encouragement

and support during the last six years while this book was being written. Without her
understanding of, and endless patience for, my long absences from home this book
would not have seen daylight. I dedicate this book to her with love.

Avram Sidi
Technion, Haifa
December 2001



Introduction

0.1 Why Extrapolation–Convergence Acceleration?

Inmany problems of scientific computing, one is facedwith the task of finding or approx-
imating limits of infinite sequences. Such sequences may arise in different disciplines
and contexts and in various ways. In most cases of practical interest, the sequences
in question converge to their limits very slowly. This may cause their direct use for
approximating their limits to become computationally expensive or impossible.
There are other cases in which these sequences may even diverge. In such a case, we

are left with the question of whether the divergent sequence represents anything, and if
so, what it represents. Although in some cases the elements of a divergent sequence can
be used as approximations to the quantity it represents subject to certain conditions, in
most other cases it is meaningless to make direct use of the sequence elements for this
purpose.
Let us consider two very common examples:
(i) Summation of infinite series: This is a problem that arises in many scientific dis-

ciplines, such as applied mathematics, theoretical physics, and theoretical chemistry. In
this problem, the sequences in question are those of partial sums. In some cases, the terms
ak of a series

∑∞
k=0 ak may be known analytically. In other cases, these terms may be

generated numerically, but the process of generating more and more terms may become
very costly. In both situations, if the series converges very slowly, the task of obtaining
good approximations to its sum only from its partial sums An =

∑n
k=0 ak, n = 0, 1, . . . ,

may thus become very expensive as it necessitates a very large number of the terms ak .
In yet other cases, only a finite number of the terms ak , say a0, a1, . . . , aN , may be
known. In such a situation, the accuracy of the best available approximation to the sum
of
∑∞

k=0 ak is normally that of the partial sum AN and thus cannot be improved further.
If the series diverges, then its partial sums have only limited direct use. Divergent series
arise naturally in different fields, perturbation analysis in theoretical physics being one of
them. Divergent power series arise in the solution of homogeneous ordinary differential
equations around irregular singular points.
(ii) Iterative solution of linear and nonlinear systems of equations: This problem

occurs very commonly in applied mathematics and different branches of engineering.
When continuum problems are solved by methods such as finite differences and finite
elements, large and sparse systems of linear and/or nonlinear equations are obtained. A

1
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very attractive way of solving these systems is by iterative methods. The sequences in
question for this case are those of the iteration vectors that have a large dimension in
general. In most cases, these sequences converge very slowly. If the cost of computing
one iteration vector is very high, then obtaining a good approximation to the solution of
a given system of equations may also become very high.
The problems of slow convergence or even divergence of sequences can be overcome

under suitable conditions by applying extrapolation methods (equivalently, convergence
acceleration methods or sequence transformations) to the given sequences. When ap-
propriate, an extrapolation method produces from a given sequence {An} a new sequence
{ Ân} that converges to the former’s limit more quickly when this limit exists. In case
the limit of {An} does not exist, the new sequence { Ân} produced by the extrapolation
method either diverges more slowly than {An} or converges to some quantity called the
antilimit of {An} that has a useful meaning and interpretation in most applications. We
note at this point that the precise meaning of the antilimit may vary depending on the
type of the divergent sequence, and that several possibilities exist. In the next section,
we shall demonstrate through examples how antilimits may arise and what exactly they
may be.
Concerning divergent sequences, there are three important messages that we would

like to get across in this book: (i) Divergent sequences can be interpreted appropriately in
many cases of interest, and useful antilimits for them can be defined. (ii) Extrapolation
methods can be used to produce good approximations to the relevant antilimits in an
efficient manner. (iii) Divergent sequences can be treated on an equal footing with con-
vergent ones, both computationally and theoretically, and this is what we do throughout
this book. (However, everywhere-divergent infinite power series, that is, those with zero
radius of convergence, are not included in the theoretical treatment generally.)
It must be emphasized that each Ân is determined from only a finite number of the

Am . This is a basic requirement that extrapolation methods must satisfy. Obviously, an
extrapolation method that requires knowledge of all the Am for determining a given Ân

is of no practical value.
We now pause to illustrate the somewhat abstract discussion presented above with

the Aitken �2-process that is one of the classic examples of extrapolation methods.
This method was first described in Aitken [2], and it can be found in almost every book
on numerical analysis. See, for example, Henrici [130], Ralston and Rabinowitz [235],
Stoer and Bulirsch [326], and Atkinson [13].

Example 0.1.1 Let the sequence {An} be such that

An = A + aλn + rn with rn = bµn + o(min{1, |µ|n}) as n →∞, (0.1.1)

where A, a, b, λ, and µ are in general complex scalars, and

a, b �= 0, λ, µ �= 0, 1, and |λ| > |µ|. (0.1.2)

As a result, rn ∼ bµn = o(λn) as n →∞. If |λ| < 1, then limn→∞ An = A. If |λ| ≥ 1,
then limn→∞ An does not exist, A being the antilimit of {An} in this case. Consider now
the Aitken �2-process, which is an extrapolation method that, when applied to {An},
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produces a sequence { Ân} with

Ân =
An An+2 − A2

n+1
An − 2An+1 + An+2

=

∣
∣
∣
∣

An An+1
�An �An+1

∣
∣
∣
∣

∣
∣
∣
∣

1 1
�An �An+1

∣
∣
∣
∣

, (0.1.3)

where �Am = Am+1 − Am, m ≥ 0. To see how Ân behaves for n →∞, we substitute
(0.1.1) in (0.1.3). Taking into account the fact that rn+1 ∼ µrn as n →∞, after some
simple algebra it can be shown that

| Ân − A| ≤ α|rn| = O(µn) = o(λn) as n →∞, (0.1.4)

for some positive constant α that is independent of n. Obviously, when limn→∞ rn = 0,
the sequence { Ân} converges to A whether {An} converges or not. [If rn = 0 for n ≥ N ,
then Ân = A for n ≥ N aswell, as implied by (0.1.4). In fact, the formula for Ân in (0.1.3)
is obtained by requiring that Ân = Awhen rn = 0 for all large n, and it is the solution for
A of the equations Am = A + aλm, m = n, n + 1, n + 2.] Also, in case {An} converges,
{ Ân} convergesmore quickly and to limn→∞ An = A, because An − A ∼ aλn as n →∞
from (0.1.1) and (0.1.2). Thus, the rate of convergence of {An} is enhanced by the factor

| Ân − A|
|An − A| = O(|µ/λ|n) = o(1) as n →∞. (0.1.5)

A more detailed analysis of Ân − A yields the result

Ân − A ∼ b
(λ− µ)2

(λ− 1)2
µn as n →∞, (0.1.6)

that is more refined than (0.1.4) and asymptotically best possible as well. It is clear
from (0.1.6) that, when the sequence {rn} does not converge to 0, which happens when
|µ| ≥ 1, both {An} and { Ân} diverge, but { Ân} diverges more slowly than {An}.

In view of this example and the discussion that preceded it, we now introduce the
concepts of convergence acceleration and acceleration factor.

Definition 0.1.2 Let {An} be a sequence of in general complex scalars, and let { Ân} be
the sequence generated by applying the extrapolation method ExtM to {An}, Ân being
determined from Am, 0 ≤ m ≤ Ln , for some integer Ln, n = 0, 1, . . . . Assume that
limn→∞ Ân = A for some A and that, if limn→∞ An exists, it is equal to this A. We shall
say that { Ân} converges more quickly than {An} if

lim
n→∞

| Ân − A|
|ALn − A| = 0, (0.1.7)

whether limn→∞ An exists or not. When (0.1.7) holds we shall also say that the
extrapolation method ExtM accelerates the convergence of {An}. The ratio Rn =
| Ân − A|/|ALn − A| is called the acceleration factor of Ân .
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The ratios Rn measure the extent of the acceleration induced by the extrapolation
method ExtM on {An}. Indeed, from | Ân − A| = Rn|ALn − A|, it is obvious that Rn

is the factor by which the acceleration process reduces |ALn − A| in generating Ân .
Obviously, a good extrapolation method is one whose acceleration factors tend to zero
quickly as n →∞.
In case {An} is a sequence of vectors in some general vector space, the preceding

definition is still valid, provided we replace |ALn − A| and | Ân − A| everywhere with
‖ ALn − A‖ and ‖ Ân − A‖, respectively, where ‖ · ‖ is the norm in the vector space
under consideration.

0.2 Antilimits Versus Limits

Before going on, we would like to dwell on the concept of antilimit that we mentioned
briefly above. This concept can best be explained by examples to which we now turn.
These examples do not exhaust all the possibilities for antilimits by any means. We shall
encounter more later in this book.

Example 0.2.1 Let An, n = 0, 1, 2, . . . , be the partial sums of the power series∑∞
k=0 akzk , that is, An =

∑n
k=0 akzk, n = 0, 1, . . . . If the radius of convergence ρ

of this series is finite and positive, then limn→∞ An exists for |z| < ρ and is a function
f (z) that is analytic for |z| < ρ. Of course,

∑∞
k=0 akzk diverges for |z| > ρ. If f (z) can

be continued analytically to |z| = ρ and |z| > ρ, then the analytic continuation of f (z)
is the antilimit of {An} for |z| ≥ ρ.

As an illustration, let us pick a0 = 0 and ak = −1/k, k = 1, 2, . . . , so that ρ = 1
and limn→∞ An = log(1− z) for |z| ≤ 1, z �= 1. The principal branch of log(1− z) that
is analytic for all complex z �∈ [1,+∞) serves as the antilimit of {An} in case |z| > 1
but z �∈ [1,+∞).

Example 0.2.2 Let An, n = 0, 1, 2, . . . , be the partial sums of the Fourier series∑∞
k=−∞ akeikx ; that is, An =

∑n
k=−n akeikx , n = 0, 1, 2, . . . , and assume thatC1|k|α ≤

|ak | ≤ C2|k|α for all large |k| and some positive constantsC1 andC2 and for some α ≥ 0,
so that limn→∞ An does not exist. This Fourier series represents a 2π -periodic general-
ized function; see Lighthill [167]. If, for x in some interval I of [0, 2π ], this generalized
function coincides with an ordinary function f (x), then f (x) is the antilimit of {An} for
x ∈ I . (Recall that limn→∞ An , in general, exists when α < 0 and an is monotonic in n.
It exists unconditionally when α < −1.)
As an illustration, let us pick a0 = 0 and ak = 1, k = ±1,±2, . . . . Then the se-

ries
∑∞

k=−∞ akeikx represents the generalized function −1+ 2π
∑∞

m=−∞ δ(x − 2mπ ),
where δ(z) is the Dirac delta function. This generalized function coincides with the or-
dinary function f (x) = −1 in the interval (0, 2π ), and f (x) serves as the antilimit of
{An} for n →∞ when x ∈ (0, 2π ).

Example 0.2.3 Let 0 < x0 < x1 < x2 < · · · , limn→∞ xn = ∞, s �= 0 and real, and let
An be defined as An =

∫ xn
0 g(t)eist dt, n = 0, 1, 2, . . . , where C1tα ≤ |g(t)| ≤ C2tα

for all large t and some positive constants C1 and C2 and for some α ≥ 0, so that
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limn→∞ An does not exist. In many such cases, the antilimit of {An} is the Abel sum of
the divergent integral

∫∞
0 g(t)eist dt (see, e.g., Hardy [123]) that is defined by

limε→0+
∫∞
0 e−εt g(t)eist dt . [Recall that

∫∞
0 g(t)eist dt exists and limn→∞ An =∫∞

0 g(t)eist dt , in general, when α < 0 and g(t) is monotonic in t for large t . This is
true unconditionally when α < −1.]
As an illustration, let us pick g(t) = t1/2. Then the Abel sum of the divergent integral∫∞

0 t1/2eist dt is ei3π/4
√
π/(2s3/2), and it serves as the antilimit of {An}.

Example 0.2.4 Let {hn} be a sequence in (0, 1) satisfying h0 > h1 > h2 > · · · , and
limn→∞ hn = 0, and define An =

∫ 1
hn

xαg(x) dx, n = 0, 1, 2, . . . , where g(x) is con-
tinuously differentiable on [0, 1] a sufficient number of times with g(0) �= 0 and α

is in general complex and �α ≤ −1 but α �= −1,−2, . . . . Under these conditions
limn→∞ An does not exist. The antilimit of {An} in this case is the Hadamard finite part
of the divergent integral

∫ 1
0 xαg(x) dx (see Davis and Rabinowitz [63]) that is given by

the expression

m−1∑

i=0

1

α + i + 1

g(i)(0)

i!
+
∫ 1

0
xα
[

g(x)−
m−1∑

i=0

g(i)(0)

i!
xi

]

dx

with m > −�α − 1 so that the integral in this expression exists as an ordinary integral.
[Recall that

∫ 1
0 xαg(x) dx exists and limn→∞ An =

∫ 1
0 xαg(x) dx for �α > −1.]

As an illustration, let us pick g(x) = (1+ x)−1 and α = −3/2. Then the Hadamard
finite part of

∫ 1
0 x−3/2(1+ x)−1 dx is −2− π/2, and it serves as the antilimit of {An}.

Note that limn→∞ An = +∞ but the associated antilimit is negative.

Example 0.2.5 Let s be the solution to the nonsingular linear system of equations
(I − T )x = c, and let {xn} be defined by the iterative scheme xn+1 = T xn + c, n =
0, 1, 2, . . . , with x0 given. Let ρ(T ) denote the spectral radius of T . If ρ(T ) > 1, then
{xn} diverges in general. The antilimit of {xn} in this case is the solution s itself. [Recall
that limn→∞ xn exists and is equal to s when ρ(T ) < 1.]

As should become clear from these examples, the antilimit may have different mean-
ings depending on the nature of the sequence {An}. Thus, it does not seem to be possible
to define antilimits in a unique way, and we do not attempt to do this. It appears, though,
that studying the asymptotic behavior of An for n →∞ is very helpful in determining
the meaning of the relevant antilimit. We hope that what the antilimit of a given diver-
gent sequence is will become more apparent as we proceed to the study of extrapolation
methods.

0.3 General Algebraic Properties of Extrapolation Methods

We saw in Section 0.1 that an extrapolation method operates on a given sequence {An}
to produce a new sequence { Ân}. That is, it acts as a mapping from {An} to { Ân}. In all
cases of interest, this mapping has the general form

Ân = �n(A0, A1, . . . , ALn ), (0.3.1)
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where Ln is some finite positive integer. (As mentioned earlier, methods for which
Ln = ∞ are of no use, because they require knowledge of all the Am to obtain Ân with
finite n.) In addition, for most extrapolation methods there holds

Ân =
Kn∑

i=0
θni Ai , (0.3.2)

where Kn are some nonnegative integers and the θni are some scalars that satisfy

Kn∑

i=0
θni = 1 (0.3.3)

for each n. (This is the case for all of the extrapolation methods we consider in this
work.) A consequence of (0.3.2) and (0.3.3) is that such extrapolation methods act as
summability methods for the sequence {An}.
When the θni are independent of the Am , the approximation Ân is linear in the Am , thus

the extrapolationmethod that generates { Ân} becomes a linear summability method. That
is to say, this extrapolation method can be applied to every sequence {An} with the same
θni . Both numerical experience and the different known convergence analyses suggest
that linear methods are of limited scope and not as effective as nonlinear methods.
As the subject of linear summability methods is very well-developed and is treated in

different books, we are not going to dwell on it in this book; see, for example, the books
by Knopp [152], Hardy [123], and Powell and Shah [231]. We only give the definition of
linear summability methods at the end of this section and recall the Silverman–Toeplitz
theorem, which is one of the fundamental results on linear summability methods. Later
in this work, we also discuss the Euler transformation that has been used in different
practical situations and that is probably the most successful linear summability method.
When the θni depend on the Am , the approximation Ân is nonlinear in the Am . This

implies that if Cm = αAm + βBm, m = 0, 1, 2, . . . , for some constants α and β, and
{ Ân}, {B̂n}, and {Ĉn} are obtained by applying a given nonlinear extrapolation method to
{An}, {Bn}, and {Cn}, respectively, then Ĉn �= α Ân + β B̂n, n = 0, 1, 2, . . . , in general.
(Equality prevails for all n when the extrapolation method is linear.) Despite this fact,
most nonlinear extrapolation methods enjoy a “sort of linearity” property that can be de-
scribed as follows: Let α �= 0 and β be arbitrary constants and considerCm = αAm + β,

m = 0, 1, 2, . . . . Then

Ĉn = α Ân + β, n = 0, 1, 2, . . . . (0.3.4)

In other words, {Cn} = α{An} + β implies {Ĉn} = α{ Ân} + β. This is called the quasi-
linearity property and is a useful property that we want every extrapolation method
to have. (All extrapolation methods treated in this book are quasi-linear.) A sufficient
condition for this to hold is given in Proposition 0.3.1.

Proposition 0.3.1 Let a nonlinear extrapolation method be such that the sequence { Ân}
that it produces from {An} satisfies (0.3.2) with (0.3.3). Then the sequence {Ĉn} that
it produces from {Cn = αAn + β} for arbitrary constants α �= 0 and β satisfies the
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quasi-linearity property in (0.3.4) if the θni in (0.3.2) depend on the Am through the
�Am = Am+1 − Am only and are homogeneous in the �Am of degree 0.

Remark. We recall that a function f (x1, . . . , xp) is homogeneous of degree r if, for
every λ �= 0, f (λx1, . . . , λxp) = λr f (x1, . . . , xp).

Proof. We begin by rewriting (0.3.2) in the form Ân =
∑Kn

i=0 θni ({Am})Ai . Similarly, we
have Ĉn =

∑Kn
i=0 θni ({Cm})Ci . From (0.3.1) and the conditions imposed on the θni , there

exist functions Dni ({um}) for which
θni ({Am}) = Dni ({�Am}) and θni ({Cm}) = Dni ({�Cm}), (0.3.5)

where the functions Dni satisfy for all λ �= 0

Dni ({λum}) = Dni ({um}). (0.3.6)

This and the fact that {�Cm} = {α�Am} imply that

θni ({Cm}) = Dni ({�Cm}) = Dni ({�Am}) = θni ({Am}). (0.3.7)

From (0.3.2) and (0.3.7) we have, therefore,

Ĉn =
Kn∑

i=0
θni ({Am})(αAi + β) = α Ân + β

Kn∑

i=0
θni ({Am}). (0.3.8)

The result now follows by invoking (0.3.3). �

Example 0.3.2 Consider the Aitken �2-process that was given by (0.1.3) in Exam-
ple 0.1.1. We can reexpress Ân in the form

Ân = θn,n An + θn,n+1An+1, (0.3.9)

with

θn,n = �An+1
�An+1 −�An

, θn,n+1 = −�An

�An+1 −�An
. (0.3.10)

Thus, θni = 0 for 0 ≤ i ≤ n − 1. It is easy to see that the θni satisfy the conditions of
Proposition 0.3.1 so that the �2-process has the quasi-linearity property described in
(0.3.4). Note also that for this method Ln = n + 2 in (0.3.1) and Kn = n + 1 in (0.3.2).

0.3.1 Linear Summability Methods and the Silverman–Toeplitz Theorem

We now go back briefly to linear summability methods. Consider the infinite matrix

M =








µ00 µ01 µ02 · · ·
µ10 µ11 µ12 · · ·
µ20 µ21 µ22 · · ·
...

...
...







, (0.3.11)
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where µni are some fixed scalars. The linear summability method associated with M is
the linear mapping that transforms an arbitrary sequence {An} to another sequence {A′n}
through

A′n =
∞∑

i=0
µni Ai , n = 0, 1, 2, . . . . (0.3.12)

This method is regular if limn→∞ An = A implies limn→∞ A′n = A. The Silverman–
Toeplitz theorem that we state next gives necessary and sufficient conditions for a linear
summability method to be regular. For proofs of this fundamental result see, for example,
the books by Hardy [123] and Powell and Shah [231].

Theorem 0.3.3 (Silverman–Toeplitz theorem). The summability method associated with
the matrix M in (0.3.11) is regular if and only if the following three conditions are
fulfilled simultaneously:

(i) limn→∞
∑∞

i=0 µni = 1.
(ii) limn→∞ µni = 0, i = 0, 1, 2, . . . .
(iii) supn

∑∞
i=0 |µni | <∞.

Goingback to the beginning of this section,we see that (0.3.3) is analogous to condition
(i) of Theorem 0.3.3. The issue of numerical stability discussed in Section 0.5 is very
closely related to condition (iii), as will become clear shortly.
The linear summability methods that have been of practical use are those whose

associated matrices M are lower triangular, that is, those for which A′n =
∑n

i=0 µni Ai .
Excellent treatments of thesemethods from thepoint of viewof convergence acceleration,
including an extensive bibliography, have been presented by Wimp [363], [364], [365],
[366, Chapters 2–4].

0.4 Remarks on Algorithms for Extrapolation Methods

A relatively important issue in the subject of extrapolation methods is the development
of efficient algorithms (computational procedures) for implementing existing extrapola-
tion methods. An efficient algorithm is one that involves a small number of arithmetic
operations and little storage when storage becomes a problem.
Some extrapolation methods already have known closed-form expressions for the

sequences { Ân} they generate. This is the case, for example, for the Aitken �2-process.
One possible algorithm for such methods may be the direct computation of the closed-
form expressions. This is also themost obvious, but not necessarily themost economical,
approach in all cases.
Many extrapolation methods are defined through systems of linear or nonlinear equa-

tions, that is, they are defined implicitly by systems of the form

�n,i ( Ân, α1, α2, . . . , αqn ; {Am}) = 0, i = 0, 1, . . . , qn, (0.4.1)

inwhich Ân is themain quantity we are after, andα1, α2, . . . , αqn are additional auxiliary
unknowns. As we will see in the next chapters, the better sequences { Ân} are generated
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by those extrapolation methods with large qn , in general. This means that we actually
want to solve large systems of equations, which may be a computationally expensive
proposition. In such cases, the development of good algorithms becomes especially
important. The next example helps make this point clear.

Example 0.4.1 The Shanks [264] transformation of order k is an extrapolation method,
which, when applied to a sequence {An}, produces the sequence { Ân = ek(An)}, where
ek(An) satisfies the nonlinear system of equations

Ar = ek(An)+
k∑

i=1
αiλ

r
i , n ≤ r ≤ n + 2k, (0.4.2)

where αi and λi are additional (auxiliary) 2k unknowns. Provided this system has a
solution with αi �= 0 and λi �= 0, 1 and λi �= λ j if i �= j , then ek(An) can be shown to
satisfy the linear system

Ar = ek(An)+
k∑

i=1
βi�Ar+i−1, n ≤ r ≤ n + k, (0.4.3)

where βi are additional (auxiliary) k unknowns. Here �Am = Am+1 − Am, m =
0, 1, . . . , as before. [In any case, we can start with (0.4.3) as the definition of ek(An).]
Now, this linear system can be solved using Cramer’s rule, giving us ek(An) as the ratio
of two (k + 1)× (k + 1) determinants in the form

ek(An) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

An An+1 · · · An+k

�An �An+1 · · · �An+k
...

...
...

�An+k−1 �An+k · · · �An+2k−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1
�An �An+1 · · · �An+k
...

...
...

�An+k−1 �An+k · · · �An+2k−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (0.4.4)

We can use this determinantal representation to compute ek(An), but this would be very
expensive for large k and thus would constitute a bad algorithm. A better algorithm is
one that solves the linear system in (0.4.3) by Gaussian elimination. But this algorithm
too becomes costly for large k. The ε-algorithm of Wynn [368], on the other hand, is
very efficient as it produces all of the ek(An), 0 ≤ n + 2k ≤ N , that are defined by
A0, A1, . . . , AN in only O(N 2) operations. It reads

ε
(n)
−1 = 0, ε

(n)
0 = An, n = 0, 1, . . . ,

ε
(n)
k+1 = ε

(n+1)
k−1 + 1

ε
(n+1)
k − ε

(n)
k

, n, k = 0, 1, . . . , (0.4.5)

and we have

ek(An) = ε
(n)
2k , n, k = 0, 1, . . . . (0.4.6)
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Incidentally, Ân in (0.1.3) produced by the Aitken �2-process is nothing but e1(An).
[Note that the Shanks transformations are quasi-linear extrapolation methods. This can
be seen either from the equations in (0.4.2), or from those in (0.4.3), or from the deter-
minantal representation of ek(An) in (0.4.4), or even from the ε-algorithm itself.]
Finally, there are extrapolation methods in the literature that are defined exclusively

by recursive algorithms from the start. The θ-algorithm of Brezinski [32] is such an
extrapolation method, and it is defined by recursion relations very similar to those of the
ε-algorithm.

0.5 Remarks on Convergence and Stability of Extrapolation Methods

The analysis of convergence and stability is the most important subject in the theory of
extrapolation methods. It is also the richest in terms of the variety of results that exist
and still can be obtained for different extrapolation methods and sequences. Thus, it is
impossible to make any specific remarks about convergence and stability at this stage.
We can, however, make several remarks on the approach to these topics that we take in
this book. We start with the topic of convergence analysis.

0.5.1 Remarks on Study of Convergence

The first stage in the convergence analysis of extrapolation methods is formulation of
conditions that we impose on the {An}. In this book, we deal with sequences that arise
in common applications. Therefore, we emphasize mainly conditions that are relevant
to these applications. Also, we keep the number of the conditions imposed on the {An}
to a minimum as this leads to mathematically more valuable and elegant results. The
next stage is analysis of the errors Ân − A under these conditions. This analysis may
lead to different types of results depending on the complexity of the situation. In some
cases, we are able to give a full asymptotic expansion of Ân − A for n →∞; in other
cases, we obtain only the most dominant term of this expansion. In yet other cases, we
obtain a realistic upper bound on | Ân − A| from which powerful convergence results
can be obtained. An important feature of our approach is that we are not content only
with showing that the sequence { Ân} converges more quickly than {An}, that is, that
convergence acceleration takes place in accordance with Definition 0.1.2, but instead
we aim at obtaining the precise asymptotic behavior of the corresponding acceleration
factor or a good upper bound for it.

0.5.2 Remarks on Study of Stability

We now turn to the topic of stability in extrapolation. Unlike convergence, this topic may
not be common knowledge, so we start with some rather general remarks on what we
mean by stability and how we analyze it. Our discussion here is based on those of Sidi
[272], [300], [305], and is recalled in relevant places throughout the book.
When we compute the sequence { Ân} in finite-precision arithmetic, we obtain a se-

quence { Ãn} that is different from { Ân}, the exact transformed sequence. This, of course,
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is caused mainly by errors (roundoff errors and errors of other kinds as well) in the An .
Naturally, we would like to know by how much Ãn differs from Ân , that is, we want
to be able to estimate | Ãn − Ân|. This is important also since knowledge of | Ãn − Ân|
assists in assessing the cumulative error | Ãn − A| in Ãn . To see this, we start with

∣
∣| Ãn − Ân| − | Ân − A|∣∣ ≤ | Ãn − A| ≤ | Ãn − Ân| + | Ân − A|. (0.5.1)

Next, let us assume that limn→∞ | Ân − A| = 0. Then (0.5.1) implies that | Ãn − A| ≈
| Ãn − Ân| for all sufficiently large n, because | Ãn − Ân| remains nonzero.
Wehave observed numerically that, formany extrapolationmethods that satisfy (0.3.2)

with (0.3.3), | Ãn − Ân| can be estimated by the product �nε
(n), where

�n =
Kn∑

i=0
|θni | ≥ 1 and ε(n) = max{|εi | : θni �= 0}, (0.5.2)

and, for each i , εi is the error in Ai . The idea behind this is that the θni and hence �n do
not change appreciably with small errors in the Ai . Thus, if Ai + εi are the computed Ai ,
then Ãn , the computed Ân , is very nearly given by

∑Kn
i=0 θni (Ai + εi ) = Ân +

∑Kn
i=0 θniεi .

As a result,

| Ãn − Ân| ≈
∣
∣
∣
∣

Kn∑

i=0
θniεi

∣
∣
∣
∣ ≤ �nε

(n). (0.5.3)

The meaning of this is that the quantity �n [that always satisfies �n ≥ 1 by (0.3.3)]
controls the propagation of errors in {An} into { Ân}, in the sense that the absolute
computational error | Ãn − Ân| is practically the maximum of the absolute errors in the
Ai , 0 ≤ i ≤ Kn , magnified by the factor �n . Thus, combining (0.5.1) and (0.5.3), we
obtain

| Ãn − A| � �nε
(n) + | Ân − A| (0.5.4)

for the absolute errors, and

| Ãn − A|
|A| � �n

ε(n)

|A| +
| Ân − A|
|A| , provided A �= 0, (0.5.5)

for the relative errors.
The implication of (0.5.4) is that, practically speaking, the cumulative error | Ãn − A| is

at least of the order of the corresponding theoretical error | Ân − A| but it may be as large
as �nε

(n) if this quantity dominates. [Note that because limn→∞ | Ân − A| = 0, �nε
(n)

will dominate | Ãn − A| for sufficiently large n.] The approximate inequality in (0.5.5)
reveals even more in case {An} is convergent and hence Ân , A, and the Ai , 0 ≤ i ≤ Kn ,
are all of the same order of magnitude and the latter are known correctly to r signifi-
cant decimal digits and �n is of order 10s, s < r . Then ε(n)/|A| will be of order 10−r ,
and, therefore, | Ãn − A|/|A| will be of order 10s−r for sufficiently large n. This implies
that Ãn will have approximately r − s correct significant decimal digits when n is suf-
ficiently large. When s ≥ r , however, Ãn may be totally inaccurate in the sense that it
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may be completely different from Ân . In other words, in such cases �n is also a measure
of the loss of relative accuracy in the computed Ân .
One conclusion that can be drawn from this discussion is that it is possible to achieve

sufficient accuracy in Ãn by increasing r , that is, by computing the An with high accuracy.
This can be accomplished on a computer by doubling the precision of the floating-point
arithmetic used for computing the An .
When applying an extrapolation method to a convergent sequence {An} numerically,

we would like to be able to compute the sequence { Ãn} without | Ãn − Ân| becoming
unbounded for increasing n. In view of this and the discussion of the previous paragraphs,
we now give a formal definition of stability.

Definition 0.5.1 If an extrapolation method that generates from {An} the sequence { Ân}
satisfies (0.3.2) with (0.3.3), then we say that it is stable provided supn �n <∞, where
�n =

∑Kn
i=0 |θni |. Otherwise, it is unstable.

The mathematical treatment of stability then evolves around the analysis of {�n}. Note
also the analogy between the definition of a stable extrapolation method and condition
(iii) in the Silverman–Toeplitz theorem (Theorem 0.3.3).
It is clear from our discussion above that we need�n to be of reasonable size relative to

the errors in the Ai for Ãn to be an acceptable representation of Ân . Obviously, the ideal
case is one in which �n = 1, which occurs when all the θni are nonnegative. This case
does arise, for example, in the application of some extrapolation methods to oscillatory
sequences. Inmost other situations, however, direct application of extrapolationmethods
without taking into account the asymptotic nature of {An} results in large �n and even
unbounded {�n}. It then follows that, even though { Ân} may be converging, Ãn may
be entirely different from Ân for all large n. This, of course, is a serious drawback that
considerably reduces the effectiveness of extrapolationmethods that are being used. This
problem is inherent in some methods, and it can be remedied in others by proper tuning.
We show later in this book how to tune extrapolation methods to reduce the size of �n

and even to stabilize the methods completely.
Numerical experience and some theoretical results suggest that reducing �n not only

stabilizes the extrapolation process but also improves the theoretical quality of the se-
quence { Ân}.

Example 0.5.2 Let us see how the preceding discussion applies to the �2-process on
the sequences {An} discussed in Example 0.1.1. First, from Example 0.3.2 it is clear that

�n = 1+ |gn|
|1− gn| , gn = �An+1

�An
. (0.5.6)

Next, from (0.1.1) and (0.1.2) we have that limn→∞ gn = λ �= 1. Therefore,

lim
n→∞�n = 1+ |λ|

|1− λ| <∞. (0.5.7)

This shows that the �2-process on such sequences is stable. Note that, for all large n,
| Ân − A| and �n are proportional to |1− λ|−2 and |1− λ|−1, respectively, and hence
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are large when λ is too close to 1 in the complex plane. It is not difficult to see that
they can be reduced simultaneously in such a situation if the �2-process is applied to
a subsequence {Aκn}, where κ ∈ {2, 3, . . . }, since, for even small κ , λκ is farther away
from 1 than λ is.

We continue our discussion of | Ãn − A| assuming now that the Ai have been computed
with relative errors not exceeding η. In other words, εi = ηi Ai and |ηi | ≤ η for all i .
(This is the case when the Ai have been computed to maximum accuracy that is possible
in finite-precision arithmetic with rounding unit u; we have η = u in this situation.) Then
(0.5.4) becomes

| Ãn − A| � η �n In({As})+ | Ân − A|, In({As}) ≡ max{|Ai | : θni �= 0}. (0.5.8)

Obviously, when {An} converges, or diverges but is bounded, the term In({As}) re-
mains bounded as n →∞. In this case, it follows from (0.5.8) that, provided �n

remains bounded, | Ãn − A| remains bounded as well. It should be noted, however,
that when {An} diverges and is unbounded, In({As}) is unbounded as n →∞, which
causes the right-hand side of (0.5.8) to become unbounded as n →∞, even when
�n is bounded. In such cases, | Ãn − A| becomes unbounded, as we have observed in
all our numerical experiments. The hope in such cases is that the convergence rate
of the exact transformed sequence { Ân} is much greater than the divergence rate of
{An} so that sufficient accuracy is achieved by Ân before In({As}) has grown too
much.
We also note that, in case {An} is divergent and the Ai have been computed with

relative errors not exceeding η, numerical stability can be assessed more accurately by
replacing (0.5.3) and (0.5.4) by

| Ãn − Ân| � η

Kn∑

i=0
|θni | |Ai | (0.5.9)

and

| Ãn − A| � η

Kn∑

i=0
|θni | |Ai | + | Ân − A|, (0.5.10)

respectively. Again, when the Ai have been computed to maximum accuracy that is
possible in finite-precision arithmetic with rounding unit u, we have η = u in (0.5.9) and
(0.5.10). [Of course, (0.5.9) and (0.5.10) are valid when {An} converges too.]

0.5.3 Further Remarks

Finally, in connection with the studies of convergence and stability, we have found
it very useful to relate the given infinite sequences {Am} to some suitable functions
A(y), where y may be a discrete or continuous variable. These relations take the form
Am = A(ym), m = 0, 1, . . . , for some positive sequences {ym} that tend to 0, such
that limm→∞ Am = limy→0+ A(y) when limm→∞ Am exists. In some cases, a sequence
{Am} is derived directly from a known function A(y) exactly as described. The sequences



14 Introduction

discussed in Examples 0.2.3 and 0.2.4 are of this type. In certain other cases, we can show
the existence of a suitable function A(y) that is associated with a given sequence {Am}
even though {Am} is not provided by a relation of the form Am = A(ym), m = 0, 1, . . . ,
a priori.
This kind of an approach is obviously of greater generality than that dealing with

infinite sequences alone. First, for a given sequence {Am}, the related function A(y) may
have certain asymptotic properties for y → 0+ that can be very helpful in deciding what
kind of an extrapolation method to use for accelerating the convergence of {Am}. Next,
in case A(y) is known a priori, we can choose {ym} such that (i) the convergence of
the derived sequence {Am = A(ym)} will be easier to accelerate by some extrapolation
method, and (ii) this extrapolation method will also enjoy good stability properties. Fi-
nally, the function A(y), in contrast to the sequence {Am}, may possess certain analytic
properties in addition to its asymptotic properties for y → 0+. The analytic properties
may pertain, for example, to smoothness and differentiability in some interval (0, b]
that contains {ym}. By taking these properties into account, we are able to enlarge con-
siderably the scope of the theoretical convergence and stability studies of extrapolation
methods. We are also able to obtain powerful and realistic results on the behavior of the
sequences { Ân}.

We shall use this approach to extrapolation methods in many places throughout this
book, starting as early as Chapter 1.
Historically, those convergence acceleration methods associated with functions A(y)

and derived from them have been called extrapolation methods, whereas those that
apply to infinite sequences and that are derived directly from them have been called
sequence transformations. In this book, we also make this distinction, at least as far
as the order of presentation is concerned. Thus, we devote Part I of the book to the
Richardson extrapolation process and its various generalizations and Part II to sequence
transformations.

0.6 Remark on Iterated Forms of Extrapolation Methods

One of the ways to apply extrapolation methods is by simply iterating them. Let us again
consider an arbitrary extrapolation method ExtM. The iteration of ExtM is performed
as follows: We first apply ExtM to {C (n)

0 = An} to obtain the sequence {C (n)
1 }. We next

apply it to {C (n)
s }∞n=0 to obtain {C (n)

s+1}∞n=0, s = 1, 2, . . . . Let us organize the C (n)
s in a

two-dimensional array as in Table 0.6.1. In general, columns of this table converge, each
column converging at least as quickly as the one preceding it. Diagonals converge as
well, and they converge much quicker than the columns.
It is thus obvious that every extrapolation method can be iterated. For example, we

can iterate ek , the Shanks transformation of order k discussed in Example 0.4.1, exactly
as explained here. In this book, we consider in detail the iteration of only two classic
methods: The �2-process, which we have discussed briefly in Example 0.1.1, and the
Lubkin transformation. Both of thesemethods and their iterations are considered in detail
in Chapter 15. We do not consider the iterated forms of the other methods discussed in
this book, mainly because, generally speaking, their performance is not better than that
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Table 0.6.1: Iteration of an extrapolation method ExtM.
Each column is obtained by applying ExtM to the

preceding column

C (0)
0

C (1)
0 C (0)

1

C (2)
0 C (1)

1 C (0)
2

C (3)
0 C (2)

1 C (1)
2 C (0)

3
...

...
...

...
. . .

provided by the straightforward application of the correspondingmethods; in some cases
they even behave in undesired peculiar ways. In addition, their analysis can be done very
easily once the techniques ofChapter 15 (on the convergence and stability of their column
sequences) are understood.

0.7 Relevant Issues in Extrapolation

We close this chapter by giving a list of issues we believe are relevant to both the theory
and the practice of extrapolation methods. Inevitably, some of these issues are more
important than others and deserve more attention.
The first issue we need to discuss is that of development and design of extrapolation

methods. Being the start of everything, this is a very important phase. It is best to embark
on the project of development with certain classes of sequences {An} in mind. Once we
have developed a method that works well on those sequences for which it was designed,
we can always apply it to other sequences as well. In some cases, this may even result
in success. The Aitken �2-process may serve as a good example to illustrate this point
in a simple way.

Example 0.7.1 Let A, λ, a, and b be in general complex scalars and let the sequence
{An} be such that

An = A + λn
[
ans + bns−1 + O(ns−2)

]
as n →∞; λ �= 0, 1, a �= 0, and s �= 0.

(0.7.1)

Even though the �2-process was designed to accelerate the convergence of sequences
{An} whose members satisfy (0.1.1), it turns out that it accelerates the convergence of
sequences {An} that satisfy (0.7.1) as well. Substituting (0.7.1) in (0.1.3), it can be shown
after tedious algebraic manipulations that

Ân − A ∼ Kλnns−2 as n →∞; K = −as

(
λ

λ− 1

)2

, (0.7.2)

as opposed to An − A ∼ aλnns as n →∞. Thus, for |λ| < 1 both {An} and { Ân} con-
verge, and { Ân} converges more quickly.
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Naturally, if we have to make a choice about which extrapolation methods to employ
regularly as users, wewould probably prefer thosemethods that are effective accelerators
for more than one class of sequences. Finally, we would like to remark that, as the design
of extrapolation methods is based on the asymptotic properties of An for n →∞ in
many important cases, there is great value to analyzing An asymptotically for n →∞.
In addition, this analysis also produces the conditions on {An} that we need for the
convergence study, as discussed in the second paragraph of Section 0.5. In many cases
of interest, this study may turn out to be very nontrivial and challenging.
The next issue is the design of good algorithms for implementing extrapolation meth-

ods. Recall that there may be more than one algorithm for implementing a given method.
As mentioned before, a good algorithm is one that requires a small number of operations
and little storage. In addition, it should be as stable as possible numerically. Needless to
say, from the point of view of a user, we should always prefer the most efficient algo-
rithm for a given method. Note that the development of algorithms, because it relies on
algebraic manipulations only, is not in general as important and illuminating as either
the development of extrapolation methods or the analysis of these methods, an issue we
discuss below, or the asymptotic study of {An}, which precedes all this. After all, the
quality of the sequence { Ân} is determined exclusively by the extrapolation method that
generates it and not by whichever algorithm is used for implementing this extrapolation
method. Algorithms are only numerical means by which we obtain the { Ân} already
uniquely determined by the extrapolation method. For these reasons, we reduce our
treatment of algorithms to a minimum.
Some of the literature deals with so-called kernels of extrapolation methods. The

kernel of an extrapolation method is the class of sequences {An} for which Ân = A for
all n, where A is the limit or antilimit of {An}. Unfortunately, there is very little one can
learn about the convergence behavior and stability of the method in question by looking
at its kernel. For this reason, we have left out the treatment of kernels almost completely.
We have considered in passing only those kernels that are obtained in a trivial way.
Given an extrapolation method and a class of sequences to which it is applied, as

we mentioned in the preceding section, the most important and challenging issues are
those of convergence and stability. Proposing realistic and useful analyses for conver-
gence and stability has always been a very difficult task because most of the practical
extrapolation methods are highly nonlinear. As a result, very few papers have dealt with
convergence and stability, where we believe more efforts should be spent. A variety of
mathematical tools are needed for this task, asymptotic analysis being the most crucial
of them.
As for the user, we believe that he should be at least familiar with the existing conver-

gence and stability results, as these may be very helpful in deciding which extrapolation
method should be applied, to which problem, how it should be applied, and how it
should be tuned for good stability properties. In addition, having at least some idea
about the asymptotic behavior of the elements of the sequence whose convergence is
being accelerated is of great assistance in efficient application of extrapolation methods.
We would like to make one last remark about extrapolation methods as opposed

to algorithms by which methods are implemented. In recent years, there has been an
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unfortunate confusion of terminology, in thatmanypapers use the concepts ofmethod and
algorithm interchangeably. The result of this confusion has been that effectiveness due
to extrapolation methods has been incorrectly assigned to extrapolation algorithms. As
noted earlier, the sequences { Ân} are uniquely defined and their properties are determined
only by extrapolation methods and not by algorithms that implement the methods. In
this book, we are very careful to avoid this confusion by distinguishing betweenmethods
and algorithms.





Part I
The Richardson Extrapolation Process

and Its Generalizations





1
The Richardson Extrapolation Process

1.1 Introduction and Background

In many problems of practical interest, a given infinite sequence {An} can be related
to a function A(y) that is known, and hence is computable, for 0 < y ≤ b with some
b > 0, the variable y being continuous or discrete. This relation takes the form An =
A(yn), n = 0, 1, . . . , for some monotonically decreasing sequence {yn} ⊂ (0, b] that
satisfies limn→∞ yn = 0. Thus, in case limy→0+ A(y) = A, limn→∞ An = A as well.
Consequently, computing limn→∞ An amounts to computing limy→0+ A(y) in such a
case, and this is precisely what we want to do.
Again, in many cases of interest, the function A(y) may have a well-defined expansion

for y → 0+ whose form is known. For example – and this is the case we treat in this
chapter – A(y) may satisfy for some positive integer s

A(y) = A +
s∑

k=1
αk y

σk + O(yσs+1 ) as y → 0+, (1.1.1)

where σk �= 0, k = 1, 2, . . . , s + 1, and �σ1 < �σ2 < · · · < �σs+1, and where αk are
constants independent of y. Obviously, �σ1 > 0 guarantees that limy→0+ A(y) = A.
When limy→0+ A(y) does not exist, A is the antilimit of A(y) for y → 0+, and in this
case �σi ≤ 0 at least for i = 1. If (1.1.1) is valid for all s = 1, 2, 3, . . . , and �σ1 <
�σ2 < · · · , with limk→∞ �σk = +∞, then A(y) has the true asymptotic expansion

A(y) ∼ A +
∞∑

k=1
αk y

σk as y → 0+, (1.1.2)

whether the infinite series
∑∞

k=1 αk yσk converges or not. (In most cases of interest, this
series diverges strongly.) The σk are assumed to be known, but the coefficients αk need
not be known; generally, the αk are not of interest to us. We are interested in finding A
whether it is the limit or the antilimit of A(y) for y → 0+.

Suppose now that�σ1 > 0 so that limy→0+ A(y) = A.Then A can be approximated by
A(y)with sufficiently small values of y, the error in this approximationbeing A(y)− A =
O(yσ1 ) as y → 0+ by (1.1.1). If �σ1 is sufficiently large, A(y) can approximate A well
even for values of y that are not too small. If this is not the case, however, thenwemayhave
to compute A(y) for very small values of y to obtain reasonably good approximations

21



22 1 The Richardson Extrapolation Process

to A. Unfortunately, this straightforward idea of reducing y to very small values is not
always applicable. In most cases of interest, computing A(y) for very small values of
y either is very costly or suffers from loss of significance in finite-precision arithmetic.
The deeper idea of the Richardson extrapolation, on the other hand, is to somehow
eliminate the yσ1 term from the expansion in (1.1.1) and to obtain a new approximation
A1(y) to A whose error is A1(y)− A = O(yσ2 ) as y → 0+. Obviously, A1(y) will be a
better approximation to A than A(y) for small y since �σ2 > �σ1. In addition, if �σ2 is
sufficiently large, then we expect A1(y) to approximate A well also for values of y that
are not too small, independently of the size of �σ1. At this point, we mention only that
the Richardson extrapolation is achieved by taking an appropriate “weighted average”
of A(y) and A(ωy) for some ω ∈ (0, 1). We give the precise details of this procedure in
the next section.
From (1.1.1), it is clear that A(y)− A = O(yσ1 ) as y → 0+, whether�σ1 > 0 or not.

Thus, the function A1(y) that results from the Richardson extrapolation can be a useful
approximation to A for small values of y also when�σ1 ≤ 0, provided�σ2 > 0. That is
to say, limy→0+ A1(y) = A provided �σ2 > 0 whether limy→0+ A(y) exists or not. This
is an additional fundamental and useful feature of the Richardson extrapolation.
In the following examples, we show how functions A(y) exactly of the form we have

described here come about naturally. In these examples, we treat the classic problems
of computing π by the method of Archimedes, numerical differentiation by differences,
numerical integration by the trapezoidal rule, summation of an infinite series that is
used in defining the Riemann Zeta function, and the Hadamard finite parts of divergent
integrals.

Example 1.1.1 The Method of Archimedes for Computing π The method of Arch-
imedes for computingπ consists of approximating the area of the unit disk (that is nothing
but π ) by the area of an inscribed or circumscribing regular polygon. If this polygon is
inscribed in the unit disk and has n sides, then its area is simply Sn = (n/2) sin(2π/n).
Obviously, Sn has the (convergent) series expansion

Sn = π + 1

2

∞∑

i=1

(−1)i (2π)2i+1
(2i + 1)!

n−2i , (1.1.3)

and the sequence {Sn} is monotonically increasing and has π as its limit.
If the polygon circumscribes the unit disk and has n sides, then its area is Sn =

n tan(π/n), and Sn has the (convergent) series expansion

Sn = π +
∞∑

i=1

(−1)i4i+1(4i+1 − 1)π2i+1B2i+2
(2i + 2)!

n−2i , (1.1.4)

where Bk are the Bernoulli numbers (see Appendix D), and the sequence {Sn} this time
is monotonically decreasing and has π as its limit.

As the expansions given in (1.1.3) and (1.1.4) are also asymptotic as n →∞, Sn in
both cases is analogous to the function A(y). This analogy is as follows: Sn ↔ A(y),
n−1 ↔ y, σk = 2k, k = 1, 2, . . . , and π ↔ A. The variable y is discrete and assumes
the values 1/3, 1/4, . . . .
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Finally, the subsequences {S2m } and {S3·2m } can be computed recursively without
having to know π , their computation involving only square roots. (See Example 2.2.2 in
Chapter 2.)

Example 1.1.2 Numerical Differentiation by Differences Let f (x) be continuously
differentiable at x = x0, and assume that f ′(x0), the first derivative of f (x) at x0, is
needed. Assume further that the only thing available to us is f (x) , or a procedure that
computes f (x), for all values of x in a neighborhood of x0.
If f (x) is known in the neighborhood [x0 − a, x0 + a] for some a > 0, then f ′(x0)

can be approximated by the centered difference δ0(h) that is given by

δ0(h) = f (x0 + h)− f (x0 − h)

2h
, 0 < h ≤ a. (1.1.5)

Note that h here is a continuous variable. Obviously, limh→0 δ0(h) = f ′(x0). The ac-
curacy of δ0(h) is quite low, however. When f ∈ C3[x0 − a, x0 + a], there exists
ξ (h) ∈ [x0 − h, x0 + h], for which the error in δ0(h) satisfies

δ0(h)− f ′(x0) = f ′′′(ξ (h))
3!

h2 = O(h2) as h → 0. (1.1.6)

When the function f (x) is continuously differentiable a number of times, the error
δ0(h)− f ′(x0) can be expanded in powers of h2. For f ∈ C2s+3[x0 − a, x0 + a], there
exists ξ (h) ∈ [x0 − h, x0 + h], for which we have

δ0(h) = f ′(x0)+
s∑

k=1

f (2k+1)(x0)
(2k + 1)!

h2k + Rs(h), (1.1.7)

where

Rs(h) = f (2s+3)(ξ (h))
(2s + 3)!

h2s+2 = O(h2s+2) as h → 0. (1.1.8)

The proof of (1.1.7) and (1.1.8) can be achieved by expanding f (x0 ± h) in a Taylor
series about x0 with remainder.
The difference δ0(h) is thus seen to be analogous to the function A(y). This analogy

is as follows: δ0(h)↔ A(y), h ↔ y, σk = 2k, k = 1, 2, . . . , and f ′(x0)↔ A.
When f ∈ C∞[x0 − a, x0 + a], the expansion in (1.1.7) holds for all s = 0, 1, . . . .

As a result, we can replace it by the genuine asymptotic expansion

δ0(h) ∼ f ′(x0)+
∞∑

k=1

f (2k+1)(x0)
(2k + 1)!

h2k as h → 0, (1.1.9)

whether the infinite series on the right-hand side of (1.1.9) converges or not.
As is known, in finite-precision arithmetic, the computation of δ0(h) for very small

values of h is dominated by roundoff. The reason for this is that as h → 0 both f (x0 + h)
and f (x0 − h) tend to f (x0), which causes the difference f (x0 + h)− f (x0 − h) to
have fewer and fewer correct significant digits. Thus, it is meaningless to carry out the
computation of δ0(h) beyond a certain threshold value of h.
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Example 1.1.3 Numerical Quadrature by Trapezoidal Rule Let f (x) be defined on
[0, 1], and assume that I [ f ] = ∫ 1

0 f (x) dx is to be computed by numerical quadrature.
One of the simplest numerical quadrature formulas is the trapezoidal rule. Let T (h) be
the trapezoidal rule approximation to I [ f ], with h = 1/n, n being a positive integer.
Then, T (h) is given by

T (h) = h

[
1

2
f (0)+

n−1∑

j=1
f ( jh)+ 1

2
f (1)

]

. (1.1.10)

Note that h for this problem is a discrete variable that takes on the values 1, 1/2, 1/3, . . . .
It iswell known thatT (h) tends to I [ f ] ash → 0 (orn →∞),whenever f (x) isRiemann
integrable on [0, 1]. When f ∈ C2[0, 1], there exists ξ (h) ∈ [0, 1], for which the error
in T (h) satisfies

T (h)− I [ f ] = f ′′(ξ (h))
12

h2 = O(h2) as h → 0. (1.1.11)

When the integrand f (x) is continuously differentiable a number of times, the error
T (h)− I [ f ] can be expanded in powers of h2. For f ∈ C2s+2[0, 1], there exists ξ (h) ∈
[0, 1], for which

T (h) = I [ f ]+
s∑

k=1

B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
h2k + Rs(h), (1.1.12)

where

Rs(h) = B2s+2
(2s + 2)!

f (2s+2)(ξ (h))h2s+2 = O(h2s+2) as h → 0. (1.1.13)

Here Bp are the Bernoulli numbers as before. The expansion in (1.1.12) with (1.1.13) is
known as the Euler–Maclaurin expansion (see Appendix D) and its proof can be found
in many books on numerical analysis.
The approximation T (h) is analogous to the function A(y) in the following sense:

T (h)↔ A(y), h ↔ y, σk = 2k, k = 1, 2, . . . , and I [ f ]↔ A.
Again, for f ∈ C2s+2[0, 1], an expansion that is identical in form to (1.1.12) with

(1.1.13) exists for the midpoint rule approximation M(h), where

M(h) = h
n∑

j=1
f ( jh − 1

2h). (1.1.14)

This expansion is

M(h) = I [ f ]+
s∑

k=1

B2k( 12 )

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
h2k + Rs(h), (1.1.15)

where, again for some ξ (h) ∈ [0, 1],

Rs(h) =
B2s+2( 12 )
(2s + 2)!

f (2s+2)(ξ (h))h2s+2 = O(h2s+2) as h → 0. (1.1.16)

Here Bp(x) is the Bernoulli polynomial of degree p and B2k( 12 ) = −(1− 21−2k)B2k,

k = 1, 2, . . . .
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When f ∈ C∞[0, 1], both expansions in (1.1.12) and (1.1.15) hold for all s =
0, 1, . . . . As a result, we can replace both by genuine asymptotic expansions of the
form

Q(h) ∼ I [ f ]+
∞∑

k=1
ckh

2k as h → 0, (1.1.17)

where Q(h) stands for T (h) or M(h), and ck is the coefficient of h2k in (1.1.12) or
(1.1.15). Generally, when f (x) is not analytic in [0, 1], or even when it is analytic there
but is not entire, the infinite series

∑∞
k=1 ckh

2k in (1.1.17) diverges very strongly.
Finally, by h = 1/n, the computation of Q(h) for very small values of h involves a

large number of integrand evaluations and hence is very costly.

Example 1.1.4 Summation of the Riemann Zeta Function Series Let An =∑n
m=1 m

−z , n = 1, 2, . . . . When �z > 1, limn→∞ An = ζ (z), where ζ (z) is the
Riemann Zeta function. For �z ≤ 1, on the other hand, limn→∞ An does not exist.
Actually, the infinite series

∑∞
m=1 m

−z is taken as the definition of ζ (z) for �z > 1.
With this definition, ζ (z) is an analytic function of z for �z > 1. Furthermore, it can be
continued analytically to the whole z-plane with the exception of the point z = 1, where
it has a simple pole with residue 1.
For all z �= 1, i.e., whether limn→∞ An exists or not, we have the well-known asymp-

totic expansion (see Appendix E)

An ∼ ζ (z)+ 1

1− z

∞∑

i=0
(−1)i

(
1− z

i

)

Bin
−z−i+1 as n →∞, (1.1.18)

where Bi are the Bernoulli numbers as before and
(a
i

)
are the binomial coefficients. We

also recall that B3 = B5 = B7 = · · · = 0, and that the rest of the Bi are nonzero.
The partial sum An is thus analogous to the function A(y) in the following

sense: An ↔ A(y), n−1 ↔ y, σ1 = z − 1, σ2 = z, σk = z + 2k − 5, k = 3, 4, . . . , and
ζ (z)↔ A provided z �= −m + 1, m = 0, 1, 2, . . . . Thus, ζ (z) is the limit of {An}when
�z > 1, and its antilimit otherwise, provided z �= −m + 1, m = 0, 1, 2, . . . .Obviously,
the variable y is now discrete and takes on the values 1, 1/2, 1/3, . . . .

Note also that the infinite series on the right-hand side of (1.1.18) is strongly divergent.

Example 1.1.5 Numerical Integration of Periodic Singular Functions Let us now
consider the integral I [ f ] = ∫ 1

0 f (x) dx , where f (x) is a 1-periodic function that
is infinitely differentiable on (−∞,∞) except at the points t + k, k = 0,±1,
±2, . . . , where it has logarithmic singularities, and can be written in the form f (x) =
g(x) log |x − t | + g̃(x) when x, t ∈ [0, 1]. For example, with u ∈ C∞(−∞,∞) and
periodic with period 1, and with c some constant, f (x) = u(x) log (c| sinπ (x − t)|)
is such a function. For this f (x), we have g(t) = u(t) and g̃(t) = u(t) log(πc). Sidi and
Israeli [310] derived the “corrected” trapezoidal rule approximation

T (h; t) = h
n−1∑

i=1
f (t + ih)+ g̃(t)h + g(t)h log

(
h

2π

)

, h = 1/n, (1.1.19)
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for I [ f ], and showed that T (h; t) has the asymptotic expansion

T (h; t) ∼ I [ f ]− 2
∞∑

k=1

ζ ′(−2k)
(2k)!

g(2k)(t)h2k+1 as h → 0. (1.1.20)

Here ζ ′(z) = d
dz ζ (z). (See Appendix D.)

The approximation T (h; t) is analogous to the function A(y) in the following sense:
T (h; t)↔ A(y), h ↔ y, σk = 2k + 1, k = 1, 2, . . . , and I [ f ]↔ A. In addition, y
takes on the discrete values 1, 1/2, 1/3, . . . .

Example 1.1.6 Hadamard Finite Parts of Divergent Integrals Consider the inte-
gral

∫ 1
0 xρg(x) dx , where g ∈ C∞[0, 1] and ρ is generally complex such that ρ �=

−1,−2, . . . .When�ρ > −1, the integral exists in the ordinary sense. In case g(0) �= 0
and �ρ ≤ −1, the integral does not exist in the ordinary sense since xρg(x) is not inte-
grable at x = 0, but its Hadamard finite part exists, as we mentioned in Example 0.2.4.
Let us define Q(h) = ∫ 1

h xρg(x) dx . Obviously, Q(h) is well-defined and computable
for h ∈ (0, 1]. Let m be any nonnegative integer. Then, there holds

Q(h) =
∫ 1

h
xρ
[

g(x)−
m−1∑

i=0

g(i)(0)

i!
xi

]

dx +
m−1∑

i=0

g(i)(0)

i!

1− hρ+i+1

ρ + i + 1
. (1.1.21)

Now let m > −�ρ − 1. Expressing the integral term in (1.1.21) in the form
∫ 1
h =∫ 1

0 −
∫ h
0 , using the fact that

g(x)−
m−1∑

i=0

g(i)(0)

i!
xi = g(m)(ξ (x))

m!
xm, for some ξ (x) ∈ (0, x),

and defining

I (ρ) =
∫ 1

0
xρ
[

g(x)−
m−1∑

i=0

g(i)(0)

i!
xi

]

dx +
m−1∑

i=0

1

ρ + i + 1

g(i)(0)

i!
, (1.1.22)

and ‖g(m)‖ = max0≤x≤1|g(m)(x)|, we obtain from (1.1.21)

Q(h)= I (ρ)−
m−1∑

i=0

g(i)(0)

i!

hρ+i+1

ρ + i + 1
+ Rm(h); |Rm(h)| ≤ ‖g(m)‖

m!

h�ρ+m+1

�ρ + m + 1
,

(1.1.23)

[Note that, with m > −�ρ − 1, the integral term in (1.1.22) exists in the ordinary sense
and I (ρ) is independent of m.] Since m is also arbitrary in (1.1.23), we conclude that
Q(h) has the asymptotic expansion

Q(h) ∼ I (ρ)−
∞∑

i=0

g(i)(0)

i!

hρ+i+1

ρ + i + 1
as h → 0. (1.1.24)

Thus, Q(h) is analogous to the function A(y) in the following sense: Q(h)↔ A(y),
h ↔ y, σk = ρ + k, k = 1, 2, . . . , and I (ρ)↔ A. Of course, y is a continuous variable
in this case. When the integral exists in the ordinary sense, I (ρ) = limh→0 Q(h); other-
wise, I (ρ) is the Hadamard finite part of

∫ 1
0 xρg(x) dx and serves as the antilimit of Q(h)
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as h → 0. Finally, I (ρ) = ∫ 1
0 xρg(x) dx is analytic in ρ for �ρ > −1 and, by (1.1.22),

can be continued analytically to a meromorphic function with simple poles possibly at
ρ = −1,−2, . . . .Thus, the Hadamard finite part is nothing but the analytic continuation
of the function I (ρ) that is defined via the convergent integral

∫ 1
0 xρg(x) dx , �ρ > −1,

to values of ρ for which �ρ ≤ −1, ρ �= −1,−2, . . . .

Before going on, we mention that many of the developments of this chapter are due
to Bulirsch and Stoer [43], [45], [46]. The treatment in these papers assumes that the σk
are real and positive. The case of generally complex σk was considered recently in Sidi
[298], where the function A(y) is allowed to have a more general asymptotic behavior
than in (1.1.2). See also Sidi [301].

1.2 The Idea of Richardson Extrapolation

We now go back to the function A(y) discussed in the second paragraph of the preceding
section. We do not assume that limy→0+ A(y) necessarily exists. We recall that, when it
exists, this limit is equal to A in (1.1.1) ; otherwise, A there is the antilimit of A(y) as
y → 0+. Also, the nonexistence of limy→0+ A(y) immediately implies that �σi ≤ 0 at
least for i = 1.
As mentioned in the third paragraph of the preceding section, A(y)− A = O(yσ1 )

as y → 0+, and we would like to eliminate the yσ1 term from (1.1.1) and thus obtain
a new approximation to A that is better than A(y) for y → 0+. Let us pick a constant
ω ∈ (0, 1), and set y′ = ωy. Then, from (1.1.1) we have

A(y′) = A +
s∑

k=1
αkω

σk yσk + O(yσs+1 ) as y → 0+ . (1.2.1)

Multiplying (1.1.1) by ωσ1 and subtracting from (1.2.1), we obtain

A(y′)− ωσ1 A(y) = (1− ωσ1 )A +
s∑

k=2
(ωσk − ωσ1 )αk y

σk + O(yσs+1 ) as y → 0+ .

(1.2.2)

Obviously, the term yσ1 is missing from the summation in (1.2.2). Dividing both sides
of (1.2.2) by (1− ωσ1 ), and identifying

A(y, y′) = A(y′)− ωσ1 A(y)

1− ωσ1
(1.2.3)

as the new approximation to A, we have

A(y, y′) = A +
s∑

k=2

ωσk − ωσ1

1− ωσ1
αk y

σk + O(yσs+1 ) as y → 0+, (1.2.4)

so that A(y, y′)− A = O(yσ2 ) as y → 0+, as was required. It is important to note that
(1.2.4) is exactly of the form (1.1.1) with A(y) and the αk replaced by A(y, y′) and the
ωσk−ωσ1

1−ωσ1 αk , respectively.
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We can now continue along the same lines and eliminate the yσ2 term from (1.2.4).
This can be achieved by combining A(y, y′) and A(y′, y′′) with y′′ = ωy′ = ω2y. The
resulting new approximation is

A(y, y′, y′′) = A(y′, y′′)− ωσ2 A(y, y′)
1− ωσ2

, (1.2.5)

and we have

A(y, y′, y′′) = A +
s∑

k=3

ωσk − ωσ1

1− ωσ1

ωσk − ωσ2

1− ωσ2
αk y

σk + O(yσs+1 ) as y → 0+, (1.2.6)

so that A(y, y′, y′′)− A = O(yσ3 ) as y → 0+.
This process, which is called the Richardson extrapolation process, can be repeated to

eliminate the terms yσ3 , yσ4 , . . . , from the summation in (1.2.6). We do this in the next
section by formalizing the preceding procedure, where we give a very efficient recursive
algorithm for the Richardson extrapolation process as well.
Before we end this section, we would like to mention that the preceding procedure

was first described [for the case σk = 2k, k = 1, 2, . . . , in (1.1.1)] by Richardson [236],
who called it deferred approach to the limit. Richardson applied this approach to improve
the finite difference solutions of some partial differential equations, such as Laplace’s
equation in a square. Later, Richardson [237] used it to improve the numerical solutions of
an integral equation. Finally,Richardson [238] used the idea of extrapolation to accelerate
the convergence of sequences, to compute Fourier coefficients, and to solve differential
eigenvalue problems. For all these details and many more of the early references on this
subject, we refer the reader to the excellent survey by Joyce [145]. In the remainder of
this work, we refer to the extrapolation procedure concerning A(y) ∼ A +∑∞

k=1 αk ykr

as y → 0+, where r > 0, as the polynomial Richardson extrapolation process, and we
discuss it in some detail in the next chapter.

1.3 A Recursive Algorithm for the Richardson Extrapolation Process

Let us pick a constant ω ∈ (0, 1) and y0 ∈ (0, b] and let ym = y0ωm, m = 1, 2, . . . .
Obviously, {ym} is a decreasing sequence in (0, b] and limm→∞ ym = 0.

Algorithm 1.3.1

1. Set A( j)
0 = A(y j ), j = 0, 1, 2, . . . .

2. Set cn = ωσn and compute A( j)
n by the recursion

A( j)
n = A( j+1)

n−1 − cn A
( j)
n−1

1− cn
, j = 0, 1, . . . , n = 1, 2, . . . .

The A( j)
n are approximations to A produced by the Richardson extrapolation process.

We have the following result concerning the A( j)
n .
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Table 1.3.1: The Romberg table

A(0)
0 ↘

A(1)
0 → A(0)

1↘ ↘
A(2)
0 → A(1)

1 → A(0)
2↘ ↘ ↘

A(3)
0 → A(2)

1 → A(1)
2 → A(0)

3
...

...
...

...
. . .

Theorem 1.3.2 In the notation of the previous section, the A( j)
n satisfy

A( j)
n = A(y j , y j+1, . . . , y j+n). (1.3.1)

The proof of (1.3.1) can be done by induction and is left to the reader.
The A( j)

n can be arranged in a two-dimensional array, called the Romberg table, as in
Table 1.3.1. The arrows in the table show the flow of computation.
Given the values A(ym), m = 0, 1, . . . , N , and cm = ωσm , m = 1, 2, . . . , N , this

algorithm produces the 1
2N (N + 1) approximations A( j)

n , 1 ≤ j + n ≤ N , n ≥ 1.
The computation of these A( j)

n can be achieved in 1
2N (N + 1) multiplications, 1

2N (N +
1) divisions, and 1

2N (N + 3) additions. This computation also requires 1
2N

2 + O(N )
storage locations. When only the diagonal approximations A(0)

n , n = 1, 2, . . . , N , are
required, the algorithm can be implemented with N + O(1) storage locations. This
can be achieved by computing Table 1.3.1 columnwise and letting {A( j)

n }N−n
j=0 overwrite

{A( j)
n−1}N−n+1

j=0 . It can also be achieved by computing the table row-wise and letting the
row {A(l−n)

n }ln=0 overwrite the row {A(l−1−n)
n }l−1n=0. The latter approach enables us to in-

troduce A(ym), m = 0, 1, . . . , one by one. As we shall see in Section 1.5, the diagonal
sequences {A( j)

n }∞n=0 have excellent convergence properties.

1.4 Algebraic Properties of the Richardson Extrapolation Process

1.4.1 A Related Set of Polynomials

As part of the input to Algorithm 1.3.1 is the sequence {A(m)
0 = A(ym)}, the A( j)

n are, of
course, functions of the A(ym). The relationship between {A(ym)} and the A( j)

n , however,
is hidden in the algorithm. We now investigate the precise nature of this relationship.
We start with the following simple lemma.

Lemma 1.4.1 Given the sequence {B( j)
0 }, define the quantities {B( j)

n } by the recursion

B( j)
n = λ( j)n B( j+1)

n−1 + µ( j)
n B( j)

n−1, j = 0, 1, . . . , n = 1, 2, . . . , (1.4.1)

where the scalars λ( j)n and µ( j)
n satisfy

λ( j)n + µ( j)
n = 1, j = 0, 1, . . . , n = 1, 2, . . . . (1.4.2)
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Then there exist scalars γ ( j)
ni that depend on the λ(m)

k and µ(m)
k , such that

B( j)
n =

n∑

i=0
γ
( j)
ni B( j+i)

0 and
n∑

i=0
γ
( j)
ni = 1. (1.4.3)

Proof. The proof of (1.4.3) is by induction on n. �

Lemma 1.4.1 and Algorithm 1.3.1 together imply that A( j)
n is of the form A( j)

n =∑n
i=0 γ

( j)
ni A( j+i)

0 for some γ ( j)
ni that satisfy

∑n
i=0 γ

( j)
ni = 1. Obviously, this does not reveal

anything fundamental about the relationship between A( j)
n and {A(ym)}, aside from the

assertion that A( j)
n is a “weighted average” of some sort of A(yl), j ≤ l ≤ j + n. The

following theorem, on the other hand, gives a complete description of this relationship.

Theorem 1.4.2 Let ci = ωσi , i = 1, 2, . . . , and define the polynomials Un(z) by

Un(z) =
n∏

i=1

z − ci
1− ci

≡
n∑

i=0
ρni z

i . (1.4.4)

Then A( j)
n is related to the A(ym) through

A( j)
n =

n∑

i=0
ρni A(y j+i ). (1.4.5)

Obviously,

n∑

i=0
ρni = 1. (1.4.6)

Proof. From (1.4.4), we have

Un(z) = z − cn
1− cn

Un−1(z), (1.4.7)

from which we also have, with ρki = 0 for i < 0 or i > k for all k,

ρni = ρn−1,i−1 − cnρn−1,i
1− cn

, 0 ≤ i ≤ n. (1.4.8)

Now we can use (1.4.8) to show that A( j)
n , as given in (1.4.5), satisfies the recursion

relation in Algorithm 1.3.1. This completes the proof. �

From this theorem we see that, for the Richardson extrapolation process we are dis-
cussing now, the γ ( j)

ni alluded to above are simply ρni ; therefore, they are independent of
j as well.
The following result concerning the ρni will be of use in the convergence and stability

analyses that we provide in the next sections of this chapter.
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Theorem 1.4.3 The coefficients ρni of the polynomial Un(z) defined in Theorem 1.4.2
are such that

n∑

i=0
|ρni | |z|i ≤

n∏

i=1

|z| + |ci |
|1− ci | . (1.4.9)

In particular,

n∑

i=0
|ρni | ≤

n∏

i=1

1+ |ci |
|1− ci | . (1.4.10)

If ci , 1 ≤ i ≤ n, all have the same phase, which occurs when σi , 1 ≤ i ≤ n, all have the
same imaginary part, then equality holds in both (1.4.9) and (1.4.10). This takes place,
in particular, when ci , 1 ≤ i ≤ n, are all real positive or all real negative. Furthermore,
we have

∑n
i=0 |ρni | = 1 for the case in which ci , 1 ≤ i ≤ n, are all real negative.

Theorem 1.4.3 is stated in Sidi [298] and its proof can be achieved by using the
following general result that is also given there.

Lemma 1.4.4 Let Q(z) =∑n
i=0 ai z

i , an = 1. Denote the zeros of Q(z) by
z1, z2, . . . , zn. Then

n∑

i=0
|ai | |z|i ≤

n∏

i=1
(|z| + |zi |), (1.4.11)

whether the an and/or zi are real or complex. Equality holds in (1.4.11) when
z1, z2, . . . , zn all have the same phase. It holds, in particular, when z1, z2, . . . , zn are
all real positive or all real negative.

Proof. Let Q̃(z) =∏n
i=1(z + |zi |) =

∑n
i=0 ãi z

i , ãn = 1. From (−1)i an−i =∑
k1<k2<···<ki

∏i
s=1 zks , i = 1, 2, . . . , n, we have

|an−i | ≤
∑

k1<k2<···<ki

i∏

s=1
|zks | = ãn−i , i = 1, . . . , n. (1.4.12)

Thus,

n∑

i=0
|ai | |z|i ≤

n∑

i=0
ãi |z|i = Q̃(|z|), (1.4.13)

from which (1.4.11) follows. When the zi all have the same phase, equality holds in
(1.4.12) and hence in (1.4.13). This completes the proof. �

1.4.2 An Equivalent Alternative Definition of Richardson Extrapolation

Finally, we give a different but equivalent formulation of the Richardson extrapolation
process in which the A( j)

n are defined by linear systems of equations. In Section 1.2, we
showed how the approximation A(y, y′) that is given by (1.2.3) and satisfies (1.2.4) can
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be obtained by eliminating the yσ1 term from (1.1.1). The procedure used to this end is
equivalent to solving the linear system

A(y) = A(y, y′)+ ᾱ1y
σ1

A(y′) = A(y, y′)+ ᾱ1y
′σ1 .

Generalizing this, we have the following interesting result for the A( j)
n .

Theorem 1.4.5 For each j and n, A( j)
n with the additional parameters ᾱ1, . . . , ᾱn satisfy

the linear system

A(yl) = A( j)
n +

n∑

k=1
ᾱk y

σk
l , j ≤ l ≤ j + n. (1.4.14)

Proof. Letting l = j + i and multiplying both sides of (1.4.14) by ρni and summing
from i = 0 to i = n and invoking (1.4.6), we obtain

n∑

i=0
ρni A(y j+i ) = A( j)

n +
n∑

k=1
ᾱk

n∑

i=0
ρni y

σk
j+i . (1.4.15)

By y j+i = y jω
i and ck = ωσk , we have

n∑

i=0
ρni y

σk
j+i = yσkj

n∑

i=0
ρni c

i
k = yσkj Un(ck). (1.4.16)

The result now follows from this and from the fact that

Un(ck) = 0, k = 1, . . . , n. (1.4.17)

�

Note that the new formulation of (1.4.14) is expressed only in terms of the ym and
without any reference toω. So it can be used to define an extrapolation procedure not only
for ym = y0ωm, m = 0, 1, . . . , but also for any sequence {ym} ⊆ (0, b]. This makes the
Richardson extrapolation more practical and useful in applications, including numerical
integration. We come back to this point in Chapter 2.
Comparing the equations in (1.4.14) that define A( j)

n with the asymptotic expansion
of A(y) for y → 0+ that is given in (1.1.2), we realize that the former are obtained from
the latter by truncating the asymptotic expansion at the term αn yσn , replacing ∼ by =,
A by A( j)

n , and αk by ᾱk, k = 1, . . . , n, and finally collocating at y = yl , l = j, j +
1, . . . , j + n. This forms the basis for the different generalizations of the Richardson
extrapolation process in Chapters 3 and 4 of this work.
Finally, the parameters ᾱ1, ᾱ2, . . . , ᾱn in (1.4.14) turn out to be approximations to

α1, α2, . . . , αn in (1.1.1) and (1.1.2). In fact, that ᾱk tends to αk, k = 1, . . . , n, as
j →∞ with n fixed can be proved rigorously. In Chapter 3, we prove a theorem on
the convergence of the ᾱk to the respective αk within the framework of a generalized
Richardson extrapolation process, and this theorem covers the present case. Despite this
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positive result, the use of ᾱk as an approximation to αk, k = 1, . . . , n, is not recom-
mended in finite-precision arithmetic. When computed in finite-precision arithmetic, the
ᾱk turn out to be of very poor quality. This appears to be the case in all generalizations
of the Richardson extrapolation process as well. Therefore, if the αk are required, an
altogether different approach needs to be adopted.

1.5 Convergence Analysis of the Richardson Extrapolation Process

Because the Richardson extrapolation process, as described in the preceding section,
produces a two-dimensional array of approximations to A, we may have an infinite num-
ber of sequences with elements in this array that we may analyze. In particular, each
column or each diagonal in Table 1.3.1 is a bona fide sequence. Actually, columns and
diagonals are the most widely studied sequences in Richardson extrapolation and its
various generalizations. In addition, diagonal sequences appear to have the best conver-
gence properties. In this section, we give a thorough analysis of convergence of columns
and diagonals.

1.5.1 Convergence of Columns

By Theorem 1.3.2 and by (1.1.1), (1.2.4), and (1.2.6), we already know that A( j)
n − A =

O(yσn+1j ) as j →∞, for n = 0, 1, 2. The following theorem gives an asymptotically
optimal result on the behavior of the sequence {A( j)

n }∞j=0 for arbitrary fixed n.

Theorem 1.5.1 Let the function A(y) be as described in the second paragraph of
Section 1.1.

(i) In case the integer s in (1.1.1) is finite and largest possible, A( j)
n − A has the complete

expansion

A( j)
n − A =

s∑

k=n+1
Un(ck)αk y

σk
j + O(yσs+1j ) as j →∞,

= O(ω(�σn+1) j ) as j →∞, (1.5.1)

for 1 ≤ n ≤ s, where Un(z) is as defined in Theorem 1.4.2 For n ≥ s + 1, A( j)
n − A

satisfies

A( j)
n − A = O(yσs+1j ) = O(ω(�σs+1) j ) as j →∞. (1.5.2)

(ii) In case (1.1.2) holds, that is, (1.1.1) holds for all s = 1, 2, 3, . . . , A( j)
n − A has the

complete asymptotic expansion

A( j)
n − A ∼

∞∑

k=n+1
Un(ck)αk y

σk
j as j →∞,

= O(ω(�σn+1) j ) as j →∞. (1.5.3)

All these results are valid whether limy→0+ A(y) and limy→∞ A( j)
n exist or not.
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Proof. The result in (1.5.1) can be seen to hold true by induction starting with (1.1.1),
(1.2.4), and (1.2.6). However, we use a different technique to prove (1.5.1). Invoking
Theorem 1.4.2 and (1.1.1), we have

A( j)
n =

n∑

i=0
ρni

[

A +
s∑

k=1
αk y

σk
j+i + O(yσs+1j+i )

]

as j →∞,

= A +
s∑

k=1
αk

n∑

i=0
ρni y

σk
j+i + O(yσs+1j ) as j →∞. (1.5.4)

The result follows by invoking (1.4.16) and (1.4.17) in (1.5.4). The proof of the rest of
the theorem is easy and is left to the reader. �

Corollary 1.5.2 If αn+µ is the first nonzero αn+i with i ≥ 1 in (1.5.1) or (1.5.3), then we
have the asymptotic equality

A( j)
n − A ∼ Un(cn+µ)αn+µy

σn+µ
j as j →∞. (1.5.5)

The meaning of Theorem 1.5.1 and its corollary is that every column is at least as
good as the one preceding it. In particular, if column n converges, then column n + 1
converges at least as quickly as column n. If column n diverges, then either column n + 1
converges or it diverges at worst as quickly as column n. In any case, lim j→∞ A( j)

n = A
if �σn+1 > 0. Finally, if αk �= 0 for each k = 1, 2, 3, . . . , and limy→0+ A(y) = A, then
each column converges more quickly than all the preceding columns.

1.5.2 Convergence of Diagonals

The convergence theory for the diagonals of Table 1.3.1 turns out to be much more in-
volved than that for the columns. The results pertaining to diagonals show, however, that
diagonals enjoy much better convergence than columns when A(y) satisfies (1.1.2) or,
equivalently, when A(y) satisfies (1.1.1) for all s.

We start by deriving an upper bound on |A( j)
n − A| that is valid for arbitrary j and n.

Theorem 1.5.3 Let the function A(y) be as described in the second paragraph of Sec-
tion 1.1. Let

α̂s+1 = max
0≤y≤y0

∣
∣
∣
∣

[

A(y)− A −
s∑

k=1
αk y

σk

]

/yσs+1
∣
∣
∣
∣. (1.5.6)

Then, for each j and each n ≥ s, we have

∣
∣A( j)

n − A
∣
∣ ≤ α̂s+1 |yσs+1j |

( n∏

i=1

|cs+1| + |ci |
|1− ci |

)

, (1.5.7)

with ci = ωσi , i = 1, 2, . . . .
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Proof. From (1.5.6), we see that if we define

Rs(y) = A(y)− A −
s∑

k=1
αk y

σk , (1.5.8)

then |Rs(y)| ≤ α̂s+1 |yσs+1 | for all y ∈ (0, y0]. Now, substituting (1.1.1) in (1.4.5), and
using (1.4.6), and proceeding exactly as in the proof of Theorem 1.5.1, we have on
account of s ≤ n

A( j)
n = A +

n∑

i=0
ρni Rs(y j+i ). (1.5.9)

Therefore,

|A( j)
n − A| ≤

n∑

i=0
|ρni | |Rs(y j+i )| ≤ α̂s+1

n∑

i=0
|ρni | |yσs+1j+i |, (1.5.10)

which, by y j+i = y jω
i and cs+1 = ωσs+1 , becomes

|A( j)
n − A| ≤ α̂s+1 |yσs+1j |

n∑

i=0
|ρni | |cs+1|i . (1.5.11)

Invoking now Theorem 1.4.3 in (1.5.11), we obtain (1.5.7). �

Interestingly, the upper bound in (1.5.7) can be computed numerically since the ym and
the ck are available, provided that α̂s+1 can be obtained. If a bound for α̂s+1 is available,
then this bound can be used in (1.5.7) instead of the exact value.
The upper bound of Theorem 1.5.3 can be turned into a powerful convergence theorem

for diagonals, as we show next.

Theorem 1.5.4 In Theorem 1.5.3, assume that

�σi+1 −�σi ≥ d > 0 for all i, with d fixed. (1.5.12)

(i) If the integer s in (1.1.1) is finite and largest possible, then, whether limy→0+ A(y)
exist or not,

A( j)
n − A = O(ω(�σs+1)n) as n →∞. (1.5.13)

(ii) In case (1.1.2) holds, that is, (1.1.1) holds for all s = 0, 1, 2, . . . , for each fixed
j , the sequence {A( j)

n }∞n=0 converges to A whether limy→0+ A(y) exists or not. We
have at worst

A( j)
n − A = O(ωµn) as n →∞, for every µ > 0. (1.5.14)

(iii) Again in case (1.1.2) holds, if also α̂k y
�σk
0 = O(eβk

η

) as k →∞ for some η < 2
and β ≥ 0, then the result in (1.5.14) can be improved as follows: For any ε > 0
such that ω + ε < 1, there exists a positive integer n0 that depends on ε, such that

|A( j)
n − A| ≤ (ω + ε)dn

2/2 for all n ≥ n0. (1.5.15)
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Proof. For the proof of part (i), we start by rewriting (1.5.7) in the form

∣
∣A( j)

n − A
∣
∣ ≤ α̂s+1 |yσs+1j | |cs+1|n

( n∏

i=1

1+ |ci/cs+1|
|1− ci |

)

, n ≥ s. (1.5.16)

By (1.5.12), we have |ci+1/ci | ≤ ωd < 1, i = 1, 2, . . . . This implies that the infinite
series

∑∞
i=1 ci and hence the infinite products

∏∞
i=1 |1± ci | converge absolutely, which

guarantees that infk
∏k

i=1 |1− ci | is bounded away from zero. Again, by (1.5.12), we
have |ci/cs+1| ≤ ω(i−s−1)d for all i ≥ s + 1 so that

n∏

i=1
(1+ |ci/cs+1|) ≤

s+1∏

i=1
(1+ |ci/cs+1|)

n−s−1∏

i=1
(1+ ωid )

<

s+1∏

i=1
(1+ |ci/cs+1|)

∞∏

i=1
(1+ ωid ) ≡ Ks <∞. (1.5.17)

Consequently, (1.5.16) gives

A( j)
n − A = O(|cs+1|n) as n →∞, (1.5.18)

which is the same as (1.5.13). This proves part (i).
To prove part (ii), we observe that when s takes on arbitrary values in (1.1.1), (1.5.13)

is still valid because n →∞ there. The result in (1.5.14) now follows from the fact that
�σs+1 →+∞ as s →∞.
For the proof of part (iii), we start by rewriting (1.5.7) with s = n in the form

|A( j)
n − A| ≤ α̂n+1 |yσn+1j |

( n∏

i=1
|ci |

)( n∏

i=1

1+ |cn+1/ci |
|1− ci |

)

. (1.5.19)

Again, by (1.5.12), we have |cn+1/ci | ≤ ω(n−i+1)d , so that

n∏

i=1
(1+ |cn+1/ci |) ≤

n∏

i=1
(1+ ωid ) <

∞∏

i=1
(1+ ωid ) ≡ K ′ <∞. (1.5.20)

Thus, the product inside the second pair of parentheses in (1.5.19) is bounded in n. Also,
from the fact that �σi ≥ �σ1 + (i − 1)d , there follows

n∏

i=1
|ci | = ω

∑n
i=1 �σi ≤ ωn�σ1+dn(n−1)/2. (1.5.21)

Invoking now the condition on the growth rate of the α̂k , the result in (1.5.15) follows.
�

Parts (i) and (iii) of this theorem are essentially due to Bulirsch and Stoer [43], while
part (ii) is from Sidi [298] and [301].
The proof of Theorem 1.5.4 and the inequality in (1.5.19) suggest that A( j)

n − A is
O(
∏n

i=1 |ci |) as n →∞ for all practical purposes. More realistic information on the
convergence of A( j)

n as n →∞ can be obtained by analyzing the product
∏n

i=1 |ci |
carefully.
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Let us return to the case in which (1.1.2) is satisfied. Clearly, part (ii) of Theorem 1.5.4
says that all diagonal sequences converge to A superlinearly in the sense that, for fixed
j , A( j)

n − A tends to 0 as n →∞ like e−λn for every λ > 0. Part (iii) of Theorem 1.5.4
says that, under suitable growth conditions on the α̂k , A

( j)
n − A tends to 0 as n →∞

like e−κn
2
for some κ > 0. These should be compared with Theorem 1.5.1 that says that

column sequences, when they converge, do so only linearly, in the sense that, for fixed
n, A( j)

n − A tends to 0 as j →∞ precisely like ω(�σn+µ) j for some integer µ ≥ 1. Thus,
the diagonals have much better convergence than the columns.

1.6 Stability Analysis of the Richardson Extrapolation Process

From the discussion on stability in Section 0.5, it is clear that the propagation of errors
in the A(ym) into A( j)

n is controlled by the quantity �( j)
n , where

�( j)
n =

n∑

i=0
|γ ( j)

ni | =
n∑

i=0
|ρni | ≤

n∏

i=1

1+ |ci |
|1− ci | , (1.6.1)

that turns out to be independent of j in the present case. In view of Definition 0.5.1, we
have the following positive result.

Theorem 1.6.1

(i) The process that generates {A( j)
n }∞j=0 is stable in the sense that

sup
j
�( j)

n =
n∑

i=0
|ρni | <∞. (1.6.2)

(ii) Under the condition (1.5.12) and with ci = ωσi , i = 1, 2, . . . , we have

lim sup
n→∞

n∑

i=0
|ρni | ≤

∞∏

i=1

1+ |ci |
|1− ci | <∞. (1.6.3)

Consequently, the process that generates {A( j)
n }∞n=0 is also stable in the sense that

sup
n
�( j)

n <∞. (1.6.4)

Proof. The validity of (1.6.2) is obvious. That (1.6.3) is valid follows from (1.4.10)
in Theorem 1.4.3 and the absolute convergence of the infinite products

∏∞
i=1 |1± ci |

that was demonstrated in the proof of Theorem 1.5.4. The validity of (1.6.4) is a direct
consequence of (1.6.3). �

Remark. In case σi all have the same imaginary part, (1.6.3) is replaced by

lim
n→∞

n∑

i=0
|ρni | =

∞∏

i=1

1+ |ci |
|1− ci | . (1.6.5)
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Table 1.7.1: Richardson extrapolation on the Zeta function series with z = 1+ 10i.
Here E ( j)

n = |A( j)
n − A|/|A|

j E ( j)
0 E ( j)

1 E ( j)
2 E ( j)

3 E ( j)
4 E ( j)

5 E ( j)
6

0 2.91D − 01
1 1.38D − 01 6.46D − 01
2 8.84D − 02 2.16D − 01 6.94D − 01
3 7.60D − 02 7.85D − 02 1.22D − 01 2.73D − 01
4 7.28D − 02 3.57D − 02 2.01D − 02 2.05D − 02 2.84D − 02
5 7.20D − 02 1.75D − 02 4.33D − 03 1.06D − 03 8.03D − 04 8.93D − 04
6 7.18D − 02 8.75D − 03 1.04D − 03 5.97D − 05 1.28D − 05 8.79D − 06 8.82D − 06
7 7.17D − 02 4.38D − 03 2.57D − 04 3.62D − 06 1.89D − 07 4.25D − 08 2.87D − 08
8 7.17D − 02 2.19D − 03 6.42D − 05 2.24D − 07 2.89D − 09 1.67D − 10 4.18D − 11
9 7.17D − 02 1.10D − 03 1.60D − 05 1.40D − 08 4.50D − 11 6.47D − 13 4.37D − 14

10 7.17D − 02 5.49D − 04 4.01D − 06 8.74D − 10 7.01D − 13 2.52D − 15 4.31D − 17
11 7.17D − 02 2.75D − 04 1.00D − 06 5.46D − 11 1.10D − 14 9.84D − 18 4.21D − 20
12 7.17D − 02 1.37D − 04 2.50D − 07 3.41D − 12 1.71D − 16 3.84D − 20 4.11D − 23

This follows from the fact that now

n∑

i=0
|ρni | =

n∏

i=1

1+ |ci |
|1− ci | , (1.6.6)

as stated in Theorem 1.4.3. Also,
∑n

i=0 |ρni | is an increasing function of ω for σi > 0,
i = 1, 2, . . . .We leave the verification of this fact to the reader.

As can be seen from (1.6.1), the upper bound on �
( j)
n is inversely proportional to

the product
∏n

i=1 |1− ci |. Therefore, the processes that generate the row and column
sequences will be increasingly stable from the numerical viewpoint when the ck are as
far away from unity as possible in the complex plane. The existence of even a few of
the ck that are too close to unity may cause �( j)

n to be very large and the extrapolation
processes to be prone to roundoff even though they are stable mathematically. Note that
we can force the ck to stay away from unity by simply picking ω small enough. Let
us also observe that the upper bound on |A( j)

n − A| given in Theorem 1.5.3 is inversely
proportional to

∏n
i=1 |1− ci | as well. It is thus very interesting that, by forcing �( j)

n to
be small, we are able to improve not only the numerical stability of the approximations
A( j)

n , but their mathematical quality too.

1.7 A Numerical Example: Richardson Extrapolation
on the Zeta Function Series

Let us consider the Riemann Zeta function series considered in Example 1.1.4. We
apply the Richardson extrapolation process to A(y), with y, A(y), and the σk exactly
as in Example 1.1.4, and with y0 = 1, yl = y0ωl , l = 1, 2, . . . , and ω = 1/2. Thus,
A(yl) = A2l , l = 0, 1, . . . .
Table 1.7.1 contains the relative errors |A( j)

n − A|/|A|, 0 ≤ n ≤ 6, for ζ (z) with z =
1+ 10i, and allows us to verify the result of Theorem1.5.1 concerning column sequences
numerically. For example, it is possible to verify that E ( j+1)

n /E ( j)
n tends to |cn+1| = ω�σn+1
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Table 1.7.2: Richardson extrapolation on the Zeta function series with
z = 2 (convergent), z = 1+ 10i (divergent but bounded), and z = 0.5

(divergent and unbounded). Here E ( j)
n (z) = |A( j)

n − A|/|A|

n E (0)
n (2) E (0)

n (1+ 10i) E (0)
n (0.5)

0 3.92D − 01 2.91D − 01 1.68D + 00
1 8.81D − 02 6.46D − 01 5.16D − 01
2 9.30D − 03 6.94D − 01 7.92D − 02
3 3.13D − 04 2.73D − 01 3.41D − 03
4 5.33D − 06 2.84D − 02 9.51D − 05
5 3.91D − 08 8.93D − 04 1.31D − 06
6 1.12D − 10 8.82D − 06 7.60D − 09
7 1.17D − 13 2.74D − 08 1.70D − 11
8 4.21D − 17 2.67D − 11 1.36D − 14
9 5.02D − 21 8.03D − 15 3.73D − 18

10 1.93D − 25 7.38D − 19 3.36D − 22
11 2.35D − 30 2.05D − 23 9.68D − 27
12 9.95D − 33 1.70D − 28 8.13D − 30

as j →∞. For z = 1+ 10i we have |c1| = 1, |c2| = 1/2, |c3| = 1/22, |c4| = 1/24,
|c5| = 1/26, |c6| = 1/28, |c7| = 1/210. In particular, the sequence of the partial sums
{An}∞n=0 that forms the first column in the Romberg table diverges but is bounded.
Table 1.7.2 contains the relative errors in the diagonal sequence {A(0)

n }∞n=0 for ζ (z)
with z = 2 (convergent series), z = 1+ 10i (divergent but bounded series), and z = 0.5
(divergent and unbounded series). The rate of convergence of this sequence in every case
is remarkable.
Note that the results of Tables 1.7.1 and 1.7.2 have all been obtained in quadruple-

precision arithmetic.

1.8 The Richardson Extrapolation as a Summability Method

In view of the fact that A( j)
n is of the form described in Theorem 1.4.2 and in view of the

brief description of linear summability methods given in Section 0.3, we realize that the
Richardson extrapolation process is a summability method for both its row and column
sequences. Our purpose now is to establish the regularity of the related summability
methods as these are applied to arbitrary sequences {Bm} and not only to {A(ym)}.

1.8.1 Regularity of Column Sequences

Let us consider the polynomials Un(z) defined in (1.4.4). From (1.4.5), the column
sequence {A( j)

n }∞j=0 with fixed n is that generated by the linear summability method
whose associated matrix M = [µ jk]∞j,k=0 [cf. (0.3.11)], has elements given by

µ jk = 0 for 0 ≤ k ≤ j − 1 and k ≥ j + n + 1, and

µ j, j+i = ρni for 0 ≤ i ≤ n, j = 0, 1, 2, . . . . (1.8.1)
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Thus, the matrix M is the following upper triangular band matrix with band width n + 1:

M =







ρn0 ρn1 · · · · · ρnn 0 0 0 · · ·
0 ρn0 ρn1 · · · · · ρnn 0 0 · · ·
0 0 ρn0 ρn1 · · · · · ρnn 0 · · ·
−−−−−−−−−−−−−−−−−−−−





 .

Let us now imagine that this summability method is being applied to an ar-
bitrary sequence {Bm} to produce the sequence {B ′m} with B ′j =

∑∞
k=0 µ jk Bk =∑n

i=0 ρni B j+i , j = 0, 1, . . . . From (1.4.6), (1.6.2), and (1.8.1), we see that all the
conditions of Theorem 0.3.3 (Silverman–Toeplitz theorem) are satisfied. Thus, we have
the following result.

Theorem 1.8.1 The summability method whose matrix M is as in (1.8.1) and generates
also the column sequence {A( j)

n }∞j=0 is regular. Thus, for every convergent sequence
{Bm}, the sequence {B ′m}generated from it through {B ′m} =

∑∞
k=0 µmk Bk,m = 0, 1, . . . ,

converges as well and limm→∞ B ′m = limm→∞ Bm.

1.8.2 Regularity of Diagonal Sequences

Let us consider again the polynomialsUn(z) defined in (1.4.4). From (1.4.5), the diagonal
sequence {A( j)

n }∞n=0 with fixed j is that generated by the linear summabilitymethodwhose
associated matrix M = [µnk]∞n,k=0 has elements given by

µnk = 0 for 0 ≤ k ≤ j − 1 and k ≥ j + n + 1, and

µn, j+i = ρni for 0 ≤ i ≤ n, n = 0, 1, 2, . . . . (1.8.2)

Thus, the matrix M is the following shifted lower triangular matrix with zeros in its first
j columns:

M =







0 · · ·0 ρ00 0 0 0 · · ·
0 · · ·0 ρ10 ρ11 0 0 · · ·
0 · · ·0 ρ20 ρ21 ρ22 0 · · ·
−−−−−−−−−−−−−





 .

Let us imagine that this summability method is being applied to an arbitrary se-
quence {Bm} to produce the sequence {B ′m} with B ′n =

∑∞
k=0 µnk Bk =

∑n
i=0 ρni B j+i ,

n = 0, 1, . . . .We then have the following result.

Theorem 1.8.2 The summability method whose matrix M is as in (1.8.2) and generates
also the diagonal sequence {A( j)

n }∞n=0 is regular provided (1.5.12) is satisfied. Thus, for
every convergent sequence {Bm}, the sequence {B ′m} generated from it through B ′m =∑∞

k=0 µmk Bk, m = 0, 1, . . . , converges as well and limm→∞ B ′m = limm→∞ Bm.

Proof. Obviously, conditions (i) and (iii) ofTheorem0.3.3 (Silverman–Toeplitz theorem)
are satisfied by (1.4.6) and (1.6.4), respectively. To establish that condition (ii) is satisfied,
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it is sufficient to show that

lim
n→∞ ρni = 0 for finite i = 0, 1, . . . . (1.8.3)

We do this by induction on i . From (1.4.4), we have that ρn0 =
(−1)n (∏n

i=1 ci
)
/
∏n

i=1(1− ci ). Under (1.5.12),
∏n

i=1(1− ci ) has a nonzero limit
for n →∞ and limn→∞

∏n
i=1 ci = 0 as shown previously. Thus, (1.8.3) holds for

i = 0. Let us assume that (1.8.3) holds for i − 1. Now, from (1.6.4), |ρni | is bounded in
n for each i . Also limn→∞ cn = 0 from (1.5.12). Invoking in (1.4.8) these facts and the
induction hypothesis, (1.8.3) follows. This completes the proof. �

1.9 The Richardson Extrapolation Process for Infinite Sequences

Let the infinite sequence {Am} be such that

Am = A +
s∑

k=1
αkc

m
k + O(cms+1) as m →∞, (1.9.1)

where ck �= 0, k = 1, 2, . . . , and |c1| > |c2| > · · · > |cs+1|. If (1.9.1) holds for all s =
1, 2, . . . , with limk→∞ ck = 0, then we have the true asymptotic expansion

Am ∼ A +
∞∑

k=0
αkc

m
k as m →∞. (1.9.2)

We assume that the ck are known. We do not assume any knowledge of the αk , however.
It should be clear by now that the Richardson extrapolation process of this chapter can
be applied to obtain approximations to A, the limit or antilimit of {Am}. It is not difficult
to see that all of the results of Sections 1.3–1.8 pertaining to the A( j)

n apply to {Am} with
no changes, provided the following substitutions are made everywhere: A(ym) = Am ,
ωσk = ck , y0 = 1, and yσkm = cmk . In addition, α̂s+1 should now be defined by

α̂s+1 = max
m

∣
∣
∣
∣

[

Am − A −
s∑

k=1
αkc

m
k

]

/cms+1

∣
∣
∣
∣, s = 1, 2, . . . .

We leave the verification of these claims to the reader.



2
Additional Topics in Richardson Extrapolation

2.1 Richardson Extrapolation with Near Geometric and Harmonic {yl}
In Theorem 1.4.5, we showed that the Richardson extrapolation process can be defined
via the linear systems of equations in (1.4.14) and that this definition allows us to use
arbitrary {yl}. Of course, with arbitrary {yl}, the A( j)

n will have different convergence
and stability properties than those with yl = y0ωl (geometric {yl}) that we discussed at
length in Chapter 1. In this section, we state without proof the convergence and stability
properties of the column sequences {A( j)

n }∞j=0 for two essentially different types of {yl}.
In both cases, the stated results are best possible asymptotically.
The results in the following theorem concerning the column sequences in the extrap-

olation table with near geometric {yl} follow from those given in Sidi [290], which are
the subject of Chapter 3.

Theorem 2.1.1 Let A(y) be exactly as in Section 1.1, and choose {yl} such that
liml→∞(yl+1/yl) = ω ∈ (0, 1). Set ck = ωσk for all k. If αn+µ is the first nonzero αn+i

with i ≥ 1, then

A( j)
n − A ∼

( n∏

i=1

cn+µ − ci
1− ci

)

αn+µy
σn+µ
j as j →∞,

and lim j→∞ �
( j)
n exists and

lim
j→∞

�( j)
n =

n∑

i=0
|ρni | ≤

n∏

i=1

1+ |ci |
|1− ci | ;

n∑

i=0
ρni z

i ≡
n∏

i=1

z − ci
1− ci

,

with equality when all the σk have the same imaginary part.

The results of the next theorem that concern harmonic {yl} have been given recently in
Sidi [305]. Their proof is achieved by using Lemma 16.4.1 and the technique developed
following it in Section 16.4.

Theorem 2.1.2 Let A(y) be exactly as in Section 1.1, and choose

yl = c

(l + η)q
, l = 0, 1, . . . , for some c, η, q > 0.

42
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If αn+µ is the first nonzero αn+i with i ≥ 1, then

A( j)
n − A ∼

[

αn+µ

( n∏

i=1

σi − σn+µ
σi

)

cσn+µ
]

j−qσn+µ as j →∞,

and

�( j)
n ∼

( n∏

i=1
|σi |

)−1(2 j

q

)n

as j →∞.

Thus, provided �σn+1 > 0, there holds lim j→∞ A( j)
n = A in both theorems, whether

limy→0+ A(y) exists or not. Also, each column is at least as good as the one preceding
it. Finally, the column sequences are all stable in Theorem 2.1.1. They are unstable in
Theorem 2.1.2 as lim j→∞ �

( j)
n = ∞. For proofs and more details on these results, see

Sidi [290], [305].
Note that the Richardson extrapolation process with yl as in Theorem 2.1.2 has been

used successfully in multidimensional integration of singular integrands. When used
with high-precision floating-point arithmetic, this strategy turns out to be very effective
despite its being unstable. For these applications, see Davis and Rabinowitz [63] and
Sidi [287].

2.2 Polynomial Richardson Extrapolation

In this section, we give a separate treatment of polynomial Richardson extrapolation that
we mentioned in passing in the preceding chapter. This method deserves independent
treatment as it has numerous applications and a special theory.
The problem we want to solve is that of determining limy→0 A(y) = A, where A(y),

for some positive integer s, satisfies

A(y) ∼ A +
s∑

k=1
αk y

rk + O(yr (s+1)) as y → 0. (2.2.1)

Here αk are constants independent of y, and r > 0 is a known constant. The αk are not
necessarily known and are not of interest. We assume that A(y) is defined (i) either for
y ≥ 0 only, in which case r may be arbitrary and y → 0 in (2.2.1) means y → 0+,
(ii) or for both y ≥ 0 and y ≤ 0, in which case r may be only a positive integer and
y → 0 from both sides in (2.2.1).
In case (2.2.1) holds for every s, A(y) will have the genuine asymptotic expansion

A(y) ∼ A +
∞∑

k=1
αk y

rk as y → 0. (2.2.2)

We now use the alternative definition of the Richardson extrapolation process that was
given in Section 1.4. For this, we choose {yl} such that yl are distinct and satisfy

y0 > y1 > · · · > 0; lim
l→∞

yl = 0, if A(y) defined for y ≥ 0 only,

|y0| ≥ |y1| ≥ · · · ; lim
l→∞

yl = 0, if A(y) defined for y ≥ 0 and y ≤ 0. (2.2.3)
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Following that, we define the approximation A( j)
n to A via the linear equations

A(yl) = A( j)
n +

n∑

k=1
ᾱk y

rk
l , j ≤ l ≤ j + n. (2.2.4)

This system has a very elegant solution that goes through polynomial interpolation. For
convenience, we set t = yr , a(t) = A(y), and tl = yrl everywhere. Then the equations
in (2.2.4) assume the form

a(tl) = A( j)
n +

n∑

k=1
ᾱk t

k
l , j ≤ l ≤ j + n. (2.2.5)

It is easy to see that A( j)
n = pn, j (0), where pn, j (t) is the polynomial in t of degree at

most n that interpolates a(t) at the points tl , j ≤ l ≤ j + n.
Now the polynomials pn, j (t) can be computed recursively by the Neville–Aitken

interpolation algorithm (see, for example, Stoer and Bulirsch [326]) as follows:

pn, j (t) = (t − t j+n)pn−1, j (t)− (t − t j )pn−1, j+1(t)
t j − t j+n

, p0, j (t) = a(t j ). (2.2.6)

Letting t = 0 in this formula, we obtain the following elegant algorithm, one of the most
useful algorithms in extrapolation, due to Bulirsch and Stoer [43]:

Algorithm 2.2.1

1. Set A( j)
0 = a(t j ), j = 0, 1, . . . .

2. Compute A( j)
n by the recursion

A( j)
n = t j A

( j+1)
n−1 − t j+n A

( j)
n−1

t j − t j+n
, j = 0, 1, . . . , n = 1, 2, . . . .

From the theory of polynomial interpolation, we have the error formula

a(t)− pn, j (t) = a[t, t j , t j+1, . . . , t j+n]
n∏

i=0
(t − t j+i ),

where f [x0, x1, . . . , xs] denotes the divided difference of order s of f (x) over the set
of points {x0, x1, . . . , xs}. Letting t = 0 in this formula, we obtain the following error
formula for A( j)

n :

A( j)
n − A = (−1)na[0, t j , t j+1, . . . , t j+n]

n∏

i=0
t j+i . (2.2.7)

We also know that in case f (x) is real and f ∈ Cs(I ), where I is some interval contain-
ing {x0, x1, . . . , xs}, then f [x0, x1, . . . , xs] = f (s)(ξ )/s! for some ξ ∈ I . Thus, when
a(t) is real and in Cn+1(I ), where I is an interval that contains all the points tl , l = j,
j + 1, . . . , j + n, and t = 0, (2.2.7) can be expressed as

A( j)
n − A = (−1)n a

(n+1)(t̂ j,n)
(n + 1)!

n∏

i=0
t j+i , for some t̂ j,n ∈ I. (2.2.8)
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By approximating a[0, t j , t j+1, . . . , t j+n] by a[t j , t j+1, . . . , t j+n+1], which is accept-
able, we obtain the practical error estimate

|A( j)
n − A| ≈ ∣

∣a[t j , t j+1, . . . , t j+n+1]
∣
∣
( n∏

i=0
|t j+i |

)

.

Note that if a(t) is real and a(n+1)(t) is known to be of one sign on I , and tl > 0 for all
l, then the right-hand side of (2.2.8) gives important information about A( j)

n . Therefore,
let us assume that, for each n, a(n)(t) does not change sign on I , and that tl > 0 for all l.
It then follows that (i) if a(n)(t) has the same sign for all n, then A( j)

n − A alternates in
sign as a function of n, which means that A is between A( j)

n and A( j)
n+1 for all n, whereas

(ii) if (−1)na(n)(t) has the same sign for all n, then A( j)
n − A is of one sign for all n,

which implies that A( j)
n are all on the same side of A.

Without loss of generality, in the remainder of this chapter we assume that A(y) [a(t)]
is real.
Obviously, the error formula in (2.2.8) can be used to make statements on the conver-

gence rates of A( j)
n both as j →∞ and as n →∞. For example, it is easy to see that,

for arbitrary tl ,

A( j)
n − A = O(t j t j+1 · · · t j+n) as j →∞. (2.2.9)

Of course, when yl = y0ωl for all l, the theory of Chapter 1 applies with σk = rk for
all k. Similarly, Theorems 2.1.1 and 2.1.2 apply when liml→∞(yl+1/yl) = ω and yl =
c/(l + η)q , respectively, again with σk = rk for all k. In all three cases, it is not necessary
to assume that a(t) is differentiable. For other choices of {tl}, the analysis of the A( j)

n

turns out to be much more involved. This analysis is the subject of Chapter 8.
We end this section by presenting a recursive method for computing the �( j)

n for the
case in which tl > 0 for all l. As before,

A( j)
n =

n∑

i=0
γ
( j)
ni a(t j+i ) and �( j)

n =
n∑

i=0
|γ ( j)

ni |,

and from the recursion relation among the A( j)
n it is clear that

γ
( j)
ni = t jγ

( j+1)
n−1,i−1 − t j+nγ

( j)
n−1,i

t j − t j+n
, i = 0, 1, . . . , n,

with γ ( j)
0,0 = 1 and γ ( j)

ni = 0 for i < 0 and i > n. From this, we can see that (−1)n+iγ
( j)
ni >

0 for all n and i when t0 > t1 > · · · > 0. Thus,

|γ ( j)
ni | =

t j |γ ( j+1)
n−1,i−1| + t j+n|γ ( j)

n−1,i |
t j − t j+n

, i = 0, 1, . . . , n.

Summing both sides over i , we finally obtain, for t0 > t1 > · · · > 0,

�( j)
n = t j�

( j+1)
n−1 + t j+n�

( j)
n−1

t j − t j+n
, j ≥ 0, n ≥ 1; �

( j)
0 = 1, j ≥ 0. (2.2.10)

Obviously, this recursion for the�( j)
n can be incorporated in Algorithm 2.2.1 in a straight-

forward manner.
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Table 2.2.1: Polynomial Richardson extrapolation on the Archimedes method for
approximating π by inscribed regular polygons. Here E ( j)

n,i = (π − A( j)
n )/π

j E ( j)
0,i E ( j)

1,i E ( j)
2,i E ( j)

3,i E ( j)
4,i E ( j)

5,i E ( j)
6,i

0 3.63D − 01
1 9.97D − 02 1.18D − 02
2 2.55D − 02 7.78D − 04 4.45D − 05
3 6.41D − 03 4.93D − 05 7.20D − 07 2.42D − 08
4 1.61D − 03 3.09D − 06 1.13D − 08 9.67D − 11 2.14D − 12
5 4.02D − 04 1.93D − 07 1.78D − 10 3.80D − 13 2.12D − 15 3.32D − 17
6 1.00D − 04 1.21D − 08 2.78D − 12 1.49D − 15 2.08D − 18 8.21D − 21 9.56D − 23
7 2.51D − 05 7.56D − 10 4.34D − 14 5.81D − 18 2.03D − 21 2.01D − 24 5.89D − 27
8 6.27D − 06 4.72D − 11 6.78D − 16 2.27D − 20 1.99D − 24 4.91D − 28 3.61D − 31
9 1.57D − 06 2.95D − 12 1.06D − 17 8.86D − 23 1.94D − 27 1.20D − 31 5.35D − 34

10 3.92D − 07 1.85D − 13 1.65D − 19 3.46D − 25 1.90D − 30 6.92D − 34 6.62D − 34

Remark. Note that all the above applies to sequences {Am} for which

Am ∼ A +
∞∑

k=1
αk t

k
m as m →∞,

where tm are distinct and satisfy

|t0| ≥ |t1| ≥ · · · ; lim
m→∞ tm = 0.

We have only to make the substitution A(ym) = Am throughout.

Example 2.2.2 We now consider Example 1.1.1 on the method of Archimedes for
approximating π . We use the notation of Example 1.1.1. Thus, y = n−1, hence t =
y2 = n−2, and A(y) = a(t) = Sn .
We start with the case of the inscribed regular polygon, for which a(t) is infinitely

differentiable everywhere and has the convergent Maclaurin expansion

a(t) = π +
∞∑

k=1
αk t

k ; αk = (−1)k |αk | = (−1)k (2π )2k+1

2[(2k + 1)!]
, k = 1, 2, . . . .

It can be shown that, for t ≤ 1/32, the Maclaurin series of a(t) and of its derivatives are
alternating Leibnitz series so that (−1)r a(r )(t) > 0 for all t ≤ 1/32.

Choosing yl = y0ωl , with y0 = 1/4 and ω = 1/2, we have tl = 4−l−2 and A(yl) =
a(tl) = S4·2l ≡ Al , l = 0, 1, . . . . By using some trigonometric identities, it can be shown
that, for the case of the inscribed polygon,

A0 = 2, An+1 =
√
2An√

1+
√
1− (An/2n+1)2

, n = 0, 1, . . . .

Table 2.2.1 shows the relative errors E ( j)
n,i = (π − A( j)

n )/π , 0 ≤ n ≤ 6, that result from
applying the polynomial Richardson extrapolation to a(t). Note the sign pattern in E ( j)

n,i

that is consistent with (−1)r a(r )(t) > 0 for all r ≥ 0 and t ≤ t0.
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Table 2.2.3: Polynomial Richardson extrapolation on the
Archimedes method for approximating π . Here E (0)

n,i and E (0)
n,c

are exactly as in Table 2.2.1 and Table 2.2.2 respectively

n E (0)
n,i E (0)

n,c

0 3.63D − 01 −2.73D − 01
1 1.18D − 02 +1.80D − 02
2 4.45D − 05 −2.86D − 04
3 2.42D − 08 +1.12D − 06
4 2.14D − 12 −1.10D − 09
5 3.32D − 17 +2.68D − 13
6 9.56D − 23 −1.63D − 17
7 5.31D − 29 +2.49D − 22
8 4.19D − 34 −9.51D − 28
9 5.13D − 34 +8.92D − 34

We have an analogous situation for the case of the circumscribing regular polygon. In
this case too, a(t) is infinitely differentiable for all small t and has a convergentMaclaurin
expansion for t ≤ 1/32:

a(t) = π +
∞∑

k=1
αk t

k ; αk = (−1)k4k+1(4k+1 − 1)B2k+2π2k+1

(2k + 2)!
> 0, k = 1, 2, . . . .

From this expansion it is obvious that a(t) and all its derivatives are positive for t ≤ 1/32.
Choosing the tl exactly as in the previous case, we now have

A0 = 4, An+1 = 2An

1+
√
1+ (An/2n+2)2

, n = 0, 1, . . . .

Table 2.2.2 shows the relative errors E ( j)
n,c = (π − A( j)

n )/π that result from applying
the polynomial Richardson extrapolation to a(t). Note the sign pattern in E ( j)

n,c that is
consistent with a(r )(t) > 0 for all r ≥ 0 and t ≤ t0.
Finally, in Table 2.2.3 we give the relative errors in the diagonal sequences {A(0)

n }∞n=0
for both the inscribed and circumscribing polygons. Note the remarkable rates of con-
vergence.
In both cases, we are able to work with sequences {Am}∞m=0 whose computation in-

volves only simple arithmetic operations and square roots.
Note that the results of Tables 2.2.1–2.2.3 have all been obtained in quadruple-

precision arithmetic.

2.3 Application to Numerical Differentiation

The most immediate application of the polynomial Richardson extrapolation is to nu-
merical differentiation. It was suggested by Rutishauser [245] about four decades ago.
This topic is treated in almost all books on numerical analysis. See, for example, Ralston
and Rabinowitz [235], Henrici [130], and Stoer and Bulirsch [326].
Two approaches to numerical differentiation are discussed in the literature: (i) poly-

nomial interpolation followed by differentiation, and (ii) application of the poly-
nomial Richardson extrapolation to a sequence of first-order divided differences.
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Although the first approach is the most obvious for differentiation of numerical data, the
second is recommended, and even preferred, for differentiation of functions that can be
evaluated everywhere in a given interval.
We give a slightly generalized version of the extrapolation approach and show that the

approximations produced by this approach can also be obtained by differentiating some
suitable polynomials of interpolation to f (x). Although this was known to be true for
some simple special cases, the two approaches were not known to give identical results
in general. In view of this fact, we reach the interesting conclusion that the extrapolation
approach has no advantage over differentiation of interpolating polynomials, except for
the simple and elegant algorithms that implement it. We show that these algorithms can
also be obtained by differentiating the Neville–Aitken interpolation formula.
The material here is taken from Sidi [304], where additional problems are also

discussed.
Let f (x) be a given function that we assume to be in C∞(I ) for simplicity. Here, I is

some interval. Assume that we wish to approximate f ′(a), where a ∈ I .
Let us first approximate f ′(a) by the first-order divided difference δ(h) =

[ f (a + h)− f (a)]/h. By the fact that the Taylor series of f (x) at a, whether convergent
or not, is also its asymptotic expansion as x → a, we have

δ(h) ∼ f ′(a)+
∞∑

k=1

f (k+1)(a)
(k + 1)!

hk as h → 0.

Therefore, we can apply the polynomial Richardson extrapolation to δ(h) with an arbi-
trary sequence of distinct hm satisfying

|h0| ≥ |h1| ≥ · · · ; a + hm ∈ I, m = 0, 1, . . . ; lim
m→∞ hm = 0.

(Note that we do not require the hm to be of the same sign.) We obtain

A( j)
0 = δ(h j ), j = 0, 1, . . . ,

A( j)
n = h j A

( j+1)
n−1 − h j+n A

( j)
n−1

h j − h j+n
, j = 0, 1, . . . , n = 1, 2, . . . . (2.3.1)

The following is the first main result of this section.

Theorem 2.3.1 Let xm = a + hm, m = 0, 1, . . . , and denote by Qn, j (x) the polynomial
of degree n + 1 that interpolates f (x) at a and x j , x j+1, . . . , x j+n. Then

Q′
n, j (a) = A( j)

n for all j, n.

Hence

A( j)
n − f ′(a) = (−1)n f (n+2)(ξn, j )

(n + 2)!
h jh j+1 · · · h j+n, for some ξn, j ∈ I. (2.3.2)

Proof. First, we have A( j)
0 = δ(h j ) = Q′

0, j (a) for all j , as can easily be shown. Next,
from the Neville–Aitken interpolation algorithm in (2.2.6), we have

Qn, j (x) = (x − x j+n)Qn−1, j (x)− (x − x j )Qn−1, j+1(x)
x j − x j+n

,
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which, upon differentiating at x = a, gives

Q′
n, j (a) =

h j Q′
n−1, j+1(a)− h j+nQ′

n−1, j (a)

h j − h j+n
.

Comparing this with (2.3.1), and noting that Q′
n, j (a) and A( j)

n satisfy the same recursion
relation with the same initial values, we obtain the first result. The second is merely
the error formula that results from differentiating the interpolation polynomial Qn, j (x)
at a. �

Special cases of the result of Theorem 2.3.1 have been known for equidistant xi . See,
for example, Henrici [130].
The second main result concerns the first-order centered difference δ0(h) =

[ f (a + h)− f (a − h)]/(2h), for which we have

δ0(h) ∼ f ′(a)+
∞∑

k=1

f (2k+1)(a)
(2k + 1)!

h2k as h → 0.

We can now apply the polynomial Richardson extrapolation to δ0(h) with an arbitrary
sequence of distinct positive hm that satisfy

h0 > h1 > · · · ; a ± hm ∈ I, m = 0, 1, . . . ; lim
m→∞ hm = 0.

We obtain

B( j)
0 = δ0(h j ), j = 0, 1, . . . ,

B( j)
n = h2

j B
( j+1)
n−1 − h2

j+n B
( j)
n−1

h2
j − h2

j+n

, j = 0, 1, . . . , n = 1, 2, . . . . (2.3.3)

Theorem 2.3.2 Let x±m = a ± hm, m = 0, 1, . . . , and denote by Qn, j (x) the
polynomial of degree 2n + 2 that interpolates f (x) at the points a and x± j ,

x±( j+1), . . . , x±( j+n). Then

Q′
n, j (a) = B( j)

n for all j, n.

Hence

B( j)
n − f ′(a) = (−1)n+1 f (2n+3)(ξn, j )

(2n + 3)!
(h jh j+1 · · · h j+n)

2, for some ξn, j ∈ I. (2.3.4)

Proof. First, we have B( j)
0 = δ0(h j ) = Q′

0, j (a) for all j , as can easily be shown. Next,
the Qn, j (x) satisfy the following extension of the Neville–Aitken interpolation algorithm
(which seems to be new):

Qn, j (x) = (x − x j+n)(x − x−( j+n))Qn−1, j (x)− (x − x j )(x − x− j )Qn−1, j+1(x)
h2

j − h2
j+n

.
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Upon differentiating this equality at x = a, we obtain

Q′
n, j (a) =

h2
j Q

′
n−1, j+1(a)− h2

j+nQ
′
n−1, j (a)

h2
j − h2

j+n

.

Comparing this with (2.3.3), and noting that Q′
n, j (a) and A( j)

n satisfy the same recursion
relation with the same initial values, we obtain the first result. The second is merely
the error formula that results from differentiating the interpolation polynomial Qn, j (x)
at a. �

We can extend the preceding procedure to the approximation of the second derivative
f ′′(a). Let us use µ(h) = [ f (a + h)− 2 f (a)+ f (a − h)]/h2, which satisfies

µ(h) ∼ f ′′(a)+ 2
∞∑

k=1

f (2k+2)(a)
(2k + 2)!

h2k as h → 0.

We can now apply the polynomial Richardson extrapolation to µ(h) with an arbitrary
sequence of distinct positive hm that satisfy

h0 > h1 > · · · ; a ± hm ∈ I, m = 0, 1, . . . ; lim
m→∞ hm = 0.

We obtain

C ( j)
0 = µ(h j ), j = 0, 1, . . . ,

C ( j)
n = h2

jC
( j+1)
n−1 − h2

j+nC
( j)
n−1

h2
j − h2

j+n

, j = 0, 1, . . . , n = 1, 2, . . . . (2.3.5)

Theorem 2.3.3 Let x±i and Qn, j (x) be exactly as in Theorem 2.3.2. Then

Q′′
n, j (a) = C ( j)

n for all j, n.

Hence

C ( j)
n − f ′′(a) = (−1)n+12 f (2n+4)(ξn, j )

(2n + 4)!
(h jh j+1 · · · h j+n)

2, for some ξn, j ∈ I. (2.3.6)

The proof can be carried out exactly as that of Theorem 2.3.2, and we leave it to the
reader.
In practice, we implement the preceding extrapolation procedures by picking hm =

h0ω
m for some h0 and some ω ∈ (0, 1), mostly ω = 1/2. In this case, Theorem 1.5.4

guarantees that all three of A( j)
n − f ′(a), B( j)

n − f ′(a), and C ( j)
n − f ′′(a) tend to zero

faster than e−λn as n →∞, for every λ > 0. Under the liberal growth condition that
maxx∈I | f (k)(x)| = O(eβk

η

) as k →∞, for some η < 2 and β, they tend to zero as
n →∞, like ωn2/2 for δ(h), and like ωn2 for δ0(h) and µ(h). This can also be seen from
(2.3.2), (2.3.4), and (2.3.6). [Note that the growth condition mentioned here covers the
cases in which maxx∈I | f (k)(x)| = O((αk)!) as k →∞, for arbitrary α.]
The extrapolation processes, with hl as in the preceding paragraph, are stable, as

follows from Theorem 1.6.1 in the sense that initial errors in the δ(hm), δ0(hm), and
µ(hm) are not magnified in the course of the process. Nevertheless, we should be aware
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Table 2.3.1: Errors in numerical differentiation via Richardson extrapolation of
f (x) = 2

√
1+ x at x = 0. Here h0 = 1/4 and ω = 1/2, and centered

differences are being used

8.03D − 03
1.97D − 03 5.60D − 05
4.89D − 04 3.38D − 06 1.30D − 07
1.22D − 04 2.09D − 07 1.95D − 09 8.65D − 11
3.05D − 05 1.30D − 08 3.01D − 11 3.33D − 13 4.66D − 15
7.63D − 06 8.15D − 10 4.62D − 13 8.44D − 15 7.11D − 15 7.11D − 15

of the danger of roundoff dominating the computation eventually. We mentioned in
Example 1.1.2 that, as h tends to zero, both f (a + h) and f (a − h) become very close
to f (a) and hence to each other, so that, in finite-precision arithmetic, δ0(h) has fewer
correct significant figures than f (a ± h). Therefore, carrying out the computation of
δ0(h) beyond a certain threshold value of h is useless. Obviously, this threshold depends
on the accuracy with which f (a ± hm) can be computed. Our hope is to obtain a good
approximation B(0)

n to f ′(a) while hn is still sufficiently larger than the threshold value
of h. This goal seems to be achieved in practice. All this applies to δ(h) and µ(h) as
well. The following theorem concerns this subject in the context of the extrapolation of
the first-order centered difference δ0(h) for computing f ′(a). Its proof can be achieved
by induction on n and is left to the reader.

Theorem 2.3.4 Let hm = h0ω
m, m = 0, 1, . . . , for some ω ∈ (0, 1), in (2.3.3). Suppose

that f̄ (x), the computed value of f (x) in δ0(h), has relative error bounded by η, and
denote by B̄( j)

n the B( j)
n obtained from (2.3.3) with the initial conditions

B̄( j)
0 = δ̄(h j ) = [ f̄ (a + h j )− f̄ (a − h j )]/(2h j ), j = 0, 1, . . . .

Then

|B̄( j)
n − B( j)

n | ≤ Kn ‖ f ‖ η h−1j+n,

where

Kn =
n∏

i=1

1+ ω2i+1

1− ω2i
< K∞ =

∞∏

i=1

1+ ω2i+1

1− ω2i
<∞, ‖ f ‖ = max

|x−a|≤h0
| f (x)|.

Let us apply themethod just described to the function f (x) = 2
√
1+ x with δ0(h) and

a = 0. We have f ′(0) = 1. We pick h0 = 1/4 and ω = 1/2. We use double-precision
arithmetic in our computations. The errors |B( j)

n − f ′(0)|, ordered as in Table 1.3.1, are
given in Table 2.3.1. As this function is analytic in (−1,+∞), the convergence results
mentioned above hold.

2.4 Application to Numerical Quadrature: Romberg Integration

In Example 1.1.3, we discussed the approximation of the integral I [ f ] = ∫ 1
0 f (x) dx

by the trapezoidal rule T (h) and the midpoint rule M(h). We mentioned there that if
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f ∈ C∞[0, 1], then the errors in these approximations have asymptotic expansions in
powers of h2, known as Euler–Maclaurin expansions. Thus, the polynomial Richardson
extrapolation process can be applied to the numerical quadrature formulas T (h) and
M(h) to obtain good approximations to I [ f ]. Letting Q(h) stand for either T (h) or
M(h), and picking a decreasing sequence {hm}∞m=0 from {1, 1/2, 1/3, . . . }, we compute
the approximations A( j)

n to I [ f ] as follows:

A( j)
0 = Q(h j ), j = 0, 1, . . . ,

A( j)
n = h2

j A
( j+1)
n−1 − h2

j+n A
( j)
n−1

h2
j − h2

j+n

, j = 0, 1, . . . , n = 1, 2, . . . . (2.4.1)

This scheme is known as Romberg integration. In the next theorem, we give an error
expression for A( j)

n that is valid for arbitrary hm and state convergence results for column
sequences as well.

Theorem 2.4.1 Let f (x), I [ f ], Q(h), and A( j)
n be as in the preceding paragraph. Then

the following hold:

(i) There exists a function w(t) ∈ C∞[0, 1] such that w(m−2) = Q(m−1), m =
1, 2, . . . , for which

A( j)
n − I [ f ] = (−1)nw

(n+1)(t̂ j,n)
(n + 1)!

( n∏

i=0
h j+i

)2

, for some t̂ j,n ∈ (t j+n, t j ), (2.4.2)

where tm = h2
m for each m. Thus, for arbitrary hm, each column sequence {A( j)

n }∞j=0
converges, and there holds

A( j)
n − I [ f ] = O((h jh j+1 · · · h j+n)

2) as j →∞. (2.4.3)

(ii) In case hm+1/hm ∼ 1 as m →∞, there holds

A( j)
n − I [ f ] ∼ (−1)n (µ+ 1)n+1

(n + 1)!
wn+1+µh

2(n+1+µ)
j as j →∞, (2.4.4)

wherewk = ek[ f (2k−1)(1)− f (2k−1)(0)], ek = B2k/(2k)! for Q(h) = T (h) and ek =
B2k( 12 )/(2k)! for Q(h) = M(h), andwn+1+µ, withµ ≥ 0, is the first nonzerowk with
k ≥ n + 1. Thus, each column converges at least as quickly as the one preceding it.
This holds when hm = 1/(m + 1), m = 0, 1, . . . , in particular.

Proof. From TheoremD.4.1 in Appendix D, Q(h) can be continued to a functionw(t) ∈
C∞[0, 1], such that t = 1/m2 when h = 1/m and w(m−2) = Q(m−1), m = 1, 2, . . . .
From this and from (2.2.8), we obtain (2.4.2), and (2.4.3) follows from (2.4.2). Now, from
the proof of Theorem D.4.1, it follows that w(t) ∼ I [ f ]+∑∞

k=1wk tk as t → 0+.
From the fact that w(t) ∈ C∞[0, 1], we also have that w(n+1)(t) ∼∑∞

k=n+1+µ k(k −
1) · · · (k − n)wk tk−n−1 as t → 0+. This implies that w(n+1)(t) ∼ (µ+ 1)n+1wn+1+µtµ

as t → 0+. Invoking this in (2.4.2), and realizing that t̂ j,n ∼ t j as j →∞, we finally
obtain (2.4.4). �
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Ifwe compute the A( j)
n as in (2.4.1) bypickinghm = h0ω

m ,whereh0 = 1andω = 1/q ,
where q is an integer greater than 1, and if f ∈ C2s+2[0, 1], then from Theorem 1.5.1
we have

A( j)
n − I [ f ] = O(ω2(p+1) j ) as j →∞, p = min{n, s},

and from part (i) of Theorem 1.5.4 (with d = 2 there)

A( j)
n − I [ f ] = O(ω2(s+1)n) as n →∞.

If f ∈ C∞[0, 1], then by part (ii) of Theorem 1.5.4

A( j)
n − I [ f ] = O(e−λn) as n →∞, for every λ > 0.

The upper bound given in (1.5.19) now reads

|A( j)
n − I [ f ]| ≤ |en+1|

(

max
x∈[0,1]

| f (2n+2)(x)|
)( n∏

i=1

1+ ω2i

1− ω2i

)

ω2 j(n+1)ωn2+n,

where ek = B2k/(2k)! for Q(h) = T (h) and ek = B2k( 12 )/(2k)! for Q(h) = M(h), and
this is a very tight bound on |A( j)

n − I [ f ]|. Part (iii) of Theorem 1.5.4 applies (with
d = 2), and we practically have |A( j)

n − I [ f ]| = O(ωn2 ) as n →∞, again provided
f ∈ C∞[0, 1] and provided maxx∈[0,1] | f (k)(x)| = O(eβk

η

) as k →∞ for some η < 2
and β. [Here, we have also used the fact that ek = O((2π )−2k) as k →∞.] Asmentioned
before, this is a very liberal growth condition for f (k)(x). For analytic f (x), we have a
growth rate of f (k)(x) = O(k!eβk) as k →∞, which is much milder than the preceding
growth condition. Even a large growth rate such as f (k)(x) = O((αk)!) as k →∞ for
some α > 0 is accommodated by this growth condition. The extrapolation process is
stable, as follows from Theorem 1.6.1, in the sense that initial errors in the Q(hm) are
not magnified in the course of the process.
Romberg [240] was the first to propose the scheme in (2.4.1), with ω = 1/2. A

thorough analysis of this case was given in Bauer, Rutishauser, and Stiefel [20], where
the following elegant expression for the error in case f ∈ C2n+2[0, 1] and Q(h) = T (h)
is also provided:

A( j)
n − I [ f ] = 4− j(n+1)B2n+2

2n(n+1)(2n + 2)!
f (2n+2)(ξ ) for some ξ ∈ (0, 1).

Let us apply the Romberg integration with Q(h) = T (h) and ω = 1/2 to the integral∫ 1
0 f (x) dx when f (x) = 1/(x + 1) for which I [ f ] = log 2. We use double-precision
arithmetic in our computations. The relative errors |A( j)

n − I [ f ]|/|I [ f ]|, ordered as in
Table 1.3.1, are presented in Table 2.4.1. As this function is analytic in (−1,+∞), the
convergence results mentioned in the previous paragraph hold.
As we can easily see, when computing Q(hk+1) with hm = ωm , we are using all the

integrand values of Q(hk), and this is a useful feature of the Romberg integration. On the
other hand, the number of integrand values increases exponentially like 1/ωk . Thus,when
ω = 1/2, A(0)

n that is computed fromQ(hi ), 0 ≤ i ≤ n, requires 2n integrand evaluations,
so that increasing n by 1 results in doubling the number of integrand evaluations. To keep
this number to a reasonable size, we should work with a sequence {hm} that tends to 0 at
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Table 2.4.1: Errors in Romberg integration for
∫ 1
0 (x + 1)−1 dx. Here h0 = 1 and

ω = 1/2, and the trapezoidal rule is being used

8.20D − 02
2.19D − 02 1.87D − 03
5.59D − 03 1.54D − 04 3.96D − 05
1.41D − 03 1.06D − 05 1.04D − 06 4.29D − 07
3.52D − 04 6.81D − 07 1.98D − 08 3.62D − 09 1.96D − 09
8.80D − 05 4.29D − 08 3.29D − 10 1.94D − 11 5.30D − 12 3.39D − 12

a rate more moderate than 2−m . But for Romberg integration there is no sequence {hm}
with hm = ωm andω ∈ (1/2, 1).We can avoid this problem by using other types of {hm}.
Thus, to reduce the number of integrand values required to obtain A(0)

n with large n, two
types of sequences {hm} have been used extensively in the literature: (i) hm+1/hm ≤ ω

for some ω ∈ (0, 1), and (ii) hm = 1/(m + 1). The extrapolation process is stable in the
first case and unstable in the second. We do not pursue the subject further here, but we
come back to it and analyze it in some detail later in Chapter 8. For more details and
references, we refer the reader to Davis and Rabinowitz [63].

2.5 Rational Extrapolation

Bulirsch and Stoer [43] generalized the polynomial Richardson extrapolation by replac-
ing the interpolating polynomial pn, j (t) of Section 2.2 by an interpolating rational func-
tion qn, j (t). The degree of the numerator of qn, j (t) is �n/2�, the degree of its denominator
is �(n + 1)/2�, and qn, j (tl) = a(tl), j ≤ l ≤ j + n. The approximations to A, which we
now denote T ( j)

n , are obtained by setting t = 0 in qn, j (t), that is, T
( j)
n = qn, j (0). The

resulting method is called rational extrapolation. Bulirsch and Stoer give the following
elegant algorithm for computing the resulting T ( j)

n :

Algorithm 2.5.2

1. Set T ( j)
−1 = 0, T ( j)

0 = a(t j ), j = 0, 1, . . . .
2. For j = 0, 1, . . . , and n = 1, 2, . . . , compute T ( j)

n recursively from

T ( j)
n = T ( j+1)

n−1 + T ( j+1)
n−1 − T ( j)

n−1
t j

t j+n

[

1− T ( j+1)
n−1 − T ( j)

n−1
T ( j+1)
n−1 − T ( j+1)

n−2

]

− 1

.

For a detailed derivation of this algorithm, see also Stoer and Bulirsch [326, pp. 67–
71]. For more information on this method and its application to numerical integration
and numerical solution of ordinary differential equations, we refer the reader to Bulirsch
and Stoer [44], [45], [46].
Another approach that is essentially due to Wynn [369] and that produces the T ( j)

2s can
be derived through the Thiele continued fraction for rational interpolation; see Stoer and
Bulirsch [326, pp. 63–67]. Let R2s, j (x) be the rational function in x with degree of
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numerator and denominator equal to s that interpolates f (x) at the points
x j , x j+1, . . . , x j+2s . It turns out that ρ

( j)
2s ≡ limx→∞ R2s, j (x) can be computed by the

following recursive algorithm:

ρ
( j)
−1 = 0, ρ

( j)
0 = f (x j ), j = 0, 1, . . . ,

ρ
( j)
k+1 = ρ

( j+1)
k−1 + x j+k+1 − x j

ρ
( j+1)
k − ρ

( j)
k

, j, k = 0, 1, . . . . (2.5.5)

The ρ( j)
k are called the reciprocal differences of f (x). A determinantal expression for

ρ
( j)
2s is given in Nörlund [222, p. 419].
By making the substitution t = x−1 in our problem, we see that q2s, j (x−1) is a rational

function of x with degree of numerator and denominator equal to s, and it interpolates
a(x−1) at the points t−1j , t−1j+1, . . . , t

−1
j+2s . In addition, limx→∞ q2s, j (x−1) = T ( j)

2s . Thus,
the T ( j)

2s can be computed via the following algorithm.

Algorithm 2.5.3

1. Set r ( j)−1 = 0, r ( j)0 = a(t j ), j = 0, 1, . . . .
2. Compute r ( j)n recursively from

r ( j)k+1 = r ( j+1)k−1 + t−1j+k+1 − t−1j

r ( j+1)k − r ( j)k

, j, k = 0, 1, . . . .

Of course, here r ( j)2s = T ( j)
2s for all j and s.

The following convergence theorem is stated in Gragg [105].

Theorem 2.5.4 Let a(t) ∼ A +∑∞
i=1 αi t i as t → 0+, and let T ( j)

n be as in Algorithm
2.5.2 with positive tl that are chosen to satisfy tl+1/tl ≤ ω for some ω ∈ (0, 1). Define

H (m)
r =

∣
∣
∣
∣
∣
∣
∣
∣
∣

αm αm+1 . . . αm+r−1
αm+1 αm+2 . . . αm+r

...
...

...
αm+r−1 αm+r . . . αm+2r−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Assume that H (m)
r �= 0 for m = 0, 1 and all r ≥ 0, and define

e2s = H (0)
s+1/H

(0)
s and e2s+1 = H (1)

s+1/H
(1)
s .

Then

T ( j)
n − A = [en+1 + O(t j )](t j t j+1 · · · t j+n) as j →∞.

Letting t = h2 and t j = h2
j , j = 0, 1, . . . , Algorithm 2.5.3 can be applied to the

trapezoidal or midpoint rule approximation Q(h) of Section 2.4. For this application,
see Brezinski [31]. See alsoWuytack [367], where a different implementation of rational
extrapolation is presented.



3
First Generalization of the Richardson

Extrapolation Process

3.1 Introduction

In Chapter 1, we considered the Richardson extrapolation process for a sequence {Am}
derived from a function A(y) that satisfies (1.1.1) or (1.1.2), through Am = A(ym) with
ym = y0ωm, m = 0, 1, . . . . In this chapter, we generalize somewhat certain aspects of
the treatment of Chapter 1 to the case in which the function A(y) has a rather general
asymptotic behavior that also may be quite different from the ones in (1.1.1) or (1.1.2).
In addition, the ym are now arbitrary. Due to the generality of the asymptotic behavior
of A(y) and the arbitrariness of the ym , and under suitable conditions, the approach of
this chapter may serve as a “unifying” framework within which one can treat the various
extrapolation methods that have appeared over the years. In particular, the convergence
and stability results from this approachmaybe directly applicable to specific convergence
acceleration methods in some cases. Unfortunately, we pay a price for the generality of
the approach of this chapter: The problems of convergence and stability presented by it
turn out to be very difficult mathematically, especially because of this generality. As a
result, the number of the meaningful theorems that have been obtained and that pertain
to convergence and stability has remained small.
Our treatment here closely follows that of Ford and Sidi [87] and of Sidi [290].
Let A(y) be a function of the discrete or continuous variable y, defined for y ∈ (0, b]

for some b > 0. Assume that A(y) has an expansion of the form

A(y) = A +
s∑

k=1
αkφk(y)+ O(φs+1(y)) as y → 0+, (3.1.1)

where A and the αk are some scalars independent of y and {φk(y)} is an asymptotic
sequence as y → 0+, that is, it satisfies

φk+1(y) = o(φk(y)) as y → 0+, k = 1, 2, . . . . (3.1.2)

Here, A(y) and φk(y), k = 1, 2, . . . , are assumed to be known for y ∈ (0, b], but the
αk are not required to be known. The constant A that is in many cases limy→0+ A(y)
is what we are after. When limy→0+ A(y) does not exist, A is the antilimit of A(y) as
y → 0+, and in this case limy→0+ φi (y) does not exist at least for i = 1. If (3.1.1) is

57
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valid for every s = 1, 2, . . . , then A(y) has the bona fide asymptotic expansion

A(y) ∼ A +
∞∑

k=1
αkφk(y) as y → 0+ . (3.1.3)

Note that the functions A(y) treated in Chapter 1 are particular cases of the A(y)
treated in this chapter with φk(y) = yσk , k = 1, 2, . . . . In the present case, it is not
assumed that the φk(y) have any particular structure.

Definition 3.1.1 Let A(y) be as described above. Pick a decreasing positive sequence
{ym} ⊂ (0, b] such that limm→∞ ym = 0. Then the approximation A( j)

n to A, whether A
is the limit or antilimit of A(y) for y → 0+, is defined through the linear system

A(yl) = A( j)
n +

n∑

k=1
ᾱkφk(yl), j ≤ l ≤ j + n, (3.1.4)

ᾱ1, . . . , ᾱn being the additional (auxiliary) unknowns.We call this process that generates
the A( j)

n as in (3.1.4) the first generalization of the Richardson extrapolation process.

Comparing the equations (3.1.4) that define A( j)
n with the expansion of A(y) for

y→ 0+ given in (3.1.3), we realize that the former are obtained from the latter by
truncating the asymptotic expansion at the term αnφn(y), replacing ∼ by =, A by A( j)

n ,
and αk by ᾱk, k = 1, . . . , n, and finally collocating at y = yl , l = j, j + 1, . . . , j + n.
Note the analogy of Definition 3.1.1 to Theorem 1.4.5. In the next section, we show

that, at least formally, this generalization of the Richardson extrapolation process does
perform what is required of it, namely, that it eliminates φk(y), k = 1, . . . , n, from the
expansions in (3.1.1) or (3.1.3).
Before we go on, we would like to mention that the formal setting of the first general-

ization of the Richardson extrapolation process as given in (3.1.1)–(3.1.4) is not new. As
far as is known to us, it first appeared in Hart et al. [125, p. 39]. It was considered in detail
again by Schneider [259], who also gave the first recursive algorithm for computation
of the A( j)

n . We return to this in Section 3.3.
We would also like to mention that a great many convergence acceleration methods

are defined directly or can be shown to be defined indirectly through a linear system of
equations of the form (3.1.4). [The φk(y) in these equations now do not generally form
asymptotic sequences, however.] Consequently, the analysis of this form can be thought
of as a “unification”of the various accelerationmethods, in termsofwhich their properties
may be classified. As mentioned above, the number of meaningful mathematical results
that follow from this “unification” is small. More will be said on this in Section 3.7 of
this chapter.
Before we close this section, we would like to give an example of a function A(y) of

the type just discussed that arises in a nontrivial fashion from numerical integration.

Example 3.1.2 Trapezoidal Rule for Integrals with an Endpoint Singularity Con-
sider the integral I [G] = ∫ 1

0 G(x) dx , where G(x) = xs log x g(x) with �s > −1 and
g ∈ C∞[0, 1]. Let h = 1/n, where n is a positive integer. Let us approximate I [G] by
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the (modified) trapezoidal rule T (h) given by

T (h) = h

[n−1∑

j=1
G( jh)+ 1

2
G(1)

]

. (3.1.5)

Then, by a result due toNavot [217] (see alsoAppendixD), we have the Euler–Maclaurin
expansion

T (h) ∼ I [G]+
∞∑

i=1
aih

2i +
∞∑

i=0
bih

s+i+1ρi (h) as h → 0, (3.1.6)

where

ai = B2i

(2i)!
G(2i−1)(1), i = 1, 2, . . . ,

bi = g(i)(0)

i!
, ρi (h) = ζ (−s − i) log h − ζ ′(−s − i), i = 0, 1, . . . . (3.1.7)

Here Bk are the Bernoulli numbers, ζ (z) is the Riemann Zeta function, and ζ ′(z) =
d
dz ζ (z).
Obviously, ai and bi are independent of h and depend only on g(x), and ρi (h) are

independent of g(x). Thus, T (h) is analogous to a function A(y) that satisfies (3.1.3)
along with (3.1.2) in the following sense: T (h)↔ A(y), h ↔ y, and, in case −1 <
�s < 0,

φk(y)↔
{
hs+i+1ρi (h), i = �2k/3�, k = 1, 2, 4, 5, 7, 8, . . . ,
h2k/3, k = 3, 6, 9, . . . ,

(3.1.8)

Note that φk(y) are all known functions.

3.2 Algebraic Properties

Being the solution to the linear system in (3.1.4), with the help of Cramer’s rule, A( j)
n

can be expressed as the quotient of two determinants in the form

A( j)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

g1( j) g2( j) · · · gn( j) a( j)
g1( j + 1) g2( j + 1) · · · gn( j + 1) a( j + 1)

...
...

...
...

g1( j + n) g2( j + n) · · · gn( j + n) a( j + n)

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

g1( j) g2( j) · · · gn( j) 1
g1( j + 1) g2( j + 1) · · · gn( j + 1) 1

...
...

...
...

g1( j + n) g2( j + n) · · · gn( j + n) 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (3.2.1)

where, for convenience, we have defined

gk(m) = φk(ym), m = 0, 1, . . . , k = 1, 2, . . . , and a(m) = A(ym), m = 0, 1, . . . .
(3.2.2)
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This notation is used interchangeably throughout this chapter. It seems that Levin [161]
was the first to point to the determinantal representation of A( j)

n explicitly.
The following theorem was given by Schneider [259]. Our proof is different from that

of Schneider, however.

Theorem 3.2.1 A( j)
n can be expressed in the form

A( j)
n =

n∑

i=0
γ
( j)
ni A(y j+i ), (3.2.3)

with the scalars γ ( j)
ni determined by the linear system

n∑

i=0
γ
( j)
ni = 1

(3.2.4)
n∑

i=0
γ
( j)
ni φk(y j+i ) = 0, k = 1, 2, . . . , n.

Proof. Denoting the cofactor of a( j + i) in the numerator determinant of (3.2.1) by Ni ,
and expanding both the numerator and denominator determinants with respect to their
last columns, we have

A( j)
n =

∑n
i=0 Nia( j + i)
∑n

i=0 Ni
, (3.2.5)

from which (3.2.3) follows with

γ
( j)
ni = Ni∑n

r=0 Nr
, i = 0, 1, . . . , n. (3.2.6)

Thus, the first of the equations in (3.2.4) is satisfied. As for the rest of the equations
in (3.2.4), we note that

∑n
i=0 Ni gk( j + i) = 0 for k = 1, . . . , n, because [gk( j), gk( j +

1), . . . , gk( j + n)]T , k = 1, . . . , n, are the first n columns of the numerator determinant
in (3.2.1) and Ni are the cofactors of its last column. �

The γ ( j)
ni also turn out to be associated with a polynomial that has a form very similar

to (3.2.1). This is the subject of Theorem 3.2.2 that was given originally in Sidi [290].

Theorem 3.2.2 The γ ( j)
ni satisfy

n∑

i=0
γ
( j)
ni zi = H ( j)

n (z)

H ( j)
n (1)

, (3.2.7)

where H ( j)
n (z) is a polynomial of degree at most n in z defined by

H ( j)
n (z) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

g1( j) g2( j) · · · gn( j) 1
g1( j + 1) g2( j + 1) · · · gn( j + 1) z

...
...

...
...

g1( j + n) g2( j + n) · · · gn( j + n) zn

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.2.8)
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Proof. The proof of (3.2.7) and (3.2.8) follows from (3.2.6). We leave out the
details. �

Note the similarity of the expression for A( j)
n given in (3.2.1) and that for

∑n
i=0 γ

( j)
ni zi

given in (3.2.7) and (3.2.8).
The next result shows that, at least formally, the generalized Richardson extrapolation

process that generates A( j)
n “eliminates” the φk(y) terms with k = 1, 2, . . . , n, from the

expansion in (3.1.1) or (3.1.3). We must emphasize though that this is not a convergence
theorem by any means. It is a heuristic justification of the possible validity of (3.1.4) as
a generalized Richardson extrapolation process.

Theorem 3.2.3 Define

Rs(y) = A(y)− A −
s∑

k=1
αkφk(y). (3.2.9)

Then, for all n, we have

A( j)
n − A =

s∑

k=n+1
αk

( n∑

i=0
γ
( j)
ni φk(y j+i )

)

+
n∑

i=0
γ
( j)
ni Rs(y j+i ), (3.2.10)

where the summation
∑s

k=n+1 is taken to be zero for n ≥ s. Consequently, when A(y) =
A +∑s

k=0 αkφk(y) for all possible y, we have A( j)
n = A for all j ≥ 0 and all n ≥ s.

Proof. The proof of (3.2.10) can be achieved by combining (3.2.9) with (3.2.3), and then
invoking (3.2.4). The rest follows from (3.2.10) and from the fact that Rs(y) ≡ 0 when
A(y) = A +∑s

k=0 αkφk(y) for all possible y. �

As the φk(y) are not required to have any particular structure, the determinants given
in (3.2.1) and (3.2.7), hence A( j)

n and
∑n

i=0 γ
( j)
ni zi , cannot be expressed in simple terms.

This makes their analysis rather difficult. It also does not enable us to devise algorithms
as efficient as Algorithm 1.3.1, for example.

3.3 Recursive Algorithms for A( j)
n

The simplest and most direct way to compute A( j)
n is by solving the linear system in

(3.1.4). It is also possible to devise recursive algorithms for computing all the A( j)
n that

can be determined from a given number of the a(m) = A(ym). In fact, there are two
such algorithms in the literature: The first of these was presented by Schneider [259].
Schneider’s algorithm was later rederived using different techniques by Håvie [129],
and, after that, by Brezinski [37]. This algorithm has been known as the E-algorithm.
The second one was given by Ford and Sidi [87], and we call it the FS-algorithm. As
shown later, the FS-algorithm turns out to be much less expensive computationally than
the E-algorithm. It also forms an integral part of the W(m)-algorithm of Ford and Sidi
[87] that is used in implementing a further generalization of the Richardson extrapolation
process denoted GREP that is due to Sidi [272]. (GREP is the subject of Chapter 4, and
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the W(m)-algorithm is considered in Chapter 7.) For these reasons, we start with the
FS-algorithm.

3.3.1 The FS-Algorithm

We begin with some notation and definitions. We denote an arbitrary given sequence
{b(l)}∞l=0 by b. Thus, a stands for {a(l)}∞l=0. Similarly, for each k = 1, 2, . . . , gk stands
for {gk(l)}∞l=0. Finally, we denote the sequence 1, 1, 1, . . . , by I . For arbitrary sequences
uk, k = 1, 2, . . . , and arbitrary integers j ≥ 0 and p ≥ 1, we define

∣
∣u1( j) u2( j) · · · u p( j)

∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣
∣

u1( j) u2( j) · · · u p( j)
u1( j + 1) u2( j + 1) · · · u p( j + 1)

...
...

...
u1( j + p − 1) u2( j + p − 1) · · · u p( j + p − 1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

(3.3.1)

Let now

f ( j)p (b) = |g1( j) g2( j) · · · gp( j) b( j)|. (3.3.2)

With this notation, (3.2.1) can be rewritten as

A( j)
n = f ( j)n (a)

f ( j)n (I )
. (3.3.3)

We next define

G( j)
p = |g1( j) g2( j) · · · gp( j)|, p ≥ 1; G( j)

0 ≡ 1, (3.3.4)

and, for an arbitrary sequence b, we let

ψ ( j)
p (b) = f ( j)p (b)

G( j)
p+1

. (3.3.5)

We can now reexpress A( j)
n as

A( j)
n = ψ

( j)
n (a)

ψ
( j)
n (I )

. (3.3.6)

The FS-algorithm computes the A( j)
p indirectly through the ψ ( j)

p (b) for various sequen-
ces b.
BecauseG( j)

p+1 = f ( j)p (gp+1), the determinants for f ( j)p (b) andG( j)
p+1 differ only in their

last columns. It is thus natural to seek a relation between these two quantities. This can
be accomplished by means of the Sylvester determinant identity given in Theorem 3.3.1.
For a proof of this theorem, see Gragg [106].

Theorem 3.3.1 Let C be a square matrix, and let Cρσ denote the matrix obtained by
deleting rowρ and column σ of C. Also let Cρρ ′;σσ ′ denote thematrix obtained by deleting
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rows ρ and ρ ′ and columns σ and σ ′ of C. Provided ρ < ρ ′ and σ < σ ′,

detC detCρρ ′;σσ ′ = detCρσ detCρ ′σ ′ − detCρσ ′ detCρ ′σ . (3.3.7)

If C is a 2× 2 matrix, then (3.3.7) holds with Cρρ ′;σσ ′ = 1.

Applying this theorem to the (p + 1)× (p + 1) determinant f ( j)p (b) in (3.3.2) with
ρ = 1, σ = p, ρ ′ = σ ′ = p + 1, and using (3.3.4), we obtain

f ( j)p (b)G( j+1)
p−1 = f ( j+1)p−1 (b)G( j)

p − f ( j)p−1(b)G
( j+1)
p . (3.3.8)

This is the desired relation. Upon invoking (3.3.5), and letting

D( j)
p = G( j)

p+1G
( j+1)
p−1

G( j)
p G( j+1)

p

, (3.3.9)

(3.3.8) becomes

ψ ( j)
p (b) = ψ

( j+1)
p−1 (b)− ψ

( j)
p−1(b)

D( j)
p

. (3.3.10)

From (3.3.6) and (3.3.10), we see that, once the D( j)
p are known, the ψ ( j)

p (a) and
ψ

( j)
p (I ) and hence A( j)

p can be computed recursively. Therefore, we aim at developing an
efficient algorithm for determining the D( j)

p . In the absence of detailed knowledge about
the gk(l), which is the case we assume here, we can proceed by observing that, because
G( j)

p+1 = f ( j)p (gp+1), (3.3.5) with b = gp+1 reduces to

ψ ( j)
p (gp+1) = 1. (3.3.11)

Consequently, (3.3.10) becomes

D( j)
p = ψ

( j+1)
p−1 (gp+1)− ψ

( j)
p−1(gp+1), (3.3.12)

which permits recursive evaluation of the D( j)
p through the quantitiesψ ( j)

p (gk), k ≥ p + 1.
[Note thatψ ( j)

p (gk) = 0 for k = 1, 2, . . . , p.] Thus, (3.3.10) and (3.3.12) provide us with
a recursive procedure for solving the general extrapolation problem of this chapter. We
call this procedure the FS-algorithm. Its details are summarized in Algorithm 3.3.2.

Algorithm 3.3.2 (FS-algorithm)

1. For j = 0, 1, 2, . . . , set

ψ
( j)
0 (a) = a( j)

g1( j)
, ψ

( j)
0 (I ) = 1

g1( j)
, ψ

( j)
0 (gk) = gk( j)

g1( j)
, k = 2, 3, . . . .

2. For j = 0, 1, . . . , and p = 1, 2, . . . , compute D( j)
p by

D( j)
p = ψ

( j+1)
p−1 (gp+1)− ψ

( j)
p−1(gp+1),
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Table 3.3.1: The ψ ( j)
p (a) and ψ ( j)

p (I ) arrays

ψ
(0)
0 (a) ψ

(0)
0 (I )

ψ
(1)
0 (a) ψ

(0)
1 (a) ψ

(1)
0 (I ) ψ

(0)
1 (I )

...
...

. . .
...

...
. . .

ψ
(L)
0 (a) ψ

(L−1)
1 (a) · · · ψ

(0)
L (a) ψ

(L)
0 (I ) ψ

(L−1)
1 (I ) · · · ψ

(0)
L (I )

and compute ψ ( j)
p (b) with b = a, I , and b = gk, k = p + 2, p + 3, . . . , by the re-

cursion

ψ ( j)
p (b) = ψ

( j+1)
p−1 (b)− ψ

( j)
p−1(b)

D( j)
p

,

and set

A( j)
p = ψ

( j)
p (a)

ψ
( j)
p (I )

.

The reader might find it helpful to see the relevant ψ ( j)
p (b) and the D( j)

p arranged as
in Tables 3.3.1 and 3.3.2, where we have set ψ ( j)

p,k = ψ
( j)
p (gk) for short. The flow of

computation in these tables is exactly as that in Table 1.3.1.

Note that when a(l) = A(yl), l = 0, 1, . . . , L , are given, then this algorithm enables
us to compute all the A( j)

p , 0 ≤ j + p ≤ L , that are defined by these a(l).

Remark. Judging from (3.3.5), onemay be led to think incorrectly that the FS-algorithm
requires knowledge of gL+1 for computing all the A( j)

p , 0 ≤ j + p ≤ L , in addition to
g1, g2, . . . , gL that are actually needed by (3.1.4). Really, the FS-algorithm employs
gL+1 only for computing D(0)

L , which is then used for determining ψ (0)
L (a) and ψ (0)

L (I ),
and A(0)

L = ψ
(0)
L (a)/ψ (0)

L (I ). As A(0)
L does not depend on gL+1, in case it is not available,

we can take gL+1 to be any sequence independent of g1, g2, . . . , gL , and I . Thus, when
only A(yl), l = 0, 1, . . . , L , are available, no specific knowledge of gL+1 is required
in using the FS-algorithm, contrary to what is claimed in Brezinski and Redivo Zaglia
[41, p. 62]. As suggested by Osada [226], one can avoid this altogether by computing
the A(0)

n , n = 1, 2, . . . , from

A(0)
n = ψ

(1)
n−1(a)− ψ

(0)
n−1(a)

ψ
(1)
n−1(I )− ψ

(0)
n−1(I )

, (3.3.13)

without having to compute D(0)
L . This, of course, follows from (3.3.6) and (3.3.10).

3.3.2 The E-Algorithm

As we have seen, the FS-algorithm is a set of recursion relations that produces the
quantities ψ ( j)

p (b) and then gives A( j)
p = ψ

( j)
p (a)/ψ ( j)

p (I ). The E-algorithm, on the other
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Table 3.3.2: The ψ ( j)
p (gk) and D( j)

p arrays

ψ
(0)
0,2 | ψ

(0)
0,3 | | ψ

(0)
0,L+1

ψ
(1)
0,2 D(0)

1 | ψ
(1)
0,3 ψ

(0)
1,3 | | ψ

(1)
0,L+1 ψ

(0)
1,L+1

ψ
(2)
0,2 D(1)

1 | ψ
(2)
0,3 ψ

(1)
1,3 D(0)

2 | · · · |
...

...
. . .

...
... |

...
...

... | | ψ
(L−1)
0,L+1 ψ

(L−2)
1,L+1 · · · ψ

(0)
L−1,L+1

ψ
(L)
0,2 D(L−1)

1 | ψ
(L)
0,3 ψ

(L−1)
1,3 D(L−2)

2 | | ψ
(L)
0,L+1 ψ

(L−1)
1,L+1 · · · ψ

(1)
L−1,L+1 D(0)

L

hand, is a different set of recursion relations that produces the quantities

χ ( j)
p (b) = f ( j)p (b)

f ( j)p (I )
, (3.3.14)

from which we have A( j)
p = χ

( j)
p (a). Starting from

χ ( j)
p (b) = [ f ( j)p (b)G( j+1)

p−1 ]/[ f ( j)p (I )G( j+1)
p−1 ],

applying (3.3.8) to both the numerator and the denominator of this quotient, and realizing
that G( j)

p = f ( j)p−1(gp), we obtain the recursion relation

χ ( j)
p (b) = χ

( j+1)
p−1 (b)χ ( j)

p−1(gp)− χ
( j)
p−1(b)χ

( j+1)
p−1 (gp)

χ
( j)
p−1(gp)− χ

( j+1)
p−1 (gp)

, (3.3.15)

where b = a and b = gk, k = p + 1, p + 2, . . . . Here the initial conditions are
χ
( j)
0 (b) = b( j).
The E-algorithm, as given in (3.3.15), is not optimal costwise. The following form

that can be found in Ford and Sidi [87] and that is almost identical to that suggested by
Håvie [129] earlier, is less costly than (3.3.15):

χ ( j)
p (b) = χ

( j+1)
p−1 (b)− w

( j)
p χ

( j)
p−1(b)

1− w
( j)
p

, (3.3.16)

where w( j)
p = χ

( j+1)
p−1 (gp)/χ

( j)
p−1(gp).

Let us now compare the operation counts of the FS- and E-algorithms when
a(l), l = 0, 1, . . . , L , are available. We note that most of the computational effort is
spent in obtaining the ψ ( j)

p (gk) in the FS-algorithm and the χ ( j)
p (gk) in the E-algorithm.

The number of these quantities is L3/3+ O(L2) for large L . Also, the division by D( j)
p in

the FS-algorithm is carried out asmultiplication by 1/D( j)
p , the latter quantity being com-

puted only once. An analogous statement can bemade about divisions in the E-algorithm
by (3.3.15) and (3.3.16). Thus, we have the operation counts given in Table 3.3.3.
From Table 3.3.3 we see that the E-algorithm is about 50% more expensive than the

FS-algorithm, even when it is implemented through (3.3.16).
Note that the E-algorithm was originally obtained by Schneider [259] by a technique

different than that used here. The technique of this chapter was introduced by Brezinski
[37]. The technique of Håvie [129] differs from both.
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Table 3.3.3: Operation counts of the FS- and E-algorithms

Algorithm No. of Multiplications No. of Additions No. of Divisions

FS L3/3+ O(L2) L3/3+ O(L2) O(L2)
E by (3.3.16) 2L3/3+ O(L2) L3/3+ O(L2) O(L2)
E by (3.3.15) L3 + O(L2) L3/3+ O(L2) O(L2)

3.4 Numerical Assessment of Stability

Let us recall that, by Theorem 3.2.1, A( j)
n can be expressed as A( j)

n =∑n
i=0 γ

( j)
ni A(y j+i ),

where the scalars γ ( j)
ni satisfy

∑n
i=0 γ

( j)
ni = 1. As a result, the discussion of stability that

we gave in Section 0.5 applies, and we conclude that the quantities �( j)
n =∑n

i=0 |γ ( j)
ni |

and !( j)
n =∑n

i=0 |γ ( j)
ni | |A(y j+i )| control the propagation into A( j)

n of errors (roundoff
and other) in the A(yi ).
If we want to know �

( j)
n and !( j)

n , in general, we need to compute the relevant γ ( j)
ni .

This can be done by solving the linear system in (3.2.4) numerically. It can also be ac-
complished by a simple extension of the FS-algorithm. Either way, the cost of computing
the γ ( j)

ni is high and it becomes even higher when we increase n. Thus, computation of
�
( j)
n and !( j)

n entails a large expense, in general.
If we are not interested in the exact �( j)

n but are satisfied with upper bounds for them,
we can accomplish this simultaneously with the computation of the A( j)

n – for example,
by the FS-algorithm, – and at almost no additional cost.
The following theorem gives a complete description of the computation of both the

γ
( j)
ni and the upper bounds on the �( j)

n via the FS-algorithm. We use the notation of the
preceding section.

Theorem 3.4.1 Set w( j)
n = ψ

( j)
n−1(I )/ψ

( j+1)
n−1 (I ), and define

λ( j)n = 1

1− w
( j)
n

and µ( j)
n = − w

( j)
n

1− w
( j)
n

, (3.4.1)

for all j = 0, 1, . . . , and n = 1, 2, . . . .

(i) The γ ( j)
ni can be computed recursively from

γ
( j)
ni = λ( j)n γ

( j+1)
n−1,i−1 + µ( j)

n γ
( j)
n−1,i , i = 0, 1, . . . , n, (3.4.2)

where γ (s)
00 = 1 for all s, and we have set γ (s)

ki = 0 if i < 0 or i > k.
(ii) Consider now the recursion relation

�̃( j)
n = |λ( j)n | �̃( j+1)

n−1 + |µ( j)
n | �̃( j)

n−1, j = 0, 1, . . . , n = 1, 2, . . . , (3.4.3)

with the initial conditions �̃( j)
0 = �

( j)
0 = 1, j = 0, 1, . . . . Then

�( j)
n ≤ �̃( j)

n , j = 0, 1, . . . , n = 1, 2, . . . , (3.4.4)

with equality for n = 1.
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Proof. We start by reexpressing A( j)
n in the form

A( j)
n = λ( j)n A( j+1)

n−1 + µ( j)
n A( j)

n−1, (3.4.5)

which is obtained by substituting (3.3.10) with b = a and b = I in (3.3.6) and invoking
(3.3.6) again. Next, combining (3.2.3) and (3.4.5), we obtain (3.4.2). Taking the moduli
of both sides of (3.4.2) and summing over i , we obtain

�( j)
n ≤ |λ( j)n |�( j+1)

n−1 + |µ( j)
n |�( j)

n−1. (3.4.6)

The result in (3.4.4) now follows by subtracting (3.4.3) from (3.4.6) and using
induction. �

From (3.4.1)–(3.4.3) and the fact that w( j)
n is given in terms of ψ ( j)

n−1(I ) and ψ
( j+1)
n−1 (I )

that are already known, it is clear that the cost of computing the γ ( j)
ni , 0 ≤ j + n ≤ L is

O(L3) arithmetic operations, while the cost of computing the �̃( j)
n , 0 ≤ j + n ≤ L , is

O(L2) arithmetic operations.
Based on our numerical experience, we note that the �̃( j)

n tend to increase very quickly
in some cases, thus creating the wrong impression that the corresponding extrapolation
process is very unstable even when that is not the case. Therefore, it may be better to use
(3.4.2) to compute the γ ( j)

ni and then �( j)
n exactly.

A recursion relation for computing the γ ( j)
ni within the context of the E-algorithm that

is analogous to what we have in Theorem 3.4.1 was given by Håvie [129].

3.5 Analysis of Column Sequences

Because the functions φk(y) in the expansions (3.1.1) and (3.1.3) have no particular
structure, the analysis of A( j)

n as defined by (3.1.4) is not a very well-defined task.
Thus, we cannot expect to obtain convergence results that make sense without making
reasonable assumptions about the φk(y) and the ym . This probably is a major reason for
the scarcity of meaningful results in this part of the theory of extrapolation methods.
Furthermore, all the known results concern the column sequences {A( j)

n }∞j=0 for fixed n.
Analysis of the diagonal sequences {A( j)

n }∞n=0 for fixed j seems to be much more difficult
than that of the column sequences and most probably requires more complicated and
detailed assumptions to be made on the φk(y) and the ym .
All the results of the present section are obtained under the conditions that

lim
m→∞

gk(m + 1)

gk(m)
= lim

m→∞
φk(ym+1)
φk(ym)

= ck �= 1, k = 1, 2, . . . , (3.5.1)

and

ck �= cq if k �= q, (3.5.2)

in addition to that in (3.1.2). Also, the ck can be complex numbers.
In view of these conditions, all the results of this section apply, in particular, to the

case in which φk(y) = yσk , k = 1, 2, . . . ,where σk �= 0 for all k and�σ1<�σ2< · · · ,
when limm→∞ ym+1/ym = ω with some fixed ω ∈ (0, 1). In this case, ck = ωσk ,
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k = 1, 2, . . . .With these φk(y), the function A(y) is precisely that treated in Chapter 1.
But this time the ym donot necessarily satisfy ym+1 = ωym, m = 0, 1, 2, . . . , as assumed
in Chapter 1; instead ym+1 ∼ ωym as m →∞. Hence, this chapter provides additional
results for the functions A(y) of Chapter 1. These have been given as Theorem 2.1.1 in
Chapter 2.
The source of all the results given in the next three subsections is Sidi [290]; those in

the last two subsections are new. Some of these results are used in the analysis of other
methods later in the book.
Before we go on, we would like to show that the conditions in (3.5.1 and (3.5.2) are

satisfied in at least one realistic case, namely, that mentioned in Example 3.1.2.

Example 3.5.1 Let us consider the function A(y) of Example 3.1.2. If we choose {ym}
such that limm→∞ ym+1/ym = ω ∈ (0, 1), we realize that (3.5.1) and (3.5.2) are satisfied.
Specifically, we have

ck = lim
m→∞

φk(ym+1)
φk(ym)

=
{
ωs+i+1, i = �2k/3�, k = 1, 2, 4, 5, 7, 8, . . . ,
ω2k/3, k = 3, 6, 9, . . . .

3.5.1 Convergence of the γ ( j)
ni

We start with a result on the polynomial H ( j)
n (z) that we will use later.

Theorem 3.5.2 For n fixed, the polynomial H ( j)
n (z) satisfies

lim
j→∞

H ( j)
n (z)

∏n
i=1 gi ( j)

= V (c1, c2, . . . , cn, z), (3.5.3)

where V (ξ1, ξ2, . . . , ξk) is the Vandermonde determinant defined by

V (ξ1, ξ2, . . . , ξk) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1
ξ1 ξ2 · · · ξk
...

...
...

ξ k−1
1 ξ k−1

2 · · · ξ k−1
k

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∏

1≤i< j≤k

(ξ j − ξi ). (3.5.4)

Proof. Dividing the i th column of H ( j)
n (z) by gi ( j), i = 1, . . . , n, and letting

g̃( j)i (r ) = gi ( j + r )

gi ( j)
, r = 0, 1, 2, . . . , (3.5.5)

we obtain

H ( j)
n (z)

∏n
i=1 gi ( j)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 · · · 1 1
g̃( j)1 (1) · · · g̃( j)n (1) z

...
...

...
g̃( j)1 (n) · · · g̃( j)n (n) zn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.5.6)
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But

g̃( j)i (r ) = gi ( j + r )

gi ( j + r − 1)

gi ( j + r − 1)

gi ( j + r − 2)
· · · gi ( j + 1)

gi ( j)
, (3.5.7)

so that

lim
j→∞

g̃( j)i (r ) = cri , r = 0, 1, . . . , (3.5.8)

from (3.5.1). The result in (3.5.3) now follows by taking the limit of both sides of
(3.5.6). �

With the help of Theorems 3.2.2 and 3.5.2 and the conditions on the ck given in (3.5.1)
and (3.5.2), we obtain the following interesting result on the γ ( j)

ni .

Theorem 3.5.3 The polynomial
∑n

i=0 γ
( j)
ni zi is such that

lim
j→∞

n∑

i=0
γ
( j)
ni zi = Un(z) =

n∏

i=1

z − ci
1− ci

≡
n∑

i=0
ρni z

i . (3.5.9)

Consequently, lim j→∞ γ
( j)
ni = ρni , i = 0, 1, . . . , n, as well.

This result will be of use in the following analysis of A( j)
n . Before we go on, we would

like to draw attention to the similarity between (3.5.9) and (1.4.4).

3.5.2 Convergence and Stability of the A( j)
n

Let us observe that from (3.3.14) and what we already know about the γ ( j)
ni , we have

χ ( j)
n (b) =

n∑

i=0
γ
( j)
ni b( j + i) (3.5.10)

for every sequence b. With this, we can now write (3.2.10) in the form

A( j)
n − A =

s∑

k=n+1
αkχ

( j)
n (gk)+ χ ( j)

n (rs), (3.5.11)

where we have defined

rs(i) = Rs(yi ), i = 0, 1, . . . . (3.5.12)

The following theorem concerns the asymptotic behavior of the χ ( j)
n (gk) and χ

( j)
n (rs)

as j →∞.

Theorem 3.5.4

(i) For fixed n > 0, the sequence {χ ( j)
n (gk)}∞k=n+1 is an asymptotic sequence as j →∞;

that is, lim j→∞ χ
( j)
n (gk+1)/χ

( j)
n (gk) = 0, for all k ≥ n + 1. Actually, for each k ≥

n + 1, we have the asymptotic equality

χ ( j)
n (gk) ∼ Un(ck)gk( j) as j →∞, (3.5.13)

with Un(z) as defined in the previous theorem.
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(ii) Similarly, χ ( j)
n (rs) satisfies

χ ( j)
n (rs) = O(χ ( j)

n (gs+1)) as j →∞. (3.5.14)

Proof. From (3.5.10) and (3.5.5),

χ ( j)
n (gk) =

n∑

i=0
γ
( j)
ni gk( j + i) =

( n∑

i=0
γ
( j)
ni g̃( j)k (i)

)

gk( j). (3.5.15)

Invoking (3.5.8) and Theorem 3.5.3 in (3.5.15), and using the fact that Un(ck) �= 0 for
k ≥ n + 1, the result in (3.5.13) follows. To prove (3.5.14), we start with

∣
∣χ ( j)

n (rs)
∣
∣ =

∣
∣
∣
∣

n∑

i=0
γ
( j)
ni rs( j + i)

∣
∣
∣
∣ ≤

n∑

i=0
|γ ( j)

ni |
∣
∣Rs(y j+i )

∣
∣ . (3.5.16)

From the fact that the γ
( j)
ni are bounded in j by Theorem 3.5.3 and from Rs(y) =

O(φs+1(y)) as y → 0+ and φs+1(y j+i ) ∼ cis+1φs+1(y j ) as j →∞ that follows from
(3.5.8), we first obtain χ ( j)

n (rs) = O(gs+1( j)) as j →∞. The result now follows from
the fact that gs+1( j) = O(χ ( j)

n (rs)) as j →∞, which is a consequence of the asymptotic
equality in (3.5.13) with k = s + 1. �

The next theorem concerns the behavior of A( j)
n for j →∞ and is best possible

asymptotically.

Theorem 3.5.5

(i) Suppose that A(y) satisfies (3.1.3). Then A( j)
n − A has the bona fide asymptotic

expansion

A( j)
n − A ∼

∞∑

k=n+1
αkχ

( j)
n (gk) as j →∞,

= O(gn+1( j)) as j →∞. (3.5.17)

Consequently, if αn+µ is the first nonzero αn+i with i ≥ 1 in (3.1.3), then we have
the asymptotic equality

A( j)
n − A ∼ αn+µχ ( j)

n (gn+µ) ∼
( n∏

i=1

cn+µ − ci
1− ci

)

αn+µφn+µ(y j ) as j →∞.

(3.5.18)

(ii) In case A(y) satisfies (3.1.1) with s a finite largest possible integer, and αn+µ is
the first nonzero αn+i with i ≥ 1 there, then (3.5.18) holds. If αn+1 = αn+2 = · · · =
αs = 0 or n ≥ s, we have

A( j)
n − A = O(φs+1(y j )) as j →∞. (3.5.19)

These results are valid whether limy→0+ A(y) exists or not.
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Proof. For (3.5.17) to have a meaning as an asymptotic expansion and to be valid,
first {χ ( j)

n (gk)}∞k=n+1 must be an asymptotic sequence as j →∞, and then A( j)
n − A −

∑s
k=n+1 αkχ

( j)
n (gk) = O(χ ( j)

n (gs+1)) as j →∞must hold for each s ≥ n + 1.Now, both
of these conditions hold by Theorem 3.5.4. Therefore, (3.5.17) is valid as an asymptotic
expansion. The asymptotic equality in (3.5.18) is a direct consequence of (3.5.17). This
completes the proof of part (i) of the theorem. The proof of part (ii) can be achieved
similarly and is left to the reader. �

Remarks.

1. Comparing (3.5.17) with (3.5.11), one may be led to believe erroneously that (3.5.17)
follows from (3.5.11) in a trivial way by letting s →∞ in the latter. This is far from
being the case as is clear from the proof of Theorem 3.5.5, which, in turn, depends
entirely on Theorem 3.5.4.

2. By imposing the additional conditions that |αk | < λk for all k and for some λ > 0,
and that A(y) has the convergent expansion A(y) = A +∑∞

k=1 αkφk(y), and that
this expansion converges absolutely and uniformly in y, Wimp [366, pp. 188–189]
has proved the result of Theorem 3.5.5. Clearly, these conditions are very restrictive.
Brezinski [37] stated an acceleration result under evenmore restrictive conditions that
also impose limitations on the A( j)

n themselves, when we are actually investigating
the properties of the latter. Needless to say, the result of [37] follows in a trivial way
from Theorem 3.5.5 that has been obtained under the smallest number of conditions
on A(y) only.

We now consider the stability of the column sequences {A( j)
n }∞j=0. From the discussion

on stability in Section 0.5, the relevant quantity to be analyzed in this connection is

�( j)
n =

n∑

i=0
|γ ( j)

ni |. (3.5.20)

The following theorem on stability is a direct consequence of Theorem 3.5.3.

Theorem 3.5.6 The γ ( j)
ni satisfy

lim
j→∞

n∑

i=0
|γ ( j)

ni | =
n∑

i=0
|ρni | ≤

n∏

i=1

1+ |ci |
|1− ci | , (3.5.21)

with ρni as defined by (3.5.9). Consequently, the extrapolation process that generates
the sequence {A( j)

n }∞j=0 is stable in the sense that

sup
j
�( j)

n <∞. (3.5.22)

In case the ck all have the same phase, the inequality in (3.5.21) becomes an equality.
In case the ck are real and negative, (3.5.21) becomes lim j→∞ �

( j)
n = 1.

Proof. The result in (3.5.21) follows from Theorems 3.5.3 and 1.4.3, and that in (3.5.22)
follows directly from (3.5.21). �
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Remark. As is seen from (3.5.21), the size of the bound on �( j)
n =∑n

i=0 |γ ( j)
ni | is pro-

portional to D =∏n
i=1 |1− ci |−1. This implies that �( j)

n will be small provided the ci
are away from 1. We also see from (3.5.18) that the coefficient of φn+µ(y j ) there is pro-
portional to D. From this, we conclude that the more stable the extrapolation process,
the better the quality of the (theoretical) error A( j)

n − A, which is somewhat surprising.

3.5.3 Convergence of the ᾱk

As mentioned previously, the ᾱk ≡ α
( j)
nk in the equations in (3.1.4) turn out to be approx-

imations to the corresponding αk, k = 1, . . . , n. In fact, α( j)
nk → αk for j →∞, as we

show in the next theorem that is best possible asymptotically.

Theorem 3.5.7 Assume that A(y) is as in (3.1.3). Then, for k = 1, . . . , n, with n fixed,
we have lim j→∞ α

( j)
nk = αk . In fact,

α
( j)
nk − αk ∼ αn+µ

(
cn+µ − 1

ck − 1

n∏

i=1
i �=k

cn+µ − ci
ck − ci

)
φn+µ(y j )

φk(y j )
as j →∞, (3.5.23)

where αn+µ is the first nonzero αn+i with i ≥ 1.

Proof. By Cramer’s rule the solution of the linear system in (3.1.4) for ᾱk is given by

α
( j)
nk =

1

f ( j)n (I )
|g1( j) · · · gk−1( j) a( j) gk+1( j) · · · gn( j) I ( j)| . (3.5.24)

Now, under the given conditions, the expansion

a( j) = A +
n∑

k=1
αkgk( j)+ αn+µĝn+µ( j), (3.5.25)

where ĝn+µ( j) = gn+µ( j)[1+ εn+µ( j)] and εn+µ( j) = o(1) as j →∞, is valid. Substi-
tuting (3.5.25) in (3.5.24), and expanding the numerator determinant there with respect
to its kth column, we obtain

α
( j)
nk − αk = V ( j)

nk

f ( j)n (I )
,

V ( j)
nk = αn+µ|g1( j) · · · gk−1( j) ĝn+µ( j) gk+1( j) · · · gn( j) I ( j)|. (3.5.26)

The rest can be completed by dividing the i th column of V ( j)
nk by gi ( j), i = 1, . . . , n,

i �= k, and the kth column by gn+µ( j), and taking the limit for j →∞. Following the
steps of the proof of Theorem 3.5.2, we have

lim
j→∞

V ( j)
nk

gn+µ( j)
n∏

i=1
i �=k

gi ( j)

= αn+µV (c1, . . . , ck−1, cn+µ, ck+1, . . . , cn, 1). (3.5.27)

Combining this with Theorem 3.5.2 on f ( j)n (I ) = H ( j)
n (1) in (3.5.26), we obtain (3.5.23).

�
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Even though we have convergence of α( j)
nk to αk for j →∞, in finite-precision arith-

metic the computed α( j)
nk is a poor approximation to αk in most cases. The precise reason

for this is given in the next theorem that is best possible asymptotically.

Theorem 3.5.8 If we write

α
( j)
nk =

n∑

i=0
δ
( j)
nki a( j + i), (3.5.28)

which is true from (3.1.4), then the δ( j)nki satisfy

lim
j→∞

[

φk(y j )
n∑

i=0
δ
( j)
nki z

i

]

= z − 1

ck − 1

n∏

i=1
i �=k

z − ci
ck − ci

≡
n∑

i=0
δ̃nki z

i , (3.5.29)

from which we have

n∑

i=0
|δ( j)nki | ∼

( n∑

i=0
|δ̃nki |

)
1

|φk(y j )| as j →∞. (3.5.30)

Thus, if limy→0+ φk(y) = 0, then the computation of α( j)
nk from (3.1.4) is unstable for

large j .

Proof. Let us denote thematrix of coefficients of the system in (3.1.4) by B. Then δ( j)nki are
the elements of the row of B−1 that is appropriate for α( j)

nk . In fact, δ
( j)
nki can be identified

by expanding the numerator determinant in (3.5.24) with respect to its kth column. We
have

n∑

i=0
δ
( j)
nki z

i = z− j

f ( j)n (I )
|g1( j) · · · gk−1( j) Z ( j) gk+1( j) · · · gn( j) I ( j)|, (3.5.31)

where Z (l) = zl , l = 0, 1, . . . . Proceeding as in the proof of Theorem 3.5.2, we obtain

n∑

i=0
δ
( j)
nki z

i ∼ V (c1, . . . , ck−1, z, ck+1, . . . , cn, 1)
V (c1, . . . , cn, 1)

1

gk( j)
as j →∞. (3.5.32)

The results in (3.5.29) and (3.5.30) now follow. We leave the details to the reader. �

By the condition in (3.1.2) and Theorems 3.5.7 and 3.5.8, it is clear that both the
theoretical quality of α( j)

nk and the quality of the computed α( j)
nk decrease for larger k.

3.5.4 Conditioning of the System (3.1.4)

The stability results of Theorems 3.5.6 and 3.5.8 are somewhat related to the condition-
ing of the linear system (3.1.4) that defines the first generalization of the Richardson
extrapolation process. In this section, we study the extent of this relation under the
conditions of the preceding section.
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As in the proof of Theorem 3.5.8, let us denote the matrix of coefficients of the linear
system in (3.1.4) by B. Then the l∞-norm of B is given by

‖ B ‖∞ = max
0≤r≤n

{

1+
n∑

i=1
|gi ( j + r )|

}

. (3.5.33)

The row of B−1 that gives us A( j)
n is nothing but (γ ( j)

n0 , . . . , γ
( j)
nn ), and the row that gives

α
( j)
nk is similarly (δ( j)nk0, . . . , δ

( j)
nkn), so that

‖ B−1 ‖∞ = max

{ n∑

i=0
|γ ( j)

ni |,
n∑

i=0
|δ( j)nki |, k = 1, . . . , n

}

. (3.5.34)

From Theorems 3.5.6 and 3.5.8 we, therefore, have

‖ B−1 ‖∞ ∼ max{M0,Mn/|gn( j)|} as j →∞, (3.5.35)

with

M0 =
n∑

i=0
|ρni | and Mn =

n∑

i=0
|δ̃nni |, (3.5.36)

and these are best possible asymptotically.
From (3.5.33) and (3.5.35), we can now determine how the condition number of B

behaves for j →∞. In particular, we have the following result.

Theorem 3.5.9 Denote by κ∞(B) the l∞ condition number of the matrix B of the linear
system in (3.1.4); that is, κ∞(B) = ‖B‖∞ ‖B−1‖∞. In general, κ∞(B)→∞ as j →∞
at least as quickly as g1( j)/gn( j). In particular, when limy→0+ φ1(y) = 0, we have

κ∞(B) ∼ Mn

|φn(y j )| as j →∞. (3.5.37)

Remarks. It must be noted that κ∞(B), the condition number of the matrix B, does
not affect the numerical solution for the unknowns A( j)

n and α( j)
nk = ᾱk, k = 1, . . . , n,

uniformly. In fact, it has no effect on the computed A( j)
n . It is �( j)

n =∑n
i=0 |γ ( j)

ni | that
controls the influence of errors in the a(m) = A(ym) (including roundoff errors) on A( j)

n ,
and that �( j)

n ∼ M0 <∞ as j →∞, independently of κ∞(B). Similarly, the stability
properties of α( j)

nk , 1 ≤ k ≤ n − 1, are determined by
∑n

i=0 |δ( j)nki | and not by κ∞(B). The
stability properties only of α( j)

nn appear to be controlled by κ∞(B).

3.5.5 Conditioning of (3.1.4) for the Richardson Extrapolation Process
on Diagonal Sequences

So far, we have analyzed the conditioning of the linear system in (3.1.4) for column
sequences under the conditions in (3.5.1) and (3.5.2). Along the way to the main result
in Theorem 3.5.9, we have also developed some of the main ingredients for treatment of
the conditioning related to diagonal sequences for the Richardson extrapolation process
of Chapter 1, to which we now turn. In this case, we have φk(y) = yσk , k = 1, 2, . . . ,
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and ym+1 = ωym, m = 0, 1, . . . , so that gk(n + 1)/gk(n) = ωσk = ck, k = 1, 2, . . . .
Going over the proof of Theorem 3.5.8, we realize that (3.5.29) can now be replaced by

yσkj

n∑

i=0
δ
( j)
nki z

i = z − 1

ck − 1

n∏

i=1
i �=k

z − ci
ck − ci

=
n∑

i=0
δ̃nki z

i (3.5.38)

that is valid for every j and n. Obviously, (3.5.33) and (3.5.34) are always valid. From
(3.5.33), (3.5.34), and (3.5.38), we can write

‖ B ‖∞ > |yσnj | and ‖ B−1 ‖∞ ≥
n∑

i=0
|δ( j)nni | = |y−σnj |

n∑

i=0
|δ̃nni |, (3.5.39)

so that

κ∞(B) =‖ B ‖∞ ‖ B−1 ‖∞ >

n∑

i=0
|δ̃nni |. (3.5.40)

The following lemma that complements Lemma 1.4.4 will be useful in the sequel.

Lemma 3.5.10 Let Q(z) =∑n
i=0 ai z

i , an = 1. Denote the zeros of Q(z) that are not
on the unit circle K = {z : |z| = 1} by z1, z2, . . . , z p, so that Q(z) = R(z)

∏p
i=1(z − zi )

for some polynomial R(z) of degree n − p with all its zeros on K . Then

n∑

i=0
|ai | ≥

(

max
|z|=1

|R(z)|
) p∏

i=1
|1− |zi || > 0. (3.5.41)

Proof. We start with

n∑

i=0
|ai | ≥

∣
∣
∣
∣

n∑

i=0
ai z

i

∣
∣
∣
∣ = |R(z)|

p∏

i=1
|z − zi | for every z ∈ K .

Next, we have

n∑

i=0
|ai | ≥ |R(z)|

p∏

i=1
||z| − |zi || = |R(z)|

p∏

i=1
|1− |zi || for every z ∈ K .

The result follows by maximizing both sides of this inequality on K . �

Applying Lemma 3.5.10 to the polynomial

n∑

i=0
δ̃nni z

i = z − 1

cn − 1

n−1∏

i=1

z − ci
cn − ci

,

and using the fact that limm→∞ cm = 0, we have

n∑

i=0
|δ̃nni | ≥ L1

∏n−1
i=r |1− |ci ||∏n−1
i=1 |cn − ci |

for all n, where L1 is some positive constant and r is some positive integer for which
|cr | < 1, so that |ci | < 1 for i ≥ r as well.
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Now, from the fact that
∏n−1

i=1 |cn − ci | ≤ |
∏n−1

i=1 ci |
∏n−1

i=1 (1+ |cn/ci |) and from
(1.5.20), which holds under the condition in (1.5.12), we have

∏n−1
i=1 |cn − ci | ≤

L2|
∏n−1

i=1 ci | for all n, where L2 is some positive constant. Similarly,
∏n−1

i=r |1− |ci || >
L3 for all n, where L3 is some positive constant, since the infinite product

∏∞
i=1 |1− ci |

converges, as shown in the proof of Theorem 1.5.4. Combining all these, we have

n∑

i=0
|δ̃nni | ≥ L

(n−1∏

i=1
|ci |

)−1
for all n, some constant L > 0. (3.5.42)

We have thus obtained the following result.

Theorem 3.5.11 When φk(y) = yσk , k = 1, 2, . . . , and ym+1 = ωym, m = 0, 1, . . . ,
and the σk satisfy the condition in (1.5.12) of Theorem 1.5.4, the condition number of
the matrix B of the linear system (3.1.4) satisfies

κ∞(B) > L

(n−1∏

i=1
|ci |

)−1
≥ Lω−dn2/2+gn for some constants L > 0 and g. (3.5.43)

Thus, κ∞(B)→∞ as n →∞ practically at the rate of ω−dn2/2. �

Note again that, if Gaussian elimination is used for solving (3.1.4) in finite-precision
arithmetic, the condition number κ∞(B) has no effect whatsoever on the computed value
of A( j)

n for any value of n, even though κ∞(B)→∞ for n →∞ very strongly.

3.6 Further Results for Column Sequences

The convergence and stability analysis for the sequences {A( j)
n }∞j=0 of the preceding

section was carried out under the assumptions in (3.1.2) on the φk(y) and (3.5.1) and
(3.5.2) on the gk(m). It is seen from the proofs of the theorems of Section 3.5 that (3.1.2)
can be relaxed somewhat without changing any of the results there. Thus, we can assume
that

φk+1(y) = O(φk(y)) as y → 0+ for all k, and

φk+1(y) = o(φk(y)) as y → 0+ for infinitely many k.

Of course, in this case we take the asymptotic expansion in (3.1.3) to mean that (3.1.1)
holds for each integer s. This is a special case of a more general situation treated by Sidi
[297]. The results of [297] are briefly mentioned in Subsection 14.1.4.
Matos and Prévost [207] have considered a set of conditions different from those in

(3.5.1) and (3.5.2). We bring their main result (Theorem 3 in [207]) here without proof.

Theorem 3.6.1 Let the functions φk(y) satisfy (3.1.2) and let φ1(y) = o(1) as y → 0+
as well. Let the gk(m) = φk(ym) satisfy for all i ≥ 0 and p ≥ 0

|gi+p( j) · · · gi+1( j) gi ( j)| ≥ 0, for j ≥ J, some J, (3.6.1)
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where g0( j) = 1, j = 0, 1, . . . . Then, for fixed n, {χ ( j)
n (gk)}∞k=n+1 is an asymptotic

sequence as j →∞; that is, lim j→∞ χ
( j)
n (gk+1)/χ

( j)
n (gk) = 0 for all k ≥ n + 1.

Two remarks on the conditions of this theorem are now in order. We first realize from
(3.6.1) that gk(m) are all real. Next, the fact that φ1(y) = o(1) as y → 0+ implies that
limy→0+ A(y) = A is assumed.
These authors also state that, provided αn+1 �= 0, the following convergence acceler-

ation result holds in addition to Theorem 3.6.1:

lim
j→∞

A( j)
n+1 − A

A( j)
n − A

= 0. (3.6.2)

For this to be true, we must also have for each s that

A( j)
n − A =

s∑

k=n+1
αkχ

( j)
n (gk)+ O(χ ( j)

n (gs+1)) as j →∞. (3.6.3)

However, careful reading of the proof in [207] reveals that this has not been shown.
We have not been able to show the truth of this under the conditions given in Theorem
3.6.1 either. It is easy to see that (3.6.3) holds in case A(y) = A +∑N

k=1 αkφk(y) for
some finite N , but this, of course, restricts the scope of (3.6.3) considerably. The most
common cases that arise in practice involve expansions such as (3.1.1) or truly divergent
asymptotic expansions such as (3.1.3). By comparison, all the results of the preceding
section have been obtained for A(y) as in (3.1.1) and (3.1.3). Finally, unlike that in
(3.5.18), the result in (3.6.2) gives no information about the rates of convergence and
acceleration of the extrapolation process.
Here are some examples of the gk(m) that have been given in [207] and that are covered

by Theorem 3.6.1.

• g1(m) = g(m) and gk(m) = (−1)k�kg(m), k = 2, 3, . . . , where {g(m)} is a log-
arithmic totally monotonic sequence. [That is, limm→∞ g(m + 1)/g(m) = 1 and
(−1)k�kg(m) ≥ 0, k = 0, 1, 2, . . . .]

• gk(m) = xαk
m with 1 > x1 > x2 > · · · > 0 and 0 < α1 < α2 < · · · .

• gk(m) = cmk with 1 > c1 > c2 > · · · > 0.
• gk(m) = 1

/[
(m + 1)αk (log(m + 2))βk

]
with 0 < α1 ≤ α2 ≤ · · · , and βk < βk+1 if

αk = αk+1.

Of these, the third example is covered in full detail in Chapter 1 (see Section 1.9), where
results for both column and diagonal sequences are presented. Furthermore, the treatment
in Chapter 1 does not assume the ck to be real, in general.

3.7 Further Remarks on (3.1.4): “Related” Convergence Acceleration Methods

Let us replace A(yl) by Al and φk(yl) by gk(l) in the linear system (3.1.4). This system
then becomes

Al = A( j)
n +

n∑

k=0
ᾱkgk(l), j ≤ l ≤ j + n. (3.7.1)
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Now let us take {gk(m)}∞m=0, k = 1, 2, . . . , to be arbitrary sequences, not necessarily
related to any functions φk(y), k = 1, 2, . . . , that satisfy (3.1.2).
We mentioned previously that, with appropriate gk(m), many known convergence

acceleration methods for a given infinite sequence {Am} are either directly defined or
can be shown to be defined through linear systems of the form (3.7.1). Also, as observed
by Brezinski [37], various other methods can be cast into the form of (3.7.1). Then, what
differentiates between the various methods is the gk(m) that accompany them. Again,
A( j)

n are taken to be approximations to the limit or antilimit of {Am}. In this sense, the
formalism represented by (3.7.1) may serve as a “unifying” framework for (defining)
these convergence acceleration methods. This formalism may also be used to unify the
convergence studies for the differentmethods, provided their corresponding gk(m) satisfy

gk+1(m) = o(gk(m)) as m →∞, k = 1, 2, . . . , (3.7.2)

and also

Am ∼ A +
∞∑

k=1
αkgk(m) as m →∞. (3.7.3)

[Note that (3.7.3) has ameaning onlywhen (3.7.2) is satisfied.] The results of Sections 3.5
and 3.6, for example, may be used for this purpose. However, this seems to be of a
limited scope because (3.7.2) and hence (3.7.3) are not satisfied in all cases of practical
importance. We illustrate this limitation at the end of this section with the transformation
of Shanks.
Here is a short list of convergence acceleration methods that are defined through the

linear system in (3.7.1) with their corresponding gk(m). This list is taken in part from
Brezinski [37]. The FS- and E-algorithms may serve as implementations for all the
convergence acceleration methods that fall within this formalism, but they are much less
efficient than the algorithms that have been designed specially for these methods.

• The Richardson extrapolation process of Chapter 1
gk(m) = cmk , where ck �= 0, 1, are known constants. See Section 1.9 and Theorem
1.4.5. It can be implemented by Algorithm 1.3.1 with ωσn there replaced by cn .

• The polynomial Richardson extrapolation process
gk(m) = xk

m , where {xi } is a given sequence. It can be implemented byAlgorithm 2.2.1
of Bulirsch and Stoer [43].

• The G-transformation of Gray, Atchison, and McWilliams [112]
gk(m) = xm+k−1, where {xi } is a given sequence. It can be implemented by the rs-
algorithm of Pye and Atchison [233]. We have also developed a new procedure called
the FS/qd-algorithm. Both the rs- and FS/qd-algorithms are presented in Chapter 21.

• The Shanks [264] transformation
gk(m) = �Am+k−1. It can be implemented by the ε-algorithm of Wynn [368]. See
Section 0.4.

• Levin [161] transformations
gk(m) = Rm/(m + 1)k−1, where {Ri } is a given sequence. It can be implemented by
an algorithm due to Longman [178] and Fessler, Ford, and Smith [83] and also by the
W-algorithm of Sidi [278]. Levin gives three different sets of Rm for three methods,
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namely, Rm = am for the t-transformation, Rm = (m + 1)am for the u-transformation,
and Rm = amam+1/(am+1 − am) for the v-transformation, where a0 = A0 and am =
�Am−1 for m ≥ 1.

• The transformation of Wimp [361]
gk(m) = (�Am)k . It can be implemented by the algorithm of Bulirsch and Stoer [43].
(This transformation was rediscovered later by Germain-Bonne [96].)

• The Thiele rational extrapolation
gk(m) = xk

m, k = 1, 2, . . . , p, and gp+k(m) = Amxk
m, k = 1, 2, . . . , p, with n = 2p,

where {xi } is a given sequence. It can be implemented by a recursive algorithm that
involves inverted differences. By taking xi = 1/ i, i = 1, 2, . . . ,we obtain the extrap-
olation method that has been known by the name ρ-algorithm and that is due to Wynn
[369]. ρ-algorithm is also the name of the recursive implementation of the method.

Brezinski [37] also shows that the solution for A( j)
n of the generalized rational extrap-

olation problem

Al = A( j)
n +∑p

i=1 αi fi (l)

1+∑q
i=1 βi hi (l)

, l = j, j + 1, . . . , j + n, with n = p + q,

can be cast into the form of (3.7.1) by identifying gk(m) = fk(m), k = 1, 2, . . . , p, and
gp+k(m) = Amhk(m), k = 1, 2, . . . , q. Here { fi (m)} and {gi (m)} are known sequences.
We mentioned that (3.7.2) is not satisfied in all cases of practical importance. We

now want to show that the gk(m) associated with the transformation of Shanks gener-
ally do not satisfy (3.7.2). To illustrate this, let us consider applying this transformation
to the sequence {Am}, where Am =

∑m
k=0 ak, m = 0, 1, . . . , with ak = (−1)k/(k + 1).

(The Shanks transformation is extremely effective on the sequence {Am}. In fact, it
is one of the best acceleration methods on this sequence.) It is easy to show that
limm→∞ gk+1(m)/gk(m) = −1 �= 0, so that (3.7.2) fails to be satisfied. This observa-
tion is not limited only to the case ak = (−1)k/(k + 1), but it applies to the general case
in which ak ∼ zk

∑∞
i=0 αi kβ−i as k →∞, with |z| ≤ 1 but z �= 1, as well. (The Shanks

transformation is extremely effective in this general case too.) A similar statement can
be made about the G-transformation. This shows very clearly that the preceding formal-
ism is of limited use in the analysis of the various convergence acceleration methods
mentioned above. Indeed, there is no unifying framework within which convergence
acceleration methods can be analyzed in a serious manner. In reality, we need different
approaches and techniques for analyzing the different convergence acceleration methods
and for the different classes of sequences.

3.8 Epilogue: What Is the E-Algorithm? What Is It Not?

There has been a great confusion in the literature about what the E-algorithm is and what
it is not. We believe this confusion can now be removed in view of the contents of this
chapter.
It has been written in different places that the E-algorithm is “the most general extrap-

olation method actually known,” or that it “covers most of the other algorithms,” or that
it “includes most of the convergence acceleration algorithms actually known,” or that
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“most algorithms for convergence acceleration turn out to be special cases of it.” These
statements are false and misleading.
First, the E-algorithm is not a sequence transformation (equivalently, a convergence

acceleration method), it is only a computational procedure (one of many) for solving
linear systems of the form (3.7.1) for the unknown A( j)

n . The E-algorithm has nothing to
do with the fact that most sequence transformations can be defined via linear systems of
the form given in (3.7.1).
Next, the formalism represented by (3.7.1) is not a convergence acceleration method

by itself. It remains a formalism as long as the gk(m) are not specified. It becomes a
convergence acceleration method only after the accompanying gk(m) are specified. As
soon as the gk(m) are specified, the idea of using extrapolation suggests itself, and the
source of this appears to be Hart et al. [125, p. 39].
The derivation of the appropriate gk(m) – for example, through an asymptotic anal-

ysis of {Am} – is much more important than the mere observation that a convergence
acceleration method falls within the formalism of (3.7.1).
Finally, as we have already noted, very little has been learned about existing extrap-

olation methods through this formalism. Much more can be learned by studying the
individual methods. This is precisely what we do in the remainder of this book.



4
GREP: Further Generalization of the Richardson

Extrapolation Process

4.1 The Set F(m)

The first generalization of the Richardson extrapolation process that we defined and
studied in Chapter 3 is essentially based on the asymptotic expansion in (3.1.3), where
{φk(y)} is an asymptotic sequence in the sense of (3.1.2). In general, the φk(y) considered
in Chapter 3 are assumed to have no particular structure. The Richardson extrapolation
process that we studied in Chapter 1, on the other hand, is based on the asymptotic
expansion in (1.1.2) that has a simple well-defined structure. In this chapter, we describe
a further generalization of the Richardson extrapolation process due to Sidi [272], and
denoted there GREP for short, that is based on an asymptotic expansion of A(y) that
possesses both of these features. The exact form of this expansion is presented in
Definition 4.1.1. Following that, GREP is defined in the next section.

Definition 4.1.1 Weshall say that a function A(y), defined for y ∈ (0, b], for some b > 0,
where y is a discrete or continuous variable, belongs to the set F(m) for some positive
integer m, if there exist functions φk(y) and βk(y), k = 1, 2, . . . ,m, and a constant A,
such that

A(y) = A +
m∑

k=1
φk(y)βk(y), (4.1.1)

where the functions φk(y) are defined for y ∈ (0, b] and βk(ξ ), as functions of the contin-
uous variable ξ , are continuous in [0, ξ̂ ] for some ξ̂ ≤ b, and for some constants rk > 0,
have Poincaré-type asymptotic expansions of the form

βk(ξ ) ∼
∞∑

i=0
βkiξ

irk as ξ → 0+, k = 1, . . . ,m. (4.1.2)

If, in addition, Bk(t) ≡ βk(t1/rk ), as a function of the continuous variable t , is infinitely
differentiable in [0, ξ̂ rk ], k= 1, . . . ,m, we say that A(y) belongs to the set F(m)

∞ . [Thus,
F(m)
∞ ⊂ F(m).]

The reader may be wondering why we are satisfied with the requirement that the
functionsβk(ξ ) inDefinition 4.1.1 be continuous on [0, ξ̂ ]with ξ̂ ≤ b, and not necessarily
on the larger interval [0, b] where A(y) and the φk(y) are defined. The reason is that it
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82 4 GREP: Further Generalization of the Richardson Extrapolation Process

is quite easy to construct practical examples in which A(y) and the φk(y) are defined in
some interval [0, b] but the βk(ξ ) are continuous only in a smaller interval [0, ξ̂ ], ξ̂ < b.
Definition 4.1.1 accommodates this general case.
We assume that A in (4.1.1) is either the limit or the antilimit of A(y) as y → 0+.

We also assume that A(y) and φk(y), k = 1, . . . ,m, are all known (or computable)
for all possible values that y is allowed to assume in (0, b] and that rk, k = 1, . . . ,m,
are known as well. We do not assume that the constants βki are known. We do not
assume the functions φk(y) to have any particular structure. Nor do we assume that they
satisfy φk+1(y) = o(φk(y)) as y → 0+, cf. (3.1.2). Finally, we are interested in finding
(or approximating) A, whether it is the limit or the antilimit of A(y) as y → 0+.

Obviously, when limy→0+ φk(y) = 0, k = 1, . . . ,m, we also have limy→0+ A(y) =
A. Otherwise, the existence of limy→0+ A(y) is not guaranteed. In case limy→0+ A(y)
does not exist, it is clear that limy→0+ φk(y) does not exist for at least one value of k.
It is worth emphasizing that the function A(y) above is such that A(y)− A is the sum

of m terms; each one of these terms is the product of a function φk(y) that may have
arbitrary behavior for y → 0+ and another, βk(y), that has a well-defined (and smooth)
behavior for y → 0+ as a function of yrk .
Obviously, when A(y) ∈ F(m) with A as its limit (or antilimit), aA(y)+ b ∈ F(m) as

well, with aA + b as its limit (or antilimit).
In addition, we have some kind of a “closure” property among the functions in the sets

F(m). This is described in Proposition 4.1.2, whose verification we leave to the reader.

Proposition 4.1.2 Let A1(y) ∈ F(m1) with limit or antilimit A1 and A2(y) ∈ F(m2) with
limit or antilimit A2. Then A1(y)+ A2(y) ∈ F(m) with limit or antilimit A1 + A2 and
with some m ≤ m1 + m2.

Another simple observation is contained in Proposition 4.1.3 that is given next.

Proposition 4.1.3 If A(y) ∈ F(m), then A(y) ∈ F(m ′) for m ′ > m as well.

This observation raises the following natural question: What is the smallest pos-
sible value of m that is appropriate for the particular function A(y), and how can it
be determined? As we show later, this question is relevant and has important practical
consequences.
We now pause to give a few simple examples of functions A(y) in F(1) and F(2) that

arise in natural ways. These examples are generalized in the next few chapters. They and
the examples that we provide later show that the classes F(m) and F(m)

∞ are very rich in the
sense that many sequences that we are likely to encounter in applied work are associated
with functions A(y) that belong to the classes F(m) or F(m)

∞ .
The functions A(y) in Examples 4.1.5–4.1.9 below are in F(1)

∞ and F(2)
∞ . Verification of

this requires special techniques and is considered later.

Example 4.1.4 Trapezoidal Rule for Integrals with an Endpoint Singularity Con-
sider the integral I [G] = ∫ 1

0 G(x) dx , where G(x) = xsg(x) with �s > −1 but s not an
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integer and g ∈ C∞[0, 1]. Thus, the integrand G(x) has an algebraic singularity at the
left endpoint x = 0. Let h = 1/n, where n is a positive integer. Let us approximate I [G]
by the (modified) trapezoidal rule T (h) or by the midpoint rule M(h), where these are
given as

T (h) = h

[n−1∑

j=1
G( jh)+ 1

2
G(1)

]

and M(h) = h
n∑

j=1
G(( j − 1/2)h). (4.1.3)

If we now let Q(h) stand for either T (h) or M(h), we have the asymptotic expansion

Q(h) ∼ I [G]+
∞∑

i=1
aih

2i +
∞∑

i=0
bih

s+i+1 as h → 0, (4.1.4)

where ai and bi are constants independent of h. For T (h), these constants are given by

ai = B2i

(2i)!
G(2i−1)(1), i = 1, 2, . . . ; bi = ζ (−s − i)

i!
g(i)(0), i = 0, 1, . . . , (4.1.5)

where Bi are the Bernoulli numbers and ζ (z) is the Riemann Zeta function, defined
by ζ (z) =∑∞

k=1 k
−z for �z > 1 and then continued analytically to the complex plane.

Similarly, for M(h), ai and bi are given by

ai = D2i

(2i)!
G(2i−1)(1), i = 1, 2, . . . ; bi = ζ (−s − i, 1/2)

i!
g(i)(0), i = 0, 1, . . . ,

(4.1.6)

where D2i = −(1− 21−2i )B2i , i = 1, 2, . . . , and ζ (z, ε) is the generalized Zeta func-
tion defined by ζ (z, ε) =∑∞

k=0(k + ε)−z for �z > 1 and then continued analytically
to the complex plane. Obviously, Q(h) is analogous to a function A(y) ∈ F(2) in the
following sense: Q(h)↔ A(y), h ↔ y, h2 ↔ φ1(y), r1 = 2, hs+1 ↔ φ2(y), r2 = 1,
and I [G]↔ A. The variable y is, of course, discrete and takes on the values 1, 1/2,
1/3, . . . .
The asymptotic expansions for T (h) and M(h) described above are generalizations of

the Euler–Maclaurin expansions for regular integrands discussed in Example 1.1.2 and
are obtained as special cases of that derived by Navot [216] (see Appendix D) for the
offset trapezoidal rule.

Example 4.1.5 Approximation of an Infinite-Range Integral Consider the infinite-
range integral I [ f ] = ∫∞

0 (sin t/t) dt . Assume it is being approximated by the finite
integral F(x) = ∫ x

0 (sin t/t) dt for sufficiently large x . By repeated integration by parts
of
∫∞
x (sin t/t) dt , it can be shown that F(x) has the asymptotic expansion

F(x) ∼ I [ f ]− cos x

x

∞∑

i=0
(−1)i (2i)!

x2i
− sin x

x2

∞∑

i=0
(−1)i (2i + 1)!

x2i
as x →∞. (4.1.7)

We now have that F(x) is analogous to a function A(y) ∈ F(2) in the following sense:
F(x)↔ A(y), x−1 ↔ y, cos x/x ↔ φ1(y), r1 = 2, sin x/x2 ↔ φ2(y), r2 = 2, and
F(∞) = I [ f ]↔ A. The variable y is continuous in this case.
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Example 4.1.6 Approximation of an Infinite-Range IntegralContinued Let us allow
the variable x in the previous example to assume only the discrete values xs = sπ ,
s = 1, 2, . . . . Then (4.1.7) reduces to

F(xs) ∼ I [ f ]− cos xs
xs

∞∑

i=0
(−1)i (2i)!

x2is
as s →∞. (4.1.8)

In this case, F(x) is analogous to a function A(y) ∈ F(1) in the following sense:
F(x)↔ A(y), x−1 ↔ y, cos x/x ↔ φ1(y), r1 = 2, and F(∞) = I [ f ]↔ A. The vari-
able y assumes only the discrete values (iπ )−1, i = 1, 2, . . . .

Example 4.1.7 Summation of the Riemann Zeta Function Series Let us go back to
Example 1.1.4, where we considered the summation of the infinite series

∑∞
k=1 k

−z that
converges to and defines the Riemann Zeta function ζ (z) for �z > 1. We saw there that
the partial sum An =

∑n
k=1 k

−z has the asymptotic expansion given in (1.1.18). This
expansion can be rewritten in the form

An ∼ ζ (z)+ n−z+1
∞∑

i=0

µi

ni
as n →∞, (4.1.9)

where µi depend only on z. From this, we see that An is analogous to a function A(y) ∈
F(1) in the following sense: An ↔ A(y), n−1 ↔ y, n−z+1 ↔ φ1(y), r1 = 1, and ζ (z)↔
A. The variable y is discrete and takes on the values 1, 1/2, 1/3, . . . .
Recall that ζ (z) is the limit of {An}when�z > 1 and its antilimit otherwise, provided

z �= 1, 0,−1,−2, . . . .

Example 4.1.8 Summation of the Logarithmic Function Series Consider the infinite
power series

∑∞
k=1 z

k/k that converges to log(1− z)−1 when |z| ≤ 1 but z �= 1.We show
below that, as long as z �∈ [1,+∞), the partial sum An =

∑n
k=1 z

k/k is analogous to a
function A(y) ∈ F(1), whether

∑∞
k=1 z

k/k converges or not. We also provide the precise
description of the relevant antilimit when

∑∞
k=1 z

k/k diverges.
Invoking

∫∞
0 e−kt dt = 1/k, k > 0, in An =

∑n
k=1 z

k/k with z �∈ [1,+∞), changing
the order of the integration and summation, and summing the resulting geometric series∑n

k=1(ze
−t )k , we obtain

n∑

k=1

zk

k
=
∫ ∞

0

ze−t

1− ze−t
dt −

∫ ∞

0

(ze−t )n+1

1− ze−t
dt. (4.1.10)

Now, the first integral in (4.1.10) is log(1− z)−1 with its branch cut along the real interval
[1,+∞).We rewrite the second integral in the form zn+1

∫∞
0 e−nt (et − z)−1 dt and apply

Watson’s lemma (see, for example, Olver [223]; see also Appendix B). Combining all
this in (4.1.10), we have the asymptotic expansion

An ∼ log(1− z)−1 − zn+1

n

∞∑

i=0

µi

ni
as n →∞, (4.1.11)

where µi = (d/dt)i (et − z)−1 |t=0, i = 0, 1, . . . . In particular, µ0 = 1/(1− z) and
µ1 = −1/(1− z)2.
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Thus, we have that An is analogous to a function A(y) ∈ F(1) in the following sense:
An ↔ A(y), n−1 ↔ y, zn/n ↔ φ1(y), r1 = 1, and log(1− z)−1 ↔ A, with log(1− z)−1

having its branch cut along [1,+∞). When |z| ≤ 1 but z �= 1,
∑∞

k=1 z
k/k converges and

log(1− z)−1 is limn→∞ An . When |z| > 1 but z �∈ [1,+∞),
∑∞

k=1 z
k/k diverges, but

log(1− z)−1 serves as the antilimit of {An}. (See Example 0.2.1.) The variable y is
discrete and takes on the values 1, 1/2, 1/3, . . . .

Example 4.1.9 Summation of a Fourier Cosine Series Consider the convergent
Fourier cosine series

∑∞
k=1 cos kθ/k whose sum is log(2− 2 cos θ )−1/2 when θ �=

2kπ, k = 0,±1,±2, . . . . This series can be obtained by letting z = eiθ in
∑∞

k=1 z
k/k

that we treated in the preceding example and then taking the real part of the latter. By
doing the same in (4.1.11), we see that the partial sum An =

∑n
k=1 cos kθ/k has the

asymptotic expansion

An ∼ log(2− 2 cos θ)−1/2 + cos nθ

n

∞∑

i=0

γi

ni
+ sin nθ

n

∞∑

i=0

δi

ni
as n →∞, (4.1.12)

for some γi and δi that depend only on θ .
Thus, An is analogous to a function A(y) ∈ F(2) in the following sense: An ↔

A(y), n−1 ↔ y, cos nθ/n ↔ φ1(y), r1 = 1, sin nθ/n ↔ φ2(y), r2 = 1, and log(2−
2 cos θ )−1/2 ↔ A. The variable y is discrete and takes on the values 1, 1/2, 1/3, . . . .

4.2 Definition of the Extrapolation Method GREP

Definition 4.2.1 Let A(y) belong to F(m) with the notation of Definition 4.1.1. Pick
a decreasing positive sequence {yl} ⊂ (0, b] such that liml→∞ yl = 0. Let n ≡
(n1, n2, . . . , nm), where n1, . . . , nm are nonnegative integers. Then, the approximation
A(m, j)

n to A, whether A is the limit or the antilimit of A(y) as y → 0+, is defined through
the linear system

A(yl) = A(m, j)
n +

m∑

k=1
φk(yl)

nk−1∑

i=0
β̄ki y

irk
l , j ≤ l ≤ j + N ; N =

m∑

k=1
nk, (4.2.1)

β̄ki being the additional (auxiliary) N unknowns. In (4.2.1),
∑−1

i=0 ci ≡ 0 so that
A(m, j)
(0,... ,0) = A(y j ) for all j . This generalization of the Richardson extrapolation process

that generates the A(m, j)
n is denoted GREP(m). When there is no room for confusion, we

will write GREP instead of GREP(m) for short.

Comparing the equations in (4.2.1) with the expansion of A(y) that is given in (4.1.1)
with (4.1.2), we realize that the former are obtained from the latter by substituting in
(4.1.1) the asymptotic expansion of βk(y) given in (4.1.2), truncating the latter at the term
βk,nk−1y

(nk−1)rk , k = 1, . . . ,m, and finally collocating at y = yl , l = j, j + 1, . . . ,
j + N , where N =∑m

k=1 nk .
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The following theorem states that A(m, j)
n is expressible in the form (0.3.2) with

(0.3.3).

Theorem 4.2.2 A(m, j)
n can be expressed in the form

A(m, j)
n =

N∑

i=0
γ
(m, j)
ni A(y j+i ) (4.2.2)

with the γ (m, j)
ni determined by the linear system

N∑

i=0
γ
(m, j)
ni = 1

N∑

i=0
γ
(m, j)
ni φk(y j+i )y

srk
j+i = 0, s = 0, 1, . . . , nk − 1, k = 1, . . . ,m. (4.2.3)

The proof of Theorem 4.2.2 follows from a simple analysis of the linear system in
(4.2.1) and is identical to that of Theorem 3.2.1. Note that if we denote by M the matrix
of coefficients of (4.2.1), such that A(m, j)

n is the first element of the vector of unknowns,
then the vector [γ0, γ1, . . . , γN ], where γi ≡ γ

(m, j)
ni for short, is the first row of thematrix

M−1; this, obviously, is entirely consistent with (4.2.3).
The next theorem shows that the extrapolation process GREP that generates A(m, j)

n

“eliminates” the first nk terms yirk , i = 0, 1, . . . , nk − 1, from the asymptotic expansion
of βk(y) given in (4.1.2), for k = 1, 2, . . . ,m. Just as Theorem 3.2.3, the next theorem
too is not a convergence theorem but a heuristic justification of the possible validity of
(4.2.1) as an extrapolation process.

Theorem 4.2.3 Let n and N be as before, and define

Rn(y) = A(y)− A −
m∑

k=1
φk(y)

nk−1∑

s=0
βks y

srk . (4.2.4)

Then

A(m, j)
n − A =

N∑

i=0
γ
(m, j)
ni Rn(y j+i ). (4.2.5)

In particular, when A(y) = A +∑m
k=1 φk(y)

∑nk−1
s=0 βks ysrk for all possible y, we have

A(m, j)
n′ = A, for all j ≥ 0 and n′ = (n′1, . . . , n

′
m) such that n′k ≥ nk, k = 1, . . . ,m.

The proof of Theorem 4.2.3 can be achieved by invoking Theorem 4.2.2. We leave
the details to the reader.
Before we close this section, we would like to mention that important examples of

GREP are the Levin transformations, the Levin–Sidi D- and d-transformations and the
Sidi D̄-, D̃-, W -, and mW -transformations, which are considered in great detail in the
next chapters.
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4.3 General Remarks on F(m) and GREP

1. We first note that the expansion in (4.1.1) with (4.1.2) is a true generalization of the
expansion A(y) ∼ A +∑∞

i=1 αi yir as y → 0+ that forms the basis of the polynomial
Richardson extrapolation process in the sense that the former reduces to the latterwhen
we let m = 1, φ1(y) = yr1 , and r1 = r in (4.1.1) and (4.1.2). Thus, GREP(1) is a true
generalization of the polynomial Richardson extrapolation process.
Next, the expansion in (4.1.1) with (4.1.2) can be viewed as a generalization also

of the expansion in (3.1.3) in the following sense: (i) The unknown constants αk in
(3.1.3) are now being replaced by some unknown smooth functions βk(y) that possess
asymptotic expansions of known forms for y → 0+. (ii) In addition, unlike the φk(y)
in (3.1.3), the φk(y) in (4.1.1) are not required to satisfy the condition in (3.1.2). That
is, the φk(y) in (4.1.1) may have growth rates for y → 0+ that may be independent of
each other; theymay even have the same growth rates. Thus, in this sense,GREP(m) is a
generalization of the Richardson extrapolation process beyond its first generalization.
Finally, as opposed to the A(y) in Chapter 3 that are represented by one asymptotic

expansion as y → 0+, the A(y) in this chapter are represented by sums of m asymp-
totic expansions as y → 0+. As the union ∪m̄

m=1F
(m) is a very large set that further

expands with m̄, we realize that GREP is a comprehensive extrapolation procedure
with a very large scope.

2. Because successful application of GREP to find the limit or antilimit of a function
A(y) ∈ F(m) requires as input the integer m together with the functions φk(y) and the
numbers rk, k = 1, . . . ,m, one may wonder how these can be determined. As seen
from the examples in Section 4.1, this problem is far from trivial, and any general
technique for solving it is of utmost importance.
By Definition 4.1.1, the information about m, the φk(y), and rk is contained in

the asymptotic expansion of A(y) for y → 0+. Therefore, we need to analyze A(y)
asymptotically for y → 0+ to obtain this information. As we do not want to have
to go through such an analysis in each case, it is very crucial that we have theorems
of a general nature that provide us with the appropriate m, φk(y), and rk for large
classes of A(y). (Example 4.1.4 actually contains one such theorem. Being specific,
Examples 4.1.5–4.1.9 do not.)
Fortunately, powerful theorems concerning the asymptotic behavior of A(y) in

many cases of practical interest can be proved. From these theorems, it follows that
sets of convenient φk(y) can be obtained directly from A(y) in simple ways. The fact
that the φk(y) are readily available makes GREP a very useful tool for computing
limits and antilimits. (For m > 1, GREP is usually the only effective tool.)

3. The fact that there are only a finite number of structureless functions, namely, the m
functions φk(y), and that the βk(y) are essentially polynomial in nature, enables us
to design algorithms for implementing GREP, such as the W - and W (m)-algorithms,
that are extremely efficient, unlike those for the first generalization. The existence of
such efficient algorithms makes GREP especially attractive to the user. (The subject
of algorithms for GREP is treated in detail in Chapter 7.)

4. Now, the true nature of A(y) as y → 0+ is actually contained in the functions φk(y).
Viewed in this light, the terms shape function and form factor commonly used in
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nuclear physics, become appropriate for the φk(y) as well. We use this terminology
throughout.
Weniger [353] calls the φk(y) “remainder estimates.” When m > 1, this termi-

nology is not appropriate, because, in general, none of the φk(y) by itself can be
considered an estimate of the remainder A(y)− A. This should be obvious from
Examples 4.1.5 and 4.1.9.

5. We note that the φk(y) are not unique in the sense that they can be replaced by some
other functions φ̃k(y), at the same time preserving the form of the expansion in (4.1.1)
and (4.1.2). In other words, we can have

∑m
k=1 φk(y)βk(y) =

∑m
k=1 φ̃k(y)β̃k(y), with

β̃k(ξ ) having asymptotic expansions of the form similar to that given in (4.1.2).
As the φk(y) are not unique, we can now aim at obtaining φk(y) that are as simple

and as user-friendly as possible for usewithGREP. Practical examples of this strategy,
related to the acceleration of convergence of infinite-range integrals and infinite series
and sequences, are considered in Chapters 5, 6, and 11.

4.4 A Convergence Theory for GREP

From our convention that n in A(m, j)
n stands for the vector of integers (n1, n2, . . . , nm),

it is clear that only for m = 1 can we arrange the A(m, j)
n = A(1, j)

n1 in a two-dimensional
array as in Table 1.3.1, but for m = 2, 3, . . . ,multidimensional arrays are needed. Note
that the dimension of the array for a given value of m is m + 1. As a result of the
multidimensionality of the arrays involved, we realize that there can be infinitely many
sequences of the A(m, j)

(n1,... ,nm )
that can be studied and also used in practice.

Because of the multitude of choices, we may be confused about which sequences
we should use and study. This ultimately ties in with the question of the order in
which the functions φk(y)yirk should be “eliminated” from the expansion in (4.1.1) and
(4.1.2).
Recall that in the first generalization of the Richardson extrapolation process we

“eliminated” the φk(y) from (3.1.3) in the order φ1(y), φ2(y), . . . , because they satisfied
(3.1.2). In GREP, however, we do not assume that the φk(y) satisfy a relation analogous
to (3.1.2). Therefore, it seems it is not clear a priori in what order the functions φk(y)yirk

should be “eliminated” from (4.1.1) and (4.1.2) for an arbitrary A(y).
Fortunately, there are certain orders of elimination that are universal and give rise

to good sequences of A(m, j)
n . We restrict our attention to two types of such sequences

because of their analogy to the column and diagonal sequences of Chapters 1–3.

1. {A(m, j)
n }∞j=0 with n = (n1, . . . , nm) fixed. Such sequences are analogous to the column

sequences of Chapters 1 and 3. In connection with these sequences, the limiting
process in which j →∞ and n = (n1, . . . , nm) is being held fixed has been denoted
Process I.

2. {A(m, j)
q+(ν,ν,... ,ν)}∞ν=0 with j and q = (q1, . . . , qm) fixed. In particular, the sequence

{A(m, j)
(ν,ν,... ,ν)}∞ν=0 with j fixed is of this type. Such sequences are analogous to the diag-

onal sequences of Chapters 1 and 3. In connection with these sequences, the limiting
process in which nk →∞, k = 1, . . . ,m, simultaneously and j is being held fixed
has been denoted Process II.
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Numerical experience and theoretical results indicate that Process II is the more ef-
fective of the two. In view of this, in practice we look at the sequences {A(m,0)

(ν,ν,... ,ν)}∞ν=0
as these seem to give the best accuracy for a given number of the A(yi ). The theory we
propose next supports this observation well. It also provides strong justification of the
practical relevance of Process I and Process II. Finally, it is directly applicable to certain
GREPs used in the summation of some oscillatory infinite-range integrals and infinite
series, as we will see later in the book.
Throughout the rest of this section, we take A(y) and A(m, j)

n to be exactly as in
Definition 4.1.1 and Definition 4.2.1, respectively, with the same notation. We also
define

�(m, j)
n =

N∑

i=0

∣
∣
∣γ

(m, j)
ni

∣
∣
∣ , (4.4.1)

where the γ (m, j)
ni are as defined in Theorem 4.2.2. Thus,�(m, j)

n is the quantity that controls
the propagation of the errors in the A(yi ) into A(m, j)

n . Finally, we let #ν denote the set
of all polynomials u(t) of degree ν or less in t .
The following preliminary lemma is the starting point of our analysis.

Lemma 4.4.1 The error in A(m, j)
n satisfies

A(m, j)
n − A =

N∑

i=0
γ
(m, j)
ni

m∑

k=1
φk(y j+i )[βk(y j+i )− uk(y

rk
j+i )], (4.4.2)

where, for each k = 1, . . . ,m, uk(t) is in #nk−1 and arbitrary.

Proof. The proof can be achieved by invoking Theorem 4.2.2, just as that of Theo-
rem 4.2.3. �

A convergence study of Process I and Process II can now be made by specializing the
polynomials uk(t) in Lemma 4.4.1.

4.4.1 Study of Process I

Theorem 4.4.2 Provided sup j �
(m, j)
n = $(m)

n <∞ for fixed n1, . . . , nm, we have

|A(m, j)
n − A| ≤

m∑

k=1

(

max
0≤i≤N

∣
∣φk(y j+i )

∣
∣
)

O(ynkrk
j ) as j →∞. (4.4.3)

If, in addition, φk(y j+i ) = O(φk(y j )) as j→∞, then

|A(m, j)
n − A| ≤

m∑

k=1
|φk(y j )|O(ynkrk

j ) as j →∞, (4.4.4)

whether limy→0+ A(y) exists or not.

Proof. Let us pick uk(t) =
∑nk−1

i=0 βki t i in Lemma 4.4.1, with βki as in (4.1.2). The result
in (4.4.3) follows from the fact that βk(y)− uk(yrk ) = O(ynkrk ) as y → 0+, which is a
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consequence of (4.1.2), and from the fact that y j > y j+1 > · · · , with lim j→∞ y j = 0.
(4.4.4) is a direct consequence of (4.4.3). We leave the details to the reader. �

Comparing (4.4.4) with A(y j )− A =∑m
k=1 φk(y j )O(1) as j →∞, that follows from

(4.1.1) with (4.1.2), we realize that, generally speaking, {A(m, j)
n }∞j=0 converges to Amore

quickly than {A(yi )} when the latter converges. Depending on the growth rates of the
φk(yi ), {A(m, j)

n }∞j=0 may converge to A even when {A(yi )} does not. Also, more refined
results similar to those in (1.5.5) and (3.5.18) in case some or all of βknk are zero can
easily be written down. We leave this to the reader. Finally, by imposing the condition
sup j �

(m, j)
n <∞, we are actually assuming in Theorem 4.4.2 that Process I is a stable

extrapolation method with the given φk(y) and the yl .

4.4.2 Study of Process II

Theorem 4.4.3 Let the integer j be fixed and assume that ξ̂ ≥ y j in Definition 4.1.1.
Then, provided supn �

(m, j)
n = $(m, j) <∞, there holds

|A(m, j)
n − A| ≤ $(m, j)

m∑

k=1

(

max
y∈I j,N

|φk(y)|
)

E ( j)
k,nk

, (4.4.5)

where I j,N = [y j+N , y j ] and

E ( j)
k,ν = min

u∈#ν−1
max

y∈[0,y j ]
|βk(y)− u(yrk )|, k = 1, . . . ,m. (4.4.6)

If, in addition, A(y) ∈ F(m)
∞ with Bk(t) ∈ C∞[0, ξ̂ rk ], k = 1, . . . ,m, with the same ξ̂ ,

and maxy∈I j,N |φk(y)| = O(Nαk ) as N →∞ for some αk, k = 1, . . . ,m, then

A(m, j)
n − A = O(Nα n̂−µ) as n1, . . . , nm →∞, for every µ > 0, (4.4.7)

where α = max{α1, . . . , αm} and n̂ = min{n1, . . . , nm}. Thus,
A(m, j)

n − A = O(n̂−µ) as n1, . . . , nm →∞, for every µ > 0, (4.4.8)

holds (i) with no extra condition on the nk when α ≤ 0, and (ii) provided N = O(n̂ρ) as
n̂ →∞ for some ρ > 0, when α > 0.

Proof. For each k, let us pick uk(t) in Lemma 4.4.1 to be the best polynomial approxima-
tion of degree at most nk − 1 to the function Bk(t) ≡ βk(t1/rk ) on [0, t j ], where t j = yrkj ,
in the maximum norm. Thus, (4.4.6) is equivalent to

E ( j)
k,ν = min

u∈#ν−1
max
t∈[0,t j ]

|Bk(t)− u(t)| = max
t∈[0,t j ]

|Bk(t)− uk(t)|. (4.4.9)

The result in (4.4.5) now follows by taking the modulus of both sides of (4.4.2) and ma-
nipulating its right-hand side appropriately. When A(y) ∈ F(m)

∞ , each Bk(t) is infinitely
differentiable on [0, t j ] because t j = yrkj ≤ ξ̂ rk . Therefore, from a standard result in poly-
nomial approximation theory (see, for example, Cheney [47]; see also Appendix F), we
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have that E ( j)
k,ν = O(ν−µ) as ν →∞, for every µ > 0. The result in (4.4.7) now fol-

lows. The remaining part of the theorem follows from (4.4.7) and its proof is left to
the reader. �

As is clear from (4.4.8), under the conditions stated following (4.4.8), Process II
converges to A, whether {A(yi )} does or not. Recalling the remark following the proof
of Theorem 4.4.2 on Process I, we realize that Process II has convergence properties
superior to those of Process I. Finally, by imposing the condition supn �

(m, j)
n <∞, we

are actually assuming in Theorem 4.4.3 that Process II is a stable extrapolation method
with the given φk(y) and the yl .
Note that the condition that N = O(n̂ρ) as n̂ →∞ is satisfied in the case nk = qk +

ν, k = 1, . . . ,m, where qk are fixed nonnegative integers. In this case, n̂ = O(ν) as
ν →∞ and, consequently, (4.4.8) now reads

A(m, j)
q+(ν,... ,ν) − A = O(ν−µ) as ν →∞, for every µ > 0, (4.4.10)

both when α ≤ 0 and when α > 0.
Also, in many cases of interest, A(y), in addition to being in F(m)

∞ , is such that its
associated βk(y) satisfy E ( j)

k,ν = O(exp(−λkν
δk )) as ν →∞ for some λk > 0 and δk > 0,

k = 1, . . . ,m. (In particular, δk ≥ 1 if Bk(t) ≡ βk(t1/rk ) is not only in C∞[0, brk ] but is
analytic on [0, brk ] as well. Otherwise, 0 < δk < 1. For examples of the latter case, we
refer the reader to the papers of Németh [218], Miller [212], and Boyd [29], [30].) This
improves the results in Theorem 4.4.3 considerably. In particular, (4.4.10) becomes

A(m, j)
q+(ν,... ,ν) − A = O(exp(−λνδ)) as ν →∞, (4.4.11)

where δ = min{δ1, . . . , δm} and λ = min{λk : δk = δ} − ε for arbitrary ε > 0.

4.4.3 Further Remarks on Convergence Theory

Our treatment of the convergence analysis was carried out under the stability conditions
that sup j �

(m, j)
n <∞ for Process I and supn �

(m, j)
n <∞ for Process II. Although these

conditions can be fulfilled by clever choices of the {yl} and verified rigorously as well,
they do not have to hold in general. Interestingly, however, even when they do not have
to hold, Process I and Process II may converge, as has been observed numerically in
many cases and as can be shown rigorously in some cases.
Furthermore, we treated the convergence of Process I and Process II for arbitrary m

and for arbitrary {yl}. We can obtain much stronger and interesting results form = 1 and
for certain choices of {yl} that have been used extensively; for example, in the literature
of numerical quadrature for one- and multi-dimensional integrals. We intend to come
back to GREP(1) in Chapters 8–10, where we present an extensive analysis for it along
with a new set of mathematical techniques developed recently.
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4.4.4 Remarks on Convergence of the β̄ki

So far we have been concerned only with the convergence of the A(m, j)
n and mentioned

nothing about the β̄ki , the remaining unknowns in (4.2.1). Just as the ᾱk in the first
generalizationof theRichardson extrapolationprocess tend to the correspondingαk under
certain conditions, the β̄ki in GREP tend to the corresponding βki , again under certain
conditions. Even though their convergence may be quick theoretically, they themselves
are prone to severe roundoff in finite-precision arithmetic. Therefore, the β̄ki have very
poor accuracy in finite-precision arithmetic. For this reason, we do not pursue the theor-
etical study of the β̄ki any further. We refer the reader to Section 4 of Levin and Sidi
[165] for some numerical examples that also provide a few computed values of the β̄ki .

4.4.5 Knowing the Minimal m Pays

Let us go back to the error bound on A(m, j)
n given in (4.4.5) and (4.4.6) of Theo-

rem 4.4.3. Of course, this bound is valid whether m is minimal or not. In addition,
in many cases of interest, the factors $(m, j) and

∑m
k=1

(
maxy∈I j,N |φk(y)|

)
E ( j)

k,nk
vary

slowly with m. [Actually,$(m, j) is smaller for smaller m in most cases.] In other words,
the quality of the approximation A(m, j)

n may be nearly independent of the value of m.
The cost of computing A(m, j)

n , on the other hand, increases linearly with m. For exam-
ple, computation of the approximations A(m,0)

(ν,... ,ν), ν = 0, 1, . . . , νmax, that are associated
with Process II entails a cost of mνmax + 1 evaluations of A(y). Employing the minimal
value of m, therefore, reduces this cost considerably. This reduction is significant, espe-
cially when the minimal m is a small integer, such as 1 or 2. Such cases do occur most
frequently in applications, as we will see later.
This discussion shows clearly that there is great importance to knowing the minimal

value of m for which A(y) ∈ F(m). In the two examples of GREP that we discuss in the
next two chapters, we present simple heuristic ways to determine the minimal m for
various functions A(y) that are related to some infinite-range integrals and infinite series
of varying degrees of complexity.

4.5 Remarks on Stability of GREP

Asmentioned earlier,�(m, j)
n defined in (4.4.1) is the quantity that controls the propagation

of errors in the A(yl) into A(m, j)
n , the approximation to A. By (4.2.3), we have obviously

that �(m, j)
n ≥ 1 for all j and n. Thus, the closer �(m, j)

n is to unity, the better the numerical
stability of A(m, j)

n . It is also clear that �(m, j)
n is a function of the φk(y) and the yl . As

φk(y) are given and thus not under the user’s control, the behavior of �(m, j)
n ultimately

depends on the yl that can be picked at will. Thus, there is great value to knowing how
to pick the yl appropriately.
Although it is impossible to analyze the behavior of �(m, j)

n in the most general case,
we can nevertheless state a few practical conclusions and rules of thumb that have been
derived from numerous applications.
First, the smaller �(m, j)

n is, the more accurate an approximation A(m, j)
n is to A theor-

etically as well. Next, when the sequences of the �
(m, j)
n increase mildly or remain
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bounded in Process I or Process II, the corresponding sequences of the A(m, j)
n converge

to A quickly.
In practice, the growth of the �(m, j)

n both in Process I and in Process II can be reduced
very effectively by picking the yl such that, for each k, the sequences {φk(yl)}∞l=0
are quickly varying. Quick variation can come about if, for example, φk(yl) = Ck(l)
exp(uk(l)), where Ck(l) and uk(l) are slowly varying functions of l. A function H (l)
is slowly varying in l if liml→∞ H (l + 1)/H (l) = 1. Thus, H (l) can be slowly vary-
ing if, for instance, it is monotonic and behaves like κlα as l →∞, for some α �= 0
and κ �= 0 that can be complex in general. The case in which uk(l) ∼ κlα as l →∞,
where α = 1 and κ = iπ , produces one of the best types of quick variation in that now
φk(yl) ∼ Ck(l)(−1)l as l →∞, and hence liml→∞ φk(yl+1)/φk(yl) = −1.

To illustrate these points, let us look at the following two cases:
(i) m = 1 and φ1(y) = yδ for some δ �= 0,−1,−2, . . . . Quick variation in this case

is achieved by picking yl = y0ωl for some ω ∈ (0, 1). With this choice of the yl , we
have φ1(yl) = yδ0e

(logω)δl for all l, and both Process I and Process II are stable. By the
stability theory of Chapter 1 with these yl we actually have �

(1, j)
(ν) =∏ν

i=1
1+|ci |
|1−ci | for all j

and ν, where ci = ωδ+i−1, and hence �(1, j)
(ν) are bounded both in j and in ν. The choice

yl = y0/(l + 1), on the other hand, leads to extremely unstable extrapolation processes,
as follows from Theorem 2.1.2.
(ii) m = 1 and φ1(y) = eiπ/y yδ for some δ. Best results can be achieved by picking

yl = 1/(l + 1), as this gives φ1(yl) ∼ Kl−δ(−1)l as l →∞. As shown later, for this
choice of the yl , we actually have �

(1, j)
(ν) = 1 for all j and ν, when δ is real. Hence, both

Process I and Process II are stable.
We illustrate all these points with numerical examples and also with ample theoretical

developments in the next chapters.

4.6 Extensions of GREP

Before closing this chapter, we mention that GREP can be extended to cover those
functions A(y) that are as in (4.1.1), for which the functions βk(y) have asymptotic
expansions of the form

βk(y) ∼
∞∑

i=0
βki y

τki as y → 0+, (4.6.1)

where the τki are known constants that satisfy

τki �= 0, i = 0, 1, . . . , �τk0 < �τk1 < · · · , and lim
i→∞

�τki = +∞, (4.6.2)

or of the more general form

βk(y) ∼
∞∑

i=0
βki uki (y) as y → 0+, (4.6.3)

where uki (y) are known functions that satisfy

uk,i+1(y) = o(uki (y)) as y → 0+, i = 0, 1, . . . . (4.6.4)
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The approximations A(m, j)
n , where n = (n1, . . . , nm), are now defined by the linear equa-

tions

A(yl) = A(m, j)
n +

m∑

k=1
φk(yl)

nk−1∑

i=0
β̄ki uki (yl), j ≤ l ≤ j + N ; N =

m∑

k=1
nk . (4.6.5)

These extensions of GREP were originally suggested by Sidi [287]. It would be
reasonable to expect such extensions of GREP to be effective if and when needed.
Note that the Richardson extrapolation process of Chapter 1 is an extended GREP(1)

with φ1(y) = 1 and τ1i = σi+1, i = 0, 1, . . . , in (4.6.1).
Another example of such transformations is one in which

uki (y) ∼
∞∑

s=i

δkis y
srk as y → 0+, i = 0, 1, . . . , (4.6.6)

with rk as before. An interesting special case of this is uki (y) = 1/(y−rk )i , where (z)i =
z(z + 1) · · · (z + i − 1) is the Pochhammer symbol. (Note that if β(y) ∼∑∞

i=0 βki yirk

as y → 0+, then β(y) ∼∑∞
i=0 β

′
ki/(y

−rk )i as y → 0+ as well.) Such an extrapola-
tion method with m = 1 was proposed earlier by Sidi and has been called the S-
transformation. This method turns out to be very effective in the summation of strongly
divergent series. We come back to it later.



5
The D-Transformation: A GREP for

Infinite-Range Integrals

5.1 The Class B(m) and Related Asymptotic Expansions

In many applications, we may need to compute numerically infinite-range integrals of
the form

I [ f ] =
∫ ∞

0
f (t) dt. (5.1.1)

A direct way to achieve this is by truncating the infinite range and taking the (numerically
computed) finite-range integral

F(x) =
∫ x

0
f (t) dt (5.1.2)

for some sufficiently large x as an approximation to I [ f ]. In many cases, however, f (x)
decays very slowly as x →∞, and this causes F(x) to converge to I [ f ] very slowly
as x →∞. The decay of f (x) may be so slow that we hardly notice the convergence
of F(x) numerically. Even worse is the case in which f (x) decays slowly and oscillates
an infinite number of times as x →∞. Thus, this approach of approximating I [ f ] by
F(x) for some large x is of limited use at best.
Commonly occurring examples of infinite-range integrals are Fourier cosine

and sine transforms
∫∞
0 cosωt g(t) dt and

∫∞
0 sinωt g(t) dt and Hankel transforms∫∞

0 Jν(ωt)g(t) dt , where Jν(x) is the Bessel function of the first kind of order ν. Now the
kernels cos x, sin x , and Jν(x) of these transforms satisfy linear homogeneous ordinary
differential equations (of order 2) whose coefficients have asymptotic expansions in x−1

for x →∞. In many cases, the functions g(x) also satisfy differential equations of the
same nature, and this puts the integrands cosωt g(t), sinωt g(t), and Jν(ωt)g(t) in some
function classes that we denote B(m), where m = 1, 2, . . . . The precise description of
B(m) is given in Definition 5.1.2.
As we show later, when the integrand f (x) is in B(m) for some m, F(x) is analogous

to a function A(y) in F(m) with the samem, where y = x−1. Consequently, GREP(m) can
be applied to obtain good approximations to A ↔ I [ f ] at a small cost. The resulting
GREP(m) for this case is now called the D(m)-transformation.
Note that, in case the integral to be computed is

∫∞
a f (t) dt with a �= 0, we apply the

D(m)-transformation to
∫∞
0 f̃ (t) dt , where f̃ (x) = f (a + x).

95
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5.1.1 Description of the Class A(γ )

Before we embark on the definition of the classB(m), we need to define another important
class of functions, which we denote A(γ ), that will serve us throughout this chapter and
the rest of this work.

Definition 5.1.1 A function α(x) belongs to the set A(γ ) if it is infinitely differentiable
for all large x > 0 and has a Poincaré-type asymptotic expansion of the form

α(x) ∼
∞∑

i=0
αi x

γ−i as x →∞, (5.1.3)

and its derivatives have Poincaré-type asymptotic expansions obtained by differentiating
that in (5.1.3) formally term by term. If, in addition, α0 �= 0 in (5.1.3), then α(x) is said
to belong to A(γ ) strictly. Here γ is complex in general.

Remarks.

1. A(γ ) ⊃ A(γ−1) ⊃ A(γ−2) ⊃ · · · , so that if α ∈ A(γ ), then, for any positive integer
k, α ∈ A(γ+k) but not strictly. Conversely, if α ∈ A(δ) but not strictly, then α ∈ A(δ−k)

strictly for a unique positive integer k.
2. If α ∈ A(γ ) strictly, then α �∈ A(γ−1).
3. If α ∈ A(γ ) strictly, and β(x) = α(cx + d) for some arbitrary constants c > 0 and

d, then β ∈ A(γ ) strictly as well.
4. If α, β ∈ A(γ ), then α ± β ∈ A(γ ) as well. (This implies that the zero function is

included in A(γ ).) If α ∈ A(γ ) and β ∈ A(γ+k) strictly for some positive integer k,
then α ± β ∈ A(γ+k) strictly.

5. If α ∈ A(γ ) and β ∈ A(δ), then αβ ∈ A(γ+δ); if, in addition, β ∈ A(δ) strictly, then
α/β ∈ A(γ−δ).

6. If α ∈ A(γ ) strictly, such that α(x) > 0 for all large x , and we define θ(x) = [α(x)]ξ ,
then θ ∈ A(γ ξ ) strictly.

7. If α ∈ A(γ ) strictly and β ∈ A(k) strictly for some positive integer k, such that β(x) >
0 for all large x > 0, andwe define θ (x) = α(β(x)), then θ ∈ A(kγ ) strictly. Similarly,
if µ(x−1) ∈ A(−δ) strictly so that µ(t) ∼∑∞

i=0 µi tδ+i as t → 0+, µ0 �= 0, and if
β ∈ A(−k) strictly for some positive integer k, such that β(x) > 0 for all large x > 0,
and we define ψ(x) = µ(β(x)), then ψ ∈ A(−kδ) strictly.

8. If α ∈ A(γ ) (strictly) and γ �= 0, then α′ ∈ A(γ−1) (strictly). If α ∈ A(0), then
α′ ∈ A(−2).

9. Let α(x) be in A(γ ) and satisfy (5.1.3). If we define the function α̂(y) by α̂(y) =
yγ α(y−1), then α̂(y) is infinitely differentiable for 0 ≤ y < c for some c > 0, and
α̂(i)(0)/ i! = αi , i = 0, 1, . . . . In other words, the series

∑∞
i=0 αi yi , whether con-

vergent or not, is the Maclaurin series of α̂(y). The next two remarks are immediate
consequences of this.

10. If α ∈ A(0), then it is infinitely differentiable for all large x > 0 up to and including
x = ∞, although it is not necessarily analytic at x = ∞.
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11. If x−γ α(x) is infinitely differentiable for all large x > 0 up to and including x = ∞,
and thus has an infinite Taylor series expansion in powers of x−1, then α ∈ A(γ ).
This is true whether the Taylor series converges or not. Furthermore, the asymptotic
expansion of α(x) as x →∞ is xγ times the Taylor series.

All these are simple consequences of Definition 5.1.1; we leave their verification to the
reader.

Here are a few simple examples of functions in A(γ ) for some values of γ :

• The function
√
x3 + x is in A(3/2) since it has the (convergent) expansion

√
x3 + x = x3/2

∞∑

i=0

(
1/2

i

)
1

x2i
, x > 1,

that is also its asymptotic expansion as x →∞.
• The function sin(1/

√
x) is in A(−1/2) since it has the (convergent) expansion

sin

(
1√
x

)

= x−1/2
∞∑

i=0

(−1)i
(2i + 1)!

1

xi
, all x > 0,

that is also its asymptotic expansion as x →∞.
• Any rational function R(x) whose numerator and denominator polynomials have de-
grees exactly m and n, respectively, is in A(m−n) strictly. In addition, its asymptotic
expansion is convergent for x > a with some a > 0.

• If α(x) = ∫∞
0 e−xt t−γ−1g(t) dt , where �γ < 0 and g(t) is in C∞[0,∞) and satisfies

g(t) ∼∑∞
i=0 gi t

i as t → 0+, with g0 = g(0) �= 0, and g(t) = O(ect ) as t →∞, for
some constant c, then α(x) is in A(γ ) strictly. This can be shown by using Watson’s
lemma, which gives the asymptotic expansion

α(x) ∼
∞∑

i=0
gi�(−γ + i)xγ−i as x →∞,

and the fact that α′(x) = − ∫∞0 e−xt t−γ g(t) dt , a known property of Laplace trans-
forms. Here �(z) is the Gamma function, as usual. Let us take γ = −1 and g(t) =
1/(1+ t) as an example. Then α(x) ∼ x−1

∑∞
i=0(−1)i i! x−i as x →∞. Note that, for

this g(t), α(x) = ex E1(x), where E1(x) =
∫∞
x t−1e−t dt is the exponential integral,

and the asymptotic expansion of α(x) is a divergent series for all x �= ∞.
• The function ex K0(x), where K0(x) is the modified Bessel function of order 0 of
the second kind, is in A(−1/2) strictly. This can be shown by applying the previous
result to the integral representation of K0(x), namely, K0(x) =

∫∞
1 e−xt (t2 − 1)−1/2 dt ,

following a suitable transformation of variable. Indeed, it has the asymptotic expansion

ex K0(x) ∼
√
π

2x

{

1− 1

8x
+ 9

2! (8x)2
+ · · ·

}

as x →∞.

Before going on, we would like to note that, by the way A(γ ) is defined, there may
be any number of functions in A(γ ) having the same asymptotic expansion. In certain
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places it will be convenient to work with subsets X(γ ) of A(γ ) that are defined for all γ
collectively as follows:

(i) A function α belongs to X(γ ) if either α ≡ 0 or α ∈ A(γ−k) strictly for some non-
negative integer k.

(ii) X(γ ) is closed under addition and multiplication by scalars.
(iii) If α ∈ X(γ ) and β ∈ X(δ), then αβ ∈ X(γ+δ); if, in addition, β ∈ A(δ) strictly, then

α/β ∈ X(γ−δ).
(iv) If α ∈ X(γ ), then α′ ∈ X(γ−1).

It is obvious that no two functions in X(γ ) have the same asymptotic expansion, since
if α, β ∈ X(γ ), then either α ≡ β or α − β ∈ A(γ−k) strictly for some nonnegative integer
k. Thus,X(γ ) does not contain functions α(x) �≡ 0 that satisfy α(x) = O(x−µ) as x →∞
for every µ > 0, such as exp(−cxs) with c, s > 0.
Functions α(x) that are given as sums of series

∑∞
i=0 αi xγ−i that converge for all

large x form such a subset; obviously, such functions are of the form α(x) = xγ R(x)
with R(x) analytic at infinity. Thus, R(x) can be rational functions that are bounded at
infinity, for example.
(Concerning the uniqueness of α(x), see the last paragraph of Section A.2 of

Appendix A.)

5.1.2 Description of the Class B(m)

Definition 5.1.2 A function f (x) that is infinitely differentiable for all large x belongs
to the set B(m) if it satisfies a linear homogeneous ordinary differential equation of order
m of the form

f (x) =
m∑

k=1
pk(x) f

(k)(x), (5.1.4)

where pk ∈ A(k), k = 1, . . . ,m, such that pk ∈ A(ik ) strictly for some integer ik ≤ k.

The following simple result is a consequence of this definition.

Proposition 5.1.3 If f ∈ B(m), then f ∈ B(m ′) for every m ′ > m.

Proof. It is enough to consider the case m ′ = m + 1. Let (5.1.4) be the ordinary dif-
ferential equation satisfied by f (x). Applying to both sides of (5.1.4) the differential
operator [1+ µ(x)d/dx], where µ(x) is an arbitrary function in A(1), we have f (x) =∑m+1

k=1 qk(x) f (k)(x) with q1 = p1 + µp′1 − µ, qk = pk + µp′k + µpk−1, k = 2, . . . ,m,
and qm+1 = µpm . From the fact that µ ∈ A(1) and pk ∈ A(k), k = 1, . . . ,m, it follows
that qk ∈ A(k), k = 1, . . . ,m + 1. �

We observe from the proof of Proposition 5.1.3 that if f ∈ B(m), then, for anym ′ > m,
there are infinitely many differential equations of the form f =∑m ′

k=1 qk f (k) with qk ∈
A(k). An interesting question concerning the situation in which f ∈ B(m) with minimal
m is whether the differential equation f =∑m

k=1 pk f (k) with pk ∈ A(k) is unique. By
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restricting the pk such that pk ∈ X(k) with X(γ ) as defined above, we can actually show
that it is; this is the subject of Proposition 5.1.5 below. In general, we assume that this
differential equation is unique for minimal m, and we invoke this assumption later in
Theorem 5.6.4.
Knowing the minimal m is important for computational economy when using the

D-transformation since the cost the latter increases with increasing m, as will become
clear shortly.
We start with the following auxiliary result.

Proposition 5.1.4 Let f (x) be infinitely differentiable for all large x and satisfy an ordi-
nary differential equation of order m of the form f (x) =∑m

k=1 pk(x) f (k)(x) with pk ∈
A(νk ) for some integers νk . If m is smallest possible, then f (k)(x), k = 0, 1, . . . ,m − 1,
are independent in the sense that there do not exist functions vk(x), k = 0, 1, . . . ,m − 1,
not all identically zero, and vk ∈ A(τk ) with τk integers, such that

∑m−1
k=0 vk f

(k) = 0.
In addition, f (i)(x), i = m,m + 1, . . . , can all be expressed in the form f (i) =∑m−1

k=0 wik f (k), where wik ∈ A(µik ) for some integers µik . This applies, in particular,
when f ∈ B(m).

Proof. Suppose, to the contrary, that
∑s

k=0 vk f
(k) = 0 for some s ≤ m − 1 and vk ∈ A(νk )

with νk integers. If v0 �≡ 0, then we have f =∑s
k=1 p̃k f (k), where p̃k = −vk/v0 ∈ A(ν ′k ),

ν ′k an integer, contradicting the assumption that m is minimal. If v0 ≡ 0, differentiat-
ing the equality

∑s
k=1 vk f

(k) = 0 m − s times, we have
∑m−1

k=1 wk f (k) + vs f (m) = 0.
The functions wk are obviously in A(µk ) for some integers µk . Solving this last equa-
tion for f (m), and substituting in f =∑m

k=1 pk f (k), we obtain the differential equation
f =∑m−1

k=1 p̃k f (k), where p̃k = pk − pmwk/vs ∈ A(λk ) for some integers λk . This too
contradicts the assumption thatm is minimal. We leave the rest of the proof to the reader.

�

Proposition 5.1.5 If f (x) satisfies an ordinary differential equation of the form f (x) =∑m
k=1 pk(x) f (k)(x)with pk ∈ X(νk ) for some integers νk , and ifm is smallest possible, then

the functions pk(x) in this differential equation are unique. This applies, in particular,
when f ∈ B(m).

Proof. Suppose, to the contrary, that f (x) satisfies also the differential equation f =∑m
k=1 qk f (k) with qk ∈ X(σk ) for some integers σk , such that pk(x) �≡ qk(x) for at least one

value of k. Eliminating f (m) from both differential equations, we obtain
∑m−1

k=0 vk f
(k) =

0, where v0 = qm − pm and vk = −(pkqm − qk pm), k = 1, . . . ,m − 1, vk ∈ X(λk ) for
some integers λk , and vk(x) �≡ 0 for at least one value of k. Since m is minimal, this is
impossible by Proposition 5.1.4. Therefore, we must have pk ≡ qk , 1 ≤ k ≤ m. �

The following proposition,whose proofwe leave to the reader, concerns the derivatives
of f (x) when f ∈ B(m) in particular.

Proposition 5.1.6 If f (x) satisfies an ordinary differential equation of the form f (x) =∑m
k=1 pk(x) f (k)(x) with pk ∈ A(νk ) for some integers νk , then f ′(x) satisfies an ordinary
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differential equation of the same form, namely, f ′(x) =∑m
k=1 qk(x) f (k+1)(x) with qk ∈

A(µk ) for some integers µk , provided [1− p′1(x)] ∈ A(τ ) strictly for some integer τ . In
particular, if f ∈ B(m), then f ′ ∈ B(m) as well, provided limx→∞ x−1 p1(x) �= 1.

Let us now give a few examples of functions in the classes B(1) and B(2). In these
examples, we make free use of the remarks following Definition 5.1.1.

Example 5.1.7 The Bessel function of the first kind Jν(x) is in B(2) since it satis-
fies y = x

ν2−x2 y
′ + x2

ν2−x2 y
′′ so that p1(x) = x/(ν2 − x2) ∈ A(−1) and p2(x) = x2/(ν2 −

x2) ∈ A(0). The same applies to the Bessel function of the second kind Yν(x) and to all
linear combinations bJν(x)+ cYν(x).

Example 5.1.8 The function cos x/x is in B(2) since it satisfies y = − 2
x y

′ − y′′ so that
p1(x) = −2/x ∈ A(−1) and p2(x) = −1 ∈ A(0). The same applies to the function sin x/x
and to all linear combinations B cos x/x + C sin x/x .

Example 5.1.9 The function f (x) = log(1+ x)/(1+ x2) is in B(2) since it satisfies
y = p1(x)y′ + p2(x)y′′, where p1(x) = −(5x2 + 4x + 1)/(4x + 2) ∈ A(1) strictly and
p2(x) = −(x2 + 1)(x + 1)/(4x + 2) ∈ A(2) strictly.

Example 5.1.10 A function f (x) ∈ A(γ ) strictly, for arbitrary γ �= 0, is in B(1) since it
satisfies y = f (x)

f ′(x) y
′ so that p1(x) = f (x)/ f ′(x) ∈ A(1) strictly. That p1 ∈ A(1) strictly

follows from the fact that f ′ ∈ A(γ−1) strictly.

Example 5.1.11 A function f (x) = eθ (x)h(x), where θ ∈ A(s) strictly for some positive
integer s and h ∈ A(γ ) for arbitrary γ , is in B(1) since it satisfies y = p1(x)y′ with
p1(x) = 1/[θ ′(x)+ h′(x)/h(x)] ∈ A(−s+1) and −s + 1 ≤ 0. That p1 ∈ A(−s+1) can be
seen as follows: Now θ ′ ∈ A(s−1) strictly and h′/h ∈ A(−1) ⊂ A(s−1) because s − 1 is
a nonnegative integer. Therefore, θ ′ + h′/h ∈ A(s−1) strictly. Consequently, p1 = (θ ′ +
h′/h)−1 ∈ A(−s+1) strictly.

5.1.3 Asymptotic Expansion of F(x)When f (x) ∈ B(m)

We now state a general theorem due to Levin and Sidi [165] concerning the asymptotic
behavior of F(x) = ∫ x

0 f (t) dt as x →∞ when f ∈ B(m) for some m and is integrable
at infinity. The proof of this theorem requires a good understanding of asymptotic expan-
sions and is quite involved. We refer the reader to Section 5.6 for a detailed constructive
proof.

Theorem 5.1.12 Let f (x) be a function inB(m) that is also integrable at infinity. Assume,
in addition, that

lim
x→∞ p( j−1)k (x) f (k− j)(x) = 0, k = j, j + 1, . . . ,m, j = 1, 2, . . . ,m, (5.1.5)
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and that

m∑

k=1
l(l − 1) · · · (l − k + 1) p̄k �= 1, l = ±1, 2, 3, . . . , (5.1.6)

where

p̄k = lim
x→∞ x−k pk(x), k = 1, . . . ,m. (5.1.7)

Then

F(x) = I [ f ]+
m−1∑

k=0
xρk f (k)(x)gk(x) (5.1.8)

for some integers ρk ≤ k + 1 and functions gk ∈ A(0), k = 0, 1, . . . ,m − 1. Actually, if
pk ∈ A(ik ) strictly for some integer ik ≤ k, k = 1, . . . ,m, then

ρk ≤ ρ̄k ≡ max{ik+1, ik+2 − 1, . . . , im − m + k + 1} ≤ k + 1, k = 0, 1, . . . ,m − 1.
(5.1.9)

Equality holds in (5.1.9) when the integers whose maximum is being considered are
distinct. Finally, being in A(0), the functions gk(x) have asymptotic expansions of the
form

gk(x) ∼
∞∑

i=0
gki x

−i as x →∞. (5.1.10)

Remarks.

1. By (5.1.7), p̄k �= 0 if and only if pk ∈ A(k) strictly. Thus, whenever pk ∈ A(ik ) with
ik < k, we have p̄k = 0. This implies that whenever ik < k, k = 1, . . . ,m, we have
p̄k = 0, k = 1, . . . ,m, and the condition in (5.1.6) is automatically satisfied as the
left-hand side of the inequality there is zero for all values of l.

2. It follows from (5.1.9) that ρm−1 = im always.
3. Similarly, for m = 1 we have ρ0 = i1 precisely.
4. For numerous examples we have treated, equality seems to hold in (5.1.9) for all

k = 1, . . . ,m.
5. The integers ρk and the functions gk(x) in (5.1.8) depend only on the functions pk(x)

in the ordinary differential equation in (5.1.4). This being the case, they are the same
for all solutions f (x) of (5.1.4) that are integrable at infinity and that satisfy (5.1.5).

6. From (5.1.5) and (5.1.9), we also have that limx→∞ x ρ̄k f (k)(x) = 0, k =
0, 1, . . . ,m − 1. Thus, limx→∞ xρk f (k)(x) = 0, k = 0, 1, . . . ,m − 1, as well.

7. Finally, Theorem 5.1.12 says that the function G(x) ≡ I [ f ]− F(x) = ∫∞
x f (t) dt

is in B(m) if f ∈ B(m) too. This follows from the fact that G(k)(x) = − f (k−1)(x),
k = 1, 2, . . . .

By making the analogy F(x)↔ A(y), x−1 ↔ y, xρk−1 f (k−1)(x)↔ φk(y) and rk =
1, k = 1, . . . ,m, and I [ f ]↔ A, we realize that A(y) is in F(m). Actually, A(y) is even



102 5 The D-Transformation: A GREP for Infinite-Range Integrals

inF(m)
∞ because of the differentiability conditions imposed on f (x) and the pk(x). Finally,

the variable y is continuous for this case.
All the conditions of Theorem 5.1.12 are satisfied by Examples 5.1.7–5.1.9. They

are satisfied by Example 5.1.10, provided �γ < −1 so that f (x) becomes integrable at
infinity. Similarly, they are satisfied by Example 5.1.11 provided limx→∞�θ(x) = −∞
so that f (x) becomes integrable at infinity. We leave the verification of these claims to
the reader.
The numerous examples we have studied seem to indicate that the requirement that

f (x) be in B(m) for some m is the most crucial of the conditions in Theorem 5.1.12.
The rest of the conditions, namely, (5.1.5)–(5.1.7), seem to be satisfied automatically.
Therefore, to decide whether A(y) ≡ F(x), where y = x−1, is in F(m) for some m, it is
practically sufficient to check whether f (x) is in B(m). Later in this chapter, we provide
some simple ways to check this point.
Finally, even thoughTheorem5.1.12 is stated for functions f ∈ B(m) that are integrable

at infinity, F(x) may satisfy (5.1.8)–(5.1.10) also when f ∈ B(m) but is not integrable at
infinity, at least in some cases. In such a case, the constant I [ f ] in (5.1.8) will be the
antilimit of F(x) as x →∞. In Theorem 5.7.3 at the end of this chapter, we show that
(5.1.8)–(5.1.10) hold (i) for all functions f (x) in B(1) that are integrable at infinity and
(ii) for a large subset of functions in B(1) that are not integrable there but grow at most
like a power of x as x →∞.
We now demonstrate the result of Theorem 5.1.12 with the two functions f (x) =

J0(x) and f (x) = sin x/x that were shown to be in B(2) in Examples 5.1.7 and 5.1.8,
respectively.

Example 5.1.13 Let f (x) = J0(x). From Longman [172], we have the asymptotic
expansion

F(x) ∼ I [ f ]− J0(x)
∞∑

i=0
(−1)i [(2i + 1)!!]2

2i + 1

1

x2i+1

+ J1(x)
∞∑

i=0
(−1)i

[
(2i + 1)!!

2i + 1

]2 1

x2i
as x →∞, (5.1.11)

completely in accordance with Theorem 5.1.12, since J1(x) = −J ′0(x).

Example 5.1.14 Let f (x) = sin x/x .We already have an asymptotic expansion for F(x)
that is given in (4.1.7) in Example 4.1.5. Rearranging this expansion, we also have

F(x) ∼ I [ f ]− sin x

x

∞∑

i=0
(−1)i (2i)!(2i + 2)

x2i+1

−
(
sin x

x

)′ ∞∑

i=0
(−1)i (2i)!

x2i
as x →∞, (5.1.12)

completely in accordance with Theorem 5.1.12.
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5.1.4 Remarks on the Asymptotic Expansion of F(x) and a Simplification

An interesting and potentially useful feature of Theorem 5.1.12 is the simplicity of the
asymptotic expansion of F(x) given in (5.1.8)–(5.1.10). This is noteworthy especially
because the function f (x) may itself have a very complicated asymptotic behavior as
x →∞, and we would normally expect this behavior to show in that of F(x) explicitly.
For instance, f (x) may be oscillatory or monotonic or it may be a combination of
oscillatory and monotonic functions. It is clear that the asymptotic expansion of F(x),
as given in (5.1.8)–(5.1.10), contains no reference to any of this; it is expressed solely
in terms of f (x) and the first m − 1 derivatives of it.
We noted earlier that F(x) is analogous to a function A(y) in F(m), with φk(y)↔

xρk−1 f (k−1)(x), k = 1, . . . ,m. Thus, it seems that knowledge of the integers ρk may be
necessary to proceed with GREP(m) to find approximations to I [ f ]. Now the ρk are
determined by the integers ik , and the ik are given by the differential equation that f (x)
satisfies. As we do not expect, nor dowe intend, to knowwhat this differential equation is
in general, determining the ρk exactly may not be possible in all cases. This could cause
us to conclude that the φk(y) may not be known completely, and hence that GREP(m)

may not be applicable for approximating I [ f ]. Really, we do not need to know the ρk

exactly; we can replace each ρk by its known upper bound k + 1, and rewrite (5.1.8) in
the form

F(x) = I [ f ]+
m−1∑

k=0
xk+1 f (k)(x)hk(x), (5.1.13)

where hk(x) = xρk−k−1gk(x), hence hk ∈ A(ρk−k−1) ⊆ A(0) for each k. Note that, if
ρk = k + 1, then hk(x) = gk(x), while if ρk < k + 1, then from (5.1.10) we have

hk(x) ∼
∞∑

i=0
hki x

−i ≡ 0 · x0 + 0 · x−1 + · · · + 0 · xρk−k

+ gk0x
ρk−k−1 + gk1x

ρk−k−2 + · · · as x →∞. (5.1.14)

Now that we have established the validity of (5.1.13) with hk ∈ A(0) for each k, we have
also determined a set of simple and readily known form factors (or shape functions)
φk(y), namely, φk(y)↔ xk f (k−1)(x), k = 1, . . . ,m.

5.2 Definition of the D(m)-Transformation

We have seen that the functions hk(x) in (5.1.13) are all in A(0). Reexpanding them in
negative powers of x + α for some fixed α, which is legitimate, we obtain the following
asymptotic expansion for F(x):

F(x) ∼ I [ f ]+
m−1∑

k=0
xk+1 f (k)(x)

∞∑

i=0

h̃ki

(x + α)i
as x →∞.

Based on this asymptotic expansion of F(x), we now define the Levin–Sidi D(m)-
transformation for approximating the infinite-range integral I [ f ] = ∫∞

0 f (t) dt . Asmen-
tioned earlier, the D(m)-transformation is a GREP(m).
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Definition 5.2.1 Pick an increasing positive sequence {xl} such that liml→∞ xl = ∞.
Let n ≡ (n1, n2, . . . , nm), where n1, . . . , nm are nonnegative integers. Then the approx-
imation D(m, j)

n to I [ f ] is defined through the linear system

F(xl) = D(m, j)
n +

m∑

k=1
xk
l f (k−1)(xl)

nk−1∑

i=0

β̄ki

(xl + α)i
, j ≤ l ≤ j + N ; N =

m∑

k=1
nk,

(5.2.1)

α > −x0 being a parameter at our disposal and β̄ki being the additional (auxiliary) N
unknowns. In (5.2.1),

∑−1
i=0 ci ≡ 0 so that D(m, j)

(0,... ,0) = F(x j ) for all j . We call this GREP
that generates the D(m, j)

n the D(m)-transformation. When there is no room for confusion,
we call it the D-transformation for short. [Of course, in case the ρ̄k are known, the factors
xk
l f (k−1)(xl) in (5.2.1) can be replaced by x ρ̄k−1

l f (k−1)(xl).]

We mention at this point that the P-transformation of Levin [162] for the Bromwich
integral (see Appendix B) is a D(1)-transformation with xl = l + 1, l = 0, 1, . . . .

Remarks.

1. A good choice of the parameter α appears to be α = 0. We adopt this choice in the
sequel. We have adopted it in all our numerical experiments as well.

2. We observe from (5.2.1) that the input needed for the D(m)-transformation is the
integer m, the function f (x) and its first m − 1 derivatives, and the finite inte-
grals F(xl) =

∫ xl
0 f (t) dt, l = 0, 1, . . . . We dwell on how to determine m later

in this chapter. Suffice it to say that there is no harm done if m is overesti-
mated. However, acceleration of convergence cannot be expected in every case if
m is underestimated. As for the derivatives of f (x), we may assume that they can
somehow be obtained analytically if f (x) is given analytically as well. In difficult
cases, this may be achieved by symbolic computation, for example. In case m is
small, we can compute the derivatives f (i)(x), i = 1, . . . ,m − 1, also numerically
with sufficient accuracy. We can use the polynomial Richardson extrapolation pro-
cess of Chapter 2 very effectively for this purpose, as discussed in Section 2.3.
Finally, F(xl) can be evaluated in the form F(xl) =

∑l
i=0 ∇Fi , where ∇Fi =∫ xi

xi−1
f (t) dt , with x−1 = 0. The finite-range integrals ∇Fi can be computed numeri-

cally to very high accuracy by using, for example, a low-order Gaussian quadrature
formula.

3. Because we have the freedom to choose the xl as we wish, we can make choices
that induce better convergence acceleration to I [ f ] and/or better numerical stability.
This is one of the important advantages of the D-transformation over other existing
methods that we discuss later in this book.

4. The way the D(m)-transformation is defined depends only on the integrand f (x)
and is totally independent of whether or not f (x) is in B(m) and/or satisfies Theo-
rem 5.1.12. This implies that the D-transformation can be applied to any integral
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I [ f ], whether f (x) is in B(m) or not. Whether this application is successful de-
pends on the asymptotic behavior of f (x). If f (x) ∈ B(m) for some m, then the D(m)-
transformation will produce good results. It may produce good results with some m
even when f (x) ∈ B(q) for some q > m but f (x) �∈ B(m), at least in some cases of
interest.

5. Finally, the definition of D(m, j)
n via the linear system in (5.2.1) may look very

complicated at first and may create the impression that the D(m)-transformation is
difficult and/or expensive to apply. This impression is wrong, however. The D(m)-
transformation can be implemented very efficiently by the W-algorithm (see Sec-
tion 7.2) when m = 1 and by the W(m)-algorithm (see Section 7.3) when m ≥ 2.

5.2.1 Kernel of the D(m)-Transformation

From Definition 5.2.1, it is clear that the kernel of the D(m)-transformation (with α = 0)
is all integrals F(x) = ∫ x

0 f (t) dt , such that

∫ ∞

x
f (t) dt =

m∑

k=1
f (k−1)(x)

nk−1∑

i=0
αki x

k−i , some finite nk . (5.2.2)

For these integrals there holds D(m, j)
n = I [ f ] for all j , when n = (n1, . . . , nm). From

the proof of Theorem 5.1.12 in Section 5.6, it can be seen that (5.2.2) holds, for example,
when f (x) satisfies f (x) =∑m

k=1 pk(x) f (k)(x), pk(x) being a polynomial of degree at
most k for each k. In this case, (5.2.2) holds with nk − 1 = k.
Another interesting example of (5.2.2) occurs when f (x) = J2k+1(x), k = 0, 1, . . . .

Here, Jν(x) is the Bessel function of the first kind of order ν, as before. For instance,
when k = 1, we have

∫ ∞

x
J3(t) dt = J3(x)

(
1

x
+ 24

x3

)

+ J ′3(x)
(

1+ 8

x2

)

.

For details, see Levin and Sidi [165].

5.3 A Simplification of the D(m)-Transformation: The sD(m)-Transformation

In Section 4.3, we mentioned that the form factors φk(y) that accompany GREP are not
unique and that they can be replaced by some other functions φ̃k(y), at the same time
preserving the form of the expansion in (4.1.1) and (4.1.2). This observation enables us
to simplify the D-transformation considerably in some cases of practical interest, such
as Fourier cosine and sine transforms and Hankel transforms that were mentioned in
Section 5.1.
Let us assume that the integrand f (x) can be written as f (x) = u(x)Q(x), where Q(x)

is a simple function and u(x) is strictly in A(γ ) for some γ and may be complicated. By
Q(x) being simple we actually mean that its derivatives are easier to obtain than those
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of f (x) itself. Then, from (5.1.13) we have

F(x)− I [ f ] =
m−1∑

s=0
xρs f (s)(x)hs(x)

=
m−1∑

s=0
xρs

[ s∑

k=0

(
s

k

)

u(s−k)(x)Q(k)(x)

]

hs(x)

=
m−1∑

k=0

[m−1∑

s=k

(
s

k

)

u(s−k)(x)hs(x)x
ρs

]

Q(k)(x). (5.3.1)

Because hs ∈ A(0) for all s and u(s−k) ∈ A(γ−s+k), we see that u(s−k)(x)hs(x)xρs ∈
A(γ+k+ρs−s) so that the term inside the brackets that multiplies Q(k)(x) is in A(γ+ρ ′k ),
where ρ ′k , just as ρk , are integers satisfying ρ ′k ≤ ρ̄k and hence ρ ′k ≤ k + 1 for each k,
as can be shown by invoking (5.1.9). By the fact that u ∈ A(γ ) strictly, this term can be
written as xρ

′
k u(x)h̃k(x) for some h̃k ∈ A(0). We have thus obtained

F(x) = I [ f ]+
m−1∑

k=0
xρ

′
k [u(x)Q(k)(x)]h̃k(x). (5.3.2)

Consequently, the definition of the D(m)-transformation can be modified by replacing
the form factors xk

l f (k−1)(xl) in (5.2.1) by xk
l u(xl)Q

(k−1)(xl) [or by x ρ̄k−1
l u(xl)Q(k−1)(xl)

when the ρ̄k are known]; everything else stays the same.
For this simplified D(m)-transformation, we do not need to compute derivatives of

f (x); we need only those of Q(x), which are easier to obtain. We denote this new
version of the D(m)-transformation the sD(m)-transformation.

We use this approach later to compute Fourier and Hankel transforms, for which we
derive further simplifications and modifications of the D-transformation.

5.4 How to Determine m

As mentioned earlier, to apply the D(m)-transformation to a given integral
∫∞
0 f (t) dt ,

we need to have a value for the integer m, for which f ∈ B(m). In this section, we deal
with the question of how to determine the smallest value of m or an upper bound for it
in a simple manner.

5.4.1 By Trial and Error

The simplest approach to this problem is trial and error. We start by applying the D(1)-
transformation. If this is successful, then we accept m = 1 and stop. If not, we apply
the D(2)-transformation. If this is successful, then we acceptm = 2 and stop. Otherwise,
we try the D(3)-transformation, and so on. Our hope is that for some (smallest) value
of m the D(m)-transformation will perform well. Of course, this will be the case when
f ∈ B(m) for this m. We also note that the D(m)-transformation may perform well for
somem even when f �∈ B(s) for any s, at least for some cases, as was mentioned earlier.
The trial-and-error approach has almost no extra cost involved as the integrals F(xl)

that we need as input need to be computed once only, and they can be used again for
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each value of m. In addition, the computational effort due to implementing the D(m)-
transformation for different values of m is small when the W- and W(m)-algorithms of
Chapter 7 are used for this purpose.

5.4.2 Upper Bounds on m

We now use a heuristic approach that allows us to determine by inspection of f some
values for the integer m for which f ∈ B(m). Only this time, we relax somewhat the
conditions in Definition 5.1.2: we assume that f (x) satisfies a differential equation of
the form (5.1.4) with pk ∈ A(νk ), where νk is an integer not necessarily less than or equal
to k, k = 1, 2, . . . ,m. [Our experience shows that, if f belongs to this new set B(m) and
is integrable at infinity, then it belongs to the set B(m) of Definition 5.1.2 as well.] The
idea in the present approach is that the integrand f (x) is viewed as a product or as a sum
of simpler functions, and it is assumed that we know to which classes B(s) these simpler
functions belong.
The following results, which we denote Heuristics 5.4.1–5.4.3, pertain precisely to

this subject. The demonstrations of these results are based on the assumption that certain
linear systems, whose entries are in A(γ ) for various integer values of γ , are invertible.
For this reason, we call these results heuristics, and not lemmas or theorems, and refer
to their demonstrations as “proofs”.

Heuristic 5.4.1 Let g ∈ B(r ) and h ∈ B(s) and assume that g and h satisfy different
ordinary differential equations of the form described in Definition 5.1.2. Then

(i) gh ∈ B(m) with m ≤ rs, and
(ii) g + h ∈ B(m) with m ≤ r + s.

“Proof”. Let g and h satisfy

g =
r∑

k=1
ukg

(k) and h =
s∑

k=1
vkh

(k). (5.4.1)

To prove part (i), we need to show that gh satisfies an ordinary differential equation
of the form

gh =
rs∑

k=1
pk(gh)

(k), (5.4.2)

where pk ∈ A(νk ), k = 1, . . . , rs, for some integers νk , and recall that, by Proposi-
tion 5.1.3, the actual order of the ordinary differential equation satisfied by gh may
possibly be less than rs too.
Let us multiply the two equations in (5.4.1). We obtain

gh =
r∑

k=1

s∑

l=1
ukvl g

(k)h(l). (5.4.3)

We now want to demonstrate that the rs products g(k)h(l), 1 ≤ k ≤ r, 1 ≤ l ≤ s, can
be expressed as combinations of the rs derivatives (gh)(k), 1 ≤ k ≤ rs, under a mild
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condition. We have

(gh)( j) =
j∑

i=0

(
j

i

)

g(i)h( j−i), j = 1, 2, . . . , rs. (5.4.4)

Let us now use the differential equations in (5.4.1) to express g(0) = g and h(0) = h in
(5.4.4) as combinations of g(i), 1 ≤ i ≤ r , and h(i), 1 ≤ i ≤ s, respectively. Next, let
us express g(i) with i > r and h(i) with i > s as combinations of g(i), 1 ≤ i ≤ r , and
h(i), 1 ≤ i ≤ s, respectively, aswell. That this is possible can be shown by differentiating
the equations in (5.4.1) as many times as is necessary. For instance, if g(r+1) is required,
we can obtain it from

g′ =
[ r∑

k=1
ukg

(k)

]′
=

r∑

k=1
u′kg

(k) +
r∑

k=1
ukg

(k+1), (5.4.5)

in the form

g(r+1) =
[

(1− u′1)g
′ −

r∑

k=2
(u′k + uk−1)g(k)

]

/ur . (5.4.6)

To obtain g(r+2) as a combination of g(i), 1 ≤ i ≤ r , we differentiate (5.4.5) and invoke
(5.4.6) as well. We continue similarly for g(r+3), g(r+4), . . . . As a result, (5.4.4) can be
rewritten in the form

(gh)( j) =
r∑

k=1

s∑

l=1
w jkl g

(k)h(l), j = 1, 2, . . . , rs, (5.4.7)

wherew jkl ∈ A(µ jkl ) for some integersµ jkl . Now (5.4.7) is a linear systemof rs equations
for the rs unknowns g(k)h(l), 1 ≤ k ≤ r, 1 ≤ l ≤ s. Assuming that the matrix of this
system is nonsingular for all large x , we can solve by Cramer’s rule for the products
g(k)h(l) in terms of the (gh)(i), i = 1, 2, . . . , rs. Substituting this solution in (5.4.3), the
proof of part (i) is achieved.
To prove part (ii), we proceed similarly. What we need to show is that g + h satisfies

an ordinary differential equation of the form

g + h =
r+s∑

k=1
pk(g + h)(k), (5.4.8)

where pk ∈ A(νk ), k = 1, . . . , r + s, for some integers νk , and again recall that, by
Proposition 5.1.3, the order of the differential equation satisfied by g + h may possibly
be less than r + s too.
Adding the two equations in (5.4.1) we obtain

g + h =
r∑

k=1
ukg

(k) +
s∑

l=1
vl h

(l). (5.4.9)

Next, we have

(g + h)( j) = g( j) + h( j), j = 1, 2, . . . , r + s, (5.4.10)
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which, by the argument given above, can be reexpressed in the form

(g + h)( j) =
r∑

k=1
wg; jk g

(k) +
s∑

l=1
wh; jl h

(l), j = 1, 2, . . . , r + s, (5.4.11)

where wg; jk ∈ A(µg; jk ) and wh; jl ∈ A(µh; jl ) for some integers µg; jk and µh; jl . We observe
that (5.4.11) is a linear systemof r + s equations for the r + s unknowns g(k), 1 ≤ k ≤ r ,
and h(l), 1 ≤ l ≤ s. The proof can now be completed as that of part (i). �

Heuristic 5.4.2 Let g ∈ B(r ) and h ∈ B(r ) and assume that g and h satisfy the same
ordinary differential equation of the form described in Definition 5.1.2. Then

(i) gh ∈ B(m) with m ≤ r (r + 1)/2, and
(ii) g + h ∈ B(m) with m ≤ r .

“Proof”. The proof of part (i) is almost the same as that of part (i) of Heuristic 5.4.1, the
difference being that the set {g(k)h(l) : 1 ≤ k ≤ r, 1 ≤ l ≤ s} in Heuristic 5.4.1 is now
replaced by the smaller set {g(k)h(l) + g(l)h(k) : 1 ≤ k ≤ l ≤ r} that contains r (r + 1)/2
functions. As for part (ii), its proof follows immediately from the fact that g + h satisfies
the same ordinary differential equation that g and h satisfy separately. We leave the
details to the reader. �

We now give a generalization of part (i) of the previous heuristic. Even though its
proof is similar to that of the latter, it is quite involved. Therefore, we leave its details to
the interested reader.

Heuristic 5.4.3 Let gi ∈ B(r ), i = 1, . . . , µ, and assume that they all satisfy the same
ordinary differential equation of the form described in Definition 5.1.2. Define f =∏µ

i=1 gi . Then f ∈ B(m) with m ≤ (r+µ−1
µ

)
. In particular, if g ∈ B(r ), then (g)µ ∈ B(m)

with m ≤ (r+µ−1
µ

)
.

The preceding results are important because most integrands occurring in practical
applications are products or sums of functions that are in the classes B(r ) for low values
of r , such as r = 1 and r = 2.

Let us now apply these results to a few examples.

Example 5.4.4 Consider the function f (x) =∑m
i=1 fi (x), where fi ∈ B(1) for each i .

By part (ii) of Heuristic 5.4.1, we have that f ∈ B(m ′) for some m ′ ≤ m. This occurs,
in particular, in the following two cases, among many others: (i) when fi ∈ A(γi ) for
some distinct γi �= 0, 1, . . . , since hi ∈ B(1), by Example 5.1.10, and (ii) when fi (x) =
eλi x hi (x), such that λi are distinct and nonzero and hi ∈ A(γi ) for arbitrary γi that are not
necessarily distinct, since fi ∈ B(1), by Example 5.1.11. In both cases, it can be shown
that f ∈ B(m) with B(m) exactly as in Definition 5.1.2. We do not prove this here but refer
the reader to the analogous proofs of Theorem 6.8.3 [for case (i)] and of Theorem 6.8.7
[for case (ii)] in the next chapter.



110 5 The D-Transformation: A GREP for Infinite-Range Integrals

Example 5.4.5 Consider the function f (x) = g(x)Cν(x), where Cν(x) = bJν(x)+
cYν(x) is an arbitrary solution of the Bessel equation of order ν and g ∈ A(γ ) for some γ .
By Example 5.1.10, g ∈ B(1); by Example 5.1.7, Cν ∈ B(2). Applying part (i) of Heuris-
tic 5.4.1, we conclude that f ∈ B(2). Indeed, by the fact that Cν(x) = f (x)/g(x) satis-
fies the Bessel equation of order ν, after some manipulation of the latter, we obtain the
ordinary differential equation f = p1 f ′ + p2 f ′′ with

p1(x) = 2x2g′(x)/g(x)− x

w(x)
and p2(x) = − x2

w(x)
,

where

w(x) = x2
[(

g′(x)
g(x)

)2

−
(
g′(x)
g(x)

)′]
− x

g′(x)
g(x)

+ x2 − ν2.

Consequently, p1 ∈ A(−1) and p2 ∈ A(0). That is, f ∈ B(2) with B(m) precisely as in
Definition 5.1.2. Finally, provided also that �γ < 1/2 so that f (x) is integrable at
infinity, Theorem 5.1.12 applies as all of its conditions are satisfied, and we also have
ρ0 ≤ max{i1, i2 − 1} = −1 and ρ1 = i2 = 0 in Theorem 5.1.12.

Example 5.4.6 Consider the function f (x) = g(x)h(x)Cν(x), where g(x) and Cν(x) are
exactly as in the preceding example and h(x) = B cosαx + C sinαx . From the preced-
ing example, we have that g(x)Cν(x) is in B(2). Similarly, the function h(x) is in B(2) as it
satisfies the ordinary differential equation y′′ + α2y = 0. By part (i) of Heuristic 5.4.1,
we therefore conclude that f ∈ B(4). It can be shown by using different techniques that,
when α = 1, f ∈ B(3), and this too is in agreement with part (i) of Heuristic 5.4.1.

Example 5.4.7 The function f (x) = g(x)
∏q

i=1 Cνi (αi x), where Cνi (z) are as in the pre-
vious examples and g ∈ A(γ ) for some γ , is inB(2q ). This follows by repeated application
of part (i) of Heuristic 5.4.1. When α1, . . . , αq are not all distinct, then f ∈ B(m) with
m < 2q , as shown by different techniques later.

Example 5.4.8 The function f (x) = (sin x/x)2 is in B(3). This follows from Exam-
ple 5.1.8, which says that sin x/x is in B(2) and from part (i) of Heuristic 5.4.2. Indeed,
f (x) satisfies the ordinary differential equation y =∑3

k=1 pk(x)y(k) with

p1(x) = −2x2 + 3

4x
∈ A(1), p2(x) = −3

4
∈ A(0), and p3(x) = − x

8
∈ A(1).

Finally, Theorem 5.1.12 applies, as all its conditions are satisfied, and we also have
ρ0 ≤ 1, ρ1 ≤ 0, and ρ2 = 1. Another way to see that f ∈ B(3) is as follows:We canwrite
f (x) = (1− cos 2x)/(2x2) = 1

2 x
−2 − 1

2 x
−2 cos 2x . Now, being in A(−2), the function

1
2 x

−2 is in B(1). (See Example 5.1.10.) Next, since 1
2 x

−2 ∈ B(1) and cos 2x ∈ B(2), their
product is also in B(2) by part (i) of Heuristic 5.4.1. Therefore, by part (ii) of Heuris-
tic 5.4.1, f ∈ B(3).

Example 5.4.9 Let g ∈ B(r ) and h(x) =∑q
s=0 us(x)(log x)s , with us ∈ A(γ ) for every s.

Here some or all of the us(x), 0 ≤ s ≤ q − 1, can be identically zero, but uq (x) �≡ 0.
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Then gh ∈ B(q+1)r . To show this, we start with

h(k)(x) =
q∑

s=0
wks(x)(log x)s, wks ∈ A(γ−k), for all k, s.

Treating q + 1 of these equalities, with k = 1, . . . , q + 1, as a linear systemof equations
for the “unknowns” (log x)s , s = 0, 1, . . . , q, and invoking Cramer’s rule, we can show
that (log x)s =∑q+1

k=1 µsk(x)h(k)(x), µsk ∈ A(νsk−γ ) for some integers νsk . Substituting
these in h(x) =∑q

s=0 us(x)(log x)s , we get h(x) =∑q+1
k=1 ek(x)h

(k)(x), ek ∈ A(σk ) for
some integers σk . Thus, h ∈ B(q+1) in the relaxed sense. Invoking now part (i) of Heuris-
tic 5.4.1, the result follows.

Important Remark. When we know that f = g + h with g ∈ B(r ) and h ∈ B(s), and
we can compute g and h separately, we should go ahead and compute

∫∞
0 g(t) dt and∫∞

0 h(t) dt by the D(r )- and D(s)-transformations, respectively, instead of computing∫∞
0 f (t) dt by the D(r+s)-transformation. The reason for this is that less computing is
needed for the D(r )- and D(s)-transformations than for the D(r+s)-transformation.

5.5 Numerical Examples

We now apply the D-transformation (with α = 0 in Definition 5.2.1) to two infinite-
range integrals of different nature. The numerical results that we present have been
obtained using double-precision arithmetic (approximately 16 decimal digits). For more
examples, we refer the reader to Levin and Sidi [165] and Sidi [272].

Example 5.5.1 Consider the integral

I [ f ] =
∫ ∞

0

log(1+ t)

1+ t2
dt = π

4
log 2+ G = 1.4603621167531195 · · · ,

where G is Catalan’s constant. As we saw in Example 5.1.9, f (x) = log(1+ x)/(1+
x2) ∈ B(2). Also, f (x) satisfies all the conditions of Theorem 5.1.12. We applied the
D(2)-transformation to this integral with xl = e0.4l , l = 0, 1, . . . . With this choice of
the xl , the approximations to I [ f ] produced by the D(2)-transformation enjoy a great
amount of stability. Indeed, we have that both xl f (xl) and x2l f ′(xl) are O(x−1l log xl) =
O(le−0.4l) as l →∞. [That is, φk(yl) = Ck(l) exp(uk(l)), with Ck(l) = O(l) as l →∞,
and uk(l) = −0.4l, and both Ck(l) and uk(l) vary slowly with l. See the discussion on
stability of GREP in Section 4.5.]
The relative errors |F(x2ν)− I [ f ]|/|I [ f ]| and |D̆(0,2)

(ν,ν) − I [ f ]|/|I [ f ]|, where D̆(0,2)
(ν,ν)

is the computed D(0,2)
(ν,ν), are given in Table 5.5.1. Note that F(x2ν) is the best of all the

F(xl) that are used in computing D(0,2)
(ν,ν). Observe also that the D̆(0,2)

(ν,ν) retain their accuracy
with increasing ν, which is caused by the good stability properties of the extrapolation
process in this example.

Example 5.5.2 Consider the integral

I [ f ] =
∫ ∞

0

(
sin t

t

)2

dt = π

2
.
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Table 5.5.1: Numerical results for Example 5.5.1

ν |F(x2ν)− I [ f ]|/|I [ f ]| |D̆(0,2)
(ν,ν) − I [ f ]|/|I [ f ]|

0 8.14D − 01 8.14D − 01
1 5.88D − 01 6.13D − 01
2 3.69D − 01 5.62D − 03
3 2.13D − 01 5.01D − 04
4 1.18D − 01 2.19D − 05
5 6.28D − 02 4.81D − 07
6 3.27D − 02 1.41D − 09
7 1.67D − 02 1.69D − 12
8 8.42D − 03 4.59D − 14
9 4.19D − 03 4.90D − 14

10 2.07D − 03 8.59D − 14

As we saw in Example 5.4.8, f (x) = (sin x/x)2 ∈ B(3) and satisfies all the condi-
tions of Theorem 5.1.12. We applied the D(3)-transformation to this integral with
xl = 3

2 (l + 1), l = 0, 1, . . . . The relative errors |F(x3ν)− I [ f ]|/|I [ f ]| and |D̆(0,3)
(ν,ν,ν) −

I [ f ]|/|I [ f ]|, where D̆(0,3)
(ν,ν,ν) is the computed D(0,3)

(ν,ν,ν), are given in Table 5.5.2. Note that
F(x3ν) is the best of all the F(xl) that are used in computing D(0,3)

(ν,ν,ν). Note also the loss
of accuracy in the D̆(0,3)

(ν,ν,ν) with increasing ν that is caused by the instability of the ex-
trapolation process in this example. Nevertheless, we are able to obtain approximations
with as many as 12 correct decimal digits.

5.6 Proof of Theorem 5.1.12

In this section, we give a complete proof of Theorem 5.1.12 by actually constructing the
asymptotic expansion of the integral

∫∞
x f (t) dt for x →∞. We start with the following

simple lemma whose proof can be achieved by integration by parts.

Lemma 5.6.1 Let P(x) be differentiable a sufficient number of times on (0,∞). Then,
provided

lim
x→∞ P ( j−1)(x) f (k− j)(x) = 0, j = 1, . . . , k, (5.6.1)

and provided P(x) f (k)(x) is integrable at infinity, we have

∫ ∞

x
P(t) f (k)(t) dt =

k∑

j=1
(−1) j P ( j−1)(x) f (k− j)(x)+ (−1)k

∫ ∞

x
P (k)(t) f (t) dt.

(5.6.2)

Using Lemma 5.6.1 and the ordinary differential equation (5.1.4) that is satisfied by
f (x), we can now state the following lemma.

Lemma 5.6.2 Let Q(x) be differentiable a sufficient number of times on (0,∞). Define

Q̂k(x) =
m∑

j=k+1
(−1) j+k[Q(x)p j (x)]

( j−k−1), k = 0, 1, . . . ,m − 1, (5.6.3)
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Table 5.5.2: Numerical results for Example 5.5.2

ν |F(x3ν)− I [ f ]|/|I [ f ]| |D̆(0,3)
(ν,ν,ν) − I [ f ]|/|I [ f ]|

0 2.45D − 01 2.45D − 01
1 5.02D − 02 4.47D − 02
2 3.16D − 02 4.30D − 03
3 2.05D − 02 1.08D − 04
4 1.67D − 02 2.82D − 07
5 1.31D − 02 1.60D − 07
6 1.12D − 02 4.07D − 09
7 9.65D − 03 2.65D − 13
8 8.44D − 03 6.39D − 12
9 7.65D − 03 5.93D − 11

10 6.78D − 03 6.81D − 11

and

Q̂−1(x) =
m∑

k=1
(−1)k[Q(x)pk(x)]

(k). (5.6.4)

Then, provided

lim
x→∞ Q̂k(x) f

(k)(x) = 0, k = 0, 1, . . . ,m − 1, (5.6.5)

and provided Q(x) f (x) is integrable at infinity, we have

∫ ∞

x
Q(t) f (t) dt =

m−1∑

k=0
Q̂k(x) f

(k)(x)+
∫ ∞

x
Q̂−1(t) f (t) dt. (5.6.6)

Proof. By (5.1.4), we first have

∫ ∞

x
Q(t) f (t) dt =

m∑

k=1

∫ ∞

x
[Q(t)pk(t)] f

(k)(t) dt. (5.6.7)

The result follows by applying Lemma 5.6.1 to each integral on the right-hand side of
(5.6.7). We leave the details to the reader. �

By imposing additional conditions on the function Q(x) in Lemma 5.6.2, we obtain
the following key result.

Lemma 5.6.3 In Lemma 5.6.2, let Q ∈ A(−l−1) strictly for some integer l, l =
±1, 2, 3, . . . . Let also

αl =
m∑

k=1
l(l − 1) · · · (l − k + 1) p̄k, (5.6.8)
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so that αl �= 1 by (5.1.6). Define

Q̃k(x) = Q̂k(x)

1− αl
, k = 0, 1, . . . ,m − 1,

Q̃−1(x) = Q̂−1(x)− αl Q(x)

1− αl
, (5.6.9)

Then

∫ ∞

x
Q(t) f (t) dt =

m−1∑

k=0
Q̃k(x) f

(k)(x)+
∫ ∞

x
Q̃−1(t) f (t) dt. (5.6.10)

We also have that Q̃k ∈ A(ρ̄k−l−1), k = 0, 1, . . . ,m − 1, and that Q̃−1 ∈ A(−l−2).
Thus, Q̃−1(x)/Q(x) = O(x−1) as x →∞. This result is improved to Q̃−1 ∈ A(−2) when
Q(x) is constant for all x.

Proof. By the assumptions that Q ∈ A(−l−1) and pk ∈ A(k), we have Qpk ∈ A(k−l−1)

so that (Qpk)(k) ∈ A(−l−1), k = 1, . . . ,m. Consequently, by (5.6.4), Q̂−1 ∈ A(−l−1) as
well. Being in A(−l−1), Q(x) is of the form Q(x) = q̄x−l−1 + R(x) for some nonzero
constant q̄ and some R ∈ A(−l−2). Thus, Q̂−1(x) = αl q̄ x−l−1 + S(x) with αl as in (5.6.8)
and some S ∈ A(−l−2). This can be rewritten as Q̂−1(x) = αl Q(x)+ T (x) for some
T ∈ A(−l−2) whether αl �= 0 or not. As a result, we have

∫ ∞

x
Q̂−1(t) f (t) dt = αl

∫ ∞

x
Q(t) f (t) dt +

∫ ∞

x
T (t) f (t) dt.

Substituting this in (5.6.6), and solving for
∫∞
x Q(t) f (t) dt , we obtain (5.6.10) with

(5.6.9). Also, Q̃−1(x) = T (x)/(1− αl) = [S(x)− αl R(x)]/(1− αl).
We can similarly show that Q̃k ∈ A(ρ̄k−l−1), k = 0, 1, . . . ,m − 1. For this, we com-

bine (5.6.3) and the fact that pk ∈ A(ik ), i = 1, . . . ,m, in (5.6.9), and then invoke (5.1.9).
We leave the details to the reader. �

What we have achieved through Lemma 5.6.3 is that the new integral∫∞
x Q̃−1(t) f (t) dt converges to zero as x →∞ more quickly than the original integral∫∞
x Q(t) f (t) dt . This is an important step in the derivation of the result in Theo-
rem 5.1.12.
We now apply Lemma 5.6.3 to the integral

∫∞
x f (t) dt , that is, we apply it with

Q(x) = 1.We can easily verify that the integrability of f (x) at infinity and the conditions
in (5.1.5)–(5.1.7) guarantee that Lemma 5.6.3 applies with l = −1. We obtain

∫ ∞

x
f (t) dt =

m−1∑

k=0
b1,k(x) f

(k)(x)+
∫ ∞

x
b1(t) f (t) dt, (5.6.11)

with b1,k ∈ A(ρ̄k ), k = 0, 1, . . . ,m − 1, and b1 ∈ A(−σ1−1) strictly for some integer
σ1 ≥ 1.
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Now let us apply Lemma 5.6.3 to the integral
∫∞
x b1(t) f (t) dt . This results in

∫ ∞

x
b1(t) f (t) dt =

m−1∑

k=0
b2,k(x) f

(k)(x)+
∫ ∞

x
b2(t) f (t) dt, (5.6.12)

with b2,k ∈ A(ρ̄k−σ1−1), k = 0, 1, . . . ,m − 1, and b2 ∈ A(−σ2−1) strictly for some inte-
ger σ2 ≥ σ1 + 1 ≥ 2.
Next, apply Lemma 5.6.3 to the integral

∫∞
x b2(t) f (t) dt . This results in

∫ ∞

x
b2(t) f (t) dt =

m−1∑

k=0
b3,k(x) f

(k)(x)+
∫ ∞

x
b3(t) f (t) dt, (5.6.13)

with b3,k ∈ A(ρ̄k−σ2−1), k = 0, 1, . . . ,m − 1, and b3 ∈ A(−σ3−1) strictly for some inte-
ger σ3 ≥ σ2 + 1 ≥ 3.
Continuing this way, and combining the results in (5.6.11), (5.6.12), (5.6.13), and so

on, we obtain

∫ ∞

x
f (t) dt =

m−1∑

k=0
β[s;k](x) f

(k)(x)+
∫ ∞

x
bs(t) f (t) dt, (5.6.14)

where s is an arbitrary positive integer and

β[s;k](x) =
s∑

i=1
bi,k(x), k = 0, 1, . . . ,m − 1. (5.6.15)

Here bi,k ∈ A(ρ̄k−σi−1−1) for 0 ≤ k ≤ m − 1 and i ≥ 1, and bs ∈ A(−σs−1) strictly for some
integer σs ≥ σs−1 + 1 ≥ s.
Now, from one of the remarks following the statement of Theorem 5.1.12, we have

limx→∞ x ρ̄0 f (x) = 0. Thus
∫ ∞

x
bs(t) f (t) dt = o(x−σs−ρ̄0 ) as x →∞, (5.6.16)

Next, using the fact that β[s+1;k](x) = β[s;k](x)+ bs+1,k(x) and bs+1,k ∈ A(ρ̄k−σs−1), we
can expand β[s;k](x) to obtain

β[s;k](x) =
σs∑

i=0
β ′ki x

ρ̄k−i + O(x ρ̄k−σs−1) as x →∞. (5.6.17)

Note that β ′ki , 0 ≤ i ≤ σs , remain unchanged in the expansion of β[s ′;k](x) for all s ′ > s.
Combining (5.6.16) and (5.6.17) in (5.6.14), we see that

∫∞
x f (t) dt has a genuine

asymptotic expansion given by

∫ ∞

x
f (t) dt ∼

m−1∑

k=0
x ρ̄k f (k)(x)

∞∑

i=0
β ′ki x

−i as x →∞. (5.6.18)

The proof of Theorem 5.1.12 can now be completed easily.
We end this section by showing that the functions xρk gk(x) ≡ βk(x), k =

0, 1, . . . ,m − 1, can also be determined from a system of linear first-order
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differential equations that are expressed solely in terms of the pk(x). This theorem
also produces the relation between the ρk and the ρ̄k that is given in (5.1.9).

Theorem 5.6.4 Let f ∈ B(m) with minimal m and satisfy (5.1.4). Then, the functions
βk(x) above satisfy the first-order linear system of differential equations

pk(x)β
′
0(x)+ β ′k(x)+ βk−1(x)+ pk(x) = 0, k = 1, . . . ,m; βm(x) ≡ 0. (5.6.19)

In particular, β0(x) is a solution of the mth-order differential equation

β0 +
m∑

k=1
(−1)k−1(pkβ

′
0)

(k−1) +
m∑

k=1
(−1)k−1 p(k−1)k = 0. (5.6.20)

Once β0(x) has been determined, the rest of the βk(x) can be obtained from (5.6.19) in
the order k = m − 1,m − 2, . . . , 1.

Proof. Differentiating the already known relation

∫ ∞

x
f (t) dt =

m−1∑

k=0
βk(x) f

(k)(x), (5.6.21)

we obtain

f =
m−1∑

k=1

(

−β
′
k + βk−1
β ′0 + 1

)

f (k) +
(

− βm−1
β ′0 + 1

)

f (m). (5.6.22)

Since f ∈ B(m) and m is minimal, the pk(x) are unique by our assumption following
Proposition 5.1.3. We can therefore identify

pk = −β
′
k + βk−1
β ′0 + 1

, k = 1, . . . ,m − 1, and pm = − βm−1
β ′0 + 1

, (5.6.23)

from which (5.6.19) follows. Applying the differential operator (−1)k−1 dk−1
dxk−1 to the kth

equation in (5.6.19) and summing over k, we obtain the differential equation given in
(5.6.20). The rest is immediate. �

It is important to note that the differential equation in (5.6.20) actually has a solution
for β0(x) that has an asymptotic expansion of the form

∑∞
i=0 δi x

1−i for x →∞. It can
be shown that, under the condition given in (5.1.6), the coefficients δi of this expansion
are uniquely determined from (5.6.20). It can further be shown that, with αl as defined
in (5.6.8),

β ′0(x) =
α−1

1− α−1
+ O(x−1) as x →∞,

so thatβ ′0(x)+ 1 = 1/(1− α−1)+ O(x−1) and hence (β ′0 + 1) ∈ A(0) strictly. Using this
fact in the equation βm−1 = −(β ′0 + 1)pm that follows from the mth of the equations in
(5.6.19), we see that βm−1 ∈ A(im ) strictly. Using these two facts about (β ′0 + 1) and βm−1
in the equation βm−2 = −(β ′0 + 1)pm−1 − β ′m−1 that follows from the (m − 1)st of the
equations in (5.6.19), we see that βm−2 ∈ A(ρ̄m−2). Continuing this way we can show that
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βk = −(β ′0 + 1)pk+1 − β ′k+1 ∈ A(ρ̄k ), k = m − 3, . . . , 1, 0. Also, once β0(x) has been
determined, the equations from which the rest of the βk(x) are determined are algebraic
(as opposed to differential) equations.

5.7 Characterization and Integral Properties of Functions in B(1)

5.7.1 Integral Properties of Functions in A(γ )

From Heuristic 5.4.1 and Example 5.4.4, it is clear that functions in B(1) are important
building blocks for functions in B(m) with arbitrary m. This provides ample justification
for studying them in detail. Therefore, we close this chapter by proving a characterization
theorem for functions in B(1) and also a theorem on their integral properties. For this, we
need the following result that provides the integral properties of functions in A(γ ) and
thus extends the list of remarks following Definition 5.1.1.

Theorem 5.7.1 Let g ∈ A(γ ) strictly for some γ with g(x) ∼∑∞
i=0 gi x

γ−i as x →∞,
and define G(x) = ∫ x

a g(t) dt, where a > 0 without loss of generality. Then

G(x) = b + c log x + G̃(x), (5.7.1)

where b and c are constants and G̃ ∈ A(γ+1) strictly if γ �= −1, while G̃ ∈ A(−1) if
γ = −1. When γ + 1 �= 0, 1, 2, . . . , b is simply the value of

∫∞
0 g(t) dt or of its

Hadamard finite part and c = 0. When γ + 1 = k ∈ {0, 1, 2, . . . }, c = gk. Explicit ex-
pressions for b and G̃(x) are given in the following proof.

Proof. Let us start by noting that
∫∞
a g(t) dt converges only when �γ + 1 < 0. Let

N be an arbitrary positive integer greater than �γ + 1, and define ĝ(x) = g(x)−∑N−1
i=0 gi xγ−i . Thus, ĝ ∈ A(γ−N ) so that ĝ(x) is O(xγ−N ) as x →∞ and is integrable

at infinity by the fact that �γ − N + 1 < 0. That is, UN (x) =
∫∞
x ĝ(t) dt exists for all

x ≥ a. Therefore, we can write

G(x) =
∫ x

a

(N−1∑

i=0
gi t

γ−i

)

dt +UN (a)−UN (x). (5.7.2)

Integrating the asymptotic expansion ĝ(x) ∼∑∞
i=N gi xγ−i as x →∞ term by term,

which is justified, we obtain

UN (x) ∼ −
∞∑

i=N

gi
γ − i + 1

xγ−i+1 as x →∞. (5.7.3)

Carrying out the integration on the right-hand side of (5.7.2), the result follows with

b = UN (a)−
N−1∑

i=0
γ−i �=−1

gi
γ − i + 1

aγ−i+1 − c log a (5.7.4)
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and

G̃(x) = −UN (x)+
N−1∑

i=0
γ−i �=−1

gi
γ − i + 1

xγ−i+1. (5.7.5)

It can easily be verified from (5.7.4) and (5.7.5) that, despite their appearance, both b
and G̃(x) are independent of N . Substituting (5.7.3) in (5.7.5), we see that G̃(x) has the
asymptotic expansion

G̃(x) ∼
∞∑

i=0
γ−i �=−1

gi
γ − i + 1

xγ−i+1 as x →∞. (5.7.6)

We leave the rest of the proof to the reader. �

5.7.2 A Characterization Theorem for Functions in B(1)

The following result is a characterization theorem for functions in B(1).

Theorem 5.7.2 A function f (x) is in B(1) if and only if either (i) f ∈ A(γ ) for some
arbitraryγ �= 0, or (ii) f (x) = eθ (x)h(x), where θ ∈ A(s) strictly for somepositive integer
s and h ∈ A(γ ) for some arbitrary γ . If wewrite f (x) = p(x) f ′(x), then p ∈ A(ρ) strictly,
with ρ = 1 in case (i) and ρ = −s + 1 ≤ 0 in case (ii).

Proof. The proof of sufficiency is already contained in Examples 5.1.10 and 5.1.11.
Therefore, we need be concerned only with necessity. From the fact that f (x) =
p(x) f ′(x), we have first f (x) = K exp[G(x)], where K is some constant and G(x) =∫ x
r g(t) dt with g(x) = 1/p(x) and with r sufficiently large so that p(x) �= 0 for x ≥ r
by the fact that p ∈ A(ρ) strictly. Now because ρ is an integer ≤ 1, we have that
g = 1/p ∈ A(k) strictly, with k = −ρ. Thus, k can assume only one of the values
−1, 0, 1, 2, . . . . From the preceding theorem, we have that G(x) is of the form
given in (5.7.1) with c = gk+1 and G̃(x) as in (5.7.5) with γ there replaced by k.
Here, the gi are defined via g(x) ∼∑∞

i=0 gi x
k−i as x →∞. Therefore, we can write

f (x) = Kebxc exp[G̃(x)]. Let us recall that when k �= −1, G̃ ∈ A(k+1) strictly. The proof
of case (ii) can now be completed by identifying θ (x) = G̃(x) and h(x) = Kebxc when
k ∈ {0, 1, . . . }. In particular, s = k + 1 and γ = c. The proof of case (i) is completed by
recalling that when k = −1, G̃ ∈ A(−1) so that exp[G̃(x)] ∈ A(0) strictly, as a result of
which, f ∈ A(γ ) strictly with γ = c. In addition, γ �= 0 necessarily because c = g0 �= 0.

�

5.7.3 Asymptotic Expansion of F(x)When f (x) ∈ B(1)

Theorems 5.7.1 and 5.7.2 will now be used in the study of integral properties of functions
f (x) in B(1) that satisfy f (x) = O(xλ) as x →∞ for some λ. More specifically, we are
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concerned with the following two cases in the notation of Theorem 5.7.2.

(i) f ∈ A(γ ) strictly for some γ �= −1, 0, 1, 2, . . . . In this case, f (x) = p(x) f ′(x) with
p ∈ A(ρ) strictly, ρ = 1.

(ii) f (x) = eθ (x)h(x), where h ∈ A(γ ) strictly for some γ and θ ∈ A(s) strictly for some
positive integer s, and that either (a) limx→∞�θ (x) = −∞, or (b) limx→∞�θ (x)
is finite. In this case, f (x) = p(x) f ′(x) with p ∈ A(ρ) strictly, ρ = −s + 1 ≤ 0.

We already know that in case (i) f (x) is integrable at infinity only when �γ < −1. In
case (ii) f (x) is integrable at infinity (a) for all γ when limx→∞�θ (x) = −∞ and (b) for
�γ < s − 1 when limx→∞�θ (x) is finite; otherwise, f (x) is not integrable at infinity.
The validity of this assertion in case (i) and in case (ii-a) is obvious; for case (ii-b), it
follows fromTheorem5.7.3 thatwegivenext. Finally, in case (ii-a) | f (x)| ∼ C1x�γ e�θ (x)

as x →∞, and in case (ii-b) | f (x)| ∼ C2x�γ as x →∞.

Theorem 5.7.3 Let f ∈ B(1) be as in the preceding paragraph. Then there exist a con-
stant I [ f ] and a function g ∈ A(0) strictly such that

F(x) =
∫ x

0
f (t) dt = I [ f ]+ xρ f (x)g(x), (5.7.7)

whether f (x) is integrable at infinity or not.

Remark. In case f (x) is integrable at infinity, this theorem is simply a special case of
Theorem 5.1.12, and I [ f ] = ∫∞

0 f (t) dt , as can easily be verified. The cases in which
f (x) is not integrable at infinity were originally treated by Sidi [286], [300].

Proof. In case (i), Theorem 5.7.1 applies and we have F(x) = b + F̃(x) for some con-
stant b and a function F̃ ∈ A(γ+1) strictly. Since x f (x) is in A(γ+1) strictly as well,
g(x) ≡ F̃(x)/[x f (x)] is inA(0) strictly. The result in (5.7.7) now follows with I [ f ] = b.
For case (ii), we proceed by integrating

∫ x
0 f (t) dt = ∫ x

0 p(t) f ′(t) dt by parts:
∫ x

0
f (t) dt = p(t) f (t)

∣
∣t=x

t=0 −
∫ x

0
p′(t) f (t) dt.

Defining next

u0(x) = 1; vi+1(x) = p(x)ui (x), ui+1(x) = −v′i+1(x), i = 0, 1, . . . , (5.7.8)

we have, again by integration by parts,
∫ x

0
ui (t) f (t) dt = vi+1(t) f (t)

∣
∣t=x

t=0 +
∫ x

0
ui+1(t) f (t) dt, i = 0, 1, . . . . (5.7.9)

Summing all these equalities, we obtain

∫ x

0
f (t) dt =

N∑

i=1
vi (t) f (t)

∣
∣t=x

t=0 +
∫ x

0
uN (t) f (t) dt, (5.7.10)
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where N is as large aswewish.Nowby the fact that p ∈ A(ρ) strictly,we have vi ∈ A(τi+1)

and ui ∈ A(τi ), where τi = i(ρ − 1), i = 1, 2, . . . . In addition, by the fact that
v1(x) = p(x), v1 ∈ A(ρ) strictly. Let us pick N > (1+�γ )/(1− ρ) so that τN +�γ <

−1. Then the integral ∫∞0 uN (t) f (t) dt converges, and we can rewrite (5.7.10) as in

∫ x

0
f (t) dt = b +

[ N∑

i=1
vi (x)

]

f (x)−
∫ ∞

x
uN (t) f (t) dt, (5.7.11)

where

b = − lim
x→0

[ N∑

i=1
vi (x)

]

f (x)+
∫ ∞

0
uN (t) f (t) dt. (5.7.12)

Realizing that {vi (x)}∞i=0 is an asymptotic sequence as x →∞ and expanding the func-
tions vi (x), we see that

N∑

i=1
vi (x) =

νr∑

i=0
βi x

ρ−i + O(vr (x)) as x →∞, β0 �= 0, r ≤ N , (5.7.13)

where the integers νr are defined via ρ − νr − 1 = τr + 1. Here β0, β1, . . . , βνr are
obtained by expanding only v1(x), . . . , vr−1(x) and are not affected by vi (x), i ≥ r .
In addition, by the fact that | f (x)| ∼ C1x�γ exp[�θ (x)] as x →∞ in case (ii-a) and
| f (x)| ∼ C2x�γ as x →∞ in case (ii-b), we also have that

∫ ∞

x
uN (t) f (t) dt = O(xτN+1 f (x)) as x →∞. (5.7.14)

Combining (5.7.13) and (5.7.14) in (5.7.11), and keeping in mind that N is arbitrary, we
thus obtain

∫ x

0
f (t) dt = I [ f ]+ xρ f (x)

[ νr∑

i=0
βi x

−i + O(x−νr−1)
]

as x →∞, (5.7.15)

with I [ f ] = b. This completes the proof. (Note that I [ f ] is independent of N despite
its appearance.) �

Remarks.

1. When f (x) is not integrable at infinity,we can say the following about I [ f ]: In case (i),
I [ f ] is the Hadamard finite part of the (divergent) integral

∫∞
0 f (t) dt , while in case

(ii), I [ f ] is the Abel sum of
∫∞
0 f (t) dt that is defined as limε→0+

∫∞
0 e−εt f (t) dt .

We have already shown the former in Theorem 5.7.1. The proof of the latter can be
achieved by applying Theorem 5.7.3 to e−εt f (t) and letting ε → 0+. We leave the
details to the interested reader.

2. Since the asymptotic expansion of F(x) as x →∞ is of one and the same form
whether

∫∞
0 f (t) dt converges or not, the D(1)-transformation can be applied to ap-

proximate I [ f ] in all cases considered above.



6
The d-Transformation: A GREP for Infinite

Series and Sequences

6.1 The Class b(m) and Related Asymptotic Expansions

The summation of infinite series of the form

S({ak}) =
∞∑

k=1
ak (6.1.1)

is a very common problem in many branches of science and engineering. A direct way
to achieve this is by computing the sequence {An} of its partial sums, namely,

An =
n∑

k=1
ak, n = 1, 2, . . . , (6.1.2)

hoping that An , for n not too large, approximates the sum S({ak}) sufficiently well.
In many cases, however, the terms an decay very slowly as n →∞, and this causes
An to converge to this sum very slowly. In many instances, it may even be practically
impossible to notice the convergence of {An} to S({ak}) numerically. Thus, use of the
sequence of partial sums {An} to approximate S({ak}) may be of limited benefit in most
cases of practical interest.
Infinite series that occur most commonly in applications are power series

∑∞
n=0 cnz

n ,
Fourier cosine and sine series

∑∞
n=0 cn cos nx and

∑∞
n=1 cn sin nx , series of orthogo-

nal polynomials such as Fourier–Legendre series
∑∞

n=0 cn Pn(x), and series of other
special functions. Now the powers zn satisfy the homogeneous two-term recursion re-
lation zn+1 = z · zn . Similarly, the functions cos nx and sin nx satisfy the homogeneous
three-term recursion relation fn+1 = 2(cos x) fn − fn−1. Both of these recursions involve
coefficients that are constant in n. More generally, the Legendre polynomials Pn(x), as
well as many other special functions, satisfy linear homogeneous (three-term) recursion
relations [or, equivalently, they satisfy linear homogeneous difference equations (of order
2)], whose coefficients have asymptotic expansions in n−1 for n →∞. In many cases,
the coefficients cn in these series as well satisfy difference equations of a similar nature,
and this puts the terms cnzn , cn cos nx , cn sin nx , cn Pn(x), etc., in some sequence classes
that we shall denote b(m), where m = 1, 2, . . . .

As will be seen shortly, the class b(m) is a discrete counterpart of the class B(m)

that was defined in Chapter 5 on the D-transformation for infinite-range integrals. In

121
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fact, all the developments of this chapter parallel those of Chapter 5. In particular, the
d-transformation for the infinite series we develop here is a genuine discrete analogue
of the D-transformation.

6.1.1 Description of the Class A(γ )
0

Before going on to the definition of the class b(m), we need to define another class of
functions we denote A(γ )

0 .

Definition 6.1.1 A function α(x) defined for all large x > 0 is in the set A(γ )
0 if it has a

Poincaré-type asymptotic expansion of the form

α(x) ∼
∞∑

i=0
αi x

γ−i as x →∞. (6.1.3)

If, in addition, α0 �= 0 in (6.1.3), then α(x) is said to belong to A(γ )
0 strictly. Here γ is

complex in general.

ComparingDefinition 6.1.1 with Definition 5.1.1, we realize thatA(γ ) ⊂ A(γ )
0 , and that

Remarks 1–7 followingDefinition 5.1.1 that apply to the setsA(γ ) apply to the setsA(γ )
0 as

well. Remarks 8–11 are irrelevant to the setsA(γ )
0 , as functions inA(γ )

0 are not required to
have any differentiability properties. There is a discrete analogue of Remark 8, however.
For the sake of completeness, we provide all these as Remarks 1–8 here.

Remarks.

1. A(γ )
0 ⊃ A(γ−1)

0 ⊃ A(γ−2)
0 ⊃ · · · , so that if α ∈ A(γ )

0 , then, for any positive integer k,
α ∈ A(γ+k)

0 but not strictly. Conversely, if α ∈ A(δ)
0 but not strictly, then α ∈ A(δ−k)

0

strictly for a unique positive integer k.
2. If α ∈ A(γ )

0 strictly, then α /∈ A(γ−1)
0 .

3. If α ∈ A(γ )
0 strictly, and β(x) = α(cx + d) for some arbitrary constants c > 0 and d,

then β ∈ A(γ )
0 strictly as well.

4. If α, β ∈ A(γ )
0 , then α ± β ∈ A(γ )

0 as well. (This implies that the zero function is
included inA(γ )

0 .) If α ∈ A(γ )
0 and β ∈ A(γ+k)

0 strictly for some positive integer k, then
α ± β ∈ A(γ+k)

0 strictly.
5. If α ∈ A(γ )

0 and β ∈ A(δ)
0 , then αβ ∈ A(γ+δ)

0 ; if, in addition, β ∈ A(δ)
0 strictly, then

α/β ∈ A(γ−δ)
0 .

6. If α ∈ A(γ )
0 strictly, such that α(x) > 0 for all large x , and we define θ (x) = [α(x)]ξ ,

then θ ∈ A(γ ξ )
0 strictly.

7. Ifα ∈ A(γ )
0 strictly andβ ∈ A(k)

0 strictly for some positive integer k, such thatβ(x) > 0
for all large x > 0, and we define θ (x) = α(β(x)), then θ ∈ A(kγ )

0 strictly. Similarly,
ifµ(t) ∼∑∞

i=0 µi tδ+i as t → 0+,µ0 �= 0, and if β ∈ A(−k)
0 strictly for some positive

integer k, such that β(x) > 0 for all large x > 0, and we defineψ(x) = µ(β(x)), then
ψ ∈ A(−kδ)

0 strictly.
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8. If α ∈ A(γ )
0 (strictly), and β(x) = α(x + d)− α(x) for an arbitrary constant d �= 0,

then β ∈ A(γ−1)
0 (strictly) when γ �= 0. If α ∈ A(0)

0 , then β ∈ A(−2)
0 .

Before going on, we define subsets X(γ )
0 of A(γ )

0 as follows:

(i) A function α belongs to X(γ )
0 if either α ≡ 0 or α ∈ A(γ−k)

0 strictly for some non-
negative integer k.

(ii) X(γ )
0 is closed under addition and multiplication by scalars.

(iii) If α ∈ X(γ )
0 and β ∈ X(δ)

0 , then αβ ∈ X(γ+δ)
0 ; if, in addition, β ∈ A(δ)

0 strictly, then
α/β ∈ X(γ−δ)

0 .

It is obvious that no two functions in X(γ )
0 have the same asymptotic expansion,

since if α, β ∈ X(γ )
0 , then either α ≡ β or α − β ∈ A(γ−k)

0 strictly for some nonnegative
integer k. Thus, X(γ )

0 does not contain functions α(x) �≡ 0 that satisfy α(x) = O(x−µ) as
x →∞ for every µ > 0, such as exp(−cxs) with c, s > 0. Needless to say, the subsets
X(γ )

0 defined here are analogous to the subsets X(γ ) defined in Chapter 5. Furthermore,
X(γ ) ⊂ X(γ )

0 .

6.1.2 Description of the Class b(m)

Definition 6.1.2 A sequence {an} belongs to the set b(m) if it satisfies a linear homoge-
neous difference equation of order m of the form

an =
m∑

k=1
pk(n)�

kan, (6.1.4)

where pk ∈ A(k)
0 , k = 1, . . . ,m, such that pk ∈ A(ik )

0 strictly for some integer ik ≤ k.
Here �0an = an, �

1an = �an = an+1 − an , and �kan = �(�k−1an), k = 2, 3, . . . .

By recalling that

�kan =
k∑

i=0
(−1)k−i

(
k

i

)

an+i , (6.1.5)

it is easy to see that the difference equation in (6.1.4) can be expressed as an equivalent
(m + 1)-term recursion relation of the form

an+m =
m−1∑

i=0
ui (n)an+i , (6.1.6)

with ui ∈A(νi )
0 ,where νi are some integers. [Note, however, that not every sequence {an}

that satisfies such a recursion relation is in b(m).] Conversely, a recursion relation of the
form (6.1.6) can be rewritten as a difference equation of the form

∑m
k=0 vk(n)�

kan = 0
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with vk ∈ A(µk )
0 for some integers µk by using

an+i =
i∑

k=0

(
i

k

)

�kan. (6.1.7)

This fact is used in the examples below.
The following results are consequences ofDefinition 6.1.2 and formdiscrete analogues

of Propositions 5.1.3–5.1.6.

Proposition 6.1.3 If {an} ∈ b(m), then {an} ∈ b(m
′) for every m ′ > m.

Proof. It is enough to consider m ′ = m + 1. Let (6.1.4) be the difference equation sat-
isfied by {an}. Applying to both sides of (6.1.4) the difference operator [1+ µ(n)�],
where µ(n) is an arbitrary function in A(1)

0 , and using the fact that

�(unvn) = un+1�vn + (�un)vn, (6.1.8)

we have an =
∑m+1

k=1 qk(n)�kan with q1(n) = p1(n)+ µ(n)�p1(n)− µ(n), qk(n) =
pk(n)+ µ(n)�pk(n)+ µ(n)pk−1(n + 1), k = 2, . . . ,m, and qm+1(n) = µ(n)pm(n +
1). From the fact that µ ∈ A(1)

0 and pk ∈ A(k)
0 , k = 1, . . . ,m, it follows that qk ∈

A(k)
0 , k = 1, . . . ,m + 1. �

We observe from the proof of Proposition 6.1.3 that if {an} ∈ b(m), then, for any
m ′ > m, there are infinitelymanydifference equations of the forman =

∑m ′
k=1 qk(n)�kan

with qk ∈ A(k)
0 . Analogously to what we did in Chapter 5, we ask concerning the sit-

uation in which {an} ∈ b(m) with minimal m whether the difference equation an =∑m
k=1 pk(n)�kan with pk ∈ A(k)

0 is unique. We assume that it is in general; we can
prove that it is when pk(n) are restricted to the subsets X(k)

0 . This assumption can be
invoked to prove a result analogous to Theorem 5.6.4.
Since the cost of the d-transformation increases with increasing m, knowing the min-

imal m is important for computational economy.
Concerning the minimalm, we can prove the following results, whose proofs we leave

out as they are analogous to those of Propositions 5.1.4 and 5.1.5.

Proposition 6.1.4 If {an} satisfies a difference equation of order m of the form an =∑m
k=1 pk(n)�kan with pk ∈ A(νk )

0 for some integers νk , and if m is smallest possible,
then �kan, k = 0, 1, . . . ,m − 1, are independent in the sense that there do not exist
functions vk(n), k = 0, 1, . . . ,m − 1, not all identically zero and vk ∈ A(τk )

0 with τk

integers, such that
∑m−1

k=0 vk(n)�
kan = 0. In addition, �i an, i = m,m + 1, . . . , can

all be expressed in the form �i an =
∑m−1

k=0 wik(n)�kan, where wik ∈ A(µik )
0 for some

integers µik . This applies, in particular, when {an} ∈ b(m).

Proposition 6.1.5 If {an} satisfies a difference equation of order m of the form an =∑m
k=1 pk(n)�kan with pk ∈ X(νk )

0 for some integers νk, and if m is smallest possible,
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then pk(n) in this difference equation are unique. This applies, in particular, when
{an} ∈ b(m).

The followingproposition concerns the sequence {�an}when {an} ∈ b(m) in particular.

Proposition 6.1.6 If {an} satisfies a difference equation of order m of the form an =∑m
k=1 pk(n)�kan with pk ∈ A(νk )

0 for some integers νk, then {�an} satisfies a difference
equation of the same form, namely,�an =

∑m
k=1 qk(n)�k+1an with qk ∈ A(µk )

0 for some
integers µk , provided [1−�p1(n)] ∈ A(τ )

0 strictly for some integer τ . In particular, if
{an} ∈ b(m), then {�an} ∈ b(m) as well, provided limn→∞ n−1 p1(n) �= 1.

Following are a few examples of sequences {an} in the classes b(1) and b(2).

Example 6.1.7 The sequence {an} with an = un/n, where un = B cos nθ + C sin nθ
with arbitrary constants B and C , is in b(2) when θ �= 2kπ, k = 0,±1,±2, . . . , since it
satisfies the difference equation an = p1(n)�an + p2(n)�2an , where

p1(n) = (ξ − 1)n + ξ − 2

(1− ξ )(n + 1)
and p2(n) = n + 2

2(ξ − 1)(n + 1)
, with ξ = cos θ �= 1.

Thus, p1 ∈ A(0)
0 and p2 ∈ A(0)

0 , and both strictly. Also note that, as p1(n) and p2(n) are
rational functions in n, they are both in A(0) strictly. To derive this difference equa-
tion, we start with the known three-term recursion relation that is satisfied by the un ,
namely, un+2 = 2ξun+1 − un . We next substitute uk = kak in this recursion, to obtain
(n + 2)an+2 − 2ξ (n + 1)an+1 + nan = 0, and finally use (6.1.7). From the recursion re-
lation for the un , we can also deduce that {un} ∈ b(2).

Example 6.1.8 The sequence {an}with an = Pn(x)/(n + 1) is in b(2) because it satisfies
the difference equation an = p1(n)�an + p2(n)�2an , where

p1(n) = −2n2(1− x)+ n(10− 7x)+ 12− 6x

(2n2 + 7n)(1− x)+ 7− 6x
,

p2(n) = − n2 + 5n + 6

(2n2 + 7n)(1− x)+ 7− 6x
.

Obviously, p1 ∈ A(0)
0 and p2 ∈ A(0)

0 strictly provided x �= 1. (When x = 1, p1 ∈ A(1)
0

and p2 ∈ A(2)
0 .) Also note that, as both p1(n) and p2(n) are rational functions of n, they

are in the corresponding setsA(γ ) strictly as well. This difference equation can be derived
from the known recursion relation for Legendre polynomials Pn(x), namely,

(n + 2)Pn+2(x)− (2n + 3)x Pn+1(x)+ (n + 1)Pn(x) = 0,

first by substituting Pk(x) = (k + 1)ak to obtain

(n + 2)(n + 3)an+2 − (n + 2)(2n + 3)xan+1 + (n + 1)2an = 0,

and next by using (6.1.7). From the recursion relation for the Pn(x), we can also deduce
that {Pn(x)} ∈ b(2).
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Example 6.1.9 The sequence {an} with an = Hn/[n(n + 1)] and Hn =
∑n

k=1 1/k is in
b(2). To see this, observe that {an} satisfies the difference equation an = p1(n)�an +
p2(n)�2an , where

p1(n) = − (n + 2)(5n + 9)

2(2n + 3)
and p2(n) = − (n + 2)2(n + 3)

2(2n + 3)
.

Obviously, p1 ∈ A(1) and p2 ∈ A(2) strictly, because both are rational functions of n. This
difference equation can be derived as follows: First, we have �[n(n + 1)an] = �Hn =
(n + 1)−1. Next, we have�{(n + 1)�[n(n + 1)an]} = 0. Finally, we apply (6.1.7). [Note
that, because Hn ∼ log n +∑∞

i=0 ci/n
i as n →∞, for some constants ci , we have

an = β(n) log n + γ (n) for some β, γ ∈ A(−2).]

Example 6.1.10 The sequence {an}with an = h(n), where h ∈ A(γ )
0 for arbitrary γ �= 0,

is in b(1). To see this, observe that {an} satisfies an = p1(n)�an with

p1(n) = an

�an
=
[
h(n + 1)

h(n)
− 1

]−1
∼ γ−1n +

∞∑

i=0
ein

−i as n →∞,

so that p1 ∈ A(1)
0 strictly.

As a special case, consider h(n) = n−2. Then p1(n) = −(n + 1)2/(2n + 1) exactly.
Thus, in this case p1 is in A(1) strictly, as well as being in A(1)

0 strictly.

Example 6.1.11 The sequence {an} with an = ζ nh(n), where ζ �= 1 and h ∈ A(γ )
0 for

arbitrary γ , is in b(1). To see this, observe that {an} satisfies an = p1(n)�an with

p1(n) = an

�an
=
[

ζ
h(n + 1)

h(n)
− 1

]−1
∼ (ζ − 1)−1 +

∞∑

i=1
ein

−i as n →∞,

so that p1 ∈ A(0)
0 strictly.

As a special case, consider h(n) = n−1. Then p1(n) = (n + 1)/[(ζ − 1)n − 1] exactly.
Thus, in this case p1 is in A(0) strictly, as well as being in A(0)

0 strictly.

6.1.3 Asymptotic Expansion of An When {an} ∈ b(m)

We now state a general theorem due to Levin and Sidi [165] concerning the asymp-
totic behavior of the partial sum An as n →∞ when {an} ∈ b(m) for some m and∑∞

k=1 ak converges. This theorem is the discrete analogue of Theorem 5.1.12 for
infinite-range integrals. Its proof is analogous to that of Theorem 5.1.12 given in Sec-
tion 5.6. It can be achieved by replacing integration by parts by summation by parts
and derivatives by forward differences. See also Levin and Sidi [165] for a sketch.
A complete proof for the case m = 1 is given in Sidi [270], and this proof is now
contained in the proof of Theorem 6.6.6 in this chapter. By imposing the assump-
tion about the uniqueness of the difference equation an =

∑m
k=1 pk(n)�kan when m

is minimal, a result analogous to Theorem 5.6.4 can be proved concerning An as
well.
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Theorem 6.1.12 Let the sequence {an} be in b(m) and let
∑∞

k=1 ak be a convergent series.
Assume, in addition, that

lim
n→∞

(
� j−1 pk(n)

)(
�k− j an

) = 0, k = j, j + 1, . . . ,m, j = 1, 2, . . . ,m, (6.1.9)

and that
m∑

k=1
l(l − 1) · · · (l − k + 1) p̄k �= 1, l = ±1, 2, 3, . . . , (6.1.10)

where

p̄k = lim
n→∞ n−k pk(n), k = 1, . . . ,m. (6.1.11)

Then

An−1 = S({ak})+
m−1∑

k=0
nρk (�kan)gk(n) (6.1.12)

for some integers ρk ≤ k + 1, and functions gk ∈ A(0)
0 , k = 0, 1, . . . ,m − 1. Actually,

if pk ∈ A(ik )
0 strictly for some integer ik ≤ k, k = 1, . . . ,m, then

ρk ≤ ρ̄k ≡ max{ik+1, ik+2 − 1, . . . , im − m + k + 1} ≤ k + 1, k = 0, 1, . . . ,m − 1.
(6.1.13)

Equality holds in (6.1.13) when the integers whose maximum is being considered are
distinct. Finally, being in A(0)

0 , the functions gk(n) have asymptotic expansions of the
form

gk(n) ∼
∞∑

i=0
gkin

−i as n →∞. (6.1.14)

Remarks.

1. By (6.1.11), p̄k �= 0 if and only if pk ∈ A(k)
0 strictly. Thus, whenever pk ∈ A(ik )

0 with
ik < k, we have p̄k = 0. This implies that whenever ik < k, k = 1, . . . ,m, we have
p̄k = 0, k = 1, . . . ,m, and the condition in (6.1.10) is automatically satisfied.

2. It follows from (6.1.13) that ρm−1 = im always.
3. Similarly, for m = 1 we have ρ0 = i1 precisely.
4. For numerous examples we have treated, equality seems to hold in (6.1.13) for all

k = 1, . . . ,m.
5. The integers ρk and the functions gk(n) in (6.1.12) depend only on the functions pk(n)

in the difference equation in (6.1.4). This being the case, they are the same for all
solutions an of (6.1.4) that satisfy (6.1.9) and for which

∑∞
k=1 ak converges.

6. From (6.1.9) and (6.1.13), we also have that limn→∞ nρ̄k�kan = 0, k =
0, 1, . . . ,m − 1.

7. Finally, Theorem 6.1.12 says that the sequence {Gn = S({ak})− An−1} of the re-
mainders of

∑∞
k=1 ak is in b(m) if {an} ∈ b(m) too. This follows from the fact that

�kGn = −�k−1an, k = 1, 2, . . . .
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Bymaking the analogy An−1 ↔ A(y), n−1 ↔ y, nρk−1 (�k−1an)↔ φk(y) and rk = 1,
k = 1, . . . ,m, and S({ak})↔ A, we realize that A(y) is in F(m). Finally, the variable y
is discrete in this case and assumes the values 1, 1/2, 1/3, . . . .

All the conditions of Theorem 6.1.12 are satisfied by Examples 6.1.7 and 6.1.8. They
are satisfied by Examples 6.1.10 and 6.1.11 provided the corresponding series

∑∞
k=1 ak

converge. The series of Example 6.1.10 converges provided �γ < −1. The series of
Example 6.1.11 converges provided either (i) |z| < 1 or (ii) |z| = 1, z �= 1, and�γ < 0.
The many examples we have studied seem to indicate that the requirement that

{an} ∈ b(m) for some m is the most crucial of the conditions in Theorem 6.1.12. The
rest of the conditions, namely, (6.1.9)–(6.1.11), appear to be satisfied automatically.
Therefore, to decide whether A(y) ≡ An−1, where y = n−1, is in F(m) for some m, it is
practically sufficient to check whether {an} is in b(m). Later in this chapter, we provide
some simple ways to check this point.
Finally, even though Theorem 6.1.12 is stated for sequences {an} ∈ b(m) for which∑∞
k=1 ak converges, An may satisfy (6.1.10)–(6.1.12) also when {an} ∈ b(m) without∑∞
k=1 ak being convergent, at least in some cases. In such a case, the constant S({ak}) in

(6.1.12) will be the antilimit of {An}. In Theorem 6.6.6, we show that (6.1.10)–(6.1.12)
hold for all {an} ∈ b(1) for which

∑∞
k=1 ak converge and for a large subset of sequences

{an} ∈ b(1) for which
∑∞

k=1 ak do not converge but an grow at most like a power of n
as n →∞. As a matter of fact, Theorem 6.6.6 is valid for a class of sequences denoted
b̃(m) that includes b(1).
We now demonstrate the result of Theorem 6.1.12 via some examples that were treated

earlier.

Example 6.1.13 Consider the sequence {n−z}∞n=1 with �z > −1 that was treated in
Example 4.1.7, and, prior to that, in Example 1.1.4. From Example 6.1.10, we know that
this sequence is in b(1). The asymptotic expansion in (4.1.9) can be rewritten in the form

An−1 ∼ ζ (z)+ nan

∞∑

i=0
g0i n

−i as n →∞,

for some constants g0i , with g00 = (1− z)−1 �= 0, completely in accordance with The-
orem 6.1.12. This expansion is valid also when z �= 1, 0,−1,−2, . . . , as shown in
Example 4.1.7.

Example 6.1.14 Consider the sequence {zn/n}∞n=1 with |z| ≤ 1 and z �= 1 that was
treated in Example 4.1.8. From Example 6.1.11, we know that this sequence is in b(1).
The asymptotic expansion in (4.1.11) is actually

An−1 ∼ log (1− z)−1 + an

∞∑

i=0
g0i n

−i as n →∞,

for some constants g0i with g00 = (z − 1)−1, completely in accordance with Theorem
6.1.12. Furthermore, this expansion is valid also when

∑∞
k=1 ak diverges with z not on

the branch cut of log(1− z), that is, also when |z| ≥ 1 but z �∈ [1,+∞), as shown in
Example 4.1.8.
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Example 6.1.15 Consider the sequence {cos nθ/n}∞n=1 with θ �= 2πk, k = 0,±1,
±2, . . . , that was treated in Example 4.1.9. From Example 6.1.7, we know that this
sequence is in b(2). Substituting

sin nθ

n
= [−(1+ n−1) csc θ + cot θ

] cos nθ

n
− [

(1+ n−1) csc θ
]
�

(
cos nθ

n

)

in the asymptotic expansion of (4.1.12), we obtain

An−1 ∼ − log

∣
∣
∣
∣2 sin

θ

2

∣
∣
∣
∣+ an

∞∑

i=0
g0i n

−i +�an

∞∑

i=0
g1i n

−i as n →∞,

for some constants g0i and g1i that depend only on θ , completely in accordance with
Theorem 6.1.12.

6.1.4 Remarks on the Asymptotic Expansion of An and a Simplification

A very useful feature of Theorem 6.1.12 is the simplicity of the asymptotic expansion
of An−1 given in (6.1.12)–(6.1.14). This is worth noting especially as the term an may
itself have a very complicated behavior as n →∞, and this behavior does not show
explicitly in (6.1.12). It is present there implicitly through �kan, k = 0, 1, . . . ,m − 1,
or equivalently, through an+k, k = 0, 1, . . . ,m − 1.
As noted earlier, An−1 is analogous to an A(y) in F(m) with φk(y)↔ nρk−1�k−1an,

k = 1, . . . ,m. This may give the impression that we have to know the integers ρk to
proceed with GREP(m) to find approximations to S({ak}). As we have seen, ρk depend on
the difference equation in (6.1.4), which we do not expect or intend to know in general.
This lack of precise knowledge of the ρk could lead us to conclude that we do not know
the φk(y) precisely, and hence cannot apply GREP(m) in all cases. Really, we do not need
to know the ρk exactly; we can replace each ρk by its known upper bound k + 1, and
rewrite (6.1.12) in the form

An−1 = S({ak})+
m−1∑

k=0
nk+1(�kan)hk(n), (6.1.15)

where hk(n) = nρk−k−1gk(n), hence hk ∈ A(ρk−k−1)
0 ⊆ A(0)

0 for each k. Note that, when
ρk = k + 1, we have hk(n) = gk(n), and when ρk < k + 1, we have

hk(n) ∼
∞∑

i=0
hkin

−i ≡ 0 · n0 + 0 · n−1 + · · · + 0 · nρk−k

+ gk0n
ρk−k−1 + gk1n

ρk−k−2 + · · · as n →∞. (6.1.16)

Now that we have established the validity of (6.1.15) with hk ∈ A(0)
0 for each k,

we have also derived a new set of form factors or shape functions φk(y), namely,
φk(y)↔ nk�k−1an, k = 1, . . . ,m. Furthermore, these φk(y) are immediately available
and simply expressible in terms of the series elements an . [Compare them with the φk(y)
of Chapter 5 that are expressed in terms of the integrand f (x) and its derivatives.]
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Finally, before we turn to the definition of the d-transformation, we make one minor
change in (6.1.15) by adding the term an to both sides. This results in

An = S({ak})+ n[h0(n)+ n−1]an +
m−1∑

k=1
nk+1(�kan)hk(n). (6.1.17)

As h0(n)+ n−1, just as h0(n), is in A(0)
0 , the asymptotic expansion of An in (6.1.17) is

of the same form as that of An−1 in (6.1.15). Thus, we have

An ∼ S({ak})+
m−1∑

k=0
nk+1(�kan)

∞∑

i=0

hki

ni
as n →∞. (6.1.18)

6.2 Definition of the d (m)-Transformation

Let us reexpand the functions hk(n) in negative powers of n + α for some fixed α, which
is legitimate. The asymptotic expansion in (6.1.18) then assumes the form

An ∼ S({ak})+
m−1∑

k=0
nk+1(�kan)

∞∑

i=0

h̃ki

(n + α)i
as n →∞.

Based on this asymptotic expansion of An , we now give the definition of the Levin–Sidi
d-transformation for approximating the sum S({ak}) of the infinite series

∑∞
k=1 ak . As

mentioned earlier, the d (m)-transformation is a GREP(m).

Definition 6.2.1 Pick a sequence of integers {Rl}∞l=0, 1 ≤ R0 < R1 < R2 < · · · . Let
n ≡ (n1, . . . , nm), where n1, . . . , nm are nonnegative integers. Then the approximation
d (m, j)
n to S({ak}) is defined through the linear system

ARl = d (m, j)
n +

m∑

k=1
Rk
l (�

k−1aRl )
nk−1∑

i=0

β̄ki

(Rl + α)i
, j ≤ l ≤ j + N ; N =

m∑

k=1
nk,

(6.2.1)

α > −R0 being a parameter at our disposal and β̄ki being the additional (auxiliary) N
unknowns. In (6.2.1),

∑−1
i=0 ci ≡ 0 so that d (m, j)

(0,... ,0) = A j for all j . We call this GREP
that generates the d (m, j)

n the d (m)-transformation. When there is no room for confusion,
we call it the d-transformation for short. [Of course, if the ρ̄k are known, we can replace
the factors Rk

l (�
k−1aRl ) in (6.2.1) by R

ρ̄k−1
l (�k−1aRl ).]

Remarks.

1. A good choice of the parameter α appears to be α = 0. We adopt this choice in the
sequel. We have adopted it in all our numerical experiments as well.

2. From (6.2.1), it is clear that the input needed for the d (m)-transformation is the integer
m, integers Rl , and the sequence elements ai , 1 ≤ i ≤ R j+N . We consider the issue
of determining m later in this chapter. We note only that no harm is done if m is
overestimated, but no acceleration of convergence should be expected in general if m
is underestimated.
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3. Because we have the freedom to pick the integers Rl as we wish, we can pick them
to induce better convergence acceleration to S({ak}) and/or better numerical stability.
This is oneof the important advantages of thed-transformationover other convergence
acceleration methods for infinite series and sequences that we discuss later.

4. The way the d (m)-transformation is defined depends only on the sequence {ak} and is
totally independent of whether or not this sequence is in b(m) and/or satisfies Theorem
6.1.12. Therefore, the d-transformation can be applied to any infinite series

∑∞
k=1 ak ,

whether {ak} ∈ b(m) or not. Whether this application will produce good approxima-
tions to the sum of the series depends on the asymptotic behavior of ak . If {ak} ∈ b(m)

for some m, then the d (m)-transformation will produce good results. It may produce
good results with some m even when {ak} ∈ b(q) for some q > m but {ak} /∈ b(m), at
least in some cases of interest.

5. Despite its somewhat complicated appearance in Definition 6.2.1, the d (m)-
transformation can be implemented very efficiently by the W-algorithm (see Sec-
tion 7.2) when m = 1 and by the W(m)-algorithm (see Section 7.3) when m ≥ 2. We
present the implementation of the d (1)-transformation via the W-algorithm in he next
section.

6.2.1 Kernel of the d (m)-Transformation

From Definition 6.2.1, it is clear that the kernel of the d (m)-transformation (with α = 0)
is all sequences {Ar =

∑r
k=1 ak}, such that

∞∑

k=r+1
ak =

m∑

k=1
(�k−1ar )

nk−1∑

i=0
αki r

k−i , some finite nk . (6.2.2)

For these sequences, there holds d (m, j)
n = S({ak}) for all j , when n = (n1, . . . , nm). This

holds, for example, when {ak} satisfies ar =
∑m

k=1 pk(r )�kar , pk(r ) being a polynomial
in r of degree at most k for each k. In this case, (6.2.2) holds with nk − 1 = k.

6.2.2 The d (m)-Transformation for Infinite Sequences

So far, we have defined the d (m)-transformation for infinite series
∑∞

k=1 ak . Noting that
an =�An−1= An − An−1, n= 1, 2, . . . , where A0 ≡ 0, we can reformulate the d (m)-
transformation for arbitrary infinite sequences {Ak}∞k=1, whether (6.1.15) is satisfied or
not.

Definition 6.2.2 Let n ≡ (n1, . . . , nm) and the Rl be as in Definition 6.2.1. Let {Ak} be
a sequence with limit or antilimit A. Then, the approximation d (m, j)

n to A along with the
additional (auxiliary) unknowns β̄ki , 0 ≤ i ≤ nk − 1, 1 ≤ k ≤ m, is defined through
the linear system

ARl = d (m, j)
n +

m∑

k=1
Rk
l (�

k ARl−1)
nk−1∑

i=0

β̄ki

(Rl + α)i
, j ≤ l ≤ j + N ; N =

m∑

k=1
nk .

(6.2.3)

In (6.2.3),
∑−1

i=0 ci ≡ 0 so that d (m, j)
(0,... ,0) = A j for all j . Also, A0 ≡ 0.
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In this form, the d (m)-transformation is a truly universal extrapolation method for
infinite sequences.

6.2.3 The Factorial d (m)-Transformation

By rewriting the asymptotic expansions of the functions hk(n) in (6.1.18) in different
forms, as explained in Section 4.6 on extensions of GREP, we obtain other forms of the
d-transformation. For example, we can write an arbitrary asymptotic series

∑∞
i=0 γi/n

i

as n →∞ also in the form
∑∞

i=0 γ̂i/(n)i as n →∞, where (n)0 = 1 and (n)i =∏i−1
s=0(n + s) for i ≥ 1. Here γ̂i = γi , for 0 ≤ i ≤ 2, γ̂3 = γ2 + γ3, and so on. For each

i , γ̂i is uniquely determined by γ0, γ1, . . . , γi .
If we now rewrite the asymptotic expansions

∑∞
i=0 hki/ni as n →∞ in the form∑∞

i=0 ĥki/(n)i as n →∞, and proceed as before, we can define the factorial d (m)-
transformation for infinite series via the linear equations

ARl = d (m, j)
n +

m∑

k=1
Rk
l (�

k−1aRl )
nk−1∑

i=0

β̄ki

(Rl + α)i
, j ≤ l ≤ j + N ; N =

m∑

k=1
nk,

(6.2.4)

and that for infinite sequences via linear the equations

ARl = d (m, j)
n +

m∑

k=1
Rk
l (�

k ARl−1)
nk−1∑

i=0

β̄ki

(Rl + α)i
, j ≤ l ≤ j + N ; N =

m∑

k=1
nk .

(6.2.5)

6.3 Special Cases with m = 1

6.3.1 The d (1)-Transformation

Let us replace the Rk
l in the equations in (6.2.1) by Rρk

l , and take α = 0 for simplicity.
When m = 1, these equations assume the form

ARl = d (1, j)
n + ωRl

n−1∑

i=0

β̄ i

Ri
l

, j ≤ l ≤ j + n; ωr = rρar , (6.3.1)

where n now is a positive integer and ρ stands for ρ1. These equations can be solved
for d (1, j)

n (with arbitrary Rl) very simply and efficiently via the W-algorithm of [278] as
follows:

M ( j)
0 = ARj

ωR j

, N ( j)
0 = 1

ωR j

, j ≥ 0; ωr = rρar ,

M ( j)
n = M ( j+1)

n−1 − M ( j)
n−1

R−1j+n − R−1j
, N ( j)

n = N ( j+1)
n−1 − N ( j)

n−1
R−1j+n − R−1j

, j ≥ 0, n ≥ 1.

d (1, j)
n = M ( j)

n

N ( j)
n

, j, n ≥ 0.
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6.3.2 The Levin L-Transformation
Choosing Rl = l + 1 in (6.3.1), we obtain

Ar = d (1, j)
n + ωr

n−1∑

i=0

β̄ i

r i
, J ≤ r ≤ J + n; ωr = rρar , J = j + 1, (6.3.2)

the resulting d (1)-transformation being nothing but the famous t- and u-transformations
of Levin [161], with ρ = 0 and ρ = 1, respectively. Let us denote d (1, j)

n in (6.3.2) by
L( j)

n . Then L( j)
n has the following known closed form that was given in [161]:

L( j)
n = �n

(
J n−1 AJ/ωJ

)

�n
(
J n−1/ωJ

) =
∑n

i=0(−1)i
(n
i

)
(J + i)n−1 AJ+i/ωJ+i

∑n
i=0(−1)i

(n
i

)
(J + i)n−1 /ωJ+i

; J = j + 1.

(6.3.3)

The comparative study of Smith and Ford [317], [318] has shown that the Levin trans-
formations are extremely efficient for summing a large class of infinite series

∑∞
k=1 ak

with {an}∞n=1 ∈ b(1). We return to these transformations in Chapters 12 and 19.

6.3.3 The Sidi S-Transformation
Lettingm = 1 and Rl = l + 1, and replacing Rk

l by Rρk
l , the equations in (6.2.4) assume

the form

Ar = d (1, j)
n + ωr

n−1∑

i=0

β̄ i

(r )i
, J ≤ r ≤ J + n; ωr = rρar , J = j + 1. (6.3.4)

The resulting factorial d (1)-transformation is the S-transformation of Sidi. Let us denote
d (1, j)
n in (6.3.4) by S ( j)

n . Then S ( j)
n has the following known closed form that was given

in [277]:

S ( j)
n = �n ((J )n−1 AJ/ωJ )

�n ((J )n−1 /ωJ )
=
∑n

i=0(−1)i
(n
i

)
(J + i)n−1 AJ+i/ωJ+i

∑n
i=0(−1)i

(n
i

)
(J + i)n−1 /ωJ+i

; J = j + 1.

(6.3.5)

TheS-transformationwas first used for summing infinite power series in theM.Sc. thesis
of Shelef [265] that was done under the supervision of the author. The comparative study
of Grotendorst [116] has shown that it is one of the most effective methods for summing
a large class of everywhere-divergent power series. See also Weniger [353], who called
the method the S-transformation. We return to it in Chapters 12 and 19.

6.4 How to Determine m

As in the case of the D-transformation for infinite-range integrals, in applying the
d-transformation to a given infinite series

∑∞
k=1 ak , we must first assign a value to

the integer m, for which {an} ∈ b(m). In this section, we deal with the question of how
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to determine the smallest value of m or an upper bound for it in a simple manner. Our
approach here parallels that of Section 5.4.

6.4.1 By Trial and Error

The simplest approach to this problem is via trial and error. We start by applying the
d (1)-transformation. If this is successful, then we acceptm = 1 and stop. If not, we apply
the d (2)-transformation. If this is successful, then we accept m = 2 and stop. Otherwise,
we try the d (3)-transformation, and so on.We hope that for some (smallest) value ofm the
d (m)-transformation will perform well. Of course, this will be the case when {an} ∈ b(m)

for this m. We also note that the d (m)-transformation may perform well for some m even
when {an} �∈ b(s) for any s, at least for some cases, as mentioned previously.
The trial-and-error approach has almost no extra cost involved as the partial sums ARl

that we need as input need to be computed once only, and they can be used again for
each value of m. In addition, the computational effort due to implementing the d (m)-
transformation for different values of m is small when the W- and W(m)-algorithms of
Chapter 7 are used for this purpose.

6.4.2 Upper Bounds on m

We now use a heuristic approach that allows us to determine by inspection of an some
values for the integer m for which {an} ∈ b(m). Only this time we relax somewhat the
conditions in Definition 6.1.2: we assume that an satisfies a difference equation of the
form (6.1.4) with pk ∈ A(νk )

0 , where νk is an integer not necessarily less than or equal to
k, k = 1, 2, . . . ,m. [Our experience shows that if {an} belongs to this new set b(m) and∑∞

k=1 ak converges, then {an} belongs to the set b(m) of Definition 6.1.2 as well.] The
idea in the present approach is that the general term an is viewed as a product or as a sum
of simpler terms, and it is assumed that we know to which classes b(s) the sequences of
these simpler terms belong.
The following results, which we denote Heuristics 6.4.1–6.4.3, pertain precisely to

this subject. The demonstrations of these results are based on the assumption that certain
linear systems, whose entries are in A(γ )

0 for various integer values of γ , are invertible.
For this reason, we call these results heuristics and not lemmas or theorems, and we refer
to their demonstrations as “proofs”.

Heuristic 6.4.1 Let {gn} ∈ b(r ) and {hn} ∈ b(s) and assume that {gn} and {hn} satisfy
different difference equations of the form described in Definition 6.1.2. Then

(i) {gnhn} ∈ b(m) with m ≤ rs, and
(ii) {gn + hn} ∈ b(m) with m ≤ r + s.

Heuristic 6.4.2 Let {gn} ∈ b(r ) and {hn} ∈ b(r ) and assume that {gn} and {hn} satisfy
the same difference equation of the form described in Definition 6.1.2. Then

(i) {gnhn} ∈ b(m) with m ≤ r (r + 1)/2, and
(ii) {gn + hn} ∈ b(m) with m ≤ r .
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Heuristic 6.4.3 Let {g(i)n }∞n=1 ∈ b(r ), i = 1, . . . , µ, and assume that all µ sequences
satisfy the same difference equation of the form described in Definition 6.1.2. Let
an =

∏µ

i=1 g
(i)
n for all n. Then {an} ∈ b(m) with m ≤ (r+µ−1

µ

)
. In particular, if {gn} ∈ b(r ),

then {(gn)µ} ∈ b(m) with m ≤ (r+µ−1
µ

)
.

The “proofs” of these are analogous to those of Heuristics 5.4.1–5.4.3. They can be
achieved by using (6.1.8) and by replacing (5.4.4) with

� j (gnhn) =
j∑

i=0

(
j

i

)

(� j−i gn+i )(�
i hn) =

j∑

i=0

(
j

i

) i∑

s=0

(
i

s

)

(� j−sgn)(�
i hn). (6.4.1)

We leave the details to the reader.
These results are important because, in most instances of practical interest, an is a

product or a sum of terms gn, hn, . . . , such that {gn}, {hn}, . . . , are in the classes b(r )

for low values of r , such as r = 1 and r = 2.
We now apply these results to a few examples.

Example 6.4.4 Consider an =
∑m

i=1 a
(i)
n , where {a(i)n } ∈ b(1) for each i . By part (ii) of

Heuristic 6.4.1,we conclude that {an} ∈ b(m
′) for somem ′ ≤ m. This occurs, in particular,

when an =
∑m

i=1 hi (n), where hi ∈ A(γi )
0 for some distinct γi �= 0, since {hi (n)} ∈ b(1) for

each i , by Example 6.1.10. It also occurs when an =
∑m

i=1 ζ
n
i hi (n), where ζi �= 1 and are

distinct and hi ∈ A(γi )
0 for some arbitraryγi not necessarily distinct, since {ζ n

i hi (n)} ∈ b(1)

for each i , by Example 6.1.11. Such sequences {an} are very common and are considered
again and in greater detail in Section 6.8, where we prove that they are in b(m) with b(m)

exactly as in Definition 6.1.2.

Example 6.4.5 Consider an = g(n)un where g ∈ A(γ )
0 for some γ and un = B cos nθ +

C sin nθ with B andC constants. From Example 6.1.7, we already know that {un} ∈ b(2).
From Example 6.1.10, we also know that {g(n)} ∈ b(1) since g ∈ A(γ )

0 . By part (i) of
Heuristic 6.4.1, we therefore conclude that {an} ∈ b(2). Indeed, using the technique of
Example 6.1.7, we can show that {an} satisfies the difference equation an = p1(n)�an +
p2(n)�2an with

p1(n) = 2g(n)[g(n + 1)− ξg(n + 2)]

w(n)
and p2(n) = −g(n)g(n + 1)

w(n)
,

where

w(n) = g(n)g(n + 1)− 2ξg(n)g(n + 2)+ g(n + 1)g(n + 2) and ξ = cos θ.

Thus, p1, p2 ∈ A(0)
0 strictly when ξ �= 1, and, therefore, {an} ∈ b(2) with b(m) exactly as

in Definition 6.1.2.

Example 6.4.6 Consider an = g(n)Pn(x), where Pn(x) is the Legendre polynomial
of degree n and g ∈ A(γ )

0 for some γ . We already know that {Pn(x)} ∈ b(2). Also,
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{g(n)} ∈ b(1) because g ∈ A(γ )
0 , by Example 6.1.10. By part (i) of Heuristic 6.4.1, we

conclude that {an} ∈ b(2). Indeed, using the technique of Example 6.1.8, we can show
that an = p1(n)�an + p2(n)�2an , with

p1(n) = [x(2n + 3)g(n + 2)− 2(n + 2)g(n + 1)]g(n)

w(n)
,

p2(n) = − (n + 2)g(n)g(n + 1)

w(n)
,

where

w(n) = (n + 2)g(n)g(n + 1)− x(2n + 3)g(n)g(n + 2)+ (n + 1)g(n + 1)g(n + 2).

Also, when x �= 1, we have that p1, p2 ∈ A(0)
0 strictly because w ∈ A(2γ+1)

0 strictly, and,
therefore, {an} ∈ b(2) with b(m) exactly as in Definition 6.1.2. [Recall that Example 6.1.8
is a special case with g(n) = 1/(n + 1).]

Example 6.4.7 Consider an = g(n)un Pn(x), where g(n), un, and Pn(x) are as in Exam-
ples 6.4.5 and 6.4.6. We already have that {g(n)} ∈ b(1), {un} ∈ b(2), and {Pn(x)} ∈ b(2).
Thus, from part (i) of Heuristic 6.4.1, we conclude that {an} ∈ b(4). It can be shown by
different techniques that, when x = cos θ, {an} ∈ b(3), again in agreement with part (i)
of Heuristic 6.4.1.

Example 6.4.8 Consider an = (sin nθ/n)2. Then {an} ∈ b(3). This follows from the fact
that {sin nθ/n} ∈ b(2) and from part (i) of Heuristic 6.4.2. Another way to see this is as
follows: First, write an = (1− cos 2nθ )/(2n2) = 1

2n
−2 − 1

2n
−2 cos 2nθ . Now { 12n−2} ∈

b(1) since 1
2 x

−2 ∈ A(−2). Next, because { 12n−2} ∈ b(1) and {cos 2nθ} ∈ b(2), their product
is also in b(2) by part (i) of Heuristic 6.4.1. Therefore, by part (ii) of Heuristic 6.4.1,
{an} ∈ b(3).

Example 6.4.9 Let {gn} ∈ b(r ) and hn =
∑q

s=0 us(n)(log n)s , with us ∈ A(γ )
0 for every s.

Here, some or all of the us(n), 0 ≤ s ≤ q − 1, can be identically zero, but uq (n) �≡ 0.
Then {gnhn} ∈ b(q+1)r . To show this we start with the equalities

�khn =
q∑

s=0
wks(n)(log n)

s, wks ∈ A(γ−k)
0 , for all k, s.

Treating q + 1 of these equalities with k = 1, . . . , q + 1 as a linear system of equa-
tions for the “unknowns” (log n)s , s = 0, 1, . . . , q, and invoking Cramer’s rule, we
can show that (log n)s =∑q+1

k=1 µsk(n)�khn, µsk ∈ A(νsk−γ )
0 for some integers νsk . Sub-

stituting these in hn =
∑q

s=0 us(n)(log n)s , we get hn =
∑q+1

k=1 ek(n)�
khn , ek ∈ A(σk )

0

for some integers σk . Thus, {hn} ∈ b(q+1) in the relaxed sense. Invoking now part
(i) of Heuristic 6.4.1, the result follows. We mention that such sequences (and sums
of them) arise from the trapezoidal rule approximation of simple and multidimen-
sional integrals with corner and/or edge and/or surface singularities. Thus, the result
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Table 6.5.1: Relative floating-point errors Ē (0)
ν = |d̄ (1,0)

ν − S|/|S| and �(1,0)
ν for

the Riemann Zeta function series
∑∞

k=1 k
−2 via the d (1)-transformation, with

Rl = l + 1. Here S = π2/6, d̄ (1,0)
ν are the computed d (1,0)

ν , and Rν is the number
of terms used in computing d (1,0)

ν . d̄ (1,0)
ν (d) and d̄ (1,0)

ν (q) are computed,
respectively, in double precision (approximately 16 decimal digits) and in

quadruple precision (approximately 35 decimal digits)

ν Rν Ē (0)
ν (d) Ē (0)

ν (q) �(1,0)
ν

0 1 3.92D − 01 3.92D − 01 1.00D + 00
2 3 1.21D − 02 1.21D − 02 9.00D + 00
4 5 1.90D − 05 1.90D − 05 9.17D + 01
6 7 6.80D − 07 6.80D − 07 1.01D + 03
8 9 1.56D − 08 1.56D − 08 1.15D + 04

10 11 1.85D − 10 1.83D − 10 1.35D + 05
12 13 1.09D − 11 6.38D − 13 1.60D + 06
14 15 2.11D − 10 2.38D − 14 1.92D + 07
16 17 7.99D − 09 6.18D − 16 2.33D + 08
18 19 6.10D − 08 7.78D − 18 2.85D + 09
20 21 1.06D − 07 3.05D − 20 3.50D + 10
22 23 1.24D − 05 1.03D − 21 4.31D + 11
24 25 3.10D − 04 1.62D − 22 5.33D + 12
26 27 3.54D − 03 4.33D − 21 6.62D + 13
28 29 1.80D − 02 5.44D − 20 8.24D + 14
30 31 1.15D − 01 4.74D − 19 1.03D + 16

obtained here implies that the d-transformation can be used successfully to accelerate
the convergence of sequences of trapezoidal rule approximations.We come back to this in
Chapter 25.

Important Remark.Whenwe know that an = gn + hn with {gn} ∈ b(r ) and {hn} ∈ b(s),
and we can compute gn and hn separately, we should go ahead and compute

∑∞
n=1 gn

and
∑∞

n=1 hn by the d (r )- and d (s)-transformations, respectively, instead of computing∑∞
n=1 an by the d (r+s)-transformation. The reason for this is that, for a given required

level of accuracy, fewer terms are needed for the d (r )- and d (s)-transformations than for
the d (r+s)-transformation.

6.5 Numerical Examples

We now illustrate the use of the d (m)-transformation (with α = 0 in Definition 6.2.1)
in the summation of a few infinite series of varying complexity. For more examples,
we refer the reader to Levin and Sidi [165], Sidi and Levin [312], and Sidi [294],
[295].

Example 6.5.1 Consider the Riemann Zeta function series
∑∞

n=1 n
−z , �z > 1. We saw

earlier that, for �z > 1, this series converges and its sum is ζ (z). Also, as we saw in
Example 6.1.13, {n−z} ∈ b(1) and satisfies all the conditions of Theorem 6.1.12.
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Table 6.5.2: Relative floating-point errors Ē (0)
ν = |d̄ (1,0)

ν − S|/|S| and �(1,0)
ν for

the Riemann Zeta function series
∑∞

k=1 k
−2 via the d (1)-transformation, with Rl

as in (6.5.1) and σ = 1.3 there. Here S = π2/6, d̄ (1,0)
ν are the computed d (1,0)

ν ,
and Rν is the number of terms used in computing d (1,0)

ν . d̄ (1,0)
ν (d) and d̄ (1,0)

ν (q) are
computed, respectively, in double precision (approximately 16 decimal digits)

and in quadruple precision (approximately 35 decimal digits)

ν Rν Ē (0)
ν (d) Ē (0)

ν (q) �(1,0)
ν

0 1 3.92D − 01 3.92D − 01 1.00D + 00
2 3 1.21D − 02 1.21D − 02 9.00D + 00
4 5 1.90D − 05 1.90D − 05 9.17D + 01
6 7 6.80D − 07 6.80D − 07 1.01D + 03
8 11 1.14D − 08 1.14D − 08 3.04D + 03

10 18 6.58D − 11 6.59D − 11 3.75D + 03
12 29 1.58D − 13 1.20D − 13 3.36D + 03
14 48 1.55D − 15 4.05D − 17 3.24D + 03
16 80 7.11D − 15 2.35D − 19 2.76D + 03
18 135 5.46D − 14 1.43D − 22 2.32D + 03
20 227 8.22D − 14 2.80D − 26 2.09D + 03
22 383 1.91D − 13 2.02D − 30 1.97D + 03
24 646 1.00D − 13 4.43D − 32 1.90D + 03
26 1090 4.21D − 14 7.24D − 32 1.86D + 03
28 1842 6.07D − 14 3.27D − 31 1.82D + 03
30 3112 1.24D − 13 2.52D − 31 1.79D + 03

In Tables 6.5.1 and 6.5.2, we present the numerical results obtained by applying the
d (1)-transformation to this series with z = 2, for which we have ζ (2) = π2/6. We have
done the computations once by choosing Rl = l + 1 and once by choosing

R0 = 1, Rl =
{
Rl−1 + 1 if �σ Rl−1� = Rl−1
�σ Rl−1� otherwise

, l = 1, 2, . . . ; for some σ > 1,

(6.5.1)

with σ = 1.3. The former choice of the Rl gives rise to the Levin u-transformation, as
we mentioned previously. The latter choice is quite different and induces a great amount
of numerical stability. [The choice of the Rl as in (6.5.1) is called geometric progression
sampling (GPS) and is discussed in detail in Chapter 10.]
Note that, in both tables, we have given floating-point arithmetic results in quadruple

precision, as well as in double precision. These show that, with the first choice of the
Rl , the maximum accuracy that can be attained is 11 digits in double precision and
22 digits in quadruple precision. Adding more terms to the process does not improve
the accuracy; to the contrary, the accuracy dwindles quite quickly. With the Rl as in
(6.5.1), on the other hand, we are able to improve the accuracy to almost machine
precision.

Example 6.5.2 Consider the Fourier cosine series
∑∞

n=1[cos(2n − 1)θ]/(2n − 1). This
series converges to the function f (θ ) = − 1

2 log | tan(θ/2)| for every real θ except at
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Table 6.5.3: Relative floating-point errors Ē (0)
ν = |d̄ (2,0)

(ν,ν) − S|/|S| for the Fourier
cosine series of Example 6.5.2 via the d (2)-transformation, with Rl = l + 1 in the third
and fifth columns and with Rl = 2(l + 1) in the seventh column. Here S = f (θ), d̄ (2,0)

(ν,ν)

are the computed d (2,0)
(ν,ν) , and R2ν is the number of terms used in computing d (2,0)

(ν,ν) .
d̄ (2,0)
(ν,ν) are computed in double precision (approximately 16 decimal digits)

ν R2ν Ē (0)
ν (θ = π/3) R2ν Ē (0)

ν (θ = π/6) R2ν Ē (0)
ν (θ = π/6)

0 1 8.21D − 01 1 3.15D − 01 2 3.15D − 01
1 3 1.56D + 00 3 1.39D − 01 6 1.27D − 01
2 5 6.94D − 03 5 7.49D − 03 10 2.01D − 03
3 7 1.71D − 05 7 2.77D − 02 14 1.14D − 04
4 9 2.84D − 07 9 3.34D − 03 18 6.76D − 06
5 11 5.56D − 08 11 2.30D − 05 22 2.27D − 07
6 13 3.44D − 09 13 9.65D − 06 26 4.12D − 09
7 15 6.44D − 11 15 4.78D − 07 30 4.28D − 11
8 17 9.51D − 13 17 1.33D − 07 34 3.97D − 13
9 19 1.01D − 13 19 4.71D − 08 38 2.02D − 14

10 21 3.68D − 14 21 5.69D − 08 42 1.35D − 15
11 23 9.50D − 15 23 4.62D − 10 46 1.18D − 15
12 25 2.63D − 15 25 4.50D − 11 50 1.18D − 15
13 27 6.06D − 16 27 2.17D − 11 54 5.06D − 16
14 29 8.09D − 16 29 5.32D − 11 58 9.10D − 15
15 31 6.27D − 15 31 3.57D − 11 62 9.39D − 14

θ = kπ , k = 0,±1,±2, . . . , where f (θ) has singularities. It is easy to show that
{[cos(2n − 1)θ ]/(2n − 1)} ∈ b(2). Consequently, the d (2)-transformation is very effec-
tive. It turns out that the choice Rl = κ(l + 1) with some positive integer κ is suitable.
When θ is away from the points of singularity, κ = 1 is sufficient. As θ approaches a
point of singularity, κ should be increased. [The choice of the Rl as given here is called
arithmetic progression sampling (APS) and is discussed in detail in Chapter 10.]
Table 6.5.3 presents the results obtained for θ = π/3 and θ = π/6 in double-precision

arithmetic. While machine precision is reached for θ = π/3 with Rl = l + 1, only
11-digit accuracy is achieved for θ = π/6 with the same choice of the Rl . Machine
precision is achieved for θ = π/6 with Rl = 2(l + 1). This phenomenon is analyzed
and explained in detail in later chapters.

Example 6.5.3 Consider the Legendre series
∑∞

n=1
2n+1
n(n+1) Pn(x). This series converges to

the function f (x) = − log[(1− x)/2]− 1 for−1 ≤ x < 1, and it diverges for all other x .
The function f (x) has a branch cut along [1,+∞), whereas it is well-defined for x < −1
even though the series diverges for such x . It is easy to show that { 2n+1

n(n+1) Pn(x)} ∈ b(2).
Consequently, the d (2)-transformation is very effective in this case too. Again, the choice
Rl = κ(l + 1) with some positive integer κ is suitable. When x < 1 and x is away
from 1, the branch point of f (x), κ = 1 is sufficient. As x approaches 1, κ should be
increased.
Table 6.5.4 presents the results obtained for x = 0.3 with Rl = l + 1, for x = 0.9

with Rl = 3(l + 1), and for x = −1.5 with Rl = l + 1, in double-precision arithmetic.
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Table 6.5.4: Relative floating-point errors Ē (0)
ν = |d̄ (2,0)

(ν,ν) − S|/|S| for the Legendre
series of Example 6.5.3 via the d (2)-transformation, with Rl = l + 1 in the third

and seventh columns and with Rl = 3(l + 1) in the fifth column. Here S = f (x), d̄ (2,0)
(ν,ν)

are the computed d (2,0)
(ν,ν) , and R2ν is the number of terms used in computing d (2,0)

(ν,ν) .
d̄ (2,0)
(ν,ν) are computed in double precision (approximately 16 decimal digits)

ν R2ν Ē (0)
ν (x = 0.3) R2ν Ē (0)

ν (x = 0.9) R2ν Ē (0)
ν (x = −1.5)

0 1 4.00D − 01 3 2.26D − 01 1 1.03D + 00
1 3 2.39D − 01 9 1.23D − 01 3 1.07D − 01
2 5 5.42D − 02 15 2.08D − 02 5 5.77D − 04
3 7 1.45D − 03 21 8.43D − 04 7 5.73D − 04
4 9 1.67D − 04 27 9.47D − 05 9 1.35D − 06
5 11 8.91D − 06 33 2.76D − 07 11 2.49D − 09
6 13 7.80D − 07 39 1.10D − 06 13 2.55D − 10
7 15 2.72D − 07 45 1.45D − 07 15 3.28D − 13
8 17 4.26D − 08 51 3.39D − 09 17 3.52D − 13
9 19 3.22D − 09 57 7.16D − 09 19 4.67D − 13

10 21 2.99D − 10 63 2.99D − 10 21 6.20D − 13
11 23 1.58D − 11 69 4.72D − 12 23 2.97D − 13
12 25 2.59D − 13 75 2.28D − 13 25 2.27D − 12
13 27 4.14D − 14 81 1.91D − 14 27 1.86D − 11
14 29 3.11D − 15 87 4.66D − 15 29 3.42D − 11
15 31 3.76D − 15 93 4.89D − 15 31 1.13D − 11

Note that almost machine precision is reached when x = 0.3 and x = 0.9 for which the
series converges. Even though the series diverges for x = −1.5, the d (2)-transformation
produces f (x) to almost 13-digit accuracy. This suggests that the d (m)-transformation
may be a useful tool for analytic continuation. (Note that the accuracy for x = −1.5
decreases as we increase the number of terms of the series used in extrapolation. This is
because the partial sums An are unbounded as n →∞.)

6.6 A Further Class of Sequences in b(m): The Class b̃(m)

In the preceding sections, we presented examples of sequences in b(m) and showed how
we can construct others via Heuristics 6.4.1 and 6.4.2. In this section, we would like to
derive a very general class of sequences in b(m) for arbitrary m. For m = 1, this class
will turn out to be all of b(1). For m ≥ 2, we will see that, even though it is not all of
b(m), it is quite large nevertheless. We derive this class by extending A(γ )

0 and b(1) in an
appropriate fashion.
We note that the contents of this section are related to the paper by Wimp [362].

6.6.1 The Function Class Ã(γ,m)
0 and Its Summation Properties

We start by generalizing the function class A(γ )
0 . In addition to being of interest in itself,

this generalization will also help us keep the notation simple in the sequel.
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Definition 6.6.1 A function α(x) defined for all large x is in the set Ã(γ,m)
0 , m a positive

integer, if it has a Poincaré-type asymptotic expansion of the form

α(x) ∼
∞∑

i=0
αi x

γ−i/m as x →∞. (6.6.1)

In addition, if α0 �= 0 in (6.6.1), then α(x) is said to belong to Ã(γ,m)
0 strictly. Here γ is

complex in general.

With this definition, we obviously have Ã(γ,1)
0 = A(γ )

0 . Furthermore, all the remarks on
the setsA(γ )

0 following Definition 6.1.1 apply to the sets Ã(γ,m)
0 with suitable and obvious

modifications, which we leave to the reader.
It is interesting to note that, if α ∈ Ã(γ,m)

0 , then α(x) =∑m−1
s=0 qs(x), where qs ∈

A(γ−s/m)
0 and qs(x) ∼

∑∞
i=0 αs+mi xγ−s/m−i as x →∞, s = 0, 1, . . . ,m − 1. In other

words,α(x) is the sumofm functionsqs(x), each in a classA
(γs )
0 . Thus, in viewofExample

6.4.4 and by Theorem 6.8.3 of Section 6.8, wemay conclude rigorously that if a sequence
{an} is such that an = α(n), where α ∈ Ã(γ,m)

0 for some γ �= s/m, s = 0, 1, . . . ,m − 1,
then {an} ∈ b(m). Based on this, we realize that the class Ã(γ,m)

0 may become useful in
constructing sequences in b(m), hence deserves some attention.
We start with the following result on the summation properties of functions in Ã(γ,m)

0 .
This result extends the list of remarks that succeeds Definition 6.1.1.

Theorem 6.6.2 Let g ∈ Ã(γ,m)
0 strictly for some γ with g(x) ∼∑∞

i=0 gi x
γ−i/m as

x →∞, and define G(n) =∑n−1
r=1 g(r ). Then

G(n) = b + c log n + G̃(n), (6.6.2)

where b and c are constants and G̃ ∈ Ã(γ+1,m)
0 . If γ �= −1, then G̃ ∈ Ã(γ+1,m)

0 strictly,
while G̃ ∈ Ã(−1/m,m)

0 if γ = −1. If γ + 1 �= i/m, i = 0, 1, . . . , then b is the limit or
antilimit of G(n) as n →∞ and c = 0. When γ + 1 = k/m for some integer k ≥ 0,
c = gk. Finally,

G̃(n) =
m−1∑

i=0
γ−i/m �=−1

gi
γ − i/m + 1

nγ−i/m+1 + O(nγ ) as n →∞. (6.6.3)

Proof. Let N be an arbitrary integer greater than (�γ + 1)m, and define ĝ(x) =
g(x)−∑N−1

i=0 gi xγ−i/m . Thus, ĝ ∈ Ã(γ−N/m,m)
0 , and

∑∞
r=n ĝ(r ) converges since ĝ(x) =

O(xγ−N/m) as x →∞ and �γ − N/m < −1. In fact, UN (n) =
∑∞

r=n ĝ(r ) =
O(nγ−N/m+1) as n →∞. Consequently,

G(n) =
n−1∑

r=1

(N−1∑

i=0
gir

γ−i/m

)

+UN (1)−UN (n)

=
N−1∑

i=0
gi

(n−1∑

r=1
rγ−i/m

)

+UN (1)+ O(nγ−N/m+1) as n →∞. (6.6.4)
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From Example 1.1.4 on the Zeta function series, we know that for γ − i/m �= −1,
n−1∑

r=1
rγ−i/m = ζ (−γ + i/m)+ Ti (n), Ti ∈ A(γ−i/m+1) strictly, (6.6.5)

while if γ − k/m = −1 for some nonnegative integer k,

n−1∑

r=1
rγ−k/m =

n−1∑

r=1
r−1 = log n + C + T̃ (n), T̃ ∈ A(−1) strictly, (6.6.6)

where C is Euler’s constant. The result in (6.6.2) can now be obtained by substituting
(6.6.5) and (6.6.6) in (6.6.4), and recalling that g0 �= 0 and that N is arbitrary. We also
realize that if γ − i/m �= −1, i = 0, 1, . . . , then b = UN (1)+

∑N−1
i=0 giζ (−γ + i/m)

and b is independent of N , and c = 0. If γ − k/m = −1 for a nonnegative integer k, then
b = UN (1) + gkC + ∑N−1

i=0
i �=k

giζ (−γ + i/m) and b is again independent of N , and
c = gk . Finally, (6.6.3) follows from the fact that Ti (n) = 1

γ−i/m+1n
γ−i/m+1 +

O(nγ−i/m) as n →∞ whenever γ − i/m �= −1. �

6.6.2 The Sequence Class b̃(m) and a Characterization Theorem

With the classes Ã(γ,m)
0 already defined, we now go on to define the sequence class b̃(m)

as a generalization of the class b(1).

Definition 6.6.3 A sequence {an} belongs to the set b̃(m) if it satisfies a linear homo-
geneous difference equation of first order of the form an = p(n)�an with p ∈ Ã(q/m,m)

0

for some integer q ≤ m.

Note the analogy between the classes b̃(m) and b(1). Also note that b̃(1) is simply b(1).
Now the difference equation in Definition 6.6.3 can also be expressed as a two-term

recursion relation of the form an+1 = c(n)an with c(n) = 1+ 1/p(n). We make use of
this recursion relation to explore the nature of the sequences in b̃(m). In this respect, the
following theorem that is closely related to the theory of Birkhoff and Trjitzinsky [25]
on general linear difference equations is of major importance.

Theorem 6.6.4

(i) Let an+1 = c(n)an such that c ∈ Ã(µ,m)
0 strictly with µ in general complex. Then an

is of the form

an = [(n − 1)!]µ exp [Q(n)] nγw(n), (6.6.7)

where

Q(n) =
m−1∑

i=0
θi n

1−i/m and w ∈ Ã(0,m)
0 strictly. (6.6.8)
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Given that c(n) ∼∑∞
i=0 cin

µ−i/m as n →∞, we have

eθ0 = c0; θi = εi

1− i/m
, i = 1, . . . ,m − 1; γ = εm, (6.6.9)

where the εi are defined via

m∑

s=1

(−1)s+1
s

( m∑

i=1

ci
c0

zi
)s

=
m∑

i=1
εi z

i + O(zm+1) as z → 0. (6.6.10)

(ii) The converse is also true, that is, if an is as in (6.6.7) and (6.6.8), then an+1 = c(n)an

with c ∈ Ã(µ,m)
0 strictly.

(iii) Finally, (a) θ1 = · · · = θm−1 = 0 if and only if c1 = · · · = cm−1 = 0, and
(b) θ1 = · · · = θr−1 = 0 and θr �= 0 if and only if c1 = · · · = cr−1 = 0 and
cr �= 0, r ∈ {1, . . . ,m − 1}.

Remark. When m = 1, we have an = [(n − 1)!]µζ nnγw(n), with ζ = c0, γ = c1/c0,
and w(n) ∈ A(0)

0 strictly, as follows easily from (6.6.7)–(6.6.10) above.

Proof. We start with the fact that an = a1
(∏n−1

r=1 c(r )
)
. Next, writing c(x) = c0xµu(x),

where u ∈ Ã(0,m)
0 and u(x) ≡ 1+ v(x) ∼ 1+∑∞

i=1(ci/c0)x
−i/m as x →∞, we obtain

an = a1c
n−1
0 [(n − 1)!]µ

(n−1∏

r=1
u(r )

)

. (6.6.11)

Now

n−1∏

r=1
u(r ) = exp

(n−1∑

r=1
log u(r )

)

= exp

(n−1∑

r=1
log[1+ v(r )]

)

. (6.6.12)

By the fact that log(1+ z) =∑∞
s=1

(−1)s+1
s zs for |z| < 1 and v(x) = O(x−1/m) = o(1)

as x →∞, it follows that log u(x) =∑∞
s=1

(−1)s+1
s [v(x)]s for all large x . Since this

(convergent) series also gives the asymptotic expansionof log u(x) as x →∞,we see that
log u(x) ∈ Ã(−1/m,m)

0 . Actually, log u(x) ∼∑∞
i=1 εi x

−i/m as x →∞, where ε1, . . . , εm
are defined exclusively by c1/c0, . . . , cm/c0 as in (6.6.10). Applying now Theorem 6.6.2
to the sum

∑n−1
r=1 log u(r ), we obtain

n−1∑

r=1
log u(r ) = b + εm log n + T (n), T ∈ Ã(1−1/m,m)

0 , (6.6.13)

where T (n) =∑m−1
i=1 θi n1−i/m + O(1) as n →∞ with θ1, . . . , θm−1 as in (6.6.9), and

b is a constant. The result now follows by combining (6.6.11)–(6.6.13) and defin-
ing θ0 and γ as in (6.6.9). This completes the proof of part (i). Also, by (6.6.9) and
(6.6.10), it is clear that c1 = · · · = cm−1 = 0 forces ε1 = · · · = εm−1 = 0, which in turn
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forces θ1 = · · · = θm−1 = 0. Next, if c1 �= 0, then ε1 = c1/c0 �= 0 and hence θ1 = ε1/

(1− 1/m) �= 0. Finally, if c1 = · · · = cr−1 = 0 and cr �= 0, then ε1 = · · · = εr−1= 0
and εr = cr/c0 �= 0 and hence θr = εr/(1− r/m) �= 0, r ∈ {1, . . . ,m − 1}. This
proves half of part (iii) that assumes the conditions of part (i).
For the proof of part (ii), we begin by forming c(n) = an+1/an . We obtain

c(n) = nµ(1+ n−1)
γ w(n + 1)

w(n)
exp [�Q(n)] ; �Q(n) = Q(n + 1)− Q(n).

(6.6.14)

Now X (n) ≡ (1+ n−1)γ , Y (n) ≡ w(n + 1)/w(n), and Z (n) ≡ exp [�Q(n)] are each
in Ã(0,m)

0 strictly. For X (n) and Y (n), this assertion can be verified in a straightforward
manner. For Z (n), its truth follows from the fact that�Q(n) = Q(n + 1)− Q(n) is either
a constant or is in Ã(0,m)

0 . This completes the proof of part (ii). A more careful study is
needed to prove the second half of part (iii) that assumes the conditions of part (ii). First,
we have X (n) = 1+ O(n−1) as n →∞. Next, Y (n) = 1+ O(n−1−1/m) as n →∞.
This is a result of the not so obvious fact that sincew(n) =∑m

i=0wi n−i/m + O(n−1−1/m)
as n →∞, then w(n + 1) =∑m

i=0wi n−i/m + O(n−1−1/m) as n →∞ as well. As for
Z (n), we have two different cases: When θ1 = · · · = θm−1 = 0, we have �Q(n) = θ0,
from which Z (n) = eθ0 . When θ1 = · · · = θr−1 = 0 and θr �= 0, r ∈ {1, . . . ,m − 1},
we have

�Q(n) = θ0 +
m−1∑

i=r

θi (1− i/m)n−i/m[1+ O(n−1)]

= θ0 +
m−1∑

i=r

θi (1− i/m)n−i/m + O(n−1−r/m) as n →∞.

Exponentiating �Q(n), we obtain

Z (n) = eθ0 [1+ θr (1− r/m)n−r/m + O(n−(r+1)/m)] as n →∞.

Combining everything in (6.6.14), the second half of part (iii) now follows. �

The next theorem gives necessary and sufficient conditions for a sequence {an} to be
in b̃(m). In this sense, it is a characterization theorem for sequences in b̃(m). Theorem
6.6.4 becomes useful in the proof.

Theorem6.6.5 A sequence {an} is in b̃(m) if and only if its members satisfy an+1 = c(n)an

with c ∈ Ã(s/m,m)
0 for an arbitrary integer s and c(n) �= 1+ O(n−1−1/m) as n →∞.

Specifically, if an is as in (6.6.7) with (6.6.8) and withµ = s/m, then an = p(n)�an with
p ∈ Ã(σ,m)

0 strictly, whereσ = q/m andq is an integer≤ m. In particular, (i)σ = 1when
µ = 0, Q(n) ≡ 0, and γ �= 0, (ii) σ = r/m when µ = 0, Q(n) =∑m−1

i=r θi n1−i/m with
θr �= 0, for r ∈ {0, 1, . . . ,m − 1}, (iii) σ = 0 when µ < 0, and (iv) σ = −µ = −s/m
when µ > 0.
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Proof. The first part can be proved by analyzing p(n) = [c(n)− 1]−1 when c(n) is given,
and c(n) = 1+ 1/p(n) when p(n) is given. The second part can be proved by invoking
Theorem 6.6.4. We leave the details to the reader. �

6.6.3 Asymptotic Expansion of An When {an} ∈ b̃(m)

With Theorems 6.6.2–6.6.5 available, we go on to the study of the partial sums An =∑n
k=1 ak when {an} ∈ b̃(m) with an = O(nλ) as n →∞ for some λ. [At this point it

is worth mentioning that Theorem 6.6.4 remains valid when Q(n) there is replaced by
θ (n), θ ∈ Ã(1,m)

0 , and we use this fact here.] More specifically, we are concerned with the
following cases in the notation of Theorem 6.6.5:

(i) an = h(n) ∈ Ã(γ,m)
0 strictly for some γ �= −1+ i/m, i = 0, 1, . . . . In this case,

an = p(n)�an with p ∈ Ã(σ,m)
0 strictly, σ = 1.

(ii) an = eθ (n)h(n), where h ∈ Ã(γ,m)
0 strictly for arbitrary γ and θ ∈ Ã(1−r/m,m)

0 strictly
for some r ∈ {0, 1, . . . ,m − 1}, and either (a) limn→∞�θ (n) = −∞, or (b)
limn→∞�θ (n) is finite. In this case, an = p(n)�an with p ∈ Ã(σ,m)

0 strictly, σ =
r/m, thus 0 ≤ σ < 1.

(iii) an = [(n − 1)!]µeθ (n)h(n), where h ∈ Ã(γ,m)
0 strictly for arbitrary γ , θ ∈ Ã(1,m)

0 and
is arbitrary, andµ = s/m for an arbitrary integer s < 0. In this case, an = p(n)�an

with p ∈ Ã(σ,m)
0 strictly, σ = 0.

We already know that, in case (i),
∑∞

k=1 ak converges only when �γ < −1. In case (ii),∑∞
k=1 ak converges (a) for all γ when limn→∞�θ(n) = −∞ and (b) for �γ < −r/m

when limn→∞�θ (n) is finite. In case (iii), convergence takes place always. In all other
cases,

∑∞
k=1 ak diverges. The validity of this assertion in cases (i), (ii-a), and (iii) is

obvious, for case (ii-b) it follows from Theorem 6.6.6 below. Finally, in case (ii-a)
|an| ∼ C1n�γ e�θ (n) asn →∞, whereas in case (ii-b) |an| ∼ C2n�γ asn →∞. A similar
relation holds for case (iii).

Theorem 6.6.6 Let {an} ∈ b̃(m) be as in the previous paragraph. Then there exist a
constant S({ak}) and a function g ∈ Ã(0,m)

0 strictly such that

An−1 = S({ak})+ nσan g(n), (6.6.15)

whether
∑∞

k=1 ak converges or not.

Remark. In case m = 1 and
∑∞

k=1 ak converges, this theorem is a special case of
Theorem 6.1.12 as can easily be verified.

Proof. We start with the proof of case (i) as it is the simplest. In this case, Theorem 6.6.2
applies, and we have An−1 = b + V (n), where V ∈ Ã(γ+1,m)

0 strictly. Because nan =
nh(n) ∈ Ã(γ+1,m)

0 strictly as well, g(n) ≡ V (n)/(nan) is in Ã(0,m)
0 strictly. The result in

(6.6.15) now follows by identifying S({ak}) = b.
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For cases (ii) and (iii), we proceed by applying “summation by parts”, namely,

s∑

k=r

xk�yk = xs ys+1 − xr−1yr −
s∑

k=r

(�xk−1)yk, (6.6.16)

to An−1 =
∑n−1

k=1 ak =
∑n−1

k=1 p(k)�ak :

n−1∑

k=1
ak = p(n − 1)an −

n−1∑

k=1
[�p(k − 1)]ak, (6.6.17)

where we have defined p(k) = 0 for k ≤ 0. (Hence ak = 0 for k ≤ 0 too.) We can now
do the same with the series

∑n−1
k=1[�p(k − 1)]ak and repeat as many times as we wish.

This procedure can be expressed in a simple way by defining

u0(n) = 1; vi+1(n) = p(n − 1)ui (n − 1), ui+1(n) = −�vi+1(n), i = 0, 1, . . . .
(6.6.18)

With these definitions, we have by summation by parts

n−1∑

k=1
ui (k)ak = vi+1(n)an +

n−1∑

k=1
ui+1(k)ak, i = 0, 1, . . . . (6.6.19)

Summing all these equations, we obtain

An−1 =
[ N∑

i=1
vi (n)

]

an +
n−1∑

k=1
uN (k)ak, (6.6.20)

for any positive integer N . Now, by the fact that p ∈ Ã(σ,m)
0 strictly, we have ui ∈ Ã(τi ,m)

0

and vi ∈ Ã(τi+1,m)
0 , where τi = i(σ − 1), i = 1, 2, . . . . In addition, by the fact that

v1(n) = p(n − 1), v1 ∈ Ã(σ,m)
0 strictly. Let us pick N > (1+�γ )/(1− σ ) so that τN +

�γ < −1. Then, the infinite series∑∞
k=1 uN (k)ak converges, and we can write

An−1 =
∞∑

k=1
uN (k)ak +

[ N∑

i=1
vi (n)

]

an −
∞∑

k=n

uN (k)ak . (6.6.21)

Realizing that {vi (n)}∞i=1 is an asymptotic sequence as n →∞ and expanding the func-
tions vi (n), we see that

N∑

i=1
vi (n) =

νr∑

i=0
βi n

σ−i/m + O(vr (n)) as n →∞, β0 �= 0, r ≤ N , (6.6.22)

where the integer νr is defined via σ − (νr + 1)/m = τr + 1. Here β0, β1, . . . , βνr are
obtained by expanding only v1(n), . . . , vr−1(n), and are not affected by vi (n), i ≥ r . In
addition, by the asymptotic behavior of |an| mentioned above, we also have

∞∑

k=n

uN (k)ak = O(nτN+1an) as n →∞. (6.6.23)
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Combining (6.6.20)–(6.6.23), we obtain

An−1 = S({ak})+ nσ
[ νr∑

i=0
βi n

−i/m + O(n−(νr+1)/m)
]

an as n →∞, (6.6.24)

with S({ak}) =
∑∞

k=1 uN (k)ak . This completes the proof. [Note that S({ak}) is indepen-
dent of N despite its appearance.] �

Remarks.

1. When
∑∞

k=1 ak does not converge, we can say the following about S({ak}): In case
(i), S({ak}) is the analytic continuation of the sum of

∑∞
k=1 ak in γ at least when

an = nγw(n) with w(n) independent of γ . In case (ii), S({ak}) is the Abelian mean
defined by limε→0+

∑∞
k=1 e

−εk1/mak . It is also related to generalized functions as we
will see when we consider the problem of the summation of Fourier series and their
generalizations. [When

∑∞
k=1 ak converges, we have S({ak}) =

∑∞
k=1 ak .]

2. Because the asymptotic expansion of An as n →∞ is of one and the same form
whether

∑∞
k=1 ak converges or not, the d̃ (m)-transformation that we define next can be

applied to approximate S({ak}) in all cases considered above. We will also see soon
that the d (m)-transformation can be applied effectively as {ak} ∈ b̃(m) implies at least
heuristically that {ak} ∈ b(m).

6.6.4 The d̃ (m)-Transformation

Adding an to both sides of (6.6.15), and recalling that σ = q/m for q ∈ {0, 1, . . . ,m}
and w ∈ Ã(0,m)

0 , we observe that

An ∼ S({ak})+ nσan

∞∑

i=0
βi n

−i/m as n →∞, (6.6.25)

with all βi exactly as in (6.6.24) except βq , to which we have added 1. This means that
An is analogous to a function A(y) ∈ F(1) in the following sense: An ↔ A(y), n−1 ↔ y,
nσan ↔ φ1(y), r1 = 1/m, and S({ak})↔ A. The variable y is discrete and assumes the
values 1, 1/2, 1/3, . . . . Thus, we can apply GREP(1) to A(y) to obtain good approxi-
mations to A. In case we do not wish to bother with the exact value of σ , we can simply
replace it by 1, its maximum possible value, retaining the form of (6.6.25) at the same
time. That is to say, we now have nan ↔ φ1(y). As we recall, the W-algorithm can be
used to implement GREP(1) very efficiently. (Needless to say, if we know the exact value
of σ , especially σ = 0, we should use it.)
For the sake of completeness, here are the equations that define GREP(1) for the

problem at hand:

ARl = d̃ (m, j)
n + Rσ̂

l aRl

n−1∑

i=0

β̄ i

(Rl + α)i/m
, j ≤ l ≤ j + n, (6.6.26)

where σ̂ = σ when σ is known or σ̂ = 1 otherwise. Again, α > −R0 and a good choice
is α = 0. We call this GREP(1) the d̃ (m)-transformation.
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Again, for the sake of completeness, we also give the implementation of this new
transformation (with α = 0) via the W-algorithm:

M ( j)
0 = ARj

ωR j

, N ( j)
0 = 1

ωR j

, j ≥ 0; ωr = r σ̂ (�Ar−1),

M ( j)
n = M ( j+1)

n−1 − M ( j)
n−1

R−1/mj+n − R−1/mj

, N ( j)
n = N ( j+1)

n−1 − N ( j)
n−1

R−1/mj+n − R−1/mj

, j ≥ 0, n ≥ 1,

d̃ (m, j)
n = M ( j)

n

N ( j)
n

, j, n ≥ 0.

6.6.5 Does {an} ∈ b̃(m) Imply {an} ∈ b(m)? A Heuristic Approach

Following Definition 6.6.1, we concluded in a rigorous manner that if an = α(n),
α ∈ Ã(γ,m)

0 , then, subject to some condition on γ , {an} ∈ b(m). Subject to a similar condi-
tion on γ , we know from Theorem 6.6.5 that this sequence is in b̃(m) as well. In view of
this, we now ask whether every sequence in b̃(m) is also in b(m). In the sequel, we show
heuristically that this is so. We do this again by relaxing the conditions on the set b(m),
exactly as was done in Subsection 6.4.2.
We start with the fact that an+1 = c(n)an , where c ∈ Ã(s/m,m)

0 for an arbitrary integer
s. We now claim that we can find functions δk ∈ A(νk )

0 , νk integer, k = 0, 1, . . . ,m − 1,
such that

an+m =
m−1∑

k=0
δk(n)an+k, (6.6.27)

provided a certain matrix is nonsingular. Note that we can always find functions δk(n)
not necessarily in A(νk )

0 , νk integer, for which (6.6.27) holds.
Using an+1 = c(n)an , we can express (6.6.27) in the form

gm(n)an =
m−1∑

k=0
δk(n)gk(n)an, (6.6.28)

where g0(n) = 1 and gk(n) =
∏k−1

j=0 c(n + j), k ≥ 1. We can ensure that (6.6.28) holds
if we require

gm(n) =
m−1∑

k=0
δk(n)gk(n). (6.6.29)

As gk ∈ Ã(ks/m,m)
0 , we can decompose it as in

gk(n) =
m−1∑

i=0
n−i/mgki (n), gki ∈ A(γki )

0 with γki integer, (6.6.30)

as we showed following Definition 6.6.1. Substituting (6.6.30) in (6.6.29), and equating
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the coefficients of n−i/m on both sides, we obtain

gm0(n) = δ0(n)+
m−1∑

k=1
gk0(n)δk(n)

gmi (n) =
m−1∑

k=1
gki (n)δk(n), i = 1, . . . ,m − 1. (6.6.31)

Therefore, provided det [gki (n)]
m−1
k,i=1 �= 0, there is a solution for δk(n) ∈ A(νk )

0 , νk integer,
k = 0, 1, . . . ,m − 1, for which (6.6.27) is valid, implying that {an} ∈ b(m), with the
conditions on b(m) relaxed as mentioned above.
For m = 2, the solution of (6.6.31) is immediate. We have δ1(n) = g21(n)/g11(n) and

δ0(n) = g20(n)− g10(n)δ1(n), provided g11(n) �≡ 0. With this solution, it can be shown
at least in some cases that {an} ∈ b̃(2) and

∑∞
k=1 ak convergent imply that {an} ∈ b(2),

with b(2) as described originally in Definition 6.1.2, that is, an =
∑2

k=1 pk(n)�kan,

pk ∈ A(k)
0 , k = 1, 2. Let us now demonstrate this with two examples.

Example 6.6.7 When c(n) = n−1/2, we have p1(n) = 2{[n(n + 1)]−1/2 − 1}−1 and
p2(n) = 1

2 p1(n) and p1, p2 ∈ A(0) strictly. Thus, {an} ∈ b(2) as in Definition 6.1.2. Note
that an = a1/

√
(n − 1)! in this example.

Example 6.6.8 Assume c(n) ∼∑∞
i=0 cin

−i/2 with c0 = 1 and c1 �= 0. (Recall that
when µ = 0 and c0 = 1, it is necessary that |c1| + |c2| �= 0 for {an} ∈ b̃(2), from Theo-
rem 6.6.5.) After tedious manipulations, it can be shown that

p1(n) = 1

2c21
(1− 4c2)+ O(n−1) and p2(n) = 1

c21
n + O(1) as n →∞,

so that p1 ∈ A(0)
0 and p2 ∈ A(1)

0 strictly. Thus, {an} ∈ b(2) as in Definition 6.1.2. Note
that an = e2c1

√
nu(n), where u ∈ Ã(γ,2)

0 for some γ in this case, as follows from Theo-
rem 6.6.4.

We can now combine the developments above with Heuristics 6.4.1 and 6.4.2 to study
sequences {an} that lookmore complicated than the oneswe encountered in Sections 6.1–
6.4 and the new ones we encountered in this section. As an example, let us look at
an = g(n) cos(h(n)), where g ∈ Ã(γ,m)

0 and h ∈ Ã(1,m)
0 . We first notice that an = a+n +

a−n , where a±n = 1
2g(n)e

±ih(n). Next, by the fact that h(n) ∼∑∞
i=0 hin1−i/m as n →∞,

we can write h(n) = h̃(n)+ ĥ(n), where h̃(n) =∑m−1
i=0 hin1−i/m and ĥ ∈ Ã(0,m)

0 . As a
result, e±ih(n) = e±ih̃(n)e±iĥ(n). Now since e±iĥ(n) ∈ Ã(0,m)

0 , we have that a±n = u(n)e±ih̃(n)

with u(n) = 1
2g(n)e

iĥ(n) ∈ Ã(γ,m)
0 , satisfies {a±n } ∈ b̃(m) by Theorem 6.6.4, and hence

{a±n } ∈ b(m). Finally, {an = a+n + a−n } ∈ b(2m) by Heuristic 6.4.1.
We end this section by mentioning that, if an = h(n) ∈ Ã(γ,m)

0 , such that γ �=
−1+ i/m, i = 0, 1, . . . , then {an} ∈ b(m) in the strict sense of Definition 6.1.2. This
follows from Theorem 6.8.3 of Section 6.8.
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6.7 Summary of Properties of Sequences in b(1)

From Heuristic 6.4.1 and Example 6.4.4, it is seen that sequences in b(1) are important
building blocks for sequences inb(m) with arbitrarym. They also have been a common test
ground for different convergence acceleration methods. Therefore, we summarize their
properties separately. We start with their characterization theorem that is a consequence
of Theorem 6.6.5.

Theorem 6.7.1 The following statements concerning sequences {an} are equivalent:

(i) {an} ∈ b(1), that is, an = p(n)�an, where p ∈ A(σ )
0 strictly, σ being an integer≤ 1.

(ii) an+1 = c(n)an, where c ∈ A(µ)
0 strictly and µ is an integer, such that c(n) �=

1+ O(n−2) as n →∞.
(iii) an = [(n − 1)!]µζ nh(n) with µ an integer and h ∈ A(γ )

0 strictly, such that either (a)
µ = 0, ζ = 1, and γ �= 0, or (b) µ = 0 and ζ �= 1, or (c) µ �= 0.

With σ and µ as in statements (i) and (ii), respectively, we have (a) σ = 1 when µ = 0,
ζ = 1, and γ �= 0, (b) σ = 0 when µ = 0 and ζ �= 1, and (c) σ = min{0,−µ} when
µ �= 0.

Note that, in statements (iii-a) and (iii-b) of this theorem,wehave thatan = h(n) ∈ A(γ )
0

and an = ζ nh(n) with h ∈ A(γ )
0 , respectively; these are treated in Examples 6.1.10 and

6.1.11, respectively.
The next result on the summation properties of sequences {an} in b(1) is a consequence

of Theorem 6.6.6, and it combines a few theorems that were originally given by Sidi
[270], [273], [294], [295] for the different situations. Here we are using the notation of
Theorem 6.7.1.

Theorem 6.7.2 Let an be as in statement (iii) of the previous theorem with µ ≤ 0. That
is, either (a) an = h(n) with h ∈ A(γ )

0 , such that γ �= −1, 0, 1, . . . ; or (b) an = ζ nh(n)
with ζ �= 1, |ζ | ≤ 1, and h ∈ A(γ )

0 with γ arbitrary; or (c) an = [(n − 1)!]−rζ nh(n) with
r = 1, 2, . . . , and h ∈ A(γ )

0 , ζ and γ being arbitrary. Then, there exist a constant S({ak})
and a function g ∈ A(0)

0 strictly such that

An−1 = S({ak})+ nσan g(n), (6.7.1)

where σ ≤ 1 is an integer. With g(n) ∼∑∞
i=0 gin

−i as n →∞, there holds σ = 1 and
g0 = γ−1 in case (a); σ = 0 and g0 = (ζ − 1)−1 in case (b); while σ = 0 and g0 = −1,
gi = 0, 1 ≤ i ≤ r − 1, and gr = −ζ in case (c). All this is true whether

∑∞
k=1 ak con-

verges or not. [In case (c), the series always converges.]

In case (a) of Theorem 6.7.2, we have

(An − S({ak}))/(An−1 − S({ak})) ∼ an+1/an ∼ 1 as n →∞.

Sequences {An} with this property are called logarithmic, whether they converge or not.

In case (b) of Theorem 6.7.2, we have

(An − S({ak}))/(An−1 − S({ak})) ∼ an+1/an ∼ ζ �= 1 as n →∞.
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Sequences {An}with this property are called linear, whether they converge or not. When
ζ is real and negative the series

∑∞
k=1 ak is known as an alternating series, and when ζ

is real and positive it is known as a linear monotone series.
In case (c) of Theorem 6.7.2, we have

(An − S({ak}))/(An−1 − S({ak})) ∼ an+1/an ∼ ζn−r as n →∞.

Since An − S({ak}) tends to zero practically like 1/(n!)r in this case, sequences {An}
with this property are called factorial.
Again, in case (b), the (power) series

∑∞
k=1 ak converges for |ζ | < 1, the limit S({ak})

being an analytic function of ζ inside the circle |ζ | < 1, with a singularity at ζ = 1. Let
us denote this function f (ζ ). By restricting the an further, we can prove that (6.7.1) is
valid also for all |ζ | ≥ 1 and ζ �∈ [1,∞), S({ak}) being the analytic continuation of f (ζ ),
whether

∑∞
k=1 ak converges or not. (Recall that convergence takes place when |ζ | = 1

provided�γ < 0, while
∑∞

k=1 ak diverges when |ζ | > 1 with any γ .) This is the subject
of the next theorem that was originally given by Sidi [294]. (At this point it may be a
good idea to review Example 4.1.8.)

Theorem 6.7.3 Let an = ζ nh(n), where h ∈ A(γ )
0 strictly for some arbitrary γ and

h(n) = nqw(n), where w(n) = ∫∞
0 e−ntψ(t) dt with ψ(t) = O(ect ) as t →∞ for some

c < 1 andψ(t) ∼∑∞
i=0 αi t−ω−1+i as t → 0+, such that (i) q = 0 andω = γ if �γ < 0

and (ii) q = ��γ � + 1 and ω = γ − q if �γ ≥ 0. Then, for all complex ζ not in the
real interval [1,+∞), there holds

An−1 = f (ζ )+ an g(n); f (ζ ) =
(

ζ
d

dζ

)q ∫ ∞

0

ζψ(t)

et − ζ
dt, g ∈ A(0)

0 strictly. (6.7.2)

Clearly, f (ζ ) is analytic in the complex ζ -plane cut along the real interval [1,+∞).

Proof. We start with the fact that

An−1 =
n−1∑

k=1
ζ kkqw(k) =

(

ζ
d

dζ

)q[n−1∑

k=1
ζ kw(k)

]

=
(

ζ
d

dζ

)q ∫ ∞

0

[n−1∑

k=1
(ζe−t )k

]

ψ(t) dt.

From this and from the identity
∑n−1

k=1 z
k = (z − zn)/(1− z), we obtain

An−1 = f (ζ )−
∫ ∞

0
e−ntψ(t)

{(

ζ
d

dζ

)q
ζ n

1− ζe−t

}

dt. (6.7.3)

As
(
ζ d

dζ

)q ζ n

1−ζe−t = ζ n
∑q

i=0 βi (ζ, t)ni with βq (ζ, t) = (1− ζe−t )−1 ∼ (1− ζ )−1 �= 0
as t → 0+, application of Watson’s lemma to the integral term in (6.7.3) produces
An−1 − f (ζ ) = ζ nu(n) with u ∈ A(γ )

0 strictly. Setting g(n) = u(n)/h(n), the result in
(6.7.2) now follows. �

Turning things around in Theorem 6.7.2, we next state a theorem concerning logarith-
mic, linear, and factorial sequences that will be of use in the analysis of other sequence
transformations later. Note that the two theorems imply each other.
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Theorem 6.7.4

(i) If An ∼ A +∑∞
i=0 αi nγ−i as n →∞, α0 �= 0, γ �= 0, 1, . . . , that is, {An} is a

logarithmic sequence, then

An ∼ A + n(�An)
∞∑

i=0
βi n

−i as n →∞, β0 = γ−1 �= 0.

(ii) If An ∼ A + ζ n
∑∞

i=0 αi nγ−i as n →∞, ζ �= 1, α0 �= 0, that is, {An} is a linear
sequence, then

An ∼ A + (�An)
∞∑

i=0
βi n

−i as n →∞, β0 = (ζ − 1)−1 �= 0.

(iii) If An ∼ A + (n!)−rζ n
∑∞

i=0 αi nγ−i as n →∞, r = 1, 2, . . . , α0 �= 0, that is, {An}
is a factorial sequence, then

An ∼ A + (�An)

(

−1+
∞∑

i=r

βi n
−i

)

as n →∞, βr = −ζ �= 0.

Remark. In Theorems 6.7.2–6.7.4, we have left out the cases in which an =
[(n − 1)!]µζ nh(n) with µ = r = 1, 2, . . . , and h(n) ∈ A(γ )

0 . Obviously, in such a case,
An diverges wildly. As shown in Section 19.4, An actually satisfies

An ∼ an

(

1+
∞∑

i=r

βi n
−i

)

as n →∞, βr = ζ−1. (6.7.4)

In otherwords, {An} diverges factorially. Furthermore,when h(n) is independent of ζ and
h(n) = nω

∫∞
0 e−ntϕ(t) dt for some integer ω ≥ 0 and some ϕ(t) of exponential order,

the divergent series
∑∞

k=1 ak has a (generalized) Borel sum, which, as a function of ζ , is
analytic in the ζ -plane cut along the real interval [0,+∞). This result is a special case
of the more general ones proved in Sidi [285]. The fact that An satisfies (6.7.4) suggests
that the d (1)-transformation, and, in particular, the L- and S-transformations, could be
effective in summing

∑∞
k=1 ak . Indeed, the latter two turn out to be very effective; they

produce approximations to the (generalized) Borel sum of
∑∞

k=1 ak , as suggested by
the numerical experiments of Smith and Ford [318], Bhattacharya, Roy, and Bhowmick
[22], and Grotendorst [116].

6.8 A General Family of Sequences in b(m)

We now go back to the sequences {an} considered in Example 6.4.4 and study them
more closely. In Theorems 6.8.3 and 6.8.7, we show that two important classes of such
sequences are indeed in b(m) for some m strictly in accordance with Definition 6.1.2.
Obviously, this strengthens the conclusions of Example 6.4.4. From Theorems 6.8.4
and 6.8.8, it follows in a rigorous manner that the d (m)-transformation can be applied
effectively to the infinite series

∑∞
k=1 ak associated with these sequences. As a pleasant

outcome of this study, we also see in Theorems 6.8.5 and 6.8.9 that the d-transformation
can be used very effectively to accelerate the convergence of two important classes of
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sequences even when there is not enough quantitative information about the asymp-
totic behavior of the sequence elements. We note that all the results of this section
are new. We begin with the following useful lemma that was stated and proved as
Lemma 1.2 in Sidi [305].

Lemma 6.8.1 Let Qi (x) =
∑i

j=0 ai j x
j , with aii �= 0, i = 0, 1, . . . , n, and let xi , i =

0, 1, . . . , n, be arbitrary points. Then
∣
∣
∣
∣
∣
∣
∣
∣
∣

Q0(x0) Q0(x1) · · · Q0(xn)
Q1(x0) Q1(x1) · · · Q1(xn)

...
...

...
Qn(x0) Qn(x1) · · · Qn(xn)

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
( n∏

i=0
aii

)

V (x0, x1, . . . , xn), (6.8.1)

where V (x0, x1, . . . , xn) =
∏

0≤i< j≤n(x j − xi ) is a Vandermonde determinant.

Proof. As can easily be seen, it is enough to consider the case aii = 1, i = 0, 1, . . . , n.
Let us now perform the following elementary row transformations in the determinant on
the left-hand side of (6.8.1):

for i = 1, 2, . . . , n do
for j = 0, 1, . . . , i − 1 do

multiply ( j + 1)st row by ai j and subtract from (i + 1)st row
end for

end for

The result of these transformations is V (x0, x1, . . . , xn). �

The developments we present in the following two subsections parallel each other,
even though there are important differences between the sequences that are considered
in each.We would also like to note that the results of Theorems 6.8.4 and 6.8.8 below are
stronger versions of the result of Theorem 6.1.12 for the sequences {an} of this section
in the sense that they do not assume that

∑∞
k=1 ak converges.

6.8.1 Sums of Logarithmic Sequences

Lemma 6.8.2 Let an =
∑m

i=1 hi (n), where hi ∈ A(γi )
0 strictly for some distinct γi �=

0, 1, . . . . Then, with any integer r ≥ 0, there holds hi (n) =
∑m+r−1

k=r vik(n)nk�kan for
each i , where vik ∈ A(0)

0 for all i and k.

Proof. First, hi (n) ∼ αi nγi as n →∞, for some αi �= 0. Consequently, �khi (n) =
n−kuik(n)hi (n) with uik ∈ A(0)

0 strictly, uik(n) = [γi ]k + O(n−1) as n →∞, where we
have defined [x]k = x(x − 1) · · · (x − k + 1), k = 1, 2, . . . . (We also define ui0(n) = 1
and [x]0 = 1 for every x .) Thus, with any nonnegative integer r , the hi (n) satisfy the
linear system

m∑

i=1
uik(n)hi (n) = nk�kan, k = r, r + 1, . . . ,m + r − 1,
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that can be solved for the hi (n) by Cramer’s rule. Obviously, because uik ∈ A(0)
0 for all

i and k, all the minors of the matrix of this system, namely, of

M(n) =








u1r (n) u2r (n) · · · umr (n)
u1,r+1(n) u2,r+1(n) · · · um,r+1(n)

...
...

...
u1,m+r−1(n) u2,m+r−1(n) · · · um,m+r−1(n)







,

are in A(0)
0 . More importantly, its determinant is in A(0)

0 strictly. To prove this last
point, we replace uik(n) in detM(n) by its asymptotic behavior and use the fact that
[x]q+r = [x]r · [x − r ]q to factor out [γi ]r from the i th column, i = 1, . . . ,m. (Note
that [γi ]r �= 0 by our assumptions on the γi .) This results in

detM(n) ∼
( m∏

i=1
[γi ]r

)

∣
∣
∣
∣
∣
∣
∣
∣
∣

[γ1 − r ]0 [γ2 − r ]0 · · · [γm − r ]0
[γ1 − r ]1 [γ2 − r ]1 · · · [γm − r ]1
...

...
...

[γ1 − r ]m−1 [γ2 − r ]m−1 · · · [γm − r ]m−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

as n →∞,

which, upon invoking Lemma 6.8.1, gives

detM(n) ∼
( m∏

i=1
[γi ]r

)

V (γ1, γ2, . . . , γm) �= 0 as n →∞.

Here, we have used the fact that [x]k is a polynomial in x of degree exactly k and the
assumption that the γi are distinct. Completing the solution by Cramer’s rule, the result
follows. �

In the following two theorems, we use the notation of the previous lemma. The first
of these theorems is a rigorous version of Example 6.4.4, while the second is concerned
with the summation properties of the sequences {an} that we have considered so far.

Theorem 6.8.3 Let an =
∑m

i=1 hi (n), where hi ∈ A(γi )
0 strictly for some distinct γi �=

0, 1, . . . . Then {an} ∈ b(m).

Proof. Let us first invoke Lemma 6.8.2 with r = 1 in an =
∑m

i=1 hi (n). We obtain
an =

∑m
k=1 pk(n)�kan with pk(n) = nk

∑m
i=1 vik(n), k = 1, . . . ,m. By the fact that

vik are all in A(0)
0 , we have that pk ∈ A(k)

0 for each k. The result follows by recalling
Definition 6.1.2. �

Theorem 6.8.4 Let an =
∑m

i=1 hi (n), where hi ∈ A(γi )
0 strictly for some distinct γi �=

−1, 0, 1, 2, . . . . Then, whether
∑∞

k=1 ak converges or not, there holds

An−1 = S({ak})+
m−1∑

k=0
nk+1(�kan)gk(n), (6.8.2)

where S({ak}) is the sum of the limits or antilimits of the series
∑∞

k=1 hi (k), which exist
by Theorem 6.7.2, and gk ∈ A(0)

0 for each k.
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Proof. By Theorem 6.7.2, we first have

An−1 = S({ak})+
m∑

i=1
nhi (n)wi (n),

where wi ∈ A(0)
0 for each i . Next, hi (n) =

∑m−1
k=0 vik(n)n

k�kan by Lemma 6.8.2 with
r = 0. Combining these results, we obtain (6.8.2) with gk(n) =

∑m
i=1 vik(n)wi (n) for

k = 0, 1, . . . ,m − 1. �

A Special Application

The techniques we have developed in this subsection can be used to show that the d-
transformation will be effective in computing the limit or antilimit of a sequence {Sn},
for which

Sn = S +
m∑

i=1
Hi (n), (6.8.3)

where Hi ∈ A(σi )
0 for some σi that are distinct and satisfy σi �= 0, 1, . . . , and S is the

limit or antilimit.
Such sequences arise, for example, when one applies the trapezoidal rule to integrals

over a hypercube or a hypersimplex of functions that have algebraic singularities along
the edges or on the surfaces of the hypercube or of the hypersimplex. We discuss this
subject in some detail in Chapter 25.
Ifwe know theσi , thenwe can useGREP(m) in the standardway described inChapter 4.

If the σi are not readily available, then the d (m)-transformation for infinite sequences
developed in Subsection 6.2.2 serves as a very effective means for computing S. The
following theorem provides the rigorous justification of this assertion.

Theorem 6.8.5 Let the sequence {Sn} be as in (6.8.3). Then there holds

Sn = S +
m∑

k=1
nk(�k Sn)gk(n), (6.8.4)

where gk ∈ A(0)
0 for each k.

Proof. Applying Lemma 6.8.2 with r = 1 to Sn − S =∑m
i=1 Hi (n), and realizing that

�k(Sn − S) = �k Sn for k ≥ 1, we have Hi (n) =
∑m

k=1 vik(n)n
k�k Sn for each i , where

vik ∈ A(0)
0 for all i and k. The result follows by substituting this in (6.8.3). �

6.8.2 Sums of Linear Sequences

Lemma 6.8.6 Let an =
∑m

i=1 ζ
n
i hi (n), where ζi �= 1 are distinct and hi ∈ A(γi )

0 for some
arbitrary γi that are not necessarily distinct. Then, with any integer r ≥ 0, there holds
ζ n
i hi (n) =

∑m+r−1
k=r vik(n)�kan for each i , where vik ∈ A(0)

0 for all i and k.

Proof. Let us write a(i)n = ζ n
i hi (n) for convenience. By the fact that �a(i)n =

(ζi − 1)ζ n
i hi (n + 1)+ ζ n

i �hi (n), we have first �a(i)n = ui1(n)a(i)n , where ui1 ∈ A(0)
0
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strictly. In fact, ui1(n) = (ζi − 1)+ O(n−1) as n →∞. Consequently, �ka(i)n =
uik(n)a(i)n , where uik ∈ A(0)

0 strictly and uik(n) = (ζi − 1)k + O(n−1) as n →∞. Thus,
with any nonnegative integer r , a(i)n , i = 1, . . . ,m, satisfy the linear system

m∑

i=1
uik(n)a

(i)
n = �kan, k = r, r + 1, . . . ,m + r − 1,

that can be solved for the a(i)n by Cramer’s rule. Obviously, since uik ∈ A(0)
0 for all i and

k, all the minors of the matrix M(n) of this system that is given exactly as in the proof
of Lemma 6.8.2 with the present uik(n) are in A

(0)
0 . More importantly, its determinant is

in A(0)
0 strictly. In fact, substituting the asymptotic behavior of the uik(n) as n →∞ in

detM(n), we obtain

detM(n) ∼
( m∏

i=1
(ζi − 1)r

)

V (ζ1, . . . , ζm) �= 0 as n →∞.

Completing the solution by Cramer’s rule, the result follows. �

We make use of Lemma 6.8.6 in the proofs of the next two theorems that parallel
Theorems 6.8.3 and 6.8.4. Because the proofs are similar, we leave them to the reader.

Theorem 6.8.7 Let an =
∑m

i=1 ζ
n
i hi (n), where ζi �= 1 are distinct and hi ∈ A(γi )

0 for
some arbitrary γi that are not necessarily distinct. Then {an} ∈ b(m).

Theorem 6.8.8 Let an =
∑m

i=1 ζ
n
i hi (n), where ζi are distinct and satisfy ζi �= 1 and

|ζ | ≤ 1 and hi ∈ A(γi )
0 for some arbitrary γi that are not necessarily distinct. Then,

whether
∑∞

k=1 ak converges or not, there holds

An−1 = S({ak})+
m−1∑

k=0
(�kan)gk(n), (6.8.5)

where S({ak}) is the sum of the limits or antilimits of the series
∑∞

k=1 ζ
k
i hi (k), which

exist by Theorem 6.7.2, and gk ∈ A(0)
0 for each k.

A Special Application

With the help of the techniques developed in this subsection, we can now show that the
d (m)-transformation can be used for computing the limit or antilimit of a sequence {Sn},
for which

Sn = S +
m∑

i=1
ζ n
i Hi (n), (6.8.6)

where ζi �= 1 are distinct, Hi ∈ A(σi )
0 for some arbitraryσi that are not necessarily distinct,

and S is the limit or antilimit.
If we know the ζi and σi , then we can use GREP(m) in the standard way described

in Chapter 4. If the ζi and σi are not readily available, then the d (m)-transformation for
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infinite sequences developed in Subsection 6.2.2 serves as a very effective means for
computing S. The following theorem provides the rigorous justification of this assertion.
As its proof is similar to that of Theorem 6.8.5, we skip it.

Theorem 6.8.9 Let the sequence {Sn} be as in (6.8.6). Then there holds

Sn = S +
m∑

k=1
(�k Sn)gk(n), (6.8.7)

where gk ∈ A(0)
0 for each k.

6.8.3 Mixed Sequences

We now turn to mixtures of logarithmic and linear sequences that appear to be difficult
to handle mathematically. Instead of attempting to extend the theorems proved above,
we state the following conjectures.

Conjecture 6.8.10 Let an =
∑m1

i=1 ζ
n
i hi (n)+

∑m2
i=1 h̃i (n), where ζi �= 1 are distinct and

hi ∈ A(γi )
0 for some arbitrary γi that are not necessarily distinct and h̃i ∈ A(γ̃i )

0 with
γ̃i �= 0, 1, . . . , and distinct. Then {an} ∈ b(m), where m = m1 + m2.

Conjecture 6.8.11 If in Conjecture 6.8.10 we have |ζi | ≤ 1 and γ̃i �= −1, in addition to
the conditions there, then

An−1 = S({ak})+
m−1∑

k=0
nk+1(�kan)gk(n), (6.8.8)

where S({ak}) is the sum of the limits or antilimits of the series
∑∞

k=1 ζ
k
i hi (k) and∑∞

k=1 h̃i (k), which exist by Theorem 6.7.2, and gk ∈ A(0)
0 for each k.

Conjecture 6.8.12 Let the sequence {Sn} satisfy

Sn = S +
m1∑

i=1
ζ n
i Hi (n)+

m2∑

i=1
H̃ i (n) (6.8.9)

where ζi �= 1 are distinct and Hi ∈ A(σi )
0 for some arbitrary σi that are not necessarily

distinct and H̃ i ∈ A(σ̃i )
0 with distinct σ̃i �= 0, 1, . . . . Then there holds

Sn = S +
m∑

k=1
nk(�k Sn)gk(n), (6.8.10)

where gk ∈ A(0)
0 for each k and m = m1 + m2.



7
Recursive Algorithms for GREP

7.1 Introduction

Let us recall the definition of GREP(m) as given in (4.2.1). This definition involves
the m form factors (or shape functions) φk(y), k = 1, . . . ,m, whose structures may be
arbitrary. It also involves the functions

∑nk−1
i=0 β̄ i y

irk that behave essentially polynomially
in yrk for k = 1, . . . ,m.
These facts enable us to design very efficient recursive algorithms for two cases of

GREP:

(i) the W-algorithm for GREP(1) with arbitrary yl in (4.2.1), and
(ii) the W(m)-algorithm for GREP(m) with m > 1 and r1 = r2 = · · · = rm , and with ar-

bitrary yl in (4.2.1).

In addition, we are able to derive an efficient algorithm for a special case of one of the
extensions of GREP considered in Section 4.6:

(iii) the extendedW-algorithm (EW-algorithm) for them = 1 case of the extendedGREP
for which the βk(y) are as in (4.6.1), with yl = y0ωl , l = 0, 1, . . . , and ω ∈ (0, 1).

We note that GREP(1) and GREP(m) with r1 = · · · = rm are probably the most
commonly occurring forms of GREP. The D-transformation of Chapter 5 and the d-
transformation of Chapter 6, for example, are of these forms, with r1 = · · · = rm = 1
for both. We also note that the effectiveness of the algorithms of this chapter stems
from the fact that they fully exploit the special structure of the underlying extrapolation
methods.
As we will see in more detail, GREP can be implemented via the algorithms of Chap-

ter 3. Thus, when A(yl), l = 0, 1, . . . , L , are given, the computation of those A(m, j)
n that

can be derived from them requires 2L3/3+ O(L2) arithmetic operations when done by
the FS-algorithm and about 50% more when done by the E-algorithm. Both algorithms
require O(L2) storage locations. But the algorithms of this chapter accomplish the same
task in O(L2) arithmetic operations and require O(L2) storage locations. With suitable
programming, the storage requirements can be reduced to O(L) locations. In this respect,
the algorithms of this chapter are analogous to Algorithm 1.3.1 of Chapter 1.
The W-algorithm was given by Sidi [278], [295], and the W(m)-algorithm was devel-

oped by Ford and Sidi [87]. The EW-algorithm is unpublished work of the author.

158
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7.2 The W-Algorithm for GREP(1)

We start by rewriting (4.2.1) for m = 1 in a simpler way. For this, let us first make the
substitutions φ1(y) = φ(y), r1 = r, n1 = n, β̄1i = β̄ i , and A(1, j)

n = A( j)
n . The equations

in (4.2.1) become

A(yl) = A( j)
n + φ(yl)

n−1∑

i=0
β̄ i y

ir
l , j ≤ l ≤ j + n. (7.2.1)

A further simplification takes place by letting t = yr and tl = yrl , l = 0, 1, . . . , and
defining a(t) ≡ A(y) and ϕ(t) ≡ φ(y). We now have

a(tl) = A( j)
n + ϕ(tl)

n−1∑

i=0
β̄ i t

i
l , j ≤ l ≤ j + n. (7.2.2)

Let us denote by D( j)
n {g(t)} the divided difference of g(t) over the set of points

{t j , t j+1, . . . , t j+n}, namely, g[t j , t j+1, . . . , t j+n]. Then, from the theory of polynomial
interpolation it is known that

D( j)
n {g(t)} = g[t j , t j+1, . . . , t j+n] =

n∑

i=0
c( j)ni g(t j+i );

c( j)ni =
n∏

k=0
k �=i

1

t j+i − t j+k
, 0 ≤ i ≤ n. (7.2.3)

The following theorem forms the basis of the W-algorithm for computing the A( j)
n . It

also shows how the β̄ i can be computed one by one in the order β̄0, β̄1, . . . , β̄n−1.

Theorem 7.2.1 Provided ϕ(tl) �= 0, j ≤ l ≤ j + n, we have

A( j)
n = D( j)

n {a(t)/ϕ(t)}
D( j)

n {1/ϕ(t)}
. (7.2.4)

With A( j)
n and β̄0, . . . , β̄ p−1 already known, β̄ p can be determined from

β̄ p = (−1)n−p−1
( j+n−p−1∏

i= j

ti

)

D( j)
n−p−1{[a(t)− A( j)

n ]t−p−1/ϕ(t)−
p−1∑

i=0
β̄ i t

i−p−1},

(7.2.5)

where the summation
∑−1

i=0 µi is taken to be zero.

Proof. We begin by reexpressing the linear equations in (7.2.2) in the form

[a(tl)− A( j)
n ]/ϕ(tl) =

n−1∑

i=0
β̄ i t

i
l , j ≤ l ≤ j + n. (7.2.6)

For −1 ≤ p ≤ n − 1, we multiply the first n − p of the equations in (7.2.6)
by c( j)n−p−1,l− j t

−p−1
l , l = j, j + 1, . . . , j + n − p − 1, respectively. Adding all the
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resulting equations and invoking (7.2.3), we obtain

D( j)
n−p−1{[a(t)− A( j)

n ]t−p−1/ϕ(t)} = D( j)
n−p−1{

n−1∑

i=0
β̄ i t

i−p−1}. (7.2.7)

Let us put p = −1 in (7.2.7). Then, we have that
∑n−1

i=0 β̄ i t
i−p−1 =∑n−1

i=0 β̄ i t
i is a

polynomial of degree at most n − 1. But, it is known that

D(s)
k {g(t)} = 0 if g(t) is a polynomial of degree at most k − 1. (7.2.8)

By invoking (7.2.8) in (7.2.7) with p = −1, we obtain (7.2.4).
Next, let us put p = 0 in (7.2.7). Then, we have that

∑n−1
i=0 β̄ i t

i−p−1 = β̄0t
−1 +∑n−1

i=1 β̄ i t
i−1, the summation

∑n−1
i=1 β̄ i t

i−1 being a polynomial of degree at most n − 2.
Thus, with the help of (7.2.8) again, and by the fact that

D( j)
n {t−1} = (−1)n/(t j t j+1 · · · t j+n), (7.2.9)

we obtain β̄0 exactly as given in (7.2.5). [The proof of (7.2.9) can be done by induction
with the help of the recursion relation in (7.2.21) below.]
The rest of the proof can now be done similarly. �

Remark. From the proof of Theorem 7.2.1, it should become clear that both (7.2.4)
and (7.2.5) hold even when the tl in (7.2.2) are complex, although in the extrapolation
problems that we usually encounter they are real.

The expression for A( j)
n given in (7.2.4), in addition to forming the basis for the W-

algorithm,will prove to be very useful in the convergence and stability studies ofGREP(1)

in Chapters 8 and 9.
We next treat the problem of assessing the stability of GREP(1) numerically in an

efficient manner. Here too divided differences turn out to be very useful. From (7.2.4)
and (7.2.3), it is clear that A( j)

n can be expressed in the by now familiar form

A( j)
n =

n∑

i=0
γ
( j)
ni A(y j+i );

n∑

i=0
γ
( j)
ni = 1, (7.2.10)

with

γ
( j)
ni = 1

D( j)
n {1/ϕ(t)}

c( j)ni

ϕ(t j+i )
, i = 0, 1, . . . , n. (7.2.11)

Thus, �(1, j)
n = �

( j)
n is given by

�( j)
n =

n∑

i=0
|γ ( j)

ni | =
1

|D( j)
n {1/ϕ(t)}|

n∑

i=0

|c( j)ni |
|ϕ(t j+i )| . (7.2.12)

Similarly, we define

!( j)
n =

n∑

i=0
|γ ( j)

ni | |a(t j+i )| = 1

|D( j)
n {1/ϕ(t)}|

n∑

i=0

|c( j)ni | |a(t j+i )|
|ϕ(t j+i )| . (7.2.13)
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Let us recall briefly the meanings of �( j)
n and!( j)

n : If the A(yi ) have been computed with
absolute errors that do not exceed ε, and Ā( j)

n is the computed A( j)
n , then

| Ā( j)
n − A( j)

n | � ε�( j)
n and | Ā( j)

n − A| � ε�( j)
n + |A( j)

n − A|.
If the A(yi ) have been computed with relative errors that do not exceed η, and Ā( j)

n is
the computed A( j)

n , then

| Ā( j)
n − A( j)

n | � η!( j)
n and | Ā( j)

n − A| � η!( j)
n + |A( j)

n − A|.
Hence, η!( j)

n is a more refined estimate of the error in the computed value of A( j)
n ,

especially when A(y) is unbounded as y → 0+. See Section 0.5.

Lemma 7.2.2 Let ui , i = 0, 1, . . . , be scalars, and let the ti in (7.2.3) satisfy t0 > t1 >
t2 > · · · . Then

n∑

i=0
|c( j)ni | u j+i = (−1) j D( j)

n {v(t)}, (7.2.14)

where v(ti ) = (−1)i ui , i = 0, 1, . . . , and v(t) is arbitrary otherwise.

Proof. From (7.2.3), we observe that

c( j)ni = (−1)i |c( j)ni |, i = 0, 1, . . . , n, for all j and n. (7.2.15)

The result now follows by substituting (7.2.15) in (7.2.3). �

The following theorem on �( j)
n and !( j)

n can be proved by invoking Lemma 7.2.2 in
(7.2.12) and (7.2.13).

Theorem 7.2.3 Define the functions P(t) and S(t) by

P(ti ) = (−1)i/|ϕ(ti )| and S(ti ) = (−1)i |a(ti )/ϕ(ti )|, i = 0, 1, 2, . . . , (7.2.16)

and arbitrarily for t �= ti , i = 0, 1, . . . . Then

�( j)
n = |D( j)

n {P(t)}|
|D( j)

n {1/ϕ(t)}|
and !( j)

n = |D( j)
n {S(t)}|

|D( j)
n {1/ϕ(t)}|

. (7.2.17)

We now give the W-algorithm to compute the A( j)
p , �( j)

p , and !( j)
n recursively. This

algorithm is directly based on Theorems 7.2.1 and 7.2.3.

Algorithm 7.2.4 (W-algorithm)

1. For j = 0, 1, . . . , set

M ( j)
0 = a(t j )/ϕ(t j ), N ( j)

0 = 1/ϕ(t j ), H ( j)
0 = (−1) j |N ( j)

0 |, K ( j)
0 = (−1) j |M ( j)

0 |.
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2. For j = 0, 1, . . . , and n = 1, 2, . . . , compute M ( j)
n , N ( j)

n , H ( j)
n , and K ( j)

n recursively
from

Q( j)
n = Q( j+1)

n−1 − Q( j)
n−1

t j+n − t j
, (7.2.18)

where the Q( j)
n stand for either M ( j)

n or N ( j)
n or H ( j)

n or K ( j)
n .

3. For all j and n, set

A( j)
n = M ( j)

n

N ( j)
n

, �( j)
n =

∣
∣
∣
∣
∣
H ( j)

n

N ( j)
n

∣
∣
∣
∣
∣
, and !( j)

n =
∣
∣
∣
∣
∣
K ( j)

n

N ( j)
n

∣
∣
∣
∣
∣
. (7.2.19)

Note that, when N ( j)
n is complex, |N ( j)

n | is its modulus. [N ( j)
n may be complex when

ϕ(t) is complex. H ( j)
n and K ( j)

n are always real.] Also, from the first step of the algorithm
it is clear that ϕ(t j ) �= 0 must hold for all j . Obviously, this can be accomplished by
choosing the t j appropriately.
The validity of (7.2.19) is a consequence of the following result.

Theorem 7.2.5 The M ( j)
n , N ( j)

n , H ( j)
n , and K ( j)

n computed by the W-algorithm as in
(7.2.18) satisfy

M ( j)
n = D( j)

n {a(t)/ϕ(t)}, N ( j)
n = D( j)

n {1/ϕ(t)},
H ( j)

n = D( j)
n {P(t)}, K ( j)

n = D( j)
n {S(t)}. (7.2.20)

As a result, (7.2.19) is valid.

Proof. (7.2.20) is a direct consequence of the known recursion relation for divided
differences, namely,

D( j)
n {g(t)} =

D( j+1)
n−1 {g(t)} − D( j)

n−1{g(t)}
t j+n − t j

, (7.2.21)

and (7.2.4) and (7.2.17). �

In view of the W-algorithm, M ( j)
n , N ( j)

n , H ( j)
n , and K ( j)

n can be arranged separately in
two-dimensional arrays as in Table 7.2.1, where the Q( j)

n stand for M ( j)
n or N ( j)

n or H ( j)
n

or K ( j)
n , and the computational flow is as described by the arrows.

Obviously, the W-algorithm allows the recursive computation of both the approxima-
tions A( j)

n and their accompanying �( j)
n and !( j)

n simultaneously and without having to
know the γ ( j)

ni . This is interesting, as we are not aware of other extrapolation algorithms
shown to have this property. Normally, to obtain �( j)

n and!( j)
n , we would expect to have

to determine the γ ( j)
ni separately by using a different algorithm or approach, such as that

given by Theorem 3.4.1 in Section 3.4.
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Table 7.2.1:

Q(0)
0 ↘

Q(1)
0 → Q(0)

1↘ ↘
Q(2)

0 → Q(1)
1 → Q(0)

2↘ ↘ ↘
Q(3)

0 → Q(2)
1 → Q(1)

2 → Q(0)
3

...
...

...
...

. . .

7.2.1 A Special Case: φ(y) = yr

Let us go back to Algorithm 7.2.4. By substituting (7.2.18) in (7.2.19), we obtain a
recursion relation for the A( j)

n that reads

A( j)
n = A( j+1)

n−1 − w
( j)
n A( j)

n−1
1− w

( j)
n

= A( j)
n−1 +

A( j+1)
n−1 − A( j)

n−1
1− w

( j)
n

, j ≥ 0, n ≥ 1, (7.2.22)

where w( j)
n = N ( j)

n−1/N
( j+1)
n−1 . That is, the W-algorithm now computes tables for the A( j)

n

and the N ( j)
n .

In case N ( j)
n are known and do not have to be computed recursively, (7.2.22) pro-

vides the A( j)
n by computing only one table. As an example, consider φ(y) = yr , or,

equivalently, ϕ(t) = t . Then, from (7.2.20) and (7.2.9), we have

N ( j)
n = D( j)

n {t−1} = (−1)n/(t j t j+1 · · · t j+n), (7.2.23)

so that w( j)
n becomes

w( j)
n = t j+n/t j , (7.2.24)

and (7.2.22) reduces to

A( j)
n = t j A

( j+1)
n−1 − t j+n A

( j)
n−1

t j − t j+n
= A( j)

n−1 +
A( j+1)

n−1 − A( j)
n−1

1− t j+n/t j
, j ≥ 0, n ≥ 1. (7.2.25)

GREP(1) in this case is, of course, the polynomial Richardson extrapolation of Chap-
ter 2, and the recursion relation in (7.2.25) is nothing but Algorithm 2.2.1 due to Bulirsch
and Stoer [43], which we derived by a different method in Chapter 2.
In this case, we can also give the closed-form expression

A( j)
n =

n∑

i=0

( n∏

k=0
k �=i

t j+k

t j+k − t j+i

)

a(t j+i ). (7.2.26)

This expression is obtained by expanding D( j)
n {a(t)/t} with the help of (7.2.3) and

then dividing by D( j)
n {1/t} that is given in (7.2.23). Note that (7.2.26) can also be

obtained by recalling that, in this case, A( j)
n = pn, j (0), where pn, j (t) is the polynomial

that interpolates a(t) at tl , l = j, j + 1, . . . , j + n, and by setting t = 0 in the resulting
Lagrange interpolation formula for pn, j (t).
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Recall that the computation of the �( j)
n can be simplified similarly: Set �( j)

0 = 1, j =
0, 1, . . . , and compute the rest of the �( j)

n by the recursion relation

�( j)
n = t j�

( j+1)
n−1 + t j+n�

( j)
n−1

t j − t j+n
, j = 0, 1, . . . , n = 1, 2, . . . . (7.2.27)

7.3 The W(m)-Algorithm for GREP(m)

We now consider the development of an algorithm forGREP(m) when r1 = · · · = rm = r .
We start by rewriting the equations (4.2.1) that define GREP(m) in a more convenient way
as follows: Let t = yr and tl = yrl , l = 0, 1, . . . , and define a(t) ≡ A(y) and ϕk(t) ≡
φk(y), k = 1, . . . ,m. Then, (4.2.1) becomes

a(tl) = A(m, j)
n +

m∑

k=1
ϕk(tl)

nk−1∑

i=0
β̄ki t

i
l , j ≤ l ≤ j + N ; N =

m∑

k=1
nk, (7.3.1)

with n = (n1, . . . , nm) as usual.
In Section 4.4 on the convergence theory of GREP, wementioned that those sequences

related toProcess II inwhichnk →∞, k = 1, . . . ,m, simultaneously, and, in particular,
the sequences {A(m, j)

q+(ν,... ,ν)}∞ν=0 with j and q = (q1, . . . , qm) fixed, appear to have the
best convergence properties. Therefore, we should aim at developing an algorithm for
computing such sequences. To keep the treatment simple, we restrict our attention to the
sequences {A(m, j)

(ν,... ,ν)}∞ν=0 that appear to provide the best accuracy for a given number of
the A(yi ). For the treatment of the more general case in which q1, . . . , qm are not all 0,
we refer the reader to Ford and Sidi [87].
The development of the W(m)-algorithm depends heavily on the FS-algorithm dis-

cussed in Chapter 3. We freely use the results and notation of Section 3.3 throughout our
developments here. Therefore, a review of Section 3.3 is recommended at this point.
One way to compute the sequences {A(m, j)

(ν,... ,ν)}∞ν=0 is to “eliminate” first ϕk(t)t0, k =
1, . . . ,m, next ϕk(t)t1, k = 1, . . . ,m, etc., from the expansion of A(y) given in (4.1.1)
and (4.1.2). This can be accomplished by ordering the ϕk(t)t i suitably. We begin by
considering this issue.

7.3.1 Ordering of the ϕk(t)t i

Let us define the sequences {gs(l)}∞l=0, s = 1, 2, . . . , as follows:

gk+im(l) = ϕk(tl)t
i
l , 1 ≤ k ≤ m, i ≥ 0. (7.3.2)

Thus, the sequence gk is simply {ϕk(tl)}∞l=0 for k = 1, . . . ,m, the sequence gm+k is
{ϕk(tl)tl}∞l=0 for k = 1, . . . ,m, etc., and this takes care of all the sequences gs, s =
1, 2, . . . , and all the ϕk(t)t i , 1 ≤ k ≤ m, i ≥ 0. As in Ford and Sidi [87], we call this
ordering of the ϕk(t)t i the normal ordering throughout this chapter. As a consequence
of (7.3.2), we also have

gi (l) =
{
ϕi (tl), 1 ≤ i ≤ m,
tl gi−m(l), i > m.

(7.3.3)
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Table 7.3.1:

A(0)
0

A(1)
0 A(0)

1

A(2)
0 A(1)

1 A(0)
2

A(3)
4 A(2)

1 A(1)
2 A(0)

3

...
...

...
...

. . .

Let us also denote

hk(l) = ϕk(tl)

tl
= gk(l)

tl
, 1 ≤ k ≤ m. (7.3.4)

Now every integer p can be expressed as p = νm + ρ, where ν = �p/m� and ρ ≡ p
mod m and thus 0 ≤ ρ < m. With the normal ordering of the ϕk(t)t i introduced above,
A( j)

p that is defined along with the parameters ᾱ1, . . . , ᾱp by the equations

a(tl) = A( j)
p +

p∑

k=1
ᾱkgk(l), j ≤ l ≤ j + p, (7.3.5)

is precisely A(m, j)
n with (i) nk = ν, k = 1, . . . ,m, if ρ = 0, and (ii) nk = ν + 1, k =

1, . . . , ρ, and nk = ν, k = ρ + 1, . . . ,m, if ρ > 0. Thus, in the notation of (7.3.1), the
equations in (7.3.5) are equivalent to

a(tl) = A( j)
p +

m∑

k=1
ϕk(tl)

�(p−k)/m�∑

i=0
β̄ki t

i
l , j ≤ l ≤ j + p. (7.3.6)

Consequently, the sequence {A( j)
s }∞s=0 contains {A(m, j)

(ν,... ,ν)}∞ν=0 as a subsequence. When
m = 2, for example, A( j)

1 , A( j)
2 , A( j)

3 , A( j)
4 , . . . , are A(2, j)

(1,0), A
(2, j)
(1,1), A

(2, j)
(2,1), A

(2, j)
(2,2), . . . ,

respectively.
In view of the above, it is convenient to order the A( j)

n as in Table 7.3.1.
As A( j)

p satisfies (7.3.5), it is given by the determinantal formula of (3.2.1), where
a(l) stands for a(tl) ≡ A(yl), as in Chapter 3. Therefore, A( j)

p could be computed, for
all p, by either of the algorithms of Chapter 3. But with the normal ordering defined in
(7.3.2), this general approach can profitably be altered. When p ≤ m, the FS-algorithm
is used to compute the A( j)

p because the corresponding gk(l) have no particular structure.
The normal ordering has ensured that all these unstructured gk(l) come first. For p > m,
however, theW(m)-algorithmdetermines the A( j)

p through a sophisticated set of recursions
at a cost much smaller than would be incurred by direct application of the FS-algorithm.
Let us now illuminate the approach taken in the W(m)-algorithm. We observe first that

the definition of D( j)
p in (3.3.9) involves only the G(s)

k . Thus, we look at G( j)
p for p > m.

For simplicity, we take m = 2.
When m = 2 and p ≥ 3, we have by (7.3.2) that

G( j)
p = |ϕ1(t j ) ϕ2(t j ) ϕ1(t j )t j ϕ2(t j )t j · · · gp( j)|.
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If we factor out t j+i−1 from the i th row, i = 1, 2, . . . , p, we obtain

G( j)
p =

( p∏

i=1
t j+i−1

)

|h1( j) h2( j) g1( j) g2( j) · · · gp−2( j)|,

where hi (l) are as defined in (7.3.4). The determinant obtained above differs from G( j)
p

by two columns, and it is not difficult to see that there are m different columns in the
general case. Therefore, we need to develop procedures for evaluating these objects.

7.3.2 Technical Preliminaries

We start this by introducing the following generalizations of f ( j)p (b), ψ ( j)
p (b), and D( j)

p :

F ( j)
p (h1, . . . , hq ) = |g1( j) · · · gp( j) h1( j) · · · hq ( j)| ≡ F ( j)

p (q), (7.3.7)

� ( j)
p (h1, . . . , hq ) =

F ( j)
p+1−q (q)

F ( j)
p+2−q (q − 1)

≡ � ( j)
p (q), (7.3.8)

D( j)
p (q) = F ( j)

p+1−q (q)F
( j+1)
p−1−q (q)

F ( j)
p−q (q)F

( j+1)
p−q (q)

. (7.3.9)

[In these definitions and in Theorems 7.3.1 and 7.3.2 below, the hk(l) can be arbitrary.
They need not be defined by (7.3.4).]
As simple consequences of (7.3.7)–(7.3.9), we obtain

F ( j)
p (0) = G( j)

p , F ( j)
p (1) = f ( j)p (h1), (7.3.10)

�
( j)
p (1) = ψ

( j)
p (h1), (7.3.11)

D( j)
p (0) = D( j)

p , (7.3.12)

respectively. In addition,we define F j
0 (0) = 1. From (7.3.11), it is clear that the algorithm

that will be used to compute the different ψ ( j)
p (b) can be used to compute the � ( j)

p (1) as
well.
We also note that, since F ( j)

p (q) is defined for p ≥ 0 and q ≥ 0, � ( j)
p (q) is defined for

1 ≤ q ≤ p + 1 and D( j)
p (q) is defined for 0 ≤ q ≤ p − 1, when the hk(l) are arbitrary,

The following results will be of use in the development of the W(m)-algorithm shortly.

Theorem 7.3.1 The � ( j)
p (q) and D( j)

p (q) satisfy

� ( j)
p (q) = �

( j+1)
p−1 (q)−�

( j)
p−1(q)

D( j)
p (q − 1)

, 1 ≤ q ≤ p, (7.3.13)

and

D( j)
p (q) = �

( j+1)
p−2 (q)

[
1

�
( j)
p−1(q)

− 1

�
( j+1)
p−1 (q)

]

, 1 ≤ q ≤ p − 1. (7.3.14)
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Proof. Consider the (p + q)× (p + q) determinant F ( j)
p (q). Applying Theorem 3.3.1

(the Sylvester determinant identity) to this determinant with ρ = 1, ρ ′ = p + q, σ = p,
and σ ′ = p + q , we obtain

F ( j)
p (q)F ( j+1)

p−1 (q − 1) = F ( j+1)
p−1 (q)F ( j)

p (q − 1)− F ( j+1)
p (q − 1)F ( j)

p−1(q). (7.3.15)

Replacing p in (7.3.15) by p + 1− q , and using (7.3.8) and (7.3.9), (7.3.13) follows.
To prove (7.3.14), we start with (7.3.9). When we invoke (7.3.8), (7.3.9) becomes

D( j)
p (q) = �

( j)
p (q)� ( j+1)

p−2 (q)

�
( j)
p−1(q)�

( j+1)
p−1 (q)

D( j)
p (q − 1). (7.3.16)

When we substitute (7.3.13) in (7.3.16), (7.3.14) follows. �

The recursion relations given in (7.3.13) and (7.3.14)will be applied, for a given p,with
q increasing from 1. When q = p − 1, (7.3.14) requires knowledge of �( j+1)

p−2 (p − 1),
and when q = p, (7.3.13) requires knowledge of� ( j)

p−1(p) and�
( j+1)
p−1 (p). That is to say,

we need to have �( j)
s (s + 1), s ≥ 0, j ≥ 0, to be able to complete the recursions in

(7.3.14) and (7.3.13). Now, � ( j)
p (p + 1) cannot be computed by the recursion relation

in (7.3.13), because neither � ( j)
p−1(p + 1) nor D( j)

p (p) is defined. When the definition of
the hk(l) given in (7.3.4) is invoked, however, � ( j)

p (p + 1) can be expressed in simple
and familiar terms and computed easily, as we show later.
In addition to the relationships in the previous theorem, we give one more result

concerning the � ( j)
p (q).

Theorem 7.3.2 The � ( j)
p (q) satisfy the relation

F ( j)
p+1−q (q) = � ( j)

p (1)�( j)
p (2) · · ·� ( j)

p (q)G( j)
p+1. (7.3.17)

Proof. Let us reexpress (7.3.8) in the form

F ( j)
p+1−q (q) = � ( j)

p (q)F ( j)
p+1−(q−1)(q − 1). (7.3.18)

Invoking (7.3.8), with q replaced by q − 1, on the right-hand side of (7.3.18), and
continuing, we obtain

F ( j)
p+1−q (q) = � ( j)

p (q) · · ·� ( j)
p (1)F ( j)

p+1(0). (7.3.19)

The result in (7.3.17) follows from (7.3.19) and (7.3.10). �

7.3.3 Putting It All Together

Let us now invoke the normal ordering of the ϕk(t)t i . With this ordering, the gk(l)
and hk(l) are as defined in (7.3.2) and (7.3.4), respectively. This has certain favorable
consequences concerning the D( j)

p .
Because we have defined hk(l) only for 1 ≤ k ≤ m, we see that F j

p (q) is defined only
for 0 ≤ q ≤ m, p ≥ 0, �( j)

p (q) for 1 ≤ q ≤ min{p + 1,m}, and D( j)
p (q) for 0 ≤ q ≤
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min{p − 1,m}. Consequently, the recursion relation in (7.3.13) is valid for 1 ≤ q ≤
min{p,m}, and that in (7.3.14) is valid for 1 ≤ q ≤ min{p − 1,m}.

In addition, for � ( j)
p (p + 1), we have the following results.

Theorem 7.3.3 With the normal ordering and for 0 ≤ p ≤ m − 1, we have

�( j)
p (p + 1) = (−1)p/ψ ( j)

p (gm+1). (7.3.20)

Proof. First, it is clear that � ( j)
p (p + 1) is defined only for 0 ≤ p ≤ m − 1 now. Next,

from (7.3.8), we have

�( j)
p (p + 1) = F ( j)

0 (p + 1)

F ( j)
1 (p)

= |h1( j) · · · h p+1( j)|
|g1( j) h1( j) · · · h p( j)| . (7.3.21)

The result follows by multiplying the i th rows of the (p + 1)× (p + 1) numerator and
denominator determinants in (7.3.21) by t j+i−1, i = 1, . . . , p + 1, and by invoking
(7.3.4) and (7.3.3) and the definition of ψ ( j)

p (b) from (3.3.5). �

Theorem 7.3.3 implies that � ( j)
p (p + 1), 0 ≤ p ≤ m − 1, and D( j)

p , 1 ≤ p ≤ m, can
be obtained simultaneously by the FS-algorithm. As mentioned previously, we are using
the FS-algorithm for computing D( j)

p , 1 ≤ p ≤ m, as part of the W(m)-algorithm.
Through gi (l) = tl gi−m(l), i > m, that is given in (7.3.3),when p ≥ m + 1, the normal

ordering enables us to relate F ( j)
p−m(m) to G( j)

p and hence D( j)
p (m) to D( j)

p (0) = D( j)
p ,

the desired quantity, thus reducing the amount of computation for the W(m)-algorithm
considerably.

Theorem 7.3.4 With the normal ordering and for p ≥ m + 1, D( j)
p satisfies

D( j)
p = D( j)

p (m). (7.3.22)

Proof. First, it is clear that D( j)
p (m) is defined only for p ≥ m + 1. Next, from (7.3.7),

we have

F (s)
k (m) = (−1)mk

(k+m−1∏

i=0
ts+i

)−1
G(s)

m+k . (7.3.23)

Finally, (7.3.22) follows by substituting (7.3.23) in the definition of D( j)
p (m) that is given

in (7.3.9).
The proof of (7.3.23) can be achieved as follows: Multiplying the i th row of the

(m + k)× (m + k) determinant that represents F (s)
k (m) by ts+i−1, i = 1, 2, . . . ,m + k,

and using (7.3.3) and (7.3.4), we obtain

(k+m−1∏

i=0
ts+i

)

F (s)
k (m) = |gm+1(s) gm+2(s) · · · gm+k(s) g1(s) g2(s) · · · gm(s)|.

(7.3.24)
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(j, p− 1)

(j + 1, p− 1) (j, p)

when p = 1

Figure 7.3.1:

By making the necessary column permutations, it can be seen that the right-hand side of
(7.3.24) is nothing but (−1)mkG(s)

m+k . �

From Theorem 7.3.4, it is thus clear that, for p ≥ m + 1, D( j)
p can be computed by a

recursion relation of fixed lengthm. This implies that the cost of computing D( j)
p is fixed

and, therefore, independent of j and p. Consequently, the total cost of computing all the
D( j)

p , 1 ≤ j + p ≤ L , is now O(L2) arithmetic operations, as opposed to O(L3) for the
FS-algorithm.
Aswe compute theψ ( j)

p (I ), we can also apply Theorem 3.4.1 to compute the γ ( j)
pi , with

the help of which we can determine �( j)
p =∑p

i=0 |γ ( j)
pi | and !( j)

p =∑p
i=0 |γ ( j)

pi | |a(t j+i |,
the quantities of relevance to the numerical stability of A( j)

p .
In summary, the results of relevance to the W(m)-algorithm are (3.3.6), (3.3.10),

(3.3.12), (3.4.1), (3.4.2), (7.3.11), (7.3.13), (7.3.14), (7.3.20), and (7.3.22). With the
A( j)

p ordered as in Table 7.3.1, from these results we see that the quantities at the ( j, p)
location in this table are related to others as in Figure 7.3.1 and Figure 7.3.2.
All this shows that the W(m)-algorithm can be programmed so that it computes

Table 7.3.1 row-wise, thus allowing the one-by-one introduction of the sets Xl =
{tl , a(tl), ϕk(tl), k = 1, . . . ,m}, l = 0, 1, 2, . . . , that are necessary for the initial val-
ues ψ (l)

0 (a), ψ (l)
0 (I ), and ψ (l)

0 (gk), k = 1, . . . ,m + 1. Once a set Xl is introduced, we
can compute all the ψ ( j)

p (gk), ψ
( j)
p (a), ψ ( j)

p (I ), D( j)
p , D( j)

p (q), and � ( j)
p (q) along the row

j + p = l in the order p = 1, 2, . . . , l. Also, before introducing the set Xl+1 for the
next row of the table, we can discard some of these quantities and have the remaining
ones overwrite the corresponding quantities along the row j + p = l − 1. Obviously,
this saves a lot of storage. More will be said on this later.
Below by “initialize (l)” we mean

(j + 1, p− 2) (j, p− 1)

(j + 1, p− 1) (j, p)

when p > 1.

Figure 7.3.2:
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{read tl , a(tl), gk(l) = ϕk(tl), k = 1, . . . ,m, and set

ψ
(l)
0 (a) = a(l)/g1(l), ψ

(l)
0 (I ) = 1/g1(l), ψ

(l)
0 (gk) = gk(l)/g1(l), k = 2, . . . ,m,

ψ
(l)
0 (gm+1) = tl , and �

(l)
0 (1) = 1/tl}.

We recall that a(l) stands for a(tl) ≡ A(yl) and gk(l) = ϕk(tl) ≡ φk(yl), k = 1, . . . ,m,
and tl = yrl .

Algorithm 7.3.5 (W(m)-algorithm)
initialize (0)
for l = 1 to L do

initialize (l)
for p = 1 to l do

j = l − p
if p ≤ m then

D( j)
p = ψ

( j+1)
p−1 (gp+1)− ψ

( j)
p−1(gp+1)

for k = p + 2 to m + 1 do
ψ

( j)
p (gk) = [ψ ( j+1)

p−1 (gk)− ψ
( j)
p−1(gk)]/D

( j)
p

endfor
endif
if p ≤ m − 1 then

�
( j)
p (p + 1) = (−1)p/ψ ( j)

p (gm+1)
endif
for q = 1 to min{p − 1,m − 1} do

D( j)
p (q) = �

( j+1)
p−2 (q)[1/� ( j)

p−1(q)− 1/� ( j+1)
p−1 (q)]

q ′ = q + 1
�

( j)
p (q ′) = [� ( j+1)

p−1 (q ′)−�
( j)
p−1(q

′)]/D( j)
p (q)

endfor
if p > m then

D( j)
p = D( j)

p (m) = �
( j+1)
p−2 (m)[1/� ( j)

p−1(m)− 1/� ( j+1)
p−1 (m)]

endif
�

( j)
p (1) = [� ( j+1)

p−1 (1)−�
( j)
p−1(1)]/D

( j)
p

ψ
( j)
p (a) = [ψ ( j+1)

p−1 (a)− ψ
( j)
p−1(a)]/D

( j)
p

ψ
( j)
p (I ) = [ψ ( j+1)

p−1 (I )− ψ
( j)
p−1(I )]/D

( j)
p

A( j)
p = ψ

( j)
p (a)/ψ ( j)

p (I )
endfor

endfor

From the “initialize (l)” statement, it is clear that ϕ1(tl) = g1(l) �= 0 must hold for all
l in the algorithm.

As can be seen, not every computed quantity has to be saved throughout the course of
computation. Before l is incremented in the statement “for l = 1 to L do” the following
newly computed quantities are saved: (i) ψ ( j)

p (gk), p + 2 ≤ k ≤ m + 1, for p ≤ m;
(ii) � ( j)

p (q), 1 ≤ q ≤ min{p + 1,m}; and (iii) ψ ( j)
p (a) and ψ

( j)
p (I ); all with j ≥ 0,
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p ≥ 0, and j + p = l. With suitable programming, these quantities can occupy the
storage locations of those computed in the previous stage of this statement. None of the
D( j)

p and D( j)
p (q) needs to be saved. Thus, we need to save approximately m + 2 vectors

of length L when L is large.
As for the operation count, we first observe that there are L2/2+ O(L) lattice points

( j, p) for 0 ≤ j + p ≤ L . At each point, we compute A( j)
p , ψ ( j)

p (a), ψ ( j)
p (I ), � ( j)

p (q)
for 1 ≤ q ≤ min{p + 1,m}, and D( j)

p (q) for 1 ≤ q ≤ min{p − 1,m}. The total num-
ber of arithmetic operations then is (5m + 5)L2/2+ O(L), including the rest of the
computation. It can be made even smaller by requiring that only A(0)

p be computed.
We finally mention that SUBROUTINEWMALGM that forms part of the FORTRAN

77 program given in Ford and Sidi [87, Appendix B] implements the W(m)-algorithm
exactly as in Algorithm 7.3.5. This program (with slight changes, but with the same
SUBROUTINE WMALGM) is given in Appendix I of this book.

7.3.4 Simplifications for the Cases m = 1 and m = 2

The following result is a consequence of Theorem 7.3.2 and (7.3.23).

Theorem 7.3.6 With the normal ordering of the ϕk(t)t i , the �
( j)
p (q) satisfy

(−1)mp

( p∏

i=0
t j+i

) m∏

i=1
� ( j)

p (i) = 1, p ≥ m − 1. (7.3.25)

Application to the Case m = 1
If we let m = 1 in Theorem 7.3.6, we have (−1)p (∏p

i=0 t j+i
)
�

( j)
p (1) = 1, p ≥ 0.

Thus, solving for�( j)
p (1) and substituting in (7.3.14) with q = 1 there, and recalling that

D( j)
p = D( j)

p (1) for p ≥ 2, we obtain D( j)
p = t j+p − t j for p ≥ 2. This result is valid also

for p = 1 as can be shown from (3.3.9). We therefore conclude that the W(1)-algorithm
is practically identical to the W-algorithm of the preceding section. The difference be-
tween the two is that the W-algorithm uses D( j)

p = t j+p − t j directly, whereas the W(1)-
algorithm computes D( j)

p with the help of Theorems 7.3.1 and 7.3.4.

Application to the Case m = 2
If we let m = 2 in Theorem 7.3.6, we have

(∏p
i=0 t j+i

)
�

( j)
p (1)�( j)

p (2) = 1, p ≥ 1.
Solving for �( j)

p (2) in terms of � ( j)
p (1) = ψ

( j)
p (h1), and substituting in (7.3.14) with

q = 2 there, and recalling that D( j)
p = D( j)

p (2) for p ≥ 3, we obtain

D( j)
p = [t jψ

( j)
p−1(h1)− t j+pψ

( j+1)
p−1 (h1)]/ψ

( j+1)
p−2 (h1), (7.3.26)

which is valid for p ≥ 3. Using (3.3.9), we can show that this is valid for p = 2 as well.
As for p = 1, we have, again from (3.3.9),

D( j)
1 = g2( j + 1)/g1( j + 1)− g2( j)/g1( j). (7.3.27)

This allows us to simplify the W(2)-algorithm as follows: Given ϕ1(tl) and ϕ2(tl), l =
0, 1, . . . , use (7.3.27) and (3.3.10) to compute ψ ( j)

1 (h1). Then, for p = 2, 3, . . . , use
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(7.3.26) to obtain D( j)
p and (3.3.10) to obtainψ ( j)

p (a), ψ ( j)
p (I ), andψ ( j)

p (h1). For the sake
of completeness, we give below this simplification of the W(2)-algorithm separately.

Algorithm 7.3.7 (Simplified W(2)-algorithm)

1. For j = 0, 1, . . . , set ψ ( j)
0 (a) = a(t j )/ϕ1(t j ), ψ

( j)
0 (I ) = 1/ϕ1(t j ), and ψ

( j)
0 (h1) =

1/t j , and

D( j)
1 = ϕ2(t j+1)/ϕ1(t j+1)− ϕ2(t j )/ϕ1(t j ).

2. For j = 0, 1, . . . , and p = 1, 2, . . . , compute recursively

ψ
( j)
p (a) = [ψ ( j+1)

p−1 (a)− ψ
( j)
p−1(a)]/D

( j)
p ,

ψ
( j)
p (I ) = [ψ ( j+1)

p−1 (I )− ψ
( j)
p−1(I )]/D

( j)
p ,

ψ
( j)
p (h1) = [ψ ( j+1)

p−1 (h1)− ψ
( j)
p−1(h1)]/D

( j)
p ,

D( j)
p+1 = [t jψ

( j)
p (h1)− t j+p+1ψ

( j+1)
p (h1)]/ψ

( j+1)
p−1 (h1).

3. For all j and p, set A( j)
p = ψ

( j)
p (a)/ψ ( j)

p (I ).

7.4 Implementation of the d (m)-Transformation by the W(m)-Algorithm

Asmentioned in Chapter 6, the d (m)-transformation is actually a GREP(m) that can be im-
plemented by the W(m)-algorithm. This means that in the “initialize (l)” statement of Al-
gorithm 7.3.5, we need to have the input tl = 1/Rl , a(tl) = ARl , and gk(l) = Rk

l �
k−1aRl ,

k = 1, . . . ,m. Nothing else is required in the rest of the algorithm.
Similarly, the W-algorithm can be used to implement the d (1)-transformation. In this

case, we need as input to Algorithm 7.2.4 tl = 1/Rl , a(tl) = ARl , and ϕ(tl) = RlaRl .
As alreadymentioned, in applying theW(m)-algorithmwemustmake sure thatϕ1(tl) =

g1(l) �= 0 for all l. Now,when this algorithm is used to implement the d (m)-transformation
on an infinite series

∑∞
k=1 ak , we can set ϕk(t) = nk�k−1an, k = 1, . . . ,m, where

t = n−1, as follows from (6.1.18) and (6.2.1). Thus, ϕ1(t) = nan . It may happen that
an = 0 for some n, or even for infinitely many values of n. [Consider, for instance,
the Fourier series of Example 6.1.7 with B = 1 and C = 0. When θ = π/6, we have
a3+6i = 0, i = 0, 1, . . . .] Of course, we can avoid ϕ1(tl) = 0 simply by choosing the Rl

such that aRl �= 0.
Another approach we have found to be very effective that is also automatic is as

follows: Set ϕk(t) = nm−k+1�m−kan, k = 1, . . . ,m. [Note that ϕ1(t), . . . , ϕm(t) can
be taken as any fixed permutation of nk�k−1an, k = 1, . . . ,m.] In this case, ϕ1(t) =
nm�m−1an , and the chances of �m−1an = 0 in general are small when {ak} ∈ b(m) and
an = 0. This argument applies also to the case m = 1, for which we already know that
an �= 0 for all large n.

The FORTRAN 77 code in Appendix I implements the d (m)-transformation exactly
as we have just described.
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In any case, the zero terms of the series must be kept, because they play the same role
as the nonzero terms in the extrapolation process. Without them, the remaining sequence
of (nonzero) terms is no longer in b(m), and hence the d (m)-transformation cannot be
effective.

7.5 The EW-Algorithm for an Extended GREP(1)

Let us consider the class of functions A(y) that have asymptotic expansions of the form

A(y) ∼ A + φ(y)
∞∑

k=1
αk y

σk as y → 0+, (7.5.1)

with

σi �= 0, i = 1, 2, . . . ; �σ1 < �σ2 < · · · , and lim
i→∞

�σi = +∞. (7.5.2)

This is the class of functions considered in Section 4.6 and described by (4.1.1) and
(4.6.1) with (4.6.2), and withm = 1. The extended GREP(1) for this class of A(y) is then
defined by the linear systems

A(yl) = A( j)
n + φ(yl)

n∑

k=1
ᾱk y

σk
l , j ≤ l ≤ j + n. (7.5.3)

When σi are arbitrary, there does not seem to be an efficient algorithm analogous to the
W-algorithm. In such a case, we can make use of the FS-algorithm or the E-algorithm to
determine the A( j)

n . An efficient algorithm becomes possible, however, when yl are not
arbitrary, but yl = y0ωl , l = 1, 2, . . . , for some y0 ∈ (0, b] and ω ∈ (0, 1).
Let us rewrite (7.5.3) in the form

A(y j+i )− A( j)
n

φ(y j+i )
=

n∑

k=1
ᾱk y

σk
j+i , 0 ≤ i ≤ n. (7.5.4)

We now employ the technique used in the proof of Theorem 1.4.5. Set ωσk = ck, k =
1, 2, . . . , and let

Un(z) =
n∏

i=1

z − ci
1− ci

≡
n∑

i=0
ρni z

i . (7.5.5)

Multiplying both sides of (7.5.4) by ρni , summing from i = 0 to i = n, we obtain

n∑

i=0
ρni

A(y j+i )− A( j)
n

φ(y j+i )
=

n∑

k=1
ᾱk y

σk
j Un(ck) = 0, (7.5.6)

from which we have

A( j)
n =

∑n
i=0 ρni [A(y j+i )/φ(y j+i )]∑n

i=0 ρni [1/φ(y j+i )]
≡ M ( j)

n

N ( j)
n

. (7.5.7)

Therefore, Algorithm 1.3.1 that was used in the recursive computation of (1.4.5), can be
used for computing the M ( j)

n and N ( j)
n .
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Algorithm 7.5.1 (EW-algorithm)

1. For j = 0, 1, . . . , set M ( j)
0 = A(y j )/φ(y j ) and N ( j)

0 = 1/φ(y j ).
2. For j = 0, 1, . . . , and n = 1, 2, . . . , compute M ( j)

n and N ( j)
n recursively from

M ( j)
n = M ( j+1)

n−1 − cnM
( j)
n−1

1− cn
and N ( j)

n = N ( j+1)
n−1 − cnN

( j)
n−1

1− cn
. (7.5.8)

3. For all j and n, set A( j)
n = M ( j)

n /N ( j)
n .

Thus the EW-algorithm, just as the W-algorithm, constructs two tables of the form of
Table 7.2.1 for the quantities M ( j)

n and N ( j)
n .

We now go on to discuss the computation of �( j)
n and !( j)

n . By (7.5.7), we have

γ
( j)
ni = ρni/φ(y j+i )

N ( j)
n

, i = 0, 1, . . . , n. (7.5.9)

As the ρni are independent of j , they can be evaluated inexpensively from (7.5.5). They
can then be used to evaluate any of the �( j)

n and !( j)
n as part of the EW-algorithm, since

N ( j)
n and φ(yi ) are already available. In particular, we may be content with the �(0)

n and
!(0)

n , n = 1, 2, . . . , associated with the diagonal sequence {A(0)
n }∞n=0.

It can be shown, by using (7.5.5) and (7.5.9), that �( j)
n = 1 in the cases (i) ck are

positive and φ(yi ) alternate in sign, and (ii) ck are negative and φ(yi ) have the same sign.
It can also be shown that, when the ck are either all positive or all negative and the

φ(yi ) are arbitrary, �
( j)
n and!( j)

n can be computed as part of the EW-algorithm by adding
to Algorithm 7.5.1 the following:

(i) Add the following initial conditions to Step 1:

H ( j)
0 = (−1) j |N ( j)

0 |, K ( j)
0 = (−1) j |M ( j)

0 |, if ck > 0, k = 1, 2, . . . ,

H ( j)
0 = |N ( j)

0 |, K ( j)
0 = |M ( j)

0 |, if ck < 0, k = 1, 2, . . . .

(ii) Add H ( j)
n = H ( j+1)

n−1 − cnH
( j)
n−1

1− cn
and K ( j)

n = K ( j+1)
n−1 − cnK

( j)
n−1

1− cn
to Step 2.

(iii) Add �( j)
n =

∣
∣
∣
∣
∣
H ( j)

n

N ( j)
n

∣
∣
∣
∣
∣
and !( j)

n =
∣
∣
∣
∣
∣
K ( j)

n

N ( j)
n

∣
∣
∣
∣
∣
to Step 3.

The proof of this can be accomplished by realizing that, when the ck are all positive,

H ( j)
n =

n∑

i=0
ρni

(−1) j+i

|φ(y j+i )| and K ( j)
n =

n∑

i=0
ρni

(−1) j+i |A(y j+i )|
|φ(y j+i )| ,

and, when the ck are all negative,

H ( j)
n =

n∑

i=0
ρni

1

|φ(y j+i )| and K ( j)
n =

n∑

i=0
ρni
|A(y j+i )|
|φ(y j+i )| .

(cf. Theorem 7.2.3).
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Before closing this section, we would like to discuss briefly the application of the
extended GREP(1) and the EW-algorithm to a sequence {Am}, for which

Am ∼ A + gm
∞∑

k=1
αkc

m
k as m →∞, (7.5.10)

where

ck �= 1, k = 1, 2, . . . , |c1| > |c2| > · · · , and lim
k→∞

ck = 0. (7.5.11)

The gm and the ck are assumed to be known, and A, the limit or antilimit of {Am}, is
sought. The extended GREP(1) is now defined through the linear systems

Al = A( j)
n + gl

n∑

k=1
ᾱkc

l
k, j ≤ l ≤ j + n, (7.5.12)

and it can be implemented by Algorithm 7.5.1 by replacing A(ym) by Am and φ(ym) by
gm in Step 1 of this algorithm.



8
Analytic Study of GREP(1): Slowly Varying A(y) ∈ F(1)

8.1 Introduction and Error Formula for A( j)
n

In Section 4.4, we gave a brief convergence study of GREP(m) for both Process I and
Process II. In this study, we treated the cases in which GREP(m) was stable. In addition,
we made some practical remarks on stability of GREP(m) in Section 4.5. The aim of
the study was to justify the preference given to Process I and Process II as the relevant
limiting processes to be used for approximating A, the limit or antilimit of A(y) as
y → 0+. We also mentioned that stability was not necessary for convergence and that
convergence could be proved at least in some cases in which the extrapolation process
is clearly unstable.
In this chapter aswell as the next, wewould like tomakemore refined statements about

the convergence and stability properties of GREP(1), the simplest form and prototype of
GREP, as it is being applied to functions A(y) ∈ F(1).

Before going on, we mention that this chapter is an almost exact reproduction of the
recent paper Sidi [306]1.
As we will be using the notation and results of Section 7.2 on the W-algorithm, we

believe a review of this material is advisable at this point. We recall that A(y) ∈ F(1) if

A(y) = A + φ(y)β(y), y ∈ (0, b] for some b > 0, (8.1.1)

where y can be a continuous or discrete variable, andβ(ξ ), as a function of the continuous
variable ξ , is continuous in [0, ξ̂ ] for some ξ̂ > 0 and has a Poincaré-type asymptotic
expansion of the form

β(ξ ) ∼
∞∑

i=0
βiξ

ir as ξ → 0+, for some fixed r > 0. (8.1.2)

We also recall that A(y) ∈ F(1)
∞ if the function B(t) ≡ β(t1/r ), as a function of the con-

tinuous variable t , is infinitely differentiable in [0, ξ̂ r ]. [Therefore, in the variable t ,
B(t) ∈ C[0, t̂] for some t̂ > 0 and (8.1.2) reads B(t) ∼∑∞

i=0 βi t i as t → 0+.]
Finally, we recall that we have set t = yr , a(t) = A(y), ϕ(t) = φ(y), and tl = yrl , l =

0, 1, . . . , and that br ≥ t0 > t1 > · · · > 0 and liml→∞ tl = 0. A( j)
n is given by (7.2.4),

1 First published electronically inMathematics of Computation, November 28, 2001, and later inMathematics
of Computation, Volume 71, Number 240, 2002, pp. 1569–1596, published by the American Mathematical
Society.
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with the divided difference operator D( j)
n as defined by (7.2.3). Similarly, �( j)

n is given
by (7.2.12). Of course, ϕ(tl) �= 0 for all l.
We aim at presenting various convergence and stability results for GREP(1) in the

presence of different functions ϕ(t) and different collocation sequences {tl}. Of course,
ϕ(t) are not arbitrary. They are chosen to cover the most relevant cases of the D(1)-
transformation for infinite integrals and the d (1)- and d̃ (m)-transformations for infi-
nite series. The sequences {tl} that we consider satisfy (i) tl+1 = ωtl for all l; or
(ii) liml→∞(tl+1/tl) = ω; or (iii) tl+1 ≤ ωtl for all l, ω being a fixed constant in (0, 1) in
all three cases; or (iv) liml→∞(tl+1/tl) = 1, in particular, tl ∼ cl−q as l →∞, for some
c, q > 0. These are the most commonly used collocation sequences. Thus, by drawing
the proper analogies, the results of this chapter and the next apply very naturally to the
D(1)-, d (1)-, and d̃ (m)-transformations. We come back to these transformations in Chap-
ter 10, where we show how the conclusions drawn from the study of GREP(1) can be
used to enhance their performance in finite-precision arithmetic.
Surprisingly, GREP(1) is quite amenable to rigorous and refined analysis, and the

conclusions that we draw from the study of GREP(1) are relevant to GREP(m) with
arbitrary m, in general.
It is important to note that the analytic study ofGREP(1) ismade possible by the divided

difference representations of A( j)
n and �( j)

n that are given in Theorems 7.2.1 and 7.2.3.
With the help of these representations, we are able to produce results that are optimal
or nearly optimal in many cases. We must also add that not all problems associated
with GREP(1) have been solved, however. In particular, various problems concerning
Process II are still open.
In this chapter, we concentrate on functions A(y) that vary slowly as y → 0+, while

in the next chapter we treat functions A(y) that vary quickly as y → 0+. How A(y)
varies depends only on the behavior of φ(y) as y → 0+ because β(y) behaves polyno-
mially in yr and hence varies slowly as y → 0+. Specifically, β(y) ∼ β0 if β0 �= 0, and
β(y) ∼ βs ysr for some s > 0, otherwise. Thus, A(y) andφ(y) vary essentially in the same
manner. Ifφ(y) behaves like somepower yγ (γ maybe complex), then A(y) varies slowly.
If φ(y) behaves like some exponential function exp[w(y)], where w(y) ∼ ayγ , γ < 0,
then A(y) varies quickly.

In the remainder of this section, we present some preliminary results that will be useful
in the analysis of GREP(1) in this chapter and the next.
We start by deriving an error formula for A( j)

n .

Lemma 8.1.1 The error in A( j)
n is given by

A( j)
n − A = D( j)

n {B(t)}
D( j)

n {1/ϕ(t)}
; B(t) ≡ β(t1/r ). (8.1.3)

Proof. The result follows from a(t)− A = ϕ(t)B(t) and from (7.2.4) in Theorem 7.2.1
and from the linearity of D( j)

n . �

It is clear from Lemma 8.1.1 that the convergence analysis of GREP(1) on F(1) is based
on the study of D( j)

n {B(t)} and D( j)
n {1/ϕ(t)}. Similarly, the stability analysis is based on
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the study of�( j)
n given in (7.2.12), whichwe reproduce here for the sake of completeness:

�( j)
n =

n∑

i=0
|γ ( j)

ni | =
1

|D( j)
n {1/ϕ(t)}|

n∑

i=0

|c( j)ni |
|ϕ(t j+i )| ; c( j)ni =

n∏

k=0
k �=i

1

t j+i − t j+k
. (8.1.4)

In some of our analyses, we assume the functions ϕ(t) and B(t) to be differentiable;
in others, no such requirement is imposed. Obviously, the assumption in the former case
is quite strong, and this makes some of the proofs easier.
The following simple result on A( j)

n will become useful shortly.

Lemma 8.1.2 If B(t) ∈ C∞[0, t j ] andψ(t) ≡ 1/ϕ(t) ∈ C∞(0, t j ], then for any nonzero
complex number c,

A( j)
n − A = �[cB(n)(t ′jn,1)]+ i![cB(n)(t ′jn,2)]

�[cψ (n)(t ′′jn,1)]+ i![cψ (n)(t ′′jn,2)]

for some t ′jn,1, t ′jn,2, t ′′jn,1, t ′′jn,2 ∈ (t j+n, t j ). (8.1.5)

Proof. It is known that if f ∈ Cn[a, b] is real and a ≤ x0 ≤ x1 ≤ · · · ≤ xn ≤ b, then the
divided difference f [x0, x1, . . . , xn] satisfies

f [x0, x1, . . . , xn] = f (n)(ξ )

n!
for some ξ ∈ (x0, xn).

Applying this to the real and imaginary parts of the complex-valued function u(t) ∈
Cn(0, t j ), we have

D( j)
n {u(t)} =

1

n!

[�u(n)(t jn,1)+ i!u(n)(t jn,2)
]
, for some t jn,1, t jn,2 ∈ (t j+n, t j ).

(8.1.6)

The result now follows. �

The constant c in (8.1.5) serves us in the proof of Theorem 8.3.1 in the next section.
Note that, in many of our problems, it is known that B(t) ∈ C∞[0, t̂] for some t̂ > 0,

whereas ψ(t) ∈ C∞(0, t̂] only. That is to say, B(t) has an infinite number of derivatives
at t = 0, and ψ(t) does not. This is an important observation.
Auseful simplification takes place in (8.1.5) for the caseϕ(t) = t . In this case,GREP(1)

is, of course, nothing but the polynomial Richardson extrapolation process that has been
studied most extensively in the literature, which we studied to some extent in Chapter 2.

Lemma 8.1.3 If ϕ(t) = t in Lemma 8.1.2, then, for some t ′jn,1, t ′jn,2 ∈ (t j+n, t j ),

A( j)
n − A = (−1)n�[B

(n)(t ′jn,1)]+ i![B(n)(t ′jn,2)]

n!

( n∏

i=0
t j+i

)

. (8.1.7)
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In this case, it is also true that

A( j)
n − A = (−1)nD( j)

n+1{a(t)}
( n∏

i=0
t j+i

)

, (8.1.8)

so that, for some t jn,1, t jn,2 ∈ (t j+n, t j ),

A( j)
n − A = (−1)n�[a

(n+1)(t jn,1)]+ i![a(n+1)(t jn,2)]
(n + 1)!

( n∏

i=0
t j+i

)

. (8.1.9)

Proof. The first part is proved by invoking in (8.1.3) the fact D( j)
n {t−1} = (−1)n(∏n

i=0 t j+i
)−1

that was used in Chapter 7. We leave the rest to the reader. �

Obviously, by imposing suitable growth conditions on B(n)(t), Lemma 8.1.3 can be
turned into powerful convergence theorems.
The last result of this section is a slight refinement of Theorem 4.4.2 concerning

Process I as it applies to GREP(1).

Theorem 8.1.4 Let sup j �
( j)
n = $n <∞ and φ(y j+1) = O(φ(y j )) as j →∞. Then,

with n fixed,

A( j)
n − A = O(ϕ(t j )t

n+µ
j ) as j →∞, (8.1.10)

where βn+µ is the first nonzero βi with i ≥ n.

Proof. Following the proof of Theorem 4.4.2, we start with

A( j)
n − A =

n∑

i=0
γ
( j)
ni ϕ(t j+i )[B(t j+i )− u(t j+i )]; u(t) =

n−1∑

k=0
βk t

k . (8.1.11)

The result now follows by taking moduli on both sides and realizing that B(t)− u(t) ∼
βn+µtn+µ as t → 0+ and recalling that t j > t j+1 > t j+2 > · · · .We leave the details to
the reader. �

Note that Theorem 8.1.4 does not assume that B(t) and ϕ(t) are differentiable. It does,
however, assume that Process I is stable.
As we will see in the sequel, (8.1.10) holds under appropriate conditions on the tl even

when Process I is clearly unstable.
In connection with Process I, we would like to remark that, as in Theorem 3.5.5, under

suitable conditions we can obtain a full asymptotic expansion for A( j)
n − A as j →∞.

If we define

�
( j)
n,k =

D( j)
n {t k}

D( j)
n {1/ϕ(t)}

, k = 0, 1, . . . , (8.1.12)
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and recall that D( j)
n {t k} = 0, for k = 0, 1, . . . , n − 1, then this expansion assumes the

simple and elegant form

A( j)
n − A ∼

∞∑

k=n

βk�
( j)
n,k as j →∞. (8.1.13)

If βn+µ is the first nonzero βi with i ≥ n, then A( j)
n − A also satisfies the asymptotic

equality

A( j)
n − A ∼ βn+µ�

( j)
n,n+µ as j →∞. (8.1.14)

Of course, all this will be true provided that (i) {�( j)
n,k}∞k=n is an asymptotic se-

quence as j →∞, that is, lim j→∞�
( j)
n,k+1/�

( j)
n,k = 0 for all k ≥ n, and (ii) A( j)

n − A −∑s−1
k=n βk�

( j)
n,k = O(�( j)

n,s) as j →∞, for each s ≥ n. In the next sections, we aim at such
results whenever possible. We show that they are possible in most of the cases we treat.
We close this section with the well-known Hermite–Gennochi formula for divided

differences, which will be used later.

Lemma 8.1.5 (Hermite–Gennochi). Let f (x) be in Cn[a, b], and let x0, x1, . . . , xn be
all in [a, b]. Then

f [x0, x1, . . . , xn] =
∫

Tn

f (n)
( n∑

i=0
ξi xi

)

dξ1 · · · dξn,

where

Tn =
{

(ξ1, . . . , ξn) : 0 ≤ ξi ≤ 1, i = 1, . . . , n,
n∑

i=1
ξi ≤ 1

}

; ξ0 = 1−
n∑

i=1
ξi .

For a proof of this lemma, see, for example, Atkinson [13]. Note that the argument
z =∑n

i=0 ξi xi of f (n) above is actually a convex combination of x0, x1, . . . , xn be-
cause 0 ≤ ξi ≤ 1, i = 0, 1, . . . , n, and

∑n
i=0 ξi = 1. If we order the xi such that x0 ≤

x1 ≤ · · · ≤ xn , then z ∈ [x0, xn] ⊆ [a, b].

8.2 Examples of Slowly Varying a(t)

Our main concern in this chapter is with functions a(t) that vary slowly as t → 0+. As
we mentioned earlier, by this we mean that ϕ(t) ∼ h0tδ as t → 0+ for some h0 �= 0
and δ that may be complex in general. In other words, ϕ(t) = tδH (t) with H (t) ∼ h0

as t → 0+. In most cases, H (t) ∼∑∞
i=0 hi t i as t → 0+ .When �δ > 0, limt→0+ a(t)

exists and is equal to A. When limt→0+ a(t) does not exist, we have �δ ≤ 0 necessarily,
and A is the antilimit of a(t) as t → 0+ in this case, with some restriction on δ.
We now present practical examples of functions a(t) that vary slowly.

Example 8.2.1 If f ∈ A(γ ) strictly for some possibly complex γ �= −1, 0, 1, 2, . . . ,
then we know from Theorem 5.7.3 that

F(x) =
∫ x

0
f (t) dt = I [ f ]+ x f (x)g(x); g ∈ A(0) strictly.
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This means that F(x)↔ a(t), I [ f ]↔ A, x−1 ↔ t , x f (x)↔ ϕ(t) with ϕ(t) as above
and with δ = −γ − 1. (Recall that f ∈ B(1) in this case.)

Example 8.2.2 If an = h(n) ∈ A(γ )
0 strictly for some possibly complex γ �= −1, 0, 1,

2, . . . , then we know from Theorem 6.7.2 that

An =
n∑

k=1
ak = S({ak})+ nang(n); g ∈ A(0)

0 strictly.

This means that An ↔ a(t), S({ak})↔ A, n−1 ↔ t , nan ↔ ϕ(t) with ϕ(t) as above and
with δ = −γ − 1. (Recall that {an} ∈ b(1) in this case.)

Example 8.2.3 If an = h(n) ∈ Ã(γ,m)
0 strictly for some possibly complex γ �= −1+

i/m, i = 0, 1, . . . , and a positive integerm > 1, then we know fromTheorem 6.6.6 that

An =
n∑

k=1
ak = S({ak})+ nang(n); g ∈ Ã(0,m)

0 strictly.

This means that An ↔ a(t), S({ak})↔ A, n−1/m ↔ t , nan ↔ ϕ(t) with ϕ(t) as above
and with δ = −γ − 1. (Recall that {an} ∈ b̃(m) in this case.)

8.3 Slowly Varying ϕ(t) with Arbitrary tl

We start with the following surprising result that holds for arbitrary {tl}. (Recall that so
far the tl satisfy only t0 > t1 > · · · > 0 and liml→∞ tl = 0.)

Theorem 8.3.1 Let ϕ(t) = tδH (t), where δ is in general complex and δ �= 0,−1,
−2, . . . , and H (t) ∈ C∞[0, t̂] for some t̂ > 0with h0 ≡ H (0) �= 0. Let B(t) ∈ C∞[0, t̂],
and let βn+µ be the first nonzero βi with i ≥ n in (8.1.2). Then, provided n ≥ −�δ,
we have

A( j)
n − A = O(ϕ(t j )t

n+µ
j ) as j →∞. (8.3.1)

Consequently, if n > −�δ, we have lim j→∞ A( j)
n = A. All this is valid for arbitrary {tl}.

Proof. By the assumptions on B(t), we have

B(n)(t) ∼
∞∑

i=n+µ
i(i − 1) · · · (i − n + 1)βi t

i−n as t → 0+,

from which

B(n)(t) ∼ (µ+ 1)nβn+µtµ as t → 0+, (8.3.2)
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and by the assumptions on ϕ(t), we have for ψ(t) ≡ 1/ϕ(t)

ψ (n)(t) =
n∑

k=0

(
n

k

)

(t−δ)(k)[1/H (t)](n−k) ∼ (t−δ)(n)/H (t) ∼ (t−δ)(n)/h0 as t → 0+,

from which

ψ (n)(t) ∼ (−1)nh−10 (δ)nt
−δ−n ∼ (−1)n(δ)nψ(t)t−n as t → 0+ . (8.3.3)

Also, Lemma 8.1.2 is valid for all sufficiently large j under the present assumptions on
B(t) and ϕ(t), because t j < t̂ for all sufficiently large j . Substituting (8.3.2) and (8.3.3)
in (8.1.5) with |c| = 1 there, we obtain

A( j)
n − A = (−1)n(µ+ 1)n

× [�(cβn+µ)+ o(1)](t ′jn,1)
µ+ i [!(cβn+µ)+ o(1)](t ′jn,2)

µ

[�α jn,1 + o(1)](t ′′jn,1)
−�δ−n + i [!α jn,2 + o(1)](t ′′jn,2)

−�δ−n as j →∞, (8.3.4)

with α jn,s ≡ ch0
−1(δ)n(t ′′jn,s)

−i!δ and the o(1) terms uniform in c, |c| = 1. Here, we
have also used the fact that lim j→∞ t ′jn,s = lim j→∞ t ′′jn,s = 0. Next, by 0 < t ′jn,s < t j
and µ ≥ 0, it follows that (t ′jn,s)

µ ≤ tµj . This implies that the numerator of the quo-
tient in (8.3.4) is O(tµj ) as j →∞, uniformly in c, |c| = 1. As for the denominator,
we start by observing that a = h−10 (δ)n �= 0. Therefore, either �a �= 0 or !a �= 0, and
we assume without loss of generality that �a �= 0. If we now choose c = (t ′′jn,1)

i!δ , we
obtain α jn,1 = a and hence �α jn,1 = �a �= 0, as a result of which the modulus of the
denominator can be bounded from below by |�a + o(1)|(t ′′jn,1)−�δ−n , which in turn is

bounded below by |�a + o(1)| t−�δ−n
j , since 0 < t ′′jn,s < t j and �δ + n ≥ 0. The re-

sult now follows by combining everything in (8.3.4) and by invoking tδ = O(ϕ(t)) as
t → 0+, which follows from ϕ(t) ∼ h0tδ as t → 0+. �

Theorem8.3.1 implies that the column sequence {A( j)
n }∞j=0 converges to A if n > −�δ;

it also gives an upper bound on the rate of convergence through (8.3.1). The fact that
convergence takes place for arbitrary {tl} and that we are able to prove that it does is
quite unexpected.
By restricting {tl} only slightly in Theorem 8.3.1, we can show that A( j)

n − A has
the full asymptotic expansion given in (8.1.13) and, as a result, satisfies the asymptotic
equality of (8.1.14) as well. We start with the following lemma that turns out to be very
useful in the sequel.

Lemma 8.3.2 Let g(t) = tθu(t), where θ is in general complex and u(t) ∈ C∞[0, t̂] for
some t̂ > 0. Pick the tl to satisfy, in addition to tl+1 < tl , l = 0, 1, . . . , also tl+1 ≥ νtl
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for all sufficiently large l with some ν ∈ (0, 1). Then, the following are true:

(i) The nonzero members of {D( j)
n {tθ+i }}∞i=0 form an asymptotic sequence as j →∞.

(ii) D( j)
n {g(t)} has the bona fide asymptotic expansion

D( j)
n {g(t)} ∼

∞∑

i=0
∗gi D( j)

n {tθ+i } as j →∞; gi = u(i)(0)/ i!, i = 0, 1, . . . , (8.3.5)

where the asterisk on the summation means that only those terms for which
D( j)

n {tθ+i } �= 0, that is, for which θ + i �= 0, 1, . . . , n − 1, are taken into account.

Remark. The extra condition tl+1 ≥ νtl for all large l that we have imposed on the tl
is satisfied, for example, when liml→∞(tl+1/tl) = λ for some λ ∈ (0, 1], and such cases
are considered further in the next sections.

Proof. Let α be in general complex and α �= 0, 1, . . . , n − 1. Denote
(
α

n

) = M for sim-
plicity of notation. Then, by (8.1.6), for any complex number c such that |c| = 1, we
have

cD( j)
n {tα} = � [cM(t jn,1)

α−n
]+ i! [cM(t jn,2)

α−n
]

for some t jn,1, t jn,2 ∈ (t j+n, t j ), (8.3.6)

from which we also have

|D( j)
n {tα}| ≥ max{|� [cM(t jn,1)

α−n]|, |! [cM(t jn,2)
α−n]|}. (8.3.7)

Because M �= 0, we have either�M �= 0 or !M �= 0. Assume without loss of generality
that �M �= 0 and choose c = (t jn,1)−i!α . Then, � [cM(t jn,1)α−n] = (�M)(t jn,1)�α−n

and hence

|D( j)
n {tα}| ≥ |�M |(t jn,1)�α−n ≥ |�M | min

t∈[t j+n ,t j ]
(t�α−n). (8.3.8)

Invoking in (8.3.8), if necessary, the fact that t j+n ≥ νnt j , which is implied by the
conditions on the tl , we obtain

|D( j)
n {tα}| ≥ C (α)

n1 t
�α−n
j for all large j, with some constant C (α)

n1 > 0. (8.3.9)

Similarly, we can show from (8.3.6) that

|D( j)
n {tα}| ≤ C (α)

n2 t
�α−n
j for all large j, with some constant C (α)

n2 > 0. (8.3.10)

The proof of part (i) can now be achieved by using (8.3.9) and (8.3.10).
To prove part (ii), we need to show [in addition to part (i)] that, for any integer s for

which D( j)
n {tθ+s} �= 0, that is, for which θ + s �= 0, 1, . . . , n − 1, there holds

D( j)
n {g(t)} −

s−1∑

i=0
gi D

( j)
n {tθ+i } = O

(
D( j)

n {tθ+s}) as j →∞. (8.3.11)
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Now g(t) =∑s−1
i=0 gi tθ+i + vs(t)tθ+s , where vs(t) ∈ C∞[0, t̂]. As a result,

D( j)
n {g(t)} −

s−1∑

i=0
gi D

( j)
n {tθ+i } = D( j)

n {vs(t)tθ+s}. (8.3.12)

Next, by (8.1.6) and by the fact that

[vs(t)t
θ+s](n) =

n∑

i=0

(
n

i

)

[vs(t)]
(n−i)(tθ+s)(i) ∼ vs(t)(t

θ+s)(n) ∼ gs(t
θ+s)(n) as t → 0+,

and by the additional condition on the tl again, we obtain

D( j)
n {vs(t)tθ+s} = O(t�θ+s−n

j ) = O(D( j)
n {tθ+s}) as j →∞, (8.3.13)

with the last equality being a consequence of (8.3.9). Herewe assume that gs �= 0without
loss of generality. By substituting (8.3.13) in (8.3.12), the result in (8.3.11) follows. This
completes the proof. �

Theorem 8.3.3 Let ϕ(t) and B(t) be exactly as in Theorem 8.3.1, and pick the tl as in
Lemma 8.3.2. Then A( j)

n − A has the complete asymptotic expansion given in (8.1.13)
and hence satisfies the asymptotic equality in (8.1.14) as well. Furthermore, if βn+µ is
the first nonzero βi with i ≥ n, then, for all large j , there holds

$1|ϕ(t j )| tn+µj ≤ |A( j)
n − A| ≤ $2|ϕ(t j )| tn+µj , for some $1 > 0 and $2 > 0,

(8.3.14)

whether n ≥ −�δ or not.

Proof. The proof of the first part can be achieved by applying Lemma 8.3.2 to B(t) and
to ψ(t) ≡ 1/ϕ(t). The proof of the second part can be achieved by using (8.3.9) as well.
We leave the details to the reader. �

Remark. It is important to make the following observations concerning the behavior of
A( j)

n − A as j →∞ in Theorem 8.3.3. First, any column sequence {A( j)
n }∞j=0 converges

at least as quickly as (or diverges at most as quickly as) the column sequence {A( j)
n−1}

∞
j=0

that precedes it. In other words, each column sequence is at least as good as the one
preceding it. In particular, when βm �= 0 but βm+1 = · · · = βs−1 = 0 and βs �= 0, we
have

A( j)
n − A = o(A( j)

m − A) as j →∞, m + 1 ≤ n ≤ s,

A( j)
s+1 − A = o(A( j)

s − A) as j →∞. (8.3.15)

In addition, for all large j we have

θn1|A( j)
s − A| ≤ |A( j)

n − A| ≤ θn2|A( j)
s − A|, m + 1 ≤ n ≤ s − 1,

for some θn1, θn2 > 0, (8.3.16)



8.4 Slowly Varying ϕ(t) with liml→∞(tl+1/tl) = 1 185

which implies that the column sequences {A( j)
n }∞j=0, m + 1 ≤ n ≤ s, behave the same

way for all large j .
In the next sections, we continue the treatment of Process I by restricting the tl fur-

ther, and we treat the issue of stability for Process I as well. In addition, we treat the
convergence and stability of Process II.

8.4 Slowly Varying ϕ(t) with liml→∞(tl+1/tl) = 1

8.4.1 Process I with ϕ(t) = tδH (t) and Complex δ

Theorem 8.4.1 Assume that ϕ(t) and B(t) are exactly as in Theorem 8.3.1. In addition,
pick the tl such that liml→∞(tl+1/tl) = 1. Then, A( j)

n − A has the complete asymptotic
expansion given in (8.1.13) and satisfies (8.1.14) and hence satisfies also the asymptotic
equality

A( j)
n − A ∼ (−1)n (µ+ 1)n

(δ)n
βn+µϕ(t j )t

n+µ
j as j →∞, (8.4.1)

where, again,βn+µ is the first nonzeroβi with i ≥ n in (8.1.2). This result is valid whether
n ≥ −�δ or not. In addition, Process I is unstable, that is, sup j �

( j)
n = ∞.

Proof. First, Theorem 8.3.3 applies and thus (8.1.13) and (8.1.14) are valid.
Let us apply the Hermite–Gennochi formula of Lemma 8.1.5 to the function tα , where

α may be complex in general. By the assumption that liml→∞(tl+1/tl) = 1, we have
that the argument z =∑n

i=0 ξi t j+i of the integrand in Lemma 8.1.5 satisfies z ∼ t j as
j →∞. As a result, we obtain

D( j)
n {tα} ∼

(
α

n

)

tα−n
j as j →∞, provided α �= 0, 1, . . . , n − 1. (8.4.2)

Next, applying Lemma 8.3.2 to B(t) and to ψ(t) ≡ 1/ϕ(t), and realizing that ψ(t) ∼∑∞
i=0 ψi t−δ+i as t → 0+ for some constants ψi with ψ0 = h−10 , and using (8.4.2) as

well, we have

D( j)
n {B(t)} ∼

∞∑

i=n+µ
βi D

( j)
n {t i } ∼ βn+µD( j)

n {tn+µ} ∼
(
n + µ

n

)

βn+µt
µ

j as j →∞,

(8.4.3)

and

D( j)
n {ψ(t)} ∼

∞∑

i=0
∗ψi D

( j)
n {t−δ+i } ∼ h−10 D( j)

n {t−δ} ∼
(−δ

n

)

ψ(t j )t
−n
j as j →∞.

(8.4.4)

The result in (8.4.1) is obtained by dividing (8.4.3) by (8.4.4).
For the proof of the second part, we start by observing that when liml→∞(tl+1/tl) = 1

we also have lim j→∞(t j+k/t j+i ) = 1 for arbitrary fixed i and k. Therefore, for every
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ε > 0, there exists a positive integer J , such that

|t j+i − t j+k | =
∣
∣
∣
∣1−

t j+k

t j+i

∣
∣
∣
∣ t j+i < εt j+i ≤ εt j for 0 ≤ i, k ≤ n and j > J. (8.4.5)

As a result of this,

|c( j)ni | =
n∏

k=0
k �=i

1

|t j+i − t j+k | > (εt j )
−n for i = 0, 1, . . . , n, and j > J. (8.4.6)

Next, by the assumption that H (t) ∼ h0 as t → 0+ and by lim j→∞(t j+i/t j ) = 1, we
have that ψ(t j+i ) ∼ ψ(t j ) as j →∞, from which |ψ(t j+i )| ≥ K1|ψ(t j )| for 0 ≤ i ≤ n
and all j , where K1 > 0 is a constant independent of j . Combining this with (8.4.6), we
have

n∑

i=0
|c( j)ni | |ψ(t j+i )| ≥ K1(n + 1)(εt j )

−n|ψ(t j )| for all j > J. (8.4.7)

Similarly, |D( j)
n {ψ(t)}| ≤ K2|ψ(t j )| t−n

j for all j , where K2 > 0 is another constant inde-
pendent of j . (K2 depends only on n.) Substituting this and (8.4.7) in (8.1.4), we obtain

�( j)
n ≥ Mnε

−n for all j > J, with Mn = (K1/K2)(n + 1) independent of ε and j.
(8.4.8)

Since ε can be chosen arbitrarily close to 0, (8.4.8) implies that sup j �
( j)
n = ∞. �

Obviously, the remarks following Theorem 8.3.3 are valid under the conditions of
Theorem 8.4.1 too. In particular, (8.3.15) and (8.3.16) hold. Furthermore, (8.3.16) can
now be refined to read

A( j)
n − A ∼ θn(A

( j)
s − A) as j →∞, m + 1 ≤ n ≤ s − 1, for some θn �= 0.

Finally, the column sequences {A( j)
n }∞j=0 with n > −�δ converge even though they

are unstable.
In Theorem 8.4.3, we show that the results of Theorem 8.4.1 remain unchanged if

we restrict the tl somewhat while we still require that liml→∞(tl+1/tl) = 1 but relax the
conditions on ϕ(t) and B(t) considerably. In fact, we do not put any differentiability
requirements either on ϕ(t) or on B(t) this time, and we obtain an asymptotic equality
for �( j)

n as well.
The following lemma that is analogous to Lemma 8.3.2 will be useful in the proof of

Theorem 8.4.3.

Lemma 8.4.2 Let g(t) ∼∑∞
i=0 gi t

θ+i as t → 0+, where g0 �= 0 and θ is in general
complex, and let the tl satisfy

tl ∼ cl−q and tl − tl+1 ∼ cpl−q−1 as l →∞, for some c > 0, p > 0, and q > 0.
(8.4.9)
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Then, the following are true:

(i) The nonzero members of {D( j)
n {tθ+i }}∞i=0 form an asymptotic sequence as j →∞.

(ii) D( j)
n {g(t)} has the bona fide asymptotic expansion

D( j)
n {g(t)} ∼

∞∑

i=0
∗gi D( j)

n {tθ+i } as j →∞, (8.4.10)

where the asterisk on the summation means that only those terms for which
D( j)

n {tθ+i } �= 0, that is, for which θ + i �= 0, 1, . . . , n − 1, are taken into account.

Remark. Note that liml→∞(tl+1/tl) = 1 under (8.4.9), and that (8.4.9) is satisfied by
tl = c(l + η)−q , for example. Also, the first part of (8.4.9) does not necessarily imply
the second part.

Proof. Part (i) is true byLemma8.3.2, because liml→∞(tl+1/tl) = 1. In particular, (8.4.2)
holds. To prove part (ii), we need to show in addition that, for any integer s for which
D( j)

n {tθ+s} �= 0, there holds

D( j)
n {g(t)} −

s−1∑

i=0
gi D

( j)
n {tθ+i } = O

(
D( j)

n {tθ+s}) as j →∞. (8.4.11)

Now, g(t) =∑m−1
i=0 gi tθ+i + vm(t)tθ+m , where |vm(t)| ≤ Cm for some constant Cm > 0

and for all t sufficiently close to 0, and this holds for every m. Let us fix s and take
m > max{s + n/q,−�θ}. We can write

D( j)
n {g(t)} =

s−1∑

i=0
gi D

( j)
n {tθ+i } +

m−1∑

i=s

gi D
( j)
n {tθ+i } + D( j)

n {vm(t)tθ+m}. (8.4.12)

Let us assume, without loss of generality, that gs �= 0. Then, by part (i) of the lemma,

m−1∑

i=s

gi D
( j)
n {tθ+i } ∼ gs D

( j)
n {tθ+s} ∼ gs

(
θ + s

n

)

tθ+s−n
j as j →∞ .

Therefore, the proof will be complete if we show that D( j)
n {vm(t)tθ+m} = O

(
tθ+s−n
j

)
as

j →∞. Using also the fact that t j+i ∼ t j as j →∞, we first have that

|D( j)
n {vm(t)tθ+m}| ≤ Cm

n∑

i=0
|c( j)ni | t�θ+m

j+i ≤ Cmt
�θ+m
j

( n∑

i=0
|c( j)ni |

)

. (8.4.13)

Next, from (8.4.9),

t j+i − t j+k ∼ cp(k − i) j−q−1 ∼ p(k − i) j−1t j as j →∞, (8.4.14)
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as a result of which,

c( j)ni =
n∏

k=0
k �=i

1

t j+i − t j+k
∼ (−1)i 1

n!

(
n

i

)(
j

pt j

)n

, 0 ≤ i ≤ n, and

n∑

i=0
|c( j)ni | ∼

1

n!

(
2 j

pt j

)n

as j →∞. (8.4.15)

Substituting (8.4.15) in (8.4.13) andnoting that (8.4.9) implies j ∼ (t j/c)−1/q as j →∞,
we obtain

D( j)
n {vm(t)tθ+m} = O(t�θ+m−n−n/q

j ) = O(t�θ+s−n
j ) as j →∞, (8.4.16)

by the fact that �θ + m − n − n/q > �θ + s − n. The result now follows. �

Theorem 8.4.3 Assume that ϕ(t)= tδH (t), with δ in general complex and δ �= 0,−1,
−2, . . . , H (t) ∼∑∞

i=0 hi t i as t → 0+ and B(t) ∼∑∞
i=0 βi t i as t → 0+. Let us pick

the tl to satisfy (8.4.9). Then A( j)
n − A has the complete asymptotic expansion given in

(8.1.13) and satisfies (8.1.14) and hence also satisfies the asymptotic equality in (8.4.1).
In addition, �( j)

n satisfies the asymptotic equality

�( j)
n ∼ 1

|(δ)n|
(
2 j

p

)n

as j →∞. (8.4.17)

That is to say, Process I is unstable.

Proof. The assertion concerning A( j)
n can be proved by applying Lemma 8.4.2 to B(t)

and to ψ(t) ≡ 1/ϕ(t) and proceeding as in the proof of Theorem 8.4.1.
We now turn to the analysis of �( j)

n . To prove the asymptotic equality in (8.4.17), we
need the precise asymptotic behaviors of

∑n
i=0 |c( j)ni ||ψ(t j+i )| and D( j)

n {ψ(t)} as j →∞.
By (8.4.15) and by the fact that ψ(t j+i ) ∼ ψ(t j ) as j →∞ for all fixed i , we obtain

n∑

i=0
|c( j)ni | |ψ(t j+i )| ∼

( n∑

i=0
|c( j)ni |

)

|ψ(t j )| ∼ 1

n!

(
2 j

pt j

)n

|ψ(t j )| as j →∞. (8.4.18)

Combining now (8.4.18) and (8.4.4) in (8.1.4), the result in (8.4.17) follows. �

So far all our results have been on Process I. What characterizes these results is that
they are all obtained by considering only the local behavior of B(t) and ϕ(t) as t → 0+.
The reason for this is that A( j)

n is determined only by a(tl), j ≤ l ≤ j + n, and that in
Process I we are letting j →∞ or, equivalently, tl → 0, j ≤ l ≤ j + n. In Process II,
on the other hand, we are holding j fixed and letting n →∞. This means, of course, that
A( j)

n is being influenced by the behavior of a(t) on the fixed interval (0, t j ]. Therefore,
we need to use global information on a(t) in order to analyze Process II. It is precisely
this point that makes Process II much more difficult to study than Process I.
An additional source of difficulty when analyzing Process II with ϕ(t) = tδH (t) is

complex values of δ. Indeed, except for Theorem 8.5.2 in the next section, we do not
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have any results on Process II under the assumption that δ is complex. Our analysis in
the remainder of this section assumes real δ.

8.4.2 Process II with ϕ(t) = t

We now would like to present results pertaining to Process II. We start with the case
ϕ(t) = t . Our first result concerns convergence and follows trivially from Lemma 8.1.3
as follows:
Assuming that B(t) ∈ C∞[0, t j ] and letting

‖B(n)‖ = max
0≤t≤t j

|B(n)(t)| (8.4.19)

we have
∣
∣
∣
∣
∣
D( j)

n {B(t)}
D( j)

n {t−1}

∣
∣
∣
∣
∣
≤ ‖B(n)‖

n!

( n∏

i=0
t j+i

)

, (8.4.20)

from which we have that limn→∞ A( j)
n = A when ϕ(t) = t provided that

‖B(n)‖
n!

= o

( n∏

i=0
t−1j+i

)

as n →∞. (8.4.21)

In the special case tl = c/(l + η)q for some positive c, η, and q, this condition reads

‖B(n)‖ = o((n!)q+1c−nn( j+η)q ) as n →∞. (8.4.22)

We are thus assured of convergence in this case under a very generous growth condition
on ‖B(n)‖, especially when q ≥ 1.
Our next result in the theorem below pertains to stability of Process II.

Theorem 8.4.4 Consider ϕ(t) = t and pick the tl such that liml→∞(tl+1/tl) = 1. Then,
Process II is unstable, that is, supn �

( j)
n = ∞. If the tl are as in (8.4.9), then �( j)

n →∞
as n →∞ faster than nσ for every σ > 0. If, in particular, tl = c/(l + η)q for some
positive c, η, and q, then

�( j)
n > E ( j)

q n−1/2
(
e

q

)qn

for some E ( j)
q > 0, q = 1, 2. (8.4.23)

Proof. We already know that, when ϕ(t) = t , we can compute the �( j)
n by the recursion

relation in (7.2.27), which can also be written in the form

�( j)
n = �

( j+1)
n−1 + w

( j)
n

1− w
( j)
n

(
�
( j)
n−1 + �

( j+1)
n−1

)
; w( j)

n = t j+n

t j
< 1. (8.4.24)

Hence,

�( j)
n ≥ �

( j+1)
n−1 ≥ �

( j+2)
n−2 ≥ · · · , (8.4.25)
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from which �( j)
n ≥ �

( j+n−s)
s for arbitrary fixed s. Applying now Theorem 8.4.1, we have

limn→∞ �
( j+n−s)
s = ∞ for s ≥ 1, fromwhich limn→∞ �

( j)
n = ∞ follows.When the tl are

as in (8.4.9), we have from (8.4.17) that�( j+n−s)
s ∼ 1

s!

(
2
p

)s
ns as n →∞. From this and

from the fact that s is arbitrary, we now deduce that �( j)
n →∞ as n →∞ faster

than nσ for every σ > 0. To prove the last part, we start with

γ
( j)
ni =

n∏

k=0
k �=i

t j+k

t j+k − t j+i
, i = 0, 1, . . . , n, (8.4.26)

which follows from (7.2.26). The result in (8.4.23) follows from �
( j)
n > |γ ( j)

nn |. �

We can expand on the last part of Theorem 8.4.4 by deriving upper bounds on
�
( j)
n when tl = c/(l + η)q for some positive c, η, and q. In this case, we first show

that w( j+1)
n ≥ w

( j)
n , from which we can prove by induction, and with the help of

(8.4.24), that�( j)
n ≤ �

( j+1)
n . Using this in (8.4.24), we obtain the inequality�( j)

n ≤ �
( j+1)
n−1

[(1+ w
( j)
n )/(1− w

( j)
n )], and, by induction,

�( j)
n ≤ �

( j+n)
0

(n−1∏

i=0

1+ w
( j+i)
n−i

1− w
( j+i)
n−i

)

. (8.4.27)

Finally, we set �( j+n)
0 = 1 and bound the product in (8.4.27). It can be shown that, when

q = 2, �( j)
n = O(n−1/2(e2/3)n) as n →∞. This result is due to Laurie [159]. On the

basis of this result, Laurie concludes that the error propagation in Romberg integration
with the harmonic sequence of stepsizes is relatively mild.

8.4.3 Process II with ϕ(t) = tδH (t) and Real δ

We nowwant to extend Theorem 8.4.4 to the general case in which ϕ(t) = tδH (t), where
δ is real and δ �= 0,−1,−2, . . . , and H (t) ∈ C∞[0, t j ] with H (t) �= 0 on [0, t j ]. To do
this, we need additional analytical tools. We make use of these tools in the next sections
as well. The results we have obtained for the case ϕ(t) = t will also prove to be very
useful in the sequel.

Lemma 8.4.5 Let δ1 and δ2 be two real numbers and δ1 �= δ2. Define�i (t) = t−δi , i =
1, 2. Then, provided δ1 �= 0,−1,−2, . . . ,

D( j)
n {�2(t)} = (δ2)n

(δ1)n
t̃δ1−δ2jn D( j)

n {�1(t)} for some t̃ jn ∈ (t j+n, t j ).

Proof. From Lemma 8.1.5, with z ≡∑n
i=0 ξi t j+i ,

D( j)
n {�2(t)} =

∫

Tn

�
(n)
2 (z)dξ1 · · · dξn =

∫

Tn

[
�

(n)
2 (z)

�
(n)
1 (z)

]

�
(n)
1 (z)dξ1 · · · dξn.
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Because�(n)
1 (z) is of one sign on Tn , we can apply the mean value theorem to the second

integral to obtain

D( j)
n {�2(t)} = �

(n)
2 (t̃ jn)

�
(n)
1 (t̃ jn)

∫

Tn

�
(n)
1 (z)dξ1 · · · dξn

= �
(n)
2 (t̃ jn)

�
(n)
1 (t̃ jn)

D( j)
n {�1(t)} for some t̃ jn ∈ (t j+n, t j ).

This proves the lemma. �

Corollary 8.4.6 Let δ1 > δ2 in Lemma 8.4.5. Then, for arbitrary {tl},
∣
∣
∣
∣
(δ2)n
(δ1)n

∣
∣
∣
∣ t

δ1−δ2
j+n ≤ |D( j)

n {�2(t)}|
|D( j)

n {�1(t)}|
≤
∣
∣
∣
∣
(δ2)n
(δ1)n

∣
∣
∣
∣ t

δ1−δ2
j ,

from which we also have

|D( j)
n {�2(t)}|

|D( j)
n {�1(t)}|

≤ Knδ2−δ1 tδ1−δ2j = o(1) as j →∞ and/or as n →∞,

for some constant K > 0 independent of j and n. Consequently, for arbitrary real θ and
arbitrary {tl}, the nonzero members of {D( j)

n {tθ+i }}∞i=0 form an asymptotic sequence as
j →∞.

Proof. The first part follows directly from Lemma 8.4.5, whereas the second part is
obtained by substituting in the first the known relation

(a)n
(b)n

= �(b)

�(a)

�(n + a)

�(n + b)
∼ �(b)

�(a)
na−b as n →∞. (8.4.28)

�

The next lemma expresses �( j)
n and A( j)

n − A in factored forms. Analyzing each of the
factors makes it easier to obtain good bounds from which powerful results on Process II
can be obtained.

Lemma 8.4.7 Consider ϕ(t) = tδH (t) with δ real and δ �= 0,−1,−2, . . . . Define

X ( j)
n = D( j)

n {t−1}
D( j)

n {t−δ}
and Y ( j)

n = D( j)
n {t−δ}

D( j)
n {t−δ/H (t)}

. (8.4.29)

Define also

�̌( j)
n (δ) = 1

|D( j)
n {t−δ}|

n∑

i=0
|c( j)ni | t−δj+i . (8.4.30)
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Then

�̌( j)
n (δ) = |X ( j)

n |(ť jn)1−δ�̌( j)
n (1) for some ť jn ∈ (t j+n, t j ), (8.4.31)

�( j)
n = |Y ( j)

n | |H (t̂ jn)|−1�̌( j)
n (δ) for some t̂ jn ∈ (t j+n, t j ), (8.4.32)

and

A( j)
n − A = X ( j)

n Y ( j)
n

D( j)
n {B(t)}

D( j)
n {t−1}

. (8.4.33)

In addition,

X ( j)
n = n!

(δ)n
(t̃ jn)

δ−1 for some t̃ jn ∈ (t j+n, t j ), (8.4.34)

These results are valid for all choices of {tl}.

Proof. To prove (8.4.31), we start by writing (8.4.30) in the form

�̌( j)
n (δ) = |X ( j)

n |
1

|D( j)
n {t−1}|

n∑

i=0

(
|c( j)ni | t−1j+i

)
t1−δj+i .

The result follows by observing that, by continuity of t1−δ for t > 0,

n∑

i=0

(
|c( j)ni | t−1j+i

)
t1−δj+i =

( n∑

i=0
|c( j)ni | t−1j+i

)
(
ť jn
)1−δ

for some ť jn ∈ (t j+n, t j ),

and by invoking (8.4.30) with δ = 1. The proof of (8.4.32) proceeds along the same
lines, while (8.4.33) is a trivial identity. Finally, (8.4.34) follows from Lemma 8.4.5.

�

In the next two theorems, we adopt the notation and definitions of Lemma 8.4.7. The
first of these theorems concerns the stability of Process II, and the second concerns its
convergence.

Theorem 8.4.8 Let δ be real and δ �= 0,−1,−2, . . . , and let the tl be as in (8.4.9).
Then, the following are true:

(i) �̌( j)
n (δ)→∞ faster than nσ for every σ > 0, that is, Process II for ϕ(t) = tδ is

unstable.
(ii) Let ϕ(t) = tδH (t) with H (t) ∈ C∞[0, t j ] and H (t) �= 0 on [0, t j ]. Assume that

|Y ( j)
n | ≥ C1n

α1 for all n; C1 > 0 and α1 constants. (8.4.35)

Then, �( j)
n →∞ as n →∞ faster than nσ for every σ > 0, that is, Process II is

unstable.



8.5 Slowly Varying ϕ(t) with liml→∞(tl+1/tl) = ω ∈ (0, 1) 193

Proof. Substituting (8.4.34) in (8.4.31), we obtain

�̌( j)
n (δ) = n!

|(δ)n|
(
t̃ jn
ť jn

)δ−1
�̌( j)

n (1). (8.4.36)

Invoking the asymptotic equality of (8.4.28) in (8.4.36), we have for all large n

�̌( j)
n (δ) ≥ K (δ)n1−δ

(
t j+n

t j

)|δ−1|
�̌( j)

n (1) for some constant K (δ) > 0. (8.4.37)

Now, t |δ−1|j+n ∼ c|δ−1|n−q|δ−1| as n →∞ and, by Theorem 8.4.4, �̌( j)
n (1)→∞ as n →∞

faster than nσ for every σ > 0. Consequently, �̌( j)
n (δ)→∞ as n →∞ faster than nσ

for every σ > 0 as well. The assertion about �( j)
n can now be proved by using this result

in (8.4.32) along with (8.4.35) and the fact that |H (t̂ jn)|−1 ≥
(
maxt∈[0,t j ] |H (t)|)−1 > 0

independently of n. �

The purpose of the next theorem is to give as good a bound as possible for |A( j)
n − A|

in Process II. A convergence result can then be obtained by imposing suitable and liberal
growth conditions on ‖B(n)‖ and Y ( j)

n and recalling that D( j)
n {t−1} = (−1)n/ (∏n

i=0 t j+i
)
.

Theorem 8.4.9 Assume that B(t) ∈ C∞[0, t j ] and define ‖B(n)‖ as in (8.4.19). Let ϕ(t)
be as in Theorem 8.4.8. Then, for some constant L > 0,

|A( j)
n − A| ≤ L |Y ( j)

n |
(

max
t∈[t j+n ,t j ]

tδ−1
)

n1−δ
‖B(n)‖
n!

( n∏

i=0
t j+i

)

. (8.4.38)

Note that it is quite reasonable to assume that Y ( j)
n is bounded as n →∞. The “jus-

tification” for this assumption is that Y ( j)
n = �(n)(t ′jn)/ψ

(n)(t ′′jn) for some t ′jn and t ′′jn ∈
(t j+n, t j ), where�(t) = t−δ and ψ(t) = 1/ϕ(t) = t−δ/H (t), and that�(n)(t)/ψ (n)(t) ∼
H (0) as t → 0+. Indeed, when 1/H (t) is a polynomial in t , we have precisely
D( j)

n {t−δ/H (t)} ∼ D( j)
n {t−δ}/H (0) as n →∞, as can be shown with the help of Corol-

lary 8.4.6, from which Y ( j)
n ∼ H (0) as n →∞. See also Lemma 8.6.5. Next, with the tl

as in (8.4.9), we also have that (maxt∈[t j+n ,t j ] t
δ−1) grows at most like nq|δ−1| as n →∞.

Thus, the product |Y ( j)
n |(maxt∈[t j+n ,t j ] t

δ−1) in (8.4.38) grows at most like a power of n as
n →∞, and, consequently the main behavior of |A( j)

n − A| as n →∞ is determined by
(‖B(n)‖/n!) (∏n

i=0 t j+i
)
. Also note that the strength of (8.4.38) is primarily due to the

factor
∏n

i=0 t j+i that tends to zero as n →∞ essentially like (n!)−q when the tl satisfy
(8.4.9). Recall that what produces this important factor is Lemma 8.4.5.
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As is clear from our results in Section 8.4, both Process I and Process II are unstable
when ϕ(t) is slowly changing and the tl satisfy (8.4.9) or, at least in some cases, when
the tl satisfy even the weaker condition liml→∞(tl+1/tl) = 1. These results also show
that convergence will take place in Process II nevertheless under rather liberal growth
conditions for B(n)(t). The implication of this is that a required level of accuracy in the
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numerically computed A( j)
n may be achieved by computing the a(tl) with sufficiently high

accuracy. This strategy is quite practical and has been used successfully in numerical
calculation of multiple integrals.
In case the accuracy with which a(t) is computed is fixed and the A( j)

n are required
to have comparable numerical accuracy, we need to choose the tl such that the A( j)

n can
be computed stably. When ϕ(t) = tδH (t) with H (0) �= 0 and H (t) continuous in a right
neighborhood of t = 0, best results for A( j)

n and �( j)
n are obtained by picking {tl} such

that tl → 0 as l →∞ exponentially in l. There are a few ways to achieve this and each
of them has been used successfully in various problems.
Our first results with such {tl} given in Theorem 8.5.1 concern Process I, and, like

those of Theorems 8.4.1 and 8.4.3, they are best asymptotically.

Theorem 8.5.1 Let ϕ(t) = tδH (t) with δ in general complex and δ �= 0,−1,−2, . . . ,
and H (t) ∼ H (0) �= 0 as t → 0+. Pick the tl such that liml→∞(tl+1/tl) = ω for some
fixed ω ∈ (0, 1). Define

ck = ωδ+k−1, k = 1, 2, . . . . (8.5.1)

Then, for fixed n, (8.1.13) and (8.1.14) hold, and we also have

A( j)
n − A ∼

( n∏

i=1

cn+µ+1 − ci
1− ci

)

βn+µϕ(t j )t
n+µ
j as j →∞, (8.5.2)

where βn+µ is the first nonzero βi with i ≥ n in (8.1.2). This result is valid whether
n ≥ −�δ or not. Also,

lim
j→∞

n∑

i=0
γ
( j)
ni zi =

n∏

i=1

z − ci
1− ci

≡
n∑

i=0
ρni z

i , (8.5.3)

so that lim j→∞ �
( j)
n exists and

lim
j→∞

�( j)
n =

n∑

i=0
|ρni | =

n∏

i=1

1+ |ci |
|1− ci | , (8.5.4)

and hence Process I is stable.

Proof. The proof can be achieved by making suitable substitutions in Theorems 3.5.3,
3.5.5, and 3.5.6 of Chapter 3. �

Note that Theorem 8.5.1 is valid also when ϕ(t) satisfies ϕ(t) ∼ h0tδ| log t |γ as
t → 0+ with arbitrary γ . Obviously, this is a weaker condition than the one imposed on
ϕ(t) in the theorem.
Upon comparing Theorem 8.5.1 with Theorem 8.4.1, we realize that the remarks that

follow the proof of Theorem 8.4.1 and that concern the convergence of column sequences
also are valid without any changes under the conditions of Theorem 8.5.1.
So far we do not have results on Process II with ϕ(t) and {tl} as in Theorem 8.5.1. We

are able to provide some analysis for the cases in which δ is real, however. This is the
subject of the next section.
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We are able to give very strong results on Process II for the case in which {tl} is a
truly geometric sequence. The conditions we impose on ϕ(t) in this case are extremely
weak in the sense that ϕ(t) = tδH (t) with δ complex in general and H (t) not necessarily
differentiable at t = 0.

Theorem 8.5.2 Let ϕ(t) = tδH (t) with δ in general complex and δ �= 0,−1,−2, . . . ,
and H (t) = H (0)+ O(tθ ) as t → 0+, with H (0) �= 0 and θ > 0. Pick the tl such that
tl = t0ωl , l = 0, 1, . . . , for some ω ∈ (0, 1). Define ck = ωδ+k−1, k = 1, 2, . . . . Then,
for any fixed j , Process II is both stable and convergent whether limt→0+ a(t) exists or
not. In particular, we have limn→∞ A( j)

n = A with

A( j)
n − A = O(ωσn) as n →∞, for every σ > 0, (8.5.5)

and supn �
( j)
n <∞ with

lim
n→∞�( j)

n =
∞∏

i=1

1+ |ci |
|1− ci | <∞. (8.5.6)

The convergence result of (8.5.5) can be refined as follows: With B(t) ∈ C[0, t̂] for
some t̂ > 0, define

β̂s = max
t∈[0,t̂]

(

|B(t)−
s−1∑

i=0
βi t

i |/t s
)

, s = 0, 1, . . . , (8.5.7)

or when B(t) ∈ C∞[0, t̂], define

β̃s = max
t∈[0,t̂]

(|B(s)(t)|/s!), s = 0, 1, . . . . (8.5.8)

If β̂n or β̃n is O(eσn
τ

) as n →∞ for some σ > 0 and τ < 2, then, for any ε > 0 such
that ω + ε < 1,

A( j)
n − A = O

(
(ω + ε)n

2/2
)

as n →∞. (8.5.9)

We refer the reader to Sidi [300] for proofs of the results in (8.5.5), (8.5.6), and (8.5.9).
Wemake the following observations about Theorem8.5.2. First, note that all the results

in this theorem are independent of θ , that is, of the details of ϕ(t)− H (0)tδ as t → 0+.
Next, (8.5.5) implies that all diagonal sequences {A( j)

n }∞n=0, j = 0, 1, . . . , converge, and
the error A( j)

n − A tends to 0 as n →∞ faster than e−λn for every λ > 0, that is, the
convergence is superlinear. Under the additional growth condition imposed on β̂n or β̃n ,
we have that A( j)

n − A tends to 0 as n →∞ at the rate of e−κn
2
for some κ > 0. Note

that this condition is very liberal and is satisfied in most practical situations. It holds,
for example, when β̂n or β̃n are O((pn)!) as n →∞ for some p > 0. Also, it is quite
interesting that limn→∞ �

( j)
n is independent of j , as seen from (8.5.6).

Finally, note that Theorem 8.5.1 pertaining to Process I holds under the conditions
of Theorem 8.5.2 without any changes as liml→∞(tl+1/tl) = ω is obviously satisfied
because tl+1/tl = ω for all l.
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8.6 Slowly Varying ϕ(t) with Real δ and tl+1/tl ≤ ω ∈ (0, 1)

In this section, we consider the convergence and stability properties of Process II when
{tl} is not necessarily a geometric sequence as in Theorem 8.5.2 or liml→∞(tl+1/tl) does
not necessarily exist as in Theorem 8.5.1. We are now concerned with the choice

tl+1/tl ≤ ω, l = 0, 1, . . . , for some fixed ω ∈ (0, 1). (8.6.1)

If liml→∞(tl+1/tl) = λ for some λ ∈ (0, 1), then given ε > 0 such that ω = λ+ ε < 1,
there exists an integer L > 0 such that

λ− ε < tl+1/tl < λ+ ε for all l ≥ L . (8.6.2)

Thus, if t0, t1, . . . , tL−1 are chosen appropriately, the sequence {tl} automatically satis-
fies (8.6.1). Consequently, the results of this section apply also to the case in which
liml→∞(tl+1/tl) = λ ∈ (0, 1).

8.6.1 The Case ϕ(t) = t

The case that has been studied most extensively under (8.6.1) is that of ϕ(t) = t , and
we treat this case first. The outcome of this treatment will prove to be very useful in the
study of the general case.
We start with the stability problem. As in Lemma 8.4.7, we denote the �( j)

n corre-
sponding to ϕ(t) = tδ by �̌( j)

n (δ) and its corresponding γ ( j)
ni by γ̌ ( j)

ni (δ).

Theorem 8.6.1 With ϕ(t) = t and the tl as in (8.6.1), we have for all j and n

�̌( j)
n (1) =

n∑

i=0

∣
∣
∣γ̌

( j)
ni (1)

∣
∣
∣ ≤ $n ≡

n∏

i=1

1+ ωi

1− ωi
<

∞∏

i=1

1+ ωi

1− ωi
<∞. (8.6.3)

Therefore, both Process I and Process II are stable. Furthermore, for each fixed i , we
have limn→∞ γ̌

( j)
ni (1) = 0, with

γ̌
( j)
ni (1) = O(ωn2/2+di n) as n →∞, di a constant. (8.6.4)

Proof. Let t̄l = t0ωl , l = 0, 1, . . . , and denote the γ ( j)
ni and�( j)

n appropriate for ϕ(t) = t
and the t̄l , respectively, by γ̄

( j)
ni and �̄( j)

n . By (8.4.26), we have that

|γ̌ ( j)
ni (1)| =

(i−1∏

k=0

1

1− t j+i/t j+k

)( n∏

k=i+1

1

t j+i/t j+k − 1

)

≤
(i−1∏

k=0

1

1− ωi−k

)( n∏

k=i+1

1

ωi−k − 1

)

=
(i−1∏

k=0

1

1− t̄ j+i/t̄ j+k

)( n∏

k=i+1

1

t̄ j+i/t̄ j+k − 1

)

= |γ̄ ( j)
ni |. (8.6.5)



8.6 Slowly Varying ϕ(t) with Real δ and tl+1/tl ≤ ω ∈ (0, 1) 197

Therefore, �̌( j)
n (1) ≤ �̄

( j)
n . But �̄( j)

n = $n by Theorem 1.4.3. The relation in (8.6.4) is a
consequence of the fact that

|γ̄ ( j)
ni | =

( n∏

k=1
(1− ck)

)−1 ∑

1≤k1<···<kn−i≤n

ck1 · · · ckn−i , (8.6.6)

with ck = ωk, k = 1, 2, . . . , which in turn follows from
∑n

i=0 γ̄
( j)
ni zi =∏n

k=1(z − ck)/
(1− ck). �

The fact that �̌( j)
n (1) is bounded uniformly both in j and in n was originally proved

by Laurent [158]. The refined bound in (8.6.3) was mentioned without proof in Sidi
[295].
Now that we have proved that Process I is stable, we can apply Theorem 8.1.4 and

conclude that lim j→∞ A( j)
n = A with

A( j)
n − A = O(tn+µ+1j ) as j →∞, (8.6.7)

without assuming that B(t) is differentiable in a right neighborhood of t = 0.
Since Process II satisfies the conditions of the Silverman–Toeplitz theorem (Theo-

rem 0.3.3), we also have limn→∞ A( j)
n = A. We now turn to the convergence issue for

Process II to provide realistic rates of convergence for it. We start with the following
important lemma due to Bulirsch and Stoer [43]. The proof of this lemma is very lengthy
and difficult and we, therefore, refer the reader to the original paper.

Lemma 8.6.2 With ϕ(t) = t and the tl as in (8.6.1), we have for each integer s ∈
{0, 1, . . . , n}

n∑

i=0
|γ̌ ( j)

ni (1)| t s+1j+i ≤ M

( n∏

k=n−s

t j+k

)

(8.6.8)

for some constant M > 0 independent of j , n, and s.

This lemma becomes very useful in the proof of the convergence of Process II.

Lemma 8.6.3 Let us pick the tl to satisfy (8.6.1). Then, with j fixed,

|D( j)
n {B(t)}|

|D( j)
n {t−1}|

= O(ωσn) as n →∞, for every σ > 0. (8.6.9)

This result can be refined as follows: Define β̂s exactly as in Theorem 8.5.2. If β̂n =
O(eσn

τ

) as n →∞ for some σ > 0 and τ < 2, then, for any ε > 0 such thatω + ε < 1,

|D( j)
n {B(t)}|

|D( j)
n {t−1}|

= O((ω + ε)n
2/2) as n →∞. (8.6.10)



198 8 Analytic Study of GREP(1): Slowly Varying A(y) ∈ F(1)

Proof. From (8.1.11), we have for each s ≤ n

Q( j)
n ≡ |D( j)

n {B(t)}|
|D( j)

n {t−1}|
≤

n∑

i=0
|γ̌ ( j)

ni (1)| Es(t j+i ) t j+i ; Es(t) ≡ |B(t)−
s−1∑

k=0
βk t

k |.

(8.6.11)

By (8.1.2), there exist constants ηs > 0 such that Es(t) ≤ ηs t s when t ∈ [0, t̂] for some
t̂ > 0 and also when t = tl > t̂ . (Note that there are at most finitely many tl > t̂ .) There-
fore, (8.6.11) becomes

Q( j)
n ≤ ηs

n∑

i=0
|γ̌ ( j)

ni (1)| t s+1j+i ≤ Mηs

( n∏

k=n−s

t j+k

)

, (8.6.12)

the last inequality being a consequence of Lemma 8.6.2. The result in (8.6.9) follows
from (8.6.12) once we observe by (8.6.1) that

∏n
k=n−s t j+k = O(ωn(s+1)) as n →∞with

s fixed but arbitrary.
To prove the second part, we use the definition of β̂s to rewrite (8.6.11) (with s = n)

in the form

Q( j)
n ≤

∑

t j+i>t̂

|γ̌ ( j)
ni (1)| En(t j+i ) t j+i + β̂n

∑

t j+i≤t̂

|γ̌ ( j)
ni (1)| tn+1j+i . (8.6.13)

Since En(t) ≤ |B(t)| +
∑n−1

k=0 |βk | t k, |βk | ≤ β̂k for each k, and β̂n grows at most like
eσn

τ

for τ < 2, γ̌ ( j)
ni (1) = O(ωn2/2+di n) as n →∞ from (8.6.4), and there are at most

finitely many tl > t̂,we have that the first summation on the right-hand side of (8.6.13) is
O((ω + ε)n

2/2) as n →∞, for any ε > 0.Using Lemma 8.6.2, we obtain for the second
summation

β̂n

∑

t j+i≤t̂

|γ̌ ( j)
ni (1)| tn+1j+i ≤ β̂n

n∑

i=0
|γ̌ ( j)

ni (1)| tn+1j+i ≤ M β̂n

( n∏

i=0
t j+i

)

,

which, by (8.6.1), is also O((ω + ε)n
2/2) as n →∞, for any ε > 0. Combining the above

in (8.6.13), we obtain (8.6.10). �

The following theorem is a trivial rewording of Lemma 8.6.3.

Theorem 8.6.4 Let ϕ(t) = t and pick the tl to satisfy (8.6.1). Then, with j fixed,
limn→∞ A( j)

n = A, and

A( j)
n − A = O(ωσn) as n →∞, for every σ > 0. (8.6.14)

This result can be refined as follows: Define β̂s exactly as in Theorem 8.5.2. If β̂n =
O(eσn

τ

) as n →∞ for some σ > 0 and τ < 2, then, for any ε > 0 such thatω + ε < 1,

A( j)
n − A = O((ω + ε)n

2/2) as n →∞. (8.6.15)

Theorem 8.6.4 first implies that all diagonal sequences {A( j)
n }∞n=0 converge to A and

that |A( j)
n − A| → 0 as n →∞ faster than e−λn for every λ > 0. It next implies that,
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with a suitable and liberal growth rate on the β̂n , it is possible to achieve |A( j)
n − A| → 0

as n →∞ practically like e−κn
2
for some κ > 0.

8.6.2 The Case ϕ(t) = tδH (t) with Real δ and tl+1/tl ≤ ω ∈ (0, 1)

We now come back to the general case in which ϕ(t) = tδH (t) with δ real, δ �= 0,
−1,−2, . . . , and H (t) ∼ H (0) �= 0 as t → 0+.We assumeonly that H (t) ∈ C[0, t̂] and
H (t) �= 0when t ∈ [0, t̂] for some t̂ > 0 and that H (t) ∼∑∞

i=0 hi t i as t → 0+, h0 �= 0.
Similarly, B(t) ∈ C[0, t̂] and B(t) ∼∑∞

i=0 βi t i as t → 0+, as before. We do not impose
any differentiability conditions on B(t) or H (t). Finally, unless stated otherwise, we
require the tl to satisfy

ν ≤ tl+1/tl ≤ ω, l = 0, 1, . . . , for some fixed ν and ω, 0 < ν < ω < 1,
(8.6.16)

instead of (8.6.1) only. Recall from the remark following the statement of Lemma
8.3.2 that the additional condition ν ≤ tl+1/tl is naturally satisfied, for example, when
liml→∞(tl+1/tl) = λ ∈ (0, 1); cf. also (8.6.2). It also enables us to overcome some prob-
lems in the proofs of our main results.
We start with the following lemma that is analogous to Lemma 8.3.2 and Lemma

8.4.2.

Lemma 8.6.5 Let g(t) ∼∑∞
i=0 gi t

θ+i as t → 0+, where g0 �= 0 and θ is real, such that
g(t)t−θ ∈ C[0, t̂] for some t̂ > 0, and pick the tl to satisfy (8.6.16). Then, the following
are true:

(i) The nonzero members of {D( j)
n {tθ+i }}∞i=0 form an asymptotic sequence both as

j→∞ and as n →∞.
(ii) D( j)

n {g(t)} has the bona fide asymptotic expansion

D( j)
n {g(t)} ∼

∞∑

i=0
∗gi D( j)

n {tθ+i } as j →∞, (8.6.17)

where the asterisk on the summation means that only those terms for which
D( j)

n {tθ+i } �= 0, that is, for which θ + i �= 0, 1, . . . , n − 1, are taken into account.
(iii) When θ �= 0, 1, . . . , n − 1, we also have

D( j)
n {g(t)} ∼ g0D

( j)
n {tθ } as n →∞. (8.6.18)

When θ < 0, the condition in (8.6.1) is sufficient for (8.6.18) to hold.

Proof. Part (i) follows from Corollary 8.4.6. For the proof of part (ii), we follow the
steps of the proof of part (ii) of Lemma 8.3.2. For arbitrary m, we have g(t) =∑m−1

i=0 gi tθ+i + vm(t)tθ+m , where |vm(t)| ≤ Cm for some constant Cm > 0, whenever
t ∈ [0, t̂] and also t = tl > t̂ . (Recall again that there are at most finitely many tl > t̂ .)
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Thus,

D( j)
n {g(t)} =

m−1∑

i=0
gi D

( j)
n {tθ+i } + D( j)

n {vm(t)tθ+m}. (8.6.19)

Therefore, we have to show that D( j)
n {vm(t)tθ+m} = O(D( j)

n {tθ+m}) as j →∞ when
θ + m �= 0, 1, . . . , n − 1.

By the fact that γ̌ ( j)
ni (1) = c( j)ni t

−1
j+i/D

( j)
n {t−1}, we have

|D( j)
n {vm(t)tθ+m}| ≤

n∑

i=0
|c( j)ni | |vm(t j+i )| tθ+m

j+i

≤ Cm |D( j)
n {t−1}|

n∑

i=0
|γ̌ ( j)

ni (1)| tθ+m+1
j+i . (8.6.20)

Now, taking s to be any integer that satisfies 0 ≤ s ≤ min{θ + m, n}, and applying
Lemma 8.6.2, we obtain

n∑

i=0
|γ̌ ( j)

ni (1)| tθ+m+1
j+i ≤

( n∑

i=0
|γ̌ ( j)

ni (1)| t s+1j+i

)

tθ+m−s
j ≤ M

( n∏

k=n−s

t j+k

)

tθ+m−s
j . (8.6.21)

Consequently, under (8.6.1) only,

|D( j)
n {vm(t)tθ+m}| ≤ MCm |D( j)

n {t−1}|
( n∏

k=n−s

t j+k

)

tθ+m−s
j . (8.6.22)

Recalling that |D( j)
n {t−1}| = (

∏n
k=0 t j+k)−1 and tl+1 ≥ νtl , and invoking (8.3.9) that is

valid in the present case, we obtain from (8.6.22)

D( j)
n {vm(t)tθ+m} = O(tθ+m−n

j ) = O(D( j)
n {tθ+m}) as j →∞. (8.6.23)

This completes the proof of part (ii).
As for part (iii), we first note that, by Corollary 8.4.6,

lim
n→∞

m−1∑

i=0
gi D

( j)
n {tθ+i }/D( j)

n {tθ } = g0.

Therefore, the proof will be complete if we show that limn→∞ D( j)
n {vm(t)tθ+m}/

D( j)
n {tθ } = 0. By (8.6.22), we have

T ( j)
n ≡ |D( j)

n {vm(t)tθ+m}|
|D( j)

n {tθ }|
≤ MCm

|D( j)
n {t−1}|

|D( j)
n {tθ }|

( n∏

k=n−s

t j+k

)

tθ+m−s
j . (8.6.24)

By Corollary 8.4.6, again,

|D( j)
n {t−1}|

|D( j)
n {tθ }|

≤ K1n
1+θ

(

max
t∈[t j+n ,t j ]

t−1−θ
)

, (8.6.25)



8.6 Slowly Varying ϕ(t) with Real δ and tl+1/tl ≤ ω ∈ (0, 1) 201

and by (8.6.1),

n∏

k=n−s

t j+k ≤ K2t
s
j t j+nω

ns, (8.6.26)

where K1 and K2 are some positive constants independent of n. Combining these in
(8.6.24), we have

T ( j)
n ≤ LV ( j)

n n1+θ t j+nω
ns ; V ( j)

n ≡ max
t∈[t j+n ,t j ]

t−1−θ , (8.6.27)

for some constant L > 0 independent of n. Now, (a) for θ ≤ −1, V ( j)
n = t−1−θj ;

(b) for −1 < θ < 0, V ( j)
n = t−1−θj+n ; while (c) for θ > 0, V ( j)

n = t−1−θj+n ≤ t−1−θj ν−n(1+θ )

by (8.6.16). Thus, (a) if θ ≤ −1, then T ( j)
n = O(n1+θ t j+nω

ns) = o(1) as n →∞; (b) if
−1 < θ < 0, then T ( j)

n = O(n1+θ t |θ |j+nω
ns) = o(1) as n →∞; and (c) if θ > 0, then

T ( j)
n = O(n1+θ ν−n(1+θ )ωns) = o(1) as n →∞, provided we take s sufficiently large in

this case, which is possible becausem is arbitrary and n tends to infinity. This completes
the proof. �

Our first major result concerns Process I.

Theorem 8.6.6 Let B(t), ϕ(t), and {tl} be as in the first paragraph of this subsection.
Then A( j)

n − A satisfies (8.1.13) and (8.1.14), and hence A( j)
n − A = O(ϕ(t j )t

n+µ
j ) as

j →∞. In addition, sup j �
( j)
n <∞, that is, Process I is stable.

Proof. The assertions about A( j)
n − A follow by applying Lemma 8.6.5 to B(t) and to

ψ(t) ≡ 1/ϕ(t). As for�( j)
n , we proceed as follows. By (8.4.31) and (8.4.34) and (8.6.16),

we first have that

�̌( j)
n (δ) ≤ n!

|(δ)n|
(

t j
t j+n

)|δ−1|
�̌( j)

n (1) ≤ n!

|(δ)n|ν
−n|δ−1|�̌( j)

n (1). (8.6.28)

By Theorem 8.6.1, it therefore follows that sup j �̌
( j)
n (δ) <∞. Next, by Lemma 8.6.5

again, we have that Y ( j)
n ∼ h0 as j →∞, and |H (t)|−1 is bounded for all t close to 0.

Combining these facts in (8.4.32), it follows that sup j �
( j)
n <∞. �

As for Process II, we do not have a stability theorem for it under the conditions
of Theorem 8.6.6. [The upper bound on �̌( j)

n (δ) given in (8.6.28) tends to infinity as
n →∞.] However, we do have a strong convergence theorem for Process II.

Theorem 8.6.7 Let B(t), ϕ(t), and {tl} be as in the first paragraph of this subsection.
Then, for any fixed j , Process II is convergent whether limt→0+ a(t) exists or not. In
particular, we have limn→∞ A( j)

n = A with

A( j)
n − A = O(ωσn) as n →∞, for every σ > 0. (8.6.29)
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This result can be refined as follows: Define β̂s exactly as in Theorem 8.5.2. If β̂n =
O(eσn

τ

) as n →∞ for some σ > 0 and τ < 2, then for any ε > 0 such that ω + ε < 1

A( j)
n − A = O((ω + ε)n

2/2) as n →∞. (8.6.30)

When δ > 0, these results are valid under (8.6.1).

Proof. First, by (8.4.29) and part (iii) of Lemma 8.6.5, we have that Y ( j)
n ∼ H (0) as

n →∞. The proof can now be completed by also invoking (8.4.34) and Lemma 8.6.3
in (8.4.33). We leave the details to the reader. �



9
Analytic Study of GREP(1): Quickly Varying A(y) ∈ F(1)

9.1 Introduction

In this chapter, we continue the analytical study of GREP(1), which we began in the
preceding chapter. We treat those functions A(y) ∈ F(1) whose associated φ(y) vary
quickly as y → 0+. Switching to the variable t as we did previously, by ϕ(t) varying
quickly as t → 0+ we now mean that ϕ(t) is of one of the three forms

(a) ϕ(t) = eu(t)h(t)

(b) ϕ(t) = [�(t−ŝ)]
−ν

h(t)

(c) ϕ(t) = [�(t−ŝ)]−νeu(t)h(t), (9.1.1)

where

(i) u(t) behaves like

u(t) ∼
∞∑

k=0
ukt

k−s as t → 0+, u0 �= 0, s > 0 integer; (9.1.2)

(ii) h(t) behaves like

h(t) ∼ h0t
δ as t → 0+, for some h0 �= 0 and δ; (9.1.3)

(iii) �(z) is the Gamma function, ν > 0, and ŝ is a positive integer; and, finally,
(iv) |ϕ(t)| is bounded or grows at worst like a negative power of t as t → 0+. The

implications of this are as follows: If ϕ(t) is as in (9.1.1) (a), then limt→0+ �u(t) �=
+∞. If ϕ(t) is as in (9.1.1) (c), then s ≤ ŝ. No extra conditions are imposed when
ϕ(t) is as in (9.1.1) (b). Thus, in case (a), either limt→0+ ϕ(t) = 0, or ϕ(t) is bounded
as t → 0+, or it grows like t�δ when�δ < 0, whereas in cases (b) and (c), we have
limt→0+ ϕ(t) = 0 always.

Note also that we have not put any restriction on δ that may now assume any real or
complex value.
As for the function B(t), in Section 9.3, we assume only that B(t) ∼∑∞

k=0 βk tk as
t → 0+, without imposing on B(t) any differentiability conditions. In Section 9.4, we
assume that B(t) ∈ C∞[0, t̂] for some t̂ .

203
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Throughout this chapter the tl are chosen to satisfy

tl ∼ cl−q and tl − tl+1 ∼ cpl−q−1 as l →∞, for some c > 0, p > 0, and q > 0.
(9.1.4)

[This is (8.4.9).]
We also use the notation ψ(t) ≡ 1/ϕ(t) freely as before.

9.2 Examples of Quickly Varying a(t)

We now present practical examples of functions a(t) that vary quickly.

Example 9.2.1 Let f (x) = eθ (x)w(x), where θ ∈ A(m) strictly for some positive integer
m andw ∈ A(γ ) strictly for some arbitrary and possibly complex γ . Then, we know from
Theorem 5.7.3 that

F(x) =
∫ x

a
f (t) dt = I [ f ]+ x1−m f (x)g(x); g ∈ A(0) strictly.

This means that F(x)↔ a(t), I [ f ]↔ A, x−1 ↔ t , x1−m f (x)↔ ϕ(t) with ϕ(t) as in
(9.1.1)–(9.1.3) and with s = m and δ = m − 1− γ . [Recall that f ∈ B(1) in this case
and that we can replace ϕ(t) by x f (x). This changes δ only.]

Example 9.2.2 Let an be of one of the three forms: (a) an = ζ nw(n), or (b) an =
[�(n)]µw(n), or (c) an = [�(n)]µζ nw(n). Here, w ∈ A(γ )

0 strictly for some arbitrary and
possibly complex γ, µ is a negative integer, and ζ is a possibly complex scalar that is
arbitrary in case (c) and that satisfies |ζ | ≤ 1 and ζ �= 1 in case (a). Then, we know from
Theorem 6.7.2 that

An =
n∑

k=1
ak = S({ak})+ ang(n); g ∈ A(0)

0 strictly.

This means that An ↔ a(t), S({ak})↔ A, n−1 ↔ t , an ↔ ϕ(t) with ϕ(t) as in (9.1.1)–
(9.1.3) and with ν = −µ, ŝ = 1, s = 1, and some δ. [Recall that {an} ∈ b(1) in this case
and that we can replace ϕ(t) by nan . This changes δ only.]

Example 9.2.3 Let an be of one of the three forms: (a) an = eθ (n)w(n), or (b) an =
[�(n)]µw(n), or (c) an = [�(n)]µeθ (n)w(n). Here, θ ∈ Ã(1−r/m,m)

0 strictly for some inte-
gers m > 0 and r ∈ {0, 1, . . . ,m − 1}, w ∈ Ã(γ,m)

0 strictly for some arbitrary and pos-
sibly complex γ, and µ = τ/m with τ < 0 an integer. Then, we know from Theorem
6.6.6 that

An =
n∑

k=1
ak = S({ak})+ nσang(n); g ∈ Ã(0,m)

0 strictly,

whereσ = ρ/m for someρ ∈ {0, 1, . . . ,m − 1}. Thismeans that An ↔ a(t), S({ak})↔
A, n−1/m ↔ t , nσan ↔ ϕ(t) with ϕ(t) as in (9.1.1)–(9.1.3) and with ν = −µ, ŝ = m,
s = m − r and some δ. [Recall that {an} ∈ b̃(m) in this case and that again we can replace
ϕ(t) by nan . Again, this changes δ only.]
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9.3 Analysis of Process I

The first two theorems that follow concern ϕ(t) as in (9.1.1) (a).

Theorem 9.3.1 Let ϕ(t) be as in (9.1.1) (a), and assume that B(t) ∼∑∞
k=0 βk tk as

t → 0+, and pick the constants c, p, and q in (9.1.4) such that q = 1/s and ξ ≡
exp(−spu0/cs) �= 1. Then

A( j)
n − A ∼ pn(µ+ 1)n

(1− ξ )n
βn+µϕ(t j )t

n+µ
j j−n as j →∞, (9.3.1)

where βn+µ is the first nonzero βi with i ≥ n. In addition, Process I is stable, and we
have

�( j)
n ∼

(
1+ |ξ |
|1− ξ |

)n

as j →∞. (9.3.2)

Proof. First, Lemma 8.4.2 applies to B(t) and, therefore, D( j)
n {B(t)} satisfies (8.4.3),

namely,

D( j)
n {B(t)} ∼

(µ+ 1)n
n!

βn+µt
µ

j as j →∞. (9.3.3)

We next recall (8.4.14), from which we have

trj − trj+i = ir pj−1(cj−q )r + o( j−qr−1) as j →∞, for every r. (9.3.4)

Finally, we recall (8.4.15), namely,

c( j)ni ∼ (−1)i 1
n!

(
n

i

)(
j

pt j

)n

as j →∞. (9.3.5)

All these are valid for any q > 0. Now, by (9.3.4), and after a delicate analysis, we have
with q = 1/s

u(t j )− u(t j+i ) ∼ u0(t
−s
j − t−s

j+i ) ∼ −ispj−1(cj−1/s)
−s

u0 = −ispu0c
−s as j →∞.

Consequently,

exp[−u(t j+i )] ∼ ξ i exp[−u(t j )] as j →∞, (9.3.6)

from which we have

D( j)
n {1/ϕ(t)} =

n∑

i=0
c( j)ni e

−u(t j+i )/h(t j+i )

∼ 1

n!

(
j

pt j

)n[ n∑

i=0
(−1)i

(
n

i

)

ξ i
]
e−u(t j )

h0tδj
as j →∞

∼ 1

n!

(
j

pt j

)n

(1− ξ )nψ(t j ) as j →∞. (9.3.7)
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Similarly,

n∑

i=0
|c( j)ni |/|ϕ(t j+i )| =

n∑

i=0
|c( j)ni | |e−u(t j+i )|/|h(t j+i )|

∼ 1

n!

(
j

pt j

)n[ n∑

i=0

(
n

i

)

|ξ |i
] |e−u(t j )|
|h0tδj |

as j →∞

∼ 1

n!

(
j

pt j

)n

(1+ |ξ |)n|ψ(t j )| as j →∞. (9.3.8)

Combining (9.3.3) and (9.3.7) in (8.1.3), (9.3.1) follows, and combining (9.3.7) and
(9.3.8) in (8.1.4), (9.3.2) follows. �

A lot can be learned from the analysis of GREP(1) for Process I when GREP(1) is being
applied as in Theorem 9.3.1. From (9.3.2), it is clear that Process I will be increasingly
stable as ξ (as a complex number) gets farther from 1. Recall that ξ = exp(−spu0/cs),
that is, ξ is a function of both ϕ(t) and {tl}. Now, the behavior of ϕ(t) is determined
by the given a(t) and the user can do nothing about it. The tl , however, are chosen
by the user. Thus, ξ can be controlled effectively by picking the tl as in (9.1.4) with
appropriate c. For example, if u0 is purely imaginary and exp(−spu0) is very close to
1 (note that | exp(−spu0)| = 1 in this case), then by picking c sufficiently small we can
cause ξ = [exp(−spu0)]c

−s
to be sufficiently far from 1, even though |ξ | = 1. It is also

important to observe from (9.3.1) that the term (1− ξ )−n also appears as a factor in the
dominant behavior of A( j)

n − A. Thus, by improving the stability of GREP(1), we are also
improving the accuracy of the A( j)

n .
In the next theorem, we show that, by fixing the value of q differently, we can cause

the behavior of Process I to change completely.

Theorem 9.3.2 Let ϕ(t) and B(t) be as in Theorem 9.3.1, and let u(t) = v(t)+ iw(t),
with v(t) and w(t) real and v(t) ∼∑∞

k=0 vk t
k−s as t → 0+, v0 �= 0. Choose q > 1/s

in (9.1.4). Then

A( j)
n − A ∼ (−1)n pn(µ+ 1)nβn+µϕ(t j+n)t

n+µ
j j−n as j →∞, (9.3.9)

where βn+µ is the first nonzero βi with i ≥ n. In addition, Process I is stable, and we
have

�( j)
n ∼ 1 as j →∞. (9.3.10)

Proof. We start by noting that (9.3.3)–(9.3.5) are valid with any q > 0 in (9.1.4). Next,
we note that by (9.1.2) and the condition on v(t) imposed now, we have

v(t j+1)− v(t j ) ∼ spj−1(cj−q )−s
v0 = v0(sp/c

s) j qs−1 as j →∞.
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Consequently,
∣
∣
∣
∣
ψ(t j )

ψ(t j+1)

∣
∣
∣
∣ ∼ exp[v(t j+1)− v(t j )] = exp[v0(sp/c

s) j qs−1 + o( j qs−1)] as j →∞.

(9.3.11)

Since limt→0+ �u(t) = limt→0+ v(t) = −∞, we must have v0 < 0, and since q > 1/s,
we have qs − 1 > 0, so that lim j→∞ |ψ(t j )/ψ(t j+1)| = 0. This and (9.3.5) imply that

D( j)
n {1/ϕ(t)} =

n∑

i=0
c( j)ni ψ(t j+i ) ∼ c( j)nnψ(t j+n) ∼ (−1)n

n!

(
j

pt j

)n

ψ(t j+n) as j →∞,

(9.3.12)

and
n∑

i=0
|c( j)ni | |ψ(t j+i )| ∼ |c( j)nn | |ψ(t j+n)| ∼ 1

n!

(
j

pt j

)n

|ψ(t j+n)| as j →∞. (9.3.13)

The proof can be completed as before. �

The technique we have employed in proving Theorem 9.3.2 can be used to treat the
cases in which ϕ(t) is as in (9.1.1) (b) and (c).

Theorem 9.3.3 Let ϕ(t) be as in (9.1.1) (b) or (c). Then, (9.3.9) and (9.3.10) hold if
q > 1/ŝ.

Proof. First, (9.3.3) is valid as before. Next, after some lengthy manipulation of the
Stirling formula for the Gamma function, we can show that, in the cases we are consid-
ering, lim j→∞ |ψ(t j )/ψ(t j+1)| = 0, from which (9.3.12) and (9.3.13) hold. The results
in (9.3.9) and (9.3.10) now follow. We leave the details to the reader. �

Note the difference between the theorems of this section and those of Chapter 8
pertaining to process I when GREP(1) is applied to slowly varying sequences.Whereas in
Chapter 8 A( j)

n − A = O(ϕ(t j )tnj ) as j →∞, in this chapter A( j)
n − A = O(ϕ(t j )tnj j

−n)
and A( j)

n − A = O(ϕ(t j+n)tnj j
−n) as j →∞. This suggests that it is easier to accelerate

the convergence of quickly varying a(t).

9.4 Analysis of Process II

As mentioned before, the analysis of Process II turns out to be much more complicated
than that of Process I.What complicates things most appears to be the term D( j)

n {1/ϕ(t)},
which, even for simple ϕ(t) such as ϕ(t) = tδea/t , turns out to be extremely difficult to
study. Because of this, we restrict our attention to the single case in which

sgnϕ(tl) ∼ (−1)l eiα as l →∞, for some real α, (9.4.1)

where sgn ξ ≡ ei arg ξ .
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The results of this section are refined versions of corresponding results in Sidi [288].
The reader may be wondering whether there exist sequences {tl} that satisfy (9.1.4)

and ensure the validity of (9.4.1) at the same time. The answer to this question is in the
affirmative when limt→0+ |!u(t)| = ∞. We return to this point in the next section.
We start with the following simple lemma.

Lemma 9.4.1 Let a1, . . . , an be real positive and let µ1, . . . , µn be in [µ′, µ′′] where
µ′ and µ′′ are real numbers that satisfy 0 ≤ µ′′ − µ′ < π/2. Then

∣
∣
∣
∣

n∑

k=1
ake

iµk

∣
∣
∣
∣ ≥

√
cos(µ′′ − µ′)

( n∑

k=1
ak

)

> 0.

Proof. We have

∣
∣
∣
∣

n∑

k=1
ake

iµk

∣
∣
∣
∣

2

=
( n∑

k=1
ak cosµk

)2

+
( n∑

k=1
ak sinµk

)2

=
n∑

k=1

n∑

l=1
akal cos(µk − µl)

≥
( n∑

k=1

n∑

l=1
akal

)

cos(µ′′ − µ′) =
( n∑

k=1
ak

)2

cos(µ′′ − µ′)

The result now follows. �

We address stability first.

Theorem 9.4.2 Let ϕ(t) and {tl} be as described in Section 9.1 and assume that (9.4.1)
holds. Then, for each fixed i , there holds limn→∞ γ

( j)
ni = 0. Specifically,

γ
( j)
ni = O(e−λn) as n →∞, for every λ > 0. (9.4.2)

Furthermore, Process II is stable and we have

�( j)
n ∼ 1 as n →∞. (9.4.3)

If sgn [ϕ(t j+1)/ϕ(t j )] = −1 for j ≥ J , then �( j)
n = 1 for j ≥ J as well.

Proof. Let sgnϕ(tl) = (−1)l eiµl . By (9.4.1), liml→∞ µl = α. Therefore, for arbitrary
η ∈ (0, π/4), there exists a positive integerM such thatµl ∈ (α − η, α + η) when l ≥M .
Let us define

&1 =
M− j−1∑

i=0
c( j)ni ψ(t j+i ) and &2 =

n∑

i=M− j

c( j)ni ψ(t j+i ) (9.4.4)

and

$1 =
M− j−1∑

i=0
|c( j)ni | |ψ(t j+i )| and $2 =

n∑

i=M− j

|c( j)ni | |ψ(t j+i )|. (9.4.5)



9.4 Analysis of Process II 209

Obviously, |&2| ≤ $2. But we also have from Lemma 9.4.1 that 0 < K$2 ≤ |&2|,
K = √

cos 2η > 0. Next, let us define τik = |t j+i − t j+k |. Then

e( j)ni ≡
∣
∣
∣
∣
c( j)ni ψ(t j+i )

c( j)nnψ(t j+n)

∣
∣
∣
∣ =

(n−1∏

k=0
k �=i

τnk

τik

)∣∣
∣
∣
ϕ(t j+n)

ϕ(t j+i )

∣
∣
∣
∣. (9.4.6)

Now, because liml→∞ tl = 0, given ε > 0, there exists a positive integer N for which
τpq < ε if p, q ≥ N . Without loss of generality, we pick ε < τi,i+1 and N > i . Also,
because {tl} → 0 monotonically, we have τik ≥ τi,i+1 for all k ≥ i + 1. Combining all
this in (9.4.6), we obtain with n > N

e( j)ni <

(N−1∏

k=0
k �=i

τnk

τik

)(
ε

τi,i+1

)n−N ∣∣
∣
∣
ϕ(t j+n)

ϕ(t j+i )

∣
∣
∣
∣. (9.4.7)

Since i is fixed and ϕ(t j+n) = O(tδn ) = O(n−qδ) as n →∞, and since ε is arbitrary,
there holds

e( j)ni = O(e−λn) as n →∞, for every λ > 0. (9.4.8)

Substituting (9.4.8) in

|&1|
|&2| ≤

$1

K$2
≤ $1

K |c( j)nn | |ψ(t j+n)|
= 1

K

M− j−1∑

i=0
e( j)ni , (9.4.9)

we have limn→∞&1/&2 = 0 = limn→∞$1/$2. With the help of this, we obtain for all
large n that

|γ ( j)
ni | =

|c( j)ni /ϕ(t j+i )|
|&1 +&2| ≤ |c( j)ni /ϕ(t j+i )|

|&2|(1− |&1/&2|) ≤
e( j)ni

K (1− |&1/&2|) , (9.4.10)

and this, along with (9.4.8), results in (9.4.2). To prove (9.4.3), we start with

1 ≤ �( j)
n = $1 +$2

|&1 +&2| ≤
1

K

1+$1/$2

1− |&1/&2| , (9.4.11)

from which we obtain 1 ≤ lim supn→∞ �
( j)
n ≤ 1/K . Since η can be picked arbitrarily

close to 0, K is arbitrarily close to 1. As a result, lim supn→∞ �
( j)
n = 1. In exactly the

same way, lim infn→∞ �
( j)
n = 1. Therefore, limn→∞ �

( j)
n = 1, proving (9.4.3). The last

assertion follows from the fact that γ ( j)
ni > 0 for 0 ≤ i ≤ n when j ≥ J . �

Weclosewith the following convergence theorem that is a considerably refined version
of Theorem 4.4.3.

Theorem 9.4.3 Let ϕ(t) and {tl} be as in Section 9.1, and let B(t) ∈ C∞[0, t̂] for some
t̂ > 0. Then, limn→∞ A( j)

n = A whether A is the limit or antilimit of a(t) as t → 0+. We
actually have

A( j)
n − A = O(n−λ) as n →∞, for every λ > 0. (9.4.12)
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Proof. Following the proof of Theorem 4.4.3, we start with

A( j)
n − A =

n∑

i=0
γ
( j)
ni ϕ(t j+i )[B(t j+i )− vn−1(t j+i )], (9.4.13)

where vm(t) =
∑m

k=0 fkTk(2t/t̂ − 1) is the mth partial sum of the Chebyshev series of
B(t) over [0, t̂]. Denoting Vn(t) = B(t)− vn−1(t), we can write (9.4.13) in the form

A( j)
n − A =

∑

t j+i>t̂

γ
( j)
ni ϕ(t j+i )Vn(t j+i )+

∑

t j+i≤t̂

γ
( j)
ni ϕ(t j+i )Vn(t j+i ) (9.4.14)

(If t j ≤ t̂ , then the first summation is empty.) By the assumption that B(t) ∈ C∞[0, t̂],
we have that maxt∈[0,t̂] |Vn(t)| = O(n−λ) as n →∞ for every λ > 0. As a result, in the
second summation in (9.4.14) we have maxt j+i≤t̂ |Vn(t j+i )| = O(n−λ) as n →∞ for ev-
ery λ > 0. Next, by (9.1.4) and ϕ(t) = O(tδ) as t → 0+, we have that max0≤i≤n |ϕ(t j+i )|
is either bounded independently of n or grows at worst like n−q�δ (when�δ < 0). Next,∑

t j+i≤t̂ |γ ( j)
ni | ≤ �

( j)
n ∼ 1 as n →∞, aswe showed in the preceding theorem.Combining

all this, we have that
∑

t j+i≤t̂

γ
( j)
ni ϕ(t j+i )Vn(t j+i ) = O(n−λ) as n →∞, for every λ > 0. (9.4.15)

As for the first summation (assuming it is not empty), we first note that the number of
terms in it is finite, and each of the γ ( j)

ni there satisfies (9.4.2). The ϕ(t j+i ) there are
independent of n. As for Vn(t j+i ), we have

max
t j+i>t̂

|Vn(t j+i )| ≤ max
t j+i>t̂

|B(t j+i )| +
n−1∑

k=0
| fk | |Tk(2t j/t̂ − 1)|. (9.4.16)

Now, by B(t) ∈ C∞[0, t̂], fn = O(n−σ ) as n →∞ for every σ > 0, and when z �∈
[−1, 1], Tn(z) = O(eκn) as n →∞ for some κ > 0 that depends on z. Therefore,

∑

t j+i>t̂

γ
( j)
ni ϕ(t j+i )Vn(t j+i ) = O(e−λn) as n →∞ for every λ > 0. (9.4.17)

Combining (9.4.15) and (9.4.17) in (9.4.14), the result in (9.4.12) follows. �

9.5 Can {tl} Satisfy (9.1.4) and (9.4.1) Simultaneously?

We return to the question we raised at the beginning of the preceding section whether
the tl can satisfy (9.1.4) and (9.4.1) simultaneously. To answer this, we start with the
fact that !u(t) = w(t) ∼∑∞

k=0wk tk−m as t → 0+, for somew0 �= 0 and integerm ≤ s,
and pick the tl to be consecutive zeros in (0, br ] of sin ŵ(t) or of cos ŵ(t) or of a
linear combination of them, where ŵ(t) =∑m−1

k=0 wk tk−m . Without loss of generality,
we assume that w0 > 0.

Lemma 9.5.1 Let t0 be the largest zero in (0, br ) of sin(ŵ(t)− λ0π ) for some λ0. This
means that t0 is a solution of the equation ŵ(t)− λ0π = ν0π for some integer ν0. Next,
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let tl be the smallest positive solution of the equation ŵ(t)− λ0π = (ν0 + l)π for each
l ≥ 1. Then, tl+1 < tl , l = 0, 1, . . . , and tl has the (convergent) expansion

tl =
∞∑

i=0
ai l

−(i+1)/m for all large l; a0 = (w0/π )
1/m > 0, (9.5.1)

and hence

tl − tl+1 =
∞∑

i=0
âi l

−1−(i+1)/m for all large l; â0 = a0
m
, (9.5.2)

so that

tl ∼ a0l
−1/m and tl − tl+1 ∼ â0l

−1−1/m as l →∞. (9.5.3)

Proof. We start by observing that ŵ(t) ∼ w0t−m and hence ŵ(t)→+∞ as t → 0+,
as a result of which the equation ŵ(t)− λ0π = ξ , for all sufficiently large ξ , has a
unique solution t(ξ ) that is positive and satisfies t(ξ ) ∼ (w0/ξ )1/m as ξ →∞. There-
fore, being a solution of ŵ(t)− λ0π = (ν0 + l)π , tl is unique for all large l and satisfies
tl ∼ (w0/π )1/ml−1/m as l →∞. Letting ε = l−1/m and substituting tl = ετ in this equa-
tion, we see that τ satisfies the polynomial equation

∑m
k=0 ckτ

k = 0, where cm = 1
and ck = −wkε

k/[π + π (ν0 + λ0)εm], k = 0, 1, . . . ,m − 1. Note that the coefficients
c0, . . . , cm−1 are analytic functions of ε about ε = 0. Therefore, τ is an analytic func-
tion of ε about ε = 0, and, for all ε sufficiently close to zero, there exists a convergent
expansion of the form τ =∑∞

i=0 aiε
i . The ai can be obtained by substituting this expan-

sion in
∑m

k=0 ckτ
k = 0 and equating the coefficients of the powers εi to zero for each i .

This proves (9.5.1). We can obtain (9.5.2) as a direct consequence of (9.5.1). The rest is
immediate. �

Clearly, the tl constructed as in Lemma 9.5.1 satisfy (9.1.4) with c = (w0/π )1/m and
p = q = 1/m. They also satisfy (9.4.1), because exp[u(tl)] ∼ (−1)l+ν0ei(wm+λ0π )e�u(tl )

as l →∞. As a result, when δ is real, ϕ(t) satisfies (9.4.1) with these tl . We leave the
details to the reader.



10
Efficient Use of GREP(1): Applications to the D(1)-, d (1)-,

and d̃ (m)-Transformations

10.1 Introduction

In the preceding two chapters, we presented a detailed analysis of the convergence and
stability properties of GREP(1). In this analysis, we considered all possible forms of ϕ(t)
that may arise from infinite-range integrals of functions in B(1) and infinite series whose
terms form sequences in b(1) and b̃(m). We also considered various forms of {tl} that
have been used in applications. In this chapter, we discuss the practical implications of
the results of Chapters 8 and 9 and derive operational conclusions about how the D(1)-,
d (1)-, and d̃ (m)-transformations should be used to obtain the best possible outcome in
different situations involving slowly or quickly varying a(t). It is worth noting again that
the conclusions we derive here and that result from our analysis of GREP(1) appear to
be valid in many situations involving GREP(m) with m > 1 as well.

As is clear from Chapters 8 and 9, GREP(1) behaves in completely different ways
depending onwhetherϕ(t) varies slowly or quickly as t → 0+. This implies that different
strategies are needed for these two classes of ϕ(t). In the next two sections, we dwell
on this issue and describe the possible strategies pertinent to the D(1)-, d (1)-, and d̃ (m)-
transformations.
Finally, the conclusions that we draw in this chapter concerning the d (1)- and d̃ (m)-

transformations are relevant for other sequence transformations, as will become clear
later in this book.

10.2 Slowly Varying a(t)

We recall that a(t) is slowly varying when ϕ(t) ∼∑∞
i=0 hi tδ+i as t → 0+, h0 �= 0, and

δ may be complex such that δ �= 0,−1,−2, . . . . We also advise the reader to review
the examples of slowly varying a(t) in Section 8.2.
In Chapter 8, we discussed the application of GREP(1) to slowly varying a(t) with two

major choices of {tl}: (i) liml→∞(tl+1/tl) = 1 and (ii) ν ≤ tl+1/tl ≤ ω, l = 0, 1, . . . ,
for 0 < ν ≤ ω < 1. We now consider each of these choices separately.

10.2.1 Treatment of the Choice liml→∞(tl+1/tl) = 1

The various results concerning the case liml→∞(tl+1/tl) = 1 show that numerical insta-
bilities occur in the computation of the A( j)

n in finite-precision arithmetic; that is, the

212
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precision of the computed A( j)
n is less than the precision with which the a(tl) are com-

puted, and it deteriorates with increasing j and/or n. The easiest way to remedy this
problem is to increase (e.g., double) the accuracy of the finite-precision arithmetic that
is used, without changing {tl}.
When we are not able to increase the accuracy of our finite-precision arithmetic, we

can deal with the problem by changing {tl} suitably. For example, when {tl} is chosen to
satisfy (8.4.9), namely,

tl ∼ cl−q and tl − tl+1 ∼ cpl−q−1 as l →∞, for some c > 0, p > 0, and q > 0,

(10.2.1)

then, by Theorem 8.4.3, we can increase p to make �( j)
n smaller because �( j)

n is pro-
portional to p−n as j →∞. Now, the easiest way of generating such {tl} is by taking
tl = c/(l + η)q with some η > 0. In this case p = q , as can easily be shown; hence, we
increase q to make �( j)

n smaller for fixed n and increasing j , even though we still have
lim j→∞ �

( j)
n = ∞. Numerical experience suggests that, by increasing q , we make �( j)

n

smaller also for fixed j and increasing n, even though limn→∞ �
( j)
n = ∞, at least in the

cases described in Theorems 8.4.4 and 8.4.8.
In applying the D(1)-transformation to the integral

∫∞
0 f (t) dt in Example 8.2.1 with

this strategy, we can choose the xl according to xl = (l + η)q/c with arbitrary c > 0,
q ≥ 1, and η > 0 without any problem since the variable t is continuous in this case.
With this choice, we have p = q .
When we apply the d (1)-transformation to the series

∑∞
k=1 ak in Example 8.2.2, how-

ever, we have to remember that t now is discrete and takes on the values 1, 1/2, 1/3, . . . ,
only, so that tl = 1/Rl ,with {Rl} being an increasing sequence of positive integers. Sim-
ilarly, when we apply the d̃ (m)-transformation to the series

∑∞
k=1 ak in Example 8.2.3,

t takes on the discrete values 1, 1/21/m, 1/31/m, . . . , so that tl = 1/R1/m
l , with {Rl}

being again an increasing sequence of positive integers. The obvious question then is
whether we can pick {Rl} such that the corresponding {tl} satisfies (10.2.1). We can, of
course, maintain (10.2.1) with Rl = κ(l + 1)r , where κ and r are both positive integers.
But this causes Rl to increase very rapidly when r = 2, 3, . . . , thus increasing the cost
of extrapolation considerably. In view of this, we may want to have Rl increase like lr

with smaller (hence noninteger) values of r ∈ (1, 2), for example, if this is possible at
all. To enable this in both applications, we propose to choose the Rl as follows:

pick κ > 0, r ≥ 1, and η > 0, and the integer R0 ≥ 1, and set

Rl =
{
Rl−1 + 1 if �κ(l + η)r� ≤ Rl−1,
�κ(l + η)r� otherwise, l = 1, 2, . . . .

(10.2.2)

Note that κ , η, and r need not be integers now.
Concerning these Rl , we have the following results.

Lemma 10.2.1 Let {Rl} be as in (10.2.2), with arbitrary κ > 0 when r > 1 and with
κ ≥ 1 when r = 1. Then, Rl = �κ(l + η)r� for all sufficiently large l, from which it
follows that {Rl} is an increasing sequence and that Rl ∼ κlr as l →∞. In addition,

Rl = κlr + κrηlr−1 + o(lr−1) as l →∞, if r > 1, (10.2.3)
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and

Rl = κl + R0, l = 1, 2, . . . , if r = 1 and κ = 1, 2, . . . . (10.2.4)

Proof. That {Rl} is an increasing sequence and Rl = �κ(l + η)r� for all sufficiently large
l is obvious. Next, making use of the fact that x − 1 < �x� ≤ x , we can write

κ(l + η)r − 1 < Rl ≤ κ(l + η)r .

Dividing these inequalities by κlr and taking the limit as l →∞, we obtain
liml→∞[Rl/(κlr )] = 1, from which Rl ∼ κlr as l →∞ follows. To prove (10.2.3), we
proceed as follows: First, we have

κ(l + η)r = κlr + κrηlr−1+ ρl ; ρl ≡ κ
r (r − 1)

2
η2(1+ θ̃ )

r−2
lr−2 for some θ̃ ∈ (0, η/ l).

Note that κrηlr−1 →∞ as l →∞, and that ρl > 0 for l ≥ 1. Next, from

κlr + κrηlr−1 + ρl − 1 < Rl ≤ κlr + κrηlr−1 + ρl .

we obtain |Rl − (κlr + κrηlr−1)| < ρl + 1, which implies (10.2.3). Finally, the result
in (10.2.4) is a trivial consequence of the fact that κl is an integer under the conditions
imposed on κ and r there. �

The following lemma is a direct consequence of Lemma 10.2.1. We leave its proof to
the reader.

Lemma 10.2.2 Let {Rl} be as in (10.2.2) with r > 1, or with r = 1 and κ = 1, 2, . . . .
Then, the following assertions hold:

(i) If tl = 1/Rl , then (10.2.1) is satisfied with c = 1/κ and p = q = r .
(ii) If tl = 1/R1/m

l where m is a positive integer, then (10.2.1) is satisfied with c =
(1/κ)1/m and p = q = r/m.

The fact that the tl in Lemma 10.2.2 satisfy (10.2.1) guarantees that Theorems 8.4.1
and 8.4.3 hold for the d (1)- and d̃ (m)-transformations as these are applied to
Example 8.2.2 and Example 8.2.3, respectively.
Note that the case in which Rl is as in (10.2.2) but with r = 1 and κ ≥ 1 not an integer

is not covered in Lemmas 10.2.1 and 10.2.2. In this case, we have instead of (10.2.4)

Rl = κl + εl , l = 0, 1, . . . ; κη − 1 ≤ εl ≤ κη. (10.2.5)

As a result, we also have instead of (10.2.1)

tl ∼ cl−q as l →∞ and K1l
−q−1 ≤ tl − tl+1 ≤ K2l

−q−1 for some K1, K2 > 0,
(10.2.6)

with q = 1 when tl = 1/Rl and with q = 1/m when tl = 1/R1/m
l . In this case too, Theo-

rem 8.4.1 holds when the d (1)- and d̃ (m)-transformations are applied to Example 8.2.2
and Example 8.2.3, respectively. As for Theorem 8.4.3, with the exception of (8.4.17),
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its results remain unchanged, and (8.4.17) now reads

Gn1 j
n ≤ �( j)

n ≤ Gn2 j
n for some Gn1,Gn2 > 0, n fixed. (10.2.7)

All this can be shown by observing that Lemma 8.4.2 remains unchanged and that
Ln1( j/t j )n ≤ |c( j)ni | ≤ Ln2( j/t j )n for some Ln1, Ln2 > 0, which follows from (10.2.6).
We leave the details to the interested reader.
From the preceding discussion, it follows that both the d (1)- and the d̃ (m)-

transformations can be made effective by picking the Rl as in (10.2.2) with a suitable
and moderate value of r . In practice, we can start with r = 1 and increase it gradually if
needed. This strategy enables us to increase the accuracy of A( j)

n for j or n large and also
improve its numerical stability, because it causes the corresponding�( j)

n to decrease. That
is, by increasing r we can achieve more accuracy in the computed A( j)

n , even when we
are limited to a fixed precision in our arithmetic. Now, the computation of A( j)

n involves
the terms ak, 1 ≤ k ≤ R j+n, of

∑∞
k=1 ak as it is defined in terms of the partial sums

ARl , j ≤ l ≤ j + n. Because Rl increases like the power lr , we see that by increasing r
gradually, and not necessarily through integer values, we are able to increase the number
of the terms ak used for computing A( j)

n gradually as well. Obviously, this is an advantage
offered by the choice of the Rl as in (10.2.2), with r not necessarily an integer.
Finally, again from Theorem 8.4.3, both �

( j)
n and |A( j)

n − A| are inversely propor-
tional to |(δ)n|. This suggests that it is easier to extrapolate when |(δ)n| is large, as
this causes both �( j)

n and |A( j)
n − A| to become small. One practical situation in which

this becomes relevant is that of small |�δ| but large |!δ|. Here, the larger |!δ|, the
better the convergence and stability properties of A( j)

n for j →∞, despite the fact that
A( j)

n − A = O(ϕ(t j )t
�δ+n
j ) as j →∞ for every value of!δ. Thus, extrapolation is easier

when |!δ| is large. (Again, numerical experience suggests that this is so both for Process I
and for process II.) Consequently, in applying the D(1)-transformation to

∫∞
0 f (t) dt in

Example 8.2.1 with large |!γ |, it becomes sufficient to use xl = κ(l + η)q with a low
value of q; e.g., q = 1. Similarly, in applying the d (1)-transformation in Example 8.2.2
with large |!γ |, it becomes sufficient to choose Rl as in (10.2.2)with a lowvalue of r ; e.g.,
r = 1 or slightly larger. The same can be achieved in applying the d̃ (m)-transformation
in Example 8.2.3, taking r/m = 1 or slightly larger.

10.2.2 Treatment of the Choice 0 < ν ≤ tl+1/tl ≤ ω < 1

Our results concerning the case 0 < ν ≤ tl+1/tl ≤ ω < 1 for all l show that the A( j)
n can

be computed stably in finite-precision arithmetic with such a choice of {tl}. Of course,
t0νl ≤ tl ≤ t0ωl , l = 0, 1, . . . , and, therefore, tl → 0 as l →∞ exponentially in l.
In applying the D(1)-transformation to

∫∞
0 f (t) dt , we can choose the xl according to

xl = ξ/ωl for some ξ > 0 and ω ∈ (0, 1). With this choice and by tl = 1/xl , we have
liml→∞(tl+1/tl) = ω, and Theorems 8.5.1 and 8.5.2 apply. As is clear from (8.5.4) and
(8.5.6), �( j)

n , despite its boundedness both as j →∞ and as n →∞, may become large
if some of the ci there are very close to 0,−1,−2, . . . . Suppose, for instance, that δ ≈ 0.
Then, c1 = ωδ is close to 1 if we choose ω close to 1. In this case, we can cause c1 to
separate from 1 by making ω smaller, whether δ is complex or not.

In applying the d (1)- and d̃ (m)-transformations with the present choice of {tl}, we
should again remember that t is discrete and tl = 1/Rl for the d (1)-transformation and
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tl = 1/R1/m
l for the d̃ (m)-transformation, and {Rl} is an increasing sequence of positive

integers. Thus, the requirement that tl → 0 exponentially in l forces that Rl →∞ ex-
ponentially in l. This, in turn, implies that the number of terms of the series

∑∞
k=1 ak

required for computing A( j)
n , namely, the integer R j+n , grows exponentially with j + n.

To keep this growth to a reasonable and economical level, we should aim at achieving
Rl = O(σ l) as l →∞ for some reasonable σ > 1 that is not necessarily an integer. The
following choice, which is essentially due to Ford and Sidi [87, Appendix B], has proved
very useful:

pick the scalar σ > 1 and the integer R0 ≥ 1, and set

Rl =
{
Rl−1 + 1 if �σ Rl−1� = Rl−1,
�σ Rl−1� otherwise,

l = 1, 2, . . . .
(10.2.8)

(The Rl given in [87] are slightly different but have the same asymptotic properties,
which is the most important aspect.)
The next two lemmas, whose proofs we leave to the reader, are analogous to Lemmas

10.2.1 and 10.2.2. Again, the fact that x − 1 < �x� ≤ x becomes useful in part of the
proof.

Lemma 10.2.3 Let {Rl} be as in (10.2.8). Then, Rl = �σ Rl−1� for all sufficiently large l,
from which it follows that gσ l ≤ Rl ≤ σ l for some g ≤ 1. Thus, {Rl} is an exponentially
increasing sequence of integers that satisfies liml→∞(Rl+1/Rl) = σ .

Lemma 10.2.4 Let {Rl} be as in (10.2.8). Then, the following assertions hold:

(i) If tl = 1/Rl , then liml→∞(tl+1/tl) = ω with ω = σ−1 ∈ (0, 1).
(ii) If tl = 1/R1/m

l , where m is a positive integer, then liml→∞(tl+1/tl) = ω with ω =
σ−1/m ∈ (0, 1).

The fact that the tl in Lemma 10.2.4 satisfy liml→∞(tl+1/tl) = ω with ω ∈ (0, 1)
guarantees that Theorems 8.5.1, 8.5.2, 8.6.1, 8.6.4, 8.6.6, and 8.6.7 hold for the d (1)-
and d̃ (m)-transformations, as these are applied to Examples 8.2.2 and 8.2.3, respectively.
Again, in case �( j)

n is large, we can make it smaller by decreasing ω (equivalently, by
increasing σ ).
Before closing this section, we recall that the d (m)- and d̃ (m)-transformations, by their

definitions, are applied to subsequences {ARl } of {Al}. This amounts to sampling the
sequence {Al}. Let us consider now the choice of the Rl as in (10.2.8). Then the sequence
{Rl} grows as a geometric progression. On the basis of this, we refer to this choice of
the Rl as the geometric progression sampling and denote it GPS for short.

10.3 Quickly Varying a(t)

We recall that a(t) is quickly varying when ϕ(t) is of one of three forms: (a)
ϕ(t) = eu(t)h(t), or (b) ϕ(t) = [�(t−ŝ)]

−ν
h(t), or (c) ϕ(t) = [�(t−ŝ)]

−ν
eu(t)h(t), where

h(t) ∼ h0tδ as t → 0+ for some arbitrary and possibly complex δ, u(t) ∼∑∞
i=0 ui t i−s as

t → 0+ for some positive integer s, �(z) is the Gamma function, ŝ is a positive integer,
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ν > 0, and ŝ ≥ s in case (c). In addition, ϕ(t) may be oscillatory and/or decaying as
t → 0+ and |ϕ(t)| = O(t�δ) as t → 0+ at worst. At this point, we advise the reader to
review the examples of quickly varying a(t) given in Section 9.2.
In Chapter 9, we discussed the application of GREP(1) to quickly varying a(t) with

choices of {tl} that satisfy (10.2.1) only and were able to prove that both convergence
and stability prevail with such {tl}. Numerical experience shows that other choices of
{tl} are not necessarily more effective.
We first look at the application of the D(1)-transformation to the integral

∫∞
0 f (t) dt in

Example 9.2.1. The best strategy appears to be the one that enables the conditions of The-
orems 9.4.2 and 9.4.3 to be satisfied. In this strategy, we choose the xl in accordance with
Lemma 9.5.1. Thus, if !θ(x) ∼∑∞

i=0wi xm−i as x →∞, w0 > 0, in Example 9.2.1,
we set w̄(x) =∑m−1

i=0 wi xm−i and choose x0 to be the smallest zero greater than a
of sin(w̄(x)− λ0π ) for some λ0. Thus, x0 is a solution of the polynomial equation
w̄(x)− λ0π = ν0π for some integer ν0. Once x0 has been found, xl for l = 1, 2, . . . ,
is determined as the largest root of the polynomial equation w̄(x)− λ0π = (ν0 + l)π .
Determination of {xl} is an easy task since w̄(x) is a polynomial; it is easiest whenm = 1
orm = 2. If we do not want to bother with extracting w̄(x) from θ (x), then we can apply
the preceding strategy directly to !θ (x) instead of w̄(x). All this forms the basis of the
W -transformation for oscillatory infinite-range integrals that we introduce later in this
book.
Let us consider the application of the d (1)- and d̃ (m)-transformations to the series∑∞
k=1 ak in Examples 9.2.2 and 9.2.3, respectively. We again recall that tl = 1/Rl for

the d (1)-transformation and tl = 1/R1/m
l for the d̃ (m)-transformation, where {Rl} is an

increasing sequence of integers. We choose the Rl as in (10.2.2), because we already
know from Lemma 10.2.2 that, with this choice of {Rl}, tl satisfies (10.2.1) when r > 1,
or when r = 1 but κ an η are integers there. (When r = 1 but κ or η is not an integer, we
have only tl ∼ cl−q as l →∞, as mentioned before.) We have only to fix the parameter
q as described in Theorems 9.3.1–9.3.3.

Finally, we note that when Rl are as in (10.2.2) with r = 1, the sequence {Rl} grows
as an arithmetic progression. On the basis of this, we refer to this choice of the Rl

as the arithmetic progression sampling and denote it APS for short. We make use of
APS in the treatment of power series, Fourier series, and generalized Fourier series in
Chapters 12 and 13.
APS with integer κ was originally suggested in Levin and Sidi [165] and was incor-

porated in the computer program of Ford and Sidi [87]. It was studied rigorously in Sidi
[294], where it was shown when and how to use it most efficiently.
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Reduction of the D-Transformation for Oscillatory

Infinite-Range Integrals: The D̄-, D̃-, W-,
and mW-Transformations

11.1 Reduction of GREP for Oscillatory A(y)

Let us recall that, when A(y) ∈ F(m) for some m, we have

A(y) ∼ A +
m∑

k=1
φk(y)

∞∑

i=0
βki y

irk as y → 0+, (11.1.1)

where A is the limit or antilimit of A(y) as y → 0+ and φk(y) are known shape functions
that contain the asymptotic behavior of A(y) as y → 0+. Consider the approximations
A(m,0)
(ν,... ,ν) ≡ Cν, ν = 1, 2, . . . , that are produced by GREP(m) as the latter is applied to

A(y).We consider the sequence {Cν}∞ν=1, because it has excellent convergence properties.
Now Cν is defined via the linear system

A(yl) = Cν +
m∑

k=1
φk(yl)

ν−1∑

i=0
β̄ki y

irk
l , l = 0, 1, . . . ,mν, (11.1.2)

and is, heuristically, the result of “eliminating” the mν terms φk(y)yirk , i = 0, 1, . . . ,
ν − 1, k = 1, . . . ,m, from the asymptotic expansion of A(y) given in (11.1.1). Thus,
the number of the A(yl) needed to achieve this “elimination” process is mν + 1.
From this discussion, we conclude that, the smaller the value of m, the cheaper the

extrapolation process. [By “cheaper” we mean that the number of function values A(yl)
needed to “eliminate” ν terms from each βk(y) is smaller.]
It turns out that, for functions A(y) ∈ F(m) that oscillate an infinite number of times as

y → 0+, by choosing {yl} judiciously, we are able to reduce GREP, which means that
we are able to use GREP(q) with suitable q < m to approximate A, the limit or antilimit
of A(y) as y → 0+, thus saving a lot in the computation of A(y). This is done as follows:

As A(y) oscillates an infinite number of times as y → 0+, we have that at least
one of the form factors φk(y) vanishes at an infinite number of points ȳl , such that
ȳ0 > ȳ1 > · · · > 0 and liml→∞ ȳl = 0. Suppose exactly m − q of the φk(y) vanish on
the set Ȳ = {ȳ0, ȳ1, . . . }. Renaming the remaining q shape functions φk(y) if necessary,
we have that

A(y) = A +
q∑

k=1
φk(y)βk(y), y ∈ Ȳ = {ȳ0, ȳ1, . . . }. (11.1.3)

In other words, when y is a discrete variable restricted to the set Ȳ , A(y) ∈ F(q) with

218
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q < m. Consequently, choosing {yl} ⊆ Ȳ , we are able to apply GREP(q) to A(y) and
obtain good approximations to A, even though A(y) ∈ F(m) to begin with.

Example 11.1.1 The preceding idea can be illustrated very simply via Examples 4.1.5
and 4.1.6 of Chapter 4. We have, with A(y)↔ F(x) = ∫ x

0 (sin t/t) dt and A ↔ I =
F(∞), that

F(x) = I + cos x

x
H1(x)+ sin x

x
H2(x), H1, H2 ∈ A(0).

Thus, A(y) ∈ F(2)
∞ with y ↔ x−1, φ1(y)↔ cos x/x , and φ2(y)↔ sin x/x . Here, y is

continuous.
Obviously, both φ1(y) = y cos(1/y) and φ2(y) = y sin(1/y) oscillate an infinite num-

ber of times as y → 0+, and φ2(y) = 0 when y = ȳi = 1/[(i + 1)π ], i = 0, 1, . . . .
Thus, when y ∈ Ȳ = {ȳ0, ȳ1, . . . }, A(y) ∈ F(1)

∞ with A(y) = I + y cos(1/y)β1(y).

Example 11.1.2 As another illustration, consider the infinite integral I = ∫∞
0 J0(t) dt

that was considered in Example 5.1.13. With F(x) = ∫ x
0 J0(t) dt , we already know that

F(x) = I + x−1 J0(x)g0(x)+ J1(x)g1(x), g0, g1 ∈ A(0).

Thus, A(y) ∈ F(2)
∞ with y ↔ x−1, φ1(y)↔ J0(x)/x , φ2(y)↔ J1(x), and A ↔ I .

Let ȳl = x−1l , l = 0, 1, . . . ,where xl are the consecutive zeros of J0(x) that are greater
than 0. Thus, when y ∈ Ȳ = {ȳ0, ȳ1, . . . }, A(y) ∈ F(1)

∞ with A(y) = I + J1(1/y)β2(y)

The purpose of this chapter is to derive reductions of the D-transformation for inte-
grals

∫∞
0 f (t) dt whose integrands have an infinite number of oscillations at infinity in

the way described. The reduced forms thus obtained have proved to be extremely effi-
cient in computing, among others, integral transforms with oscillatory kernels, such as
Fourier, Hankel, and Kontorovich–Lebedev transforms. The importance and usefulness
of asymptotic analysis in deriving these economical extrapolation methods are demon-
strated several times throughout this chapter.
Recall that we are taking α = 0 in the definition of the D-transformation; we do so

with its reductions as well. In case the integral to be computed is
∫∞
a f (t) dt with a �= 0,

we apply these reductions to the integral
∫∞
0 f̃ (t) dt , where f̃ (x) = f (a + x) for x ≥ 0.

11.1.1 Review of the W-Algorithm for Infinite-Range Integrals

As we will see in the next sections, the following linear systems arise from various
reductions of the D-transformation for some commonly occurring oscillatory infinite-
range integrals.

F(xl) = A( j)
n + ψ(xl)

n−1∑

i=0

β̄ i

x i
l

, j ≤ l ≤ j + n. (11.1.4)

Here, F(x) = ∫ x
0 f (t) dt and I [ f ] = ∫∞

0 f (t) dt , and xl and the form factor ψ(xl) de-
pend on the method being used.
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The W-algorithm for these equations assumes the following form:

1. For j = 0, 1, . . . , set

M ( j)
0 = F(x j )

ψ(x j )
, N ( j)

0 = 1

ψ(x j )
, H ( j)

0 = (−1) j |N ( j)
0 |, K ( j)

0 = (−1) j |M ( j)
0 |.

2. For j = 0, 1, . . . , and n = 1, 2, . . . , compute

Q( j)
n = Q( j+1)

n−1 − Q( j)
n−1

x−1j+n − x−1j

,

where Q( j)
n stand for M ( j)

n or N ( j)
n or H ( j)

n or K ( j)
n .

3. For all j and n, set

A( j)
n = M ( j)

n

N ( j)
n

, �( j)
n =

∣
∣
∣
∣
∣
H ( j)

n

N ( j)
n

∣
∣
∣
∣
∣
, and !( j)

n =
∣
∣
∣
∣
∣
K ( j)

n

N ( j)
n

∣
∣
∣
∣
∣
.

11.2 The D̄-Transformation

11.2.1 Direct Reduction of the D-Transformation

Webegin by reducing the D-transformation directly.When f ∈ B(m) and is as inTheorem
5.1.12, there holds

F(x) = I [ f ]+
m−1∑

k=0
x ρ̄k f (k)(x)gk(x), (11.2.1)

where F(x) = ∫ x
0 f (t) dt , I [ f ] = ∫∞

0 f (t) dt, and ρ̄k ≤ k + 1 are some integers that
satisfy (5.1.9), and gk ∈ A(0). [Note that we have replaced the ρk in (5.1.8) by ρ̄k , which
is legitimate since ρ̄k ≥ ρk for each k.]
Suppose that f (x) oscillates an infinite number of times as x →∞ and that there

exist xl , 0 < x0 < x1 < · · · , liml→∞ xl = ∞, for which

f (ki )(xl) = 0, l = 0, 1, . . . ; 0 ≤ k1 < k2 < · · · < kp ≤ m − 1. (11.2.2)

Letting E = {0, 1, . . . ,m − 1} and Ep = {k1, . . . , kp} and X = {x0, x1, . . . }, (11.2.1)
then becomes

F(x) = I [ f ]+
∑

k∈E\Ep

x ρ̄k f (k)(x)gk(x), x ∈ X. (11.2.3)

Using (11.2.3), Sidi [274] proposed the D̄-transformation as in the following definition.

Definition 11.2.1 Let f (x), E, Ep, and X be as before, and denote q = m − p. Then,
the D̄(q)-transformation for the integral

∫∞
0 f (t) dt is defined via the linear system

F(xl) = D̄(q, j)
n̄ +

∑

k∈E\Ep

xσk f (k)(x)
nk−1∑

i=0

β̄ki

x i
l

, j ≤ l ≤ j + N̄ ; N̄ =
∑

k∈E\Ep

nk,

(11.2.4)
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where n̄ = (ns1 , ns2 , . . . , nsq ) with {s1, s2, . . . , sq} = E\Ep. When the ρ̄k in (11.1.1)
are known, we can choose σk = ρ̄k ; otherwise, we can take for σk any known upper
bound of ρ̄k . In case nothing is known about ρ̄k , we can take σk = k + 1, as was done
in the original definition of the D-transformation.

It is clear from Definition 11.2.1 that the D̄-transformation, just as the D-
transformation, can be implemented by the W-algorithm (when q = 1) and by the W(q)-
algorithm (when q > 1). Both transformations have been used by Safouhi, Pinchon, and
Hoggan [253], and by Safouhi and Hoggan [250], [251], [252] in the accurate evalua-
tion of some very complicated infinite-range oscillatory integrals that arise in molecular
structure calculations and have proved to be more effective than others.
We now illustrate the use of the D̄-transformation with two examples.

Example 11.2.2 Consider the case in which m = 2, f (x) = u(x)Q(x), and Q(x) van-
ishes and changes sign an infinite number of times as x →∞. Ifwe choose the xl such that
Q(xl) = 0, l = 0, 1, . . . , then f (xl) = 0, l = 0, 1, . . . , too.Also, f ′(xl) = u(xl)Q′(xl)
for all l. The resulting D̄-transformation is, therefore, defined via the equations

F(xl) = D̄(1, j)
ν + x ρ̄1

l u(xl)Q
′(xl)

ν−1∑

i=0

β̄ i

x i
l

, j ≤ l ≤ j + ν, (11.2.5)

which can be solved by theW-algorithm. Note that only the derivative of Q(x) is needed
in (11.2.5), whereas that of u(x) is not. Also, the integer ρ̄1 turns out to be ≤ 0 in such
cases and thus can be replaced by 0. In the next sections, we give specific examples of
this application.

Example 11.2.3 A practical application of the the D̄-transformation is to integrals
I [ f ] = ∫∞

0 f (t) dt with f (x) = u(x)[M(x)]µ, where u ∈ A(γ ) for some γ , M ∈ B(r )

for some r , and µ ≥ 1 is an integer. From Heuristic 5.4.3, we have that (M)µ ∈ B(m)

with m ≤ (r+µ−1
µ

)
. Since u ∈ B(1) in addition, f ∈ B(m) as well. If we choose the

xl such that f (xl) = 0, l = 0, 1, . . . , we also have f (k)(xl) = 0, l = 0, 1, . . . , for
k = 1, . . . , µ− 1. Therefore, I [ f ] can be computed by the D̄(m−µ)-transformation.

11.2.2 Reduction of the sD-Transformation

Another form of the D̄-transformation can be obtained by recalling the developments of
Section 5.3 on the simplified D(m)-transformation, namely, the sD(m)-transformation. In
case f (x) = u(x)Q(x), where u ∈ A(γ ) for some γ and Q(x) are simpler to deal with
than f (x), in the sense that its derivatives are available more easily than those of f (x),
we showed that

F(x) = I [ f ]+
m−1∑

k=0
x ρ̄k [u(x)Q(k)(x)]h̃k(x), (11.2.6)

with ρ̄k as before and for some h̃k ∈ A(0). [Here, for convenience, we replaced the ρ ′k of
(5.3.2) by their upper bounds ρ̄k .] Because u(x) is monotonic as x →∞, the oscillatory
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behavior of f (x) is contained in Q(x). Therefore, suppose there exist xl , 0 < x0 <
x1 < · · · , liml→∞ xl = ∞, for which

Q(ki )(xl) = 0, l = 0, 1, . . . ; 0 ≤ k1 < k2 < · · · < kp ≤ m − 1. (11.2.7)

Letting E = {0, 1, . . . ,m − 1} and Ep = {k1, . . . , kp} and X = {x0, x1, . . . } as before,
(11.2.6) becomes

F(x) = I [ f ]+
∑

k∈E\Ep

x ρ̄k [u(x)Q(k)(x)]h̃k(x), x ∈ X. (11.2.8)

In view of (11.2.8), we give the following simplified definition of the D̄-transformation,
which was given essentially in Sidi [299].

Definition 11.2.4 Let f (x) = u(x)Q(x), E, Ep, and X be as before, and denote q =
m− p. Then, the s D̄(q)-transformation, the simplified D̄(q)-transformation for the inte-
gral

∫∞
0 f (t) dt is defined via the linear systems

F(xl) = D̄(q, j)
n̄ +

∑

k∈E\Ep

xσkl [u(xl)Q
(k)(xl)]

nk−1∑

i=0

β̄ki

x i
l

, j ≤ l ≤ j + N̄ ; N̄ =
∑

k∈E\Ep

nk,

(11.2.9)

where n̄ = (ns1 , . . . , nsq ) with {s1, . . . , sq} = E\Ep. The σk can be chosen exactly as
in Definition 11.2.1.

Obviously, the equations in (11.2.9) can be solved via the W(q)-algorithm.

11.3 Application of the D̄-Transformation to Fourier Transforms

Let f (x) be of the form f (x) = T (x)u(x), where T (x) = A cos x + B sin x, |A| +
|B| �= 0, and u(x) = eφ(x)h(x), where φ(x) is real and φ ∈ A(k) strictly for some integer
k ≥ 0 and h ∈ A(γ ) for some γ . Assume that, when k > 0, limx→∞ φ(x) = −∞, so that
f (x) is integrable of infinity. By the fact that T = f/u and T ′′ + T = 0, it follows that
f = p1 f ′ + p2 f ′′ with

p1 = 2(φ′ + h′/h)
w

, p2 = − 1

w
; w = 1+ (φ′ + h′/h)2 − (φ′ + h′/h)′. (11.3.1)

When k > 0,we have φ′ ∈ A(k−1) strictly. Therefore,w ∈ A(2k−2) strictly. Consequently,
p1 ∈ A(−k+1) and p2 ∈ A(−2k+2). When k = 0, we have φ′ ≡ 0, as a result of which,
w ∈ A(0) strictly, so that p1 ∈ A(−1) and p2 ∈ A(0). In all cases then, f ∈ B(2) and Theo-
rem 5.1.12 applies and (11.2.1) holds with

ρ̄0 = −k + 1, ρ̄1 = −2k + 2 when k > 0,
ρ̄0 = −1, ρ̄1 = 0 when k = 0.

(11.3.2)

Note that, in any case, ρ̄0, ρ̄1 ≤ 0. If we now pick the xl to be consecutive zeros of
T (x), 0 < x0 < x1 < · · · , then the D̄(1)-transformation can be used to compute I [ f ]
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via the equations

F(xl) = D̄(1, j)
ν + x ρ̄1

l u(xl)T ′(xl)
ν−1∑

i=0

β̄ i

x i
l

, j ≤ l ≤ j + ν. (11.3.3)

If we pick the xl to be consecutive zeros of T ′(x), 0 < x0 < x1 < · · · , then the s D̄(1)-
transformation can be used via the equations

F(xl) = D̄(1, j)
ν + x ρ̄0

l u(xl)T (xl)
ν−1∑

i=0

β̄ i

x i
l

, j ≤ l ≤ j + ν. (11.3.4)

These equations can be solved by the W-algorithm.
Note that, in both cases, xl = x0 + lπ, l = 0, 1, . . . , with suitable x0.

11.4 Application of the D̄-Transformation to Hankel Transforms

Let f (x) be of the form f (x) = Cν(x)u(x) with Cν(x) = AJν(x)+ BYν(x), where
Jν(x) and Yν(x) are the Bessel functions of (real) order ν of the first and second
kinds, respectively, and |A| + |B| �= 0, and u(x) = eφ(x)h(x), where φ(x) is real and
φ ∈ A(k) strictly for some integer k ≥ 0 and h ∈ A(γ ) for some γ . As in the preced-
ing section, limx→∞ φ(x) = −∞ when k > 0, to guarantee that f (x) is integrable at
infinity.
By the fact that Cν(x) satisfies the Bessel equation Cν = x

ν2−x2 C
′
ν + x2

ν2−x2 C
′′
ν , and that

Cν = f/u, it follows that f = p1 f ′ + p2 f ′′ with

p1 = 2x2(φ′ + h′/h)− x

w
and p2 = − x2

w
,

where

w = x2[(φ′ + h′/h)2 − (φ′ + h′/h)′]− x(φ′ + h′/h)+ x2 − ν2.

From this, it can easily be shown that p1 ∈ A(i1) and p2 ∈ A(i2) with i1 and i2 exactly
as in the preceding section so that f ∈ B(2). Consequently, Theorem 5.1.12 applies and
(11.2.1) holdswithm = 2 andwith ρ̄0 and ρ̄1 exactly as in the preceding section, namely,

ρ̄0 = −k + 1, ρ̄1 = −2k + 2 when k > 0,
ρ̄0 = −1, ρ̄1 = 0 when k = 0.

(11.4.1)

Note that, in any case, ρ̄0, ρ̄1 ≤ 0.

(i) If we choose the xl to be consecutive zeros of Cν(x), 0 < x0 < x1 < · · · , then the
D̄(1)-transformation can be used to compute I [ f ] via the equations

F(xl) = D̄(1, j)
ν + x ρ̄1

l u(xl)C ′ν(xl)
ν−1∑

i=0

β̄ i

x i
l

, j ≤ l ≤ j + ν. (11.4.2)

Here, we can make use of the known fact that C ′ν(x) = (ν/x)Cν(x)− Cν+1(x), so
that C ′ν(xl) = −Cν+1(xl), which simplifies things further.
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(ii) If we choose the xl to be consecutive zeros of C ′ν(x), 0 < x0 < x1 < · · · , then the
s D̄(1)-transformation can be used to compute I [ f ] via the equations

F(xl) = D̄(1, j)
ν + x ρ̄0

l u(xl)Cν(xl)
ν−1∑

i=0

β̄ i

x i
l

, j ≤ l ≤ j + ν. (11.4.3)

(iii) If we choose the xl to be consecutive zeros of Cν+1(x), 0 < x0 < x1 < · · · , then
we obtain another form of the s D̄-transformation defined again via the equations
in (11.4.3). To see this, we rewrite (11.2.6) in the form

F(x) = I [ f ]+ x ρ̄0u(x)Cν(x)h̃0(x)+ x ρ̄1u(x)
[ν

x
Cν(x)− Cν+1(x)

]
h̃1(x)

= I [ f ]+ x ρ̄0u(x)Cν(x)ĥ0(x)+ x ρ̄1u(x)Cν+1(x)ĥ1(x), (11.4.4)

where ĥ0(x) = h̃0(x)+ x ρ̄1−ρ̄0−1h̃1(x) ∈ A(0) since ρ̄1 − ρ̄0 − 1 ≤ 0, and ĥ1(x) =
−h̃1(x) ∈ A(0) as well. Now, pick the xl to be consecutive zeros of Cν+1(x) in (11.4.4)
to obtain the method defined via (11.4.3). [Note that the second expansion in (11.4.4) is
in agreement with Remark 5 in Section 4.3.]
These developments are due to Sidi [299]. All three methods above have proved to

be very effective for large, as well as small, values of ν. In addition, they can all be
implemented via the W-algorithm.

11.5 The D̃-Transformation

The D̄-transformation of the previous sections is defined by reducing the D-
transformation with the help of the zeros of one or more of the f (k)(x). When these
zeros are not readily available or are difficult to compute, the D-transformation can be
reduced via the so-called D̃-transformation of Sidi [274] that is a very flexible device.
What we have here is really a general approach that is based on Remark 5 of Section 4.3,
within which a multitude of methods can be defined. What is needed for this approach
is some amount of asymptotic analysis of f (x) as x →∞. Part of this analysis is quan-
titative, and the remainder is qualitative only.
Our starting point is again (11.2.1). By expressing f (x) and its derivatives as combi-

nations of simple functions when possible, we rewrite (11.2.1) in the form

F(x) = I [ f ]+
m−1∑

k=0
vk(x)g̃k(x), (11.5.1)

where g̃k ∈ A(0) for all k. Here, the functions vk(x) have much simpler forms than
f (k)(x), and their zeros are readily available. Now, choose the xl , 0 < x0 < x1 < · · · ,
liml→∞ xl = ∞, for which

vk(xl) = 0, l = 0, 1, . . . ; 0 ≤ k1 < k2 < · · · < kp ≤ m − 1. (11.5.2)

Letting E = {0, 1, . . . ,m − 1} and Ep = {k1, . . . , kp} and X = {x0, x1, . . . } again,
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(11.5.1) becomes

F(x) = I [ f ]+
∑

k∈E\Ep

vk(x)g̃(x), x ∈ X. (11.5.3)

In view of (11.5.3), we give the following definition analogously to Definitions 11.2.1
and 11.2.4.

Definition 11.5.1 Let f (x), E, Ep, and X be as before, and denote q = m − p. Then
the D̃(q)-transformation for the integral

∫∞
0 f (t) dt is defined via the linear equations

F(xl) = D̃(q, j)
n̄ +

∑

k∈E\Ep

vk(xl)
nk−1∑

i=0

β̄ki

x i
l

, j ≤ l ≤ j + N̄ ; N̄ =
∑

k∈E\Ep

nk, (11.5.4)

where n̄ = (ns1 , . . . , nsq ) with {s1, . . . , sq} = E\Ep.

It is obvious from Definition 11.5.1 that the D̃- transformation, like the D̄-
transformations, can be implemented by the W-algorithm (when q = 1) and by the
W(q)-algorithm (when q > 1).
The best way to clarify what we have done so far is with practical examples, to which

we now turn.

11.6 Application of the D̃-Transformation to Hankel Transforms

Consider the integral
∫∞
0 Cν(t)u(t) dt , where Cν(x) and u(x) are exactly as described in

Section 11.4. Now it is known that

Cν(x) = α1(x) cos x + α2(x) sin x, α1, α2 ∈ A(−1/2). (11.6.1)

The derivatives of Cν(x) are of precisely the same form as Cν(x) but with different
α1, α2 ∈ A(−1/2). Substituting these in (11.2.6) with Q(x) = Cν(x) there, we obtain

F(x) = I [ f ]+ v0(x)g̃0(x)+ v1(x)g̃1(x), g̃0, g̃1 ∈ A(0), (11.6.2)

where

v0(x) = xρ−1/2u(x) cos x, v1(x) = xρ−1/2u(x) sin x ; ρ = max{ρ̄0, ρ̄1}, (11.6.3)

with ρ̄0 and ρ̄1 as in Section 11.4.
We now pick the xl to be consecutive zeros of cos x or of sin x . The xl are thus

equidistant with xl = x0 + lπ, x0 > 0. The equations that define the D̃-transformation
then become

F(xl) = D̃(1, j)
ν + (−1)l xρ−1/2l u(xl)

ν−1∑

i=0

β̄ i

x i
l

, j ≤ l ≤ j + ν. (11.6.4)

Here, we have a method that does not require specific knowledge of the zeros or
extrema of Cν(x) and that has proved to be very effective for low to moderate values of ν.
The equations in (11.6.4) can be solved via the W-algorithm.
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11.7 Application of the D̃-Transformation to Integrals
of Products of Bessel Functions

Consider the integral
∫∞
0 f (t) dt , where f (x) = Cµ(x)Cν(x)u(x) with Cν(x) and u(x)

exactly as in Section 11.4 again. Because both Cµ(x) and Cν(x) are in B(2) and u(x)
is in B(1), we conclude, by part (i) of Heuristic 5.4.1, that f ∈ B(4). Recalling that
Cν(x) = αν1(x) cos x + αν2(x) sin x , where ανi ∈ A(−1/2) for i = 1, 2 and for all ν, we
see that f (x) is, in fact, of the following simple form:

f (x) = u(x)[w0(x)+ w1(x) cos 2x + w2(x) sin 2x], wi ∈ A(−1), i = 0, 1, 2.
(11.7.1)

Now, the sumw1(x) cos 2x + w2(x) sin 2x can also be expressed in the form ŵ+(x)ei2x +
ŵ−(x)e−i2x with ŵ± ∈ A(−1). Thus, f (x) = f0(x)+ f+(x)+ f−(x) with f0(x) =
u(x)w0(x), and f±(x) = u(x)ŵ±(x)e±i2x , f0, f± ∈ B(1). By part (ii) of Heuristic 5.4.1,
we therefore conclude that f ∈ B(3). Let us now write F(x) = F0(x)+ F+(x)+ F−(x),
where F0(x) =

∫ x
0 f0(t) dt and F±(x) =

∫ x
0 f±(t) dt. Recalling Theorem 5.7.3, we have

F(x) = I [ f ]+ xρ0 f0(x)h̃0(x)+ xρ f+(x)h̃+(x)+ xρ f−(x)h̃−(x), (11.7.2)

where

ρ0 =
{
1 if k = 0
−k + 1 if k > 0

, ρ = −k + 1, and h̃0, h̃± ∈ A(0), (11.7.3)

which can be rewritten in the form

F(x) = I [ f ]+ xρ0−1u(x)ĥ0(x)+ xρ−1u(x)ĥ1(x) cos 2x

+ xρ−1u(x)ĥ2(x) sin 2x, ĥ0, ĥ1, ĥ2 ∈ A(0). (11.7.4)

Now, let us choose the xl to be consecutive zeros of cos 2x or sin 2x . These are equidis-
tant with xl = x0 + lπ/2, x0 > 0. The equations that define the D̃-transformation then
become

F(xl) = D̃(2, j)
n̄ + xρ0−1l u(xl)

n1−1∑

i=0

β̄1i

x i
l

+ (−1)l xρ−1l u(xl)
n2−1∑

i=0

β̄2i

x i
l

, j ≤ l ≤ j + n1+ n2.

(11.7.5)

(For simplicity,we can takeρ0 = ρ = 1 throughout.)Obviously, the equations in (11.7.5)
can be solved via the W(2)-algorithm.
Consider now the integral

∫∞
0 f (t) dt , where f (x) = Cµ(ax)Cν(bx)u(x) with a �= b.

Using the preceding technique, we can show that

F(x) = I [ f ]+ x−1u(x)
[
ĥc
+(x) cos(a + b)x + ĥc

−(x) cos(a − b)x

+ ĥs
+(x) sin(a+ b)x + ĥs

−(x) sin(a − b)x
]
, ĥc

±, ĥ
s
± ∈ A(0). (11.7.6)

This means that f ∈ B(4) precisely. We can now choose the xl as consecutive zeros
of sin(a + b)x or of sin(a − b)x and compute I [ f ] by the D̃(3)-transformation. If
(a + b)/(a − b) is an integer, by choosing the xl as consecutive zeros of sin(a − b)x
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[which make sin(a + b)x vanish as well], we can even compute I [ f ] by the D̃(2)-
transformation.

11.8 The W - and mW -Transformations for Very Oscillatory Integrals

11.8.1 Description of the Class B̂

The philosophy behind the D̃-transformation can be extended further to cover a very
large family of oscillatory infinite-range integrals. We start with the following definition
of the relevant family of integrands.

Definition 11.8.1 Wesay that a function f (x) belongs to the class B̂ if it can be expressed
in the form

f (x) =
r∑

j=1
u j (θ j (x)) exp(φ j (x))h j (x), (11.8.1)

where u j , θ j , φ j and h j are as follows:

1. u j (z) is either eiz or e−iz or any linear combination of these (like cos z or sin z).
2. θ j (x) and φ j (x) are real and θ j ∈ A(m) strictly and φ j ∈ A(k) strictly, where m is a

positive integer and k is a nonnegative integer, and

θ j (x) = θ̄ (x)+� j (x) and φ j (x) = φ̄(x)+! j (x) (11.8.2)

with

θ̄ (x) =
m−1∑

i=0
µi x

m−i and φ̄(x) =
k−1∑

i=0
νi x

k−i and � j ,! j ∈ A(0). (11.8.3)

Also, when k ≥ 1, we have limx→∞ φ̄(x) = −∞. We assume, without loss of gener-
ality, that µ0 > 0.

3. h j ∈ A(γ j ) for some possibly complex γ j such that γ j − γ j ′ = integer for every j and
j ′. Denote by γ that γ j whose real part is largest. (Note that !γ j are all the same.)

Now, the class B̂ is the union of two mutually exclusive sets: Bc and Bd, where Bc

contains the functions in B̂ that are integrable at infinity, while Bd contains the ones
whose integrals diverge but are defined in the sense of Abel summability. (For this point,
see the remarks at the end of Section 5.7.)
When m = 1, f (x) is a linear combination of functions that have a simple sinusoidal

behavior of the form e±iµ0x as x →∞, that is, the period of its oscillations is fixed
as x →∞. When m ≥ 2, however, f (x) oscillates much more rapidly [like e±iθ̄ (x)] as
x →∞, with the “period” of these oscillations tending to zero. In the sequel, we call
such functions f (x) very oscillatory.
In the remainder of this section, we treat only functions in B̂.
Note that, from Definition 11.8.1, it follows that f (x), despite its complicated appear-

ance in (11.8.1), is of the form

f (x) = eφ̄(x)[eiθ̄ (x)h+(x)+ e−iθ̄(x)h−(x)], h± ∈ A(γ ). (11.8.4)
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This is so because eα(x) ∈ A(0) for α ∈ A(0). If we denote f±(x) = eφ̄(x)±iθ̄ (x)h±(x) and
F±(x) =

∫ x
0 f±(t) dt , then, by Theorem 5.7.3, we have

F±(x) = I [ f±]+ xρ f±(x)g±(x), ρ = 1−max{m, k}, g± ∈ A(0) strictly. (11.8.5)

From this and from the fact that f (x) = f+(x)+ f−(x), it follows that

F(x) = I [ f ]+ xρ+γ eφ̄(x)[cos(θ̄(x))b1(x)+ sin(θ̄ (x))b2(x)], b1, b2 ∈ A(0). (11.8.6)

Here, I [ f ] is
∫∞
0 f (t) dt when this integral converges; it is the Abel sum of

∫∞
0 f (t) dt

when the latter diverges.
Before going on, we would like to note that the class of functions B̂ is very compre-

hensive in the sense that it includes many integrands of oscillatory integrals that arise in
important engineering, physics, and chemistry applications.

11.8.2 The W - and mW -Transformations

We now use (11.8.6) to define the W - and mW -transformations of Sidi [281] and [288],
respectively. Throughout, we assume that f (x) behaves in a “regular” manner, starting
with x = 0. By this, we mean that there do not exist intervals of (0,∞) in which f (x),
relative to its average behavior, has large and sudden changes or remains almost constant.
[One simple way to test the “regularity” of f (x) is by plotting its graph.] We also assume
that θ̄ (x) and its first few derivatives are strictly increasing on (0,∞). This implies that
there exists a unique sequence {xl}∞l=0, 0 < x0 < x1 < · · · , such that xl are consecutive
roots of the equation sin θ̄ (x) = 0 [or of cos θ̄(x) = 0] and behave “regularly” as well.
This also means that x0 is the unique simple root of the polynomial equation θ̄ (x) = qπ
for some integer (or half integer) q, and, for each l > 0, xl is the unique simple root of
the polynomial equation θ̄ (x) = (q + l)π . We also have liml→∞ xl = ∞.

These assumptions make the discussion simpler and the W - andmW -transformations
more effective. If f (x) and θ̄ (x) start behaving as describedonly for x � c for some c > 0,
then a reasonable strategy is to apply the transformations to the integral

∫∞
0 f̃ (t) dt ,

where f̃ (x) = f (c + x), and add to it the finite-range integral
∫ c
0 f (t) dt that is computed

separately.
We begin with the W -transformation.

Definition 11.8.2 Choose the xl as in the previous paragraph, i.e., as consecutive positive
zeros of sin θ̄(x) [or of cos θ̄ (x)]. The W -transformation is then defined via the linear
equations

F(xl) = W ( j)
n + (−1)l xρ+γl eφ̄(xl )

n−1∑

i=0

β̄ i

x i
l

, j ≤ l ≤ j + n, (11.8.7)

where W ( j)
n is the approximation to I [ f ]. (Obviously, the W ( j)

n can be determined via
the W-algorithm.)

As is clear, in order to apply the W -transformation to functions in B̂, we need to
analyze the θ j (x), φ j (x), and h j (x) in (11.8.1) quantitatively as x →∞ in order to
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extract θ̄(x), φ̄(x), and γ . The modification of the W -transformation, denoted the mW -
transformation, requires one to analyze only θ j (x); thus, it is very user-friendly. The
expansion in (11.8.6) forms the basis of this transformation just as it forms the basis of
the W -transformation.

Definition 11.8.3 Choose the xl exactly as in Definition 11.8.2. ThemW -transformation
is defined via the linear equations

F(xl) = W ( j)
n + ψ(xl)

n−1∑

i=0

β̄ i

x i
l

, j ≤ l ≤ j + n, (11.8.8)

where

ψ(xl) = F(xl+1)− F(xl) =
∫ xl+1

xl

f (t) dt. (11.8.9)

(These W ( j)
n can also be determined via the W-algorithm.)

Remarks.

1. Even though F(xl+1)− F(xl) is a function of both xl and xl+1, we have denoted it
ψ(xl). This is not a mistake as xl+1 is a function of l, which, in turn, is a function of
xl (there is a 1–1 correspondence between xl and l), so that xl+1 is also a function
of xl .

2. Because F(xl) =
∑l

i=0 ψ(xi−1) with x−1 = 0 in (11.8.9), themW -transformation can
be viewed as a convergence acceleration method for the infinite series

∑∞
i=0 ψ(xi−1).

(As we show shortly, when γ is real, this series is ultimately alternating too.) In this
sense, themW -transformation is akin to a method of Longman [170], [171], in which
one integrates f (x) between its consecutive zeros or extrema y1 < y2 < · · · to obtain
the integrals vi =

∫ yi+1
yi

f (t) dt , where y0 = 0, and accelerates the convergence of the
alternating infinite series

∑∞
i=0 vi by a suitable sequence transformation. Longman

used the Euler transformation for this purpose. Of course, other transformations,
such as the iterated�2-process, the Shanks transformation, etc., can also be used. We
discuss these methods later.

3. The quantities ψ(xl) can also be defined by ψ(xl) =
∫ xl
xl−1

f (t) dt without changing
the quality of the W ( j)

n appreciably.

Even though the W -transformation was obtained directly from the expansion of F(x)
given in (11.8.6), the mW -transformation has not relied on an analogous expansion so
far. Therefore, we need to provide a rigorous justification of the mW -transformation.
For this, it suffices to show that, with ψ(xl) as in (11.8.9),

F(xl) = I [ f ]+ ψ(xl)g(xl), g ∈ A(0). (11.8.10)

As we discuss in the next theorem, this is equivalent to showing that this ψ(xl) is of the
form

ψ(xl) = (−1)l xρ+γl eφ̄(xl )b̃(xl), b̃ ∈ A(0). (11.8.11)
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An important implication of (11.8.11) is that, when γ is real, the ψ(xl) alternate in sign
for all large l.

Theorem 11.8.4 With F(x), {xl}, and ψ(xl) as described before, ψ(xl) satisfies
(11.8.11). Consequently, F(xl) satisfies (11.8.10).

Proof. Without loss of generality, let us take the xl as the zeros of sin θ̄ (x). Let us
set x = xl in (11.8.6). We have sin θ̄ (xl) = 0 and cos θ̄(xl) = (−1)q+l . Consequently,
(11.8.6) becomes

F(xl) = I [ f ]+ (−1)q+l xρ+γl eφ̄(xl )b1(xl). (11.8.12)

Substituting this in (11.8.9), we obtain

ψ(xl) = (−1)q+l+1
[
xρ+γl eφ̄(xl )b1(xl)+ xρ+γl+1 eφ̄(xl+1)b1(xl+1)

]

= (−1)q+l+1xρ+γl eφ̄(xl )b1(xl)[1+ w(xl)], (11.8.13)

where

w(xl) = R(xl)e
�φ̄(xl ); R(xl) =

(
xl+1
xl

)ρ+γ b1(xl+1)
b1(xl)

, �φ̄(xl) = φ̄(xl+1)− φ̄(xl).

(11.8.14)

Comparing (11.8.13) with (11.8.11), we identify b̃(x) = (−1)q+1b1(x)[1+ w(x)]. We
have to show only that b̃ ∈ A(0).
From Lemma 9.5.1 at the end of Chapter 9, we know that xl =

∑∞
i=0 ai l

(1−i)/m for all
large l, a0 = (π/µ0)1/m > 0. From this, some useful results follow:

xl+1 =
∞∑

i=0
a′i l

(1−i)/m, a′i = ai , i = 0, 1, . . . ,m − 1, a′m = am + a0/m,

xl+1 − xl =
∞∑

i=0
âi l

−1+(1−i)/m, â0 = a0
m
, (11.8.15)

x p
l+1 − x p

l = x p
l

{(

1+ xl+1 − xl
xl

)p

− 1

}

=
∞∑

i=0
ã(p)i l−1+(p−i)/m, ã(p)0 = p

m
ap
0 .

Using these, we can show after some manipulation that

R(xl) ∼ 1+ l−1
∞∑

i=0
di l

−i/m as l →∞, (11.8.16)

and, for k �= 0,

�φ̄(xl) =
k−1∑

i=0
νi (x

k−i
l+1 − xk−i

l ) = l−1+k/m
∞∑

i=0
ei l

−i/m, e0 = ν0
k

m
ak
0 . (11.8.17)

[For k = 0, we have φ̄(x) ≡ 0 so that �φ̄(xl) ≡ 0 too.]
From the fact that xl =

∑∞
i=0 ai l

(1−i)/m for all large l, we can show that any function
of l with an asymptotic expansion of the form

∑∞
i=0 κi l

(r−i)/m as l →∞ also has an
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asymptotic expansion of the form
∑∞

i=0 κ̂i x
r−i
l as l →∞, κ̂0 = κ0/ar

0. In addition, if
one of these expansions converges, then so does the other. Consequently, (11.8.16) and
(11.8.17) can be rewritten, respectively, as

R(xl) ∼ 1+ d̂1x
−1
l + d̂2x

−2
l + · · · as l →∞, (11.8.18)

and

�φ̄(xl) = xk−m
l

∞∑

i=0
êi x

−i
l , ê0 = k

m
ν0a

m
0 . (11.8.19)

Thus, R ∈ A(0) strictly and �φ̄ ∈ A(k−m) strictly. When k ≤ m, e�φ̄(x) ∈ A(0) strictly
and e�φ̄(x) ∼ 1 as x →∞. Consequently, 1+ w(x) ∈ A(0) strictly, hence b̃ ∈ A(0). For
k > m, we have that e�φ̄(x) → 0 as x →∞ essentially like exp(ê0xk−m) since
limx→∞�φ̄(x) = −∞ due to the fact that ê0 < 0 in (11.8.19). (Recall that a0 > 0 and
ν0 < 0 by assumption.) Consequently, 1+ w(x) ∈ A(0) strictly, from which b̃ ∈ A(0)

again. This completes the proof of (11.8.11). The result in (11.8.10) follows from the ad-
ditional observation that g(x) = −1/[1+ w(x)] ∈ A(0) whether k ≤ m or k > m. �

Theorem 11.8.4 shows clearly that ψ(xl) is a true shape function for F(xl), and that
the mW -transformation is a true GREP(1).

11.8.3 Application of the mW -Transformation to Fourier,
Inverse Laplace, and Hankel Transforms

Fourier Transforms

If f (x) = u(x)T (x) with u(x) and T (x) exactly as in Section 11.3, then f ∈ B̂ with
θ̄ (x) = x . Now, choose xl = x0 + lπ, l = 1, 2, . . . , x0 > 0, and apply the mW -
transformation.
Hasegawa and Sidi [127] devised an efficient automatic integration method for a large

class of oscillatory integrals
∫∞
0 f (t) dt , such as Hankel transforms, in which these

integrals are expressed as sums of integrals of the form
∫∞
0 eiωt g(t) dt , and the mW -

transformation just described is used to compute the latter. An important ingredient
of this procedure is a fast method for computing the indefinite integral

∫ x
0 eiωt g(t) dt ,

described in Hasegawa and Torii [128].
A variant of the mW -transformation for Fourier transforms

∫∞
0 u(t)T (t) dt was pro-

posed by Ehrenmark [73]. In this variant, the xl are obtained by solving some nonlinear
equations involving asymptotic information coming from the function u(x). See [73] for
details.

Inverse Laplace Transforms

An interesting application is to the inversion of the Laplace transform by the Bromwich
integral. If û(z) is the Laplace transform of u(t), that is, û(z) = ∫∞

0 e−zt u(t) dt , then

u(t+)+ u(t−)
2

= 1

2π i

∫ c+i∞

c−i∞
ezt û(z) dz, t > 0,
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where the contour of integration is the straight line �z = c, and û(z) has all its singular-
ities to the left of this line. Making the substitution z = c + iξ in the Bromwich integral,
we obtain

u(t+)+ u(t−)
2

= ect

2π

[∫ ∞

0
eiξ t û(c + iξ ) dξ +

∫ ∞

0
e−iξ t û(c − iξ ) dξ

]

.

Assume that û(z) = e−zt0 û0(z), with û0(z) ∈ A(γ ) for some γ . Now, we can apply the
mW -transformation to the last two integrals with ξl = (l + 1)π/(t − t0), l = 0, 1, . . . .
In case u(t) is real, only one of these integrals needs to be computed because now

u(t+)+ u(t−)
2

= ect

π
�
[∫ ∞

0
eiξ t û(c + iξ ) dξ

]

.

This approach has proved to be very effective in inverting Laplace transforms when û(z)
is known for complex z.

Hankel Transforms

If f (x) = u(x)Cν(x) with u(x) and Cν(x) exactly as in Section 11.4, then f ∈ B̂ with
θ̄ (x) = x again. Choose xl = x0 + lπ, l = 1, 2, . . . , x0 > 0, and apply the mW -
transformation.
This approach was found to be one of the most effective means for computing Hankel

transforms when the order ν is of moderate size; see Lucas and Stone [189].

Variants for Hankel Transforms

Again, let f (x) = u(x)Cν(x) with u(x) and Cν(x) exactly as in Section 11.4. When ν, the
order of the Bessel function Cν(x), is large, it seems more appropriate to choose the xl
in the mW -transformation as the zeros of Cν(x) or of C ′ν(x) or of Cν+1(x), exactly as was
done in Section 11.4, where we developed the relevant D̄- and s D̄-transformations. This
use of the mW -transformation was suggested by Lucas and Stone [189], who chose the
xl as the zeros or extrema of Jν(x) for the integrals

∫∞
0 u(t)Jν(t) dt . The choice of the xl

as the zeros of Cν+1(x) was proposed by Sidi [299]. The resulting methods produce some
of the best results, as concluded in [189] and [299]. The same conclusion is reached in
the extensive comparative study of Michalski [211] for the so-called Sommerfeld type
integrals that are simply Hankel transforms.
The question, of course, is whether ψ(xl) is a true shape function for F(xl). The

answer to this question is in the affirmative as xl ∼
∑∞

i=0 ai l
1−i as l →∞, a0 = π .

Even though this asymptotic expansion need not be convergent, the developments of
Theorem 11.8.4 remain valid. Let us show this for the case in which xl are consecutive
zeros of Cν(x). For this, we start with

F(x) = I [ f ]+ x ρ̄0u(x)Cν(x)b0(x)+ x ρ̄1 [u(x)Cν(x)]′b1(x), (11.8.20)

which is simply (11.2.1). Letting x = xl , this reduces to

F(xl) = I [ f ]+ x ρ̄1
l u(xl)C ′ν(xl)b1(xl). (11.8.21)
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Thus,

ψ(xl) = F(xl+1)− F(xl) = x ρ̄1
l u(xl)C ′ν(xl)b1(xl)[w(xl)− 1], (11.8.22)

where

w(xl) =
(
xl+1
xl

)ρ̄1 u(xl+1)
u(xl)

b1(xl+1)
b1(xl)

C ′ν(xl+1)
C ′ν(xl)

. (11.8.23)

Now, differentiating both sides of (11.6.1), we obtain

C ′ν(x) = α̃1(x) cos x + α̃2(x) sin x, α̃1, α̃2 ∈ A(−1/2). (11.8.24)

Recalling that xl ∼ πl + a1 + a2l−1 + · · · as l →∞, and substituting this in (11.8.24),
we get

C ′ν(xl) ∼ (−1)l
∞∑

i=0
vi l

−1/2−i as l →∞, (11.8.25)

from which

C ′ν(xl+1)
C ′ν(xl)

∼ −1+
∞∑

i=1
τi l

−i as l →∞. (11.8.26)

Using the fact that u(x) = eφ(x)h(x), and proceeding as in the proof of Theorem 11.8.4
[starting with (11.8.15)], and invoking (11.8.25) as well, we can show that

w(x) ∼ −1+ w1x
−1 + w2x

−2 + · · · as x →∞ if k ≤ 1,

w(x) = eP(x), P(x) ∼
∞∑

i=0
pi x

k−1−i as x →∞, p0 < 0, if k > 1. (11.8.27)

Combining (11.8.21), (11.8.22), and (11.8.26), we finally obtain

F(xl) = I [ f ]+ ψ(xl)g(xl), (11.8.28)

where

g(x) ∼
∞∑

i=0
b̂i x

−i as x →∞ if k ≤ 1,

g(x) = −1+ eP(x) if k > 1. (11.8.29)

Note that when k > 1, eP(x) → 0 as x →∞ essentially like exp(ê0xk−1) with ê0 < 0.
Consequently, g ∈ A(0) in any case.
We have thus shown that ψ(xl) is a true shape function for F(xl) with these variants

of the mW -transformation as well.

Variants for General Integral Transforms with Oscillatory Kernels

In view of the variants of the mW -transformation for Hankel transforms we have just
discussed, we now propose variants for general integral transforms

∫∞
0 u(t)K (t) dt ,

where u(x) does not oscillate as x →∞ or it oscillates very slowly, for example, like
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exp(±ic(log x)s), with c and s real, and K (x), the kernel of the transform, can be ex-
pressed in the form K (x) = v(x) cos θ (x)+ w(x) sin θ (x), with θ(x) real and θ ∈ A(m)

for some positive integer m, and v,w ∈ A(σ ) for some σ . Let θ̄ (x) be the polynomial
part of the asymptotic expansion of θ (x) as x →∞. Obviously, K (x) oscillates like
exp[±iθ̄ (x)] infinitely many times as x →∞.

Definition 11.8.5 Choose the xl to be consecutive zeros of K (x) or of K ′(x) on (0,∞),
and define the mW -transformation via the linear equations

F(xl) = W ( j)
n + ψ(xl)

n−1∑

i=0

β̄ i

x i
l

, j ≤ l ≤ j + n, (11.8.30)

where, with f (x) = u(x)K (x),

F(xl) =
∫ xl

0
f (t) dt, ψ(xl) = F(xl+1)− F(xl) =

∫ xl+1

xl

f (t) dt. (11.8.31)

These variants of the mW -transformation should be effective in case K (x) starts to
behave like exp[±iθ̄ (x)] only for sufficiently large x , as is the case, for example, when
K (x) = Cν(x) with very large ν.

11.8.4 Further Variants of the mW -Transformation

Let f ∈ B̂ as in Definition 11.8.1, and let I [ f ] be the value of the integral
∫∞
0 f (t) dt

or its Abel sum. In case we do not want to bother with the analysis of θ j (x), we can
compute I [ f ] by applying variants of the mW -transformation that are again defined via
the equations (11.8.8) and (11.8.9), with xl now being chosen as consecutive zeros of
either f (x) or f ′(x). Determination of these xl may be more expensive than those in
Definition 11.8.3. Again, the corresponding W ( j)

n can be computed via the W-algorithm.
These new methods can also be justified by proving a theorem analogous to Theo-

rem 11.8.4 for their corresponding ψ(xl), at least in some cases for which xl satisfy
xl ∼

∑∞
i=0 ai l

(1−i)/m as l →∞, a0 = (π/µ0)1/m > 0.
The performances of these variants of the mW -transformation are similar to those of

the D̄- and s D̄-transformations, which use the same sets of xl .
Another variant of themW -transformation can be defined in case xl ∼

∑∞
i=0 ai l

(1−i)/m

as l →∞, a0 > 0, which is satisfied when the xl are zeros of sin θ̄(x) or of cos θ̄ (x)
or of special functions such as Bessel functions. In such a case, any quantity µl that
has an asymptotic expansion of the form µl ∼

∑∞
i=0 ei x

−i
l as l →∞ has an asymptotic

expansion also of the formµl ∼
∑∞

i=0 ei l
−i/m as l →∞, and this applies to the function

g(x) in (11.8.10). The newvariant of themW -transformation is then defined via the linear
systems

F(xl) = W ( j)
n + ψ(xl)

n−1∑

i=0

β̄ i

(l + 1)i/m
, j ≤ l ≤ j + n. (11.8.32)

Again, theW ( j)
n can be computedwith the help of theW-algorithm.Note that the resulting
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method is analogous to the d̃ (m)-transformation. Numerical results indicate that this new
method is also very effective.

11.8.5 Further Applications of the mW -Transformation

Recall that, in applying the mW -transformation, we consider only the dominant (poly-
nomial) part θ̄ (x) of the phase of oscillations of f (x) and need not concern ourselves
with the modulating factors h j (x)eφ j (x). This offers a significant advantage, as it suggests
(see Sidi [288]) that we could at least attempt to apply the mW -transformation to all
(very) oscillatory integrals

∫∞
0 f (t) dt whose integrands are of the form

f (x) =
r∑

j=1
u j (θ j (x))Hj (x),

where u j (z) and θ j (x) are exactly as described in Definition 11.8.1, and Hj (x) are
arbitrary functions that do not oscillate as x →∞ or that may oscillate slowly, that is,
slower than eθ j (x). Note that not all such functions f (x) are in the class B̂.
Numerical results indicate that themW -transformation is as efficient on such integrals

as it is on those integrals with integrands in B̂. It was used successfully in the numerical
inversion of general Kontorovich-Lebedev transforms by Ehrenmark [74], [75], who also
provided a rigorous justification for this usage.
If we do not want to bother with the analysis of θ j (x), we can apply the variants of

the mW -transformation discussed in the preceding subsection to integrals of such f (x)
with the same effectiveness. Again, determination of the corresponding xl may be more
expensive than before.

11.9 Convergence and Stability

In this section, we consider briefly the convergence and stability of the reduced transfor-
mations we developed so far. The theory of Section 4.4 of Chapter 4 applies in general,
because the transformations of this chapter are all GREPs.
For the D̄(1)-, s D̄(1)-, D̃(1)-, W -, and mW -transformations for (very) oscillatory in-

tegrals, the theory of Chapter 9 applies with t j = x−1j throughout. For example, (i) the
D̄(1)-transformations for Fourier transforms defined in Section 11.3, (ii) all three D̄(1)-
transformations for Hankel transforms in Section 11.4, (iii) the D̃-transformations for
Hankel transforms in Section 11.5, and (iv) the W - and mW -transformations for inte-
grals of functions in the class B̂, can all be treated within the framework of Chapter 9.
In particular, Theorems 9.3.1–9.3.3, 9.4.2, and 9.4.3 hold with appropriate ψ(t) and
B(t) there. These can be identified from the form of F(xl)− I [ f ] in each case. We note
only that the diagonal sequences {D̄(1, j)

n }∞n=0, {D̃(1, j)
n }∞n=0, and {W ( j)

n }∞n=0, when γ is real
everywhere, are stable and converge. Actually, we have

lim
n→∞�( j)

n = 1 and A( j)
n − I [ f ] = O(n−µ) as n →∞ for every µ > 0,

as follows from Theorems 9.4.2 and 9.4.3. Here A( j)
n stands for D̄(1, j)

n or D̃(1, j)
n or W ( j)

n ,
depending on the method being used.
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11.10 Extension to Products of Oscillatory Functions

In this section, we show how the reduced methods can be applied to integrands that are
given as products of different oscillating functions in B̂.
As an example, let us consider f (x) = u(x)

∏s
r=1 fr (x), where

u(x) = eφ(x)h(x), φ(x) real and φ ∈ A(k), k ≥ 0 integer, h ∈ A(γ ), (11.10.1)

and

fr (x) = α(+)
r U (+)

r (x)+ α(−)
r U (−)

r (x), (11.10.2)

where α(±)
r are constants and U (±)

r (x) are of the form

U (±)
r (x) = evr (x)±iwr (x)V (±)

r (x),

vr ∈ A(kr ), wr ∈ A(mr ), kr , mr ≥ 0 integers; vr (x), wr (x) real,

V (±)
r ∈ A(δr ) for some δr . (11.10.3)

We assume that u(x), α(±)
r , and U (±)

r (x) are all known and that the polynomial parts
w̄r (x) of thewr (x) are available. In other words, ifwr (x) ∼

∑∞
i=0wri xmr−i as x →∞,

then w̄r (x) =
∑mr−1

i=0 wri xmr−i is known explicitly for each r .

(i) We now propose to compute
∫∞
0 f (t) dt by expanding the product u

∏s
r=1 fr in

terms of the U (±)
r and applying to each term in this expansion an appropriate

GREP(1). Note that there are 2s terms in this expansion and each of them is in
B(1). This approach is very inexpensive and produces very high accuracy.
To illustrate the procedure above, let us look at the case s = 2. We have

f = u
[
α
(+)
1 α

(+)
2 U (+)

1 U (+)
2 + α

(+)
1 α

(−)
2 U (+)

1 U (−)
2

+ α
(−)
1 α

(+)
2 U (−)

1 U (+)
2 + α

(−)
1 α

(−)
2 U (−)

1 U (−)
2

]
.

Each of the four terms in this summation is in B(1) since u,U (±)
1 ,U (±)

2 ∈ B(1). It is
sufficient to consider the functions f (+,±) ≡ uU (+)

1 U (±)
2 , the remaining functions

f (−,±) = uU (−)
1 U (±)

2 being similar. We have

f (+,±)(x) = e�(x)+i'(x)g(x),

with

� = φ + v1 + v2, ' = w1 ± w2, g = hV (+)
1 V (±)

2 .

Obviously, � ∈ A(K ) and ' ∈ A(M±) for some integers K ≥ 0, M± ≥ 0, and g ∈
A(γ+δ1+δ2).
Two different possibilities can occur:

(a) IfM± > 0, then f (+,±)(x) is oscillatory, andwe can apply to
∫∞
0 f (+,±)(t) dt the

D(1)- or themW -transformation with xl as the consecutive zeros of sin[w̄1(x)±
w̄2(x)] or cos[w̄1(x)± w̄2(x)]. We can also apply the variants of the mW -
transformation by choosing the xl to be the consecutive zeros of � f (+,±)(x) or
! f (+,±)(x).
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(b) IfM± = 0, then f (+,±)(x) is not oscillatory, andwe can apply to
∫∞
0 f (+,±)(t) dt

the D(1)-transformation with xl = ξecl for some ξ > 0 and c > 0.
(ii) Another method we propose is based on the observation that the expansion of

u
∏s

r=1 fr can also be expressed as the sum of 2s−1 functions, at least some of
which are in B̂. Thus, the mW -transformation and its variants can be applied to
each of these functions.
To illustrate this procedure, we turn to the previous example and write f in the

form f = G+ + G−, where

G+ = u
[
α
(+)
1 α

(+)
2 U (+)

1 U (+)
2 + α

(−)
1 α

(−)
2 U (−)

1 U (−)
2

]

and

G− = u
[
α
(+)
1 α

(−)
2 U (+)

1 U (−)
2 + α

(−)
1 α

(+)
2 U (−)

1 U (+)
2

]
.

If M± > 0, thenG± ∈ B̂with phase of oscillationw1 ± w2. In this case, we can ap-
ply themW -transformation to

∫∞
0 G±(t) dt by choosing the xl to be the consecutive

zeros of either (a) sin[w̄1(x)± w̄2(x)] or cos[w̄1(x)± w̄2(x)] or of (b) �G±(x) or
!G±(x). If M± ≤ 0, thenG± ∈ B(1) but is not oscillatory. In this case, we can apply
the D(1)-transformation to

∫∞
0 G±(t) dt .

As an example, we consider integrals of products of two Bessel functions, namely,∫∞
0 u(t)Cµ(r t)Cν(st) dt . In this example, U (±)

1 (x) = H (±)
µ (r x) and U (±)

2 (x) = H (±)
ν (sx),

where H (+)
µ (z) and H (−)

µ (z) stand for the Hankel functions of the first and second kinds,
respectively, namely, H (±)

µ (z) = Jµ(z)± iYµ(z). Thus, v1(x) = v2(x) = 0 and w̄1(x) =
r x and w̄2(x) = sx and δ1 = δ2 = −1/2. Therefore, we need to be concerned with
computation of the integrals of u(x)H (+)

µ (r x)H (+)
ν (sx), etc., by the mW -transformation.

This approach was used by Lucas [188] for computing integrals of the form∫∞
0 u(t)Jµ(r t)Jν(st) dt , which is a special case of those considered here.



12
Acceleration of Convergence of Power Series by the

d-Transformation: Rational d-Approximants

12.1 Introduction

In this chapter, we are concerned with the Sidi–Levin rational d-approximants and ef-
ficient summation of (convergent or divergent) power series

∑∞
k=1 ckz

k−1 by the d-
transformation. We assume that {cn} ∈ b(m) for some m and analyze the consequences
of this.
One of the difficulties in accelerating the convergence of power series has been the lack

of stability and acceleration near points of singularity of the functions f (z) represented
by the series. We show in this chapter via a rigorous analysis how to tackle this problem
and stabilize the acceleration process at will.
As we show in the next chapter, the results of our study of power series are useful for

Fourier series, orthogonal polynomial expansions, and other series of special functions.
Most of the treatment of the subject we give in this chapter is based on the work of

Sidi and Levin [312] and Sidi [294].

12.2 The d-Transformation on Power Series

Consider the application of the d-transformation to the power series
∑∞

k=1 ckz
k−1, where

ck satisfy the (m + 1)-term recursion relation

cn+m =
m−1∑

s=0
qs(n)cn+s, qs ∈ A(µs )

0 strictly, µs integer, s = 0, 1, . . . ,m − 1.

(12.2.1)

(This will be the case when {cn} ∈ b(m) in the sense of Definition 6.1.2.) We have the
following interesting result on the sequence {cnzn−1} :

Theorem 12.2.1 Let the sequence {cn} be as in the preceding paragraph. Then, the
sequence {an}, where an = cnzn−1, n = 1, 2, . . . , is in b(m) exactly in accordance with
Definition 6.1.2, except when z ∈ Z = {z̃1, . . . , z̃ν}, for some z̃i and 0 ≤ ν ≤ m. Actu-
ally, for z �∈ Z, there holds an =

∑m
k=1 pk(n)�kan with pk ∈ A(0)

0 , k = 1, . . . ,m.

Proof. Let us first define qm(n) ≡ −1 and rewrite (12.2.1) in the form∑m
s=0 qs(n)cn+s =

0. Multiplying this equation by zn+m−1 and invoking ck = akz−k+1 and (6.1.7), we

238
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obtain

m∑

s=0
qs(n)z

m−s
s∑

k=0

(
s

k

)

�kan = 0. (12.2.2)

Interchanging the order of the summations, we have

m∑

k=0

[ m∑

s=k

(
s

k

)

qs(n)z
m−s

]

�kan = 0. (12.2.3)

Rearranging things, we obtain an =
∑m

k=1 pk(n)�kan with

pk(n) = −
∑m

s=k

(s
k

)
qs(n)zm−s

∑m
s=0 qs(n)zm−s

≡ Nk(n)

D(n)
, k = 1, . . . ,m. (12.2.4)

We realize that, when viewed as functions of n (z being held fixed), the numerator Nk(n)
and the denominator D(n) of pk(n) in (12.2.4) have asymptotic expansions of the form

Nk(n) ∼
∞∑

i=0
rki (z)n

ρk−i and D(n) ∼
∞∑

i=0
r̂i (z)n

σ−i as n →∞, (12.2.5)

where rki (z) and r̂i (z) are polynomials in z, of degree at mostm − k andm, respectively,
and are independent of n, and

ρk = max
k≤s≤m

{µs} and σ = max
0≤s≤m

{µs}; µm = 0. (12.2.6)

Obviously, rk0(z) �≡ 0 and r̂0(z) �≡ 0 and ρk ≤ σ for each k. Therefore, Nk ∈ A(ρk )
0 strictly

provided rk0(z) �= 0 and D ∈ A(σ )
0 strictly provided r̂0(z) �= 0. Thus, as long as r̂0(z) �= 0

[note that r̂0(z) = 0 for at most m values of z], we have pk ∈ A(ik )
0 , ik ≤ ρk − σ ≤ 0;

hence, pk ∈ A(0)
0 . When z is such that r̂0(z) = 0, we have that D ∈ A(σ−1)

0 , and this may
cause an increase in ik . This completes the proof. �

Remarks.

1. One immediate consequence of Theorem 12.2.1 is that the d (m)-transformation can
be applied to the series

∑∞
k=1 ckz

k−1 with ρk = 0, k = 0, 1, . . . ,m.
2. Recall that if cn = h(n) with h ∈ A(γ )

0 for some γ , and an = cnzn−1, then {an} ∈
b(1) with an = p(n)�an, p ∈ A(0)

0 as long as z �= 1 while p ∈ A(1)
0 when z = 1. As

mentioned in Chapter 6, if |z| < 1,
∑∞

k=1 ckz
k−1 converges to a function that is

analytic for |z| < 1, and this function is singular at z = 1. Therefore, we conjecture
that the zeros of the polynomial r̂0(z) in the proof of Theorem 12.2.1 are points of
singularity of the function f (z) that is represented by

∑∞
k=1 ckz

k−1 if this function has
singularities in the finite plane. We invite the reader to verify this claim for the case
in which cn = αn/n + βn, α �= β, the function represented by

∑∞
k=1 ckz

k−1 being
−z−1 log(1− αz)+ β(1− βz)−1, with singularities at z = 1/α and z = 1/β.
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12.3 Rational Approximations from the d-Transformation

We now apply the d (m)-transformation to the infinite series
∑∞

k=1 ckz
k−1 assuming that

{cn} is as in Theorem 12.2.1 and that
∑∞

k=1 ckz
k−1 has a positive radius of convergence ρ.

Now, with an = cnzn−1, we have {an} ∈ b(m) and an =
∑m

k=1 pk(n)�kan with pk ∈ A(0)
0

for all k, by Theorem 12.2.1. Therefore, when |z| < ρ and hence
∑∞

k=1 ckz
k−1 converges,

Theorem 6.1.12 holds, and we have the asymptotic expansion

An−1 ∼ A +
m−1∑

k=0
(�kan)

∞∑

i=0

gki
ni

as n →∞, (12.3.1)

where Ar =
∑r

k=1 ak and A is the sum of
∑∞

k=1 ak . Invoking (6.1.5), we can rewrite
(12.3.1) in the form

An−1 ∼ A +
m−1∑

k=0
an+k

∞∑

i=0

g′ki
ni

as n →∞, (12.3.2)

and redefine the d (m)-transformation by the linear systems

ARl−1 = d (m, j)
n +

m∑

k=1
aRl+k−1

nk−1∑

i=0

β̄ki

Ri
l

, j ≤ l ≤ j + N ; N =
m∑

k=1
nk, (12.3.3)

where n = (n1, . . . , nm) as before and A0 ≡ 0. Also, d (m, j)
(0,... ,0) = A j for all j .

12.3.1 Rational d-Approximants

From this definition of the d (m)-transformation, we can derive the following interesting
result:

Theorem 12.3.1 Let d (m, j)
n be as defined in (12.3.3) with Rl = l + 1, l = 0, 1, . . . , that

is,

Al = d (m, j)
n +

m∑

k=1
al+k

nk−1∑

i=0

β̄ki

(l + 1)i
, l = j, j + 1, . . . , j + N . (12.3.4)

Then, d (m, j)
n ≡ d (m, j)

n (z) is of the form

d (m, j)
n (z) = u(z)

v(z)
=
∑N

i=0 λ
( j)
ni z

N−i A j+i
∑N

i=0 λ
( j)
ni z

N−i
(12.3.5)

for some constants λ( j)ni . Thus, d
(m, j)
n is a rational function in z, whose numerator and

denominator polynomials u(z) and v(z) are of degree at most j + N − 1 and N, respec-
tively.

Remark. In view of Theorem 12.3.1, we call the approximations d (m, j)
n to the sum of∑∞

k=1 akzk−1 (limit or antilimit of {Ak}) that are defined via the equations in (12.3.4)
rational d-approximants.
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Proof. Let us substitute an = cnzn−1 in (12.3.4) and multiply both sides by z j+N−l . This
results in the linear system

z j+N−l Al = z j+N−ld (m, j)
n +

m∑

k=1
cl+k

nk−1∑

i=0

β̃ki

(l + 1)i
, l = j, j + 1, . . . , j + N ,

(12.3.6)

where β̃ki = z j+N+k−1β̄ki for all k and i are the new auxiliary unknowns. Making d (m, j)
n

the last component of the vector of unknowns, the matrix of this system assumes the
form

M(z) =





M0

∣
∣
∣
∣
∣
∣
∣
∣

zN

zN−1
...
z0





 , M0 : (N + 1)× N and independent of z, (12.3.7)

and the right-hand side is the vector

[zN A j , z
N−1A j+1, . . . , z0A j+N ]

T .

The result in (12.3.5) follows if we solve (12.3.6) by Cramer’s rule and expand the
resulting numerator and denominator determinants with respect to their last columns.
For each i , we can take λ( j)ni to be the cofactor of zN−i in the last column of M(z) in
(12.3.7). �

As is clear from (12.3.5), if the λ( j)ni are known, then d (m, j)
n is known completely. The

λ
( j)
ni can be determined in a systematic way as shown next in Theorem 12.3.2. Note that

the λ( j)ni are unique up to a common multiplicative factor.

Theorem 12.3.2 Up to a common multiplicative factor, the coefficients λ( j)ni of the de-
nominator polynomial v(z) of d (m, j)

n in (12.3.5) satisfy the linear system

[M0|w]Tλ = e1, (12.3.8)

where M0 is as in (12.3.7), λ = [λ( j)n0 , λ
( j)
n1 , . . . , λ

( j)
nN ]

T , and e1 = [1, 0, . . . , 0]T , and w
is an arbitrary column vector for which [M0|w] is nonsingular.

Proof. Since λ( j)ni can be taken as the cofactor of zN−i in the last column of the matrix
M(z), we have that λ satisfies the N × (N + 1) homogeneous system MT

0 λ = 0, namely,

N∑

i=0
λ
( j)
ni c j+k+i/( j + i + 1)r = 0, 0 ≤ r ≤ nk − 1, 1 ≤ k ≤ m. (12.3.9)

Appending to this system the scaling wTλ = 1, we obtain (12.3.8). �

12.3.2 Closed-Form Expressions for m = 1

Using the results of Section 6.3, we can give closed-form expressions for d (m, j)
n (z) when

m = 1. The d (1)-transformation now becomes the Levin L-transformation and d (1, j)
n (z)
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becomes L( j)
n (z). By (6.3.2) and (6.3.3), we have

L( j)
n (z) =

∑n
i=0 λ

( j)
ni z

n−i A j+i
∑n

i=0 λ
( j)
ni z

n−i
; λ

( j)
ni = (−1)i

(
n

i

)
( j + i + 1)n−1

c j+i+1
. (12.3.10)

A similar expression can be given with the d (1)-transformation replaced by the Sidi
S-transformation. By (6.3.4) and (6.3.5), we have

S ( j)
n (z) =

∑n
i=0 λ

( j)
ni z

n−i A j+i
∑n

i=0 λ
( j)
ni z

n−i
; λ

( j)
ni = (−1)i

(
n

i

)
( j + i + 1)n−1

c j+i+1
. (12.3.11)

12.4 Algebraic Properties of Rational d-Approximants

The rational d-approximants of the preceding section have a few interesting algebraic
properties to which we now turn.

12.4.1 Padé-like Properties

Theorem 12.4.1 Let d (m, j)
n be the rational function defined via (12.3.4). Then d (m, j)

(1,... ,1) is
the [ j + m − 1/m] Padé approximant from the power series

∑∞
k=1 ckz

k−1.

Proof. Letting n1 = · · · = nm = 1 in (12.3.4), the latter reduces to

Al = d (m, j)
(1,... ,1) +

m∑

k=1
β̄kal+k, l = j, j + 1, . . . , j + m, (12.4.1)

and the result follows from the definition of the Padé approximants that are considered
later. �

Our next result concerns not only the rational function d (m, j)
n (z) but all those rational

functions that are of the general form given in (12.3.5). Because the proof of this result
is straightforward, we leave it to the reader.

Theorem 12.4.2 Let A0 = 0 and Ar =
∑r

k=1 ckz
k−1, r = 1, 2, . . . , and let R(z) be a

rational function of the form

R(z) = U (z)

V (z)
=
∑s

i=0 µi zs−i Aq+i∑s
i=0 µi zs−i

. (12.4.2)

Then

V (z)
∞∑

k=1
ckz

k−1 −U (z) = O(zq+s) as z → 0. (12.4.3)

If µs �= 0 in addition, then

∞∑

k=1
ckz

k−1 − R(z) = O(zq+s) as z → 0. (12.4.4)
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It is clear from (12.3.5) that Theorem 12.4.2 applies with q = j, s = N , and
R(z) = d (m, j)

n . A better result is possible, again with the help of Theorem 12.4.2, and this
is achieved in Theorem 12.4.3. The improved result of this theorem exhibits a Padé-like
property of d (m, j)

n . To help understand this property, we pause to give a one-sentence def-
inition of Padé approximants: the [M/N ] Padé approximant fM,N (z) to the formal power
series f (z) :=∑∞

k=1 ckz
k−1, when it exists, is the rational functionU (z)/V (z), withU (z)

and V (z) being polynomials of degree at most M and N , respectively, with V (0) = 1,
such that f (z)− fM,N (z) = O(zM+N+1) as z → 0. As we show later, fM,N (z) is deter-
mined (uniquely) by the terms c1, c2, . . . , cM+N+1 of f (z). Thus, all Padé approximants
R(z) to f (z) that are defined by the terms c1, c2, . . . , cL satisfy f (z)− R(z) = O(zL )
as z → 0. Precisely this is the Padé-like property of d (m, j)

n we are alluding to, which we
prove next. Before we do that, we want to point out that Padé approximants, like rational
d-approximants, are of the form of R(z) in (12.4.2) with appropriate q and s.

Theorem 12.4.3 Let d (m, j)
n be as in Theorem 12.3.1. Then

d (m, j)
n (z) =

∑N
i=0 λ

( j)
ni z

N−i A j+m+i
∑N

i=0 λ
( j)
ni z

N−i
, (12.4.5)

withλ( j)ni exactly as in (12.3.5) and as described in the proof of Theorem 12.3.1. Therefore,

v(z)
∞∑

k=1
ckz

k−1 − u(z) = O(z j+N+m) as z → 0. (12.4.6)

If λ( j)nN �= 0 in addition, then

∞∑

k=1
ckz

k−1 − d (m, j)
n (z) = O(z j+N+m) as z → 0. (12.4.7)

Proof. We begin with the linear system in (12.3.4). If we add the terms al+1, . . . , al+m

to both sides of (12.3.4), we obtain the system

Al+m = d (m, j)
n +

m∑

k=1
al+k

nk−1∑

i=0

β̄
′
ki

(l + 1)i
, l = j, j + 1, . . . , j + N , (12.4.8)

where β̄ ′ki = β̄ki , i �= 0, and β̄
′
k0 = β̄k0 + 1, k = 1, . . . ,m, and d (m, j)

n remains un-
changed. As a result, the system (12.3.6) now becomes

z j+N−l Al+m = z j+N−ld (m, j)
n +

m∑

k=1
cl+k

nk−1∑

i=0

β̃ki

(l + 1)i
, l = j, j + 1, . . . , j + N ,

(12.4.9)

where β̃ki = z j+N+k−1β̄ ′ki for all k and i are the new auxiliary unknowns, and (12.3.5)
becomes (12.4.5) with λ( j)ni exactly as in (12.3.5) and as described in the proof of Theo-
rem 12.3.1.
With (12.4.5) available, we now apply Theorem 12.4.2 to d (m, j)

n with s = N and
q = j + m. �
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The reader may be led to think that the two expressions for d (m, j)
n (z) in (12.3.5) and

(12.4.5) are contradictory. As we showed in the proof of Theorem 12.4.3, they are not.
We used (12.3.5) to conclude that the numerator and denominator polynomials u(z) and
v(z) of d (m, j)

n (z) have degrees at most j + N − 1 and N , respectively.We used (12.4.5) to
conclude that d (m, j)

n , which is obtained from the terms ck, 1 ≤ k ≤ j + N + m, satisfies
(12.4.6) and (12.4.7), which are Padé-like properties of d ( j,m)

n .

12.4.2 Recursive Computation by the W(m)-Algorithm

Because the approximation d (m, j)
n satisfies the linear system in (12.3.6), the W(m)-

algorithm can be used to compute the coefficients λ( j)ni of the denominator polynomials
v(z) recursively, as has been shown in Ford and Sidi [87]. [The coefficients of the nu-
merator polynomial u(z) can then be determined by (12.3.5) in Theorem 12.3.1.]
Let us first write the equations in (12.3.6) in the form

z−l Al = z−ld (m, j)
n +

m∑

k=1
cl+k

nk−1∑

i=0

β̂ki

(l + 1)i
, l = j, j + 1, . . . , j + N . (12.4.10)

For each l, let tl = 1/(l + 1), and define the gk(l) = ϕk(tl) in the normal ordering
through [cf. (7.3.3)]

gk(l) = ϕk(tl) = cl+k, k = 1, . . . ,m,

gk(l) = tl gk−m(l), k = m + 1,m + 2, . . . . (12.4.11)

Defining G( j)
p , D( j)

p , f ( j)p (b), andψ ( j)
p (b) as in Section 3.3 of Chapter 3, with the present

gk(l), we realize that d
(m, j)
n is given by

d (m, j)
n = ψ

( j)
N (ξ )

ψ
( j)
N (η)

, (12.4.12)

where

nk = �(N − k)/m�, k = 1, . . . ,m, and N =
m∑

k=1
nk, (12.4.13)

and

ξ (l) = z−l Al and η(l) = z−l . (12.4.14)

Sinceψ ( j)
N (η) = f ( j)N (η)/G( j)

N+1 and f ( j)N (η) is a polynomial in z−1 of degree N andG( j)
N+1

is independent of z, we have that

ψ
( j)
N (η) =

N∑

i=0
κ
( j)
Ni z

− j−i , (12.4.15)

where κ ( j)Ni = λ
( j)
ni , i = 0, 1, . . . , N , up to scaling. By the fact that

ψ ( j)
p (η) = ψ

( j+1)
p−1 (η)− ψ

( j)
p−1(η)

D( j)
p

, (12.4.16)
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with D( j)
p independent of z, we see that the κ ( j)pi can be computed recursively from

κ
( j)
pi =

κ
( j+1)
p−1,i−1 − κ

( j)
p−1,i

D( j)
p

, i = 0, 1, . . . , p, (12.4.17)

with κ ( j)pi = 0 when i < 0 and i > p. It is clear from (12.4.17) that the W(m)-algorithm
is used only to obtain the D( j)

p .

12.5 Prediction Properties of Rational d-Approximants

So far we have used extrapolation methods to approximate (or predict) the limit or
antilimit S of a given sequence {Sn} from a finite number of the Sn . We now show
how they can be used to predict the terms Sr+1, Sr+2, . . . , when S1, S2, . . . , Sr are
given. An approach to the solution of this problem was first formulated in Gilewicz
[98], where the Maclaurin expansion of a Padé approximant fM,N (z) from

∑∞
k=0 ckz

k−1

is used to approximate the coefficients ck , k ≥ M + N + 2. [Recall that fM,N (z) is
determined only by ck , k = 1, . . . ,M + N + 1, and that fM,N (z) =

∑M+N+1
k=1 ckzk−1 +∑∞

k=M+N+2 ĉk z
k−1.] The approach we describe here with the help of the rational d-

approximants is valid for all sequence transformations and was first given by Sidi and
Levin [312], [313]. It was applied recently by Weniger [355] to some known sequence
transformations that naturally produce rational approximations when applied to partial
sums of power series. (For different approaches to the issue of prediction, see Brezinski
and Redivo Zaglia [41, pp. 390] and Vekemans [345].)
Let c1 = S1, ck = Sk − Sk−1, k = 2, 3, . . . , and assume that {cn} is as in Section

12.2. By Theorem 12.2.1, we have that {cnzn−1} ∈ b(m), so we can apply the d (m)-
transformation to the sequence {Ar }, where Ar =

∑r
k=1 ckz

k−1, to obtain the rational
d-approximant R( j)

N (z) ≡ d (m, j)
n , with n = (n1, . . . , nm) and N =∑m

k=1 nk as before.
Because R( j)

N (z) is a good approximation to the sum of
∑∞

k=1 ckz
k−1, its Maclaurin

expansion
∑∞

k=1 ĉk z
k−1 is likely to be close to

∑∞
k=1 ckz

k−1 for small z. Indeed, from
Theorem12.4.3,we already know that ĉk = ck, k = 1, 2, . . . , k̃, where k̃ = j + N + m.
Thus,

∞∑

k=1
ckz

k−1 − R( j)
N (z) =

∞∑

k=k̃+1
δk z

k−1; δk = ck − ĉk, k ≥ k̃ + 1, (12.5.1)

and we expect at least the first few of the δk, k ≥ k̃ + 1, to be very small. In case this
happens, we will have that for the first few values of k ≥ k̃ + 1, ĉk will be very close to
the corresponding ck , and hence Sk ≈ Sk̃ +

∑k
i=k̃+1 ĉi . Precisely this is the prediction

property we alluded to above.
For a theoretical justification of the preceding procedure, see Sidi and Levin [312],

where the prediction properties of the rational d (m)- and Padé approximants are compared
by a nontrivial example. For a thorough and rigorous treatment of the case in which
m = 1, see Sidi and Levin [313], who provide precise rates of convergence of the ĉk
to the corresponding ck , along with convincing theoretical and numerical examples.
The results of [313] clearly show that ĉk → ck very quickly under both Process I and
Process II.
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Finally, it is clear that the rational function R( j)
N (z) can be replaced by any other

approximation (not necessarily rational) that has Padé-like properties.

12.6 Approximation of Singular Points

Assume that the series
∑∞

k=1 ckz
k−1 has a positive radius of convergence ρ so that it is the

Maclaurin expansion of a function f (z) that is analytic for |z| < ρ. In caseρ is finite, f (z)
has singularities on |z| = ρ. It may have additional singularities for |z| > ρ. It has been
observed numerically that some or all of the poles of the rational functions obtained by
applying sequence transformations to the power series of f (z) serve as approximations
to the points of singularity of f (z). This is so for rational d-approximants and Padé
approximants as well. Sidi and Levin [312] use the poles of the rational d (m)- and Padé
approximants from the power series of a function f (z) that has both polar and branch
singularities to approximate these singular points.
In the case of Padé approximants, the generalized Koenig theorem, which is discussed

in Chapter 17, provides a theoretical justification of this use.
To clarify this point, we consider two examples of {cn} ∈ b(1) under Process I. In

particular, we consider the approximations d (1, j)
1 (which are also Padé approximants)

from
∑∞

k=1 ckz
k−1 that are given by

d (1, j)
1 (z) = c j+1zA j − c j A j+1

c j+1z − c j
.

Thus, each d (1, j)
1 (z) has one simple pole at ẑ( j) = c j/c j+1.

Example 12.6.1 When cn = h(n) ∈ A(γ )
0 strictly, γ �= 0, we have {cn} ∈ b(1). As men-

tioned earlier, the series
∑∞

k=1 ckz
k−1 converges for |z| < 1 and represents a function

analytic for |z| < 1 with a singularity at z = 1. We have

c j

c j+1
= 1− γ j−1 + O( j−2) as j →∞.

That is, ẑ( j), the pole of d (1, j)
1 (z), satisfies lim j→∞ ẑ( j) = 1, thus verifying the claim we

have made.

Example 12.6.2 When cn = (n!)−µh(n), where µ is a positive integer and h ∈ A(γ )
0

strictly for some γ , we have {cn} ∈ b(1). In this case, the series
∑∞

k=1 ckz
k−1 converges

for all z and represents a function that is analytic everywhere with singularities only at
infinity. We have

c j

c j+1
∼ jµ as j →∞.

That is, ẑ( j), the pole of d (1, j)
1 (z), satisfies lim j→∞ ẑ( j) = ∞, verifying the claim we have

made.
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12.7 Efficient Application of the d-Transformation to Power Series with APS

Let the infinite series
∑∞

k=1 ckz
k−1 have a positive but finite radius of convergence. As

mentioned earlier, this series is theMaclaurin expansion of a function f (z) that is analytic
for |z| < ρ and has singularities for some z with |z| = ρ and possibly with |z| > ρ as
well.
When a suitable convergence acceleration method is applied directly to the se-

quence of the partial sums Ar =
∑r

k=1 ckz
k−1, accurate approximants to f (z) can be

obtained as long as z is not close to a singularity of f (z). If z is close to a singular-
ity, however, we are likely to face severe stability and accuracy problems in applying
convergence acceleration. In case the d (m)-transformation is applicable, the following
strategy involving APS (discussed in Section 10.3) has been observed to be very ef-
fective in coping with the problems of stability and accuracy: (i) For z not close to a
singularity, choose Rl = l + 1, l = 0, 1, . . . . (ii) For z close to a singularity, choose
Rl = κ(l + 1), l = 0, 1, . . . , where κ is a positive integer ≥ 2; the closer z is to a sin-
gularity, the larger κ should be. The d (1)-transformation with APS was used successfully
by Hasegawa [126] for accelerating the convergence of some slowly converging power
series that arise in connection with a numerical quadrature problem.
This strategy is not ad hoc by any means, and its theoretical justification has been

given in [294, Theorems 4.3 and 4.4] for the case in which {cn} ∈ b(1) and
∑∞

k=1 ckz
k−1

has a positive but finite radius of convergence so that f (z), the limit or antilimit of∑∞
k=1 ckz

k−1, has a singularity as in Example 12.6.1. Recall that the sequence of partial
sums of such a series is linear. We now present the mathematical treatment of APS that
was given by Sidi [294]. The next theorem combines Theorems 4.2–4.4 of [294].

Theorem 12.7.1 Let cn = λnh(n), where λ is some scalar and h ∈ A(γ )
0 for some γ , and

λ and γ may be complex in general. Let z be such that |λz| ≤ 1 and λz �= 1. Denote by
f (z) the limit or antilimit of

∑∞
k=1 ckz

k−1. Then,

An = f (z)+ cnz
ng(n), g ∈ A(0)

0 strictly. (12.7.1)

If we apply the d (1)-transformation to the power series
∑∞

k=1 ckz
k−1 with Rl = κ(l +

1), l = 0, 1, . . . , where κ is some positive integer, then

d (1, j)
n − f (z) = O(cκ j z

κ j j−2n) as j →∞, (12.7.2)

an asymptotically optimal version of which reads

d (1, j)
n − f (z) ∼ κ−n−µ(µ+ 1)n

(1− ξ )n
gn+µcκ( j+1)zκ( j+1) j−2n−µ as j →∞, (12.7.3)

where gn+µ is the first nonzero gi with i ≥ n in the asymptotic expansion g(n) ∼∑∞
i=0 gin

−i as n →∞, and

ξ = (λz)−κ , (12.7.4)

and

�( j)
n ∼

(
1+ |ξ |
|1− ξ |

)n

as j →∞, (12.7.5)
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provided, of course, that ξ �= 1. [Here d (1, j)
n is the solution to the equations ARl =

d (1, j)
n + cRl z

Rl
∑n−1

i=0 β̄ i/Ri
l , l = j, j + 1, . . . , j + N .]

Proof. The validity of (12.7.1) is already a familiar fact that follows fromTheorem 6.7.2.
Because cnzn = (λz)nh(n) = en log(λz)h(n), (12.7.1) can be rewritten in the form

A(t) = A + ϕ(t)B(t), where t = n−1, A(t)↔ An, ϕ(t) = eu(t)tδH (t) with u(t) =
log(λz)/t, δ = −γ, H (t)↔ n−γ h(n), and B(t)↔ g(n).
We also know that applying the d-transformation is the same as applying GREP with

tl = 1/Rl .With Rl = κ(l + 1), these tl satisfy (9.1.4)with c = 1/κ and p = q = 1 there.
From these observations, it is clear that Theorem 9.3.1 applies with ξ =

exp(−κ log(λz)) = (λz)−κ , and this results in (12.7.2)–(12.7.5). �

From Theorem 12.7.1, it is clear that the d (1)-transformation accelerates the conver-
gence of the series

∑∞
k=1 ckz

k−1 :

max
0≤i≤n

∣
∣
∣
∣
d (1, j)
n − f (z)

Aκ( j+i) − f (z)

∣
∣
∣
∣ = O( j−2n) as j →∞.

We now turn to the explanation of why APS with the choice Rl = κ(l + 1) guarantees
more stability and accuracy in the application of the d (1)-transformation to the preceding
power series.
As we already know, the numerical stability of d (1, j)

n is determined by �( j)
n . As �( j)

n

becomes large, d (1, j)
n becomes less stable. Therefore, we should aim at keeping �

( j)
n

close to 1, its lowest possible value. Now, by (12.7.5), lim j→∞ �
( j)
n is proportional to

|1− ξ |−n , which, from ξ = (λz)−κ , is unbounded as z → λ−1, the point of singularity
of f (z). Thus, if we keep κ fixed (κ = 1 say) and let z get close to λ−1, then ξ gets
close to 1, and this causes numerical instabilities in acceleration. On the other hand, if
we increase κ , we cause ξ = (λz)−κ to separate from 1 in modulus and/or in phase so
that |1− ξ | increases, thus causing �( j)

n to stay bounded. This provides the theoretical
justification for the introduction of the integer κ in the choice of the Rl . We can even see
that, as z approaches the point of singularity λ−1, if we keep ξ = (λz)−κ approximately
fixed by increasing κ gradually, we can maintain an almost fixed and small value for
�
( j)
n .
We now look at the error in d (1, j)

n which, by (12.7.3), can be written in the form
d (1, j)
n − f (z) ∼ Kncκ( j+1)zκ( j+1) j−2n as j →∞. The size of Kn gives a good indica-
tion of whether the acceleration is effective. Surprisingly, Kn , just as lim j→∞ �

( j)
n , is

proportional to |1− ξ |−n , as is seen from (12.7.3). Again, when z is close to λ−1, the
point of singularity of f (z), we can cause Kn to stay bounded by increasing κ . It is thus
interesting that, by forcing the acceleration process to become stable numerically, we
are also preserving the quality of the theoretical error d (1, j)

n − f (z).
If λz is real and negative, then it is enough to take κ = 1. This produces excellent

results and �( j)
n ∼ 1 as j →∞. If λz is real or complex and very close to 1, then we

need to take larger values of κ . In case {cn} is as in Theorem 12.7.1, we can use cn+1/cn
as an estimate of λ, because limn→∞ cn+1/cn = λ.On this basis, we can take (cn+1/cn)z
to be an estimate of λz and decide on an appropriate value for κ .
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Table 12.7.1: Effect of APS with the d (1)-transformation on the series
∑∞

k=1 z
k−1/k.

The relevant Rl are chosen as Rl = κ(l + 1). Here, Ēn(z) = |d̄ (1,0)
n (z)− f (z)|,

and the d̄ (1, j)
n (z) are the computed d (1, j)

n (z). Computations have been
done in quadruple-precision arithmetic

s z Ēn(z) “smallest” error Ē28(z) with κ = 1 Ē28(z) with κ = s

1 0.5 4.97D − 30 (n = 28) 4.97D − 30 4.97D − 30
2 0.51/2 1.39D − 25 (n = 35) 5.11D − 21 3.26D − 31
3 0.51/3 5.42D − 23 (n = 38) 4.70D − 17 4.79D − 31
4 0.51/4 1.41D − 21 (n = 41) 1.02D − 14 5.74D − 30
5 0.51/5 1.31D − 19 (n = 43) 3.91D − 13 1.59D − 30
6 0.51/6 1.69D − 18 (n = 43) 5.72D − 12 2.60D − 30
7 0.51/7 1.94D − 17 (n = 44) 4.58D − 11 4.72D − 30

We end this section by mentioning that we can replace the integer κ by an arbitrary
real number ≥ 1, and change Rl = κ(l + 1), l = 0, 1, . . . , to

Rl = �κ(l + 1)�, l = 0, 1, . . . , (12.7.6)

[cf. (10.2.2)]. It is easy to show that, with κ ≥ 1, there holds R0 < R1 < R2 < · · · ,
and Rl ∼ κl as l →∞. Even though Theorem 12.7.1 does not apply to this case, the
numerical results obtained by the d-transformation with such values of κ appear to be
just as good as those obtained with integer values.

Example 12.7.2 We illustrate the advantage of APS by applying it to the power se-
ries

∑∞
k=1 z

k−1/k whose sum is f (z) = −z−1 log(1− z) when |z| ≤ 1, z �= 1. The d (1)-
transformation can be used in summing this series because {1/n} ∈ b(1). Now, f (z) has
a singularity at z = 1. Thus, as z approaches 1 it becomes difficult to preserve numerical
stability and good convergence if the d (1)-transformation is used with Rl = l + 1. Use of
APS, however, improves things substantially, precisely as explained before. We denote
by d (1, j)

n (z) also the d (1, j)
n with APS.

In Table 12.7.1, we present the results obtained for z = 0.51/s , s = 1, 2, . . . .The com-
putations have been done in quadruple-precision arithmetic. Let us denote the computed
d (1, j)
n (z) by d̄ (1, j)

n (z) and set Ēn(z) = |d̄ (1,0)
n (z)− f (z)|. Then, the d̄ (1,0)

n (z) associatedwith
the Ēn(z) in the third column seem to have the highest accuracy when κ = 1 in APS. The
results of the third and fifth columns together clearly show that, as z approaches 1, the
quality of both d (1,0)

n (z) and d̄ (1,0)
n (z), with n fixed or otherwise, declines. The results of

the last column, on the other hand, verify the claim that, by applying APS with κ chosen
such that zκ remains almost fixed, the quality of d (1,0)

n (z), with n fixed, is preserved.
In fact, the d̄ (1,0)

28 (0.51/s) with κ = s turn out to be almost the best approximations in
quadruple-precision arithmetic and are of the same size for all s.

12.8 The d-Transformation on Factorial Series

Our next result concerns the application of the d-transformation to infinite power series
whose partial sums form factorial sequences. This result essentially forms part (iii) of
Theorem 19.2.3, and Theorem 6.7.2 plays an important role in its proof.
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Table 12.9.1: “Smallest” errors in d (m,0)
n (z), n = (ν, . . . , ν), and ε(0)2s (z) = fs,s(z) for

the functions f r (z) with z on the circles of convergence. The first m(ν + 1) of the
coefficients ck are used in constructing d (m,0)

(ν,... ,ν)(z), and 2s + 1 coefficients are used in
constructing ε(0)2s (z). Computations have been done in quadruple-precision arithmetic

z = eiπ/6 |d (1,0)
n (z)− f 1(z)| = 1.15D − 24 (ν = 42) |ε(0)160(z)− f 1(z)| = 5.60D − 34

z = 1
2 e

iπ/6 |d (2,0)
n (z)− f 2(z)| = 1.96D − 33 (ν = 23) |ε(0)26 (z)− f 2(z)| = 4.82D − 14

z = 1
3 e

iπ/6 |d (4,0)
n (z)− f 4(z)| = 5.54D − 33 (ν = 20) |ε(0)26 (z)− f 4(z)| = 1.11D − 09

Theorem 12.8.1 Let cn = [(n − 1)!]−rλnh(n), where r is a positive integer, λ is some
scalar, and h ∈ A(γ )

0 for some γ , and λ and γ may be complex in general. Denote by
f (z) the limit of

∑∞
k=1 ckz

k−1. Then

An = f (z)+ n−r cnz
ng(n), g ∈ A(0)

0 strictly. (12.8.1)

If we apply the d (1)-transformation to the power series
∑∞

k=1 ckz
k−1 with Rl = l + 1,

then

d (1, j)
n − f (z) =

{
O(a j+n+1 j−2n) as j →∞, n ≥ r + 1,
O(a j+n+1 j−r−1) as j →∞, n < r + 1,

(12.8.2)

and

�( j)
n ∼ 1 as j →∞. (12.8.3)

The d (1)-transformation of this theorem is nothing but the L-transformation, as men-
tioned earlier.

12.9 Numerical Examples

In this section, we illustrate the effectiveness of the d-transformation in accelerating
the convergence of power series f (z) :=∑∞

k=1 ckz
k−1 such that {ck} ∈ b(m) for various

values of m. We compare the results obtained from the d-transformation with those
obtained from the Padé table. In particular, we compare the sequences {d (m,0)

(ν,... ,ν)(z)}∞ν=0
with the sequences { fN ,N (z)}∞N=0 of Padé approximants that have the best convergence
properties for all practical purposes. We have computed the d (m,0)

(ν,... ,ν)(z) with the help
of the computer code given in Appendix I after modifying the latter to accommodate
complex arithmetic. Thus, the equations that define the d (m,0)

(ν,... ,ν)(z) are

Al = d (m,0)
(ν,... ,ν)(z)+

m∑

k=1
lk�k−1al

ν−1∑

i=0

β̄ki

li
, l = 1, 2, . . . ,mν + 1.

Here, ak = ckzk−1 for all k, as before. The fN ,N (z) have been computed via the ε-
algorithm of Wynn to which we come in Chapters 16 and 17. [We mention only that
the quantities ε( j)k generated by the ε-algorithm on the sequence of the partial sums
of
∑∞

k=1 ckz
k−1 are related to the Padé table via ε( j)2s = f j+s,s(z).] In other words, we
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Table 12.9.2: “Smallest” errors in d (m,0)
n (z), n = (ν, . . . , ν), and ε(0)2s (z) = fs,s(z) for

the functions f r (z) with z outside the circles of convergence. The first m(ν + 1) of the
coefficients ck are used in constructing d (m,0)

(ν,... ,ν)(z), and 2s + 1 coefficients are used in
constructing ε(0)2s (z). Computations have been done in quadruple-precision arithmetic

z = 3
2 e

iπ/6 |d (1,0)
n (z)− f 1(z)| = 6.15D − 18 (ν = 44) |ε(0)200(z)− f 1(z)| = 4.25D − 20

z = 3
4 e

iπ/6 |d (2,0)
n (z)− f 2(z)| = 7.49D − 27 (ν = 26) |ε(0)26 (z)− f 2(z)| = 1.58D − 09

z = 1
2 e

iπ/6 |d (4,0)
n (z)− f 4(z)| = 1.62D − 22 (ν = 20) |ε(0)26 (z)− f 4(z)| = 1.48D − 06

have not computed our approximations explicitly as rational functions. To have a good
comparative picture, all our computations were done in quadruple-precision arithmetic.
As our test cases, we chose the following three series:

f 1(z) :=
∞∑

k=1
zk−1/k

f 2(z) :=
∞∑

k=1
[1− (−2)k]zk−1/k,

f 4(z) :=
∞∑

k=1
[1− (−2)k + (3i)k − (−3i)k]zk−1/k.

The series f 1(z), f 2(z), and f 4(z) converge for |z| < ρ, where ρ = 1, ρ = 1/2, and
ρ = 1/3, respectively, and represent functions that are analytic for |z| < ρ. Denoting
these functions by f 1(z), f 2(z), and f 4(z) as well, we have specifically

f 1(z) = −z−1 log(1− z), |z| < 1,

f 2(z) = z−1[− log(1− z)+ log(1+ 2z)], |z| < 1/2,

f 4(z) = z−1[− log(1− z)+ log(1+ 2z)− log(1− 3iz)+ log(1+ 3iz)], |z| < 1/3.

In addition, each series converges also when |z| = ρ, except when z is a branch point of
the corresponding limit function. The branch points are at z = 1 for f 1(z), at z = 1,−1/2
for f 2(z), and at z = 1,−1/2,±i/3 for f 4(z).
As {ck} is in b(1) for f 1(z), in b(2) for f 2(z), and in b(4) for f 4(z), we can apply the d (1)-,

d (2)-, and d (4)-transformations to approximate the sums of these series when |z| ≤ ρ but
z is not a branch point.
Numerical experiments suggest that both the d-approximants and the Padé approx-

imants continue the functions f r (z) analytically outside the circles of convergence of
their corresponding power series f r (z). The functions f r (z) are defined via the principal
values of the logarithms log(1− αz) involved. [The principal value of the logarithm of
ζ is given as log ζ = log |ζ | + i arg ζ , and−π < arg ζ ≤ π . Therefore, log(1− αz) has
its branch cut along the ray (α−1,∞e−i argα).] For the series f 1(z), this observation is
consistent with the theory of Padé approximants from Stieltjes series, a topic we discuss
in Chapter 17. It is consistent also with the findings of Example 4.1.8 and Theorem 6.8.8.
In Table 12.9.1, we present the “best” numerical results obtained from the d-

transformation and the ε-algorithm with z on the circles of convergence. The partial
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Table 12.9.3: “Smallest” errors in d (m,0)
n (z), n = (ν, . . . , ν), for

the functions f r (z) with z on the circles of convergence and close
to a branch point, with and without APS. Here Rl = κ(l + 1).
The first κ(mν + 1)+ m − 1 of the coefficients ck are used in

constructing d (m,0)
(ν,... ,ν)(z). Computations have been done

in quadruple-precision arithmetic

z = ei 0.05π |d (1,0)
n (z)− f 1(z)| = 1.67D − 16 (κ = 1, ν = 48)

|d (1,0)
n (z)− f 1(z)| = 2.88D − 27 (κ = 5, ν = 37)

z = 1
2 e

i 0.95π |d (2,0)
n (z)− f 2(z)| = 9.85D − 19 (κ = 1, ν = 37)

|d (2,0)
n (z)− f 2(z)| = 6.99D − 28 (κ = 9, ν = 100)

z = 1
3 e

i 0.45π |d (4,0)
n (z)− f 4(z)| = 8.23D − 19 (κ = 1, ν = 33)

|d (4,0)
n (z)− f 4(z)| = 8.86D − 29 (κ = 3, ν = 39)

sums converge extremely slowly for such z. The ε-algorithm, although very effective for
f 1(z), appears to suffer from stability problems in the case of f 2(z) and f 4(z).
As Table 12.9.1 shows, the best result that can be obtained from the d (1)-transformation

for f 1(z) with z = eiπ/6 has 24 correct digits. By using APS with Rl = 3(l + 1), we can
achieve almost machine accuracy; in fact, |d (1,0)

33 (z)− f 1(z)| = 3.15× 10−32 for this z,
and the number of terms used for this is 102.
Table 12.9.2 shows results obtained for z outside the circles of convergence. As we

increase ν, the results deteriorate. The reason is that the partial sums diverge quickly,
and hence the floating-point errors in their computation diverge as well.
From both Table 12.9.1 and Table 12.9.2, the d-transformations appear to be more

effective than the Padé approximants for these examples.
Finally, in Table 12.9.3, we compare results obtained from the d-transformation with

and without APS when z is on the circles of convergence and very close to a branch
point. Again, the partial sums converge extremely slowly. We denote the approximations
d (m, j)
n with APS also d (m, j)

n (z).
For further examples, we refer the reader to Sidi and Levin [312].



13
Acceleration of Convergence of Fourier and Generalized
Fourier Series by the d-Transformation: The Complex

Series Approach with APS

13.1 Introduction

In this chapter, we extend the treatment we gave to power series in the preceding chapter
to Fourier series and their generalizations, whether convergent or divergent. In particular,
we are concernedwith Fourier cosine and sine series, orthogonal polynomial expansions,
series that arise fromSturm–Liouville problems, such as Fourier–Bessel series, and other
general special function series.
Several convergence acceleration methods have been used on such series, with limited

success. An immediate problem many of these methods face is that they do not produce
any acceleration when applied to Fourier and generalized Fourier series. The transforma-
tions of Euler and of Shanks discussed in the following chapters and the d-transformation
are exceptions. See the review paper by Smith and Ford [318] and the paper by Levin
and Sidi [165]. With those methods that do produce acceleration, another problem one
faces in working with such series is the lack of stability and acceleration near points of
singularity of the functions that serve as limits or antilimits of these series. Recall that
the same problem occurs in dealing with power series.
In this chapter, we show how the d-transformation can be used effectively to accelerate

the convergence of these series. The approach we are about to propose has two main
ingredients that can be applied also with some of the other sequence transformations.
(This subject is considered in detail later.) The first ingredient involves the introduction
of what we call functions of the second kind. This decreases the cost of acceleration to
half of what it would be if extrapolation were applied to the original series. The second
ingredient involves the use of APS with Rl = κ(l + 1), where κ > 1 is an integer, near
points of singularity, as was done in the case of power series in the preceding chapter.
[We can also use APS by letting Rl = �κ(l + 1)�, where κ > 1 and is not an integer
necessarily, as we suggested at the end Section 12.7.]
The contents of this chapter are based on the paper by Sidi [294]. As the approach

we describe here has been illustrated with several numerical examples [294], we do not
include any examples here, and refer the reader to Sidi [294]. See also the numerical
examples given by Levin and Sidi [165, Section 7] that are precisely of the type we treat
here.

253
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13.2 Introducing Functions of Second Kind

13.2.1 General Background

Assume we want to accelerate the convergence of an infinite series F(x) given in the
form

F(x) :=
∞∑

k=1
[bkφk(x)+ ckψk(x)] , (13.2.1)

where the functions φn(x) and ψn(x) satisfy

ρ±n (x) ≡ φn(x)± iψn(x) = e±inωx g±n (x), (13.2.2)

ω being some fixed real positive constant, and

g±n (x) ∼ nε
∞∑

j=0
δ±j (x)n

− j as n →∞, (13.2.3)

for some fixed ε that can be complex in general. (Here i = √−1 is the imaginary unit,
as usual.) In other words, g+n (x) and g−n (x), as functions of n, are in A

(ε)
0 .

From (13.2.2) and (13.2.3) and Example 6.1.11, it is clear that {ρ±n (x)} ∈ b(1). By the
fact that

φn(x) = 1

2

[
ρ+n (x)+ ρ−n (x)

]
and ψn(x) = 1

2i

[
ρ+n (x)− ρ−n (x)

]
, (13.2.4)

and by Theorem 6.8.7, we also have that {φn(x)} ∈ b(2) and {ψn(x)} ∈ b(2) exactly in
accordance with Definition 6.1.2, as long as eiωx �= ±1.

The simplest and most widely treated members of the series above are the classical
Fourier series

F(x) :=
∞∑

k=0
(bk cos kωx + ck sin kωx) ,

for which φn(x) = cos nωx and ψn(x) = sin nωx , so that ρ±n (x) = e±inωx and hence
g±n (x) ≡ 1, n = 0, 1, . . . .More examples are provided in the next section.
In general, φn(x) and ψn(x) may be (some linear combinations of) the nth eigenfunc-

tion of a Sturm–Liouville problem and the corresponding second linearly independent
solution of the relevant O.D.E., that is, the corresponding function of the second kind. In
most cases of interest, cn = 0, n = 1, 2, . . . , so that F(x) :=∑∞

k=1 bkφk(x).

13.2.2 Complex Series Approach

The approach we propose for accelerating the convergence of the series F(x), assuming
that the coefficients bn and cn are known, is as follows:

1. Define the series B±(x) and C±(x) by

B±(x) :=
∞∑

k=1
bkρ

±
k (x) and C±(x) :=

∞∑

k=1
ckρ

±
k (x), (13.2.5)
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and observe that

Fφ(x) :=
∞∑

k=1
bkφk(x) = 1

2

[
B+(x)+ B−(x)

]
and

Fψ (x) :=
∞∑

k=1
ckψk(x) = 1

2i

[
C+(x)− C−(x)

]
, (13.2.6)

and that

F(x) = Fφ(x)+ Fψ (x). (13.2.7)

2. Apply the d-transformation to the series B±(x) and C±(x) and then invoke (13.2.6)
and (13.2.7). Near the points of singularity of B±(x) and C±(x) use APS with Rl =
κ(l + 1).

When φn(x) and ψn(x) are real, ρ±n (x) are necessarily complex. For this reason, we
call this the complex series approach.
In connection with this approach, we note that when the functions φn(x) and ψn(x)

and the coefficients bn and cn are all real, it is enough to treat the two complex series
B+(x) and C+(x), as B−(x) = B+(x) and C−(x) = C+(x), so that Fφ(x) = �B+(x)
and Fψ (x) = !C+(x) in such cases.
We also note that the series B±(x) and C±(x) can be viewed as power series because

B±(x) :=
∞∑

k=1

[
bkg

±
k (x)

]
zk and C±(x) :=

∞∑

k=1

[
ckg

±
k (x)

]
zk ; z = e±iωx .

The developments of Section 12.7 of the preceding chapter, including APS, thus become
very useful in dealing with the series of this chapter.
Note that the complex series approach, in connection with the summation of classical

Fourier series by the Shanks transformation, was first suggested by Wynn [374]. Wynn
proposed that a real cosine series

∑∞
k=0 bk cos kωx be written as �(∑∞

k=0 bkzk) with
z= eiωx , and then the ε-algorithm be used to accelerate the convergence of the complex
power series

∑∞
k=0 bkzk . Later, Sidi [273, Section 3] proposed that the Levin transfor-

mations be used to accelerate the convergence of Fourier series in their complex power
series form

∑∞
k=0 bkzk when {bk} ∈ b(1), providing a convergence analysis for Process I

at the same time.

13.2.3 Justification of the Complex Series Approach and APS

We may wonder why the complex series approach is needed. After all, we can apply a
suitable extrapolation method directly to F(x). As we discuss next, this approach is eco-
nomical in terms of the number of the bk and ck used in acceleration.

For simplicity, we consider the case in which F(x) = Fφ(x), that is, cn = 0 for all n.
We further assume that the bn satisfy [cf. (12.2.1)]

bn+m =
m−1∑

s=0
qs(n)bn+s, qs ∈ A(µs )

0 , µs integer, s = 0, 1, . . . ,m − 1. (13.2.8)
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Thus, bnρ
±
n (x) = b̂nzn with z = e±iωx and b̂n = bng±n (x). As a result, (13.2.8) becomes

b̂n+m =
m−1∑

s=0
q̂s(n)b̂n+s, q̂s ∈ A(µs )

0 , s = 0, 1, . . . ,m − 1, (13.2.9)

with the same integers µs as in (13.2.8), because q̂s(n) = qs(n)g
±
n+m(x)/g

±
n+s(x),

s = 0, 1, . . . ,m − 1. Therefore, Theorem 12.2.1 applies and we have {bnρ
±
n (x)} =

{b̂nzn} ∈b(m), except for at most m values of x for which the limit or antilimit of
(the power series) B±(x) :=∑∞

k=1 b̂k zk is singular, and the d (m)-transformation can
be applied to accelerate the convergence of B±(x). Finally, we use (13.2.6) to compute
Fφ(x). Because {bnρ

±
n (x)} ∈ b(m) and because φn(x) = 1

2 [ρ
+
n (x)+ ρ−n (x)],we have that

{bnφn(x)} ∈ b(2m) by part (ii) of Heuristic 6.4.1, and the d (2m)-transformation can be
applied to accelerate the convergence of Fφ(x) directly.
From our discussion in Subsection 4.4.5, we now conclude heuristically that, with

Rl = κ(l + 1) and fixed ν, the approximations d (m,0)
(ν,... ,ν) obtained by applying the d (m)-

transformation to the series B±(x) and the approximation d (2m,0)
(ν,... ,ν) obtained by apply-

ing the d (2m)-transformation directly to the series Fφ(x) have comparable accuracy.
Now d (m,0)

(ν,... ,ν) is obtained by using the coefficients bk, 1 ≤ k ≤ mκν + κ + m − 1, while
d (2m,0)
(ν,... ,ν) is obtained by using bk, 1 ≤ k ≤ 2mκν + κ + 2m − 1. That is, if the first M co-
efficients bk are needed to achieve a certain accuracywhen applying the d-transformation
with he complex series approach, about 2M coefficients bk are needed to achieve the
same accuracy from the application of the d-transformation directly to Fφ(x). This sug-
gests that the cost of the complex series approach is about half that of the direct approach,
when costs are measured in terms of the number of coefficients used. This is the proper
measure of cost as the series are defined solely via their coefficients, and the functions
φn(x) and ψn(x) are readily available in most cases of interest.

13.3 Examples of Generalized Fourier Series

In the preceding section, we mentioned the classical Fourier series as the simplest exam-
ple of the class of series that is characterized through (13.2.1)–(13.2.3). In this section,
we give further examples involving “nonclassical” Fourier series, orthogonal polyno-
mial expansions, and Fourier–Bessel series. Additional examples involving other special
functions can also be given.

13.3.1 Chebyshev Series

FT (x) :=
∞∑

k=0
dkTk(x) and FU (x) :=

∞∑

k=0
ekUk(x), −1 ≤ x ≤ 1, (13.3.1)

where Tk(x) andUk(x) are the Chebyshev polynomials of degree k, of the first and second
kinds respectively.
Defining x = cos θ, 0 ≤ θ ≤ π, we have Tn(x) = cos nθ and Un(x) = sin(n + 1)θ/

sin θ . Therefore, φn(x) = Tn(x) = cos nθ and ψn(x) =
√
1− x2Un−1(x) = sin nθ,
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n = 0, 1, . . . , with U−1(x) ≡ 0. Both series, FT (x) and
√
1− x2FU (x), can thus be

treated as ordinary Fourier series.

13.3.2 “Nonclassical” Fourier Series

F(x) :=
∞∑

k=1
(bk cos λk x + ck sin λk x), (13.3.2)

where

λn ∼ n
∞∑

j=0
α j n

− j as n →∞, α0 > 0, (13.3.3)

so that λn ∼ α0n as n →∞.

Functions φn(x) and ψn(x) such as the ones here arise, for example, when one solves
an eigenvalue problem associated with a boundary value problem involving the O.D.E.
u′′ + λ2u = 0 on the interval [0, l], which, in turn, may arise when one uses separation of
variables in the solution of some appropriate heat equation, wave equation, or Laplace’s
equation. For instance, the eigenfunctions of the problem

u′′ + λ2u = 0, 0 < x < l; u(0) = 0, u′(l) = −hu(l), h > 0,

are sin λnx, n = 1, 2, . . . ,where λn is the nth positive solution of the nonlinear equation
λ cos λl = −h sin λl. By straightforward asymptotic techniques, it can be shown that

λn ∼
(

n − 1

2

)
π

l
+ e1n

−1 + e2n
−2 + · · · as n →∞.

Consequently, we also have that ω = α0 = π/ l and ε = 0 in (13.2.2) and (13.2.3).

13.3.3 Fourier–Legendre Series

FP (x) :=
∞∑

k=0
dk Pk(x) or FQ(x) :=

∞∑

k=0
ekQk(x), −1 < x < 1, (13.3.4)

where Pn(x) is theLegendre polynomial of degree n and Qn(x) is the associatedLegendre
function of the second kind of order 0 of degree n. They are both generated by the
recursion relation

Mn+1(x) = 2n + 1

n + 1
xMn(x)− n

n + 1
Mn−1(x), n = 1, 2, . . . , (13.3.5)

where Mn(x) is either Pn(x) or Qn(x), with the initial conditions

P0(x) = 1, P1(x) = x and

Q0(x) = 1

2
log

1+ x

1− x
, Q1(x) = xQ0(x)− 1, when |x | < 1. (13.3.6)

We now show that, with θ = cos−1 x , φn(θ) = Pn(x) and ψn(θ) = − 2
π
Qn(x) so that

ρ±n (θ ) = Pn(x)∓ i 2
π
Qn(x), and ω = 1 in (13.2.2) and ε = −1/2 in (13.2.3).
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First, we recall that Pn(x) = P0
n (x) and Qn(x) = Q0

n(x), where Pµ
ν (x) and Qµ

ν (x) are
the associated Legendre functions of degree ν and of order µ. Next, letting x = cos θ,
0 < θ < π , and u = n + 1/2 in [223, p. 473, Ex. 13.3], it follows that, for any fixed real
m, there exist two asymptotic expansions Am(θ ; u) and Bm(θ ; u),

Am(θ ; u) :=
∞∑

s=0

A−m
s (θ2)

u2s
as n →∞,

Bm(θ ; u) :=
∞∑

s=0

B−m
s (θ2)

u2s
as n →∞, (13.3.7)

such that

P−m
n (cos θ )∓ i

2

π
Q−m

n (cos θ ) ∼ 1

um

(
θ

sin θ

)1/2

×
{

H (±)
m (uθ )Am(θ ; u)+ θ

u
H (±)

m−1(uθ )Bm(u; θ )

}

. (13.3.8)

HereH (+)
m (z) andH (−)

m (z) stand for theHankel functionsH (1)
m (z) andH (2)

m (z), respectively.
Finally, we also have

H (±)
m (z) ∼ e±iz

∞∑

j=0

C±
mj

z j+1/2 as z →+∞. (13.3.9)

Substituting (13.3.7) and (13.3.9) in (13.3.8), letting m = 0 there, and invoking u =
n + 1/2, the result now follows. We leave the details to the interested reader.
It is now also clear that, in the series FP (x) and FQ(x), Pn(x) and Qn(x) can be

replaced by Pµ
n (x) and Qµ

n (x), where µ is an arbitrary real number.

13.3.4 Fourier–Bessel Series

F(x) :=
∞∑

k=1
[dk Jν(λk x)+ ekYν(λk x)] , 0 < x ≤ r, some r, (13.3.10)

where Jν(z) andYν(z) areBessel functions of order ν ≥ 0 of the first and second kinds, re-
spectively, and λn are scalars satisfying (13.3.3). Normally, such λn result from boundary
value problems involving the Bessel equation

d

dx

(

x
du

dx

)

+
(

λ2x − ν2

x

)

u = 0,

and r and α0 are related through α0r = π . For example, λn can be the nth positive zero of
Jν(z) or of J ′ν(z) or of some linear combination of them. In these cases, for all ν, α0 = π

in (13.3.3).
We now show that φn(x) = Jν(λnx) andψn(x) = Yν(λnx) so that ρ±n (x) = Jν(λnx)±

iYν(λnx), and ω = α0 in (13.2.2) and ε = −1/2 in (13.2.3). From (13.3.9) and the fact
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that λn →+∞ as n →∞, it follows that

ρ±n (x) = H (±)
ν (λnx) ∼ e±iλn x

∞∑

j=0

C±
ν j

(λnx) j+1/2
as n →∞, (13.3.11)

which, when combined with the asymptotic expansion in (13.3.3), leads to (13.2.3).

13.4 Convergence and Stability when {bn} ∈ b(1)

Let {bn} ∈ b(1) with bn = λnh(n) for some λ and some h ∈ A(γ )
0 , where λ and γ may

be complex in general. In this section, we consider the stability and convergence of
the complex series approach to the summation of the series Fφ(x) :=

∑∞
k=1 bkφk(x).

We recall that in this approach we apply the d-transformation to the series B±(x) :=∑∞
k=1 bkρ

±
k (x) and then use the fact that Fφ(x) = 1

2 [B
+(x)+ B−(x)].

We have seen that {bnρ
±
n (x)} ∈ b(1) so that the d (1)-transformation can be used in

accelerating the convergence of B±(x). As we saw earlier, B±(x) can also be viewed
as power series B±(x) :=∑∞

k=1 b̂k(λz)k where b̂n , as a function of n, is in A(γ+ε)
0 and

z = e±iωx . Thus, for |λ| < 1, B±(x) converge to analytic functions of λ, say G±(x ; λ).
When |λ| = 1 but λz �= 1, B±(x) converge also when �(γ + ε) < 0. When |λ| = 1
but �(γ + ε) ≥ 0, B±(x) diverge, but they have antilimits by Theorem 6.7.2, and these
antilimits are Abelianmeans of B±(x), namely, limτ→1−

∑∞
k=1 bkρ

±
k (x)τ

k .They are also
generalized functions in x . When |λ| = 1, the functions G±(x ; λ), as functions of x , are
singular when λz = 1, that is, at x = x± = ∓(arg λ)/ω. For |λ| > 1 the series B±(x)
diverge, but we assume that G±(x ; λ) can be continued analytically to |λ| ≥ 1, with
singularities removed.
From this information, we conclude that when |λ| = 1 and x is close to x± or when

|λ| ≈ 1andλe±iωx ≈ 1,wecan apply thed (1)-transformationwithAPSvia Rl = κ(l + 1)
to the series B±(x), where κ is a positive integer whose size depends on how close λe±iωx

is to 1. This results in approximations that enjoy excellent stability and convergence
properties by Theorem 12.7.1. They also have a low cost.

13.5 Direct Approach

In the preceding sections, we introduced the complex series approach to the summation
of Fourier and generalized Fourier series of the form (13.2.1)–(13.2.3). We would like to
emphasize that this approach can be used when the coefficients bn and cn are available.
In fact, the complex series approach coupled with APS is the most efficient approach in
this case.
When bn and cn are not available by themselves, but we are given an = bnφn(x)+

cnψn(x) in one piece and there is no way of determining the bn and cn separately,
the complex series approach is not applicable. In such a case, we are forced to apply
extrapolation methods directly to

∑∞
k=1 ak . Again, the d-transformation can be applied

directly to the series
∑∞

k=1 ak with APS through Rl = κ(l + 1); the size of κ depends on
how close x is to the singularities of the limit or antilimit of

∑∞
k=1 ak .
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13.6 Extension of the Complex Series Approach

The complex series approach of Section 13.2, after appropriate preparatory work, can
be applied to series of products of functions of the form

H (x, y) :=
∞∑

k=1
[bkφ1k(x)φ2k(y)+ ckφ1k(x)ψ2k(y)

+ dkψ1k(x)φ2k(y)+ ekψ1k(x)ψ2k(y)] , (13.6.1)

where

ρ±pn(x) ≡ φpn(x)± iψpn(x) = e±inωp x g±pn(x), (13.6.2)

with ωp real positive constants and

g±pn(x) ∼ nεp
∞∑

j=0
δ±pj (x)n

− j as n →∞, (13.6.3)

for some fixed εp that can be complex in general. Thus, as a function of n, g±pn(x) is a
function in A(εp)

0 . We assume the coefficients bn, cn, dn , and en are available.
We have already seen that {φpn(x)}∞n=1 ∈ b(2). From Heuristic 6.4.1, we have that

{φpn(x)φqn(y)}∞n=1 ∈ b(r ), where r = 3 or r = 4. Thus, if the d-transformation can be
applied to H (x, y), this is possible with m ≥ 4 in general, and we need a large number
of the terms of H (x, y) to accelerate its convergence by the d-transformation.
Employing in (13.6.1) the fact that

φpn(x)= 1

2

[
ρ+pn(x)+ ρ−pn(x)

]
and ψpn(x)= 1

2i

[
ρ+pn(x)− ρ−pn(x)

]
, (13.6.4)

we can express H (x, y) in the form

H (x, y)= H+,+(x, y)+ H+,−(x, y)+ H−,+(x, y)+ H−,−(x, y), (13.6.5)

where

H±,±(x, y) :=
∞∑

k=1
w
±,±
k ρ±1k(x)ρ

±
2k(y),

H±,∓(x, y) :=
∞∑

k=1
w
±,∓
k ρ±1k(x)ρ

∓
2k(y), (13.6.6)

with appropriate coefficients w
±,±
k and w

±,∓
k . For example, when H (x, y) :=∑∞

k=1 bkφ1k(x)φ2k(y), we have w
±,±
k = w

±,∓
k = 1

4bk for all k.
By (13.6.2), we have that

ρ±1n(x)ρ
±
2n(y) = e±in(ω1x+ω2 y)u±,±(n), u±,± ∈ A(ε1+ε2)

0 ,

ρ±1n(x)ρ
∓
2n(y) = e±in(ω1x−ω2 y)u±,∓(n), u±,∓ ∈ A(ε1+ε2)

0 . (13.6.7)

Thus, {ρ±1n(x)ρ±2n(y)} and {ρ±1n(x)ρ∓2n(y)} are in b(1). This means that we can apply
the d (m)-transformation with a low value of m to each of the four series H±,±(x, y)
and H±,∓(x, y). In particular, if bn = λnh(n) with h(n) ∈ A(γ )

0 , where λ and γ are in
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general complex, all four series can be treated by the d (1)-transformation. As long as
λe±i(ω1x+ω2 y) �= 1 [λe±i(ω1x−ω2 y) �= 1], the series B±,±(x, y) [B±,∓(x, y)] are oscilla-
tory and hence can be treated by applying the d (1)-transformation with APS. When
λe±i(ω1x+ω2 y) = 1 [λe±i(ω1x−ω2 y) = 1], however, B±,±(x, y) [B±,∓(x, y)] are slowly
varying and can be treated by applying the d (1)-transformation, with GPS if necessary.
This use of the d-transformation is muchmore economical than its application directly

to H (x, y).
Finally, the approach of this section can be extended further to products of three or

more functions φpn(x) and/or ψpn(x) without any conceptual changes.

13.7 The H-Transformation

A method, called the H-transformation, to accelerate the convergence of Fourier sine
and cosine series was proposed by Homeier [135]. We include this transformation in this
chapter, as it is simply a GREP(2) and a variant of the d (2)-transformation.

Let

F(x) :=
∞∑

k=0
(bk cos kx + ck sin kx),

be the given Fourier series and let its partial sums be

Sn =
n∑

k=0
(bk cos kx + ck sin kx), n = 0, 1, . . . ,

Then, the approximation H( j)
n to the sum of this series is defined via the linear system

Sl = H( j)
n + rl

[

cos lx
n−1∑

i=0

β̄ i

(l + δ)i
+ sin lx

n−1∑

i=0

γ̄i

(l + δ)i

]

, j ≤ l ≤ j + 2n, (13.7.1)

where

rn = (n + 1)M(bn, cn), M(p, q) =
{
p if |p| > |q|,
q otherwise,

(13.7.2)

and δ is some fixed constant. As before, β̄ i and γ̄i are additional auxiliary unknowns.
Homeier has given an elegant recursive algorithm for implementing theH-transformation
that is very economical.
Unfortunately, this transformation has two drawbacks:

1. The class of Fourier series to which it applies successfully is quite limited. This can
be seen as follows: The equations in (13.7.1) should be compared with those that
define the d (2, j)

(n,n) , namely,

SRl = d (2, j)
(n,n) + aRl

n−1∑

i=0

β̄ i

Ri
l

+�aRl

n−1∑

i=0

γ̄i

Ri
l

, j ≤ l ≤ j + 2n, (13.7.3)
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where an = bn cos nx + cn sin nx , with the special choice of the Rl , namely, Rl =
l + 1, l = 0, 1, . . . . Thus, d (2, j)

(n,n) and H( j)
n use almost the same number of terms

of F(x).
The equations in (13.7.1) immediately suggest that the H-transformation can be

effective when

Sn ∼ S + rn

[

cos nx
∞∑

i=0

βi

ni
+ sin nx

∞∑

i=0

γi

ni

]

as n →∞,

that is, when Sn is associated with a function A(y) ∈ F(2). This situation is possible
only when {bn} and {cn} are both in b(1). In view of this, it is clear that, when either
{bn} or {cn} or both are in b(s) with s > 1, theH-transformation ceases to be effective.
In contrast, the d (m)-transformation for some appropriate value of m > 2 is effective,
as we mentioned earlier.
As an example, let us consider the cosine series F(x) :=∑∞

k=0 bk cos kx , where
bn = Pn(t) are the Legendre polynomials. Because {bn} ∈ b(2), we have that
{bn cos nx} ∈ b(4). The d (4)-transformation can be applied directly to F(x). The d (2)-
transformation with the complex series approach can also be applied at about half the
cost of the direct approach. The H-transformation is ineffective.

2. By the way rn is defined, it is clear that the bn and cn are assumed to be available.
In this case, as explained before, the d (1)-transformation with Rl = l + 1 (that is
nothing but the Levin transformation) coupled with the complex series approach
achieves the required accuracy at about half the cost of the H-transformation, when
the latter is applicable. (As mentioned in Section 13.2, the application of the Levin
transformation with the complex series approach was suggested and analyzed earlier
in Sidi [273, Section 3].) Of course, better stability and accuracy is achieved by the
d (1)-transformation with APS near points of singularity.



14
Special Topics in Richardson Extrapolation

14.1 Confluence in Richardson Extrapolation

14.1.1 The Extrapolation Process and the SGRom-Algorithm

In Chapters 1 and 2, we considered functions A(y) that satisfy (1.1.2). In this section,
we consider functions that we now denote B(y) and that have asymptotic expansions of
the form

B(y) ∼ B +
∞∑

k=1
Qk(log y)yσk as y → 0+, (14.1.1)

where y is a discrete or continuous variable, σk are distinct and in general complex
scalars satisfying

σk �= 0, k = 1, 2, . . . ; �σ1 ≤ �σ2 ≤ · · · ; lim
k→∞

�σk = +∞, (14.1.2)

and Qk(x) are some polynomials given as

Qk(x) =
qk∑

i=0
αki x

i for some integer qk ≥ 0. (14.1.3)

From (14.1.2), it is clear that there can be only a finite number of σk with equal real parts.
When �σ1 > 0, limy→0+ B(y) exists and is equal to B. When �σ1 ≤ 0 and Q1(x) �≡ 0,
however, limy→0+ B(y) does not exist, and B in this case is the antilimit of B(y) as
y → 0+.
We assume that B(y) is known (and hence is computable) for all possible y > 0 and

that the σk and qk are also known. Note that qk is an upper bound for ∂Qk , the degree of
Qk(x), and that ∂Qk need not be known exactly. We assume that B and the αki are not
necessarily known and that B is being sought.
Clearly, the problem we have here generalizes that of Chapter 1 (i) by allowing the σk

to have equal real parts and (ii) by replacing the constantsαk in (1.1.2) by the polynomials
Qk in log y.
Note that we can also think of the expansion

∑∞
k=1 Qk(log y)yσk as being obtained by

letting τki → σk, i = 0, 1, . . . , qk , in the expansion
∑∞

k=1
∑qk

i=0 βki yτki . Thus, we view
the extrapolation process we are about to propose for determining B as a Richardson
extrapolation process “with confluence.”

263
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Let us order the functions yσk (log y)i as follows:

φi (y) = yσ1 (log y)i−1, 1 ≤ i ≤ ν1 ≡ q1 + 1,

φν1+i (y) = yσ2 (log y)i−1, 1 ≤ i ≤ ν2 ≡ q2 + 1,

φν1+ν2+i (y) = yσ3 (log y)i−1, 1 ≤ i ≤ ν3 ≡ q3 + 1, (14.1.4)

and so on.
Let us choose y0 > y1 > · · · > 0 such that liml→∞ yl = 0. Then we define the gen-

eralization of the Richardson extrapolation process for the present problem through the
linear systems

B(yl) = B( j)
n +

n∑

k=1
ᾱkφk(yl), j ≤ l ≤ j + n. (14.1.5)

As always, we have B( j)
n =∑n

i=0 θ
( j)
ni B(y j+i ) with

∑n
i=0 θ

( j)
ni = 1, and we define

'
( j)
n =∑n

i=0 |θ ( j)ni |. (Note that we have changed our usual notation slightly and writ-
ten θ ( j)ni instead of γ ( j)

ni and '( j)
n instead of �( j)

n .)
In this section, we summarize the treatment given to this problem by Sidi [298] with

yl = y0ωl , l = 0, 1, . . . , for some ω ∈ (0, 1). For details and numerical examples, we
refer the reader to [298].
We start with the following recursive algorithm for computing the B( j)

n . This algorithm
is denoted the SGRom-algorithm.

Algorithm 14.1.1 (SGRom-algorithm)

1. Let ck = ωσk , k = 1, 2, . . . , and set

λi = c1, 1 ≤ i ≤ ν1,

λν1+i = c2, 1 ≤ i ≤ ν2,

λν1+ν2+i = c3, 1 ≤ i ≤ ν3, (14.1.6)

and so on.
2. Set

B( j)
0 = B(y j ), j = 0, 1, . . . .

3. Compute B( j)
n by the recursion relation

B( j)
n = B( j+1)

n−1 − λn B
( j)
n−1

1− λn
, j = 0, 1, . . . , n = 1, 2, . . . .

Our first result concerns the θ ( j)ni .

Theorem 14.1.2 The θ ( j)ni are independent of j and satisfy

n∑

i=0
θ
( j)
ni zi =

n∏

i=1

z − λi

1− λi
≡ Un(z). (14.1.7)
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Hence '( j)
n is independent of j . In addition,

'( j)
n ≤

n∏

i=1

1+ |λi |
|1− λi | for all j, n, (14.1.8)

with equality in (14.1.8) when the ck all have the same phase or, equivalently, when the
σk all have the same imaginary part.

14.1.2 Treatment of Column Sequences

Let us first note that, for any integer n ≥ 0, there exist two unique nonnegative integers
t and s, such that

n =
t∑

k=1
νk + s, 0 ≤ s ≤ νt+1 − 1, (14.1.9)

where νk = qk + 1 as before. We also define
∑t

k=1 νk to be zero when t = 0. With n, t ,
and s as in (14.1.9), we next define the two sets of integers Sn and Tn as in

Sn = {(k, r ) : 0 ≤ r ≤ qk, 1 ≤ k ≤ t, and 0 ≤ r ≤ s − 1, k = t + 1},
Tn = {(k, r ) : 0 ≤ r ≤ qk, k ≥ 1} \ Sn. (14.1.10)

Theorem 14.1.3 concerns the convergence and stability of the column sequences
{B( j)

n }∞j=0. Note only that |ck | = e�σk for all k and that the ordering of the σk in (14.1.2)
implies

ck �= 1, k = 1, 2, . . . ; |c1| ≥ |c2| ≥ · · · ; lim
k→∞

ck = 0, (14.1.11)

and that |ci | = |c j | if and only if �σi = �σ j . Also, with yl = y0ωl , the asymptotic
expansion in (14.1.1) assumes the form

B(ym) ∼ B +
∞∑

k=1

( qk∑

i=0
βkim

i

)

cmk as m →∞, (14.1.12)

where βki depend linearly on the αkr , i ≤ r ≤ qk , and βk,qk = αk,qk y
σk
0 (logω)qk .

It is clear that the extrapolation method of this section can be applied via the SGRom-
algorithm with no changes to sequences {Xm} when the asymptotic expansion of Xm is
exactly as in the right-hand side of (14.1.12).

Theorem 14.1.3

(i) With Un(z) as in (14.1.7), and Sn and Tn as in (14.1.10), for fixed n, we have the
complete asymptotic expansion

B( j)
n − B ∼

∞∑

(k,r )∈Tn

βkr

{(

z
d

dz

)r [
z jUn(z)

]∣∣
z=ck

}

as j →∞. (14.1.13)
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If we let µ be that integer for which |ct+1| = · · · = |ct+µ| > |ct+µ+1| and let q̄ =
max{qt+1 − s, qt+2, . . . , qt+µ}, then (14.1.13) gives

B( j)
n − B = O(|ct+1| j j q̄ ) as j →∞. (14.1.14)

(ii) The process is stable in the sense that sup j '
( j)
n <∞. [Recall that '( j)

n is indepen-
dent of j and satisfies (14.1.8).]

When µ = 1 and βt+1,qt+1 �= 0, (14.1.13) gives the asymptotic equality

B( j)
n − B ∼ βt+1,qt+1

(
qt+1
s

)

U (s)
n (ct+1)c

j+s
t+1 j qt+1−s as j →∞. (14.1.15)

This is the case, in particular, when |c1| > |c2| > · · · and βk,qk �= 0 for all k.
In any case, Theorem 14.1.3 implies that each column in the extrapolation table is at

least as good as the one preceding it.

14.1.3 Treatment of Diagonal Sequences

The treatment of the diagonal sequences turns out to bemuchmore involved, as usual. To
proceed, we need to introduce some new notation. First, let 1 = k1 < k2 < k3 < · · · be
the (smallest) integers for which

�σki < �σki+1 and �σm = �σki , ki ≤ m ≤ ki+1 − 1, i = 1, 2, . . . , (14.1.16)

which implies that

|cki | > |cki+1 | and |cm | = |cki |, ki ≤ m ≤ ki+1 − 1, i = 1, 2, . . . . (14.1.17)

Then, let

Ni =
ki+1−1∑

r=ki

νr , i = 1, 2, . . . . (14.1.18)

In other words, Ni is the sum of the “multiplicities” νr of all the cr that have modulus
equal to |cki |.
Part (i) of the following theorem is new and its proof can be achieved as that of part

(ii) of Theorem 1.5.4. Part (ii) is given in [298].

Theorem 14.1.4 Assume that the σk satisfy

�σki+1 −�σki ≥ d > 0 for all i. (14.1.19)

Assume also that the σk and qk are such that there exist constants E > 0 and b ≥ 0 for
which

lim sup
i→∞

Ni/ i
b = E . (14.1.20)

(i) Under these conditions, the sequence {B( j)
n }∞n=0 converges to B as indicated in

B( j)
n − B = O(ωµ) as n →∞ for every µ > 0. (14.1.21)

(ii) The process is stable in the sense that supn '
( j)
n <∞.
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It is worth mentioning that the proof of this theorem relies on the fact that
∑∞

i=1 |λi |
converges under the conditions in (14.1.19) and (14.1.20).
By imposing suitable growth conditions on the αki and�σk and assuming, in addition

to (14.1.20), that

lim inf
i→∞

Ni/ i
a = D > 0, 0 ≤ a ≤ b, a + 2 > b, (14.1.22)

Sidi [298] shows that

|B( j)
n − B| ≤ (K + ε)r

(a+2) ≤ (L + ε)n
(a+2)/(b+1)

for all large n, (14.1.23)

where ε > 0 is arbitrary, r is that integer for which kr+1 ≤ t + 1 < kr+2, and

K = ωη, η = Dd

a + 2
; L = ωτ , τ = Dd

a + 2

(
b + 1

E

)(a+2)/(b+1)
. (14.1.24)

We note that in many cases of interest a = b in general and a = b = 0 in particular.
For example, when Ni ∼ Fiv as i →∞, we have a = b = v and D = E = F . In such
cases, (14.1.23) shows that B( j)

n − B = O(e−κn
u
) as n →∞, for some κ > 0, with

u = (a + 2)/(a + 1) > 1. This is a refinement of (14.1.21).
We also note that, for all practical purposes, B( j)

n − B is O(
∏n

i=1 |λi |) as n →∞.
Very realistic information about the error can be obtained by analyzing the behavior of
the product

∏n
i=1 |λi | for large n. See Sidi [301] for examples.

It is useful at this point to mention that the trapezoidal rule approximation T (h) for
the singular integral in Example 3.1.2 has all the characteristics of the functions B(y)
we have discussed so far. From the asymptotic expansion in (3.1.6) and from (3.1.7), it
is clear that, in this example, qk = 0 or qk = 1, a = b = 0, and D = 1 and E = 2. This
example has been generalized in Sidi [298].

14.1.4 A Further Problem

Before we end this section, we would like to mention that a problem similar to the one
considered in Subsections 14.1.1–14.1.3, but of a more general nature, has been treated
by Sidi [297]. In this problem, we consider a function B(y) that has the asymptotic
expansion

B(y) ∼ B +
∞∑

k=1
ψk(y)Qk(log y) as y → 0+, (14.1.25)

where B is the limit or antilimit of B(y) as y → 0+, Qk(x) is a polynomial in x of
degree at most qk , k = 1, 2, . . . , as before, and

ψk+1(y) = O(ψk(y)) as y → 0+, k = 1, 2, . . . . (14.1.26)

The yl are chosen to satisfy liml→∞(yl+1/yl) = ω ∈ (0, 1), and it is assumed that

lim
l→∞

ψk(yl+1)
ψk(yl)

= ck �= 1, k = 1, 2, . . . , and ci �= c j if i �= j. (14.1.27)
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Thus, |c1| ≥ |c2| ≥ |c3| ≥ · · · . [It also follows that if |ck+1| < |ck |, then (14.1.26) is
actually ψk+1(y) = o(ψk(y)) as y → 0+.] In addition, we assume that there are finitely
many ck with the same modulus.
The Richardson extrapolation is generalized to this problem in a suitable fashion in

[297] and the column sequences are analyzed with respect to convergence and stability.
In particular, the approximation B( j)

n to B, where n =∑t
k=1(qk + 1), are defined through

B(yl) = B( j)
n +

t∑

k=1
ψk(yl)

qk∑

i=0
ᾱki (log yl)

i , j ≤ l ≤ j + n. (14.1.28)

Again, B( j)
n =∑n

i=0 θ
( j)
ni A(y j+i ) with

∑n
i=0 θ

( j)
ni = 1, and we define'( j)

n =∑n
i=0 |θ ( j)ni |.

We then have the following convergence result for the column sequence {B( j)
n }∞j=0:

B( j)
n − B = O(Rt (y j )) as j →∞, (14.1.29)

where

Rt (y) = B(y)− B −
t∑

k=1
ψk(y)

qk∑

i=0
Qk(log y). (14.1.30)

Note that

Rt (y) = O(ψt+1(y)(log y)q̂ ) as y → 0+; q̂ = max{qk : |ck | = |ct+1|, k ≥ t + 1}.
(14.1.31)

The process is also stable because

lim
j→∞

n∑

i=0
θ
( j)
ni zi =

t∏

k=1

(
z − ck
1− ck

)qk+1
≡

n∑

i=0
θ̃ni z

i , (14.1.32)

from which we have

lim
j→∞

'( j)
n =

n∑

i=0
|θ̃ni | ≤

t∏

k=1

(
1+ |ck |
|1− ck |

)qk+1
<∞. (14.1.33)

These results are special cases of those proved in Sidi [297], where B( j)
n are defined and

analyzed for all n = 1, 2, . . . . For details see [297].
It is clear that the function B(y) in (14.1.1) and (14.1.2) considered in Subsec-

tions 14.1.1–14.1.3 is a special case of the one we consider in this subsection with
ψk(y) = yσk . Because the yl are chosen to satisfy liml→∞(yl+1/yl) = ω in the extrapo-
lation process, we also have ck = ωσk in (14.1.27). Thus, the theory of [297] in general
and (14.1.29)–(14.1.33) in particular provide additional results for the function B(y) in
(14.1.1)–(14.1.3).

14.2 Computation of Derivatives of Limits and Antilimits

In somecommonapplications, functions B(y) (and their limits or antilimits B) of the form
we treated in the preceding section arise as derivatives with respect to some parameter
ξ of functions A(y) (and their limits or antilimits A) that we treated in Chapter 1. The
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trapezoidal rule approximation T (h) of Example 3.1.2, which we come back to shortly,
is one such function.
Also, numerical examples and the rigorous theoretical explanation given in Sidi [301]

show that, when A(y) and B(y) have asymptotic expansions that are essentially different,
it ismuch cheaper to use extrapolation on A(y) to approximate its limit or antilimit A than
on B(y) to approximate its limit or antilimit B. By this we mean that, for a given level
of required accuracy, more function values B(y) than A(y) need to be computed. The
question that arises then is whether it is possible to reduce the large computational cost of
extrapolating B(y) to approximate B when we know that B(y) = d

dξ A(y) and B = d
dξ A.

This question was raised recently by Sidi [301], who also proposed an effective ap-
proach to its solution. In this section, we summarize the approach of [301] and give
the accompanying theoretical results that provide its justification. For the details and
numerical examples, we refer the reader to this paper.
Let us denote by E0 the extrapolation process used on A(y) in approximating A. When

the asymptotic expansion of B(y) = d
dξ A(y) is essentially different from that of A(y), it

is proposed to differentiate with respect to ξ the approximations to A produced by E0 on
A(y) and take these derivatives as approximations to B. As a way of implementing this
procedure numerically, it is also proposed to differentiate with respect to ξ the recursion
relations used in implementing E0. (In doing that we should also differentiate the initial
conditions.)
Of course, the process proposed here can be applied to computation of higher-order

derivatives of limits and antilimits as well. It can also be applied to computation of partial
derivatives with respect to several variables.
These ideas can best be demonstrated via the Richardson extrapolation process of

Chapter 1.

14.2.1 Derivative of the Richardson Extrapolation Process

Let A(y) be exactly as in Chapter 1, that is,

A(y) ∼ A +
∞∑

k=1
αk y

σk as y → 0+, (14.2.1)

where

σk �= 0, k = 1, 2, . . . ; �σ1 < �σ2 < · · · ; lim
k→∞

�σk = ∞, (14.2.2)

and assume that A(y), A, the αk and the σk depend on a parameter ξ in addition. Let
us also assume that Ȧ(y) ≡ d

dξ A(y) has an asymptotic expansion as y → 0+ that is
obtained by differentiating that of A(y) termwise, that is,

Ȧ(y) ∼ Ȧ +
∞∑

k=1
(α̇k + αk σ̇k log y)yσk as y → 0+ . (14.2.3)

Here we have also denoted d
dξ A = Ȧ, d

dξ αk = α̇k and d
dξ σk = σ̇k . Note that when the σ̇k

do not all vanish, the asymptotic expansion in (14.2.3) is essentially different from that
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in (14.2.1). Also, the asymptotic expansion of Ȧ(y) in (14.2.3) is exactly of the form
given in (14.1.1) for B(y) with qk = 1 for all k in the latter.
Let us apply the Richardson extrapolation process, with yl = y0ωl , l = 0, 1, . . . , to

the function A(y) to obtain the approximations A( j)
n to A. Next, let us differentiate the A( j)

n

to obtain the approximations Ȧ( j)
n to Ȧ. The necessary algorithm for this is obtained by

differentiating the recursion relation satisfied by the A( j)
n that is given in Algorithm 1.3.1.

Thus, letting cn = ωσn and ċn = d
dξ cn = (logω)σ̇ncn , we obtain the following recursion

relation for the Ȧ( j)
n :

A( j)
0 = A(y j ) and Ȧ( j)

0 = Ȧ(y j ), j = 0, 1, . . . ,

A( j)
n = A( j+1)

n−1 − cn A
( j)
n−1

1− cn
and

Ȧ( j)
n = Ȧ( j+1)

n−1 − cn Ȧ
( j)
n−1

1− cn
+ ċn

1− cn
(A( j)

n − A( j)
n−1), j = 0, 1, . . . , n = 1, 2, . . . .

Remark. It is clear that we need both A(yl) and Ȧ(yl), j ≤ l ≤ j + n, for determining
Ȧ( j)

n , and this may seem expensive at first. However, in most problems of interest, the
computation of Ȧ(yl) can be done simultaneously with that of A(yl), and at almost no
additional cost. Thus, in such problems, the computation of Ȧ( j)

n entails practically the
same cost as that of A( j)

n , in general. This makes the proposed approach desirable.
Because A( j)

n =∑n
i=0 γ

( j)
ni A(y j+i ), we have that

Ȧ( j)
n =

n∑

i=0
γ
( j)
ni Ȧ(y j+i )+

n∑

i=0
γ̇
( j)
ni A(y j+i ),

as a result of which we conclude that the propagation of errors (roundoff and other) in
the A(yl) and Ȧ(yl), j ≤ l ≤ j + n, into Ȧ( j)

n is controlled by the quantity $( j)
n that is

defined as in

$( j)
n =

n∑

i=0
|γ ( j)

ni | +
n∑

i=0
|γ̇ ( j)

ni |. (14.2.4)

The following theorem summarizes the convergence and stability of the column and
diagonal sequences in the extrapolation table of the Ȧ( j)

n . In this theorem, wemake use of
the fact that the γ ( j)

ni and hence the γ̇ ( j)
ni are independent of j in the case being considered.

Theorem 14.2.1

(i) For fixed n, the error Ȧ( j)
n − Ȧ has the complete asymptotic expansion

Ȧ( j)
n − Ȧ ∼

∞∑

k=n+1

{
d

dξ
[Un(ck)αk]+Un(ck)αk σ̇k log y j

}

yσkj as j →∞, (14.2.5)

from which we conclude that Ȧ( j)
n − Ȧ = O( j |cn+1| j ) as j →∞. Here Un(z) =∏n

i=1(z − ci )/(1− ci ). In addition, sup j $
( j)
n <∞ since$( j)

n are all independent of
j . That is, column sequences are stable.
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(ii) Let us assume, in addition to (14.2.2), that the σk also satisfy

�σk+1 −�σk ≥ d > 0, k = 1, 2, . . . , for some fixed d, (14.2.6)

and that
∑∞

i=1 |ċi | <∞. Then, for fixed j , the error Ȧ( j)
n − Ȧ satisfies

Ȧ( j)
n − Ȧ = O(ωµ) as n →∞, for every µ > 0. (14.2.7)

Also, supn $
( j)
n <∞, which implies that diagonal sequences are stable.

Part (ii) of Theorem 14.2.1 says that, as n →∞, Ȧ( j)
n − Ȧ = O(e−λn) for every λ > 0.

By imposing some mild growth conditions on the αk and the �σk , and assuming further
that |ċi | ≤ Ki |ci | for all i , such that Ki = O(i a) as i →∞, for some a ≥ −1, the result
in (14.2.7) can be improved to read

| Ȧ( j)
n − Ȧ| ≤ (ω + ε)dn

2/2 as n →∞, with arbitrary ε > 0. (14.2.8)

This means that Ȧ( j)
n − Ȧ = O(e−κn

2
) as n →∞ for some κ > 0.

We also note that, for all practical purposes, Ȧ( j)
n − Ȧ, just like A( j)

n − A, is
O(
∏n

i=1 |ci |) as n →∞. Very realistic information on both can be obtained by ana-
lyzing the behavior of the product

∏n
i=1 |ci | as n →∞.

The important conclusion we draw from both parts of Theorem 14.2.1 is that the
accuracy of Ȧ( j)

n as an approximation to Ȧ is almost the same as that of A( j)
n as an

approximation to A. This clearly shows that the approach we suggested for determining
Ȧ is very efficient. In fact, we can now show rigorously that it is more efficient than
the approach of the preceding section involving the SGRom-algorithm. (However, we
should keep in mind that the problem we are treating here is a special one and that the
approach with the SGRom-algorithm can be applied to a larger class of problems.)
Let us denote Ȧ(y) = B(y) and Ȧ = B in (14.2.3) and apply the SGRom-algorithm

to B(y) to obtain the approximations B( j)
n to B. Let us assume that the conditions of

Theorem 14.2.1 are satisfied. Then, the conditions of Theorem 14.1.4 are satisfied as
well, and Ni ≤ 2 for all i there. Assuming that Ni = 2 for all i , we have D = E = 2
and a = b = 0, so that L = ωd/4 in (14.1.24). As a result, by (14.1.23), B( j)

n − B is of
order ωdn2/4 as n →∞, for all practical purposes. For the approximations Ȧ( j)

n to Ȧ,
on the other hand, we have that Ȧ( j)

n − Ȧ is of order ωdn2/2 as n →∞, for all practical
purposes. It is clear that B( j)

�√2n� will have an accuracy comparable to that of Ȧ( j)
n ; its

computational cost will, of course, be higher.

An Application to Numerical Quadrature

Let us consider the numerical approximation of the integral B = ∫ 1
0 (log x)xξg(x)dx,

�ξ > −1,with g ∈ C∞[0, 1]. Clearly, B = d
dξ A ≡ Ȧ, where A = ∫ 1

0 xξg(x)dx . Let us
set h = 1/n, where n is a positive integer, and define the trapezoidal rule approximations
with stepsize h to A and B, respectively, by

A(h) = h

[
n−1∑

j=1
G( jh)+ 1

2
G(1)

]

; G(x) ≡ xξg(x), (14.2.9)
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and

B(h) = h

[
n−1∑

j=1
H ( jh)+ 1

2
H (1)

]

; H (x) ≡ (log x)xξg(x). (14.2.10)

Note that B(h) = Ȧ(h) because H (x) = Ġ(x). Then we have the following extensions
of the classical Euler–Maclaurin expansion for A(h) and B(h):

A(h) ∼ A +
∞∑

i=1
aih

2i +
∞∑

i=0
bih

ξ+i+1 as h → 0, (14.2.11)

and

B(h) ∼ B +
∞∑

i=1
ȧi h

2i +
∞∑

i=0
(ḃi + bi log h)h

ξ+i+1 as h → 0, (14.2.12)

with

ai = B2i

(2i)!
G(2i−1)(1), i = 1, 2, . . . ; bi = ζ (−ξ − i)

i!
g(i)(0), i = 0, 1, . . . ,

(14.2.13)

and ȧi = d
dξ ai and ḃi = d

dξ bi . As before, Bk are the Bernoulli numbers and should not
be confused with B(h) or with B( j)

n below. The expansion in (14.2.12) is obtained by
differentiating that in (14.2.11). [Note that G(x) depends on ξ but g(x) does not.] For
these expansions, see Appendix D.
Let us now consider the case −1 < �ξ < 0. Then A(h) is of the form described in

(14.2.1) and treated throughout, with σ1, σ2, . . . , as in

σ3i−2 = ξ + 2i − 1, σ3i−1 = ξ + 2i, σ3i = 2i, i = 1, 2, . . . , (14.2.14)

so that (14.2.6) is satisfied with d = min(−�ξ, 1+�ξ ) > 0.
Let us also apply the Richardson extrapolation process to the sequence {A(hl)} with

hl = ωl , l = 0, 1, . . . , for some ω ∈ {1/2, 1/3, . . . }. (Recall that other more econom-
ical choices of {hl} are possible; but we stick with hl = ωl here as it enables us to use
the theory of [301] to make rigorous statements about convergence, convergence rates,
and stability of diagonal sequences.)
Recall now that |A( j)

n − A| is practically O(
∏n

i=1 |ci |) as n →∞. This implies that
|A( j)

3m − A| → 0 as m →∞ practically like ω&m , where &m =
∑3m

i=1�σi = 3m2 +
O(m) as m →∞. Thus, |A( j)

3m − A| → 0 as m →∞ practically like ω3m2
.

Since σ̇3i−2 = σ̇3i−1 = 1, σ̇3i = 0, i = 1, 2, . . . , we have ċ3i−2 = (logω)c3i−2,
ċ3i−1 = (logω)c3i−1, ċ3i = 0, i = 1, 2, . . . , and thus

∑∞
i=1 |ċi | <∞ and Ki ≤ | logω|

for all i . Consequently, Theorem 14.2.1 applies, and we have that | Ȧ( j)
3m − Ȧ| → 0 as

m →∞ like ω3m2
practically, just like |A( j)

3m − A|.
Similarly, B(h) = Ȧ(h) is of the form given in (14.1.1) with σi as in (14.2.14) and

q3i−2 = q3i−1 = 1, q3i = 0, i = 1, 2, . . . . Let us also apply the generalized Richardson
extrapolation process of the previous section (via the SGRom-algorithm) to the sequence
{B(hl)}, also with hl = ωl , l = 0, 1, . . . . By Theorem 14.1.4, the sequence {B( j)

n }∞n=0
converges to B, and |B( j)

5m − B| is practically O(
∏5m

i=1 |λi |), hence O(
∏3m

i=1 |ci |qi+1), as
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m→∞. This implies that |B( j)
5m − B| → 0 asm →∞ practically likeω!m , where!m =∑3m

i=1(qi + 1)(�σi ) = 5m2 + O(m) as m →∞. Therefore, |B( j)
5m − B| is O(ω5m2

) as
m →∞ practically speaking.
Thus, | Ȧ( j)

n − Ȧ| and |B( j)
n − B| tend to 0 as n →∞ likeωn2/3 andωn2/5, respectively,

for all practical purposes. That is to say, of the two diagonal sequences { Ȧ( j)
n }∞n=0 and

{B( j)
n }∞n=0, the former has superior convergence properties.Also, B( j)

�√5/3 n� has an accuracy
comparable to that of Ȧ( j)

n . Of course, B( j)
�√5/3 n� is much more expensive to compute

than Ȧ( j)
n . [Recall that the computation of A(yl) and/or B(yl) involves ω−l integrand

evaluations.]
The preceding comparative study suggests, therefore, that computation of integrals

of the form
∫ 1
0 (log x)xξg(x)dx by first applying the Richardson extrapolation process

to the integral
∫ 1
0 xξg(x)dx and then differentiating the resulting approximations with

respect to ξ may be a preferred method if we intend to use extrapolation methods in
the first place. This approach may be used in multidimensional integration of integrands
that have logarithmic corner, or surface, or line singularities, for which appropriate
extensions of the Euler–Maclaurin expansion can be found in the works of Lyness [196],
Lyness and Monegato [201], Lyness and de Doncker [199], and Sidi [283]. All these
expansions are obtained by term-by-term differentiation of other simpler expansions, and
this is what makes the approach of this section appropriate. Since the computation of the
trapezoidal rule approximations for multidimensional integrals becomes very expensive
as the dimension increases, the economy that can be achieved with this approach should
make it especially attractive.
The new approach can also be used to compute the singular integrals Ir =∫ 1

0 (log x)r xξg(x)dx , where r = 2, 3, . . . , by realizing that Ir = dr

dξ r A. (Note that B= I1.)
The approximations produced by the generalized Richardson extrapolation process have
convergence properties that deteriorate in quality as r becomes large, whereas the dr

dξ r A
( j)
n

maintain the high-quality convergence properties of the A( j)
n . For application of the gen-

eralized Richardson extrapolation process to such integrals, see Sidi [298]. Again, the
extension to multidimensional singular integrals is immediate.
Before closing, we make the following interesting observation that is analogous to an

observation of Bauer, Rutishauser, and Stiefel [20] about Romberg integration (see also
Davis and Rabinowitz [63]): The approximation Ȧ( j)

n to B can be expressed as a sort of
“numerical quadrature formula” with stepsize h j+n of the form

Ȧ( j)
n =

ν j+n∑

k=0
w

(0)
jnk H (kh j+n)+

ν j+n∑

k=0
w

(1)
jnkG(kh j+n); ν = 1/ω, (14.2.15)

in which the “weights” w(0)
jnk and w

(1)
jnk depend on j and n, and satisfy

ν j+n∑

k=0
w

(0)
jnk = 1 and

ν j+n∑

k=0
w

(1)
jnk = 0. (14.2.16)

These follow from the facts that
∑n

i=0 ρni = 1 and
∑n

i=0 ρ̇ni = 0. [We have obtained
(14.2.15) and (14.2.16) by adding the terms 1

2G(0)h and 1
2H (0)h to the right-hand

sides of (14.2.9) and (14.2.10), respectively, with the understanding that G(0) ≡ 0 and
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H (0) ≡ 0.] Also, these formulas are stable numerically in the sense that

ν j+n∑

k=0

(
|w(0)

jnk | + |w(1)
jnk |

)
≤ $( j)

n <∞ for all j and n. (14.2.17)

14.2.2 d
dξGREP

(1): Derivative of GREP(1)

We end by showing how the approach of Sidi [301] can be applied to GREP(1). The
resulting method that produces the Ȧ( j)

n has been denoted d
dξGREP

(1). The following
material is from Sidi [302].
If a(t) has an asymptotic expansion of the form

a(t) ∼ A + ϕ(t)
∞∑

i=0
βi t

i as t → 0+, (14.2.18)

and a(t), A, ϕ(t), and the βi depend on ξ , and d
dξ a(t) ≡ ȧ(t) has an asymptotic expansion

that can be obtained by termwise differentiation of that in (14.2.18), then

ȧ(t) ∼ Ȧ + ϕ(t)
∞∑

i=0
β̇ i t

i + ϕ̇(t)
∞∑

i=0
βi t

i as t → 0+ . (14.2.19)

Recalling the developments of Section 7.2 concerning the W-algorithm, we observe
that d

dξ D
( j)
n {g(t)} = D( j)

n { d
dξ g(t)}. This fact is now used to differentiate the W-algorithm

and to derive what we call the d
dξW-algorithm for computing the Ȧ( j)

n :

Algorithm 14.2.2 ( d
dξW-algorithm)

1. For j = 0, 1, . . . , set

M ( j)
0 = a(t j )

ϕ(t j )
, N ( j)

0 = 1

ϕ(t j )
, H ( j)

0 = (−1) j |N ( j)
0 |, and

Ṁ ( j)
0 = ȧ(t j )

ϕ(t j )
− a(t j )ϕ̇(t j )

[ϕ(t j )]2
, Ṅ ( j)

0 = − ϕ̇(t j )

[ϕ(t j )]2
, H̃ ( j)

0 = (−1) j |Ṅ ( j)
0 |.

2. For j = 0, 1, . . . , and n = 1, 2, . . . , compute M ( j)
n , N ( j)

n , H ( j)
n , Ṁ ( j)

n , Ṅ ( j)
n , and H̃

( j)
n

recursively from

Q( j)
n = Q( j+1)

n−1 − Q( j)
n−1

t j+n − t j
.

3. For all j and n, set

A( j)
n = M ( j)

n

N ( j)
n

, �( j)
n = |H ( j)

n |
|N ( j)

n |
, and

Ȧ( j)
n = Ṁ ( j)

n

N ( j)
n

− A( j)
n

Ṅ ( j)
n

N ( j)
n

, $̃( j)
n = |H̃ ( j)

n |
|N ( j)

n |
+
(

1+ |Ṅ ( j)
n |

|N ( j)
n |

)

�( j)
n .

Here $̃( j)
n is an upper bound on$( j)

n defined as in (14.2.4), and it turns out to be quite
tight.
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The convergence and stability of column sequences for the case in which the tl are
chosen such that

lim
l→∞

(tl+1/tl) = ω for some ω ∈ (0, 1) (14.2.20)

and ϕ(t) satisfies

lim
l→∞

ϕ(tl+1)/ϕ(tl) = ωδ for some (complex) δ �= 0,−1,−2, . . . , (14.2.21)

and

ϕ̇(t) = ϕ(t)[K log t + L + o(1)] as t → 0+, for some K �= 0 and L , (14.2.22)

have been investigated in a thorough manner in [302], where an application to the d (1)-
transformation is also provided. Recall that we have already encountered the condition
in (14.2.21) in Theorem 8.5.1. The condition in (14.2.22) was formulated in [302] and
is crucial to the analysis of d

dξGREP
(1). Theorem 14.2.3 summarizes the main results of

Sidi [302, Section 3].

Theorem 14.2.3 Under the conditions given in (14.2.20)–(14.2.22), the following hold:

(i) The γ ( j)
ni and γ̇ ( j)

ni have well-defined and finite limits as j →∞. Specifically,

lim
j→∞

n∑

i=0
γ
( j)
ni zi = Un(z),

lim
j→∞

n∑

i=0
γ̇
( j)
ni zi = K (logω)[Un(z)U

′
n(1)− zU ′

n(z)],

whereUn(z) =
∏n

i=1(z − ci )/(1− ci )with ci = ωδ+i−1, i = 1, 2, . . . , andU ′
n(z) =

d
dzUn(z). Consequently, sup j $

( j)
n <∞, implying that the column sequences

{ Ȧ( j)
n }∞j=0 are stable.

(ii) For Ȧ( j)
n we have that

Ȧ( j)
n − Ȧ = O(ϕ(t j )t

n
j log t j ) as j →∞.

For more refined statements of the results of Theorem 14.2.3 and for additional de-
velopments, we refer the reader to Sidi [302].

An Application to the d (1)-Transformation: The d
dξ d

(1)-Transformation

The preceding approach can be applied to the problem of determining the derivative with
respect to a parameter ξ of sums of infinite series, whether convergent or divergent.
Consider the infinite series

∑∞
k=1 vk , where

vn ∼
∞∑

i=0
θi n

ρ−i as n →∞; θ0 �= 0, ρ + 1 �= 0, 1, 2, . . . , (14.2.23)

and let us define Sn =
∑n

k=1 vk , n = 1, 2, . . . . Then we already know that

Sn ∼ S + nvn
∞∑

i=0
βi n

−i as n →∞. (14.2.24)
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Here S = limn→∞ Sn when the series converges; S is the antilimit of {Sn} otherwise.
Because {vn} ∈ b(1) as well, excellent approximations to S can be obtained by applying
the d (1)-transformation to

∑∞
k=1 vk , with GPS if necessary. Let us denote the resulting

approximations to S by S( j)n .
If the asymptotic expansion in (14.2.24) can be differentiated with respect to ξ term

by term, then we have

Ṡn ∼ Ṡ + nv̇n
∞∑

i=0
βi n

−i + nvn
∞∑

i=0
β̇ i n

−i as n →∞. (14.2.25)

Here Ṡn = d
dξ Sn , Ṡ = d

dξ S, etc. Let us now differentiate the S( j)n with respect to ξ and
take Ṡ( j)n as the approximations to Ṡ. In other words, let usmake in the d

dξW-algorithm the
substitutions t j = 1/R j ,a(t j ) = SRj , ȧ(t j ) = Ṡ R j ,ϕ(t j ) = R jvR j , and ϕ̇(t j ) = R j v̇R j for
the input, and the substitutions A( j)

n = S( j)n and Ȧ( j)
n = Ṡ( j)n for the output. We call the

extrapolation method thus obtained the d
dξ d

(1)-transformation.

The Ṡ( j)n converge to Ṡ as quickly as S( j)n converge to S when the vn satisfy

v̇n = vn[K
′ log n + L ′ + o(1)] as n →∞, for some K ′ �= 0 and L ′. (14.2.26)

In addition, good stability and accuracy is achieved by using GPS, that is, by choosing
the Rl as in

R0 ≥ 1, Rl =
{
Rl−1 + 1 if �σ Rl−1� = Rl−1,
�σ Rl−1� otherwise,

l = 1, 2, . . . ; σ > 1.

(For σ = 1, we have Rl = l + 1, and we recall that, in this case, the d (1)-transformation
reduces to the Levin u-transformation.)
Aswe have seen earlier, tl = 1/Rl satisfy liml→∞(tl+1/tl) = σ−1. Consequently, from

Theorem 8.5.1 and Theorem 14.2.3, there holds

S( j)n − S = O(vR j R
−n+1
j ) as j →∞,

Ṡ( j)n − Ṡ = O(vR j R
−n+1
j log R j ) as j →∞.

An immediate application of the d
dξ d

(1)-transformation is to the summation of series of
the form

∑∞
k=1 vk log k, where vn are as in (14.2.23). This is possible because vk log k =

d
dξ [vkk

ξ ]|ξ=0. Thus, we should make the following substitutions in the d
dξW-algorithm:

t j = 1/R j , a(t j ) = SRj , ȧ(t j ) = Ṡ R j , ϕ(t j ) = R jvR j , and ϕ̇(t j ) = R jvR j log R j , where
Sn =

∑n
k=1 vk , Ṡn =

∑n
k=1 vk log k. The series

∑∞
k=1 vk log k can also be summed by

the d (2)-transformation, but this is more costly.
For further examples, see Sidi [302].
One important assumption we made here is that the asymptotic expansion of Sn can

be differentiated with respect to ξ term by term. This assumption seems to hold in
general. In Appendix E, we prove rigorously that it does for the partial sums Sn =∑n

k=1(k + θ − 1)−ξ of the generalized Zeta function ζ (ξ, θ ).
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15
The Euler Transformation, Aitken �2-Process, and

Lubkin W-Transformation

15.1 Introduction

In this chapter, we begin the treatment of sequence transformations. As mentioned in the
Introduction, a sequence transformation operates on a given sequence {An} and produces
another sequence { Ân} that hopefully converges more quickly than the former. We also
mentioned there that a sequence transformation is useful only when Ân is constructed
from a finite number of the Ak .
Our purpose in this chapter is to review briefly a few transformations that have been in

existence longer than others and that have been applied successfully in various situations.
These are the Euler transformation, which is linear, the Aitken �2-process and Lubkin
W -transformation, which are nonlinear, and a few of the more recent generalizations
of the latter two. As stated in the Introduction, linear transformations are usually less
effective than nonlinear ones, and they have been considered extensively in other places.
For these reasons, we do not treat them in this book. The Euler transformation is an
exception to this in that it is one of the most effective of the linear methods and also
one of the oldest acceleration methods. What we present here is a general version of the
Euler transformation known as the Euler–Knopp transformation. A good source for this
transformation on which we have relied is Hardy [123].

15.2 The Euler–Knopp (E, q) Method

15.2.1 Derivation of the Method

Given the infinite sequence {An}∞n=0, let us set a0 = A0 and an = An − An−1, n =
1, 2, . . . . Thus, An =

∑n
k=0 ak, n = 0, 1, . . . . We give two different derivations of

the Euler–Knopp transformation:

1. Let us define the operator E by Eak = ak+1 and Eiak = ak+i for all i = 0, 1, . . . .
Thus, formally,

∞∑

k=0
ak =

( ∞∑

k=0
Ek

)

a0 = (1− E)−1a0. (15.2.1)

279
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Next, let us expand (1− E)−1 formally as in

(1− E)−1 = [(1+ q)− (q + E)]−1

= (1+ q)−1
(

1− q + E

1+ q

)−1
=

∞∑

k=0

(q + E)k

(1+ q)k+1
. (15.2.2)

Since

(q + E)ka0 =
[ k∑

i=0

(
k

i

)

qk−i Ei

]

a0 =
k∑

i=0

(
k

i

)

qk−i ai , (15.2.3)

we finally have formally

∞∑

k=0
ak =

∞∑

k=0

1

(1+ q)k+1

k∑

i=0

(
k

i

)

qk−i ai . (15.2.4)

The double sum on the right-hand side of (15.2.4) is known as the (E, q) sum of∑∞
k=0 ak , whether the latter converges or not. If the (E, q) sum of

∑∞
k=0 ak is finite,

we say that
∑∞

k=0 ak is summable (E, q).
2. Consider the power series

∑∞
i=0 ai x

i+1 with small x . Consider the bilinear trans-
formation x = y/(1− qy). Thus, y = x/(1+ qx), so that y → 0 as x → 0 and
y → (1+ q)−1 as x → 1. Substituting this in

∑∞
i=0 ai x

i+1 and expanding in powers
of y, we obtain

∞∑

i=0
ai x

i+1 =
∞∑

k=0

(
x

1+ qx

)k+1 k∑

i=0

(
k

i

)

qk−i ai , (15.2.5)

which, upon setting x = 1, becomes (15.2.4).

By setting q = 1 in (15.2.4), we obtain

∞∑

k=0
ak =

∞∑

k=0

(−1)k
2k+1

(�kb0); bi = (−1)i ai , i = 0, 1, . . . . (15.2.6)

The right-hand side of (15.2.6), the (E, 1) sum of
∑∞

k=0 ak , is known as the Euler trans-
formation of the latter.
From (15.2.4), it is clear that the (E, q) method produces a sequence of approximations

Ân to the sum of
∑∞

k=0 ak , where

Ân =
n∑

k=0

1

(1+ q)k+1

k∑

i=0

(
k

i

)

qk−i ai , n = 0, 1, . . . . (15.2.7)

Obviously, Ân depends solely on a0, a1, . . . , an (hence on A0, A1, . . . , An), which
makes the (E, q) method an acceptable sequence transformation.
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15.2.2 Analytic Properties

It follows from (15.2.7) that the (E, q) method is a linear summability method, namely,

Ân =
n∑

i=0
µni Ai , µni = 1

(1+ q)n+1

(
n + 1

i + 1

)

qn−i , 0 ≤ i ≤ n. (15.2.8)

Theorem 15.2.1 Provided q > 0, the (E, q) method is a regular summability method,
i.e., if {An} has limit A, then so does { Ân}.

Proof. The proof can be achieved by showing that the Silverman–Toeplitz theorem
(Theorem 0.3.3) applies. �

Actually, when q > 0, we have
∑n

i=0 |µni | =
∑n

i=0 µni = 1− (1+ q)−n−1 < 1 for
all n, which implies that the (E, q) method is also a stable summability method. In the
sequel, we assume that q > 0.
The following result shows that the class of Euler–Knopp transformations is closed

under composition.

Theorem 15.2.2 Denote by { Ân} the sequence obtained by the (E, q) method on {An},
and denote by { Ãn} the sequence obtained by the (E, r ) method on { Ân}. Then { Ãn} is
also the sequence obtained by the (E, q + r + qr ) method on {An}.

The next result shows the beneficial effect of increasing q.

Theorem15.2.3 If {An} is summable (E, q), then it is also summable (E, q ′)with q ′ > q.

The proof of Theorem 15.2.2 follows from (15.2.8), and the proof of Theorem 15.2.3
follows from Theorem 15.2.2. We leave the details to the reader.
We next would like to comment on the convergence and acceleration properties of the

Euler–Knopp transformation. The geometric series turns out to be very instructive for this

purpose. Letting ak = zk in (15.2.7), we obtain Ân = (q + 1)−1
∑n

k=0
(

q+z
q+1

)k
. The se-

quence { Ân} converges to (1− z)−1 provided z ∈ Dq = B(−q; q + 1), where B(c; ρ) =
{z : |z − c| < ρ}. Since ∑∞

k=0 z
k converges for D0 = B(0; 1) and since D0⊂ Dq , we

see that the (E, q) method has enlarged the domain of convergence of
∑∞

k=0 z
k . Also,

Dq expands as q increases, since Dq ⊂ Dq ′ for q < q ′. This does not mean that the
(E, q) method always accelerates the convergence of

∑∞
k=0 z

k , however. Acceleration
takes place only when |q + z| < (q + 1)|z|, that is, only when z is in the exterior of D̂,
where D̂ = B(c; ρ) with c = 1/(q + 2) and ρ = (q + 1)/(q + 2). Note that D0 ⊃ D̂,
which means that not for every z ∈ D0 the (E, q) method accelerates convergence. For
z ∈ ∂ D̂, {An} and { Ân} converge at the same rate, whereas for z ∈ D̂, { Ân} converges
less rapidly than {An}. Let us consider the case q = 1. In this case, D̂ = B(1/3; 2/3), so
that for z = −1/4, z = −1/3, and z = −1/2, the series∑∞

k=0 z
k and its (E, 1) sum are,

respectively,
∑∞

k=0 (−1/4)k and 1
2

∑∞
k=0 (3/8)

k,
∑∞

k=0 (−1/3)k and 1
2

∑∞
k=0 (1/3)

k , and
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∑∞
k=0 (−1/2)k and 1

2

∑∞
k=0 (1/4)

k . Note that
∑∞

k=0 z
k is an alternating series for these

values of z.
Another interesting example forwhichwe can give Ân in closed form is the logarithmic

series
∑∞

k=0 z
k+1/(k + 1), which converges to log (1− z)−1 for |z| ≤ 1, z �= 1. Using

the fact that ai = zi+1/(i + 1) = zi+1
∫ 1
0 t i dt , we have

k∑

i=0

(
k

i

)

qk−i ai = z
∫ 1

0
(q + zt)kdt = (q + z)k+1

k + 1
− qk+1

k + 1
, k = 0, 1, . . . ,

so that

Ân =
n∑

k=0

1

k + 1

[(
q + z

q + 1

)k+1
−
(

q

q + 1

)k+1]
, n = 0, 1, . . . .

The (E, q) method thus enlarges the domain of convergence of {An} from B(0; 1)\{1}
to B(−q; q + 1)\{1}, as in the previous example. We leave the issue of the domain of
acceleration to the reader.
The following result, whose proof is given in Knopp [152, p. 263], gives a sufficient

condition for the (E, 1) method to accelerate the convergence of alternating series.

Theorem 15.2.4 Let ak = (−1)kbk and let the bk be positive and satisfy limk→∞ bk = 0
and (−1)i�i bk ≥ 0 for all i and k. In addition, assume that bk+1/bk ≥ α > 1/2, k =
0, 1, . . . . Then the sequence { Ân} generated by the (E, 1)method convergesmore rapidly
than {An}. If A = limn→∞ An, then

|An − A| ≥ 1

2
bn+1 ≥ 1

2
b0α

n+1 and | Ân − A| ≤ b02
−n−1,

so that

| Ân − A|
|An − A| ≤

1

α

(
1

2α

)n

.

Remark. Sequences {bk} as in Theorem 15.2.4 are called totally monotonic and we treat
them in more detail in the next chapter. Here, we state only the fact that if bk = f (k),
where f (x) ∈ C∞[0,∞) and (−1)i f (i)(x) ≥ 0 on [0,∞) for all i , then {bk} is totally
monotonic.
Theorem 15.2.4 suggests that the Euler transformation is especially effective on al-

ternating series
∑∞

k=0 (−1)kbk when bk+1/bk → 1 as k →∞. As an illustration, let us
apply the (E, 1) method to the series

∑∞
k=0 (−1)k/(k + 1) whose sum is log 2. This re-

sults in the series
∑∞

k=0 2
−k−1/(k + 1) that converges much more quickly. In this case,

| Ân − A|/|An − A| = O(2−n) as n →∞, in agreement with Theorem 15.2.4.
Being linear, the Euler transformation is also effective on infinite series of the

form
∑∞

k=0
(∑p

i=1 αi c
(i)
k

)
, where each of the sequences {c(i)k }

∞
k=0, i = 1, . . . , p, is as in

Theorem 15.2.4.
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Further results on the Euler–Knopp (E, q) method as this is applied to power series
can be found in Scraton [261], Niethammer [220], and Gabutti [90].

15.2.3 A Recursive Algorithm

The sequence { Ân} generated by the Euler–Knopp (E, q) method according to (15.2.7)
can also be computed by using the following recursive algorithm due to Wynn [375],
which resembles very much Algorithm 1.3.1 for the Richardson extrapolation process:

A( j)
−1 = A j−1, j = 0, 1, . . . ; (A−1 = 0)

A( j)
n = A( j+1)

n−1 + q A( j)
n−1

1+ q
, j, n = 0, 1, . . . . (15.2.9)

It can be shown by induction that

A( j)
n = A j−1 + (−q) j

1+ q

n∑

k=0

( −q

1+ q

)k

�k

(

(−1) j a j

q j

)

, (15.2.10)

with an as before. It is easy to verify that, for each j ≥ 0, {A( j)
n }∞n=0 is the sequence ob-

tained by applying the (E, q) method to the sequence {A j+n}∞n=0. In particular, A(0)
n = Ân,

n = 0, 1, . . . , with Ân as in (15.2.7). It is also clear from (15.2.9) that the Ân generated
by the (E, 1) method (the Euler transformation) are obtained from the An by the repeated
application of a simple averaging process.

15.3 The Aitken �2-Process

15.3.1 General Discussion of the �2-Process

We began our discussion of the Aitken �2-process already in Example 0.1.1 of the
Introduction. Let us recall that the sequence { Âm} generated by applying the�2-process
to {Am} is defined via

Âm = φm({As}) =
Am Am+2 − A2

m+1
Am − 2Am+1 + Am+2

=

∣
∣
∣
∣

Am Am+1
�Am �Am+1

∣
∣
∣
∣

∣
∣
∣
∣

1 1
�Am �Am+1

∣
∣
∣
∣

. (15.3.1)

Drummond [68] has shown that Âm can also be expressed as in

Âm = φm({As}) = �(Am/�Am)

�(1/�Am)
. (15.3.2)

Computationally stable forms of Âm are

Âm = Am − (�Am)2

�2Am
= Am+1 − (�Am)(�Am+1)

�2Am
. (15.3.3)

It is easy to verify that Âm is also the solution of the equations Ar+1 − Âm = λ(Ar − Âm),
r = m,m + 1, where λ is an additional auxiliary unknown. Therefore, when {Am} is
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such that Am+1 − A = λ(Am − A) , m = 0, 1, 2, . . . , (equivalently, Am = A + Cλm ,
m = 0, 1, 2, . . . ), for some λ �= 0, 1, we have Âm = A for all m.
The�2-process has been analyzed extensively for general sequences {Am} by Lubkin

[187] and Tucker [339], [340]. The following results are due to Tucker.

1. If {Am} converges to A, then there exists a subsequence of { Âm} that converges to A
too.

2. If {Am} and { Âm} converge, then their limits are the same.
3. If {Am} converges to A and if |(�Am/�Am−1)− 1| ≥ δ > 0 for all m, then { Âm}

converges to A too.

Of these results the third is quite easy to prove, and the second follows from the first.
For the first, we refer the reader to Tucker [339]. Note that none of these results concerns
convergence acceleration. Our next theorem shows convergence acceleration for general
linear sequences. The result in part (i) of this theorem appears in Henrici [130, p. 73,
Theorem 4.5], and that in part (ii) (already mentioned in the Introduction) is a special
case of amore general result ofWynn [371] on the Shanks transformation that we discuss
in the next chapter.

Theorem 15.3.1

(i) If limm→∞(Am+1 − A)/(Am − A) = λ for some λ �= 0, 1, then limm→∞( Âm − A)/
(Am − A) = 0, whether {Am} converges or not.

(ii) If Am = A + aλm + bµm + O(νm) as m →∞, where a, b �= 0, |λ| > |µ|, and
λ,µ �= 0, 1, and |ν| < min{1, |µ|}, then Âm − A ∼ b( λ−µ

λ−1 )
2µm as m →∞,

whether {Am} converges or not.

Proof. We start with the error formula

Âm − A = 1

�2Am

∣
∣
∣
∣
Am − A Am+1 − A
�Am �Am+1

∣
∣
∣
∣ (15.3.4)

that follows from (15.3.1). By elementary row transformations, we next have

Âm − A

Am − A
= 1

rm − 1

∣
∣
∣
∣
1 Rm

1 rm

∣
∣
∣
∣; Rm ≡ Am+1 − A

Am − A
, rm ≡ �Am+1

�Am
. (15.3.5)

Now limm→∞ Rm = λ �= 0, 1 implies limm→∞ rm = λ aswell, since rm = Rm(Rm+1 − 1)/
(Rm − 1). This, in turn, implies that the right-hand side of the equality in (15.3.5) tends to
0 as m →∞. This proves part (i). The proof of part (ii) can be done by making suitable
substitutions in (15.3.4). �

Let us now consider the case in which the condition |λ| > |µ| of part (ii) of
Theorem 15.3.1 is not satisfied. In this case, we have |λ| = |µ| only, and we can-
not make a definitive statement on the convergence of { Âm}. We can show instead
that at least a subsequence of { Âm} satisfies Âm − A = O(λm) as m →∞; hence,
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no convergence acceleration takes place. This follows from the fact that �2Am =
a(λ− 1)2λm

[

1+ b
a

(
µ−1
λ−1

)2
eimθ + O

(|ν/µ|m)
]

asm →∞, where θ is real and defined
by eiθ = µ/λ.
Before proceeding further, we give the following definition, which will be useful in

the remainder of the book. At this point, it is worth reviewing Theorem 6.7.4.

Definition 15.3.2

(i) We say that {Am} ∈ b(1)/LOG if

Am ∼ A +
∞∑

i=0
αim

γ−i as m →∞, γ �= 0, 1, . . . , α0 �= 0. (15.3.6)

(ii) We say that {Am} ∈ b(1)/LIN if

Am ∼ A + ζm
∞∑

i=0
αim

γ−i as m →∞, ζ �= 1, α0 �= 0. (15.3.7)

(iii) We say that {Am} ∈ b(1)/FAC if

Am ∼ A + (m!)−rζm
∞∑

i=0
αim

γ−i as m →∞, r = 1, 2, . . . , α0 �= 0. (15.3.8)

In cases (i) and (ii), {Am} may be convergent or divergent, and A is either the limit or
antilimit of {Am}. In case (iii), {Am} is always convergent and A = limm→∞ Am .

Note that, if {Am} is as in Definition 15.3.2, then {�Am} ∈ b(1). Also recall that the
sequences in Definition 15.3.2 satisfy Theorem 6.7.4. This fact is used in the analysis of
the different sequence transformations throughout the rest of this work.
The next theorem too concerns convergence acceleration when the �2-process is

applied to sequences {Am} described in Definition 15.3.2. Note that the first of the
results in part (ii) of this theorem was already mentioned in the Introduction.

Theorem 15.3.3

(i) If {Am} ∈ b(1)/LOG, then Âm − A ∼∑∞
i=0wimγ−i as m →∞, w0 = α0

1−γ �= 0.

(ii) If {Am} ∈ b(1)/LIN, then (a) Âm − A ∼ ζm
∑∞

i=0wimγ−2−i as m →∞, w0 =
−α0γ ( ζ

ζ−1 )
2 �= 0, if γ �= 0 and (b) Âm − A ∼ ζm

∑∞
i=0wim−3−i as m →∞,

w0 = 2α1(
ζ

ζ−1 )
2 �= 0, if γ = 0 and α1 �= 0.

(iii) If {Am} ∈ b(1)/FAC, then Âm − A ∼ (m!)−rζm
∑∞

i=0wimγ−2r−1−i as m →∞,
w0 = −α0ζ 2r �= 0.

Here we have adopted the notation of Definition 15.3.2.

Proof. All three parts can be proved by using the error formula in (15.3.4). We leave the
details to the reader. �
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It is easy to show that limm→∞( Âm − A)/(Am+2 − A) = 0 in parts (ii) and (iii) of
this theorem, which implies convergence acceleration for linear and factorial sequences.
Part (i) shows that there is no convergence acceleration for logarithmic sequences.
Examples in which the�2-process behaves in peculiar ways can also be constructed.

Let Am =
∑m

k=0 (−1)�k/2�/(k + 1),m = 0, 1, . . . . Thus, Am is the mth partial sum of
the convergent infinite series 1+ 1/2− 1/3− 1/4+ 1/5+ 1/6− · · · whose sum is
A = π

4 + 1
2 log 2. The sequence { Âm} generated by the�2-process does not converge in

this case. We actually have

Â2m = A2m + (−1)m 2m + 3

(2m + 2)(4m + 5)
and Â2m+1 = A2m+1 + (−1)m+1 2m + 4

2m + 3
,

from which it is clear that the sequence { Âm} has A, A + 1, and A − 1 as its limit
points. (However, the Shanks transformation that we discuss in the next chapter and the
d (2)-transformation are effective on this sequence.) This example is due to Lubkin [187,
Example 7].

15.3.2 Iterated �2-Process

The �2-process on {Am} can be iterated as many times as desired. This results in the
following method, which we denote the iterated �2-process:

B( j)
0 = A j , j = 0, 1, . . . ,

B( j)
n+1 = φ j ({B(s)

n }), n, j = 0, 1, . . . . (15.3.9)

[Thus, B( j)
1 = Â j with Â j as in (15.3.1).] Note that B( j)

n is determined by Ak , j ≤ k ≤
j + 2n.
The use of this method can be justified with the help of Theorems 15.3.1 and 15.3.3

in the following cases:

1. If Am ∼ A +∑∞
k=1 αkλ

m
k as m →∞, where λk �= 1 for all k, |λ1| > |λ2| > · · · ,

limk→∞ λk = 0 and αk �= 0 for all k, then it can be shown by expanding Âm properly
that Âm ∼ A +∑∞

k=1 βkξ
m
k as m →∞, where ξk are related to the λk and satisfy

|ξ1| > |ξ2| > . . . , limk→∞ ξk = 0, and ξ1 = λ2, in addition. Because { Âm} converges
more rapidly (or diverges less rapidly) than {Am} and because Âm has an asymptotic
expansion of the same form as that of Am , the �2-process can be applied to { Âm}
very effectively, provided ξk �= 1 for all k.

2. If {Am} ∈ b(1)/LINor {Am} ∈ b(1)/FAC, then, by parts (ii) and (iii) of Theorem15.3.3,
Âm has an asymptotic expansion of precisely the same form as that of Am and con-
verges more quickly than Am . This implies that the�2-process can be applied to { Âm}
very effectively. This is the subject of the next theorem.

Theorem 15.3.4

(i) If {Am} ∈ b(1)/LOG, then as j →∞

B( j)
n − A ∼

∞∑

i=0
wni j

γ−i , wn0 = α0

(1− γ )n
�= 0.
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(ii) If {Am} ∈ b(1)/LIN with γ �= 0, 2, . . . , 2n − 2, then as j →∞

B( j)
n − A ∼ ζ j

∞∑

i=0
wni j

γ−2n−i , wn0 = (−1)nα0
[n−1∏

i=0
(γ − 2i)

](
ζ

ζ − 1

)2n

�= 0.

For the remaining values of γ we have B( j)
n − A = O(ζ j jγ−2n−1).

(iii) If {Am} ∈ b(1)/FAC, then as j →∞

B( j)
n − A ∼ ( j!)−rζ j

∞∑

i=0
wni j

γ−(2r+1)n−i , wn0 = (−1)nα0(ζ 2r )n �= 0.

Here we have adopted the notation of Definition 15.3.2.

It can be seen from this theorem that the sequence {B( j)
n+1}∞j=0 converges faster than

{B( j)
n }∞j=0 in parts (ii) and (iii), but no acceleration takes place in part (i).
We end with Theorem IV of Shanks [264], which shows that the iterated �2-process

may also behave peculiarly.

Theorem 15.3.5 Let {Am} be the sequence of partial sums of the Maclaurin series for
f (z) = 1/[(z − z0)(z − z1)], 0 < |z0| < |z1|, and define zr = z0(z1/z0)r , r = 2, 3, . . . .
Apply the iterated �2-process to {Am} as in (15.3.9). Then (i) provided |z| < |zn| and
z �= zr , r = 0, 1, . . . , B( j)

n → f (z) as j →∞, (ii) for z = z0 and z = z1, B
( j)
n →∞

as j →∞, and (iii) for z = z2 = z21/z0 and n ≥ 2, B( j)
n →

[
1− z0z1

(z0+z1)2

]
f (z2) �=

f (z2) as j →∞.

Note that in this theorem, Am = A + aλm + bµm with A = f (z), λ = z/z0, and
µ = z/z1, |λ| > |µ|, and suitable a �= 0 and b �= 0. Then Â j = B( j)

1 is of the form
B( j)
1 = A +∑∞

k=1 βkξ
j
k , where ξk = µ(µ/λ)k−1, k = 1, 2, . . . , and βk �= 0 for all k.

If z = z2, then ξ2 = µ2/λ = 1, and this implies that B( j)
1 = B +∑∞

k=1 β̂k ξ̂
j
k , where

B = A + β2 �= A and ξ̂ 1 = ξ1 and ξ̂ k = ξk+1, k = 2, 3, . . . , and ξ̂ k �= 1 for all k. Fur-
thermore, |ξ̂ k | < 1 for k = 2, 3, . . . , so that B( j)

2 → B as j →∞ for z = z2. This
explains why {B( j)

n }∞j=0 converges, and to the wrong answer, when z = z2, for n ≥ 2.

15.3.3 Two Applications of the Iterated �2-Process

Two common applications of the �2-process are to the power method for the matrix
eigenvalue problem and to the iterative solution of nonlinear equations.
In the power method for an N × N matrix Q, we start with an arbitrary vector x0 and

generate x1, x2, . . . , via xm+1 = Qxm . For simplicity, assume that Q is diagonalizable.
Then, the vector xm is of the form xm =

∑p
k=1 vkµ

m
k , where Qvk = µkvk for each k and

µk are distinct and nonzero and p ≤ N . If |µ1| > |µ2| ≥ |µ3| ≥ · · · , and if the vector y
is such that y∗v1 �= 0, then

ρm = y∗xm+1
y∗xm

=
∑p

k=1 γkµ
m+1
k∑p

k=1 γkµ
m
k

= µ1 +
∞∑

k=1
αkλ

m
k ; γk = y∗vk, k = 1, 2, . . . .



288 15 The Euler Transformation

where λk are related to the µk and 1 > |λ1| ≥ |λ2| ≥ · · · and λ1 = µ2/µ1. Thus, the
iterated �2-process can be applied to {ρm} effectively to produce good approximations
to µ1.
If Q is a normal matrix, then better results can be obtained by choosing y = xm . In

this case, ρm is called a Rayleigh quotient, and

ρm = x∗mxm+1
x∗mxm

=
∑p

k=1 δk |µk |2mµk
∑p

k=1 δk |µk |2m
= µ1 +

∞∑

k=1
σk |λk |2m ; δk = v∗kvk, k = 1, 2, . . . ,

with the λk exactly as before. Again, the iterated�2-process can be applied to {ρm}, but
it is much more effective than before.
In the fixed-point iterative solution of a nonlinear equation x = g(x), we beginwith an

arbitrary approximation x0 to the solution s and generate the sequence of approximations
{xm} via xm+1 = g(xm). It is known that, provided |g′(s)| < 1 and x0 is sufficiently close
to s, the sequence {xm} converges to s linearly in the sense that limm→∞(xm+1 − s)/
(xm − s) = g′(s). There is, however, a very elegant result concerning the asymptotic
expansion of the xm when g(x) is infinitely differentiable in a neighborhood of s, and
this result reads

xm ∼ s +
∞∑

k=1
αkλ

km as m →∞, α1 �= 0, λ = g′(s),

for some αk that depend only on g(x) and x0. (See de Bruijn [42, pp. 151–153] and also
Meinardus [210].) If {x̂m} is the sequence obtained by applying the �2-process to {xm},
then by a careful analysis of x̂m it follows that

x̂m ∼ s +
∞∑

k=1
βkλ

(k+1)m as m →∞.

It is clear in this problem as well that the iterated �2-process is very effective, and we
have

B( j)
n − s = O(λ(n+1) j ) as j →∞.

In conjunction with the iterative method for the nonlinear equation x = g(x), we
would like to mention a different usage of the �2-process that reads as follows:

Pick u0 and set x0 = u0.
for m = 1, 2, . . . , do

Compute x1 = g(x0) and x2 = g(x1).
Compute um = (x0x2 − x21 )/(x0 − 2x1 + x2).
Set x0 = um .

end do

This is known as Steffensen’s method. When g(x) is twice differentiable in a neigh-
borhood of s, provided x0 is sufficiently close to s and g′(s) �= 1, the sequence {um}
converges to s quadratically, i.e., limn→∞(um+1 − s)/(um − s)2 = C �= ±∞.
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15.3.4 A Modified �2-Process for Logarithmic Sequences

For sequences {Am} ∈ b(1)/LOG, the �2-process is not effective, as we have already
seen in Theorem 15.3.3. To remedy this, Drummond [69] has proposed (in the notation
of Definition 15.3.2) the following modification of the�2-process, which we denote the
�2(γ )-process:

Âm = ψm({As}; γ ) = Am+1 − γ − 1

γ

(�Am)(�Am+1)
�2Am

, m = 0, 1, . . . . (15.3.10)

[Note that we have introduced the factor (γ − 1)/γ in the Aitken formula (15.3.3).] We
now give a new derivation of (15.3.10), through which we also obtain a convergence
result for { Âm}.
Let us set a0 = A0 and am = Am − Am−1, m ≥ 1, and define p(m) = am/�am,m ≥

0. Using summation by parts, we obtain [see (6.6.16) and (6.6.17)],

Am =
m∑

k=0
p(k)�ak = p(m)am+1 −

m∑

k=0
[�p(k − 1)]ak, p(k) = 0 if k < 0. (15.3.11)

Now am = h(m) ∈ A(γ−1)
0 strictly, so that p(m) ∈ A(1)

0 strictly with p(m) ∼ 1
γ−1m +

∑∞
i=0 cim

−i asm →∞. As a result,�p(m) = 1
γ−1 + q(m), where q(m) ∈ A(−2)

0 . Thus,
(15.3.11) becomes

Am = p(m)am+1 − 1

γ − 1
Am −

m∑

k=0
q(k − 1)ak,

from which

Am = γ − 1

γ
p(m)am+1 + Bm, Bm = 1− γ

γ

m∑

k=0
q(k − 1)ak . (15.3.12)

Noting that q(m − 1)am = q(m − 1)h(m) ∈ A(γ−3)
0 and applying Theorem6.7.2, we first

obtain Bm = B + H (m), where B is the limit or antilimit of {Bm} and H (m) ∈ A(γ−2)
0 .

Because p(m)am+1 ∈ A(γ )
0 strictly, we have that γ−1

γ
p(m)am+1 + H (m) ∈ A(γ )

0 strictly.
Invoking now that γ �= 0, 1, . . . , we therefore have that B is nothing but A, namely, the
limit or antilimit of {Am}. Thus, we have

Am − γ − 1

γ
p(m)am+1 = A + H (m) = A + O(mγ−2) as m →∞. (15.3.13)

Now the left-hand side of (15.3.13) is nothing but Âm−1 in (15.3.10), and we have also
proved the following result:

Theorem 15.3.6 Let {Am} ∈ b(1)/LOG in the notation of Definition 15.3.2 and Âm be
as in (15.3.10). Then

Âm ∼ A +
∞∑

i=0
wim

γ−2−i as m →∞. (15.3.14)
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In view of Theorem 15.3.6, we can iterate the �2(γ )-process as in the next theorem,
whose proof is left to the reader.

Theorem 15.3.7 With ψm({As}; γ ) as in (15.3.10), define

B( j)
0 = A j , j = 0, 1, . . . ,

B( j)
n+1 = ψ j ({B(s)

n }; γ − 2n), n, j = 0, 1, . . . , (15.3.15)

When {Am} ∈ b(1)/LOG, we have that

B( j)
n − A ∼

∞∑

i=0
wni j

γ−2n−i as j →∞, n fixed. (15.3.16)

Here wni = 0, 0 ≤ i ≤ I , for some I ≥ 0 is possible.

The use of the �2(γ )-process of (15.3.10) in iterated form was suggested by
Drummond [69], who also alluded to the result in (15.3.16). The results in (15.3.14)
and (15.3.16) were also given by Bjørstad, Dahlquist, and Grosse [26].
We call the method defined through (15.3.15) the iterated �2(γ )-process.
It is clear from (15.3.10) and (15.3.15) that to be able to use the �2(γ )- and iterated

�2(γ )-processes we need to have precise knowledge of γ . In this sense, this method is
less user-friendly than other methods (for example, the LubkinW -transformation, which
we treat in the next section) that do not need any such input. To remedy this deficiency,
Drummond [69] proposed to approximate γ in (15.3.10) by γm defined by

γm = 1− (�am)(�am+1)
amam+2 − a2m+1

= 1+ 1

�(am/�am)
. (15.3.17)

It is easy to show (see Bjørstad, Dahlquist, and Grosse [26]) that

γm ∼ γ +
∞∑

i=0
eim

−2−i as m →∞. (15.3.18)

Using an approach proposed by Osada [225] in connection with some modifications
of the Wynn ρ-algorithm, we can use the iterated �2(γ )-process as follows: Taking
(15.3.18) into account, we first apply the iterated �2(−2)-process to the sequence {γm}
to obtain the best possible estimate γ̂ to γ . Following that, we apply the iterated�2(γ̂ )-
process to the sequence {Am} to obtain approximations to A. Osada’s work is reviewed
in Chapter 20.

15.4 The Lubkin W -Transformation

The W-transformation of Lubkin [187], when applied to a sequence {Am}, produces the
sequence { Âm}, whose members are given by

Âm = Wm({As}) = Am+1 + (�Am+1)(1− rm+1)
1− 2rm+1 + rmrm+1

, rm ≡ �Am+1
�Am

. (15.4.1)
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It can easily be verified (see Drummond [68] and Van Tuyl [343]) that Âm can also be
expressed as in

Âm = Wm({As}) = �2(Am/�Am)

�2(1/�Am)
= �(Am+1 ×�(1/�Am))

�2(1/�Am)
. (15.4.2)

Note also that the column {θ ( j)2 }∞j=0 of the θ -algorithm and the column {u( j)
2 } of the Levin

u-transformation are identical to the Lubkin W -transformation.
Finally, with the help of the first formula in (15.4.2), it can be shown that Wm ≡

Wm({As}) can also be expressed in terms of the φk ≡ φk({As}) of the �2-process as
follows:

Wm = φm+1 − qmφm

1− qm
, qm = rm+1

1− rm
1− rm+1

. (15.4.3)

The following are known:

1. Âm = A for all m = 0, 1, . . . , if and only if Am is of the form

Am = A + C
m∏

k=1

ak + b + 1

ak + b
, C �= 0, a �= 1, ak + b �= 0,−1, k = 1, 2, . . . .

Obviously, Am = A + Cλm , λ �= 0, 1, is a special case. This result on the kernel of
the Lubkin transformation is due to Cordellier [56]. We obtain it as a special case of
a more general one on the Levin transformations later.

2. Wimp [366] has shown that, if |rm − λ| ≤ δ < δ∗ for all m, where 0 < |λ| < 1 and
δ∗ = [|λ− 1|2 + (|λ| + 1)2]

1/2 − (|λ| + 1), and if {Am} → A, then { Âm} → A too.
3. Lubkin [187] has shown that, if limm→∞(Am+1 − A)/(Am − A) = λ for some λ �=

0, 1, then limm→∞( Âm − A)/(Am − A) = 0. [This can be proved by combining
(15.4.3), part (i) of Theorem 15.3.3, and the fact that limm→∞ rm = λ.]

For additional results of a general nature on convergence acceleration, see Lubkin [187]
and Tucker [339], [340]. The next theorem shows that the W -transformation accelerates
the convergence of all sequences discussed in Definition 15.3.2 and is thus analogous
to Theorem 15.3.3. We leave its proof to the reader. Note that parts (i) and (ii) of this
theorem are special cases of results corresponding to the Levin transformation that were
given by Sidi [273]. Part (i) of this theorem was also given by Sablonnière [248] and
Van Tuyl [343]. Part (iii) was given recently by Sidi [307]. For details, see [307].

Theorem 15.4.1

(i) If {Am} ∈ b(1)/LOG, then Âm − A ∼∑∞
i=0wim γ̂−i as m →∞, such that γ̂ − γ

is an integer ≤ −2. Thus Âm − A = O(mγ−2) as m →∞.
(ii) If {Am} ∈ b(1)/LIN, then Âm − A ∼ ζm

∑∞
i=0wim γ̂−i as m →∞, such that γ̂ − γ

is an integer ≤ −3. Thus Âm − A = O(ζmmγ−3) as m →∞.
(iii) If {Am} ∈ b(1)/FAC, then Âm − A ∼ (m!)−rζm

∑∞
i=0wimγ−3r−2−i as m →∞,

w0 = α0ζ
3r (r + 1) �= 0. Thus, Âm − A = O((m!)−rζmmγ−3r−2) as m →∞.

Here we have adopted the notation of Definition 15.3.2.
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It is easy to show that limm→∞( Âm − A)/(Am+3 − A) = 0 in all three parts of this
theorem, which implies convergence acceleration for linear, factorial, and logarithmic
sequences.
Before we proceed further, we note that, when applied to the sequence {Am}, Am =∑m
k=0(−1)�k/2�/(k + 1),m = 0, 1, . . . , theW -transformation converges, but is not better

than the sequence itself, as mentioned in [187].
It follows from Theorem 15.4.1 that the Lubkin W -transformation can also be

iterated. This results in the following method, which we denote the iterated Lubkin
transformation:

B( j)
0 = A j , j = 0, 1, . . . ,

B( j)
n+1 = Wj ({B(s)

n }), n, j = 0, 1, . . . . (15.4.4)

[Thus, B( j)
1 = Â j with Â j as in (15.3.1).] Note that B( j)

n is determined by Ak , j ≤ k ≤
j + 3n.
The results of iterating the W -transformation are given in the next theorem. Again,

part (i) of this theorem was given in [248] and [343], and parts (ii) and (iii) were given
recently in [307].

Theorem 15.4.2

(i) If {Am} ∈ b(1)/LOG, then there exist constants γk such that γ0 = γ and γk − γk−1
are integers ≤ −2, for which, as j →∞,

B( j)
n − A ∼

∞∑

i=0
wni j

γn−i , wn0 �= 0.

(ii) If {Am} ∈ b(1)/LIN, then there exist constants γk such that γ0 = γ and γk − γk−1
are integers ≤ −3, for which, as j →∞,

B( j)
n − A ∼ ζ j

∞∑

i=0
wni j

γn−i , wn0 �= 0.

(iii) If {Am} ∈ b(1)/FAC, then as j →∞

B( j)
n − A ∼ ( j!)−rζ j

∞∑

i=0
wni j

γ−(3r+2)n−i , wn0 = α0[ζ
3r (r + 1)]n �= 0.

Here we have adopted the notation of Definition 15.3.2.

It can be seen from this theorem that the sequence {B( j)
n+1}∞j=0 converges faster than

{B( j)
n }∞j=0 for all sequences considered.
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15.5 Stability of the Iterated �2-Process and Lubkin Transformation

15.5.1 Stability of the Iterated �2-Process

From (15.3.1), we can write Âm = θ0Am + θ1Am+1, where θ0 = �Am+1/�2Am and
θ1 = −�Am/�

2Am . Consequently, we can express B( j)
n as in

B( j)
n+1 = λ( j)n B( j)

n + µ( j)
n B( j+1)

n , (15.5.1)

where

λ( j)n = �B( j+1)
n /�2B( j)

n and µ( j)
n = −�B( j)

n /�2B( j)
n , (15.5.2)

and �B( j)
n = B( j+1)

n − B( j)
n for all j and n. Thus, we can write

B( j)
n =

n∑

i=0
γ
( j)
ni A j+i , (15.5.3)

where the γ ( j)
ni satisfy the recursion relation

γ
( j)
n+1,i = λ( j)n γ

( j)
ni + µ( j)

n γ
( j+1)
n,i−1 , i = 0, 1, . . . , n + 1. (15.5.4)

Herewe define γ ( j)
ni = 0 for i < 0 and i > n. In addition, from the fact thatλ( j)n + µ

( j)
n = 1,

it follows that
∑n

i=0 γ
( j)
ni = 1.

Let us now define

P ( j)
n (z) =

n∑

i=0
γ
( j)
ni zi and �( j)

n =
n∑

i=0
|γ ( j)

ni |. (15.5.5)

As we have done until now, we take �( j)
n as a measure of propagation of the errors in

the Am into B( j)
n . Our next theorem, which seems to be new, shows how P ( j)

n (z) and �( j)
n

behave as j →∞. As before, we adopt the notation of Definition 15.3.2.

Theorem 15.5.1

(i) If {Am} ∈ b(1)/LIN, with γ �= 0, 2, . . . , 2n − 2, then

lim
j→∞

P ( j)
n (z) =

(
z − ζ

1− ζ

)n

and lim
j→∞

�( j)
n =

(
1+ |ζ |
|1− ζ |

)n

.

(ii) If {Am} ∈ b(1)/FAC, then

lim
j→∞

P ( j)
n (z) = zn and lim

j→∞
�( j)

n = 1.

Proof. Combining Theorem 15.3.4 and (15.5.2), we first obtain that (i) λ( j)n ∼ ζ/(ζ − 1)
and µ

( j)
n ∼ −1/(ζ − 1) as j →∞ for all n in part (i), and (ii) lim j→∞ λ

( j)
n = 0 and

lim j→∞ µ
( j)
n = 1 for all n in part (ii). We leave the rest of the proof to the reader. �

Note that we have not included the case in which {Am} ∈ b(1)/LOG in this theorem.
The reason for this is that we would not use the iterated �2-process on such sequences,
and hence discussion of stability for such sequences is irrelevant. For linear and factorial
sequences Theorem 15.5.1 shows stability.
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15.5.2 Stability of the Iterated Lubkin Transformation

From the second formula in (15.4.2), we can write Âm = θ1Am+1 + θ2Am+2, where θ1 =
−�(1/�Am)/�2(1/�Am) and θ2 = �(1/�Am+1)/�2(1/�Am). Consequently, we can
express B( j)

n as in

B( j)
n+1 = λ( j)n B( j+1)

n + µ( j)
n B( j+2)

n , (15.5.6)

where

λ( j)n = − �(1/�B( j)
n )

�2(1/�B( j)
n )

and µ( j)
n = �(1/�B( j+1)

n )

�2(1/�B( j)
n )

, (15.5.7)

and �B( j)
n = B( j+1)

n − B( j)
n for all j and n. Thus, we can write

B( j)
n =

n∑

i=0
γ
( j)
ni A j+n+i , (15.5.8)

where the γ ( j)
ni satisfy the recursion relation

γ
( j)
n+1,i = λ( j)n γ

( j+1)
ni + µ( j)

n γ
( j+2)
n,i−1 , i = 0, 1, . . . , n + 1. (15.5.9)

Here we define γ ( j)
ni = 0 for i < 0 and i > n. Again, from the fact that λ( j)n + µ

( j)
n = 1,

there holds
∑n

i=0 γ
( j)
ni = 1.

Let us now define again

P ( j)
n (z) =

n∑

i=0
γ
( j)
ni zi and �( j)

n =
n∑

i=0
|γ ( j)

ni |. (15.5.10)

Again, we take �( j)
n as a measure of propagation of the errors in the Am into B( j)

n . The
next theorem, due to Sidi [307], shows how P ( j)

n (z) and �( j)
n behave as j →∞. The

proof of this theorem is almost identical to that of Theorem 15.5.1. Only this time we
invoke Theorem 15.4.2.

Theorem 15.5.2

(i) If {Am} ∈ b(1)/LOG, then

P ( j)
n (z) ∼

(n−1∏

k=0
γk

)−1
(1− z)n jn and �( j)

n ∼
∣
∣
∣
∣

n−1∏

k=0
γk

∣
∣
∣
∣

−1
(2 j)n as j →∞,

where γk are as in part (i) of Theorem 15.4.2.
(ii) If {Am} ∈ b(1)/LIN, then

lim
j→∞

P ( j)
n (z) =

(
z − ζ

1− ζ

)n

and lim
j→∞

�( j)
n =

(
1+ |ζ |
|1− ζ |

)n

.

(iii) If {Am} ∈ b(1)/FAC, then

lim
j→∞

P ( j)
n (z) = zn and lim

j→∞
�( j)

n = 1.
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Thus, for logarithmic sequences the iterated Lubkin transformation is not stable,
whereas for linear and factorial sequences it is.

15.6 Practical Remarks

As we see from Theorems 15.5.1 and 15.5.2, for both of the iterated transformations,
�
( j)
n is proportional to (1− ζ )−n as j →∞when {Am} ∈ b(1)/LIN. This implies that, as

ζ approaches 1, the singular point of A, the methods suffer from diminishing stability. In
addition, the theoretical error B( j)

n − A for such sequences, as j →∞, is proportional
to (1− ζ )−2n in the case of the iterated �2-process and to (1− ζ )−n in the case of the
iterated Lubkin transformation. (This is explicit in Theorem 15.3.4 for the former, and it
can be shown for the latter by refining the proof of Theorem 15.4.2 as in [307].) That is,
as ζ → 1, the theoretical error B( j)

n − A and �( j)
n grow simultaneously. We can remedy

both problems by using arithmetic progression sampling (APS), that is, by applying
the methods to a subsequence {Aκm+η}, where κ and η are fixed integers with κ ≥ 2.
The justification for this follows from the fact that the factor (1− ζ )−n is now replaced
everywhere by (1− ζ κ )−n , which can be kept at a moderate size by a judicious choice of
κ that removes ζ from 1 in the complex plane sufficiently. Numerical experience shows
that this strategy works very well.
From Theorems 15.3.4 and 15.4.2, only the iterated Lubkin transformation is useful

for sequences {Am} ∈ b(1)/LOG. From Theorem 15.5.2, this method is unstable even
though it is convergent mathematically. The most direct way of obtaining more accuracy
from the B( j)

n in finite-precision arithmetic is by increasing the precision being used
(doubling it, for example). Also, note that, when |!γ | is sufficiently large, the product∏n−1

k=0 |γk | increases in size, whichmakes�( j)
n small (even though�( j)

n →∞ as j →∞).
This implies that good numerical accuracy can be obtained for the B( j)

n without having
to increase the precision of the arithmetic being used in such a case.
As for sequences {Am} ∈ b(1)/FAC, bothmethods are effective and stable numerically,

as the relevant theorems show.
Finally, the diagonal sequences {B( j)

n }∞n=0 with fixed j (e.g., j = 0) have better con-
vergence properties than the column sequences {B( j)

n }∞j=0 with fixed n.

15.7 Further Convergence Results

In this section, we state two more convergence results that concern the application of
the iterated modified �2-process (in a suitably modified form) and the iterated Lubkin
transformation to sequences {Am} for which

Am ∼ A +
∞∑

i=0
αim

γ−i/p as m →∞, p ≥ 2 integer,

γ �= i

p
, i = 0, 1, . . . , α0 �= 0. (15.7.1)

Obviously, Am − A = h(m) ∈ Ã(γ,p)
0 strictly. (Recall that the case with p = 1 is already

treated in Theorems 15.3.7 and 15.4.2.)
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The following convergence acceleration results were proved by Sablonnière [248]
with p = 2 and by Van Tuyl [343] with general p.

Theorem 15.7.1 Consider the sequence {Am} described in (15.7.1) and, with
ψm({As}; γ ) as defined in (15.3.10), set

B( j)
0 = A j , j = 0, 1, . . . ,

B( j)
n+1 = ψ j ({B(s)

n }; γ − n/p), n, j = 0, 1, . . . . (15.7.2)

Then

B( j)
n − A ∼

∞∑

i=0
wni j

γ−(n+i)/p) as j →∞. (15.7.3)

Here wni = 0, 0 ≤ i ≤ I , for some I ≥ 0 is possible.

We denote the method described by (15.7.2) the iterated �2(γ, p)-process. It is
important to realize that this method does not reduce to the iterated�2(γ )-process upon
setting p = 1.

Theorem 15.7.2 Consider the sequence {Am} described in (15.7.1) and let B( j)
n be as

defined via the iterated Lubkin transformation in (15.4.4). Then there exist scalars γk
such that γ0 = γ and (γk − γk−1)p are integers ≤ −1, k = 1, 2, . . . , for which

B( j)
n − A ∼

∞∑

i=0
wni j

γn−i/p as j →∞, wn0 �= 0. (15.7.4)



16
The Shanks Transformation

16.1 Derivation of the Shanks Transformation

In our discussion of algorithms for extrapolation methods in the Introduction, we pre-
sented a brief treatment of the Shanks transformation and the ε-algorithm as part of
this discussion. This transformation was originally derived by Schmidt [258] for solving
linear systems by iteration. After being neglected for a long time, it was resurrected by
Shanks [264], who also gave a detailed study of its remarkable properties. Shanks’ paper
was followed by that of Wynn [368], in which the ε-algorithm, the most efficient im-
plementation of the Shanks transformation, was presented. The papers of Shanks and
Wynn made an enormous impact and paved the way for more research in sequence
transformations.
In this chapter, we go into the details of the Shanks transformation, one of the most

useful sequence transformations to date. We start with its derivation.
Let {Am} be a given sequence with limit or antilimit A. Assume that {Am} satisfies

Am ∼ A +
∞∑

k=1
αkλ

m
k as m →∞, (16.1.1)

for some nonzero constants αk and λk independent of m, with λk distinct and λk �= 1 for
all k, and |λ1| ≥ |λ2| ≥ · · · , such that limk→∞ λk = 0. Assume, furthermore, that the
λk are not necessarily known. Note that the condition that limk→∞ λk = 0 implies that
there can be only a finite number of λk that have the same modulus.
Obviously, when |λ1| < 1, the sequence {Am} converges and limm→∞ Am = A. When

|λ1| = 1, {Am} diverges but is bounded.When |λ1| > 1, {Am} diverges and is unbounded.
In case the summation in (16.1.1) is finite and, therefore,

Ar = A +
n∑

k=1
αkλ

r
k, r = 0, 1, . . . , (16.1.2)

we can determine A and the 2n parameters αk and λk by solving the following system
of nonlinear equations:

Ar = A +
n∑

k=1
αkλ

r
k, r = j, j + 1, . . . , j + 2n, for arbitrary fixed j. (16.1.3)

297
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Now, λ1, . . . , λn are the zeros of some polynomial P(λ) =∑n
i=0wiλ

i , w0 �= 0 and
wn �= 0. Here the wi are unique up to a multiplicative constant. Then, from (16.1.3), we
have that

n∑

i=0
wi (Ar+i − A) = 0, r = j, j + 1, . . . , j + n. (16.1.4)

Note that we have eliminated the parameters λ1, . . . , λn from equations (16.1.3). It
follows from (16.1.4) that

n∑

i=0
wi Ar+i =

( n∑

i=0
wi

)

A, r = j, j + 1, . . . , j + n. (16.1.5)

Now, because λk �= 1 for all k, we have
∑n

i=0wi = P(1) �= 0. This enables us to scale
the wi such that

∑n
i=0wi = 1, as a result of which (16.1.5) can be written in the form

n∑

i=0
wi Ar+i = A, r = j, j + 1, . . . , j + n;

n∑

i=0
wi = 1. (16.1.6)

This is a linear system in the unknowns A and w0, w1, . . . , wn . Using the fact that
Ar+1 = �Ar + Ar , we have that

n∑

i=0
wi Ar+i =

( n∑

i=0
wi

)

Ar +
n−1∑

i=0
ŵi�Ar+i ; ŵi =

n∑

p=i+1
wp, i = 0, 1, . . . , n − 1,

(16.1.7)

which, when substituted in (16.1.6), results in

A = Ar +
n−1∑

i=0
ŵi�Ar+i , r = j, j + 1, . . . , j + n. (16.1.8)

Finally, by making the substitution βi = −ŵi−1 in (16.1.8), we obtain the linear system

Ar = A +
n∑

i=1
βi�Ar+i−1, r = j, j + 1, . . . , j + n. (16.1.9)

On the basis of (16.1.9), we now give the definition of the Shanks transformation,
hoping that it accelerates the convergence of sequences {Am} that satisfy (16.1.1).

Definition 16.1.1 Let {Am} be an arbitrary sequence. Then the Shanks transformation
on this sequence is defined via the linear systems

Ar = en(A j )+
n∑

i=1
βi�Ar+i−1, r = j, j + 1, . . . , j + n, (16.1.10)

where en(A j ) are the approximations to the limit or antilimit of {Am} andβi are additional
auxiliary unknowns.
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Solving (16.1.10) for en(A j ) by Cramer’s rule, we obtain the following determinant
representation for A( j)

n :

en(A j ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

A j A j+1 . . . A j+n

�A j �A j+1 . . . �A j+n
...

...
...

�A j+n−1 �A j+n . . . �A j+2n−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 . . . 1
�A j �A j+1 . . . �A j+n
...

...
...

�A j+n−1 �A j+n . . . �A j+2n−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (16.1.11)

[Obviously, e1(A j ) = φ j ({As}), defined in (15.3.1), that is, the e1-transformation is the
Aitken �2-process.] By performing elementary row transformations on the numerator
and denominator determinants in (16.1.11), we can express en(A j ) also in the form

en(A j ) =
H ( j)

n+1({As})
H ( j)

n ({�2As})
, (16.1.12)

where H (m)
p ({us}) is a Hankel determinant defined by

H (m)
p ({us}) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

um um+1 . . . um+p−1
um+1 um+2 . . . um+p
...

...
...

um+p−1 um+p . . . um+2p−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

; H (m)
0 ({us}) = 1. (16.1.13)

Before proceeding further, we mention that the Shanks transformation as given in
(16.1.11) was derived by Tucker [341] through an interesting geometric approach.
Tucker’s approach generalizes that of Todd [336, p. 260], which concerns the�2-process.
The following result on the kernel of the Shanks transformation, which is completely

related to the preceding developments, is due to Brezinski and Crouzeix [40]. We note
that this result also follows from Theorem 17.2.5 concerning the Padé table for rational
functions.

Theorem 16.1.2 A necessary and sufficient condition for en(A j ) = A, j = J, J +
1, . . . , to hold with minimal n is that there exist constants w0, w1, . . . , wn such that
wn �= 0 and

∑n
i=0wi �= 0, and that

n∑

i=0
wi (Ar+i − A) = 0, r ≥ J, (16.1.14)

which means that

Ar = A +
t∑

k=1
Pk(r )λ

r
k, r = J, J + 1, . . . , (16.1.15)

where Pk(r ) is a polynomial in r of degree exactly pk,
∑t

i=1(pi + 1) = n, and λk are
distinct and λk �= 1 for all k.
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Proof. Let us first assume that en(A j ) = A for every j ≥ J . Then the equations in
(16.1.10) become Ar − A =∑n

i=1 βi�Ar+i−1, j ≤ r ≤ j + n. The βi are thus the
solution of n of these n + 1 equations. For j = J , we take these n equations to
be those for which j + 1 ≤ r ≤ j + n, and for j = J + 1, we take them such that
j ≤ r ≤ j + n − 1. But these two systems are identical. Therefore, the βi are the same
for j = J and for j = J + 1. By induction, the βi are the same for all j ≥ J . Also, since
n is smallest, βn �= 0 necessarily. Thus, (16.1.10) is the same as (16.1.9) for any j ≥ J,
with the βi independent of j and βn �= 0.

Working backward from this, we reach (16.1.4), in which the wi satisfy wn �= 0 and∑n
i=0wi �= 0 and are independent of j when j ≥ J ; this is the same as (16.1.14). Let

us next assume, conversely, that (16.1.14) holds with wn �= 0 and
∑n

i=0wi �= 0. This
implies (16.1.4) for all j ≥ J . Working forward from this, we reach (16.1.9) for all
j ≥ J , and hence (16.1.10) for all j ≥ J , with en(A j ) = A. Finally, because (16.1.14)
is an (n + 1)-term recursion relation for {Ar − A}r≥J with constant coefficients, its
solutions are all of the form (16.1.15). �

Two types of sequences are of interest in the application of the Shanks transformation:

1. {en(A j )}∞j=0 with n fixed. In analogy with the first generalization of the Richardson
extrapolation process, we call them column sequences.

2. {en(A j )}∞n=0 with j fixed. In analogy with the first generalization of the Richardson
extrapolation process, we call them diagonal sequences.

In general, diagonal sequences appear to have much better convergence properties than
column sequences.
Before closing, we recall that in case the λk in (16.1.1) are known, we can also use the

Richardson extrapolation process for infinite sequences of Section 1.9 to approximate
A. This is very effective and turns out to be much less expensive than the Shanks
transformation. [Formally, it takes 2n + 1 sequence elements to “eliminate” the terms
αkλ

m
k , k = 1, . . . , n, from (16.1.1) by the Shanks transformation, whereas the same task

is achieved by the Richardson extrapolation process with only n + 1 sequence elements.]
When the λk are not known and can be arbitrary, the Shanks transformation appears to
be the only extrapolation method that can be used.
We close this section with the following result due to Shanks, which can be proved by

applying appropriate elementary row and column transformations to the numerator and
denominator determinants in (16.1.11).

Theorem 16.1.3 Let Am =
∑m

k=0 ckz
k,m = 0, 1, . . . . If the Shanks transformation is

applied to {Am}, then the resulting en(A j ) turns out to be f j+n,n(z), the [ j + n/n] Padé
approximant from the infinite series f (z) :=∑∞

k=0 ckz
k .

Note. Recall that fm,n(z) is a rational function whose numerator and denominator
polynomials have degrees at most m and n, respectively, that satisfies, and is uniquely
determined by, the requirement fm,n(z)− f (z) = O(zm+n+1) as z → 0. The subject of
Padé approximants is considered in some detail in the next chapter.
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16.2 Algorithms for the Shanks Transformation

Comparing (16.1.10), the equations defining en(A j ), with (3.1.4), we realize that en(A j )
can be expressed in the form

en(A j ) = f ( j)n (a)

f ( j)n (I )
= |g1( j) · · · gn( j) a( j)|
|g1( j) · · · gn( j) I ( j)| , (16.2.1)

where

a(l) = Al , and gk(l) = �Ak+l−1 for all l ≥ 0 and k ≥ 1. (16.2.2)

It is possible to use theFS-algorithmor theE-algorithm to compute the en(A j ) recursively.
Direct application of these algorithms without taking the special nature of the gk(l) into
account results in expensive computational procedures, however. When A0, A1, . . . , AL

are given, the costs of these algorithms are O(L3), as explained in Chapter 3. When
the special structure of the gk(l) in (16.2.2) is taken into account, these costs can be
reduced to O(L2) by the rs- and FS/qd-algorithms that are discussed in Chapter 21 on the
G-transformation.
The most elegant and efficient algorithm for implementing the Shanks transformation

is the famous ε-algorithm of Wynn [368]. As the derivation of this algorithm is very
complicated, we do not give it here. We refer the reader to Wynn [368] or to Wimp [366,
pp. 244–247] instead. Here are the steps of the ε-algorithm.

Algorithm 16.2.1 (ε-algorithm)

1. Set ε( j)−1 = 0 and ε
( j)
0 = A j , j = 0, 1, . . . .

2. Compute the ε( j)k by the recursion

ε
( j)
k+1 = ε

( j+1)
k−1 + 1

ε
( j+1)
k − ε

( j)
k

, j, k = 0, 1, . . . .

Wynn has shown that

ε
( j)
2n = en(A j ) and ε

( j)
2n+1 =

1

en(�A j )
for all j and n. (16.2.3)

[Thus, if {Am} has a limit and the ε( j)2n converge, then we should be able to observe that
|ε( j)2n+1| → ∞ both as j →∞ and as n →∞.]

Commonly, the ε( j)k are arranged in a two-dimensional array as in Table 16.2.1. Note
that the sequences {ε( j)2n }

∞
j=0 form the columns of the epsilon table, and the sequences

{ε( j)2n }
∞
n=0 form its diagonals.

It is easy to see from Table 16.2.1 that, given A0, A1, . . . , AK , the ε-algorithm com-
putes ε( j)k for 0 ≤ j + k ≤ K . As the number of these ε( j)k is K 2/2+ O(K ), the cost of
this computation is K 2 + O(K ) additions, K 2/2+ O(K ) divisions, and no multiplica-
tions. (We show in Chapter 21 that the FS/qd-algorithm has about the same cost as the
ε-algorithm.)



302 16 The Shanks Transformation

Table 16.2.1: The ε-table

ε
(0)
−1

ε
(0)
0

ε
(1)
−1 ε

(0)
1

ε
(1)
0 ε

(0)
2

ε
(2)
−1 ε

(1)
1 ε

(0)
3

ε
(2)
0 ε

(1)
2

. . .
ε
(3)
−1 ε

(2)
1 ε

(1)
3

... ε
(3)
0 ε

(2)
2

. . .
...

... ε
(3)
1 ε

(2)
3

...
...

... ε
(3)
2

. . .
...

...
...

... ε
(3)
3

...
...

...
...

...
. . .

Since we are interested only in the ε( j)2n by (16.2.3), and since the ε( j)2n+1 are auxiliary
quantities, we may ask whether it is possible to obtain a recursion relation among the
ε
( j)
2n only. The answer to this question, which is in the affirmative, was given again by
Wynn [372], the result being the so-called cross rule:

1

ε
( j−1)
2n+2 − ε

( j)
2n

+ 1

ε
( j+1)
2n−2 − ε

( j)
2n

= 1

ε
( j−1)
2n − ε

( j)
2n

+ 1

ε
( j+1)
2n − ε

( j)
2n

with the initial conditions

ε
( j)
−2 = ∞ and ε

( j)
0 = A j , j = 0, 1, . . . .

Another implementation of the Shanks transformation proceeds through the qd-
algorithm that is related to continued fractions and that is discussed at length in the
next chapter. The connection between the ε- and qd-algorithms was discovered and
analyzed by Bauer [18], [19], who also developed another algorithm, denoted the η-
algorithm, that is closely related to the ε-algorithm. We do not go into the η-algorithm
here, but refer the reader to [18] and [19]. See also the description given in Wimp [366,
pp. 160–165].

16.3 Error Formulas

Beforeweembarkon the error analysis of theShanks transformation,weneed appropriate
error formulas for en(A j ) = ε

( j)
2n .

Lemma 16.3.1 Let Cm = Am − A, m = 0, 1, . . . . Then

ε
( j)
2n − A = H ( j)

n+1({Cs})
H ( j)

n ({�2Cs})
. (16.3.1)
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If we let Cm = ζmDm,m = 0, 1, . . . , then

ε
( j)
2n − A = ζ j+2n H

( j)
n+1({Ds})

H ( j)
n ({Es})

; Em = Dm − 2ζDm+1 + ζ 2Dm+2 for all m. (16.3.2)

Proof. Let us first subtract A from both sides of (16.1.11). This changes the first row of
the numerator determinant to [C j ,C j+1, . . . ,C j+n]. Realizing now that�As = �Cs in
the other rows, and adding the first row to the second, the second to the third, etc., in this
order, we arrive at H ( j)

n+1({Cs}). We already know that the denominator is H ( j)
n ({�2As}).

But we also have that �2Am = �2Cm . This completes the proof of (16.3.1). To prove
(16.3.2), substitute Cm = ζmDm everywhere and factor out the powers of ζ from the
rows and columns in the determinants of both the numerator and the denominator. This
completes the proof of (16.3.2). �

Both (16.3.1) and (16.3.2) are used in the analysis of the column sequences {ε( j)2n }
∞
j=0

in the next two sections.

16.4 Analysis of Column Sequences When Am ∼ A +∑∞
k=1 αkλ

m
k

Let us assume that {Am} satisfies

Am ∼ A +
∞∑

k=1
αkλ

m
k as m →∞, (16.4.1)

with αk �= 0 and λk �= 0 constants independent of m and

λk distinct, λk �= 1 for all k; |λ1| ≥ |λ2| ≥ · · · , lim
k→∞

λk = 0. (16.4.2)

What we mean by (16.4.1) is that, for any integer N ≥ 1, there holds

Am − A −
N−1∑

k=1
αkλ

m
k = O(λm

N ) as m →∞.

Also, limk→∞ λk = 0 implies that there can be only a finite number of λk with the same
modulus. We say that such sequences are exponential.
Because the Shanks transformation was derived with the specific intention of acceler-

ating the convergence of sequences {Am} that behave as in (16.4.1), it is natural to first
analyze its behavior when applied to such sequences.
We first recall from Theorem 16.1.2 that, when Am = A +∑n

k=1 αkλ
m
k for all m, we

have A = ε
( j)
2n for all j . From this, we can expect the Shanks transformation to perform

well when applied to the general case in (16.4.1). This indeed turns out to be the case,
but the theory behind it is not simple. In addition, the existing theory pertains only to
column sequences; nothing is known about diagonal sequences so far.
We carry out the analysis of the column sequences {ε( j)2n }∞j=0 with the help of the

following lemma of Sidi, Ford, and Smith [309, Lemma A.1].

Lemma16.4.1 Let i1, . . . , ik be positive integers, and assume that the scalars vi1,... ,ik are
odd under an interchange of any two of the indices i1, . . . , ik . Let ti, j , i ≥ 1, 1 ≤ j ≤ k,
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be scalars. Define Ik,N and Jk,N by

Ik,N =
N∑

i1=1
· · ·

N∑

ik=1

( k∏

p=1
ti p,p

)

vi1,... ,ik (16.4.3)

and

Jk,N =
∑

1≤i1<i2<···<ik≤N

∣
∣
∣
∣
∣
∣
∣
∣
∣

ti1,1 ti2,1 · · · tik ,1
ti1,2 ti2,2 · · · tik ,2
...

...
...

ti1,k ti2,k · · · tik ,k

∣
∣
∣
∣
∣
∣
∣
∣
∣

vi1,... ,ik . (16.4.4)

Then

Ik,N = Jk,N . (16.4.5)

Proof. Let &k be the set of all permutations π of the index set {1, 2, . . . , k}. Then, by
the definition of determinants,

Jk,N =
∑

1≤i1<i2<···<ik≤N

∑

π∈&k

(sgnπ )

( k∏

p=1
tiπ(p),p

)

vi1,... ,ik . (16.4.6)

Here sgnπ , the signature of π , is +1 or −1 depending on whether π is even or odd,
respectively. The notation π (p), where p ∈ {1, 2, . . . , k}, designates the image of π
as a function operating on the index set. Now π−1π(p) = p when 1 ≤ p ≤ k, and
sgnπ−1 = sgnπ for any permutation π ∈ &k . Hence

Jk,N =
∑

1≤i1<i2<···<ik≤N

∑

π∈&k

(sgnπ−1)
( k∏

p=1
tiπ (p),p

)

viπ−1π (1),... ,iπ−1π (k) . (16.4.7)

By the oddness of vi1,... ,ik , we have

(sgnπ−1)viπ−1π (1),... ,iπ−1π (k) = viπ (1),... ,iπ (k) . (16.4.8)

Substituting (16.4.8) in (16.4.7), we obtain

Jk,N =
∑

1≤i1<i2<···<ik≤N

∑

π∈&k

( k∏

p=1
tiπ(p),p

)

viπ (1),... ,iπ (k) . (16.4.9)

Because vi1,... ,ik is odd under an interchange of the indices i1, . . . , ik , it vanishes when
any two of the indices are equal. Using this fact in (16.4.3), we see that Ik,N is just the
sum over all permutations of the distinct indices i1, . . . , ik . The result now follows by
comparison with (16.4.9). �

We now prove the following central result:

Lemma 16.4.2 Let { fm} be such that

fm ∼
∞∑

k=1
ekλ

m
k as m →∞, (16.4.10)
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with the λk exactly as in (16.4.2). Then, H ( j)
n ({ fs}) satisfies

H ( j)
n ({ fs}) ∼

∞∑

1≤k1<k2<···<kn

( n∏

p=1
ekpλ

j
kp

)

[V (λk1 , . . . , λkn )]
2 as j →∞. (16.4.11)

Proof. Let us substitute (16.4.10) in H ( j)
n ({ fs}). We obtain

H ( j)
n ({ fs}) ∼

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑
k1
ek1λ

j
k1

∑
k1
ek1λ

j+1
k1

· · · ∑k1
ek1λ

j+n−1
k1∑

k2
ek2λ

j+1
k2

∑
k2
ek2λ

j+2
k2

· · · ∑k2
ek2λ

j+n
k2

...
...

...
∑

kn
eknλ

j+n−1
kn

∑
kn
eknλ

j+n
kn

· · · ∑kn
eknλ

j+2n−2
kn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (16.4.12)

where we have used
∑

k to mean
∑∞

k=1 and we have also used P( j) ∼ Q( j) to mean
P( j) ∼ Q( j) as j →∞. We continue to do so below.
By the multilinearity property of determinants with respect to their rows, we can

move the summations outside the determinant. Factoring out ekiλ
j+i−1
ki

from the i th row
of the remaining determinant, and making use of the definition of the Vandermonde
determinant given in (3.5.4), we obtain

H ( j)
n ({ fs}) ∼

∑

k1

· · ·
∑

kn

( n∏

p=1
λ

p−1
kp

)[( k∏

p=1
ekpλ

j
kp

)

V (λk1 , . . . , λkn )

]

. (16.4.13)

Because the term inside the square brackets is odd under an interchange of any two
of the indices k1, . . . , kn, Lemma 16.4.1 applies, and by invoking the definition of the
Vandermonde determinant again, the result follows. �

The following is the first convergence result of this section. In this result, we make
use of the fact that there can be only a finite number of λk with the same modulus.

Theorem16.4.3 Assume that {Am} satisfies (16.4.1) and (16.4.2). Let n and r be positive
integers for which

|λn| > |λn+1| = · · · = |λn+r | > |λn+r+1|. (16.4.14)

Then

ε
( j)
2n − A =

n+r∑

p=n+1
αp

( n∏

i=1

λp − λi

1− λi

)2

λ j
p + o(λ j

n+1) as j →∞. (16.4.15)

Consequently,

ε
( j)
2n − A = O(λ j

n+1) as j →∞. (16.4.16)

All this is valid whether {Am} converges or not.
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Proof. Applying Lemma 16.4.2 to H ( j)
n+1({Cs}), we obtain

H ( j)
n+1({Cs}) ∼

∞∑

1≤k1<k2<···<kn+1

(n+1∏

p=1
αkpλ

j
kp

)
[
V (λk1 , λk2 , . . . , λkn+1 )

]2
. (16.4.17)

The most dominant terms in (16.4.17) are those with k1 = 1, k2 = 2, . . . , kn = n, and
kn+1 = λn+i , i = 1, . . . , r , their number being r . Thus,

H ( j)
n+1({Cs}) =

( n∏

p=1
αpλ

j
p

){ n+r∑

p=n+1
αpλ

j
p

[
V (λ1, . . . , λn, λp)

]2 + o(λ j
n+1)

}

as j →∞.

(16.4.18)

Observing that

�2Cm ∼
∞∑

k=1
βkλ

m
k as m →∞; βk = αk(λk − 1)2 for all k, (16.4.19)

and applying Lemma 16.4.2 again, we obtain

H ( j)
n ({�2Cs}) ∼

∑

1≤k1<k2<···<kn

( n∏

p=1
βkpλ

j
kp

)
[
V (λk1 , λk2 , . . . , λkn )

]2
. (16.4.20)

The most dominant term in (16.4.20) is that with k1 = 1, k2 = 2, . . . , kn = n. Thus,

H ( j)
n ({�2Cs}) ∼

( n∏

p=1
βpλ

j
p

)

[V (λ1, . . . , λn)]
2. (16.4.21)

Dividing (16.4.18) by (16.4.21), which is allowed because the latter is an asymptotic
equality, and recalling (16.3.1), we obtain (16.4.15), from which (16.4.16) follows
immediately. �

This theorem was stated, subject to the condition that either λ1 > λ2 > · · · > 0 or
λ1 < λ2 < · · · < 0, in an important paper byWynn [371]. The general result in (16.4.15)
was given by Sidi [296].

Corollary 16.4.4 If r = 1 in Theorem 16.4.3, i.e., if |λn| > |λn+1| > |λn+2|, then
(16.4.15) can be replaced by the asymptotic equality

ε
( j)
2n − A ∼ αn+1

( n∏

i=1

λn+1 − λi

1− λi

)2

λ
j
n+1 as j →∞. (16.4.22)

It is clear from Theorem 16.4.3 that the column sequence {ε( j)2n }∞j=0 converges when
|λn+1| < 1 whether {Am} converges or not. When |λn+1| ≥ 1, {ε( j)2n }∞j=0 diverges, but
more slowly than {Am}.

Note. Theorem 16.4.3 and Corollary 16.4.4 concern the convergence of {ε( j)2n }∞j=0 subject
to the condition |λn| > |λn+1|, but they do not apply when |λn| = |λn+1|, which is the
only remaining case. In this case, we can show at best that a subsequence of {ε( j)2n }∞j=0
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converges under certain conditions and there holds ε( j)2n − A = O(λ j
n+1) as j →∞ for

this subsequence. It can be shown that such a subsequence exists when |λn−1| > |λn| =
|λn+1|.
We see from Theorem 16.4.3 that the Shanks transformation accelerates the conver-

gence of {Am} under the prescribed conditions. Indeed, assuming that |λ1| > |λ2|, and
using the asymptotic equality Am − A ∼ α1λ

m
1 as m →∞ that follows from (16.4.1)

and (16.4.2), and observing that |λn+1/λ1| < 1 by (16.4.14), we have, for any fixed i ,

ε
( j)
2n − A

A j+i − A
= O(|λn+1/λ1| j ) = o(1) as j →∞,

The next result, which appears to be new, concerns the stability of the Shanks trans-
formation under the conditions of Theorem 16.4.3. Before stating this result, we recall
Theorems 3.2.1 and 3.2.2 of Chapter 3, according to which

ε
( j)
2n =

n∑

i=0
γ
( j)
ni A j+i , (16.4.23)

and

n∑

i=0
γ
( j)
ni zi =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 z . . . zn

�A j �A j+1 . . . �A j+n
...

...
...

�A j+n−1 �A j+n . . . �A j+2n−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 . . . 1
�A j �A j+1 . . . �A j+n
...

...
...

�A j+n−1 �A j+n . . . �A j+2n−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

≡ R( j)
n (z)

R( j)
n (1)

. (16.4.24)

Theorem 16.4.5 Under the conditions of Theorem 16.4.3, there holds

lim
j→∞

n∑

i=0
γ
( j)
ni zi =

n∏

i=

z − λi

1− λi
≡

n∑

i=0
ρni z

i . (16.4.25)

That is, lim j→∞ γ
( j)
ni = ρni , i = 0, 1, . . . , n. Consequently, the Shanks transformation

is stable with respect to its column sequences, and we have

lim
j→∞

�( j)
n =

n∑

i=0
|ρni | ≤

n∏

i=1

1+ |λi |
|1− λi | . (16.4.26)

Equality holds in (16.4.26) when λ1, . . . , λn have the same phase. When λk are all real
negative, lim j→∞ �

( j)
n = 1.

Proof. Applying to the determinant R( j)
n (z) the technique that was used in the proof

of Lemma 16.4.2 in the analysis of H ( j)
n ({ fs}), we can show that R( j)

n (z) satisfies the
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asymptotic equality

R( j)
n (z) ∼

[ n∏

p=1
αp(λp − 1)λ j

p

]

V (λ1, . . . , λn)V (z, λ1, . . . , λn) as j →∞. (16.4.27)

Using this asymptotic equality in (16.4.24), the result in (16.4.25) follows. The rest can
be completed as the proof of Theorem 3.5.6. �

As the results of Theorems 16.4.3 and 16.4.5 are best asymptotically, they can be used
to draw some important conclusions about efficient use of the Shanks transformation.We
see from (16.4.15) and (16.4.26) that both ε( j)2n − A and �( j)

n are large if some of the λk

are too close to 1. That is, poor stability and poor accuracy in ε( j)2n occur simultaneously.
Thus, making the transformation more stable results in more accuracy as well. [We
reached the same conclusion when we treated the application of the d-transformation to
power series and (generalized) Fourier series close to points of singularity of their limit
functions.]
In most cases of interest, λ1 and possibly a few of the succeeding λk are close to 1.

For some positive integer q, the numbers λq
k separate from 1. In view of this, we propose

to apply the Shanks transformation to the subsequence {Aqm+s}, where q > 1 and s ≥ 0
are some fixed integers. This achieves the desired result of increased stability as

Aqm+s ∼ A +
∞∑

k=1
βkµ

m
k as m →∞; µk = λ

q
k , βk = αkλ

s
k for all k, (16.4.28)

by which the λk in (16.4.15), (16.4.16), (16.4.22), (16.4.25), and (16.4.26) are replaced
by the corresponding µk , which are further away from 1 than the λk . This strategy is
nothing but arithmetic progression sampling (APS).
Before leaving this topic,we revisit twoproblemswediscussed in detail in Section 15.3

of the preceding chapter in connection with the iterated �2-process, namely, the power
method and fixed-point iterative solution of nonlinear equations.
Consider the sequence {ρm} generated by the power method for a matrix Q. Recall

that, when Q is diagonalizable, ρm has an expansion of the form ρm = µ+∑∞
k=1 αkλ

m
k ,

whereµ is the largest eigenvalue of Q and 1 > |λ1| ≥ |λ2| ≥ · · · .Therefore, the Shanks
transformation can be applied to the sequence {ρm}, and Theorem 16.4.3 holds.
Consider next the equation x = g(x), whose solution we denote s. Starting with x0,

we generate {xm} via xm+1 = g(xm). Recall that, provided 0 < |g′(s)| < 1 and x0 is
sufficiently close to s, there holds

xm ∼ s +
∞∑

k=1
αkλ

km as m →∞, α1 �= 0; λ = g′(s).

Thus, the Shanks transformation can be applied to {xm} successfully. By Theorem 16.4.3,
this results in

ε
( j)
2n − s = O(λ(n+1) j ) as j →∞,

whether some of the αk vanish or not.
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16.4.1 Extensions

So far, we have been concerned with analyzing the performance of the Shanks trans-
formation on sequences that satisfy (16.4.1). We now wish to extend this analysis to
sequences {Am} that satisfy

Am ∼ A +
∞∑

k=1
Pk(m)λm

k as m →∞, (16.4.29)

where

λk distinct; λk �= 1 for all k; |λ1| ≥ |λ2| ≥ · · · ; lim
k→∞

λk = 0, (16.4.30)

and, for each k, Pk(m) is a polynomial in m of degree exactly pk ≥ 0 and with leading
coefficient ek �= 0. We recall that the assumption that limk→∞ λk = 0 implies that there
can be only a finite number of λk with the same modulus. We say that such sequences
are exponential with confluence.
Again, we recall from Theorem 16.1.2 that, when Am = A +∑t

k=1 Pk(m)λm
k for all

m, and n is chosen such that n =∑t
k=1(pk + 1), then ε( j)2n = A for all j . From this, we

expect the Shanks transformation also to perform well when applied to the general case
in (16.4.29). This turns out to be the case, but its theory is much more complicated than
we have seen in this section so far.
We state in the following without proof theorems on the convergence and stability of

column sequences generated by the Shanks transformation. These are taken from Sidi
[296]. Of these, the first three generalize the results of Theorem 16.4.3, Corollary 16.4.4,
and Theorem 16.4.5.

Theorem 16.4.6 Let {Am} be exactly as in the first paragraph of this subsection and let
t and r be positive integers for which

|λ1| ≥ · · · ≥ |λt | > |λt+1| = · · · = |λt+r | > |λt+r+1|, (16.4.31)

and order the λk such that

p̄ ≡ pt+1 = · · · = pt+µ > pt+µ+1 ≥ · · · ≥ pt+r . (16.4.32)

Set

ωk = pk + 1, k = 1, 2, . . . , (16.4.33)

and let

n =
t∑

k=1
ωk . (16.4.34)

Then

ε
( j)
2n − A = j p̄

t+µ∑

s=t+1
es

[ t∏

i=1

(
λs − λi

1− λi

)2ωi
]

λ j
s + o( j p̄λ j

t+1) as j →∞,

= O( j p̄λ j
t+1) as j →∞. (16.4.35)
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Corollary 16.4.7 When µ = 1 in Theorem 16.4.6, the result in (16.4.35) becomes

ε
( j)
2n − A ∼ et+1

[ t∏

i=1

(
λt+1 − λi

1− λi

)2ωi
]

j pt+1λ j
t+1 as j →∞. (16.4.36)

Theorem 16.4.8 Under the conditions of Theorem 16.4.6, there holds

lim
j→∞

n∑

i=0
γ
( j)
ni zi =

n∏

i=1

(
z − λi

1− λi

)ωi

≡
n∑

i=0
ρni z

i . (16.4.37)

That is, lim j→∞ γ
( j)
ni = ρni , i = 0, 1, . . . , n. Consequently, the Shanks transformation

is stable with respect to its column sequences, and we have

lim
j→∞

�( j)
n =

n∑

i=0
|ρni | ≤

n∏

i=1

(
1+ |λi |
|1− λi |

)ωi

. (16.4.38)

Equality holds in (16.4.38) when λ1, . . . , λt have the same phase. When λk are all
negative, lim j→∞ �

( j)
n = 1.

Note that the second of the results in (16.4.35), namely, ε( j)2n − A = O( j p̄λ j
t+1) as

j →∞, was first given by Sidi and Bridger [308, Theorem 3.1 and Note on p. 42].
Now, Theorem 16.4.6 covers only the cases in which n is as in (16.4.34). It does not

cover the remaining cases, namely, those forwhich
∑t

k=1 ωk < n <
∑t+r

k=1 ωk , which turn
out to be more involved but very interesting. The next theorem concerns the convergence
of column sequences in these cases.

Theorem 16.4.9 Assume that the λk are as in Theorem 16.4.6 with the same notation.
Let n be such that

t∑

k=1
ωk < n <

t+r∑

k=1
ωk (16.4.39)

and let

τ = n −
t∑

k=1
ωk (16.4.40)

This time, however, also allow t = 0 and define
∑0

k=1 ωk = 0. Denote by IP(τ ) the
nonlinear integer programming problem

maximize g(%σ ); g(%σ ) =
t+r∑

k=t+1
(ωkσk − σ 2

k )

subject to
t+r∑

k=t+1
σk = τ and 0 ≤ σk ≤ ωk, t + 1 ≤ k ≤ t + r , (16.4.41)

and denote by G(τ ) the (optimal) value of g(%σ ) at the solution to IP(τ ).
Provided IP(τ ) has a unique solution for σk, k = t + 1, . . . , t + r, ε( j)2n satisfies

ε
( j)
2n − A = O( jG(τ+1)−G(τ )λ

j
t+1) as j →∞, (16.4.42)
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whether {Am} converges or not. [Here IP(τ + 1) is not required to have a unique
solution.]

Corollary 16.4.10 When r = 1, i.e., |λt | > |λt+1| > |λt+2|, pt+1 > 1, and
∑t

k=1 ωk <

n <
∑t+1

k=1 ωk, a unique solution to IP(τ ) exists, and we have

ε
( j)
2n − A ∼ C j pt+1−2τ λ j

t+1 as j →∞, (16.4.43)

where τ = n −∑t
k=1 ωk , hence 0 < τ < ωt+1, and C is a constant given by

C = (−1)τ pt+1! τ !
(pt+1 − τ )!

et+1

(
λt+1

1− λt+1

)2τ[ t∏

i=1

(
λt+1 − λi

1− λi

)2ωi
]

. (16.4.44)

Therefore, the sequence {ε( j)2n }
∞
j=0 is better then {ε( j)2n−2}

∞
j=0. In particular, if |λ1| > |λ2| >

|λ3| > · · · , then this is true for all n = 1, 2, . . . .
All the above hold whether {Am} converges or not.

It follows from Corollary 16.4.10 that, when 1 > |λ1| > |λ2| > · · · , all column se-
quences {ε( j)2n }∞j=0 converge, and {ε( j)2n }

∞
j=0 converges faster than {ε( j)2n−2}

∞
j=0 for each n.

Note. In case the problem IP(τ ) does not have a unique solution, the best we can say is
that, under certain conditions, there may exist a subsequence of {ε( j)2n }

∞
j=0 that satisfies

(16.4.42).
In connection with IP(τ ), we would like to mention that algorithms for its solution

have been given by Parlett [228] and by Kaminski and Sidi [148]. These algorithms also
enable one to decide in a simple manner whether the solution is unique. A direct solution
of IP(τ ) has been given by Liu and Saff [169]. Some properties of the solutions to IP(τ )
have been given by Sidi [292], and we mention them here for completeness.
Denote J = {t + 1, . . . , t + r}, and let σk, k ∈ J, be a solution of IP(τ ):

1. σ ′k = ωk − σk, k ∈ J , is a solution of IP(τ ′) with τ ′ =∑t+r
k=t+1 ωk − τ .

2. If ωk ′ = ωk ′′ for some k ′, k ′′ ∈ J , and if σk ′ = δ1 and σk ′′ = δ2 in a solution to IP(τ ),
δ1 �= δ2, then there is another solution to IP(τ ) with σk ′ = δ2 and σk ′′ = δ1. Con-
sequently, a solution to IP(τ ) cannot be unique unless σk ′ = σk ′′ . One implication
of this is that, for ωt+1 = · · · = ωt+r = ω̄ > 1, IP(τ ) has a unique solution only
for τ = qr, q = 1, . . . , ω̄ − 1, and in this solution σk = q, k ∈ J . For ωt+1 = · · · =
ωt+r = 1, no unique solution to IP(τ ) exists with 1 ≤ τ ≤ r − 1. Another implication
is that, for ωt+1 = · · · = ωt+µ > ωt+µ+1 ≥ · · · ≥ ωt+r , µ < r, no unique solution to
IP(τ ) exists for τ = 1, . . . , µ− 1, and a unique solution exists for τ = µ, this solu-
tion being σt+1 = · · · = σt+µ = 1, σk = 0, t + µ+ 1 ≤ k ≤ t + r .

3. A unique solution to IP(τ ) exists when ωk, k ∈ J , are all even or all odd, and
τ = qr + 1

2

∑t+r
k=t+1(ωk − ωt+r ), 0 ≤ q ≤ ωt+r . This solution is given by σk = q +

1
2 (ωk − ωt+r ), k ∈ J.

4. Obviously, when r = 1, a unique solution to IP(τ ) exists for all possible τ and is
given as σt+1 = τ . When r = 2 and ω1 + ω2 is odd, a unique solution to IP(τ ) exists
for all possible τ , as shown by Kaminski and Sidi [148].
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16.4.2 Application to Numerical Quadrature

Sequences of the type treated in this section arise naturallywhen one approximates finite-
range integrals with endpoint singularities via the trapezoidal rule or the midpoint rule.
Consequently, the Shanks transformation has been applied to accelerate the convergence
of sequences of these approximations.
Let us go back to Example 4.1.4 concerning the integral I [G] = ∫ 1

0 G(x) dx , where
G(x) = xsg(x), �s > −1, s not an integer, and g ∈ C∞[0, 1]. Setting h = 1/n, n a
positive integer, this integral is approximated by Q(h), where Q(h) stands for either
the trapezoidal rule or the midpoint rule that are defined in (4.1.3), and Q(h) has the
asymptotic expansion given by (4.1.4). Letting hm = 1/2m , m = 0, 1, . . . , we realize
that Am ≡ Q(hm) has the asymptotic expansion

Am ∼ A +
∞∑

k=1
αkλ

m
k as m →∞,

where A = I [G], and the λk are obtained by ordering 4−i and 2−s−i , i = 1, 2, . . . , in
decreasing order according to their moduli. Thus, the λk satisfy

1 > |λ1| > |λ2| > |λ3| > · · · .
If we now apply the Shanks transformation to the sequence {Am}, Corollary 16.4.4
applies, and we have that each column of the epsilon table converges to I [G] faster than
the one preceding it.
Let us next consider the approximation of the integral I [G] = ∫ 1

0 G(x) dx , where
G(x) = xs(log x)pg(x), with �s > −1, p a positive integer, and g ∈ C∞[0, 1]. [Recall
that the case p = 1 has already been considered in Example 3.1.2.] Let h = 1/n, and de-
fine the trapezoidal rule to I [G] by T (h) = h

∑n−1
i=1 G(ih). Then, T (h) has an asymptotic

expansion of the form

T (h) ∼ I [G]+
∞∑

i=1
aih

2i +
∞∑

i=0

[ p∑

j=0
bi j (log h)

j

]

hs+i+1 as h → 0,

where ai and bi j are constants independent of h. [For p = 1, this asymptotic expansion is
nothing but that of (3.1.6) in Example 3.1.2.] Again, letting hm = 1/2m , m = 0, 1, . . . ,
we realize that Am ≡ Q(hm) has the asymptotic expansion

Am ∼ A +
∞∑

k=1
Pk(m)λm

k as m →∞,

where A = I [G] and the λk are precisely as before, while Pk(m) are polynomials in
m. The degree of Pk(m) is 0 if λk is 4−i for some i , and it is at most p if λk is 2−s−i

for some i . If we now apply the Shanks transformation to the sequence {Am}, Corol-
laries 16.4.7 and 16.4.10 apply, and we have that each column of the epsilon table con-
verges to I [G] faster than the one preceding it. For the complete details of this example
with p = 1 and s = 0, and for the treatment of the general case in which p is an arbitrary
positive integer, we refer the reader to Sidi [296, Example 5.2].
This use of the Shanks transformation for the integrals

∫ 1
0 xs(log x)pg(x) dx with

p = 0 and p = 1 was originally suggested by Chisholm, Genz, and Rowlands [49] and
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by Kahaner [147]. The only convergence result known at that time was Corollary 16.4.4,
which is valid only for p = 0, and this was mentioned by Genz [94]. The treatment of
the general case with p = 1, 2, . . . , was given later by Sidi [296].

16.5 Analysis of Column Sequences When {�Am} ∈ b(1)

In the preceding section, we analyzed the behavior of the Shanks transformation on
sequences that behave as in (16.4.1) and showed that it is very effective on such se-
quences. This effectiveness was “expected” in view of the fact that the derivation of
the transformation was actually based on (16.4.1). It is interesting that the effective-
ness of the Shanks transformation is not limited to sequences that are as in (16.4.1).
In this section, we present some results pertaining to those sequences {Am} that were
discussed in Definition 15.3.2 and for which {�Am} ∈ b(1). These results show that the
Shanks transformation is effective on linear and factorial sequences, but it is ineffec-
tive on logarithmic sequences. Actually, they are completely analogous to the results of
Chapter 15 on the iterated�2-process. Throughout this section, we assume the notation
of Definition 15.3.2.

16.5.1 Linear Sequences

The following theorem is due to Garibotti and Grinstein [92].

Theorem 16.5.1 Let {Am} ∈ b(1)/LIN. Provided γ �= 0, 1, . . . , n − 1, there holds

ε
( j)
2n − A ∼ (−1)nα0 n! [γ ]n

(ζ − 1)2n
ζ j+2n jγ−2n as j →∞, (16.5.1)

where [γ ]n = γ (γ − 1) · · · (γ − n + 1) when n > 0 and [γ ]0 = 1, as before. This result
is valid whether {Am} converges or not.

Proof. To prove (16.5.1), we make use of the error formula in (16.3.2) with Dm =
(Am − A)ζ−m precisely as in Lemma 16.3.1. We first observe that

H (m)
p ({us}) = H (m)

p ({�s−mum}) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

um �um . . . �p−1um

�um �2um . . . �pum
...

...
...

�p−1um �pum . . . �2p−2um

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (16.5.2)

which can be proved by performing a series of elementary row and column transforma-
tions on H (m)

p ({us}) in (16.1.13). As a result, (16.3.2) becomes

ε
( j)
2n − A = ζ j+2n H

( j)
n+1({�s− j D j })

H ( j)
n ({�s− j E j })

; Em = Dm − 2ζDm+1 + ζ 2Dm+2 for all m.

(16.5.3)
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Next, we have Dm ∼
∑∞

i=0 αimγ−i as m →∞, so that

�r Dm ∼ α0[γ ]rm
γ−r as m →∞,

�r Em ∼ (ζ − 1)2α0[γ ]rm
γ−r ∼ (ζ − 1)2Dm as m →∞. (16.5.4)

Substituting (16.5.4) in the determinant H ( j)
n+1({�s− j D j }), and factoring out the powers

of j , we obtain

H ( j)
n+1({�s− j D j }) ∼ αn+1

0 jσn Kn as j →∞, (16.5.5)

where σn =
∑n

i=0(γ − 2i) and

Kn =

∣
∣
∣
∣
∣
∣
∣
∣
∣

[γ ]0 [γ ]1 . . . [γ ]n
[γ ]1 [γ ]2 . . . [γ ]n+1
...

...
...

[γ ]n [γ ]n+1 . . . [γ ]2n

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (16.5.6)

provided, of course, that Kn �= 0. Using the fact that [x]q+r = [x]r · [x − r ]q , we factor
out [γ ]0 from the first column, [γ ]1 from the second, [γ ]2 from the third, etc. (Note that
all these factors are nonzero by our assumption on γ .) Applying Lemma 6.8.1 as we did
in the proof of Lemma 6.8.2, we obtain

Kn =
( n∏

i=0
[γ ]i

)

V (γ, γ − 1, . . . , γ − n) =
( n∏

i=0
[γ ]i

)

V (0,−1,−2, . . . ,−n).

(16.5.7)

Consequently,

H ( j)
n+1({�s− j D j }) ∼ αn+1

0

( n∏

i=0
[γ ]i

)

V (0,−1, . . . ,−n) jσn as j →∞. (16.5.8)

Similarly, by (16.5.4) again, we also have

H ( j)
n ({�s− j E j }) ∼ (ζ − 1)2nH ( j)

n ({�s− j D j }) as j →∞. (16.5.9)

Combining (16.5.8) and (16.5.9) in (16.5.3), we obtain (16.5.1). �

Note that (ε( j)2n − A)/(A j+2n − A) ∼ K j−2n as j →∞ for some constant K . That is,
the columns of the epsilon table converge faster than {Am}, and each column converges
faster than the one preceding it.
The next result that appears to be new concerns the stability of the Shanks transfor-

mation under the conditions of Theorem 16.5.1.

Theorem 16.5.2 Under the conditions of Theorem 16.5.1, there holds

lim
j→∞

n∑

i=0
γ
( j)
ni zi =

(
z − ζ

1− ζ

)n

≡
n∑

i=0
ρni z

i . (16.5.10)
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That is, lim j→∞ γ
( j)
ni = ρni , i = 0, 1, . . . , n. Consequently, the Shanks transformation

is stable with respect to its column sequences and we have

lim
j→∞

�( j)
n =

(
1+ |ζ |
|1− ζ |

)n

. (16.5.11)

When ζ = −1, we have lim j→∞ �
( j)
n = 1.

Proof. Substituting�Am = α0(ζ − 1)ζmBm in the determinant R( j)
n (z), and performing

elementary row and column transformation, we obtain

R( j)
n (z) = [α0(ζ − 1)]nζ τ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 w . . . wn

B j �Bj . . . �n B j

�Bj �2Bj . . . �n+1Bj
...

...
...

�n−1Bj �
n B j . . . �

2n−1Bj

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (16.5.12)

where τ = n +∑n−1
i=0 ( j + 2i) and w = z/ζ − 1. Now, since Bm ∼ mγ as m →∞, we

also have�k Bm ∼ [γ ]km
γ−k as m →∞. Substituting this in (16.5.12), and proceeding

as in the proof of Theorem 16.5.1, we obtain

R( j)
n (z) ∼ L ( j)

n (z/ζ − 1)n as j →∞, (16.5.13)

for some L ( j)
n that is nonzero for all large j and independent of z. The proof of (16.5.10)

can now be completed easily. The rest is also easy and we leave it to the reader. �

As Theorem 16.5.1 covers the convergence of the Shanks transformation for the cases
in which γ �= 0, 1, . . . , n − 1, we need a separate result for the cases in which γ is an
integer in {0, 1, . . . , n − 1}. The following result, which covers these remaining cases,
is stated in Garibotti and Grinstein [92].

Theorem 16.5.3 If γ is an integer, 0 ≤ γ ≤ n − 1, and αγ+1 �= 0, then

ε
( j)
2n − A ∼ αγ+1

(n − γ − 1)!(n + γ + 1)!

(ζ − 1)2n
ζ j+2n j−2n−1 as j →∞. (16.5.14)

Important conclusions can be drawn from these results concerning the application of
the Shanks transformation to sequences {Am} ∈ b(1)/LIN.
As is obvious from Theorems 16.5.1 and 16.5.3, all the column sequences {ε( j)2n }

∞
j=0

converge to A when |ζ | < 1, with each column converging faster than the one preceding
it.When |ζ | = 1 but ζ �= 1, {ε( j)2n }

∞
j=0 converges to A (evenwhen {Am} diverges) provided

(i) n > �γ /2 when γ �= 0, 1, . . . , n − 1, or (ii) n ≥ γ + 1 when γ is a nonnegative
integer. In all other cases, {ε( j)2n }

∞
j=0 diverges. From (16.5.1) and (16.5.11) and (16.5.14),

we see that both the theoretical accuracy of ε( j)2n and its stability properties deteriorate
when ζ approaches 1, because (ζ − 1)−2n →∞ as ζ → 1. Recalling that ζ q for a posi-
tive integer q is farther away from 1 when ζ is close to 1, we propose to apply the Shanks
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transformation to the subsequence {Aqm+s}, where q > 1 and s ≥ 0 are fixed integers.
This improves the quality of the ε( j)2n as approximations to A. We already mentioned that
this strategy is APS.

16.5.2 Logarithmic Sequences

The Shanks transformation turns out to be completely ineffective on logarithmic se-
quences {Am} for which {�Am} ∈ b(1).

Theorem 16.5.4 Let {Am} ∈ b(1)/LOG. Then, there holds

ε
( j)
2n − A ∼ (−1)nα0 n!

[γ − 1]n
jγ as j →∞. (16.5.15)

In other words, no acceleration of convergence takes place for logarithmic sequences.

The result in (16.5.15) can be proved by using the technique of the proof of Theo-
rem 16.5.1. We leave it to the interested reader.

16.5.3 Factorial Sequences

We endwith the following results concerning the convergence and stability of the Shanks
transformation on factorial sequences {Am}. These results appear to be new.

Theorem 16.5.5 Let {Am} ∈ b(1)/FAC. Then

ε
( j)
2n − A ∼ (−1)nα0rn ζ

j+2n

( j!)r
jγ−2nr−n as j →∞, (16.5.16)

and

lim
j→∞

n∑

i=0
γ
( j)
ni zi = zn and lim

j→∞
�( j)

n = 1. (16.5.17)

Note that (ε( j)2n − A)/(A j+2n − A) ∼ K j−n as j →∞ for some constant K . Thus, in
this case too the columns of the epsilon table converge faster than the sequence {Am},
and each column converges faster than the one preceding it.
The technique we used in the proofs of Theorems 16.5.1 and 16.5.4 appears to be too

difficult to apply to Theorem 16.5.5, so we developed a totally different approach. We
start with the recursion relations of the ε-algorithm. We first have

e1(A j ) = ε
( j)
2 = A j+1�(1/�A j )+ 1

�(1/�A j )
. (16.5.18)

Substituting the expression for ε( j)2n+1 in that for ε
( j)
2n+2 and invoking (16.5.18), we obtain

ε
( j)
2n+2 =

e1(ε
( j)
2n )�(1/�ε( j)2n )+ ε

( j+1)
2n �ε

( j+1)
2n−1

�ε
( j)
2n+1

. (16.5.19)
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From this, we obtain the error formula

ε
( j)
2n+2 − A = [e1(ε

( j)
2n )− A]�(1/�ε( j)2n )+ [ε( j+1)2n − A]�ε( j+1)2n−1

�ε
( j)
2n+1

. (16.5.20)

Now use induction on n along with part (iii) of Theorem 15.3.3 to prove convergence.
To prove stability, we begin by paying attention to the fact that (16.5.19) can also be
expressed as

ε
( j)
2n+2 = λ( j)n ε

( j)
2n + µ( j)

n ε
( j+1)
2n , (16.5.21)

with appropriate λ( j)n and µ( j)
n . Now proceed as in Theorems 15.5.1 and 15.5.2.

This technique can also be used to prove Theorem 16.5.1. We leave the details to the
reader.

16.6 The Shanks Transformation on Totally Monotonic
and Totally Oscillating Sequences

We now turn to application of the Shanks transformation to two important classes of real
sequences, namely, totally monotonic sequences and totally oscillating sequences. The
importance of these sequences stems from the fact that they arise in many applications.
This treatment was started by Wynn [371] and additional contributions to it were made
by Brezinski [34], [35].

16.6.1 Totally Monotonic Sequences

Definition 16.6.1 A sequence {µm}∞m=0 is said to be totally monotonic if it is real and if
(−1)k�kµm ≥ 0, k,m = 0, 1, . . . , and we write {µm} ∈ TM .

The sequences {(m + β)−1}∞m=0, β > 0, and {λm}∞m=0, λ ∈ (0, 1), are totally
monotonic.
The following lemmas follow from this definition in a simple way.

Lemma 16.6.2 If {µm} ∈ TM, then

(i) {µm}∞m=0 is a nonnegative and nonincreasing sequence and hence has a nonnegative
limit,

(ii) {(−1)k�kµm}∞m=0 ∈ TM, k = 1, 2, . . . .

Lemma 16.6.3

(i) If {µm} ∈ TM and {νm} ∈ TM, and α, β > 0, then {αµm + βνm} ∈ TM as well.
Also, {µmνm} ∈ TM. These can be extended to an arbitrary number of sequences.

(ii) Suppose that {µ(i)
m }∞m=0 ∈ TM and ci ≥ 0, i = 0, 1, . . . , and that

∑∞
i=0 ciµ

(i)
0 con-

verges, and define τm =
∑∞

i=0 ciµ
(i)
m , m = 0, 1, . . . . Then {τm} ∈ TM.

(iii) Suppose that {µm} ∈ TM and ci ≥ 0, i = 0, 1, . . . , and
∑∞

i=0 ciµ
i
0 converges, and

define τm =
∑∞

i=0 ciµ
i
m, m = 0, 1, . . . . Then {τm} ∈ TM.
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Obviously, part (iii) of Lemma 16.6.3 is a corollary of parts (i) and (ii).
By Lemma 16.6.3, the sequence {λm/(m + β)}∞m=0 with λ ∈ (0, 1) and β > 0 is to-

tally monotonic. Also, all functions f (z) that are analytic at z = 0 and have Maclaurin
series

∑∞
i=0 ci z

i with ci ≥ 0 for all i render { f (µm)} ∈ TM when {µm} ∈ TM , provided∑∞
i=0 ciµ

i
0 converges.

The next theorem is one of the fundamental results in the Hausdorff moment problem.

Theorem 16.6.4 The sequence {µm}∞m=0 is totally monotonic if and only if there
exists a function α(t) that is bounded and nondecreasing in [0, 1] such that µm =∫ 1
0 tmdα(t), m = 0, 1, . . . , these integrals being defined in the sense of Stieltjes.

The sequence {(m + β)−ν}∞m=0 with β > 0 and ν > 0 is totally monotonic, because

(m + β)−ν = ∫ 1
0 tm+β−1(log t−1)ν−1dt/�(ν).

As an immediate corollary of Theorem 16.6.4, we have the following result on Hankel
determinants that will be of use later.

Theorem 16.6.5 Let {µm} ∈ TM. Then H (m)
p ({µs}) ≥ 0 for all m, p = 0, 1, 2, . . . . If

the function α(t) in µm =
∫ 1
0 tmdα(t), m = 0, 1, . . . , has an infinite number of points

of increase on [0, 1], then H (m)
p ({µs}) > 0, m, p = 0, 1, . . . .

Proof. Let P(t) =∑k
i=0 ci t

i be an arbitrary polynomial. Then

k∑

i=0

k∑

j=0
µm+i+ j ci c j =

∫ 1

0
tm[P(t)]2dα(t) ≥ 0,

with strict inequality when α(t) has an infinite number of points of increase. The result
now follows by a well-known theorem on quadratic forms. �

An immediate consequence of Theorem 16.6.5 is that µmµm+2 − µ2
m+1 ≥ 0 for all m

if {µm} ∈ TM . If µ̂ = limm→∞ µm in this case, then {µm − µ̂} ∈ TM too. Therefore,
(µm − µ̂)(µm+2 − µ̂)− (µm+1 − µ̂)2 ≥ 0 for all m, and hence

0 <
µ1 − µ̂

µ0 − µ̂
≤ µ2 − µ̂

µ1 − µ̂
≤ · · · ≤ 1,

provided µm �= µ̂ for all m. As a result of this, we also have that

lim
m→∞

µm+1 − µ̂

µm − µ̂
= ζ ∈ (0, 1].

16.6.2 The Shanks Transformation on Totally Monotonic Sequences

The next theorem can be proved by invoking Theorem 16.1.3 on the relation between the
Shanks transformation and the Padé table and by using the so-called two-term identities
in the Padé table. We come back to these identities later.
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Theorem 16.6.6 When the Shanks transformation is applied to the sequence {Am}, the
following identities hold among the resulting approximants ek(Am) = ε

(m)
2k , provided the

relevant ε(m)
2k exist:

ε
( j)
2n+2 − ε

( j)
2n = − [H ( j)

n+1({�As})]2

H ( j)
n ({�2As})H ( j)

n+1({�2As})
, (16.6.1)

ε
( j+1)
2n − ε

( j)
2n =

H ( j)
n+1({�As})H ( j+1)

n ({�As})
H ( j)

n ({�2As})H ( j+1)
n ({�2As})

, (16.6.2)

ε
( j)
2n+2 − ε

( j+1)
2n = − H ( j)

n+1({�As})H ( j+1)
n+1 ({�As})

H ( j)
n+1({�2As})H ( j+1)

n ({�2As})
, (16.6.3)

ε
( j)
2n+2 − ε

( j+2)
2n = − [H ( j+1)

n+1 ({�As})]2

H ( j)
n+1({�2As})H ( j+2)

n ({�2As})
. (16.6.4)

An immediate corollary of this theorem that concerns {Am} ∈ TM is the following:

Theorem16.6.7 Let {Am} ∈ TM in the previous theorem. Then ε( j)2n ≥ 0 for each j andn.
In addition, both the column sequences {ε( j)2n }

∞
j=0 and the diagonal sequence {ε( j)2n }

∞
n=0 are

nonincreasing and converge to A = limm→∞ Am. Finally, (ε
( j)
2n − A)/(A j+2n − A)→ 0

both as j →∞, and as n →∞, when limm→∞(Am+1 − A)/(Am − A) = ζ �= 1.

Proof. That ε( j)2n ≥ 0 follows from (16.1.12) and from the assumption that {Am} ∈ TM .
To prove the rest, it is sufficient to consider the case in which A = 0 since {Am −
A} ∈ TM and en(A j ) = A + en(A j − A). From (16.6.3), it follows that 0 ≤ ε

( j)
2n ≤

ε
( j+1)
2n−2 ≤ · · · ≤ ε

( j+n)
0 = A j+n . Thus, lim j→∞ ε

( j)
2n = 0 and limn→∞ ε

( j)
2n = 0. That

{ε( j)2n }
∞
n=0 and {ε( j)2n }

∞
j=0 are nonincreasing follows from (16.6.1) and (16.6.2), respec-

tively. The last part follows from part (i) of Theorem 15.3.1 on the Aitken �2-process,
which says that ε( j)2 − A = o(A j − A) as j →∞ under the prescribed condition. �

It follows from Theorem 16.6.7 that, if Am = cBm + d, m = 0, 1, . . . , for some
constants c �= 0 and d, and if {Bm} ∈ TM , then the Shanks transformation on {Am}
produces approximations that satisfy lim j→∞ ε

( j)
2n = A and limn→∞ ε

( j)
2n = A, where

A = limm→∞ Am . Also, (ε
( j)
2n − A)/(A j+2n − A)→ 0 both as j →∞ and as n →∞,

when limm→∞(Am+1 − A)/(Am − A) = ζ �= 1.
It must be noted that Theorem 16.6.7 gives almost no information about rates of

convergence or convergence acceleration. To be able to say more, extra conditions need
to be imposed on {Am}. As an example, let us consider the sequence {Am} ∈ TM with
Am = 1/(m + β), m = 0, 1, . . . , β > 0, whose limit is 0.We already know fromTheo-
rem 16.5.4 that the column sequences are only as good as the sequence {Am} itself.Wynn
[371] has given the following closed-form expression for ε( j)2n :

ε
( j)
2n =

1

(n + 1)( j + n + β)
.
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It is clear that the diagonal sequences are only slightly better than {Am} itself, even
though they converge faster; ε( j)2n ∼ n−2 as n →∞. No one diagonal sequence converges
more quickly than the one preceding it, however. Thus, neither the columns nor the
diagonals of the epsilon table are effective for Am = 1/(m + β) even though {Am} is
totally monotonic. (We note that the ε-algorithm is very unstable when applied to this
sequence.)
Let us now consider the sequence {Am}, where Am = ζm+1/(1− ζm+1), m =

0, 1, . . . , where 0 < ζ < 1. It is easy to see that Am =
∑∞

k=1 ζ
k(m+1), which by

Lemma 16.6.3 is totally monotonic. Therefore, Theorem 16.6.7 applies. We know from
Corollary 16.4.4 that ε( j)2n = O(ζ (n+1) j ) as j →∞; that is, each column of the epsilon
table converges (to 0) faster than the one preceding it. Even though we have no conver-
gence theory for diagonal sequences that is analogous to Theorem 16.4.3, in this example
we have a closed-form expression for ε( j)2n , namely,

ε
( j)
2n = A j(n+1)+n(n+2).

This expression is the same as that given by Brezinski and Redivo Zaglia [41, p. 288] for
the epsilon table of the sequence {Sm}, where S0 = 1 and Sm+1 = 1+ a/Sm for some a /∈
(−∞− 1/4]. It follows that ε( j)2n ∼ ζ j(n+1)+n(n+2)+1 as n →∞, so that limn→∞ ε

( j)
2n = 0.

In other words, the diagonal sequences {ε( j)2n }
∞
n=0 converge superlinearly, while {Am}∞m=0

converges only linearly. Also, each diagonal converges more quickly than the one pre-
ceding it.
We end this section by mentioning that the remark following the proof of Theorem

16.6.7 applies to sequences of partial sums of the convergent series
∑∞

i=0 ci x
i for which

{cm} ∈ TM with limm→∞ cm = 0 and x > 0. This is so because Am =
∑m

i=0 ci x
i =

A − Rm , where Rm =
∑∞

i=m+1 ci x
i , and {Rm} ∈ TM . Here, A is the sum of

∑∞
i=0 ci x

i .
An example of this is the Maclaurin series of − log(1− x) =∑∞

i=1 x
i/ i .

16.6.3 Totally Oscillating Sequences

Definition 16.6.8 A sequence {µm}∞m=0 is said to be totally oscillating if {(−1)mµm}∞m=0
is totally monotonic, and we write {µm} ∈ T O .

Lemma 16.6.9 If {µm} ∈ T O, then {(−1)k�kµm} ∈ T O as well. If {µm}∞m=0 is conver-
gent, then its limit is 0.

The following result is analogous to Theorem 16.6.5 and follows from it.

Theorem 16.6.10 Let {µm} ∈ T O. Then (−1)mpH (m)
p ({µs}) ≥ 0 for all m, p = 0,

1, . . . . If the function α(t) in (−1)mµm =
∫ 1
0 tmdα(t), m = 0, 1, . . . , has an infi-

nite number of points of increase on [0, 1], then (−1)mpH (m)
p ({µs}) > 0 for all m,

p = 0, 1, . . . .
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An immediate consequence of Theorem 16.6.10 is that µmµm+2 − (µm+1)2 ≥ 0 for
all m if {µm} ∈ T O; hence,

0 >
µ1

µ0
≥ µ2

µ1
≥ · · · ≥ −1.

As a result, we also have that

lim
m→∞

µm+1
µm

= ζ ∈ [−1, 0).

16.6.4 The Shanks Transformation on Totally Oscillating Sequences

The following results follow from (16.1.12) and Theorem 16.6.10. We leave their proof
to the interested reader.

Theorem 16.6.11 Let {Am} ∈ T O in Theorem 16.6.6. Then (−1) jε( j)2n ≥ 0 for each j
and n. Also, both the column sequences {ε( j)2n }

∞
j=0 and the diagonal sequences {ε( j)2n }

∞
n=0

converge (to 0) when {Am} converges, the sequences {ε( j)2n }
∞
n=0 being monotonic. In

addition, when {Am} converges, (ε( j)2n − A)/(A j+2n − A)→ 0 both as j →∞ and as
n →∞.

From this theorem, it is obvious that, if Am = cBm + d,m = 0, 1 . . . , for some con-
stants c �= 0 and d, and if {Bm} ∈ T O converges, then the Shanks transformation on
{Am} produces approximations that satisfy lim j→∞ ε

( j)
2n = d and limn→∞ ε

( j)
2n = d. For

each n, the sequences {ε( j)2n }
∞
n=0 tend to d monotonically, while the sequences {ε( j)2n }

∞
j=0

oscillate about d. (Note that limm→∞ Am = d because limm→∞ Bm = 0.)
It must be noted that Theorem 16.6.11, just as Theorem 16.6.7, gives almost no

information about rates of convergence or convergence acceleration. Again, to obtain
results in this direction, more conditions need to be imposed on {Am}.

16.7 Modifications of the ε-Algorithm

As we saw in Theorem 16.5.4, the Shanks transformation is not effective on logarithmic
sequences in b(1)/LOG. For such sequences, Vanden Broeck and Schwartz [344] suggest
modifying the ε-algorithm by introducing a parameter η that can be complex in general.
This modification reads as follows:

ε
( j)
−1 = 0 and ε

( j)
0 = A j , j = 0, 1, . . . ,

ε
( j)
2n+1 = ηε

( j+1)
2n−1 +

1

ε
( j+1)
2n − ε

( j)
2n

, and

ε
( j)
2n+2 = ε

( j+1)
2n + 1

ε
( j+1)
2n+1 − ε

( j)
2n+1

, n, j = 0, 1, . . . . (16.7.1)

When η = 1 the ε-algorithm ofWynn is recovered, whereas when η = 0 the iterated�2-
process is obtained. Even though the resulting method is defined only via the recursion
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relations of (16.7.1) when η is arbitrary, it is easy to show that it is quasi-linear in the
sense of the Introduction.
As with the ε-algorithm, with the present algorithm too, the ε( j)k with odd k can be

eliminated, and this results in the identity

1

ε
( j−1)
2n+2 − ε

( j)
2n

+ η

ε
( j+1)
2n−2 − ε

( j)
2n

= 1

ε
( j−1)
2n − ε

( j)
2n

+ 1

ε
( j+1)
2n − ε

( j)
2n

. (16.7.2)

Note that the new ε
( j)
2 and Wynn’s ε( j)2 are identical, but the other ε( j)2n are not.

The following results are due to Barber and Hamer [17].

Theorem 16.7.1 Let {Am} be in b(1)/LOG in the notation of Definition 15.3.2. With
η = −1 in (16.7.1), we have

ε
( j)
4 − A = O( jγ−2) as j →∞.

Theorem 16.7.2 Let {Am} be such that

Am = A + C(−1)m
(
δ

m

)

, m = 0, 1, . . . ; δ �= 0,±1,±2, . . . .

Then,withη = −1 in (16.7.1), ε( j)4 = A for all j . (Because Am − A ∼ [C/�(−δ)]m−δ−1

as m →∞, A = limm→∞ Am when �δ > −1. Otherwise, A is the antilimit of {Am}.)

We leave the proof of these to the reader.
Vanden Broeck and Schwartz [344] demonstrated by numerical examples that their

modification of the ε-algorithm is effective on some strongly divergent sequences when
η is tuned properly. We come back to this in Chapter 18 on generalizations of Padé
approximants.
Finally, we can replace η in (16.7.1) by ηk ; that is, a different value of η can be used

to generate each column in the epsilon table.
Furthermodifications of the ε-algorithm suitable for some special sequences {Am} that

behave logarithmically have been devised in theworks of Sedogbo [262] and Sablonnière
[247]. These modifications are of the form

ε
( j)
−1 = 0 and ε

( j)
0 = A j , j = 0, 1, . . . ,

ε
( j)
k+1 = ε

( j+1)
k−1 + gk

ε
( j+1)
2n+1 − ε

( j)
2n+1

, k, j = 0, 1, . . . . (16.7.3)

Here gk are scalars that depend on the asymptotic expansion of the Am . For the details
we refer the reader to [262] and [247].
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The Padé Table

17.1 Introduction

In the preceding chapter, we saw that the approximations en(A j ) obtained by applying
the Shanks transformation to {Am}, the sequence of the partial sums of the formal power
series

∑∞
k=0 ckz

k , are Padé approximants corresponding to this power series. Thus, Padé
approximants are a very important tool that can be used in effective summation of power
series, whether convergent or divergent. They have been applied as a convergence ac-
celeration tool in diverse engineering and scientific disciplines and they are related to
various topics in classical analysis as well as to different methods of numerical analysis,
such as continued fractions, the moment problem, orthogonal polynomials, Gaussian
integration, the qd-algorithm, and some algorithms of numerical linear algebra. As such,
they have been the subject of a large number of papers and books. For these reasons,
we present a brief survey of Padé approximants in this book. For more information
and extensive bibliographies, we refer the reader to the books by Baker [15], Baker
and Graves-Morris [16], and Gilewicz [99], and to the survey paper by Gragg [106].
The bibliography by Brezinski [39] contains over 6000 items. For the subject of contin-
ued fractions, see the books by Perron [229], Wall [348], Jones and Thron [144], and
Lorentzen and Waadeland [179]. See also Henrici [132, Chapter 12]. For a historical
survey of continued fractions, see the book by Brezinski [38].
We start with the modern definition of Padé approximants due to Baker [15].

Definition 17.1.1 Let f (z) :=∑∞
k=0 ckz

k , whether this series converges or diverges.
The [m/n] Padé approximant corresponding to f (z), if it exists, is the rational function
fm,n(z) = Pm,n(z)/Qm,n(z), where Pm,n(z) and Qm,n(z) are polynomials in z of degree
at most m and n, respectively, such that Qm,n(0) = 1 and

fm,n(z)− f (z) = O(zm+n+1) as z → 0. (17.1.1)

It is customary to arrange the fm,n(z) in a two-dimensional array, which has been
called the Padé table and which looks as shown in Table 17.1.1.
The following uniqueness theorem is quite easy to prove.

Theorem 17.1.2 If fm,n(z) exists, it is unique.

323
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Table 17.1.1: The Padé table

[0/0] [1/0] [2/0] [3/0] · · ·
[0/1] [1/1] [2/1] [3/1] · · ·
[0/2] [1/2] [2/2] [3/2] · · ·
[0/3] [1/3] [2/3] [3/3] · · ·
...

...
...

...
. . .

As follows from (17.1.1), the polynomials Pm,n(z) and Qm,n(z) also satisfy

Qm,n(z) f (z)− Pm,n(z) = O(zm+n+1) as z → 0, Qm,n(0) = 1. (17.1.2)

If we now substitute Pm,n(z) =
∑m

i=0 ai z
i and Qm,n(z) =

∑n
i=0 bi z

i in (17.1.2), we ob-
tain the linear system

min(i,n)∑

j=0
ci− j b j = ai , i = 0, 1, . . . ,m, (17.1.3)

min(i,n)∑

j=0
ci− j b j = 0, i = m + 1, . . . ,m + n; b0 = 1. (17.1.4)

Obviously, the bi can be obtained by solving the equations in (17.1.4). With the bi
available, the ai can be obtained from (17.1.3). Using Cramer’s rule to express the bi , it
can be shown that fm,n(z) has the determinant representation

fm,n(z) = um,n(z)

vm,n(z)
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

zn Sm−n(z) zn−1Sm−n+1(z) . . . z0Sm(z)
cm−n+1 cm−n+2 . . . cm+1
cm−n+2 cm−n+3 . . . cm+2

...
...

...
cm cm+1 . . . cm+n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

zn zn−1 . . . z0

cm−n+1 cm−n+2 . . . cm+1
cm−n+2 cm−n+3 . . . cm+2

...
...

...
cm cm+1 . . . cm+n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (17.1.5)

where Sp(z) =
∑p

k=0 ckz
k, p = 0, 1, . . . , and ck = 0 for k < 0.

From Qm,n(z) =
∑n

i=0 bi z
i and from (17.1.5), we see that

fm,n(z) =
∑n

i=0 bi z
i Sm−i (z)∑n

i=0 bi zi
, (17.1.6)

that is, once the bi have been determined, fm,n(z) can be determined completely without
actually having to determine the ai .
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17.2 Algebraic Structure of the Padé Table

Definition 17.2.1 Wesay that the Padé approximant fm,n(z) is normal if it occurs exactly
once in the Padé table. We say that the Padé table is normal if all its entries are normal;
that is, no two entries are equal.

Let us define

Cm,0 = 1; Cm,n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

cm−n+1 cm−n+2 . . . cm
cm−n+2 cm−n+3 . . . cm+1

...
...

...
cm cm+1 . . . cm+n−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

, m ≥ 0, n ≥ 1, (17.2.1)

where ck = 0 for k < 0, as before. Thus, we also have that

C0,n = (−1)n(n−1)/2cn0 , n ≥ 0. (17.2.2)

Let us arrange the determinants Cm,n in a two-dimensional table, called the C-table,
in complete analogy to the Padé table itself. The first row of this table is occupied by
Cm,0 = 1, m = 0, 1, . . . , and the second row is occupied byCm,1 = cm, m = 0, 1, . . . .
The first column is occupied by C0,n = (−1)n(n−1)/2cn0 , n = 0, 1, . . . .When Cm,n �= 0
for allm and n, the rest of theC-table can be computed recursively by using the Frobenius
identity

Cm,n+1Cm,n−1 = Cm+1,nCm−1,n − (Cm,n)
2. (17.2.3)

This identity can be proved by applying the Sylvester determinant identity to Cm,n+1.
The normality of the Padé approximants is closely related to the zero structure of the

C-table as the following theorems show.

Theorem 17.2.2 The following statements are equivalent:

(i) fm,n(z) is normal.
(ii) The numerator Pm,n(z) and the denominator Qm,n(z) of fm,n(z) have degrees exactly

m and n, respectively, and the expansion of Qm,n(z) f (z)− Pm,n(z) begins exactly
with the power zm+n+1.

(iii) The determinants Cm,n, Cm,n+1, Cm+1,n, and Cm+1,n+1 do not vanish.

Theorem 17.2.3 A necessary and sufficient condition for the Padé table to be normal is
that Cm,n �= 0 for all m and n. In particular, Cm,1 = cm �= 0, m = 0, 1, . . . , must hold.

Theorem 17.2.4 In case the Padé table is not normal, the vanishing Cm,n in the C-table
appear in square blocks, which are entirely surrounded by nonzero entries (except at
infinity). For the r × r block of zeros in the C-table, say, Cµ,ν = 0, m + 1 ≤ µ ≤ m + r,
n + 1 ≤ ν ≤ n + r , we have that fµ,ν(z) = fm,n(z) for µ ≥ m, ν ≥ n, and µ+ ν ≤
m + n + r , while the rest of the fµ,ν(z) in the (r + 1)× (r + 1) block, m ≤ µ ≤ m + r,
n ≤ ν ≤ n + r , do not exist.
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Theorem 17.2.5 Let
∑∞

k=0 ckz
k be the Maclaurin series of the rational function R(z) =

p(z)/q(z), where p(z) and q(z) are polynomials of degree exactly m and n, respectively,
and have no common factor. Then, fµ,ν(z) = R(z) for allµ ≥ m and ν ≥ n. In this case,
the C-table has an infinite zero block.

The next theorem shows the existence of an infinite number of Padé approximants (i)
along any row, (ii) along any column, and (iii) along any diagonal, and it is proved by
considering the zero structure of the C-table.

Theorem 17.2.6 Given a formal power series
∑∞

k=0 ckz
k with c0 �= 0, in its correspond-

ing Padé table, there exist infinite sequences (i) { fµi ,n(z)}∞i=0 for arbitrary fixed n, (ii)
{ fm,νi (z)}∞i=0 for arbitrary fixed m, and (iii) { fλi+k,λi (z)}∞i=0 for arbitrary fixed k.

The Padé table enjoys some very interesting duality and invariance properties that are
very easy to prove.

Theorem 17.2.7 Let f (z) :=∑∞
k=0 ckz

k be a formal power series with c0 �= 0. Denote
g(z) = 1/ f (z) :=∑∞

k=0 dkzk . [That is, dk are the solution of the triangular system of
equations c0d0 = 1 and

∑k
j=0 ck− j d j = 0, k = 1, 2, . . . .] If fµ,ν(z) and gµ,ν(z) denote

the [µ/ν]Padé approximants corresponding to f (z) and g(z), respectively, and if fm,n(z)
exists, then gn,m(z) exists and gn,m(z) = 1/ fm,n(z).

Corollary 17.2.8 If 1/ f (z) = f (−z), then fm,n(−z) = 1/ fn,m(z). Consequently, if
fm,n(z) = Pm,n(z)/Qm,n(z) with Qm,n(0) = 1, then Pm,n(z) = c0 Qn,m(−z) as well.

A most obvious application of this corollary is to f (z) = ez . Also, 1/ f (z) = f (−z)
holds when f (z) = s(z)/s(−z) with any s(z).

Theorem 17.2.9 Let f (z) :=∑∞
k=0 ckz

k be a formal power series and let g(z) = [A +
B f (z)]/[C + Df (z)] :=∑∞

k=0 dkzk .Then, providedC + Dc0 �= 0 and provided fm,m(z)
exists, gm,m(z) exists and there holds gm,m(z) = [A + B fm,m(z)]/[C + Dfm,m(z)].

The result of the following theorem is known as homographic invariance under an
argument transformation.

Theorem 17.2.10 Let f (z) :=∑∞
k=0 ckz

k be a formal power series. Define the
origin-preserving transformation w = Az/(1+ Bz), A �= 0, and let g(w) ≡ f (z) =
f (w/(A − Bw)) :=∑∞

k=0 dkw
k . If fµ,ν(z) and gµ,ν(w) are Padé approximants corre-

sponding to f (z) and g(w), respectively, then gm,m(w) = fm,m(z), provided fm,m(z)
exists.
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17.3 Padé Approximants for Some Hypergeometric Functions

As can be concluded from the developments of Section 17.1, in general, it is impossible
to obtain closed-form expressions for Padé approximants. Such expressions are possible
for some special cases involving hypergeometric series, however. In this section, we
treat a few such cases by using a technique of the author that avoids the pain of going
through the determinant representation given in (17.1.5). Lemmas 17.3.1 and 17.3.2 that
follow are due to Sidi [277] and they form the main tools of this technique. We provide
the proof of the first lemma only; that of the second is similar. We make use of Lemma
17.3.1 again in Chapter 19 in the derivation of a simple closed-form expression for the
S-transformation of Sidi.

Lemma 17.3.1 Let T and γi , i = 0, 1, . . . , n − 1, be defined by the linear equations

Ar = br T + cr

(

γ0 +
n−1∑

i=1

γi

α + r + i − 1

)

, r = k, k + 1, . . . , k + n, (17.3.1)

or

Ar = br T + cr
n−1∑

i=0

γi

(α + r )i
, r = k, k + 1, . . . , k + n, (17.3.2)

where (x)0 = 1 and (x)i = x(x + 1) · · · (x + i − 1), i ≥ 1.Providedα + r + i − 1 �= 0
for 1 ≤ i ≤ n − 1 and k ≤ r ≤ k + n, T is given by

T = �n((α + k)n−1Ak/ck)

�n((α + k)n−1bk/ck)
=
∑n

j=0 (−1) j
(n
j

)
(α + k + j)n−1Ak+ j/ck+ j

∑n
j=0 (−1) j

(n
j

)
(α + k + j)n−1bk+ j/ck+ j

. (17.3.3)

Proof. Let us multiply both sides of (17.3.1) and (17.3.2) by (α + r )n−1/cr . We obtain

(α + r )n−1(Ar/cr ) = (α + r )n−1(br/cr )T + P(r ), r = k, k + 1, . . . , k + n,

where P(x) is a polynomial in x of degree at most n − 1. Next, let us write r = k + j in
this equation and multiply both sides by (−1)n− j

(n
j

)
and sum from j = 0 to j = n (the

number of equations is exactly n + 1). By the fact that �n fk =
∑n

j=0(−1)n− j
(n
j

)
fk+ j ,

this results in

�n((α + k)n−1Ak/ck) = T�n((α + k)n−1bk/ck)+�n P(k).

Now, �n P(k) = 0 because the polynomial P(x) is of degree at most n − 1. The result
now follows. �

Lemma 17.3.2 Let T and γi , i = 0, 1, . . . , n − 1, be defined by the linear equations

Ar = br T + cr
n−1∑

i=0
γi pi (r ), r = k, k + 1, . . . , k + n, (17.3.4)
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where pi (x) are polynomials in x, each of degree ≤ n − 1. Then T is given by

T = �n(Ak/ck)

�n(bk/ck)
=
∑n

j=0 (−1) j
(n
j

)
Ak+ j/ck+ j

∑n
j=0 (−1) j

(n
j

)
bk+ j/ck+ j

. (17.3.5)

Let us now turn to Padé approximants corresponding to f (z) :=∑∞
k=0 ckz

k . From the
determinantal expression for fm,n(z) given in (17.1.5), it follows that fm,n(z), along with
the additional parameters δ1, . . . , δn , satisfies

zm−r Sr (z) = zm−r fm,n(z)+
n∑

i=1
δi cr+i , m − n ≤ r ≤ m, (17.3.6)

where Sp(z) =
∑p

k=0 ckz
k, p = 0, 1, . . . .

When ck have the appropriate form, we can solve (17.3.6) for fm,n(z) in closed form
with the help of Lemmas 17.3.1 and 17.3.2.

Example 17.3.3 f (z) =1F1(1;β; z) =
∑∞

j=0 z
j/(β) j , β �= 0,−1,−2, . . . . Using the

fact that (β)p+q = (β)p(β + p)q , the equations in (17.3.6) can be written in the form

zm−r Sr (z) = zm−r fm,n(z)+ 1

(β)r+1

n−1∑

i=0

γi

(β + r + 1)i
, m − n ≤ r ≤ m.

Thus, Lemma 17.3.1 applies, and after some manipulation it can be shown that

fm,n(z) =
∑n

j=0 (−1) j
(n
j

)
(β)m+ j z

n− j Sm−n+ j (z)
∑n

j=0 (−1) j
(n
j

)
(β)m+ j zn− j

.

For β = 1, we have f (z) = ez , and Corollary 17.2.8 also applies. Thus, we have

fm,n(z) =
∑m

j=0
(m
j

)
(m + n − j)! z j

∑n
j=0

(n
j

)
(m + n − j)! (−z) j

as the [m/n] Padé approximant for ez =∑∞
k=0 z

k/k! with very little effort.

Example 17.3.4 f (z) =2F1(1, µ;β; z) =
∑∞

j=0[(µ) j/(β) j ]z
j , µ, β �= 0,−1,−2, . . . .

Again, using the fact that (x)p+q = (x)p(x + p)q , we have in (17.3.6) that

n∑

i=1
δi cr+i = (µ)r+1

(β)r+1

n∑

i=1
δi
(µ+ r + 1)i−1
(β + r + 1)i−1

= (µ)r+1
(β)r+1

(

γ0 +
n−1∑

i=1

γi

β + r + i

)

for some γi .

The last equality results from the partial fraction decomposition of the rational function∑n
i=1 δi (µ+ r + 1)i−1/(β + r + 1)i−1. Thus, fm,n(z) satisfies

zm−r Sr (z) = zm−r fm,n(z)+ (µ)r+1
(β)r+1

(

γ0 +
n−1∑

i=1

γi

β + r + i

)

, m − n ≤ r ≤ m.
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Therefore, Lemma 17.3.1 applies, and we obtain

fm,n(z) =
∑n

j=0 (−1) j
(n
j

) (β)m+ j

(µ)m−n+ j+1
zn− j Sm−n+ j (z)

∑n
j=0 (−1) j

(n
j

) (β)m+ j

(µ)m−n+ j+1
zn− j

Special cases of this are obtained by assigning to µ and β specific values:

(i) For β = 1, f (z) =1F0(µ; z) = (1− z)−µ.
(ii) For β = µ+ 1, f (z) = µ

∑∞
k=0 z

k/(µ+ k). With µ = 1, this reduces to f (z) =
−z−1 log(1− z). With µ = 1/2, it reduces to f (z) = z−1/2 tanh−1 z1/2.

Example 17.3.5 f (z) =2F0(1, µ; z) =
∑∞

j=0(µ) j z
j , µ �= 0,−1,−2, . . . .Again, using

the fact that (x)p+q = (x)p(x + p)q , we have in (17.3.6) that

n∑

i=1
δi cr+i = (µ)r+1

n∑

i=1
δi (µ+ r + 1)i−1,

the summation on the right being a polynomial in r of degree at most n − 1. Thus, fm,n(z)
satisfies

zm−r Sr (z) = zm−r fm,n(z)+ (µ)r+1
n−1∑

i=0
γi r

i , m − n ≤ r ≤ m.

Therefore, Lemma 17.3.2 applies, and we obtain

fm,n(z) =
∑n

j=0 (−1) j
(n
j

) 1

(µ)m−n+ j+1
zn− j Sm−n+ j (z)

∑n
j=0 (−1) j

(n
j

) 1

(µ)m−n+ j+1
zn− j

.

Setting µ = 1, we obtain the Padé approximant for the Euler series, which is re-
lated to the exponential integral E1(−z−1), where E1(ζ ) =

∫∞
ζ
(e−t/t)dt and E1(ζ ) ∼

(e−ζ /ζ )
∑∞

k=0 (−1)k(k!)ζ−k as �ζ →+∞.

Someof the preceding examples have also been treated by different techniques byLuke
[193] and by Iserles [139]. Padé approximants from so-called q-series have been obtained
in closed form by Wynn [373]. For additional treatment of q-elementary functions, see
Borwein [28].

17.4 Identities in the Padé Table

Various identities relate neighboring entries in the Padé table.We do not intend to go into
these in any detail here.We are content to derive one of the so-called two-term identities to
which we alluded in our discussion of the Shanks transformation in the previous chapter.
There, we mentioned, in particular, that the four identities (16.6.1)–(16.6.4) among the
different entries of the epsilon table could be derived from these two-term identities.
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Consider fµ,ν(z) = uµ,ν(z)/vµ,ν(z), with uµ,ν(z) and vµ,ν(z) being, respectively,
the numerator and denominator determinants in (17.1.5). Now, by (17.1.1) we have
fm+1,n(z)− fm,n+1(z) = O(zm+n+2) as z → 0. Next, we have fm+1,n(z)− fm,n+1(z) =
N (z)/D(z), where N (z) = um+1,n(z)vm,n+1(z)− um,n+1(z)vm+1,n(z) and D(z) =
vm+1,n(z)vm,n+1(z). Because N (z) is a polynomial of degree at most m + n + 2 and
D(0) �= 0, we thus have that N (z) = αzm+n+2 for some constant α. Obviously, α is the
product of the leading coefficients of um+1,n(z) and vm,n+1(z), which are both Cm+1,n+1.
Summarizing, we have the two-term identity

fm+1,n(z)− fm,n+1(z) = (Cm+1,n+1)2zm+n+2

vm+1,n(z)vm,n+1(z)
. (17.4.1)

Note that the identity in (16.6.4) pertaining to the epsilon table is obtained directly
from the two-term identity in (17.4.1) by recalling Theorem 16.1.3, which relates the
Shanks transformation to the Padé table.

Using the approach that led to (17.4.1), we can obtain additional two-term identities
involving fm+1,n+1(z)− fm,n(z), fm+1,n(z)− fm,n(z), and fm,n+1(z)− fm,n(z), from
which we can obtain the identities given in (16.6.1)–(16.6.3). We leave the details to
the interested reader.
For additional identities involving more entries in the Padé table, see Baker [15].
We close this section by stating the five-term identity that follows directly fromWynn’s

cross rule, which we encountered in the previous chapter. This identity reads

1

fm+1,n(z)− fm,n(z)
+ 1

fm−1,n(z)− fm,n(z)
=

1

fm,n+1(z)− fm,n(z)
+ 1

fm,n−1(z)− fm,n(z)
, (17.4.2)

and is known as Wynn’s identity. Of course, it is valid when fm,n(z) is normal.

17.5 Computation of the Padé Table

Various methods have been developed for computing the Padé table corresponding to
a given power series f (z) :=∑∞

k=0 ckz
k when this table is normal. The most straight-

forward of these methods is provided by Wynn’s five-term identity given in (17.4.2).
Obviously, this is a recursive method that enables us to compute the Padé table
row-wise or columnwise. The initial conditions for this method are fm,0(z) = Sm(z),
fm,1(z) = Sm−1(z)+ cmzm/(1− (cm+1/cm)z), m = 0, 1, . . . , and f0,n(z) = 1/Tn(z),
n = 0, 1, . . . ,where Sp(z) and Tp(z) are the pth partial sums of f (z) :=∑∞

k=0 ckz
k and

1/ f (z) :=∑∞
k=0 dkzk , respectively. Obviously, the dk can be obtained from c0d0 = 1

and
∑k

j=0 ck− j d j = 0, k = 1, 2, . . . , recursively, in the order d0, d1, . . . . Without the
f0,n(z), it is possible to compute half the Padé table, namely, those fm,n(z) with m ≥ n.
When the Padé table is not normal, we can use an extension of Wynn’s identity due to
Cordellier [57]. For a detailed treatment, see Baker and Graves-Morris [16].
We next present a method due to Longman [174] for recursive determination

of the coefficients of the numerator polynomial Pm,n(z) =
∑m

k=0 p(m,n)k zk and the
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denominator polynomial Qm,n(z) =
∑n

k=0 q
(m,n)
k zk of fm,n(z) with the normalization

condition q (m,n)
0 = 1, which implies p(m,n)0 = c0. This method too is valid for normal

tables. We start with

Qm+1,n(z) f (z)− Pm+1,n(z) = O(zm+n+2)

Qm,n+1(z) f (z)− Pm,n+1(z) = O(zm+n+2) (17.5.1)

that follow from (17.1.1). Upon subtraction, we obtain from (17.5.1) that
[
Qm,n+1(z)− Qm+1,n(z)

]
f (z)− [

Pm,n+1(z)− Pm+1,n(z)
] = O(zm+n+2).

Now, both terms inside the square brackets are polynomials that vanish at z = 0.Dividing
both sides by z, and invoking (17.1.1) again, we realize that

Pm,n+1(z)− Pm+1,n(z)(
q (m,n+1)
1 − q (m+1,n)

1

)
z
= Pm,n(z), (17.5.2)

Qm,n+1(z)− Qm+1,n(z)(
q (m,n+1)
1 − q (m+1,n)

1

)
z
= Qm,n(z). (17.5.3)

Let us denote by {pk, qk}, {p′k, q ′k}, and {p′′k , q ′′k } the {p(µ,ν)k , q (µ,ν)
k } corresponding to

fm,n(z), fm,n+1(z), and fm+1,n(z), respectively. Then, it follows from (17.5.2) and (17.5.3)
that

p′k − p′′k
q ′1 − q ′′1

= pk−1, k = 1, . . . ,m; − p′′m+1
q ′1 − q ′′1

= pm, (17.5.4)

and

q ′k − q ′′k
q ′1 − q ′′1

= qk−1, k = 1, . . . , n;
q ′n+1

q ′1 − q ′′1
= qn. (17.5.5)

Eliminating q ′1 − q ′′1 , we can rewrite (17.5.4) and (17.5.5) in the form

p′0 = c0 and p′k = p′′k −
p′′m+1
pm

pk−1, k = 1, . . . ,m, (17.5.6)

and

q ′′0 = 1 and q ′′k = q ′k −
q ′n+1
qn

qk−1, k = 1, . . . , n. (17.5.7)

The p(µ,ν)k can be computed with the help of (17.5.6) with the initial conditions
p(µ,0)k = ck, k = 0, 1, . . . , µ, and the q (µ,ν)

k can be computed with the help of (17.5.7)
with the initial conditions q (0,ν)

k = d̂k, k = 0, 1 . . . , ν, where the d̂k are the Maclaurin
series coefficients for c0/ f (z) and thus can be computed recursively from d̂0 = 1
and d̂k = −

(∑k−1
i=0 ck−i d̂ i

)
/c0, k = 1, 2, . . . . Thus, given the terms c0, c1, . . . , cM ,

this algorithm enables us to obtain the coefficients of fµ,ν(z) for 0 ≤ µ+ ν ≤ M.

For additional methods that also treat the issue of numerical stability, see Baker and
Graves-Morris [16].
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Finally, Padé approximants can also be computed via their connection to continued
fractions with the help of the quotient-difference (qd) algorithm. We turn to this in the
next section.

17.6 Connection with Continued Fractions

17.6.1 Definition and Algebraic Properties of Continued Fractions

By a continued fraction, we mean an expression of the form

b0 + K

(
an

bn

)

≡ b0 + a1

b1 + a2

b2 + a3
b3 + . . .

, (17.6.1)

which we write in the typographically more convenient form

b0 + K

(
an

bn

)

= b0 + a1
b1 +

a2
b2 +

a3
b3 + · · · . (17.6.2)

Let us set

A0

B0
= b0

1
,

A1

B1
= b0 + a1

b1
, and

An

Bn
= b0 + a1

b1 + · · · +
an

bn
, n = 2, 3, . . . . (17.6.3)

We call an and bn , respectively, the nth partial numerator and the nth partial denominator
of b0 + K (an/bn), and An/Bn is its nth convergent.
In case an �= 0, n = 1, . . . , N , aN+1 = 0, the continued fraction terminates and

its value is AN/BN . If an �= 0 and bn �= 0 for all n, then it is infinite. In this case, if
limn→∞(An/Bn) = G exists, then we say that b0 + K (an/bn) converges to G.
It is easy to show by induction that the An and Bn satisfy the recursion relations

An+1 = bn+1An + an+1An−1, n = 1, 2, . . . , A−1 = 1, A0 = b0,

Bn+1 = bn+1Bn + an+1Bn−1, n = 1, 2, . . . , B−1 = 0, B0 = 1. (17.6.4)

We call An and Bn , respectively, the nth numerator and the nth denominator of the
continued fraction b0 + K (an/bn).

By (17.6.4), we have

An+1Bn − AnBn+1 = −an+1(AnBn−1 − An−1Bn),

repeated application of which gives

An+1Bn − AnBn+1 = (−1)na1a2 · · · an+1. (17.6.5)

Therefore,

An+1/Bn+1 − An/Bn = (−1)na1a2 · · · an+1/(BnBn+1), (17.6.6)
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and hence

An

Bn
= b0 + a1

B0B1
− a1a2

B1B2
+ · · · + (−1)n−1 a1a2 · · · an

Bn−1Bn
. (17.6.7)

This last result can be used to prove some interesting convergence theorems for contin-
ued fractions. One of these theorems says that K (1/βn), with βn > 0, n = 1, 2, . . . ,
converges if and only if

∑∞
n=1 βn diverges. See Henrici [132, Theorem 12.1c].

We say two continued fractions are equivalent if they have the same sequence of
convergents. It is easy to show that, for any sequence of nonzero complex numbers
{cn}∞n=0, c0 = 1, the continued fractions b0 + K (an/bn) and b0 + K (cn−1cnan/cnbn)
are equivalent. In particular, by choosing cn = 1/bn, n = 1, 2, . . . , b0 + K (an/bn)
becomes equivalent to b0 + K (a∗n/1), where a∗1 = a1/b1, a∗n = an/(bn−1bn), n =
2, 3, . . . , provided that bn �= 0, n = 1, 2, . . . . Next, by choosing c1 = 1/a1 and
cn = 1/(ancn−1), n = 2, 3, . . . , b0 + K (an/bn) becomes equivalent to b0 + K (1/b∗n),
where b∗n = bncn, n = 1, 2, . . . .

By the even (odd) part of b0 + K (an/bn), we mean a continued fraction whose se-
quence of convergents is {A2n/B2n}∞n=0 ({A2n+1/B2n+1}∞n=0). For the continued fraction
b0 + K (an/1), we have by a few applications of (17.6.4)

Cn+1 = (1+ an + an+1)Cn−1 − anan−1Cn−3, (17.6.8)

where Cn stands for either An or Bn . Thus, the even part of b0 + K (an/1) is

b0 + a1
1+ a2−

a2a3
1+ a3 + a4−

a4a5
1+ a5 + a6−

a6a7
1+ a7 + a8− · · · (17.6.9)

and the odd part is

(b0 + a1)− a1a2
1+ a2 + a3−

a3a4
1+ a4 + a5−

a5a6
1+ a6 + a7− · · · . (17.6.10)

17.6.2 Regular C-Fractions and the Padé Table

By a regular C-fraction, we mean an infinite continued fraction z−1K (anz/1), namely,

a1
1 +

a2z

1 +
a3z

1 + · · · . (17.6.11)

Here, z is a complex variable. A regular C-fraction for which an > 0, n = 1, 2, . . . , is
called an S-fraction. To emphasize the dependence of the nth numerator and denominator
An and Bn on z, we denote them by An(z) and Bn(z), respectively.
By (17.6.4), it is clear that An(z) and Bn(z) are polynomials in z, and hence the

convergents An(z)/Bn(z) are rational functions. It is easy to see that A2n(z), B2n(z),
A2n+1(z), and B2n+1(z) have degrees at most n − 1, n, n, and n, respectively. By
(17.6.5), we also have

An+1(z)Bn(z)− An(z)Bn+1(z) = (−1)na1a2 · · · an+1zn. (17.6.12)

From this and from the fact that An(0) = a1 �= 0 and Bn(0) = 1 for all n, it can be shown
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Table 17.6.1: The staircase in the Padé
table from the C-fraction of (17.6.11)

[0/0]
[0/1] [1/1]

[1/2] [2/2]
[2/3] . . .

. . . . . .

that An(z) and Bn(z) have no common zeros. It is also clear that

A2n+1(z)
B2n+1(z)

− A2n(z)

B2n(z)
= O(z2n) as z → 0, (17.6.13)

and

A2n+2(z)
B2n+2(z)

− A2n+1(z)
B2n+1(z)

= O(z2n+1) as z → 0. (17.6.14)

From these, it follows that the Maclaurin expansion of the convergent A2n(z)/B2n(z)
has the form

∑2n−1
i=0 ci zi + O(z2n), whereas that of A2n+1(z)/B2n+1(z) has the form∑2n

i=0 ci z
i + O(z2n+1), where the coefficients ci are independent of n for all n that sat-

isfies 2n ≥ i . Thus, we conclude that A2n+1(z)/B2n+1(z) is the [n/n] Padé approximant
corresponding to the formal power series

∑∞
i=0 ci z

i , and A2n(z)/B2n(z) is the [n − 1/n]
Padé approximant. In other words, the convergents Ar (z)/Br (z), r = 1, 2, . . . , of the
regularC-fraction z−1K (anz/1) form the staircase in the Padé table of

∑∞
i=0 ci z

i , which
is shown in Table 17.6.1.
We now consider the converse problem: Given a formal power series f (z) :=∑∞
k=0 ckz

k , does there exists a regular C-fraction whose convergents are Padé approx-
imants? The following theorem, whose proof can be found in Henrici [132, Theorem
12.4c], summarizes everything.

Theorem 17.6.1 Given a formal power series f (z) :=∑∞
k=0 ckz

k , there exists at most
one regular C-fraction corresponding to f (z). There exists precisely one such fraction if
and only if H (m)

n ({cs}) �= 0 for m = 0, 1 and n = 1, 2, . . . . [Here H (m)
n ({cs}) are Hankel

determinants defined in (16.1.13).]

Theorem 17.6.1 and the developments preceding it form the basis of the qd-algorithm
to which we alluded in the previous section.
Assuming that H (m)

n ({cs}) �= 0 for m = 0, 1 and n = 1, 2, . . . , we now know that,
given f (z) :=∑∞

k=0 ckz
k , there exists a corresponding regular C-fraction, which we

choose to write as

F0(z) := c0
1 −

q (0)
1 z

1 −
e(0)1 z

1 −
q (0)
2 z

1 −
e(0)2 z

1 − · · · . (17.6.15)

Similarly, if also H (m)
n ({cs}) �= 0 for all m = 2, 3, . . . , and n = 1, 2, . . . , there exist
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Table 17.6.2: The staircase in the Padé table
from the C-fraction of (17.6.16)

[k − 1/0] [k/0]
[k/1] [k + 1/1]

[k + 1/2] [k + 2/2]
. . . . . .

corresponding regular C-fractions of the form

Fk(z) :=
k−1∑

i=0
ci z

i + ckzk

1 −
q (k)
1 z

1 −
e(k)1 z

1 −
q (k)
2 z

1 −
e(k)2 z

1 − · · · , (17.6.16)

for every k = 1, 2, . . . , and the convergents Ar (z)/Br (z), r = 0, 1, . . . , of Fk(z) form
the staircase in the Padé table of f (z), which is shown in Table 17.6.2.
It is seen that the even convergents of Fk+1(z) and the odd convergents of Fk(z) are

identical. Now, the even part of Fk+1(z) is the continued fraction

Fe
k+1(z) :=

k∑

i=0
ci z

i

+ ck+1zk+1

1− q (k+1)
1 z−

q (k+1)
1 e(k+1)1 z2

1− (e(k+1)1 + q (k+1)
2 )z−

q (k+1)
2 e(k+1)2 z2

1− (e(k+1)2 + q (k+1)
3 )z− . . .

,

(17.6.17)

and the odd part of Fk(z) is the continued fraction

Fo
k (z) :=

k∑

i=0
ci z

i

+ ckq
(k)
1 zk+1

1− (q (k)
1 + e(k)1 )z−

e(k)1 q (k)
2 z2

1− (q (k)
2 + e(k)2 )z−

e(k)2 q (k)
3 z2

1− (q (k)
3 + e(k)3 )z− · · · . (17.6.18)

By equating Fo
k (z) and Fe

k+1(z), we obtain the relations

ck+1 = ckq
(k)
1 , q (k+1)

1 = q (k)
1 + e(k)1 , and

q (k+1)
n e(k+1)n = q (k)

n+1e
(k)
n , e(k+1)n + q (k+1)

n+1 = q (k)
n+1 + e(k)n+1, n = 1, 2, . . . . (17.6.19)

It is easy to see that the q (k)
n and e(k)n can be computed recursively from these relations,

which form the basis of the qd-algorithm given next.

Algorithm 17.6.2 (qd-algorithm)

1. Given c0, c1, c2, . . . , set e
(k)
0 = 0 and q (k)

1 = ck+1/ck, k = 0, 1, . . . .
2. For n = 1, 2, . . . , and k = 0, 1, . . . , compute e(k)n and q (k)

n recursively by

e(k)n = e(k+1)n−1 + q (k+1)
n − q (k)

n , q (k)
n+1 = q (k+1)

n e(k+1)n /e(k)n .

The quantities q (k)
n and e(k)n can be arranged in a two-dimensional array as in Table

17.6.3. This table is called the qd-table.
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Table 17.6.3: The qd-table

q (0)
1

e(1)0 e(0)1

q (1)
1 q (0)

2

e(2)0 e(1)1 e(0)2

q (2)
1 q (1)

2

. . .
e(3)0 e(2)1 e(1)2

q (3)
1 q (2)

2

. . .

e(4)0

... e(3)1 e(2)2
...

... q (3)
2

...
. . .

...

With the q (k)
n and e(k)n available, we can now compute the convergents of the continued

fractions Fk(z).
It can be shown that (see Henrici [131, Theorem 7.6a])

q (k)
n = H (k)

n−1H
(k+1)
n

H (k)
n H (k+1)

n−1
and e(k)n = H (k)

n+1H
(k+1)
n−1

H (k)
n H (k+1)

n

, (17.6.20)

where we have used H (k)
n to denote the Hankel determinant H (k)

n ({cs}) for short.
The qd-algorithm was developed by Rutishauser in [243] and discussed further in

[242] and [244]. For a detailed treatment of it, we refer the reader to Henrici [131],
[132].

17.7 Padé Approximants and Exponential Interpolation

Padé approximants have a very close connection with the problem of interpolation by
a sum of exponential functions. The problem, in its simple form, is to find a function
u(x ; h) =∑n

j=1 α j eσ j x that satisfies the 2n interpolation conditions u(x0 + ih; h) = ci ,
i = 0, 1, . . . , 2n − 1. Here, α j and σ j are parameters to be determined. In case a solu-
tion exists, it can be constructed with the help of a method due to Prony [232]. It has
been shown by Weiss and McDonough [352] that the method of Prony is closely related
to the Padé table. As shown in [352], one first constructs the [n − 1/n] Padé approx-
imant Fn−1,n(z) from F(z) =∑2n−1

k=0 ckzk . If Fn−1,n(z) has the partial fraction expan-
sion

∑n
j=1 A j/(z − z j ), assuming simple poles only, then u(x ; h) =∑n

j=1 Â jζ
(x−x0)/h
j ,

where Â j = −A j/z j and ζ j = 1/z j , j = 1, . . . , n .
In case Fn−1,n(z) has multiple poles, the solution of Prony is no longer valid. This case

has been treated in detail by Sidi [280]. In such a case, the function u(x ; h) needs to be
chosen from the set

Uh
n =

{ r∑

j=1

λ j∑

k=1
Bj,k x

k−1ζ x/h
j : ζ j distinct, −π < arg ζ j ≤ π,

r∑

j=1
λ j ≤ n

}

.

The following theorem, which concerns this problem, has been proved in [280]:
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Theorem 17.7.1

(i) There exists a unique function u(x ; h) in Uh
n that solves the interpolation problem

u(x0 + ih; h) = ci , i = 0, 1, . . . , 2n − 1, if and only if the [n − 1/n] Padé approx-
imant Fn−1,n(z) from F(z) =∑2n−1

k=0 ckzk exists and satisfies limz→∞ Fn−1,n(z) = 0.
(ii) In case Fn−1,n(z) exists and is as in part (i), it has the partial fraction expansion

Fn−1,n(z) =
s∑

j=1

µ j∑

k=1

A j,k

(z − z j )k
,

s∑

j=1
µ j ≤ n.

Then, u(x ; h) is given by

u(x ; h) =
s∑

j=1

µ j∑

k=1
E j,k

(
k + (x − x0)/h − 1

k − 1

)

ζ
(x−x0)/h
j ,

where
(p
i

) = [p(p − 1) · · · (p − i + 1)]/ i! is the binomial coefficient,

ζ j = z−1j , E j,k = (−1)k A j,k z
−k
j , 1 ≤ k ≤ µ j , 1 ≤ j ≤ s.

Another interpolation problem treated by Sidi [280] concerns the case inwhich h → 0.
The result relevant to this problem also involves Padé approximants. To treat this case,
we define the function set Un via

Un =
{ r∑

j=1

λ j∑

k=1
Bj,k x

k−1eσ j x : σ j distinct,
r∑

j=1
λ j ≤ n

}

.

Theorem 17.7.2

(i) There exists a unique function v(x) in Un that solves the interpolation problem
v(i)(x0) = γi , i = 0, 1, . . . , 2n − 1, if and only if the [n − 1/n] Padé approximant
Vn−1,n(τ ) from V (τ ) =∑2n−1

k=0 γkτ
k exists.

(ii) In case Vn−1,n(τ ) exists, V̄n−1,n(σ ) = σ−1Vn−1,n(σ−1) satisfies limσ→∞ V̄n−1,n(σ ) =
0 and has the partial fraction expansion

V̄n−1,n(σ ) =
s∑

j=1

ν j∑

k=1

Bj,k

(σ − σ j )k
,

s∑

j=1
ν j ≤ n.

Then, v(x) is given by

v(x) =
s∑

j=1

ν j∑

k=1

Bj,k

(k − 1)!
(x − x0)

k−1eσ j (x−x0).

Integral representations for both u(x ; h) and v(x) are given in [280], and they involve
Fn−1,n(z) and Vn−1,n(τ ) directly. These representations are used in [280] to prove the
following theorem.

Theorem 17.7.3 Let f (x) be 2n − 1 times differentiable in a neighborhood of x0, and
set ci = f (x0 + ih) and γi = f (i)(x0), i = 0, 1, . . . , 2n − 1. Finally, assume that
the [n − 1/n] Padé approximant Vn−1,n(τ ) from

∑2n−1
k=0 γkτ

k exists, its denominator
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polynomial has degree exactly n, and Vn−1,n(τ ) is not reducible. Then the following
hold:

(i) The interpolant v(x) of Theorem 17.7.2 exists.
(ii) The interpolant u(x ; h) of Theorem 17.7.1 exists for all small h, and satisfies

lim
h→0

u(x ; h) = v(x).

In a separate paper by Sidi [284], the interpolation problems above are extended to the
cases in which some of the exponents are preassigned. The solutions to these problems
are achieved by the so-called Padé-type approximants, which we discuss in the next
chapter. See [284] for details.
The method of Prony can be generalized by replacing the Padé approximant Fn−1,n(z)

by the rational function φn(z) =
∑n−1

i=0 a′i z
i/
∑n

j=0 b
′
j z

j , b′0 = 1, with the b′j determined
via the least-squares solution of the overdetermined linear system

n∑

j=0
ci− j b

′
j = 0, i = n, n + 1, . . . , N ,

where N is significantly larger than 2n [cf. (17.1.4)], and the a′i computed from

i∑

j=0
ci− j b

′
j = a′i , i = 0, 1, . . . , n − 1,

once the b′j are determined [cf. (17.1.3)]. If φn(z) =
∑n

j=1 A j/(z − z j ) (simple poles as-
sumed for simplicity), then u(x ; h) =∑n

j=1 Â jζ
(x−x0)/h
j , where Â j = −A j/z j and

ζ j = 1/z j , j = 1, . . . , n, is the desired exponential approximation that satisfies u(x0 +
ih; h) ≈ ci , i = 0, 1, . . . , N . Essentially this approach and some further extensions of
it have been used in problems of signal processing in electrical engineering. (Note that,
in such problems, the ci are given with some errors, and this causes the original method
of Prony to perform poorly.)

17.8 Convergence of Padé Approximants from Meromorphic Functions

In this and the next sections, we summarize some of the convergence theory pertaining to
the Padé table. In this summary, we do not include the topics of convergence in measure
and convergence in capacity. Some of the theorems we state clearly show convergence
acceleration, whereas others show only convergence. For proofs and further results, we
refer the reader to the vast literature on the subject.
In this section, we are concerned with the convergence of rows of the Padé table from

the Maclaurin series of meromorphic functions.

17.8.1 de Montessus’s Theorem and Extensions

The classic result for row sequences { fm,n(z)}∞m=0 (with n fixed) of Padé approximants
of meromorphic functions is de Montessus’s theorem, which is a true convergence ac-
celeration result and which reads as follows:
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Theorem 17.8.1 Let f (z) be analytic at z = 0 and meromorphic in the disk K = {z :
|z| < R} and let it have q poles in K counting multiplicities. Then, the row sequence
{ fm,q (z)}∞m=0 converges to f (z) uniformly in any compact subset of K excluding the poles
of f (z), such that

lim sup
m→∞

| f (z)− fm,q (z)|1/m ≤ |z/R|. (17.8.1)

This theorem was originally proved by de Montessus de Ballore [64] and follows
from the work of Hadamard [120]. Different proofs of it have been given in Baker [15],
Karlsson and Wallin [150], Saff [249], and Sidi [292].
In case the singularities of f (z) on the boundary of the disk K , namely, on ∂K = {z :

|z| = R}, are all poles, Theorem17.8.1 can be improved substantially. This improvement,
presented originally in Sidi [292, Theorem 3.3], is quantitative in nature, and we state it
next.

Theorem 17.8.2 Let f (z) be analytic at z = 0 and meromorphic in the disk K and on
its boundary ∂K. Let z1, . . . , zt be the poles of f (z) in K and let ω1, . . . , ωt be their re-
spective multiplicities. Define Q(z) =∏t

j=1 (1− z/z j )ω j and q =∑t
j=1 ω j . Similarly,

let ẑ1, . . . , ẑr be the poles of f (z) on ∂K, and let ω̂1, . . . , ω̂r be their respective multi-
plicities. Thus, for each j ∈ {1, . . . , r}, the Laurent expansion of f (z) about z = ẑ j is
given by

f (z) =
ω̂ j∑

i=1

â j i

(1− z/ẑ j )i
+' j (z); â jω̂ j �= 0, ' j (z) analytic at ẑ j . (17.8.2)

Let us now order the ẑ j on ∂K such that

ω̂1 = ω̂2 = · · · = ω̂µ > ω̂µ+1 ≥ · · · ≥ ω̂r , (17.8.3)

and set p̄ = ω̂1 − 1. Then there holds

f (z)− fm,q (z) = m p̄

p̄!

µ∑

j=1

â jω̂ j

1− z/ẑ j

[
Q(ẑ j )

Q(z)

]2( z

ẑ j

)m+q+1
+ o(m p̄|z/R|m)

= O(m p̄|z/R|m) as m →∞, (17.8.4)

uniformly in any compact subset of K\{z1, . . . , zt }. This result is best possible as
m →∞.

Theorem 17.8.2 also shows that, asm →∞, fm,q (z) diverges everywhere on ∂K . We
note that the result in (17.8.4) is best possible in the sense that its right-hand side gives
the first term in the asymptotic expansion of f (z)− fm,q (z) as m →∞ explicitly.

Now, Theorem 17.8.1 concerns the row sequence { fm,n(z)}∞m=0, where n = q, q being
the number of poles of f (z) in K , counted according to their multiplicities. It does not
apply to the sequences { fm,n(z)}∞m=0 with n > q, however. Instead, we have the following
weaker result due to Karlsson and Wallin [150] on convergence of subsequences of
{ fm,n(z)}∞m=0.
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Theorem 17.8.3 Let f (z) be as in Theorem 17.8.1 with poles ξ1, . . . , ξq in K that are
not necessarily distinct, and let n > q. Then, there exist n − q points ξq+1, . . . , ξn and
a subsequence { fmk ,n(z)}∞k=0 that converges to f (z) uniformly in any compact subset of
K\{ξ1, . . . , ξn}, such that

lim sup
k→∞

| f (z)− fmk ,n(z)|1/mk ≤ |z/R|. (17.8.5)

It must be clear that a priori we do not have any knowledge of ξq+1, . . . , ξn and the
integers mk in this theorem.
It is easy to construct examples for which one can show definitely that the sequence

{ fm,n(z)}∞m=0 does not converge under the conditions of Theorem 17.8.3, but a subse-
quence does precisely as described in Theorem 17.8.3.

Treatment of Intermediate Rows

Similarly, Theorem 17.8.2 is not valid when q < n < q +∑r
j=1 ω̂ j . Rows of the Padé

table forwhichn takes on suchvalues are called intermediate rows. Note that intermediate
rows may appear not only when n > q; when f (z) has multiple poles and/or a number
of poles with equal modulus in K , they appear with n < q as well. Thus, intermediate
rows are at least as common as those treated by de Montessus’s theorem.
The convergence problem of intermediate rows was treated partially (for some special

cases) in a series of papers by Wilson [358], [359], [360]. Preliminary work on the
treatment of the general case was presented by Lin [168]. The complete solution for the
general case was given only recently by Sidi [292].
The following convergence result pertaining to the convergence of intermediate rows

in the most general case is part of Sidi [292, Theorem 6.1], and it gives a surprisingly
simple condition sufficient for the convergence of thewhole sequence { fm,n(z)}∞m=0. This
condition involves the nonlinear integer programming problem IP(τ ) we discussed in
detail in the preceding chapter.

Theorem 17.8.4 Let f (z) be precisely as in Theorem 17.8.2 and let n = q + τ with
0 < τ <

∑r
j=1 ω̂ j . Denote by IP(τ ) the nonlinear integer programming problem

maximize g(%σ ); g(%σ ) =
r∑

k=1
(ω̂kσk − σ 2

k )

subject to
r∑

k=1
σk = τ and 0 ≤ σk ≤ ω̂k, 1 ≤ k ≤ r. (17.8.6)

Then, { fm,n(z)}∞m=0 converges uniformly to f (z) in any compact subset of K\{z1, . . . , zt },
provided IP(τ ) has a unique solution for σ1, . . . , σr . If we denote by G(τ ) and G(τ + 1)
the (optimal) value of g(%σ ) at the solutions to IP(τ ) and IP(τ + 1), respectively, then
there holds

f (z)− fm,n(z) = O(mG(τ+1)−G(τ )|z/R|m) as m →∞. (17.8.7)

[Note that IP(τ + 1) need not have a unique solution.]

Obviously, when IP(τ ) does not have a unique solution, Theorem 17.8.3 applies, and
we conclude that a subsequence { fmk ,n(z)}∞k=0 converges to f (z) uniformly, as explained
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in Theorem 17.8.3. Theorems 17.8.2 and 17.8.4, together with Theorem 17.8.3, present a
complete treatment of the convergenceof rowsequences in thePadé table ofmeromorphic
functions with polar singularities on their circles of meromorphy.
Interestingly, in the paper by Liu and Saff [169], the existence of a unique solution to

IP(τ ) features prominently as a sufficient condition for convergence of the intermediate
rows of Walsh arrays of best rational approximations as well.

17.8.2 Generalized Koenig’s Theorem and Extensions

The following result concerning the poles of Padé approximants is known as the gener-
alized Koenig’s theorem.

Theorem 17.8.5 Let f (z) be as in Theorem 17.8.1 and denote its poles by ξ1, . . . , ξq .
Here, the ξi are not necessarily distinct and are ordered such that |ξ1| ≤ · · · ≤ |ξq |.
Define Q(z) =∏q

j=1(1− z/ξ j ). Let Qm,n(z) be the denominator of fm,n(z), normalized
such that Qm,n(0) = 1. Then

lim sup
m→∞

|Qm,q (z)− Q(z)|1/m ≤ |ξq/R| as m →∞. (17.8.8)

The special case in which q = 1 was proved originally by Koenig [153]. The general
case follows from a closely related theorem of Hadamard [120], and was proved by
Golomb [100], and more recently, by Gragg and Householder [108].
If the poles of f (z) in K are as in Theorem 17.8.2, then the result in (17.8.8) can be

refined, as shown in Sidi [292], and reads

Qm,q (z)− Q(z) = O(mα|ξq/R|m) as m →∞, α ≥ 0 some integer. (17.8.9)

Of course, what Theorem 17.8.5 implies is that, for all large m, fm,q (z) has precisely
q poles that tend to the poles ξ1, . . . , ξq of f (z) in K . If we let the poles of f (z)
and their multiplicities and p̄ be as in Theorem 17.8.2, then, for each j ∈ {1, . . . , t},
fm,q (z) has precisely ω j poles z jl(m), l = 1, . . . , ω j , that tend to z j . Also, the p j th
derivative of Qm,q (z), the denominator of fm,q (z), has a zero z′j (m) that tends to z j . More
specifically, we have the following quantitative results, whose proofs are given in Sidi
[292, Theorem 3.1].

Theorem 17.8.6

(i) In Theorem 17.8.1,

lim sup
m→∞

∣
∣z jl(m)− z j

∣
∣1/m = ∣

∣z j/R
∣
∣1/ω j

,

lim sup
m→∞

∣
∣
∣
∣
1

ω j

ω j∑

l=1
z jl(m)− z j

∣
∣
∣
∣

1/m

= ∣
∣z j/R

∣
∣ ,

lim sup
m→∞

∣
∣z′j (m)− z j

∣
∣1/m = ∣

∣z j/R
∣
∣ . (17.8.10)
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(ii) In Theorem 17.8.2, we obtain the following more refined results:

z jl(m)− z j = O([m p̄|z j/R|m]1/ω j ) as m →∞,

1

ω j

ω j∑

l=1
z jl(m)− z j = O(m p̄|z j/R|m) as m →∞,

z′j (m)− z j = O(m p̄|z j/R|m) as m →∞. (17.8.11)

The first of the results in (17.8.10) and (17.8.11) were given earlier by Gonc̆ar [101].
The version of (17.8.11) that is given in [292] is actually more refined in that it provides
the first term of the asymptotic expansion of z jl(m)− z j :

z jl(m) ∼ z j + E jl(m)(m p̄|z j/R|m)1/ω j as m →∞, (17.8.12)

where {E jl(m)}∞m=0 is some bounded sequence with a subsequence that has a nonzero
limit.
A similar result related to intermediate rows of Padé approximants in Theorem 17.8.4

exists and is given as part of [292, Theorem 6.1]. For additional references concerning
the theorem of Koenig and its generalizations, we refer the reader to Sidi [292].
Recently, results that form a sort of inverse to the generalized Koenig’s theorem have

been of interest. The essential question now is the following: Suppose that the function
f (z) has a formal power series

∑∞
k=0 ckz

k and that the poles of some sequence of Padé
approximants from this series converge to a set X . Does it follow that f (z) (or some
continuation of it) is singular on X? Is f (z) analytic off X? The first theorem along
these lines that concerns the poles of the sequence { fm,1(z)}∞m=0 was given by Fabry [81].
Fabry’s result was generalized to the sequences { fm,n(z)}∞m=0 with arbitrary fixed n in the
works of Gonc̆ar [101] and of Suetin [329], [330]. It is shown in [329] and [330], in par-
ticular, that if the poles of the sequence { fm,n(z)}∞m=0 converge to some complex numbers
ξ1, . . . , ξn, not necessarily distinct, then

∑∞
k=0 ckz

k represents a function f (z) analytic at
0 and meromorphic in the disk Kn = {z : |z| < Rn}, where Rn = max{|ξ1|, . . . , |ξn|}. In
addition, it is shown that if K = {z : |z| < R} is the actual disk of meromorphy of f (z),
then those ξi in the interior of K are poles of f (z), while those on the boundary of K
are points of singularity of f (z). For additional results and references on this interesting
topic, see also Karlsson and Saff [149]. This paper treats both rows and columns of Padé
tables of nonmeromorphic as well as meromorphic functions.

17.9 Convergence of Padé Approximants from Moment Series

Note that all our results about Padé approximants from meromorphic functions have
been on row sequences. No definitive results are currently known about diagonal se-
quences. However, there is a detailed convergence theory of diagonal sequences of Padé
approximants from moment series associated with Stieltjes and Hamburger functions
(also called Markov functions). This theory is also closely related to orthogonal polyno-
mials and Gaussian integration. We present a summary of this subject in this section. For
more details and further results, we refer the reader to Baker and Graves-Morris [16] and
Stahl and Totik [321]. For orthogonal polynomials and related matters, see the books
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by Szegő [332] and Freud [88]. For the moment problem, see also the book by Widder
[357].

Definition 17.9.1 Let (a, b) be a real interval and let ψ(t) be a real function that is non-
decreasing on (a, b) with infinitely many points of increase there.

(a) Define the function f (z) via

f (z) =
∫ b

a

dψ(t)

1+ t z
, (17.9.1)

where the integral is defined in the sense of Stieltjes. If 0 ≤ a < b ≤ ∞, f (z) is
called a Stieltjes function, and if −∞ ≤ a < 0 < b ≤ ∞, it is called a Hamburger
function.

(b) Let ψ(t) be such that its moments fk defined by

fk =
∫ b

a
tkdψ(t), k = 0, 1, . . . , (17.9.2)

all exist. Then the formal ( convergent or divergent) power series
∑∞

k=0 fk(−z)k is
said to be the moment series associated with ψ(t). It is called a Stieltjes series if
0 ≤ a < b ≤ ∞ and a Hamburger series if −∞ ≤ a < 0 < b ≤ ∞.

It is easy to see that a Stieltjes (or Hamburger) function is real analytic in the complex
z-plane cut along the real interval [−a−1,−b−1] (or along the real intervals (−∞,−b−1]
and [−a−1,+∞)).
It is also easy to see that the moment series

∑∞
k=0 fk(−z)k represents f (z) asymptot-

ically as z → 0, that is,

f (z) ∼
∞∑

k=0
fk(−z)k as z → 0. (17.9.3)

Clearly, if (a, b) is finite,
∑∞

k=0 fk(−z)k has a positive and finite radius of convergence
and is the Maclaurin expansion of f (z). Otherwise,

∑∞
k=0 fk(−z)k diverges everywhere.

If { fk} is a moment sequence as in Definition 17.9.1, then

H (m)
n ({ fs}) > 0, m = 0, 1 and n = 0, 1, . . . , for 0 ≤ a < b ≤ ∞, (17.9.4)

and

H (m)
n ({ fs}) > 0, m = 0 and n = 0, 1, . . . , for −∞ ≤ a < 0 ≤ b ≤ ∞. (17.9.5)

Conversely, if { fk} is such that (17.9.4) [or (17.9.5)] holds, then there exists a function
ψ(t) as described in Definition 17.9.1 for which fk are as given in (17.9.2) with 0 ≤ a <
b ≤ ∞ (or−∞ ≤ a < 0 < b ≤ ∞). The function ψ(t) is unique if

∞∑

k=0
f −1/(2k)k = ∞ when 0 ≤ a < b ≤ ∞, (17.9.6)
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and
∞∑

k=0
f −1/(2k)2k = ∞ when −∞ ≤ a < 0 < b ≤ ∞. (17.9.7)

The conditions in (17.9.6) and (17.9.7) are known as Carleman’s conditions. It is easy
to verify that they are satisfied automatically if

∑∞
k=0 fk(−z)k has a nonzero radius of

convergence. What is implied by Carleman’s condition in (17.9.6) [or (17.9.7)] is that
there exists a unique Stieltjes (or Hamburger) function that admits

∑∞
k=0 fk(−z)k as its

asymptotic expansion as z → 0.
Given aStieltjes series

∑∞
k=0 fk(−z)k , there exists an S-fraction, namely, z−1K (αnz/1)

with αn > 0, n = 1, 2, . . . ,whose convergents are the [n/n], [n/n + 1], n = 0, 1, . . . ,
entries in the Padé table of

∑∞
k=0 fk(−z)k . In addition, the Padé table in question is

normal. The poles of Padé approximants fm,n(z) from a Stieltjes series are all simple
and lie on the negative real axis, and the corresponding residues are all positive. Thus,

fn+ j,n(z) =
j∑

k=0
fk(−z)k + (−z) j+1

n∑

i=1

Hi

1+ ti z
, ti > 0 distinct and Hi > 0. (17.9.8)

Let us also denote by Qm,n(z) the denominator polynomial of fm,n(z). Then, with
j ≥ −1, ϕ j,n(t) ≡ tnQn+ j,n(−t−1) is the nth orthogonal polynomial with respect to
the inner product

(F,G) ≡
∫ b

a
F(t)G(t)t j+1dψ(t), (17.9.9)

where ψ(t) is the function that gives rise to the moment sequence { fk} as in (17.9.2).
The poles and residues of fn+ j,n(z) are also related to numerical integration. Specifically,
with the ti and Hi as in (17.9.8), the sum

∑n
i=1 Hig(ti ) is the n-point Gaussian quadrature

formula for the integral
∫ b
a g(t)t j+1 dψ(t).

Concerning the Padé approximants from Hamburger series, results analogous to those
of the preceding paragraph can be stated. For example, all fn+2 j−1,n(z) exist for j ≥ 0
and there holds

fn+2 j−1,n(z) =
2 j−1∑

k=0
fk(−z)k + z2 j

n∑

i=1

Hi

1+ ti z
, ti real distinct and Hi > 0. (17.9.10)

We now state two convergence theorems for the diagonal sequences of Padé approx-
imants from Stieltjes and Hamburger series

∑∞
k=0 fk(−z)k . We assume that, in case∑∞

k=0 fk(−z)k diverges everywhere, the fk satisfy the suitable Carleman condition in
(17.9.6) or (17.9.7). We recall that, with this condition, the associated Stieltjes function
or Hamburger function f (z) in (17.9.1) is unique. Theorem 17.9.2 concerns the case
in which

∑∞
k=0 fk(−z)k has a positive radius of convergence, while Theorem 17.9.3

concerns the case of zero radius of convergence.

Theorem 17.9.2

(i) If −∞ < a < 0 < b <∞ and j ≥ 0, the sequence { fn+2 j−1,n(z)}∞n=0 converges to
f (z) in the open set D0 formed from the complex z-plane cut along (−∞,−b−1]
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and [−a−1,+∞), the pointwise rate of convergence being given by

lim sup
n→∞

| f (z)− fn+2 j−1,n(z)|1/n ≤
∣
∣
∣
∣
∣

√
z−1 + b −√z−1 + a√
z−1 + b +√z−1 + a

∣
∣
∣
∣
∣
< 1 (17.9.11)

with the phase convention that
√
z−1 + b and

√
z−1 + a are positive for z−1 > −a.

The convergence is uniform in any compact subset of D0.
(ii) If 0 ≤ a < b <∞ and j ≥ −1, the sequence { fn+ j,n(z)}∞n=0 converges to f (z) in

the open setD+ formed from the z-plane cut along (−∞,−b−1], the pointwise rate
of convergence being given by

lim sup
n→∞

| f (z)− fn+ j,n(z)|1/n ≤
∣
∣
∣
∣
∣

√
1+ bz − 1√
1+ bz + 1

∣
∣
∣
∣
∣
< 1 (17.9.12)

with the convention that
√
1+ bz > 0 for z > −b−1. The convergence is uniform

in any compact subset of D+.

Theorem 17.9.3

(i) When (a, b) = (−∞,∞) and j ≥ 0, the sequence { fn+2 j−1,n(z)}∞n=0 converges to
f (z) uniformly in {z : |z| ≤ R and |!z| ≥ δ > 0} for arbitrary R > 0 and small δ.

(ii) When (a, b) = (0,∞) and j ≥ −1, the sequence { fn+ j,n(z)}∞n=0 converges to f (z)
uniformly in {z : |z| ≤ R and (a) |!z| ≥ δ if �z ≤ 0 and (b) |z| ≥ δ if �z ≥ 0} for
arbitrary R > 0 and small δ > 0.

17.10 Convergence of Padé Approximants from Pólya Frequency Series

Definition 17.10.1 A formal power series f (z) :=∑∞
k=0 ckz

k is said to be a Pólya
frequency series if

(−1)m(m−1)/2Cm,n > 0, m, n = 0, 1, . . . . (17.10.1)

Note that the sign of Cm,n is independent of n, and, form = 0, 1, . . . , the sign pattern
++−−++ · · · prevails. It is known (see Schönberg [260] and Edrei [72]) that all
Pólya frequency series are Maclaurin series of functions of the form

f (z) = a0e
γ z

∞∏

i=1

1+ αi z

1− βi z
, (17.10.2)

where

a0 > 0, γ ≥ 0, αi ≥ 0, βi ≥ 0, i = 1, 2, . . . ,
∞∑

i=1
(αi + βi ) <∞. (17.10.3)

Obviously, the Padé table from a Pólya frequency series is normal. The follow-
ing convergence theorem of Arms and Edrei [11] concerns rays of entries in the Padé
table.
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Theorem17.10.2 Let f (z)beas in (17.10.2) and (17.10.3).Choose sequences of integers
{mk} and {nk} such that limk→∞(mk/nk) = ω. Then, the ray sequence { fmk ,nk (z)}∞k=0
converges to f (z) uniformly in any compact set of the z-plane excluding the poles of
f (z) if there are such. Specifically, with fm,n(z) = Pm,n(z)/Qm,n(z), Qm,n(0) = 1, we
have

lim
k→∞

Pmk ,nk (z) = a0 exp[γ z/(1+ ω)]
∞∏

i=1
(1+ αi z),

lim
k→∞

Qmk ,nk (z) = exp[−γωz/(1+ ω)]
∞∏

i=1
(1− βi z),

uniformly in any compact set of the z-plane.

Note that Theorem 17.10.2 applies to the function f (z) = ez .

17.11 Convergence of Padé Approximants from Entire Functions

As has been shown by Perron [229, Chapter 4], convergence of Padé approximants from
arbitrary entire functions is not guaranteed. Indeed, we can have rows of the Padé table
not converging in any given open set of the complex plane.
In this section, we give convergence theorems for Padé approximants from entire

functions of very slow and smooth growth. For these and additional theorems on this
subject, we refer the reader to the papers by Lubinsky [180], [181], [182], [183], [184].
Our first theorem is from [180].

Theorem 17.11.1 Let f (z) =∑∞
k=0 ckz

k be entire with infinitely many ck �= 0 and

lim sup
k→∞

|ck |1/k2 = ρ <
1

3
. (17.11.1)

Then, there exists an increasing sequence of positive integers {m0,m1, . . . } such that
{ fmk ,nk (z)}∞k=0 converges to f (z) uniformly in every compact set of the z-plane, where
{n0, n1, . . . } is arbitrary. This applies, in particular, with nk = mk + j and arbitrary j
(diagonal sequences). It also applies with n0 = n1 = · · · (row sequences).

Theorem 17.11.1 has been improved in [184] by weakening the condition in (17.11.1)
as in Theorem 17.11.2 that follows.

Theorem 17.11.2 Let f (z) =∑∞
k=0 ckz

k be entire with infinitely many ck �= 0 and

lim sup
k→∞

|ck |1/k2 = ρ < 1. (17.11.2)

Then, the diagonal sequence { fn,n(z)} converges to f (z) uniformly in every compact set
of the z-plane.
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The next theorem gives another improvement of Theorem 17.11.1 and was proved in
[181].

Theorem 17.11.3 Let f (z) =∑∞
k=0 ckz

k be entire with ck �= 0, k = 0, 1, . . . , and as-
sume

∣
∣ck−1ck+1/c2k

∣
∣ ≤ ρ2

0 , k = 1, 2, . . . , (17.11.3)

where ρ0 = 0.4559 · · · is the positive root of the equation

2
∞∑

k=1
ρk2 = 1. (17.11.4)

Then, the Padé table of f (z) is normal and, for any nonnegative sequence of integers
{n0, n1, . . . }, the sequence { fm,nm (z)}∞m=0 converges to f (z) uniformly in any compact
set of the z-plane. In addition, the constant ρ0 in (17.11.3) is best possible.

Note that the ck in Theorem 17.11.3 satisfy lim supk→∞ |ck |1/k
2 ≤ ρ0. It is also in this

sense that Theorem 17.11.3 is an improvement over Theorem 17.11.1.
Lubinsky [183] showed that both rows and diagonals of the Padé table converge when

the condition in (17.11.3) is replaced by

lim
k→∞

ck−1ck+1/c2k = q, |q| < 1, (17.11.5)

for some possibly complex scalar q.
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Generalizations of Padé Approximants

18.1 Introduction

In this chapter, we consider some of the many generalizations of Padé approximants. We
describe the general ideas and show how the relevant approximations are constructed.We
do not go into their algebraic properties and the theory of their convergence, however. For
these subjects and an extensive bibliography, we refer the reader to Baker and Graves-
Morris [16].
The generalizations we mention are the so-called Padé-type approximants, multi-

point Padé approximants, algebraic and differential Hermite–Padé approximants, Padé
approximants from orthogonal polynomial expansions, Baker–Gammel approximants,
and Padé–Borel approximants.
What we present here in no way exhausts the existing arsenal of approaches and

methods. For example, we leave out the vector and matrix Padé approximants. For these
topics, again, we refer the reader to [16].

18.2 Padé-Type Approximants

We begin with the formal power series f (z) :=∑∞
k=0 ckz

k and denote its [m/n] Padé
approximant by fm,n(z) as before. We recall that fm,n(z) is completely determined by
the equations in (17.1.3) and (17.1.4). Clearly, all the zeros and poles of fm,n(z) are
determined by these equations as well. In some situations, in addition to the ck , we may
have information about some or all of the zeros and/or poles of the function represented
by the series f (z), and we would like to incorporate this information in our rational ap-
proximants. This can be achieved via the so-called Padé-type approximants defined next.

Definition 18.2.1 Let the formal power series f (z) :=∑∞
k=0 ckz

k be given. The [m/n]
Padé-type approximant corresponding to f (z) and having known zeros z1, . . . , zµ and
known poles ξ1, . . . , ξν , with respective multiplicities σ1, . . . , σµ and ω1, . . . , ων , such
that zi �= 0 and ξi �= 0, if it exists, is the rational function f̂m,n(z) = u(z)[p(z)/q(z)],
where u(z) =∏µ

i=1(1− z/zi )σi /
∏ν

i=1(1− z/ξi )ωi and p(z) and q(z) are polynomials of
degree at most m and n, respectively, such that q(0) = 1 and and

f̂m,n(z)− f (z) = O(zm+n+1) as z → 0. (18.2.1)

348
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The following elementary result that generalizes another due to Sidi [284] shows that,
when the known zeros and poles are fixed, no new theory or justification is needed for
Padé-type approximants and that the known theory of Padé approximants applies directly.
It also shows that no new algorithms are needed to compute the Padé-type approximants
since the algorithms for ordinary Padé approximants discussed in Chapter 17 can be used
for this purpose.

Theorem 18.2.2 Let f̂m,n(z) be precisely as in Definition 18.2.1. The rational function
p(z)/q(z) is the [m/n] Padé approximant gm,n(z) from the power series

∑∞
k=0 dkzk of

the quotient g(z) = f (z)/u(z). Thus, f̂m,n(z) is unique as well.

Proof. Dividing both sides of (18.2.1) by u(z), we observe that p(z)/q(z) must satisfy

p(z)/q(z)− g(z) = O(zm+n+1) as z → 0.

The result now follows from the definition of Padé approximants, namely, from Defini-
tion 17.1.1. �

Now, to compute p(z) and q(z), we need to know the dk . Obviously, the dk can be
computed by multiplying the power series f (z) by the Maclaurin series of 1/u(z).
As a result of Theorem 18.2.2, we have

f̂m,n(z)− f (z) = [gm,n(z)− g(z)]u(z), (18.2.2)

where, as before, f (z) and g(z) are the functions representedby
∑∞

k=0 ckz
k and

∑∞
k=0 dkzk

respectively, and g(z) = f (z)/u(z), of course. Because u(z) is completely known, we
can make statements on f̂m,n(z)− f (z) by applying the known convergence theory of
Padé approximants to gm,n(z)− g(z).
Finally, note that this idea can be extended with no changes whatsoever to the case in

which some or all of the zi and ξi are algebraic branch points, that is, the corresponding
σi and ωi are not integers. We can thus define f̂m,n(z) = u(z)[p(z)/q(z)], with u(z),
p(z), and q(z) precisely as in Definition 18.2.1. Theorem 18.2.2 applies, in addition. Of
course, this time f̂m,n(z) is not a rational function, but has also algebraic branch points.

The approximations mentioned above (and additional ones involving multipoint Padé
approximants that we discuss later in this chapter) have been employed with success in
the treatment of several problems of interest in the literature of fluid mechanics by Frost
and Harper [89].
A different and interesting use of Padé-type approximants has been suggested and

analyzed in a series of papers by Ambroladze and Wallin [6], [7], [8], [9]. This use
differs from the one just described in that the preassigned poles and their number are not
necessarily fixed. They are chosen to enhance the quality of the Padé-type approximants
that can be obtained from a number of the coefficients ck .

For example, Ambroladze and Wallin [6] consider the Padé-type approximation of a
function

f (ζ ) =
∫ b

a

w(t)

ζ − t
dψ(t),
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where ψ(t) is a real function that is nondecreasing on the finite interval (a, b) with
infinitelymanypoints of increase there, andw(t) is an entire function. Themoment series,∑∞

k=0 ck/ζ
k+1, where ck =

∫ b
a tkw(t)dψ(t), k = 0, 1, . . . , converges to the function

f (ζ ) for all large ζ . The Padé-type approximants are constructed from the moment
series of f (ζ ), and they are of the form rn(ζ ) = pn(ζ )/qn(ζ ), where, for each n, pn(ζ )
is a polynomial of degree at most n − 1 and qn(ζ ) is the nth orthogonal polynomial with
respect to the inner product (F,G) = ∫ b

a F(t)G(t) dψ(t), and pn(ζ ) is determined by
requiring that

f (ζ )− rn(ζ ) = O(ζ−n−1) as ζ →∞.

That is, the preassigned poles of rn(ζ ) are the n zeros of qn(ζ ) [which are distinct and lie
in (a, b)] and thus their number tends to infinity as n →∞. It is shown in [6] that the
sequence {rn(ζ )}∞n=1 converges to f (ζ ) uniformly in any compact subset of the extended
complex plane cut along the interval [a, b]. Furthermore, when w(t) ≥ 0 for t ∈ (a, b),
the upper bound on the error in rn(ζ ) is the same as that in the diagonal ordinary Padé
approximant Rn(ζ ) from

∑∞
k=0 ck/ζ

k+1, whose numerator and denominator degrees are
at most n − 1 and n, respectively, and satisfies

f (ζ )− Rn(ζ ) = O(ζ−2n−1) as ζ →∞.

[Recall that the convergence of the sequence {Rn(ζ )}∞n=1 is covered completely by The-
orem 17.9.2, where we set z = 1/ζ , when w(t) ≥ 0 for t ∈ (a, b).] Note that it takes
2n coefficients of the series

∑∞
k=0 ck/ζ

k+1 to determine Rn(ζ ) as opposed to only n for
rn(ζ ). This implies that, if c0, c1, . . . , c2n are available, we can construct both Rn(ζ )
and r2n(ζ ), but r2n(ζ ) is a better approximation to f (ζ ) than Rn(ζ ) is. In fact, the upper
bounds on the errors in Rn(ζ ) and in r2n(ζ ) suggest that the latter converges to f (ζ ) as
n →∞ twice as fast as the former.
Note that no theory of uniform convergence of {Rn(ζ )}∞n=1 exists in casew(t) changes

sign on (a, b). In fact, examples can be constructed for which {Rn(ζ )}∞n=1 does not
converge locally uniformly anywhere. See Stahl [320].

18.3 Vanden Broeck–Schwartz Approximations

Let f (z) =∑∞
k=0 ckz

k as before. In Section 16.7, we introduced a generalization of the
ε-algorithm due to Vanden Broeck and Schwartz [344] that contains a parameter η. Let
us set in (16.7.1) ε( j)0 =∑ j

k=0 ckz
k , j = 0, 1, . . . , and generate the ε( j)k . The entries ε( j)2n ,

which we now denote f̂m,n(z), are rational approximations to the sum of the series f (z).
By (16.7.2), the f̂m,n(z), for m ≥ n, can be obtained recursively from

1

f̂m+1,n(z)− f̂m,n(z)
+ 1

f̂m−1,n(z)− f̂m,n(z)
=

1

f̂m,n+1(z)− f̂m,n(z)
+ η

f̂m,n−1(z)− f̂m,n(z)
.
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Concerning f̂m,n(z), we observe the following:

1. Because ε( j)k , k = 0, 1, 2, are independent ofη, the approximations f̂m,0(z) and f̂m,1(z)
are simply the ordinary Padé approximants fm,0(z) and fm,1(z) respectively. The rest
of the f̂m,n(z) are different from the fm,n(z) when η �= 1.

2. Just like fm,n(z), f̂m,n(z) too is determined from the m + n + 1 coefficients
c0, c1, . . . , cm+n and satisfies

f̂m,n(z)− f (z) = O(zm+n+1) as z → 0, (18.3.1)

provided

c(m−1,n)m+n �= cm+n and c(m,n−1)m+n �= cm+n, (18.3.2)

where c(m,n)k are the coefficients of the Maclaurin expansion of f̂m,n(z), that is,
f̂m,n(z) =

∑∞
k=0 c

(m,n)
k zk . This can be shown by induction on n. The conditions in

(18.3.2) can be violated only in exceptional circumstances because neither f̂m,n−1(z)
nor f̂m−1,n(z) depends on cm+n .

Vanden Broeck and Schwartz [344] show with a numerical example that the diago-
nal approximations f̂n,n(z) with appropriate complex η are quite effective in summing
everywhere-divergent asymptotic expansions also on the branch cuts of functions they
represent. They report some results for the function (1/z)e1/z E1(1/z), which we also de-
note by f (z), which has the (everywhere-divergent) Euler series

∑∞
k=0(−1)kk!zk as its

asymptotic expansion when z →∞, �z > 0. Here E1(ζ ) =
∫∞
ζ
(e−t/t) dt is the expo-

nential integral. [Note also that this series is a Stieltjes series that satisfies the Carleman
condition, and f (z) is the corresponding Stieltjes function.] The function f (z) is analytic
in the z-plane cut along the negative real axis. Now,when the ck are real and η is chosen to
be real, the f̂m,n(z) are real analytic, that is, they are real for z real. Thus, the f̂m,n(z) from
the Euler series are real when both z > 0 and z < 0. Although f (z) is real for z > 0, it
is not real for z < 0, because !E1(−x ± i0) = ∓π for x > 0. We can obtain a complex
approximation in this case if we choose η to be complex. We refer the reader to [344] for
more details. To date we are not aware of any research on the convergence properties of
this interestingmethod of approximation,which certainly deserves serious consideration.

18.4 Multipoint Padé Approximants

We defined a Padé approximant to be a rational function whose Maclaurin expansion
agreeswith a given power series

∑∞
k=0 ckz

k as far as possible. This idea can be generalized
as follows:

Definition 18.4.1 Let the formal power series Fr (z) :=
∑∞

k=0 crk(z − zr )k, r =
1, . . . , q,with zr distinct, be given.Define %µ = (µ1, . . . , µq ). Then the rational function
f̂ %µ,n(z) with degrees of numerator and denominator at most m and n respectively, such
that m + n + 1 =∑q

r=1(µr + 1), is the q-point Padé approximant of type (µ1, . . . , µq )
from {Fr (z)}qr=1 if it satisfies

f̂ %µ,n(z)− Fr (z) = O((z − zr )
µr+1) as z → zr , r = 1, . . . , q. (18.4.1)
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Let us write f̂ %µ,n(z) =
∑m

i=0 αi zi/
∑n

i=0 βi zi . From (18.4.1), it is clear that, if we set
β0 = 1, then the αi and βi can be determined from the linear system of m + n + 1
equations that result from (18.4.1).
Multipoint Padé approximants may be very useful when, for each r , the power series

Fr (z) represents asymptotically as z → zr a single function f (z). In such a case, f̂ %µ,n(z)
may be a very good approximation to f (z) in a large domain of the complex plane,
assuming that f (z) has suitable analyticity properties.
When µr = 0 for all r , f̂ %µ,n(z) becomes simply a rational interpolant that assumes

given values at z1, z2, . . . , zq . This rational interpolation problem is known as the
Cauchy–Jacobi problem and it can be treated numerically by, for example, Thiele’s
reciprocal difference algorithm. When q = 1, f̂ %µ,n(z) reduces to the [µ1 − n/n] Padé
approximant from F1(z).
For arbitrary q and µr , a determinant expression for f̂ %µ,n(z) is known. See Baker [15].
The convergence of the approximants f̂ %µ,n(z) as µr →∞ with n fixed can be treated

by applying the following important theorem of Saff [249] from which de Montessus’s
theorem can be derived as a special case.

Theorem 18.4.2 Let E be a closed bounded set in the z-plane whose complement K ,
including the point at infinity, is connected and possesses a Green’s function G(z) with
pole at infinity. For each σ > 1, let �σ denote the locus G(z) = log σ , and let Eσ denote
the interior of �σ . Let the sequence of (not necessarily distinct) interpolation points
{ζ (s)k , k = 0, . . . , s}∞s=0 be given such that it has no limit points in K and

lim
s→∞

∣
∣
∣
∣

s∏

k=0
(z − ζ

(s)
k )

∣
∣
∣
∣

1/s

= cap(E) exp{G(z)},

uniformly in z on each compact subset of K , where cap(E) is the capacity of E. Let f (z)
be analytic in E and meromorphic with precisely n poles, counting multiplicities, in Eρ

for some ρ > 1. Denote by Dρ the region obtained from Eρ by deleting the n poles of
f (z). Then, for all m sufficiently large, there exists a unique rational function Rm,n(z)
with numerator of degree at most m and denominator of degree n that interpolates f (z)
at ζ (m+n)

k , k = 0, . . . ,m + n. Each Rm,n(z) has n finite poles that converge to the poles
of f (z) in Eρ . Furthermore, limm→∞ Rm,n(z) = f (z) throughout Dρ and uniformly on
every compact subset of Dρ . Specifically, if S is a compact subset of Dρ such that
S ⊂ Eλ, 1 < λ < ρ, then

lim sup
m→∞

(

max
z∈S

| f (z)− Rm,n(z)|
)1/m

≤ λ

ρ
< 1.

I n particular

lim sup
m→∞

(

max
z∈E

| f (z)− Rm,n(z)|
)1/m

≤ 1

ρ
< 1.

The capacity of E is defined via

cap(E) = lim
n→∞

(

min
p∈Pn

max
z∈E

|p(z)|
)1/n

,

where Pn is the set of all polynomials of degree exactly n with leading coefficient unity.
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When ζ (s)k = 0 for all k and s in Theorem 18.4.2, Rm,n(z) is nothing but the Padé
approximant fm,n(z) from the Maclaurin series of f (z). In this case, E = {z : |z| ≤ r}
for some r > 0, and hence cap(E) = r ,G(z) = log(|z|/r ), and Eρ = {z : |z| < ρr}, and
Saff’s theorem reduces to de Montessus’s theorem.

18.4.1 Two-Point Padé Approximants

The case that has received more attention than others is that of q = 2. This case can be
standardized by sending the points z1 and z2 to 0 and∞ by a Moebius transformation.
In its “symmetric” form, this case can thus be formulated as follows:

Definition 18.4.3 Let the function f (z) satisfy

f (z) ∼ c0
2
+ c1z + c2z

2 + · · · as z → 0,

f (z) ∼ −
(c0
2
+ c−1

z
+ c−2

z2
+ · · ·

)
as z →∞; c0 �= 0. (18.4.2)

For any two integers i and j such that i + j is even, we define the two-point Padé
approximant f̂i, j (z) to be the rational function

f̂i, j (z) = P(z)

Q(z)
=
∑m

k=0 αk zk∑m
k=0 βk zk

, β0 = 1, m = (i + j)/2, (18.4.3)

that satisfies

f̂i, j (z)− f (z) = O(zi , z− j−1) ≡
{
O(zi ) as z → 0,
O(z− j−1) as z →∞,

(18.4.4)

provided f̂i, j (z) exists.

Note that, in case f (0)+ f (∞) �= 0, the asymptotic expansions of f (z) do not have
the symmetric form of (18.4.2). The symmetric form can be achieved simply by adding
a constant to f (z). For example, if φ(z) ∼∑∞

i=0 γi z
i as z → 0 and φ(z) ∼∑∞

i=0 δi/z
i

as z →∞, and γ0 + δ0 �= 0, then f (z) = φ(z)− (γ0 + δ0)/2 has asymptotic expansions
as in (18.4.2), with c0 = γ0 − δ0 and ci = γi and c−i = −δi , i = 1, 2, . . . .

The following results and their proofs can be found in Sidi [276].

Theorem 18.4.4 When f̂i, j (z) exists, it is unique .

Theorem 18.4.5 Let g(z) = 1/ f (z) in the sense that g(z) has asymptotic expansions
as z → 0 and z →∞ obtained by inverting those of f (z) in (18.4.2) appropriately. If
ĝi, j (z) is the two-point Padé approximant from g(z) precisely as in Definition 18.4.3,
then ĝi, j (z) = 1/ f̂i, j (z).

Obviously, αk and βk can be obtained by solving the linear equations that result from
(18.4.4). In particular, the βk satisfy the system

m∑

s=0
cr−sβs = 0, r = i − m, i − m + 1, . . . , i − 1. (18.4.5)
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The approximant f̂i, j (z) has the determinant representation

f̂i, j (z) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Si−m(z) zSi−m−1(z) · · · zm S− j (z)
ci−1 ci−2 · · · ci−m−1
ci−2 ci−3 · · · ci−m−2
...

...
...

ci−m ci−m−1 · · · c− j

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 z · · · zm

ci−1 ci−2 · · · ci−m−1
ci−2 ci−3 · · · ci−m−2
...

...
...

ci−m ci−m−1 · · · c− j

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (18.4.6)

where

S0(z) = c0
2
, Sk(z) = Sk−1(z)+ ckz

k, k = ±1,±2, . . . . (18.4.7)

[Note that Sk(z) = c0/2+
∑k

i=1 ci z
i and S−k(z) = −c0/2−

∑k−1
i=1 c−i z−i for k =

1, 2, . . . .] This representation is obtained by unifying the ones for the cases i ≥ j and
i ≤ j given in Sidi [276, Theorem 3]. As a consequence of (18.4.6), we also have that

f̂i, j (z) =
∑m

k=0 βk zk Si−m−k(z)∑m
k=0 βk zk

. (18.4.8)

This implies that, once the βk have been determined, the approximant f̂i, j (z) is known
for all practical purposes.
Two-point Padé approximants are convergents of certain continued fractions that are

known as M-fractions and T -fractions. (See Sidi [276] andMcCabe andMurphy [208].)
For example, the approximants f̂r,r (z), f̂r+1,r−1(z), r = 1, 2, . . . , are consecutive con-
vergents of a continued fraction of the form

c + dz

1+ ez+
λ1

µ1 +
w1z

1 +
λ2

µ2 +
w2z

1 + . . .
; λi + µi = 1 for all i,

with f̂1,1(z) = c + dz/(1+ ez), etc.
Being convergents of M-fractions, the f̂i, j (z) can be computed by the F-G algorithm

of McCabe and Murphy [208] that is of the quotient-difference type. They can also be
computed by a different method proposed in Sidi [276] that is based on the recursive
computation of the βs .

18.5 Hermite–Padé Approximants

We can view the Padé approximant fm,n(z) as being obtained in the following manner:
Determine the polynomials Pm,n(z) and Qm,n(z) by solving (17.1.2), namely,

Qm,n(z) f (z)− Pm,n(z) = O(zm+n+1) as z → 0, Qm,n(0) = 1,
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and then obtain fm,n(z) as the solution to the equation Qm,n fm,n − Pm,n = 0. This has
been generalized with Hermite–Padé polynomials in two different ways, which we now
present.

Definition 18.5.1 Let h1(z), . . . , hr (z) be given formal power series. TheHermite–Padé
polynomials [Q1(z), . . . , Qr (z)] of type (µ1, . . . , µr ), where Qk(z) is a polynomial of
degree at most µk , k = 1, . . . , r, are the solution of

r∑

k=1
Qk(z)hk(z) = O(zµ̂−1) as z → 0, µ̂ =

r∑

k=1
(µk + 1).

18.5.1 Algebraic Hermite–Padé Approximants

Let f (z) :=∑∞
k=0 ckz

k be a given formal series. Define the Hermite–Padé polynomials
[Q0(z), Q1(z), . . . , Qs(z)] of type (m0,m1, . . . ,ms) via

s∑

k=0
Qk(z)[ f (z)]

k = O(zm̂−1) as z → 0, m̂ =
s∑

k=0
(mk + 1). (18.5.1)

Thus, Qk(z) =
∑mk

i=0 qki zi for each k and we set qs0 = 1. (Obviously, the qki satisfy a
linear system of m̂ − 1 equations.) With the Qk(z) available, solve the equation

s∑

k=0
Qk(z)ξ

k = 0 (18.5.2)

for ξ . Obviously, this is a polynomial equation in ξ that has s solutions that are functions
of z. The solution whoseMaclaurin expansion agrees with

∑∞
k=0 ckz

k as far as possible is
the algebraic Hermite–Padé approximant of type %m = (m0,m1, . . . ,ms), and we denote
it f̂ %m(z). Obviously, we recover the ordinary Padé approximant fm0,m1 (z) when s = 1.
When s = 2, after determining Q0(z), Q1(z), and Q2(z), we obtain

ξ = ψ(z) =
(

−Q1(z)+
√
[Q1(z)]2 − 4Q0(z)Q2(z)

)

/[2Q2(z)],

whose singularities may be poles and branch points of square-root type. Provided we
pick the right branch for the square-root, we obtain f̂ %m(z) = ψ(z). The f̂ %m(z) obtained
this way are known as the quadratic approximants of Shafer [263].

18.5.2 Differential Hermite–Padé Approximants

Let f (z) :=∑∞
k=0 ckz

k be a given formal series. Define the Hermite–Padé polynomials
[Q−1(z), Q0(z), . . . , Qs(z)] of type (m−1,m0, . . . ,ms) via

s∑

k=0
Qk(z) f

(k)(z)− Q−1(z) = O(zm̂−1) as z → 0, m̂ =
s∑

k=−1
(mk + 1). (18.5.3)

Thus, Qk(z) =
∑mk

i=0 qki zi for each k and we set qs0 = 1. What is meant by f ( j)(z) is
the formal power series

∑∞
k= j k(k − 1) · · · (k − j + 1)ckzk− j that is obtained by differ-

entiating f (z) formally termwise. (The qki satisfy a linear system of m̂ − 1 equations in
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this case too.) With the Qk(z) determined, solve the linear ordinary differential equation

s∑

k=0
Qk(z)y

(k) = Q−1(z), y( j)(0) = c j ( j!), j = 0, 1, . . . , s − 1, (18.5.4)

for y(z), provided the Qk(z) allow such a solution to exist. When it exists, y(z) is the
differential Hermite–Padé approximant of type %m = (m−1,m0, . . . ,ms), and we denote
it f̂ %m(z). It must be noted that a priori it is not clear what one should take for the integers
mk to guarantee that (18.5.4) has a solution. Clearly, f̂ %m(z) is not necessarily a rational
function. Obviously, we recover the ordinary Padé approximant fm−1,m0 (z) when s = 0.

Differential Hermite–Padé approximants seem to have originated in so-called “series
analysis” in statistical mechanics, for the case s = 2; the resulting approximants are
known as Gammel–Guttmann–Gaunt–Joyce (G3J) approximants. These were given in
the works of Guttmann and Joyce [119], Joyce and Guttmann [146], and Gammel [91].
For a detailed review, we refer the reader also to Guttmann [118].

18.6 Padé Approximants from Orthogonal Polynomial Expansions

Let θ (x) be a real function that is nondecreasing in [a, b] with infinitely many points
of increase there. Let φk(x) be the kth orthogonal polynomial with respect to the inner
product (· , ·) defined by

(F,G) =
∫ b

a
F(x)G(x) dθ (x). (18.6.1)

When a formal expansion f (x) :=∑∞
k=0 ckφk(x) is given, we would like to find a

rational function Rm,n(x) = Pm,n(x)/Qm,n(x), with degrees of Pm,n(x) and Qm,n(x) at
most m and n, respectively, such that Rm,n(x) is a good approximation to the sum of the
given expansionwhen the latter converges. Two different types of rational approximation
procedures have been discussed in the literature.

18.6.1 Linear (Cross-Multiplied) Approximations

Define Rm,n(x) by demanding that

Qm,n(x) f (x)− Pm,n(x) :=
∞∑

k=m+n+1
c̃kφk(x). (18.6.2)

In other words, we are requiring Qm,n f − Pm,n to be orthogonal to φk, k = 0, 1, . . . ,
m + n, with respect to (· , ·) in (18.6.1). Thus, (18.6.2) is the same as

(Qm,n f − Pm,n, φk) = 0, k = 0, 1, . . . ,m,

(Qm,n f, φk) = 0, k = m + 1, . . . ,m + n, (18.6.3)

supplemented by the normalization condition

Qm,n(ξ0) = 1 for some ξ0 ∈ [a, b]. (18.6.4)
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[Obviously, (18.6.4) makes sense as the existence of Rm,n(x) depends also on its being
free of singularities on [a, b].]
The Rm,n(x) defined this way are called linear or cross-multiplied approximants. They

were originally developed by Maehly [205] for Chebyshev polynomial expansions.
Cheney [47] generalized them to series of arbitrary orthogonal polynomials, and
Holdeman [134] considered more general expansions. Fleischer [84] applied these ap-
proximations to Legendre polynomial expansions. For their convergence theory see
Lubinsky and Sidi [185] and Gonc̆ar, Rakhmanov, and Suetin [102]. [Note that Lubinsky
and Sidi [185] allow dθ (x) to have (a finite number of) sign changes on (a, b).]
Expressing Pm,n(x) and Qm,n(x) in the form

Pm,n(x) =
m∑

i=0
piφi (x) and Qm,n(x) =

n∑

i=0
qiφi (x), (18.6.5)

and using the fact that

φi (x)φ j (x) =
i+ j∑

k=|i− j |
αi jkφk(x), αi jk constants, (18.6.6)

it can be shown that, unlike the [m/n] Padé approximant from a power series, Rm,n(x)
is determined by the first m + 2n + 1 terms of the series f (x), namely, by c0, c1, . . . ,
cm+2n . To see this, we start by noting that

f (x)φk(x) :=
∞∑

l=0
Aklφl(x); Akl =

l+k∑

j=|l−k|
c jα jkl , (18.6.7)

which follows by invoking (18.6.6). Next, observing that (Qm,n f, φk) = (Qm,n, f φk),
and assuming for simplicity of notation that the φk(x) are normalized such that
(φk, φk) = 1 for all k, we realize that (18.6.3) and (18.6.4) can be expressed as in

pk =
n∑

l=0
Aklql , k = 0, 1, . . . ,m,

n∑

l=0
Aklql = 0, k = m + 1, . . . ,m + n,

n∑

l=0
qlφl(ξ0) = 1. (18.6.8)

It is clear that the Akl in these equations are constructed from ck, 0 ≤ k ≤ m + 2n. It is
also clear that the ql are computed first, and the pk are computed with the help of the ql .
Making use of the fact that

Pm,n(x) =
n∑

l=0
ql

( m∑

k=0
Aklφk(x)

)

and Qm,n(x) =
n∑

l=0
qlφl(x), (18.6.9)

and of the conditions
∑n

l=0 Aklql = 0, k = m + 1, . . . ,m + n, we can conclude that
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Rm,n(x) has the interesting determinant representation

Rm,n(x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Sm,0(x) Sm,1(x) . . . Sm,n(x)
Am+1,0 Am+1,1 . . . Am+1,n
Am+2,0 Am+2,1 . . . Am+2,n

...
...

...
Am+n,0 Am+n,1 . . . Am+n,n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ0(x) φ1(x) . . . φn(x)
Am+1,0 Am+1,1 . . . Am+1,n
Am+2,0 Am+2,1 . . . Am+2,n

...
...

...
Am+n,0 Am+n,1 . . . Am+n,n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (18.6.10)

where

Sm,l(x) =
m∑

k=0
Aklφk(x). (18.6.11)

18.6.2 Nonlinear (Properly Expanded) Approximations

The linear approximationswere derivedbyworkingwith the expansionofQm,n f − Pm,n .
The nonlinear ones are derived by considering the expansion of f − Rm,n directly. We
now require, instead of (18.6.2), that

f (x)− Pm,n(x)

Qm,n(x)
:=

∞∑

k=m+n+1
c̃kφk(x). (18.6.12)

This is equivalent to

ck(φk, φk) = (φk, f ) = (φk, Pm,n/Qm,n), k = 0, 1, . . . ,m + n, (18.6.13)

and these equations are nonlinear in the coefficients of the polynomials Pm,n and Qm,n .
Furthermore, only the firstm + n + 1 coefficients of f (x), namely, c0, c1, . . . , cm+n , are
needed now.
The approximations Rm,n(x) defined this way are called nonlinear or properly ex-

panded approximants and were developed by Fleischer [86]. They are also called
by the names of the orthogonal polynomials involved; for example, Legendre–Padé,
Chebyshev–Padé, etc. They turn out to be much more effective than the linear approx-
imations. For their convergence theory, see Suetin [328], Lubinsky and Sidi [185], and
Gonc̆ar, Rakhmanov, and Suetin [102]. Some results on the convergence of the so-called
Chebyshev–Padé approximations are also given in Gragg [107].
One way of determining Rm,n is by expressing it as a sum of partial fractions and

solving for the poles and residues. Let us assume, for simplicity, thatm ≥ n − 1 and that
all the poles of Rm,n(x) are simple. Then

Rm,n(x) = r (x)+
n∑

j=1

Hj

x − ξ j
, r (x) =

m−n∑

k=0
rkφk(x). (18.6.14)
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Therefore, the equations in (18.6.13) become

rk(φk, φk)+
n∑

j=1
Hjψk(ξ j ) = ck(φk, φk), k = 0, 1, . . . ,m − n,

n∑

j=1
Hjψk(ξ j ) = ck(φk, φk), k = m − n + 1, . . . ,m + n, (18.6.15)

where ψk(ξ ) are the functions of the second kind that are defined by

ψk(ξ ) =
∫ b

a

φk(x)

x − ξ
dθ (x), ξ �∈ [a, b]. (18.6.16)

[Note again that ξ j �∈ [a, b] because otherwise Rm,n(x) does not exist.] Clearly, the Hj

and ξ j can be determined from the last 2n equations in (18.6.15) and, following that, the
rk can be computed from the first m − n + 1 of these equations.

Because the equations for the Hj and ξ j are nonlinear, more than one solution for them
may be obtained. Numerical computations with Legendre polynomial expansions have
shown that only one solution with ξ j �∈ [a, b] is obtained. This point can be understood
with the help of the following uniqueness theorem due to Sidi [269].

Theorem 18.6.1 Let f (x) be a real function in C[a, b] such that f (x) :=∑∞
k=0 ckφk(x),

ck = (φk, f )/(φk, φk) for all k. Let Rm,n(x) be the [m/n] nonlinear Padé approximant
to f (x) such that Rm,n(x) has no poles along [a, b]. Then Rm,n(x) is unique.

[The more basic version of this theorem is as follows: There exists at most one real
rational function Rm,n(x)with degree of numerator at most m and degree of denominator
at most n and with no poles in [a, b], such that (φk, Rm,n) = ck, k = 0, 1, . . . ,m + n,
where the ck are given real numbers.]

Chebyshev–Padé Table

A very elegant solution for Rm,n(x) has been given by Clenshaw and Lord [53] for
Chebyshev polynomial expansions. This solution circumvents the nonlinear equations in
a clever fashion. If f (x) :=∑ ′ ∞

k=0ckTk(x) and Rm,n(x) =
∑ ′ m

i=0 pi Ti (x)/
∑ ′ n

i=0qi Ti (x),
q0 = 2, where Tk(x) is the kth Chebyshev polynomial of the first kind and

∑ ′ s
i=0αi =

1
2α0 +

∑s
i=1 αi , then the coefficients pi and qi can be determined as follows:

1. Solve
∑n

s=0 γsc|r−s| = 0, r = m + 1, . . . ,m + n; γ0 = 1.
2. Compute qs = µ

∑n−s
i=0 γiγs+i , s = 1, . . . , n; µ−1 = 1

2

∑n
i=0 γ

2
i .

3. Compute pr = 1
2

∑ ′ n
s=0qs(cr+s + c|r−s|), r = 0, 1, . . . ,m.

The expensive part of this procedure for increasing n is determining the γs ≡ γ (m,n)
s .

Clenshaw and Lord [53] have given a recursive algorithm for the γ (m,n)
s that enables

their computation for m ≥ n. A different algorithm has been given by Sidi [267] and it
enables γ (m,n)

s to be computed for all m and n. Here are the details of this algorithm.

1. Set

γ
(m,n)
0 = 1 and γ

(m,n)
−1 = 0 = γ

(m,n)
n+1 for all m, n.
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2. Compute

ω(m,n+1) =
∑n

s=0 γ
(m+1,n)
s c|m+1−s|

∑n
s=0 γ

(m,n)
s c|m−s|

.

3. Compute γ (m,n+1)
s recursively from

γ (m,n+1)
s = γ (m+1,n)

s + ω(m,n+1)γ (m,n)
s−1 , s = 0, 1, . . . , n + 1.

Of course, this algorithm is successful as long as
∑n

s=0 γ
(m,n)
s c|m−s| �= 0. A similar

condition can be formulated for the algorithm of Clenshaw and Lord [53].
Another way of obtaining the Rm,n(x) from f (x) :=∑ ′ ∞

k=0ckTk(x) withm ≥ n makes
use of the fact that

Tk(x) = 1

2
(t k + t−k), k = 0, 1, . . . ; x = cos θ, t = eiθ .

Let us rewrite f (x) in the form f (x) = 1
2 [g(t)+ g(t−1)], where g(t) :=∑ ′ ∞

k=0ckt
k ,

and compute the [m/n] Padé approximant gm,n(t) to g(t). Then Rm,n(x) = 1
2 [gm,n(t)+

gm,n(t−1)]. According to Fleischer [85], this approach to the Chebyshev–Padé table was
first proposed by Gragg. It is also related to the Laurent–Padé table of Gragg [107]. We
do not go into the details of the latter here.
The block structure of the Chebyshev–Padé table has been analyzed by Geddes [93]

and by Trefethen and Gutknecht [337], [338].

18.7 Baker–Gammel Approximants

Another approach to accelerating the convergence of orthogonal polynomial expansions
makes use of the generating functions of these polynomials and the resulting approxi-
mations are called Baker–Gammel approximants. This approach can be applied to any
formal expansion f (x) :=∑∞

k=0 ckφk(x), when some generating function G(z, x) for
{φk(x)}∞k=0, namely,

G(z, x) =
∞∑

k=0
εk z

kφk(x), εk constants, (18.7.1)

is known and it is analytic in a neighborhood of z = 0, with x restricted appropriately.
Therefore,

εkφk(x) = 1

2π i

∮

|z|=ρ
z−k−1G(z, x) dz, k = 0, 1, . . . , (18.7.2)

such that G(z, x) is analytic for |z| ≤ ρ. Substituting (18.7.2) in f (x) and interchanging
formally the summation and the integration, we obtain

f (x) := 1

2π i

∮

|z|=ρ

( ∞∑

k=0

ck
εk

z−k−1
)

G(z, x) dz. (18.7.3)

Let hm,n(t) be the [m/n] Padé approximant for the series h(t) :=∑∞
k=0(ck/εk)t

k . Assume
that the contour |z| = ρ in (18.7.3) can be deformed if necessary to a different contour
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C1 whose interior contains all the poles of z−1hm,n(z−1). Then the [m/n] Baker–Gammel
approximant from f (x) is defined via

Rm,n(x) = 1

2π i

∮

C1

z−1hm,n(z
−1)G(z, x) dz. (18.7.4)

If hm,n(t) has the partial fraction expansion (only simple poles assumed for simplicity)

hm,n(t) = r (t)+
n∑

j=1

Hj

1− t z j
, r (t) =

m−n∑

k=0
rkt

k, (18.7.5)

then, by the residue theorem, Rm,n(x) becomes

Rm,n(x) =
m−n∑

k=0
εkrkφk(x)+

n∑

j=1
HjG(z j , x). (18.7.6)

From the way Rm,n(x) is constructed, it is clear that we need to determine the partial
fraction expansion of hm,n(t) in (18.7.5) numerically.
Obviously, ifG(z, x) is not a rational function in x, Rm,n(x) is not either. Interestingly,

if we expand Rm,n(x) formally in terms of the φk(x), invoking (18.7.1) and using the fact
that hm,n(t)− h(t) = O(tm+n+1) as t → 0, we obtain

Rm,n(x)− f (x) :=
∞∑

k=m+n+1
c̃kφk(x), (18.7.7)

analogously to (18.6.12) for nonlinear Padé approximants.
Let us now illustrate this approach with a few examples:

1. G(z, x) = 1/(1− zx), εk = 1, φk(x) = xk . The resulting Rm,n(x) is nothing but the
[m/n] Padé approximant from f (x) :=∑∞

k=0 ckx
k .

2. G(z, x) = (1− xz)/(1− 2xz + z2), εk = 1, φk(x) = Tk(x) (Chebyshev polynomi-
als of the first kind). The resulting Rm,n(x) is a rational function and,more importantly,
it is the [m/n] Chebyshev–Padé approximant from

∑∞
k=0 ckTk(x).

A different generating function for the Tk(x) is G(z, x) = 1− 1
2 log(1− 2xz + z2)

for which ε0 = 1 and εk = 1/k for k ≥ 1. Of course, the Rm,n(x) produced via this
G(z, x) has logarithmic branch singularities in the x-plane.

3. G(z, x) = 1/(1− 2xz + z2), εk = 1, φk(x) = Uk(x) (Chebyshev polynomials of the
second kind). The resulting Rm,n(x) is a rational function and, more importantly, it is
the [m/n] Chebyshev–Padé approximant from

∑∞
k=0 ckUk(x).

4. G(z, x) = (1− 2xz + z2)−1/2, εk = 1, φk(x) = Pk(x) (Legendre polynomials). The
resulting Rm,n(x) is of the form Rm,n(x) =

∑m−n
k=0 rk Pk(x)+

∑n
j=1 Hj (1− 2xz j +

z2j )
−1/2 and thus has branch singularities of the square-root type in the x-plane.

5. G(z, x)= exz, εk = 1/k!, φk(x)= xk . The resulting Rm,n(x) is of the form Rm,n(x)=∑m−n
k=0 (rk/k!)x

k +∑n
j=1 Hjexz j . In this case, (18.7.7) is equivalent to R(i)

m,n(0) =
f (i)(0), i = 0, 1, . . . ,m + n. This implies that the approximation Rn−1,n(x) is nothing
but the solution to the exponential interpolation problem treated in Theorem 17.7.2.

Note that the assumption that the poles of hm,n(t) be simple is not necessary. We made
this assumption only for the sake of simplicity. The treatment of multiple poles poses no
difficulty in determining Rm,n(x) defined via (18.7.4).
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Finally, we propose to modify the Baker–Gammel approximants Rm,n(x) by replacing
the Padé approximants hm,n(t) from h(t) :=∑∞

k=0(ck/εk)t
k , whenever possible, by other

suitable rational approximations, such as the Sidi–Levin rational d-approximants we
discussed earlier. This may produce excellent results when, for example, {cn/εn} ∈ b(m)

for some m.

18.8 Padé–Borel Approximants

Closely related to Baker–Gammel approximants are the Padé–Borel approximants,
which have proved to be useful in summing divergent series with zero radius of conver-
gence. These approximations were introduced in a paper by Graffi, Grecchi, and Simon
[103].
Let f (z) :=∑∞

k=0 ckz
k and assume it is known that ck = dk[(pk)!] and dk = O(ρk)

as k →∞ for some p > 0 and ρ > 0. Invoking in f (z) the fact that α! = ∫∞
0 e−t tα dt ,

�α > −1, and interchanging the integration and summation formally, we obtain

f (z) :=
∫ ∞

0
e−t g(zt p) dt, g(u) :=

∞∑

k=0
dku

k . (18.8.1)

Note that the series g(u) has a nonzero radius of convergence r and represents a function
that is analytic for u < r . Let us denote this function by g(u) aswell and assume that it can
be continued analytically to all u > 0. If, in addition, the integral in (18.8.1) converges,
its value is called the Borel sum of f (z). The Padé–Borel approximant f̂m,n(z) of f (z)
is defined by

f̂m,n(z) =
∫ ∞

0
e−t gm,n(zt

p) dt, (18.8.2)

where gm,n(u) is the [m/n] Padé approximant from g(u). The integral on the right-hand
side needs to be computed numerically.
Applying Watson’s lemma, it can be shown that

f̂m,n(z)− f (z) = O(zm+n+1) as z → 0, (18.8.3)

analogously to ordinary Padé approximants.
Of course, the Padé approximant gm,n(u) can be replaced by any other suitable rational

approximation in this case too.



19
The Levin L- and Sidi S-Transformations

19.1 Introduction

In this and the next few chapters, we discuss some nonlinear sequence transformations
that have proved to be effective on some or all types of logarithmic, linear, and factorial
sequences {Am} for which {�Am} ∈ b(1). We show how these transformations are de-
rived, and we provide a thorough analysis of their convergence and stability with respect
to columns in their corresponding tables, as we did for the iterated �2-process, the it-
erated Lubkin transformation, and the Shanks transformation. (Analysis of the diagonal
sequences turns out to be very difficult, and the number of meaningful results concerning
this has remained very small.)
We recall that the sequences mentioned here are in either b(1)/LOG or b(1)/LIN or

b(1)/FAC described in Definition 15.3.2. In the remainder of this work, we use the
notation of this definition with no changes, as we did in previous chapters.
Before proceeding further, let us define

a1 = A1 and am = �Am−1 = Am − Am−1, m = 2, 3, . . . . (19.1.1)

Consequently, we also have

Am =
m∑

k=1
ak, m = 1, 2, . . . . (19.1.2)

19.2 The Levin L-Transformation

19.2.1 Derivation of the L-Transformation
Wementioned in Section 6.3 that the Levin–Sidi d (1)-transformation reduces to the Levin
u-transformation when the Rl in Definition 6.2.2 are chosen to be Rl = l + 1. We now
treat the Levin transformations in more detail.
In his original derivation, Levin [161] considered sequences {Am} that behave like

Am = A + ωm f (m), f (m) ∼
∞∑

i=0

βi

mi
as m →∞, (19.2.1)

for some known {ωm}, and defined the appropriate extrapolation method, which we now

363
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call the L-transformation, as was done in Chapter 6, via the linear equations

Ar = L( j)
n + ωr

n−1∑

i=0

β̄ i

r i
, J ≤ r ≤ J + n; J = j + 1. (19.2.2)

On multiplying both sides by rn−1 and dividing by ωr , these equations become

rn−1Ar/ωr = L( j)
n rn−1/ωr +

n−1∑

i=0
β̄ i r

n−1−r , J ≤ r ≤ J + n; J = j + 1. (19.2.3)

Because
∑n−1

i=0 β̄ i r
n−1−r is a polynomial in r of degree at most n − 1, we can now

proceed as in the proof of Lemma 17.3.1 to obtain the representation

L( j)
n = �n

(
J n−1 AJ/ωJ

)

�n
(
J n−1/ωJ

) =
∑n

i=0(−1)i
(n
i

)
(J + i)n−1 AJ+i/ωJ+i

∑n
i=0(−1)i

(n
i

)
(J + i)n−1 /ωJ+i

; J = j + 1.

(19.2.4)

Levin considered three different choices for the ωm and defined three different se-
quence transformations:

1. ωm = am (t-transformation)
2. ωm = mam (u-transformation)
3. ωm = amam+1/(am+1 − am) (v-transformation)

Of these, the u-transformation appeared much earlier in work by Bickley andMiller [24,
p. 764].
Levin in his paper [161] andSmith andFord in [317] and [318] (inwhich they presented

an exhaustive comparative study of acceleration methods) concluded that the u- and v-
transformations are effective on all three types of sequences,whereas the t-transformation
is effective on linear and factorial sequences only. [Actually, all three transformations
are the best convergence acceleration methods on alternating series

∑∞
k=1(−1)|ak | with

{an} ∈ b(1).] The theoretical justification of these conclusions can be supplied with the
help of Theorem 6.7.2. That the t-transformation will be effective for linear and factorial
sequences is immediate by the fact that σ = 0 in Theorem 6.7.2 for such sequences. That
the u-transformationwill be effective on logarithmic sequences is obvious by the fact that
σ = 1 in Theorem 6.7.2 for such sequences. These also explain why the t-transformation
is not effective on logarithmic sequences and why the u-transformation is effective for
linear and factorial sequences as well.
The justification of the conclusion about the v-transformation is a little involved. (a) In

the case of logarithmic sequences, {Am} ∈ b(1)/LOG, we have Am − A = G(m), G ∈
A(γ )

0 , γ �= 0, 1, 2, . . . , and we can show that ωm = mamq(m) for some q ∈ A(0)
0 strictly.

We actually have q(m) ∼ (γ − 1)−1 as m →∞. (b) In the case of linear sequences,
{Am} ∈ b(1)/LIN, we have Am − A = ζmG(m), ζ �= 1, G ∈ A(γ )

0 , with arbitrary γ , and
we obtainωm = amq(m) for some q ∈ A(0)

0 strictly.We actually have q(m) ∼ ζ (ζ − 1)−1

as m →∞. (c) Finally, in the case of factorial sequences, {Am} ∈ b(1)/FAC, we have
Am − A = [(m)!]−rζmG(m), G ∈ A(γ )

0 , r = 1, 2, . . . , and ζ and γ are arbitrary, and
we can show that ωm = am+1q(m), where q ∈ A(0)

0 strictly. Actually, q(m) ∼ −1 as
m →∞. Now, from Theorem 6.7.2, we have that Am − A = am+1g(m + 1), where
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g ∈ A(0)
0 strictly. Substituting here am+1 = ωm/q(m) and noting that g(m + 1)/

q(m) ∈ A(0)
0 strictly, we obtain Am − A = ωm f (m) with f ∈ A(0)

0 as well.

19.2.2 Algebraic Properties

Letting ωm = mam in (19.2.4) (u-transformation), we realize that

L( j)
n = �n

(
J n−2AJ/aJ

)

�n
(
J n−2/aJ

) = �n
(
J n−2A j/�A j

)

�n
(
J n−2/�A j

) , J = j + 1, (19.2.5)

where the second equality holds for n ≥ 2. From (19.2.5), we see that L( j)
2 = Wj ({As}),

where {Wj ({As})} is the sequence produced by the Lubkin transformation. This obser-
vation is due to Bhowmick, Bhattacharya, and Roy [23].
The next theorem concerns the kernel of the u-transformation; it also provides the

kernel of the Lubkin transformation discussed in Chapter 15 as a special case.

Theorem 19.2.1 LetL( j)
n be produced by the u-transformation on {Am}. We haveL( j)

n =
A for all j = 0, 1, . . . , and fixed n, if and only if Am is of the form

Am = A + C
m∏

k=2

P(k)+ 1

P(k)
, P(k) =

n−1∑

i=0
βi k

1−i ,

C �= 0, β0 �= 1, P(k) �= 0,−1, k = 2, 3, . . . . (19.2.6)

Proof. Let us denote the β̄ i in the equations in (19.2.2) that define L
( j)
n by β( j)

ni . We first
note that, by the fact that

∑n−1
i=0 β

( j)
ni t

i is a polynomial of degree at most n − 1, the β ( j)
ni

are uniquely determined by those equations with the index r = J + 1, . . . , J + n, (n in
number) in (19.2.2). The same equations determine the β ( j+1)

ni when L( j+1)
n = A. This

forces β( j)
ni = β

( j+1)
ni , 0 ≤ i ≤ n − 1. Therefore, β ( j)

ni = β ′i , 0 ≤ i ≤ n − 1, for all j . As
a result,

Am = A + (�Am−1)Q(m), Q(m) =
n−1∑

i=0
β ′im

1−i , (19.2.7)

must hold for all m. Writing (19.2.7) in the form

Am − A = [�(Am−1 − A)]Q(m), (19.2.8)

and solving for Am − A, we obtain

Am − A

Am−1 − A
= P(m)+ 1

P(m)
, P(m) = Q(m)− 1, (19.2.9)

from which (19.2.6) follows. The rest is left to the reader. �

Smith and Ford [317] have shown that the family of sequences of the partial sums
of Euler series is contained in the kernel of the u-transformation. As this is difficult to
conclude from (19.2.6) in Theorem 19.2.1, we provide a separate proof of it in Theo-
rem 19.2.2 below.
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Theorem 19.2.2 Let Am =
∑m

k=1 k
µzk , m = 1, 2, . . . ,whereµ is a nonnegative integer

and z �= 1. Let L( j)
n be produced by the u-transformation on {Am}. Provided n ≥ µ+ 2,

there holds L( j)
n = A for all j , where A = (

z d
dz

)µ 1
1−z .

Proof. We start by observing that

Am =
(

z
d

dz

)µ m∑

k=1
zk =

(

z
d

dz

)µ z − zm+1

1− z
, m = 1, 2, . . . .

Next, it can be shown by induction on µ that
(

z
d

dz

)µ zm+1

1− z
= zm+1

R(m, z)

(1− z)µ+1
,

where R(m, z) is a polynomial in m and in z of degree µ. From this, we conclude that
Am satisfies (19.2.7). Substituting this in (19.2.5), the result follows. �

We now turn to algorithms for computing the L( j)
n . First, we can use (19.2.4) as is

for this purpose. Being a GREP(1), the L-transformation can also be implemented very
conveniently by the W-algorithm of Sidi [278] discussed in Chapter 7. For this, we need
only to let tl = (l + 1)−1, a(tl) = Al+1, and ϕ(tl) = ωl+1, l = 0, 1, . . . , in our input for
the W-algorithm. Another recursive algorithm was given independently by Longman
[178] and by Fessler, Ford, and Smith [83]. This algorithm was called HURRY in [83],
where a computer program that also estimates error propagation in a thorough manner
is supplied. It reads as follows:

1. With J = j + 1 throughout, and for j = 0, 1, . . . , set

P ( j)
0 = AJ/ωJ and Q( j)

0 = 1/ωJ .

2. For j = 0, 1, . . . , and n = 1, 2, . . . , compute P ( j)
n and Q( j)

n recursively from

U ( j)
n = U ( j+1)

n−1 − J

J + n

(
J + n − 1

J + n

)n−2
U ( j)

n−1,

where U ( j)
n stands either for P ( j)

n or for Q( j)
n .

3. For all j and n, set

L( j)
n = P ( j)

n /Q( j)
n .

Note that here

P ( j)
n = �n(J n−1AJ/ωJ )

(J + n)n−1
and Q( j)

n = �n(J n−1/ωJ )

(J + n)n−1
.

This prevents the P ( j)
n and Q( j)

n from becoming too large as n increases.
The L-transformation was extended slightly by Weniger [353] by replacing r i in

(19.2.2) by (r + α)i for some fixed α. It is easy to see that the solution for L( j)
n is now

obtained by replacing the factors J n−1 and (J + i)n−1 in the numerator and denomina-
tor of (19.2.4) by (J + α)n−1 and (J + α + i)n−1, respectively. The effect of α on the
quality of the resulting approximations is not clear at this time. (See Remark 1 following
Definition 6.2.1 in Chapter 6.)



19.2 The Levin L-Transformation 367

19.2.3 Convergence and Stability

We next summarize the convergence and stability properties of the u-transformation for
Process I (concerning {L( j)

n }∞j=0) as it is applied to sequences in b(1)/LOG and b(1)/LIN
and b(1)/FAC.

Theorem 19.2.3 Let Am be as in (19.2.1), and let βn+µ be the first nonzero βi with i ≥ n,
and let L( j)

n be as defined above.

(i) If ωm ∼
∑∞

i=0 him−δ−i as m →∞, h0 �= 0, δ �= 0,−1,−2, . . . , then

L( j)
n − A ∼ (−1)n (µ+ 1)n

(δ)n
βn+µω j j

−n−µ and �( j)
n ∼ (2 j)n

|(δ)n| as j →∞.

(ii) If ωm ∼ ζm
∑∞

i=0 him−δ−i as m →∞, h0 �= 0, ζ �= 1, then

L( j)
n − A ∼ (µ+ 1)n

(
ζ

ζ − 1

)n

βn+µω j+1 j−2n−µ and

�( j)
n ∼

(
1+ |ζ |
|1− ζ |

)n

as j →∞.

(iii) If ωm ∼ (m!)−rζm
∑∞

i=0 him−δ−i as m →∞, h0 �= 0, r = 1, 2, . . . , then

L( j)
n − A ∼ (−1)n(µ+ 1)nβn+µω j+n+1 j−2n−µ and �( j)

n ∼ 1 as j →∞.

Part (i) of this theorem was given in Sidi [270], part (ii) was given in Sidi [273],
and part (iii) is new. These results can also be obtained by specializing those given in
Theorems 8.4.1, 8.4.3, 9.3.1, and 9.3.2. Finally, they can also be proved by analyzing
directly

L( j)
n − A = �n

(
J n−1 f (J )

)

�n
(
J n−1/ωJ

) ; J = j + 1,

and

�( j)
n =

∑n
i=0

(n
i

)
(J + i)n−1/|ωJ+i |

|�n
(
J n−1/ωJ

) | ; J = j + 1.

The analysis of Process II (concerning {L( j)
n }∞n=0) turns out to be quite difficult. We can

make some statements bymaking the proper substitutions in the theorems of Sections 8.5
and 9.4. The easiest case concerns the sequences {Am} in b(1)/LIN and b(1)/FAC and
was treated in [270].

Theorem 19.2.4 Let Am be as in (19.2.1), with ωm as in part (ii) or part (iii) of The-
orem 19.2.3 and ωmωm+1 < 0 for m > j . Assume that B(t) ≡ f (t−1) ∈ C∞[0, t̂ ] for
some t̂ > 0. Then L( j)

n − A = O(n−λ) as n →∞ for every λ > 0, and �( j)
n = 1.

A different approach to the general case was proposed by Sidi [273]. In this approach,
one assumes that f (m) = m

∫∞
0 e−mtχ (t) dt , where χ (t) is analytic in a strip about the
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positive real axis in the t-plane. Subsequently, one analyzes

L( j)
n − A =

∫∞
0 e−J t (e−t − 1)nχ (n)(t) dt

�n
(
J n−1/ωJ

) ; J = j + 1.

This can be achieved by using some of the properties of Laplace transforms. (See
Appendix B.)
This approachwas used successfully in the analysis of some special cases by Sidi [273]

and [291]. Note that the difficult part of the analysis turns out to be that of�n
(
J n−1/ωJ

)
.

For example, the analysis of the special case in which ωm = ζm/m is the subject of a
long paper by Lubinsky and Sidi [186]. Writing

�n
(
J n−1/ωJ

) = z j+1ψ ( j)
n (z); J = j + 1, z = ζ−1,

with

ψ ( j)
n (z) =

n∑

i=0
(−1)n−i

(
n

i

)

( j + i + 1)nzi ,

it is shown in [186] that

ψ (0)
n (z) ∼ n!eφ(z)√

2πnφ(z)

(
zeφ(z)

)n
as n →∞,

where φ(z) is the unique solution of the equation zev(1− v) = 1 in the regionA defined
by

A = {v = a + ib : a ≥ 0, b ∈ (−π, π ), 0 < |v − 1|2 < (b/ sin b)2}.

It is interesting (see Sidi [275] and Sidi and Lubinsky [314]) that (i) all the zeros of the
polynomialsψ ( j)

n (z) are simple and lie in (0, 1), and (ii)ψ ( j)
n (z) are orthogonal to (log z)k ,

0 ≤ k ≤ n − 1, in the sense that
∫ 1

0
z jψ ( j)

n (z)(log z)k dz = 0, 0 ≤ k ≤ n − 1.

Thus, if we define the scalars β ( j)
ni via the relation

n∏

i=1

(

ξ − 1

j + i

)

=
n∑

i=0
β
( j)
ni ξ

i ,

and the polynomials !( j)
n (y) via

!( j)
n (y) =

n∑

i=0
(−1)i β

( j)
ni

i!
yi ,

then the ψ ( j)
n (z) and !( j)

n (log z) form a biorthogonal set of functions, in the sense that

∫ 1

0
z jψ ( j)

n (z)!( j)
n′ (log z) dz = 0, n �= n′.
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19.3 The Sidi S-Transformation

We again consider sequences {Am} that behave as in (19.2.1). Now observe that if
Km ∼

∑∞
i=0 γi/m

i as m →∞, then Km ∼
∑∞

i=0 γ
′
i /(m)i as m →∞, with (m)0 = 1

and (m)i =
∏i−1

k=0(m + k) for i ≥ 1, as before. It is clear that γ ′0 = γ0, and, for each
i > 0, γ ′i is uniquely determined by γ1, . . . , γi . Thus, (19.2.1) can be rewritten in the
form

Am = A + ωm f (m), f (m) ∼
∞∑

i=0
β ′i/(m)i m →∞. (19.3.1)

We can now define the S-transformation by truncating the asymptotic expansion in
(19.3.1) via the linear system

Ar = S ( j)
n + ωr

n−1∑

i=0

β̄ i

(r )i
, J ≤ r ≤ J + n; J = j + 1. (19.3.2)

By Lemma 17.3.1, the solution of this system for S ( j)
n is given by

S ( j)
n = �n ((J )n−1 AJ/ωJ )

�n ((J )n−1/ωJ )
=
∑n

i=0(−1)i
(n
i

)
(J + i)n−1 AJ+i/ωJ+i

∑n
i=0(−1)i

(n
i

)
(J + i)n−1 /ωJ+i

; J = j + 1.

(19.3.3)

Theωm can be chosen exactly as in theL-transformation. The resulting sequence trans-
formations have numerical properties similar to those of the t-, u-, and v-transformations,
except that they are quite inferior on sequences in b(1)/LOG. The S-transformation is
very effective on sequences {Am} in b(1)/LIN/FAC; its performance on such sequences
is quite similar to that of the L-transformation. Nevertheless, the L-transformation
appears to be the best method for handling alternating series

∑∞
k=1(−1)kck , ck > 0

for all k.
As acknowledged also by Weniger [354, Section 2], the S-transformation was first

used as a bona fide convergence acceleration method in the M.Sc. thesis of Shelef [265],
which was done under the supervision of the author. The method was applied in [265] to
certain power series for the purpose of deriving some new numerical quadrature formulas
for the Bromwich integral. (We consider this topic in some detail in Section 25.7.)
Later, Weniger [353] observed that this transformation is a powerful accelerator for
some asymptotic power series with zero radius of convergence, such as the Euler series∑∞

k=0(−1)kk!z−k . We discuss this in the next section. The name S-transformation was
introduced by Weniger [353] as well.
Computation of theS ( j)

n can be done by direct use of the formula in (19.3.3). It can also
be carried out via the following recursive algorithm thatwas developed byWeniger [353]:

1. With J = j + 1 throughout, and for j = 0, 1, . . . , set

P ( j)
0 = AJ/ωJ and Q( j)

0 = 1/ωJ .

2. For j = 0, 1, . . . , and n = 1, 2, . . . , compute P ( j)
n and Q( j)

n recursively from

U ( j)
n = U ( j+1)

n−1 − ( j + n − 1)( j + n)

( j + 2n − 2)( j + 2n − 1)
U ( j)

n−1,

where U ( j)
n stands for P ( j)

n or for Q( j)
n .
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3. For all j and n, set

S ( j)
n = P ( j)

n /Q( j)
n .

Note that here

P ( j)
n = �n((J )n−1AJ/ωJ )

(J + n)n−1
and Q( j)

n = �n((J )n−1/ωJ )

(J + n)n−1
.

This prevents the P ( j)
n and Q( j)

n from becoming too large as n increases.
The treatment of the kernel of the S-transformation is identical to that of the L-

transformation given in Theorem 19.2.1. A necessary and sufficient condition under
which S ( j)

n = A for all j = 0, 1, . . . , when ωm = mam , is that

Am = A + C
m∏

k=2

P(k)+ 1

P(k)
, P(k) =

n−1∑

i=0
βi k/(k)i ,

C �= 0, β0 �= 1, P(k) �= 0,−1, k = 2, 3, . . . .

We leave the details of its proof to the reader.
We next state a theorem on the convergence and stability of the S-transformation

under Process I. The proof can be accomplished in exactly the same way as those of
Theorem 19.2.3 and Theorem 19.2.4.

Theorem 19.3.1 Let Am be as in (19.3.1), and let β ′n+µ be the first nonzero β ′i with
i ≥ n, and let S ( j)

n be as defined above. Then, all the results of Theorem 19.2.3 and that
of Theorem 19.2.4 hold withL( j)

n and βn+µ there replaced by S ( j)
n and β ′n+µ, respectively.

The results of this theorem pertaining to the convergence of the method on sequences
{Am} in b(1)/LOG and b(1)/LINwere mentioned byWeniger [353], while that pertaining
to sequences in b(1)/FAC is new.
For the proof of Theorem 19.3.1, we start with

S ( j)
n − A = �n ((J )n−1 f (J ))

�n ((J )n−1/ωJ )
; J = j + 1,

and

�( j)
n =

∑n
i=0

(n
i

)
(J + i)n−1/|ωJ+i |

|�n (Jn−1/ωJ ) | ; J = j + 1,

and proceed as before.
The S-transformation was extended slightly by Weniger [353] by replacing (r )i in

(19.3.2) by (r + α)i for some fixed α. This is also covered by Lemma 17.3.1 with
(17.3.2) and (17.3.3). Thus, the solution for S ( j)

n is now obtained by replacing the factors
(J )n−1 and (J + i)n−1 in the numerator and denominator of (19.3.3) by (J + α)n−1 and
(J + α + i)n−1, respectively. The effect of α on the quality of the resulting approxima-
tions is not clear at this time. (See Remark 1 following Definition 6.2.1 in Chapter 6
again.)
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A more substantial extension was also given by Weniger [354]. For this, one starts by
rewriting (19.3.1) in the form

Am = A + ωm f (m), f (m) ∼
∞∑

i=0
β ′′i /(c[m + α])i as m →∞, (19.3.4)

which is legitimate. (As before, β ′′0 = β0 and, for each i > 0, β ′′i is uniquely determined
by β1, . . . , βi .) Here, c and α are some fixed constants. We next truncate this expansion
to define the desired extension:

Ar = C( j)
n + ωr

n−1∑

i=0

β̄ i

(c[r + α])i
, J ≤ r ≤ J + n; J = j + 1. (19.3.5)

These equations can also be solved by applying Lemma 17.3.1 to yield

C( j)
n = �n ((c[J + α])n−1 AJ/ωJ )

�n ((c[J + α])n−1/ωJ )
=
∑n

i=0(−1)i
(n
i

)
(c[J + α + i])n−1 AJ+i/ωJ+i

∑n
i=0(−1)i

(n
i

)
(c[J + α + i])n−1 /ωJ+i

.

(19.3.6)

Weniger reports that the size of c may influence the performance of this transformation.
For details, we refer the reader to [354].

19.4 A Note on Factorially Divergent Sequences

All our results concerning the L- and S-transformations so far have been on sequences
{Am} in b(1)/LOG, b(1)/LIN, and b(1)/FAC. We have not treated those sequences that
diverge factorially, in the sense that

Am ∼ (m!)rζm
∞∑

i=0
αim

γ−i as m →∞; r > 0 integer. (19.4.1)

In keeping with Definition 15.3.2, we denote the class of such sequences b(1)/FACD.
Such sequences arise also from partial sums of infinite series

∑∞
k=1 ak , where

am = cmζ
m, cm = (m!)r h(m), h(m) ∼

∞∑

i = 0

δim
γ−i as m →∞; r > 0 integer.

(19.4.2)

We show the truth of this statement in the following lemma.

Lemma 19.4.1 Let am be as in (19.4.2) and Am =
∑m

k=1 ak. Then

Am ∼ am

(

1+
∞∑

i=0
τim

−r−i

)

as m →∞, τ0 = 1/ζ. (19.4.3)

Proof. We start with

Am =
m∑

k=1
ak = am

(

1+ am−1
am

+ · · · + a1
am

)

. (19.4.4)
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Now, for each fixed s,

am−s

am
∼

∞∑

i=0
τs,im

−sr−i as m →∞, τs,0 = 1/ζ s .

Therefore, for fixed µ, there holds

am−1
am

+ · · · + am−(µ−1)
am

=
µr−1∑

i=0
τim

−r−i + O(m−µr ) as m →∞, (19.4.5)

and τi , i = 0, 1, . . . µr − 1, remain unchanged if we increase µ. Also,

am−µ
am

+ am−(µ+1)
am

+ · · · + a1
am

= O(mam−µ/am) = O(m1−µr ) as m →∞. (19.4.6)

Combining (19.4.5) and (19.4.6) in (19.4.4), and realizing that µ is arbitrary, we obtain
the result in (19.4.3). �

The following theorem on b(1)/FACD class sequences states that the two transforma-
tions diverge under Process I but definitely less strongly than the original sequences.

Theorem 19.4.2 Let Am be either as in (19.4.1) or Am =
∑n

k=1 ak with am as in (19.4.2).
With ωm = Am − Am−1 or ωm = am in the L- and S-transformations, and provided
n ≥ r + 1, there holds

T ( j)
n ∼ Kn j

−2n−s A j+1 as j →∞, for some Kn > 0 and integer s ≥ 0, (19.4.7)

where T ( j)
n stands for either L( j)

n or S ( j)
n .

Proof. First, if Am is as in (19.4.1), then

ωm = Am − Am−1 ∼ Am

(

1+
∞∑

i=0
ηim

−r−i

)

as m →∞, η0 = −1/ζ.

If Am =
∑n

k=1 ak with am as in (19.4.2), we have from Lemma 19.4.1 similarly

Am ∼ am

(

1+
∞∑

i=0
τim

−r−i

)

as m →∞, τ0 = 1/ζ.

In either case, ωm ∼ Am as m →∞ and

Am

ωm
∼
(

1+
∞∑

i=0
εim

−r−i

)

as m →∞, ε0 = 1/ζ �= 0.

In the case of the L-transformation, we then have

�n(J n−1AJ/ωJ ) ∼ K J−n−1−s and �n(J n−1/ωJ ) ∼ (−1)n J n−1/ωJ as j →∞,

for some integer s ≥ 0 and positive constant K . We have the same situation in the case
of the S-transformation, namely,

�n((J )n−1AJ/ωJ ) ∼ K J−n−1−s and �n((J )n−1/ωJ ) ∼ (−1)n J n−1/ωJ as j →∞.

The result now follows by invoking (19.2.4) and (19.3.3). �
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Table 19.4.1: Absolute errors in S (0)
n (z) and L(0)

n (z) on the Euler series∑∞
k=0(−1)kk!z−k for z = 1/2, 1, 3. Here En(z;S) = |S (0)

n (z)−U (z)| and
En(z;L) = |L(0)

n (z)−U (z)|, where U (z) = ∫∞
0

e−x

1+x/z dx is the Borel sum of the series

n En(1/2;S) En(1/2;L) En(1;S) En(1;L) En(3;S) En(3;L)

2 4.97D − 02 4.97D − 02 2.49D − 02 2.49D − 02 3.64D − 03 3.64D − 03
4 9.67D − 04 4.81D − 05 3.38D − 04 9.85D − 04 2.92D − 05 1.74D − 04
6 4.81D − 05 1.12D − 04 8.66D − 06 5.18D − 05 1.96D − 07 4.47D − 06
8 4.62D − 06 1.76D − 05 1.30D − 07 1.26D − 06 1.73D − 09 1.52D − 08

10 5.32D − 07 2.38D − 06 2.50D − 08 7.92D − 08 6.44D − 12 3.20D − 09
12 1.95D − 08 3.25D − 07 2.49D − 10 1.77D − 08 5.06D − 13 7.67D − 11
14 9.74D − 09 4.64D − 08 1.31D − 10 2.23D − 09 2.13D − 14 2.42D − 12
16 7.74D − 10 7.00D − 09 4.37D − 12 2.45D − 10 2.73D − 16 2.66D − 13
18 1.07D − 10 1.12D − 09 9.61D − 13 2.58D − 11 1.56D − 17 9.82D − 15
20 3.74D − 11 1.86D − 10 9.23D − 14 2.70D − 12 8.42D − 19 8.76D − 17
22 3.80D − 12 3.19D − 11 5.58D − 15 2.84D − 13 6.31D − 21 4.16D − 17
24 4.44D − 13 5.55D − 12 1.70D − 15 3.05D − 14 1.97D − 21 3.58D − 18
26 2.37D − 13 9.61D − 13 6.84D − 17 3.39D − 15 2.04D − 23 1.87D − 19
28 3.98D − 14 1.61D − 13 2.22D − 17 3.96D − 16 5.57D − 24 3.41D − 21
30 2.07D − 16 2.48D − 14 3.90D − 18 4.99D − 17 1.28D − 25 6.22D − 22
32 1.77D − 15 2.91D − 15 3.87D − 20 6.89D − 18 2.08D − 26 1.04D − 22
34 5.25D − 16 2.87D − 14 8.36D − 20 4.57D − 18 1.83D − 27 9.71D − 24
36 7.22D − 17 8.35D − 13 1.51D − 20 2.06D − 16 2.75D − 28 8.99D − 24
38 2.84D − 17 4.19D − 11 3.74D − 20 1.05D − 15 6.64D − 27 5.68D − 23
40 2.38D − 16 2.35D − 10 1.66D − 19 1.09D − 13 2.43D − 26 3.52D − 22

For a large class of {am} that satisfy (19.4.2), it is shown by Sidi [285] that the
series

∑∞
k=1 ak =

∑∞
k=1 ckζ

k have (generalized) Borel sums A(ζ ) that are analytic in
the ζ -plane cut along the real interval [0,+∞). This is the case, for example, when
h(m) = mω

∫∞
0 e−mtϕ(t) dt for some integer ω ≥ 0 and some ϕ(t) of exponential order.

As mentioned in [285], the numerical results of Smith and Ford [318] suggest that the
L-transformation (under Process II) produces approximations to these Borel sums. The
same applies to the S-transformation, as indicated by the numerical experiments of
Weniger [353].
The numerical testing done by Grotendorst [116] suggests that, on the factori-

ally divergent series considered here, the S-transformation is more effective than the
L-transformation, which, in turn, is more effective than the Shanks transformation
(equivalently, the Padé table). According to Weniger [354] and Weniger, Čı́žek, and
Vinette [356], computations done in very high precision (up to 1000 digits) suggest
that, when applied to certain very wildly divergent asymptotic power series that arise in
the Rayleigh-Schrödinger perturbation theory, theL-transformation eventually diverges,
while the S-transformation converges.
Unfortunately, currently there is no mathematical theory that explains the observed

numerical behavior of the L- and S-transformations on factorially divergent sequences
under Process II; this is also true of other methods that can be applied to such sequences.
The one exception to this concerns the diagonals of the Padé table from

∑∞
k=0 ckζ

k

(equivalently, the Shanks transformation on the sequence of the partial sums) when
ck =

∫∞
0 t kdψ(t), where the function ψ(t) is nondecreasing on (0,∞) and has an infi-

nite number of points of increase there. By Theorem 17.9.3, provided {ck} satisfies the
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Carleman condition, the diagonals (analogous to Process II) converge to the correspond-
ing Stieltjes function, which can be shown to be the Borel sum of the series in many
instances.
We close with a numerical example in which we demonstrate the performances of the

L- and S-transformations on such series under Process II.

Example 19.4.3 Let us consider the Euler series 0!− 1!z−1 + 2!z−2 − 3!z−3 + · · · .
Obviously, the elements of this series satisfy (19.4.2). Its Borel sum is U (z) =
zez E1(z), where E1(z) =

∫∞
z t−1e−t dt is the exponential integral, and z �∈ (−∞, 0]. In

Table 19.4.1, we give the errors in the L(0)
n and S (0)

n for z = 1/2, 1, 3. The value
of U (z) is obtained with machine precision by computing U (z) = ∫∞

0
e−x

1+x/z dx nu-
merically. We have U (1/2) = 0.4614553162 · · · , U (1) = 0.5963473623 · · · , U (3) =
0.7862512207 · · · . Here we have taken ωm = mam so the L-transformation becomes
the u-transformation.
We would like to note that, when applied to the Euler series, the iterated �2-process,

the iterated Lubkin transformation, and the Shanks transformation discussed earlier, and
the θ -algorithm we discuss in Chapter 20 are able to produce fewer correct significant
digits than the S- andL-transformations. Numerical experiments suggest that this seems
to be the case generally when these methods are applied to other factorially divergent
series.

In connection with the summation of the Euler series, we would like to refer the reader
to the classical paper by Rosser [241], where the Euler transformation is applied in a
very interesting manner.



20
The Wynn ρ- and Brezinski θ-Algorithms

20.1 The Wynn ρ-Algorithm and Generalizations

20.1.1 The Wynn ρ-Algorithm

Aswe saw in Chapter 16, the Shanks transformation does not accelerate the convergence
of logarithmic sequences in b(1)/LOG. Simultaneously with his paper [368] on the
ε-algorithm for the Shanks transformation,Wynn published another paper [369] inwhich
he developed a different method and its accompanying algorithm. This method is very
effective on sequences {Am} for which

Am ∼ A +
∞∑

i=1
δim

−i as m →∞. (20.1.1)

Of course, the set of all such sequences is a subset of b(1)/LOG.
The idea and motivation behind this method is the following: Since Am = h(m)∈A(0)

0 ,
h(m) has a smooth behavior as m →∞. Therefore, near m = ∞ Am = h(m) can be
approximated very efficiently by a rational function in m, R(m) say, with degree of
numerator equal to degree of denominator, and limm→∞ R(m) can serve as a good ap-
proximation for A = limm→∞ h(m) = limm→∞ Am . In particular, R(m) can be chosen
to interpolate h(m) at 2n + 1 points.
Denoting the rational function with degree of numerator and degree of denominator

equal to n that interpolates f (x) at the points x j , x j+1, . . . , x j+2n by R( j)
2n (x), we can use

Thiele’s continued fraction to compute limx→∞ R( j)
2n (x) ≡ ρ

( j)
2n recursively via

ρ
( j)
−1 = 0, ρ

( j)
0 = f (x j ), j = 0, 1, . . . ,

ρ
( j)
k+1 = ρ

( j+1)
k−1 + x j+k+1 − x j

ρ
( j+1)
k − ρ

( j)
k

, j, k = 0, 1, . . . . (20.1.2)

In Wynn’s method, the function we interpolate is h(x), and xi = i , i = 0, 1, . . . . In
other words, ρ( j)

2n is defined by the equations

Am =
∑n−1

i=0 eimi + ρ
( j)
2n m

n

∑n−1
i=0 fimi + mn

, j ≤ m ≤ j + 2n.

Of course, the ei and fi are the additional (auxiliary) unknowns. Thus, we have the
following computational scheme that is known as Wynn’s ρ-algorithm:

375
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Algorithm 20.1.1 (ρ-algorithm)

1. Set

ρ
( j)
−1 = 0, ρ

( j)
0 = A j , j = 0, 1, . . . .

2. Compute the ρ( j)
k recursively from

ρ
( j)
k+1 = ρ

( j+1)
k−1 + k + 1

ρ
( j+1)
k − ρ

( j)
k

, j, k = 0, 1, . . . .

The ρ( j)
k can be arranged in a two-dimensional table that is the same as that correspond-

ing to the ε-algorithm.Wemention again that only theρ( j)
2n are the desired approximations

to A. Wynn has given a determinantal expression for ρ( j)
2n in [369]. We also note that this

method is quasi-linear, as can be seen easily. Finally, the kernel of the ρ-algorithm is
the set of convergent sequences {Am} for which Am is a rational function of m. Specif-
ically, if Am = P(m)/Q(m), where P(m) and Q(m) have no common factors, P(m) is
of degree at most n, and Q(m) is of degree exactly n, then ρ( j)

2n = limm→∞ Am for all
j = 0, 1, . . . .
It must be emphasized that the ρ-algorithm is effective only on sequences {Am} that

are as in (20.1.1).

20.1.2 Modifications of the ρ-Algorithm

From the way the ρ-algorithm is derived, we can conclude that it will not be effective
on sequences {Am} ∈ b(1)/LOG for which

Am ∼ A +
∞∑

i=0
αim

γ−i as m →∞; α0 �= 0, (20.1.3)

where γ is not a negative integer. (Recall that γ �= 0, 1, . . . , must always be true.) The
reason for this is that now Am = h(m) is not a smooth function of m at m = ∞ (it has
a branch singularity of the form mγ there), and we are trying to approximate it by a
rational function in m that is smooth at m = ∞. Actually, the following theorem about
the behavior of the ρ-algorithm can be proved by induction.

Theorem 20.1.2 Let Am be as in (20.1.3), where γ is either not an integer or γ = −s,
s being a positive integer.

(i) When γ is not an integer, there holds for every n

ρ
( j)
2n − A ∼ K2n j

γ , ρ
( j)
2n+1 ∼ K2n+1 j−γ+1 as j →∞, (20.1.4)

where

K2n = α0

n∏

i=1

i + γ

i − γ
, K2n+1 = n + 1

α0γ

n∏

i=1

i + 1− γ

i + γ
. (20.1.5)
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(ii) When γ = −s, (20.1.4) holds for n = 1, 2, . . . , s − 1, while for n = s, there holds

ρ
( j)
2s − A = O( j−s−1) as j →∞. (20.1.6)

In other words, when γ is not an integer the ρ-algorithm induces no convergence
acceleration, and when γ = −s, where s is a positive integer, convergence acceleration
begins to take place with the column ρ( j)

2s .
To fix this problem, Osada [225] took an approach that ignores the fact that the ρ-

algorithm was obtained from rational interpolation. In this approach, Osada generalized
Algorithm 20.1.1 to make it effective for the cases in which Am − A = g(m) ∈ A(γ )

0 with
arbitrary γ �= 0, 1, . . . . The generalized ρ-algorithm on the sequence {Am}, which we
denote the ρ(γ )-algorithm, reads as follows:

Algorithm 20.1.3 [ρ(γ )-algorithm]

1. Set

ρ̄
( j)
−1 = 0, ρ̄

( j)
0 = A j , j = 0, 1, . . . .

2. Compute the ρ̄( j)
k recursively from

ρ̄
( j)
k+1 = ρ̄

( j+1)
k−1 + k − γ

ρ̄
( j+1)
k − ρ̄

( j)
k

, j, k = 0, 1, . . . .

Obviously, the ρ(−1)-algorithm is exactly the Wynn ρ-algorithm.
The following theorem by Osada [225] shows that the ρ(γ )-algorithm accelerates

convergence when Am − A = g(m) ∈ A(γ )
0 strictly.

Theorem 20.1.4 Let Am − A = g(m) ∈ A(γ )
0 strictly, with γ �= 0, 1, . . . , and apply the

ρ(γ )-algorithm to {Am}. Then

ρ̄
( j)
2n − A ∼

∞∑

i=0
wni j

γ−2n−i as j →∞. (20.1.7)

Of course, we need to have precise knowledge of γ to be able to use this algorithm.
In case we know that Am − A = g(m) ∈ A(γ )

0 , but we do not know γ , Osada proposes
to apply the ρ(α)-algorithm to {Am} with α chosen as a good estimate of γ , obtained by
applying the ρ(−2)-algorithm to the sequence {γm}, where γm is given by

γm = 1− (�am)(�am+1)
amam+2 − a2m+1

= 1+ 1

� (am/�am)
.

Here a0 = A0 and am+1 = �Am ,m = 0, 1, . . . . [Recall that, at the end of Section 15.3,
we mentioned that γm − γ = u(m) ∈ A(−2)

0 .]
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Osada proposes the following algorithm, which he calls the automatic generalized
ρ-algorithm. We call it the automatic ρ(γ )-algorithm.

Algorithm 20.1.5 [Automatic ρ(γ )-algorithm]

(i) Given the terms A0, A1, . . . , Ar , apply the ρ(−2)-algorithm to {γm}r−2m=0. If r =
2s + 2, set γ ′ = ρ̄

(0)
2s , whereas if r = 2s + 3, set γ ′ = ρ̄

(1)
2s .

(ii) Apply the ρ(γ ′)-algorithm to {Am} to obtain the approximation ρ̄( j)
2n for 0 ≤ j +

2n ≤ r .

We end this discussion by noting that the philosophy of the automatic ρ(γ )-algorithm
can be used in conjunction with the repeated generalized�2-process of Section 15.3, as
we have already discussed.
A further modification of the ρ-algorithm that is actually a generalization of the ρ(γ )-

algorithm for sequences {Am} such that

Am ∼ A +
∞∑

i=0
αim

γ−i/p as m →∞; p ≥ 2 integer,

α0 �= 0, γ �= i

p
, i = 0, 1, . . . . (20.1.8)

was given by Van Tuyl [343]. We denote this algorithm the ρ(γ, p)-algorithm. It reads
as follows:

Algorithm 20.1.6 [ρ(γ, p)-algorithm]

1. Set

ρ̂
( j)
−1 = 0, ρ̂

( j)
0 = A j , j = 0, 1, . . . .

2. Compute the ρ̂( j)
k recursively from

ρ̂
( j)
k+1 = ρ̂

( j+1)
k−1 + C (γ,p)

k

ρ̂
( j+1)
k − ρ̂

( j)
k

, j, k = 0, 1, . . . ,

where

C (γ,p)
2n = −γ + n

p
, C (γ,p)

2n+1 = −γ + n

p
+ 1.

The next theorem by Van Tuyl [343] shows that the ρ(γ, p)-algorithm accelerates
convergence when Am − A = h(m) ∈ Ã(γ,p)

0 strictly as in (20.1.8).

Theorem 20.1.7 With Am as in (20.1.8), apply the ρ(γ, p)-algorithm to {Am}. Then

ρ̂
( j)
2n − A ∼

∞∑

i=0
wni j

γ−(n+i)/p as j →∞.
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20.2 The Brezinski θ -Algorithm

A different approach to accelerating the convergence of sequences in b(1)/LOG was
given by Brezinski [32]. In this approach, Brezinski modifies the ε-algorithm in a clever
way we discuss next.
Changing our notation from ε

( j)
k to θ ( j)k , we would like to modify the recursion relation

for θ ( j)k , by introducing some parameters ωn , to read

θ
( j)
−1 = 0, θ

( j)
0 = A j , j = 0, 1, . . . ,

θ
( j)
2n+1 = θ

( j+1)
2n−1 + D( j)

2n ; D( j)
k = 1/�θ ( j)k , for all j, k ≥ 0,

θ
( j)
2n+2 = θ

( j+1)
2n + ωnD

( j)
2n+1, n, j = 0, 1, . . . .

Here �F ( j)
k = F ( j+1)

k − F ( j)
k for all j and n. Now we would like to choose the ωn to

induce acceleration of convergence. (Of course, withωn = 1 for all nwehave nothing but
the ε-algorithm.) Let us apply the difference operator� to both sides of the recursion for
θ
( j)
2n+2 and divide both sides of the resulting relation by �θ ( j+1)2n . We obtain

�θ
( j)
2n+2/�θ

( j+1)
2n = 1+ ωn�D( j)

2n+1/�θ
( j+1)
2n .

We now require that {θ ( j)2n+2}∞j=0 converge more quickly than {θ ( j)2n }∞j=0. Assuming
for the moment that both sequences are in b(1)/LOG, this is the same as requiring
that lim j→∞(θ ( j)2n+2 − A)/(θ ( j+1)2n − A) = 0. But the latter implies that lim j→∞�θ

( j)
2n+2/

�θ
( j+1)
2n = 0 and, therefore,

ωn = − lim
j→∞

�θ
( j+1)
2n /�D( j)

2n+1.

Now, we do not know this limit to be able to determine ωn . Therefore, we replace ωn by

ω( j)
n = −�θ ( j+1)2n /�D( j)

2n+1.

As a result, we obtain the θ -algorithm of Brezinski [32].

Algorithm 20.2.1 (θ -algorithm)

1. For j = 0, 1, . . . , set

θ
( j)
−1 = 0, θ

( j)
0 = A j .

2. For j, n = 0, 1, . . . , compute the θ ( j)k recursively from

θ
( j)
2n+1 = θ

( j+1)
2n−1 + D( j)

2n ; D( j)
k = 1/�θ ( j)k , for all j, k ≥ 0,

θ
( j)
2n+2 = θ

( j+1)
2n − �θ

( j+1)
2n

�D( j)
2n+1

D( j)
2n+1. (20.2.1)

Note that only the θ ( j)2n are the relevant approximations to the limit or antilimit of
{Am}. For given j and n, θ ( j)2n is determined from Ak , j ≤ k ≤ j + 3n, just like B( j)

n in
the iterated Lubkin transformation.
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It is easy to see that the θ -algorithm is quasi-linear. As mentioned before, {θ ( j)2 } is
nothing but the sequence produced by theLubkin transformation, that is, θ ( j)2 = Wj ({As})
in the notation of Section 15.4. It is also the sequence {L( j)

2 } produced by the Levin u-
transformation. This last observation is due to Bhowmick, Bhattacharya, and Roy [23].
The derivation of the θ -algorithm we gave here is only heuristic, as is the case with

all sequence transformations. We need to show that the θ-algorithm is a bona fide con-
vergence acceleration method.

20.2.1 Convergence and Stability of the θ-Algorithm

Because of the complexity of the recursion relation in (20.2.1), the analysis of the θ -
algorithm turns out to be quite involved. Specifically, we have two different types of
sequences to worry about, namely, {θ ( j)2n }

∞
j=0 and {θ ( j)2n+1}

∞
j=0, and the two are coupled

nonlinearly. Luckily, a rigorous analysis of both types of sequences can be given, and
we turn to it now.
The first result pertaining to this method was given by Van Tuyl [343] and concerns

the convergence of the θ -algorithm on sequences in b(1)/LOG. Theorems pertaining to
convergence of the method on sequences in b(1)/LIN and b(1)/FAC have been obtained
recently by Sidi in [307], where the issue of stability is also given a detailed treatment.
Our treatment of the θ -algorithm here follows [307].
We begin by expressing θ

( j)
2n in forms that are different from that given in Algo-

rithm 20.2.1, as this enables us to present its analysis in a convenient way.

Lemma 20.2.2 θ
( j)
2n+2 can be expressed as in

θ
( j)
2n+2 =

1

�2θ
( j)
2n+1

{
Wj ({θ (s)2n })×�2(1/�θ ( j)2n )+�(θ ( j+1)2n ×�θ

( j+1)
2n−1 )

}
(20.2.2)

and

θ
( j)
2n+2 =

�(θ ( j+1)2n ×�θ
( j)
2n+1)

�2θ
( j)
2n+1

. (20.2.3)

Proof. From Algorithm 20.2.1, we first have

θ
( j)
2n+2 =

θ
( j+1)
2n ×�2θ

( j)
2n+1 +�θ

( j+1)
2n ×�θ

( j+1)
2n+1

�2θ
( j)
2n+1

. (20.2.4)

Substituting�θ ( j+1)2n = θ
( j+2)
2n − θ

( j+1)
2n and�2θ

( j)
2n+1 = �θ

( j+1)
2n+1 −�θ

( j)
2n+1 in the numer-

ator of (20.2.4), we obtain (20.2.3). Next, substituting θ ( j)2n+1 = θ
( j+1)
2n−1 + 1/�θ ( j)2n in the

numerator of (20.2.3), we have

θ
( j)
2n+2 =

�(θ ( j+1)2n ×�(1/�θ ( j)2n ))+�(θ ( j+1)2n ×�θ
( j+1)
2n−1 )

�2θ
( j)
2n+1

. (20.2.5)

Letting now n = 0 and recalling that θ ( j)−1 = 0, θ ( j)0 = A j , and hence θ
( j)
1 = 1/�A j , we
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have from (20.2.5) and (15.4.2) that

θ
( j)
2 = �(A j+1 ×�(1/�A j ))

�2(1/�A j )
= Wj ({As}). (20.2.6)

Using this in (20.2.5), the result in (20.2.2) follows. �

The next theorem explains the convergence of the sequences {θ ( j)2n }∞j=0.

Theorem 20.2.3 Let us assume that the sequence {Am} is as in Definition 15.3.2 with
exactly the same notation.

(i) If {Am} ∈ b(1)/LOG, then there exist constants γk such that γ0 = γ and γk − γk−1
are integers ≤ −2, for which, as j →∞,

θ
( j)
2n − A ∼

∞∑

i=0
wni j

γn−i , wn0 �= 0,

θ
( j)
2n+1 ∼

∞∑

i=0
hni j

−γn−i+1, hn0 = 1/(γnwn0) �= 0.

(ii) If {Am} ∈ b(1)/LIN, then there exist constants γk such that γ0 = γ and γk − γk−1
are integers ≤ −3, for which, as j →∞,

θ
( j)
2n − A ∼ ζ j

∞∑

i=0
wni j

γn−i , wn0 �= 0,

θ
( j)
2n+1 ∼ ζ− j

∞∑

i=0
hni j

−γn−i , hn0 = 1/[(ζ − 1)wn0] �= 0.

(iii) If {Am} ∈ b(1)/FAC, then, as j →∞,

θ
( j)
2n − A ∼ ζ j

( j!)r

∞∑

i=0
wni j

γn−i , wn0 = α0[ζ
3r (r + 1)]

n �= 0,

θ
( j)
2n+1 ∼ ζ− j ( j!)r

∞∑

i=0
hni j

−γn−i , hn0 = −1/wn0 �= 0,

where γk = γ − k(3r + 2), k = 0, 1, . . . .

The proof of this theorem can be carried out by induction on n. For this, we use the
error expression

θ
( j)
2n+2 − A = 1

�2θ
( j)
2n+1

{
[Wj ({θ (s)2n })− A]�2(1/�θ ( j)2n )+�[(θ ( j+1)2n − A)(�θ ( j+1)2n−1 )]

}
,

which follows from (20.2.2), and the definition of θ ( j)2n+1 given in Algorithm 20.2.1, and
Theorem 15.4.1 on the convergence of the Lubkin transformation. We leave the details
to the reader.
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Note the similarity of Theorem 20.2.3 on the θ -algorithm to Theorem 15.4.2 on
the iterated Lubkin transformation. It must be noted that the γk in parts (i) and (ii) of
these theorems are not necessarily the same. However, in parts (iii) they are the same,
and we have lim j→∞(θ ( j)2n − A)/(B( j)

n − A) = 1. Finally, we see that the θ -algorithm
accelerates the convergence of all three types of sequences in Theorem 20.2.3.
We now turn to the stability of the θ-algorithm. We first note that, by (20.2.3), θ ( j)2n+2

can be expressed as in

θ
( j)
2n+2 = λ( j)n θ

( j+1)
2n + µ( j)

n θ
( j+2)
2n ,

λ( j)n = − �θ
( j)
2n+1

�2θ
( j)
2n+1

and µ( j)
n = �θ

( j+1)
2n+1

�2θ
( j)
2n+1

. (20.2.7)

Starting from (20.2.7), by θ ( j)0 = A j , j = 0, 1, . . . , and by the fact that λ( j)n + µ
( j)
n = 1,

we can easily see by induction on n that

θ
( j)
2n =

n∑

i=0
γ
( j)
ni A j+n+i ;

n∑

i=0
γ
( j)
ni = 1, (20.2.8)

and that the γ ( j)
ni satisfy the recursion relation

γ
( j)
n+1,i = λ( j)n γ

( j+1)
ni + µ( j)

n γ
( j+2)
n,i−1 , i = 0, 1, . . . , n + 1, (20.2.9)

where we have defined γ ( j)
n,−1 = γ

( j)
n,n+1 = 0. Next, let us define the polynomials P ( j)

n (z) =
∑n

i=0 γ
( j)
ni zi . It is easy to see from (20.2.9) that the P ( j)

n (z) satisfy the recursion

P ( j)
n+1(z) = λ( j)n P ( j+1)

n (z)+ µ( j)
n zP ( j+2)

n (z). (20.2.10)

Then we have the following theorem on the stability of the θ-algorithm.

Theorem 20.2.4 Let us assume that the sequence {Am} is exactly as in Theorem 20.2.3.

(i) If {Am} ∈ b(1)/LOG, then

P ( j)
n (z) ∼

(n−1∏

k=0
γk

)−1
(1− z)n jn and �( j)

n ∼
∣
∣
∣
∣

n−1∏

k=0
γk

∣
∣
∣
∣

−1
(2 j)n as j →∞.

(20.2.11)

(ii) If {Am} ∈ b(1)/LIN, then

lim
j→∞

P ( j)
n (z) =

(
z − ζ

1− ζ

)n

and lim
j→∞

�( j)
n =

(
1+ |ζ |
|1− ζ |

)n

. (20.2.12)

(Of course, when ζ = −1, �( j)
n ∼ 1 as j →∞.)

(iii) If {Am} ∈ b(1)/FAC, then

lim
j→∞

P ( j)
n (z) = zn and lim

j→∞
�( j)

n = 1. (20.2.13)
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The proof of this theorem can be achieved by first noting that (i) λ( j)n ∼ j/γn and
µ
( j)
n ∼ − j/γn as j →∞, n ≥ 0, in part (i), (ii) λ( j)n ∼ ζ/(ζ − 1) andµ( j)

n ∼ −1/(ζ − 1)
as j →∞, n ≥ 0, in part (ii), and (iii) λ( j)n = o(1) and µ( j)

n ∼ 1 as j →∞, n ≥ 0, in
part (iii). All these follow from Theorem 20.2.3. Next, we combine these with (20.2.9)
and (20.2.10) and use induction on n. We leave the details to the reader.
Again, note the similarity of Theorem 20.2.4 on the stability of the θ -algorithm with

Theorem 15.5.2 on the stability of the iterated Lubkin transformation.
In view of the results of Theorem 20.2.4, we conclude that the θ -algorithm is stable

on linear and factorial sequences but not on logarithmic sequences. The remarks we
made in Section 15.6 about the effective use of the iterated Lubkin transformation in
finite-precision arithmetic are valid for the θ -algorithm without any modifications. In
particular, good accuracy can be achieved on logarithmic sequences by increasing the
precision of the arithmetic used. Good accuracy is possible on logarithmic sequences
when |!γ | is sufficiently large, even though sup j �

( j)
n = ∞. As for linear sequences, in

case ζ is very close to 1, �( j)
n is large, even though sup j �

( j)
n <∞. In this case, it is best

to use arithmetic progression sampling (APS), that is, we should apply the θ -algorithm
to a subsequence {Aκm+η}, where κ and η are fixed integers with κ ≥ 2. For more details,
we refer the reader to Section 15.6.

20.2.2 A Further Convergence Result

We have shown that the θ -algorithm accelerates the convergence of sequences {Am} for
which {�Am} ∈ b(1). In case {�Am} ∈ b(m) with m > 1, however, the θ-algorithm is
ineffective in general. It is effective in case Am satisfies (20.1.8). For this application,
Van Tuyl [343] provides the following convergence acceleration result.

Theorem 20.2.5 With Am as in (20.1.8), apply the θ -algorithm to {Am}. Then there exist
scalars γk such that γ0 = γ and (γk − γk−1)p is an integer ≤ −1, k = 1, 2, . . . , for
which

θ
( j)
2n − A ∼

∞∑

i=0
wni j

γn−i/p as j →∞, wn0 �= 0,

θ
( j)
2n+1 ∼

∞∑

i=0
hni j

−γn−i/p+1 as j →∞, hn0 = 1/(γnwn0) �= 0.

The proof of this theorem can be carried out as that of Theorem 20.2.3, and it is left
to the reader.



21
The G-Transformation and Its Generalizations

21.1 The G-Transformation

The G-transformation was designed by Gray and Atchison [110] for the purpose of
evaluating infinite integrals of the form

∫∞
a f (t) dt . It was later generalized in different

ways in [12] and [111], the ultimate generalization being given by Gray, Atchison,
and McWilliams [112]. The way it is defined by Gray and Atchison [110], the G-
transformation produces an approximation to I [ f ] that is of the form

G(x ; h) = F(x + h)− R(x, h)F(x)

1− R(x, h)
, (21.1.1)

where

F(x) =
∫ x

a
f (t) dt and R(x, h) = f (x + h)/ f (x). (21.1.2)

It is easy to see that G(x ; h) can also be expressed in the form

G(x ; h) =

∣
∣
∣
∣
F(x) F(x + h)
f (x) f (x + h)

∣
∣
∣
∣

∣
∣
∣
∣

1 1
f (x) f (x + h)

∣
∣
∣
∣

, (21.1.3)

and hence is the solution of the linear system

F(x) = G(x ; h)+ α f (x)

F(x + h) = G(x ; h)+ α f (x + h) (21.1.4)

Thus, the G-transformation is simply the D(1)-transformation with ρ0 = 0 in Defini-
tion 5.2.1. By Theorem 5.7.3, we see that it will be effective on functions f (x) that vary
exponentially as x →∞, and that it will be ineffective on those f (x) that vary like some
power of x at infinity. This is the subject of the following theorem.

Theorem 21.1.1

(i) If the function f (x) is of the form f (x) = ecx H (x) with c �= 0 and �c ≤ 0 and
H ∈ A(γ ) for arbitrary γ , then, with h fixed such that ech �= 1, there holds

G(x ; h)− I [ f ]

F(x)− I [ f ]
= O(x−2) as x →∞.

384
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(ii) If the function f (x) is of the form f (x) = H (x) with H ∈A(γ ) for some γ �=
−1, 0, 1, 2, . . . , then

G(x ; h)− I [ f ]

F(x)− I [ f ]
= O(1) as x →∞.

Proof. We start with the error formula

G(x ; h)− I [ f ] =

∣
∣
∣
∣
F(x)− I [ f ] F(x + h)− I [ f ]

f (x) f (x + h)

∣
∣
∣
∣

∣
∣
∣
∣

1 1
f (x) f (x + h)

∣
∣
∣
∣

,

From Theorem 5.7.3, we then have

G(x ; h)− I [ f ] =

∣
∣
∣
∣
xρ f (x)g(x) (x + h)ρ f (x + h)g(x + h)

f (x) f (x + h)

∣
∣
∣
∣

∣
∣
∣
∣

1 1
f (x) f (x + h)

∣
∣
∣
∣

,

with ρ = 0 in part (i) and ρ = 1 in part (ii) and g(x) ∈ A(0). The results follow from a
simple analysis of the right-hand side of this equality as x →∞. �

Let us define the kernel of the G-transformation to be the collection of all functions
f (x) ∈ C∞[a,∞) such that G(x ; h) = I [ f ] for all x and h. It is easy to show that f (x)
is in this kernel if f (x) = ecx with c �= 0 and

∫∞
a f (t) dt is defined in the sense of Abel

summability. (This implies that �c ≤ 0 must hold.)

21.2 The Higher-Order G-Transformation

The higher-order G-transformation of Gray, Atchison, and McWilliams [112] is ob-
tained by generalizing the determinantal representation of the G-transformation as
follows:

Gn(x ; h) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

F(x) F(x + h) · · · F(x + nh)
f (x) f (x + h) · · · f (x + nh)
...

...
...

f (x + (n − 1)h) f (x + nh) · · · f (x + (2n − 1)h)

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1
f (x) f (x + h) · · · f (x + nh)
...

...
...

f (x + (n − 1)h) f (x + nh) · · · f (x + (2n − 1)h)

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (21.2.1)
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As such, Gn(x ; h) is also the solution of the linear system

F(x + ih) = Gn(x ; h)+
n∑

k=1
ᾱk f (x + (i + k − 1)h), i = 0, 1, . . . , n, (21.2.2)

where ᾱk are additional unknowns. This fact was noted and exploited in the computation
of Gn(x ; h) by Levin and Sidi [165].

Let us define the kernel of the higher-order G-transformation to be the collection of
all functions f (x) ∈ C∞[a,∞) such that Gn(x ; h) = I [ f ] for all x and h and for some
appropriate n. It has been shown in [112] that f (x) is in this kernel if it is integrable
at infinity in the sense of Abel and satisfies a linear homogeneous ordinary differential
equation with constant coefficients. Thus, f (x) is in this kernel if it is of the form f (x) =∑r

k=1 Pk(x)eck x , where ck �= 0 are distinct and �ck ≤ 0, and Pk(x) are polynomials. If
pk is the degree of Pk(x) for each k, and if

∑r
k=1(pk + 1) = n, then Gn(x ; h) = I [ f ]

for all x and h. On the basis of this result, Levin and Sidi [165] concluded that the
higher-order G-transformation is effective on functions of the form

∑s
k=1 e

ck xhk(x),
where hk(x) ∈ A(γk ) with arbitrary γk .
We end this section by mentioning that the papers of Gray, Atchison, andMcWilliams

[112] and Levin [161] have been an important source of inspiration for the D- and
d-transformations.

21.3 Algorithms for the Higher-Order G-Transformation

The first effective algorithm for implementing the higher-order G-transformation was
given by Pye and Atchison [233]. Actually, these authors consider the more general
problem in which one would like to compute the quantities A( j)

n defined via the linear
equations

Al = A( j)
n +

n∑

k=1
ᾱkuk+l−1, l = j, j + 1, . . . , j + n, (21.3.1)

where the Ai and ui are known scalars, and the ᾱk are not necessarily known. Before
proceeding further, we note that these equations are the same as those in (3.7.1) with
gk(l) = uk+l−1, l = 0, 1, . . . . This suggests that the E- and FS-algorithms of Chapter 3
can be used for computing the A( j)

n . Of course, direct application of these algorithms
without taking into account the special nature of the gk(l) is very uneconomical. By
taking the nature of the gk(l) into consideration, fast algorithms for the A( j)

n can be
derived. Here we consider two such algorithms: (i) that of Pye and Atchison [233] that
has been denoted the rs-algorithm and (ii) the FS/qd-algorithm of the author that is new.

21.3.1 The rs-Algorithm

The rs-algorithm computes the A( j)
n with the help of two sets of auxiliary quantities, r ( j)n

and s( j)n . These quantities are defined by

r ( j)n = H ( j)
n

K ( j)
n

, s( j)n = K ( j)
n+1

H ( j)
n

, (21.3.2)
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where H ( j)
n , the Hankel determinant H ( j)

n ({us}) associated with {us}, and K ( j)
n are given

as in

H ( j)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

u j u j+1 · · · u j+n−1
u j+1 u j+2 · · · u j+n
...

...
...

u j+n−1 u j+n · · · u j+2n−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (21.3.3)

and

K ( j)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1
u j u j+1 · · · u j+n−1

u j+1 u j+2 · · · u j+n
...

...
...

u j+n−2 u j+n−1 · · · u j+2n−3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (21.3.4)

The rs-algorithm computes the A( j)
n , r ( j)n , and s( j)n simultaneously by efficient recursions

as follows:

Algorithm 21.3.1 (rs-algorithm)

1. For j = 0, 1, . . . , set

s( j)0 = 1, r ( j)1 = u j , A( j)
0 = A j , j = 0, 1, . . . .

2. For j = 0, 1, . . . , and n = 1, 2, . . . , compute recursively

s( j)n = s( j+1)n−1

(
r ( j+1)n

r ( j)n

− 1

)

, r ( j)n+1 = r ( j+1)n

(
s( j+1)n

s( j)n

− 1

)

.

3. For j = 0, 1, . . . , and n = 1, 2, . . . , set

A( j)
n = r ( j)n A( j+1)

n−1 − r ( j+1)n A( j)
n−1

r ( j)n − r ( j+1)n

.

We now realize that r ( j)n = (−1)n−1χ ( j)
n−1(gn) in the notation of the E-algorithm of

Chapter 3. Thus, the rs-algorithm is simply the E-algorithm in which the χ ( j)
n−1(gn),

whose determination forms the most expensive part of the E-algorithm, are com-
puted by a fast recursion. For this point and others, see Brezinski and Redivo Zaglia
[41, Section 2.4].

21.3.2 The FS/qd-Algorithm

In view of the close connection between the rs- and E-algorithms, it is natural to inves-
tigate the possibility of designing another algorithm that is related to the FS-algorithm.
This is worth the effort, as the FS-algorithm is more economical than the E-algorithm to
begin with. We recall that the most expensive part of the FS-algorithm is the determina-
tion of the D( j)

n , and we would like to reduce its cost. Fortunately, this can be achieved
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once we realize that, with G( j)
n defined as in (3.3.4), we have G( j)

n = H ( j)
n in the present

case, where H ( j)
n is as defined in (21.3.3). From this, (3.3.9), and (17.6.20), we obtain

the surprising result that

D( j)
n = H ( j)

n+1H
( j+1)
n−1

H ( j)
n H ( j+1)

n

= e( j)n . (21.3.5)

Here, e( j)n is a quantity computed by the qd-algorithm (Algorithm 17.6.2) of Chapter 17,
along with the quantities q ( j)

n given as in

q ( j)
n = H ( j)

n−1H
( j+1)
n

H ( j)
n H ( j+1)

n−1
. (21.3.6)

This observation enables us to combine the FS- and qd-algorithms to obtain the
following economical implementation, the FS/qd-algorithm, for the higher-order G-
transformation. This has been done recently by Sidi [303]. For simplicity of notation,
we let ψ ( j)

n (a) = M ( j)
n and ψ ( j)

n (I ) = N ( j)
n in the FS-algorithm, as we did with the W-

algorithm.

Algorithm 21.3.2 (FS/qd-algorithm)

1. For j = 0, 1, . . . , set

e( j)0 = 0, q ( j)
1 = u j+1

u j
, M ( j)

0 = A j

u j
, N ( j)

0 = 1

u j
.

2. For j = 0, 1, . . . , and n = 1, 2, . . . , compute recursively

e( j)n = q ( j+1)
n − q ( j)

n + e( j+1)n−1 , q ( j)
n+1 =

e( j+1)n

e( j)n

q ( j+1)
n ,

M ( j)
n = M ( j+1)

n−1 − M ( j)
n−1

e( j)n

, N ( j)
n = N ( j+1)

n−1 − N ( j)
n−1

e( j)n

.

3. For j, n = 0, 1, . . . , set

A( j)
n = M ( j)

n

N ( j)
n

.

We recall that the e( j)n and q ( j)
n are ordered as in Table 17.6.3 (the qd-table) and this

table can be computed columnwise in the order {e( j)1 }, {q ( j)
2 }, {e( j)2 }, {q ( j)

3 }, . . . .
When A0, A1, . . . , AL , and u0, u1, . . . , u2L−1 are given, we can determine A( j)

n for
0 ≤ j + n ≤ L . Algorithm 21.3.2 will compute all these except A(0)

L , because A(0)
L =

M (0)
L /N (0)

L , and M (0)
L and N (0)

L require e(0)L , which in turn requires u2L . To avoid this, we
act exactly as in (3.3.13). That is, we do not compute e(0)L , but we compute all the A(0)

n

(including A(0)
L ) by

A(0)
n = M (1)

n−1 − M (0)
n−1

N (1)
n−1 − N (0)

n−1
. (21.3.7)
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Table 21.3.1: Operation counts of the rs- and FS/qd-algorithms

Algorithm No. of Multiplications No. of Additions No. of Divisions

FS/qd L2 + O(L) 3L2 + O(L) 5L2/2+ O(L)
rs 3L2 + O(L) 3L2 + O(L) 5L2/2+ O(L)

21.3.3 Operation Counts of the rs- and FS/qd-Algorithms

Let us now compare the operation counts of the two algorithms. First, we note that the
r ( j)n and s( j)n can be arranged in a table similar to the qd-table of the e( j)n and q ( j)

n . Thus,
given A0, A1, . . . , AL , and u0, u1, . . . , u2L−1, we can compute A( j)

n for 0 ≤ j + n ≤ L .
Now, the number of the e( j)n in the relevant qd-table is L2 + O(L) and so is that of the
q ( j)
n . A similar statement can be made about the r ( j)n and s( j)n . The number of the A( j)

n is
L2/2+ O(L), and so are the numbers of the M ( j)

n and the N ( j)
n . Consequently, we have

the operation counts given in Table 21.3.1.
In case only the A(0)

n are needed (as they have the best convergence properties), the
number of divisions in the FS/qd-algorithm can be reduced from 5L2/2+ O(L) to
2L2 + O(L). In any case, we see that the operation count of the rs-algorithm is about
30% more than that of the FS/qd-algorithm.
Finally, we observe that, with the substitution uk = �Ak , the higher-order G-

transformation reduces to the Shanks transformation, whichwas discussed inChapter 16.
Actually, A( j)

n = en(A j ) by Definition 16.1.1 in this case. Thus, the rs- and FS/qd-
algorithms can be used for computing the en(A j ). Of course, the best-known algorithm
for implementing the Shanks transformation is the ε-algorithm, which was given again
in Chapter 16 as Algorithm 16.2.1. Given A0, A1, . . . , A2L , the ε-algorithm computes
ε
( j)
2n for 0 ≤ j + 2n ≤ 2L , and the diagonal approximants ε(0)2n for 0 ≤ n ≤ L , at a cost
of 4L2 + O(L) additions, 2L2 + O(L) divisions, and no multiplications. Comparing
this with the counts in Table 21.3.1, we see that the FS/qd-algorithm, when applied
with uk = �Ak , computes the ε(0)2n for 0 ≤ n ≤ L , at a cost of 3L2 + O(L) additions,
L2 + O(L) multiplications, and 2L2 + O(L) divisions; thus it compares very favorably
with the ε-algorithm.
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The Transformations of Overholt and Wimp

22.1 The Transformation of Overholt

In Chapter 15, we gave a detailed discussion of the Aitken �2-process. There we saw
that one of the uses of this method is in accelerating the convergence of fixed-point
iterative procedures for the solution of nonlinear equations. In this chapter, we come
back to this problem again and discuss two extensions of the�2-process within the same
context.
Recall that, in the iterative solution of a nonlinear equation x = ϕ(x), we begin with an

arbitrary approximation x0 to the solution s and generate the sequence of approximations
{xm} via xm+1 = ϕ(xm). It is known that, provided 0 < |ϕ′(s)| < 1 and x0 is sufficiently
close to s, the sequence {xm} converges to s linearly in the sense that limm→∞(xm+1 − s)/
(xm − s) = ϕ′(s), and that, provided ϕ(x) is infinitely differentiable in a neighborhood
of s, xm has an asymptotic expansion of the form

xm ∼ s +
∞∑

k=1
αkµ

km as m →∞, α1 �= 0, µ = ϕ′(s), (22.1.1)

for some αk that depend only on ϕ and x0. Now, if µ were known, we could use the
Richardson extrapolation process for infinite sequences (see Section 1.9) and approxi-
mate s via the z( j)n that are given by

z( j)0 = x j , j = 0, 1, . . . ,

z( j)n = z( j+1)n−1 − µnz( j)n−1
1− µn

, j = 0, 1, . . . , n = 1, 2, . . . . (22.1.2)

Since we do not know µ, let us replace it by some suitable approximation. Now µ can
be approximated in terms of the �xm in different ways. By (22.1.1), we have that

�xm ∼
∞∑

k=1
αk(µ

k − 1)µkm as m →∞. (22.1.3)

From this and from the fact that α1 �= 0, we see that limm→∞�xm+1/�xm = µ. On
the basis of this, we choose to approximate µn in (22.1.2) by (�x j+n/�x j+n−1)n . This

390
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results in the method of Overholt [227], the first extension of the �2-process:

x ( j)0 = x j , j = 0, 1, . . . ,

x ( j)n = (�x j+n−1)nx
( j+1)
n−1 − (�x j+n)nx

( j)
n−1

(�x j+n−1)n − (�x j+n)n
, j = 0, 1, . . . , n = 1, 2, . . . . (22.1.4)

A variant of Overholt’s method was given by Meinardus [210]. This time, µn in
(22.1.2) is approximated by (�x j+1/�x j )n . This results in the following method:

x ( j)0 = x j , j = 0, 1, . . . ,

x ( j)n = (�x j )nx
( j+1)
n−1 − (�x j+1)nx

( j)
n−1

(�x j )n − (�x j+1)n
, j = 0, 1, . . . , n = 1, 2, . . . . (22.1.5)

Note that both methods are quasi-linear. Obviously, they can be applied to arbitrary
sequences {Am}, provided we replace the xm by the corresponding Am and the x ( j)n

by A( j)
n .

Finally, if we let n = 1 in (22.1.4) and (22.1.5), we obtain x ( j)1 = φ j ({xs})withφ j ({xs})
as defined in (15.3.1). That is, {x ( j)1 } is the sequence generated by the �2-process
on {xm}.

22.2 The Transformation of Wimp

Let ϕ(x), s, {xm}, and µ be as in the preceding section. Starting with (22.1.3), let us
note that, by the fact that |µ| < 1, there holds (�xm)k ∼

∑∞
i=0 ckiµ

(k+i)m as m →∞,
ck0 = [α1(µ− 1)]k �= 0, so that (�xm)k ∼ ck0µkm as m →∞. From this, we conclude
that (i) {(�xm)k}∞k=1 is an asymptotic scale asm →∞, and (ii) we can reexpress (22.1.1)
in the form

xm ∼ s +
∞∑

k=1
βk(�xm)

k as m →∞, β1 = 1/(µ− 1). (22.2.1)

Here βk is uniquely determined by α1, . . . , αk for each k. On the basis of (22.2.1), it is
easy to see that we can apply the polynomial Richardson extrapolation to the sequence
{xm}. This results in the following scheme that was first presented byWimp in [361] and
rediscovered later by Germain-Bonne [96]:

x ( j)0 = x j , j = 0, 1, . . . ,

x ( j)n = (�x j )x
( j+1)
n−1 − (�x j+n)x

( j)
n−1

�x j −�x j+n
, j = 0, 1, . . . , n = 1, 2, . . . . (22.2.2)

Note that Wimp’s method can also be obtained by approximating µn in (22.1.2) by
�x j+n/�x j .
In addition to these developments, Wimp’s method also has its basis in the solution

of the nonlinear equation f (x) = ϕ(x)− x = 0 by inverse interpolation. This is also
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discussed in the book byWimp [366, pp. 73–75, pp. 105–112]. For the subject of inverse
interpolation, see, for example, Ralston and Rabinowitz [235]. Assuming that the inverse
function x = h(y) ≡ f −1(y) exists in a neighborhood of y = 0, we have that h(0) = s.
Let us denote by qn, j (y) the polynomial of interpolation of degree at most n to h(y) at the
points y j , y j+1, . . . , y j+n in this neighborhood. From the Neville–Aitken interpolation
formula, we thus have

qn, j (y) = (y − y j )qn−1, j+1(y)− (y − y j+n)qn−1, j (y)
y j+n − y j

.

Letting y = 0 in this formula and defining x ( j)n = qn, j (0), we obtain

x ( j)n = y j x
( j+1)
n−1 − y j+nx

( j)
n−1

y j − y j+n
. (22.2.3)

Now, if the yi are sufficiently close to 0, we will have qn, j (0) ≈ h(0) = s. In other words,
the x ( j)n will be approximations to s. What remains is to choose the yi appropriately.
With the sequence {xm} generated by xi+1 = ϕ(xi ), i = 0, 1, . . . , let us take yi = f (xi ),
i = 0, 1, . . . . Thus, yi = xi+1 − xi = �xi for each i . [Furthermore, because {xm} con-
verges to s when x0 is sufficiently close to s, we have that limi→∞ yi = 0.] Combining
this with (22.2.3), we obtain the method given in (22.2.2).
Note that, just like themethods ofOverholt andMeinardus, themethod ofWimp is also

quasi-linear. It can also be applied to arbitrary sequences {Am}with proper substitutions
in (22.2.2).
In addition, the kernel of the method of Wimp is the set of all sequences {Am} for

which

Am = A +
n∑

k=1
βk(�Am)

k, m = 0, 1, . . . .

Finally, if we let n = 1 in (22.2.2), we obtain x ( j)1 = φ j ({xs}) with φ j ({xs}) as defined
in (15.3.1). That is, {x ( j)1 } is the sequence generated by the �2-process on {xm}.

22.3 Convergence and Stability

Because of theway they are derived,we expect themethodswe discussed in the preceding
two sections to be effective on sequences {Am} that satisfy

Am ∼ A +
∞∑

k=1
αkµ

km as m →∞; α1 �= 0, |µ| < 1. (22.3.1)

Therefore, we are going to investigate the convergence and stability of these methods on
such sequences.

22.3.1 Analysis of Overholt’s Method

We start with the following lemma.
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Lemma 22.3.1 Let r be a positive integer, µ a complex scalar, |µ| < 1, and let {Bm}
and {Cm} be such that

Bm ∼
∞∑

i=0
biµ

(r+i)m as m →∞,

Cm ∼
∞∑

i=0
ciµ

(r+i)m as m →∞; c0 �= 0.

Then

B̂m ≡ BmCm+1 − Bm+1Cm

Cm+1 − Cm
∼

∞∑

i=0
b̂iµ

(r+i+1)m as m →∞, (22.3.2)

where

b̂0 = b0c1 − b1c0
c0

µr (µ− 1)

µr − 1
.

In case b0c1 − b1c0 �= 0, we have b̂0 �= 0 and hence B̂m ∼ b̂0µ(r+1)m asm →∞. In case
bi = 0, 0 ≤ i ≤ p − 1, bp �= 0, for some integer p > 0, we have b̂i = 0, 0 ≤ i ≤ p − 1,
b̂ p �= 0 and hence B̂m ∼ b̂ pµ

(r+p)m as m →∞. In any case, we have B̂m = O(µ(r+1)m)
as m →∞.

Proof. We first observe that

B̂m =

∣
∣
∣
∣
Bm Bm+1
Cm Cm+1

∣
∣
∣
∣

�Cm
≡ Xm

Ym
.

Now, Ym ∼
∑∞

i=0 ci (µ
r+i − 1)µ(r+i)m as m →∞, and because c0 �= 0 and |µ| < 1, we

also have that Ym ∼ c0(µr − 1)µrm as m →∞. Next, applying Lemma 16.4.1 to the
determinant Xm , we obtain

Xm ∼
∞∑

0≤i< j

∣
∣
∣
∣
bi b j

ci c j

∣
∣
∣
∣ (µ

j − µi )µrµ(2r+i+ j)m as m →∞.

The result in (22.3.2) follows by combining the two asymptotic expansions. We leave
the rest of the proof to the reader. �

Using Lemma 22.3.1 and induction on n, we can prove the following theorem on
the convergence of the column sequences {A( j)

n }∞j=0 in the methods of Overholt and of
Meinardus.

Theorem 22.3.2 Let the sequence {Am} satisfy (22.3.1). Let A( j)
n be as in (22.1.4) or

(22.1.5). Then

A( j)
n − A ∼

∞∑

i=0
aniµ

(n+i+1) j as j →∞. (22.3.3)

Thus, A( j)
n − A = O(µ(n+1) j ) as j →∞.



394 22 The Transformations of Overholt and Wimp

As for stability of column sequences, we proceed exactly as in Section 15.5 on the
iterated �2-process. We first write

A( j)
n+1 = λ( j)n A( j)

n + µ( j)
n A( j+1)

n , (22.3.4)

where

λ( j)n = − σ
( j)
n

1− σ
( j)
n

and µ( j)
n = 1

1− σ
( j)
n

, (22.3.5)

where σ
( j)
n = (�A j+n+1/�A j+n)n+1 for Overholt’s method and σ

( j)
n = (�A j+1/

�A j )n+1 for Meinardus’s method. Consequently, we can write

A( j)
n =

n∑

i=0
γ
( j)
ni A j+i ;

n∑

i=0
γ
( j)
ni = 1, (22.3.6)

where the γ ( j)
ni satisfy the recursion relation

γ
( j)
n+1,i = λ( j)n γ

( j)
ni + µ( j)

n γ
( j+1)
n,i−1 , i = 0, 1, . . . , n + 1. (22.3.7)

Here, we define γ ( j)
ni = 0 for i < 0 and i > n. As we did before, let us define

P ( j)
n (z) =

n∑

i=0
γ
( j)
ni zi and �( j)

n =
n∑

i=0
|γ ( j)

ni |. (22.3.8)

From the fact that lim j→∞ σ
( j)
n = µn+1, we reach the following result on stability of

column sequences.

Theorem 22.3.3 Let {Am} and A( j)
n be as in Theorem 22.3.2, and let P ( j)

n (z) and �( j)
n be

as in (22.3.8). Then

lim
j→∞

P ( j)
n (z) =

n∏

i=1

z − µi

1− µi
≡

n∑

i=0
ρni z

i and

lim
j→∞

�( j)
n (z) =

n∑

i=0
|ρni | ≤

n∏

i=1

1+ |µ|i
|1− µi | . (22.3.9)

Therefore, the column sequences are stable. Equality holds in (22.3.9) when µ is real
positive.

22.3.2 Analysis of Wimp’s Method

It is easy to show that the A( j)
n from the method of Wimp satisfy Theorems 22.3.2 and

22.3.3. In these theorems, we now have σ ( j)
n = �A j+n+1/�A j and lim j→∞ σ

( j)
n = µn+1

again.
These results can be obtained by observing that the method of Wimp is also what

we denoted in Chapter 3, a first generalization of the Richardson extrapolation process,
for which we now have gk(l) = (�Al)k , l = 0, 1, . . . , and k = 1, 2, . . . .We also have
lim j→∞ gk(l + 1)/gk(l) = µk for all k ≥ 1. Thus, Theorems 3.5.3–3.5.6 of Chapter 3
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concerning the column sequences {A( j)
n }∞j=0 all hold with ck = µk , k = 1, 2, . . . , there.

Concerning the convergence of column sequences, we have the result

A( j)
n − A ∼ βn+r

( n∏

i=1

µn+r − µi

1− µi

)

(�A j )
n+r as j →∞,

= O(µ(n+r ) j ) as j →∞, (22.3.10)

where r is that integer for which βn+r is the first nonzero βk with k ≥ n + 1 in the
asymptotic expansion

Am ∼ A +
∞∑

k=1
βk(�Am)

k as m →∞, β1 = α1/(µ− 1). (22.3.11)

We recall that this asymptotic expansion follows from (22.3.1).
In this case, we can also give a thorough analysis of diagonal sequences {A( j)

n }∞n=0
since the yl = �Al satisfy liml→∞(yl+1/yl) = µ. These results can be obtained from
Chapter 8. For example, in case µ is real positive, for any ε > 0 such that µ+ ε < 1,
there exists an integer J , such that yl+1/yl ≤ µ+ ε < 1 for all l ≥ J . Then, with j ≥ J ,
{A( j)

n }∞n=0 is stable and converges to A, by Theorems 8.6.1 and 8.6.4.
We can also give a different convergence theory for Wimp’s method on the diagonal

sequences {x ( j)n }∞n=0 obtained from the fixed-point iteration sequence {xm}∞n=0 that is
based on the error formula

x ( j)n − s = (−1)nh[0, y j , y j+1, . . . , y j+n]
n∏

i=0
y j+i ; yl = �xl , l = 0, 1, . . . ,

derived in Chapter 2. In case maxy∈I |h(n)(y)| = O(eσn
τ

) as n →∞ for some σ > 0 and
τ < 2, where I is some interval containing all of the yl , we have that x

( j)
n − s = O(e−κn

2
)

as n →∞ for some κ > 0.
In [366, p. 110], the transformations of Wimp and of Overholt are applied to two

sequences {xm} from two different fixed-point iteration functions for some polynomial
equation f (x) = 0.One of these sequences converges to the solution s of f (x) = 0,while
the other diverges and has two limit points different from s. Numerical results indicate
that both methods perform equally well on the convergent sequence, in the sense that
both the columns and diagonals of their corresponding tables converge. The method of
Overholt diverges (or it is unstable at best) on the divergent sequence along columns
and/or diagonals, whereas the method of Wimp appears to converge along diagonals to
the solution s of the equation, although it too suffers from instability ultimately.
For comparison purposes, we have also applied the Shanks transformation to the

same sequences. It appears that the Shanks transformation performs similarly to the
methods of Wimp and of Overholt but is inferior to them. In connection with the Shanks
transformation on {xm} as in (22.1.1), we recall that column sequences converge. In fact,
there holds ε( j)2n − s = O(µ(n+1) j ) as j →∞, just as is the case for the methods of this
chapter.



23
Confluent Transformations

23.1 Confluent Forms of Extrapolation Processes

23.1.1 Derivation of Confluent Forms

In Chapters 1–4, we were concerned with extrapolation methods on functions A(y) that
were assumed to be known (or computable) for y �= 0. All these processes made use of
A(yl) for a decreasing sequence {yl}. Of course, these yl are distinct. In this chapter, we
are concerned with what happens to the extrapolation processes when the functions A(y)
are differentiable as many times as needed and the yl coalesce. To understand the subject
in a simple way, we choose to study it through the first generalization of the Richardson
extrapolation process of Chapter 3.
Recall that we assume

A(y) ∼ A +
∞∑

k=1
αkφk(y) as y → 0+, (23.1.1)

where A and the αk are some scalars independent of y and {φk(y)} is an asymptotic
sequence as y → 0+; that is, it satisfies

φk+1(y) = o(φk(y)) as y → 0+, k = 1, 2, . . . . (23.1.2)

Here we are interested in A, the limit or antilimit of A(y) as y → 0+. Recall also that
A( j)

n , the approximation to A, is defined via the linear system

A(yl) = A( j)
n +

n∑

k=1
ᾱkφk(yl), j ≤ l ≤ j + n, (23.1.3)

ᾱ1, . . . , ᾱn being the additional (auxiliary) unknowns, with y0 > y1 > · · · , and
liml→∞ yl = 0. Using Cramer’s rule, we can express A( j)

n in the determinantal form
given in (3.2.1). We reproduce (3.2.1) here explicitly in terms of the functions

396
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φk(y):

A( j)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1(y j ) · · · φn(y j ) A(y j )
φ1(y j+1) · · · φn(y j+1) A(y j+1)

...
...

...
φ1(y j+n) · · · φn(y j+n) A(y j+n)

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1(y j ) · · · φn(y j ) 1
φ1(y j+1) · · · φn(y j+1) 1

...
...

...
φ1(y j+n) · · · φn(y j+n) 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (23.1.4)

By performing elementary row transformations on both determinants in (23.1.4), we
obtain

A( j)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1(y j ) · · · φn(y j ) A(y j )
D( j)

1 {φ1(y)} · · · D( j)
1 {φn(y)} D( j)

1 {A(y)}
...

...
...

D( j)
n {φ1(y)} · · · D( j)

n {φn(y)} D( j)
n {A(y)}

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1(y j ) · · · φn(y j ) 1
D( j)

1 {φ1(y)} · · · D( j)
1 {φn(y)} 0

...
...

...
D( j)

n {φ1(y)} · · · D( j)
n {φn(y)} 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (23.1.5)

where D(s)
k {g(y)} stands for g[ys, ys+1, . . . , ys+k], the divided difference of g(y) over the

set of points {ys, ys+1, . . . , ys+k}. Let us now assume that A(y) and the φk(y) are all dif-
ferentiable functions of y, and let all yl tend to the samevalue, say ȳ, simultaneously. Then
D(s)

k {A(y)} → A(k)(ȳ)/k!, provided A(y) ∈ Ck(I ), where I is an interval containing ȳ;
similarly, for the φk(y). Consequently, the limits of the determinants in the numerator
and the denominator of (23.1.5), and hence the limit of A( j)

n , all exist. We summarize
this discussion in the following theorem, where we also replace ȳ by y for simplicity.

Theorem 23.1.1 Let A( j)
n be defined via (23.1.3). If A(y) and the φk(y) are n times

differentiable in y for y in some right neighborhood of 0, then the limit of A( j)
n as yl → y,

j ≤ l ≤ j + n, exists. Denoting this limit by Qn(y), we have Qn(y) = !n[A(y)], where

!n[ f (y)] ≡

∣
∣
∣
∣
∣
∣
∣
∣
∣

f (y) φ1(y) · · · φn(y)
f ′(y) φ′1(y) · · · φ′n(y)
...

...
...

f (n)(y) φ(n)
1 (y) · · · φ(n)

n (y)

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

φ′1(y) · · · φ′n(y)
...

...
φ
(n)
1 (y) · · · φ(n)

n (y)

∣
∣
∣
∣
∣
∣
∣

. (23.1.6)
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We call this method that generates the Qn(y) the first confluent form of the first
generalization of the Richardson extrapolation process. It is easy to verify that Qn(y) is
also the solution of the linear system

A(y) = Qn(y)+
n∑

k=1
ᾱkφk(y),

A(i)(y) =
n∑

k=1
ᾱkφ

(i)
k (y), i = 1, . . . , n, (23.1.7)

where the ᾱk are the additional (auxiliary) unknowns. Note that this linear system is
obtained by differentiating the asymptotic expansion in (23.1.1) formally term by term
i times, truncating the summation at the term αnφn(y), replacing ∼ by =, A by Qn(y),
and the αk by ᾱk , and setting i = 0, 1, . . . , n.
The recursive algorithms of Chapter 3 can be used to obtain Qn(y) of (23.1.6),

once we realize that the equations in (23.1.7) can be rewritten in the form
a(l) = A(0)

n +∑n
k=1 ᾱkgk(l), l = 0, 1, . . . , n,with a(l) =∑l

s=0
( l
s

)
A(s)(y) and gk(l) =∑l

s=0
( l
s

)
φ
(s)
k (y) and A(0)

n = Qn(y). See Brezinski and Redivo Zaglia [41, p. 267]. Of
course, the most direct way to compute Qn(y) is by solving the last n of the equa-
tions in (23.1.7) numerically for the ᾱk and substituting these in the first equation.

Note that, for computing Qn(y) = !n[A(y)], we need A(y) and its derivatives
of order 1, . . . , n. In addition, the quality of Qn(y) improves with increasing n.
Therefore, to obtain high accuracy by the first confluent form, we need to compute
a large number of derivatives of A(y). Consequently, the first confluent form can be of
practical value provided the high-order derivatives of A(y) can be obtained relatively
easily.
We now propose another method that requires A(y) and the φk(y) and their first order

derivatives only. We derive this new method in a way that is similar to the derivation of
the first confluent form via the linear system in (23.1.7).
Let us differentiate (23.1.1) once term by term as before, truncate the summation at

the term αnφn(y), replace ∼ by =, A by Q( j)
n (y), and the αk by ᾱk , and collocate at the

points yl , j ≤ l ≤ j + n − 1. This results in the linear system

A(y) = Q( j)
n (y)+

n∑

k=1
ᾱkφk(y),

A′(yl) =
n∑

k=1
ᾱkφ

′
k(yl), j ≤ l ≤ j + n − 1, (23.1.8)

where y in the first of these equations can take on any value, and the yl are chosen to
satisfy y0 > y1 > · · · and liml→∞ yl = 0 as before.
Aswe can set y = yl for l ∈ { j, j + 1, . . . , j + n − 1} in (23.1.8),we call thismethod

that generates the Q( j)
n (y) the second confluent form of the first generalization of the

Richardson extrapolation process.
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Using Cramer’s rule to solve (23.1.8), we have Q( j)
n (y) = !

( j)
n [A(y)], where

!( j)
n [ f (y)] =

∣
∣
∣
∣
∣
∣
∣
∣
∣

f (y) φ1(y) · · · φn(y)
f ′(y j ) φ′1(y j ) · · · φ′n(y j )
...

...
...

f ′(y j+n−1) φ′1(y j+n−1) · · · φ′n(y j+n−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

φ′1(y j ) · · · φ′n(y j )
...

...
φ′1(y j+n−1) · · · φ′n(y j+n−1)

∣
∣
∣
∣
∣
∣
∣

. (23.1.9)

The following result can be obtained by analyzing the determinantal representation
of Q( j)

n (y). We leave its proof to the reader.

Theorem 23.1.2 Let Q( j)
n (y) be defined via (23.1.8). If A(y) and the φk(y) are n times

differentiable in y for y in some right neighborhood of 0, then the limit of Q( j)
n (y) as

yl → y, j ≤ l ≤ j + n − 1, exists, and satisfies

lim
yl→y

j≤l≤ j+n−1
Q( j)

n (y) = Qn(y), (23.1.10)

where Qn(y) is the first confluent form defined above.

To determine Q( j)
n (y) numerically we may proceed exactly as proposed in the case of

the first confluent form. Thus, we first solve the last n of the equations in (23.1.8) for the
ᾱk , and substitute these in the first equation to compute Q( j)

n (y) for some y, possibly in
the set {y j , y j+1, . . . , y j+n−1}.
As the yl and y are an important part of the input to the second confluent form, a

question that arises naturally is whether one can find a “best” set of these that will give
the “highest” accuracy in Q( j)

n (y). This seems to be an interesting research problem.

23.1.2 Convergence Analysis of a Special Case

We now present a convergence theory of the two preceding confluent methods for the
special case in which φk(y) = yσk , k = 1, 2, . . . , that was treated in Chapters 1 and 2.
This theory is analogous to those we saw in the previous chapters and that pertain to col-
umn sequences, and it shows that both of the confluent methods accelerate convergence
in this mode.
We first note that

Qn(y)− A = !n[A(y)− A], Q( j)
n (y)− A = !( j)

n [A(y)− A]. (23.1.11)

Next, in our analysis we assume for each i = 1, 2, . . . , that (i) {φ(i)
k (y)}∞k=1 is an asymp-

totic sequence, and (ii) A(i)(y) exists and has an asymptotic expansion that is obtained
by differentiating that of A(y) given in (23.1.1) term by term i times. Thus,

A(i)(y) ∼
∞∑

k=1
αkφ

(i)
k (y) as y → 0+, i = 1, 2, . . . . (23.1.12)
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Substituting (23.1.1) and (23.1.12) in (23.1.11), recalling that lim j→∞ y j = 0 inQ( j)
n (y j ),

we obtain, formally, the asymptotic expansions

Qn(y)− A ∼
∞∑

k=n+1
αk!n[φk(y)] as y → 0+,

Q( j)
n (y j )− A ∼

∞∑

k=n+1
αk!

( j)
n [φk(y j )] as j →∞. (23.1.13)

[Note that both summations in (23.1.13) start with k = n + 1 since !n[φk(y)] = 0 and
!

( j)
n [φk(y j )] = 0 for k = 1, . . . , n, as is clear from (23.1.6) and (23.1.9).] As usual,

it is necessary to prove that these are valid asymptotic expansions. For instance, for
Qn(y)− A, it must be shown that (i) {!n[φk(y)]}∞k=n+1 is an asymptotic scale as
y → 0+, and (ii) for each positive integer N ≥ n + 1, there holds Qn(y)− A −∑N−1

k=n+1 αk!n[φk(y)] = O(!n[φN (y)]) as y → 0+. Similarly, for Q( j)
n (y j )− A.

Going back to φk(y) = yσk , k = 1, 2, . . . , we first have

A(y) ∼ A +
∞∑

k=1
αk y

σk as y → 0+, (23.1.14)

where

σk �= 0, k = 1, 2, . . . ; �σ1 < �σ2 < · · · ; lim
k→∞

�σk = ∞. (23.1.15)

By the fact that φ(i)
k (y) = [σk]i yσk−i , it follows from (23.1.15) that {φ(i)

k (y)}∞k=1, i =
1, 2, . . . , are asymptotic sequences as y → 0+. Here [x]0 = 1 and [x]i = x(x − 1) · · ·
(x − i + 1) for i = 1, 2, . . . , as usual. We also assume that, for each i ≥ 1, A(i)(y) has
an asymptotic expansion as y → 0+, which can be obtained by differentiating that of
A(y) term by term i times. Thus,

A(i)(y) ∼
∞∑

k=1
[σk]iαk y

σk−i as y → 0+, i = 1, 2, . . . . (23.1.16)

The following lemma concerns !n[φk(y)] and !
( j)
n [φk(y j )]. We leave its proof to the

reader. (Of course, the condition imposed on the yl in this lemma is relevant only for the
second confluent form.)

Lemma 23.1.3 With φk(y) = yσk , and the σk as in (23.1.15), and with yl = y0ωl ,
l = 1, 2, . . . , for some ω ∈ (0, 1) and y0, we have

!n[φk(y)] = εn,k y
σk ; εn,k =

n∏

i=1

σi − σk

σi
,

!( j)
n [φk(y j )] = τn,k y

σk
j ; τn,k = σk

V (c1, . . . , cn)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1/σk 1/σ1 · · · 1/σn
c0k c01 · · · c0n
c1k c11 · · · c1n
...

...
...

cn−1k cn−11 · · · cn−1n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (23.1.17)



23.2 Confluent Forms of Sequence Transformations 401

Thus, {!n[φk(y)]}∞k=n+1 is an asymptotic scale as y → 0+ and {!( j)
n [φk(y j )]}∞k=n+1 is

an asymptotic scale as j →∞. Here ck = ωσk , k = 1, 2, . . . , and V (ξ1, . . . , ξn) is the
Vandermonde determinant as usual.

We next give the main convergence results that concern the first and second confluent
forms.

Theorem 23.1.4 With A(y) as in (23.1.14)–(23.1.16) and with yl as in Lemma 23.1.3,
Qn(y)− A and Q( j)

n (y j )− A have the complete asymptotic expansions given in
(23.1.13). That is,

Qn(y)− A ∼
∞∑

k=n+1
εn,kαk y

σk as y → 0+,

Q( j)
n (y j )− A ∼

∞∑

k=n+1
τn,kαk y

σk
j as j →∞, (23.1.18)

with εn,k and τn,k as in (23.1.17). Thus, if αn+µ is the first nonzero αk with k ≥ n + 1,
then Qn(y)− A and Q( j)

n (y j )− A satisfy the asymptotic equalities

Qn(y)− A ∼ εn,n+µαn+µyσn+µ as y → 0+,
Q( j)

n (y j )− A ∼ τn,n+µαn+µy
σn+µ
j as j →∞. (23.1.19)

We leave the proof of the results in (23.1.18) and (23.1.19) to the reader.

23.2 Confluent Forms of Sequence Transformations

23.2.1 Confluent ε-Algorithm

The idea of confluent methods first appeared in a paper by Wynn [370], and it was based
on algorithms for sequence transformations. To illustrate the idea, let us consider the
Shanks transformation and the ε-algorithm, as was done by Wynn [370].
We start by replacing the sequence Am by some function F(x), making the analogy

limm→∞ Am ↔ limx→∞ F(x), when both limits exist. Let us next replace ε( j)2n and ε( j)2n+1
in Algorithm 16.2.1 by ε2n(x + jh) and h−1ε2n+1(x + jh), respectively. Finally, let us
allow h → 0. As a result, we obtain the confluent ε-algorithm of Wynn that reads as
follows:

Algorithm 23.2.1 (Confluent ε-algorithm)

1. Set

ε−1(x) = 0 and ε0(x) = F(x).

2. Compute the εk+1(x) by the recursion

εk+1(x) = εk−1(x)+ 1

ε′k(x)
, k = 0, 1, . . . .
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The relevant approximations to limx→∞ F(x) are the ε2n(x).
The following result is due to Wynn [370].

Theorem 23.2.2 For ε2n(x) and ε2n+1(x) we have

ε2n(x) =
H (0)

n+1(x)

H (2)
n (x)

and ε2n+1(x) = H (3)
n (x)

H (1)
n+1(x)

, (23.2.1)

where, for all j ≥ 0, we define H ( j)
0 (x) = 1 and

H ( j)
n (x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

F ( j)(x) F ( j+1)(x) · · · F ( j+n−1)(x)
F ( j+1)(x) F ( j+2)(x) · · · F ( j+n)(x)

...
...

...
F ( j+n−1)(x) F ( j+n)(x) · · · F ( j+2n−2)(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣

, n ≥ 1. (23.2.2)

Consequently, ε2n(x) is the solution of the linear system

F(x) = ε2n(x)+
n∑

k=1
ᾱk F

(k)(x),

F (i)(x) =
n∑

k=1
ᾱk F

(k+i)(x), i = 1, . . . , n. (23.2.3)

Note that the determinants H ( j)
n (x) are analogous to the Hankel determinants intro-

duced in (16.1.13) in connectionwith the Shanks transformation. Note also that the linear
system in Theorem (23.2.3) is completely analogous to that in (23.1.7), and ε2n(x) can
be computed as the solution of this system. Another way of computing the ε2n(x) is via
(23.2.1), with the H ( j)

n (x) being determined from the recursion

H ( j)
0 (x) = 1 and H ( j)

1 (x) = F ( j)(x), j = 0, 1, . . . ,

H ( j)
n+1(x)H

( j+2)
n−1 (x) = H ( j)

n (x)H ( j+2)
n (x)− [H ( j+1)

n (x)]2, j ≥ 0, n ≥ 1. (23.2.4)

This can be proved by applying Sylvester’s determinant identity to the determinant
H ( j)

n+1(x). For yet another algorithm, see Wynn [376].
Some of the algebraic properties of the confluent ε-algorithm and its application to

functions F(x) that are completely monotonic are discussed by Brezinski [33]. See
also Brezinski [36] and Brezinski and Redivo Zaglia [41]. Unfortunately, the confluent
ε-algorithm cannot be very practical, as it requires knowledge of high-order derivatives
of F(x).

23.2.2 Confluent Form of the Higher-Order G-Transformation

The confluent form of the higher-order G-transformation described in Chapter 21 is
obtained by letting h → 0 in (21.2.1). By suitable row and column transformations on
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the determinants in (21.2.1), we first obtain

Gn(x ; h) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

F(x) �F(x)/h · · · �n F(x)/hn

f (x) � f (x)/h · · · �n f (x)/hn

...
...

...
�n−1 f (x)/hn−1 �n f (x)/hn · · · �2n−1 f (x)/h2n−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

� f (x)/h · · · �n f (x)/hn

...
...

�n f (x)/hn · · · �2n−1 f (x)/h2n−1

∣
∣
∣
∣
∣
∣
∣

, (23.2.5)

where�g(x)= g(x + h)− g(x),�2g(x)=�(�g(x)), and so on. Next, by letting h → 0
in (23.2.5) and using the fact that f (x) = F ′(x), which follows from F(x) = ∫ x

0 f (t) dt ,
and also the fact that limh→0�

kg(x)/hk = g(k)(x), we obtain

Bn(x) = lim
h→0

Gn(x ; h) =
H (0)

n+1(x)

H (2)
n (x)

. (23.2.6)

Here H ( j)
n (x) is exactly as defined in (23.2.2). Thus, Bn(x) is nothing but ε2n(x) and can

be computed by the confluent ε-algorithm.
All these developments are due to Gray, Atchison, and McWilliams [112], where the

convergence acceleration properties of Bn(x) as x →∞ are also discussed.

23.2.3 Confluent ρ-Algorithm

Wynn [370] applies the preceding approach to the ρ-algorithm. In other words, he re-
places ρ( j)

2n and ρ( j)
2n+1 in Algorithm 20.1.1 by ρ2n(x + jh) and h−1ρ2n+1(x + jh) respec-

tively, and lets h → 0. This results in the confluent ρ-algorithm of Wynn, which reads
as follows:

Algorithm 23.2.3 (Confluent ρ-algorithm)

1. Set

ρ−1(x) = 0 and ρ0(x) = F(x).

2. Compute the ρk+1(x) by the recursion

ρk+1(x) = ρk−1(x)+ k + 1

ρ ′k(x)
, k = 0, 1, . . . .

The relevant approximations to limx→∞ F(x) are the ρ2n(x).
The following result is due to Wynn [370].
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Theorem 23.2.4 For ρ2n(x) and ρ2n+1(x) we have

ρ2n(x) =
H̄ (0)

n+1(x)

H̄ (2)
n (x)

and ρ2n+1(x) = H̄ (3)
n (x)

H̄ (1)
n+1(x)

, (23.2.7)

where, for each j ≥ 0 and n ≥ 0, H̄ ( j)
n (x) is obtained from H ( j)

n (x) by replacing F (i)(x)
in the latter by F (i)(x)/ i!, i = 0, 1, . . . .

It is clear that ρ2n(x) can be computed from (23.2.7), where the H ( j)
n (x) can be de-

termined by using a recursion relation similar to that in (23.2.4). For further results,
see Wynn [376]. See also [41]. It is obvious that the confluent ρ-algorithm, just like
the confluent ε-algorithm, is not very practical as it requires knowledge of high-order
derivatives of F(x).

23.2.4 Confluent Overholt Method

Applying the technique above to the method of Overholt, Brezinski and Redivo Zaglia
[41] derive the following confluent form:

Algorithm 23.2.5 (Confluent Overholt method)

1. Set V0(x) = F(x).
2. Compute Vn+1(x) by the recursion

Vn+1(x) = Vn(x)− F ′(x)
F ′′(x)

· V
′
n(x)

n + 1
, n = 0, 1, . . . .

The relevant approximations to limx→∞ F(x) are the Vn(x).
The following theorem, whose proof can be achieved by induction on n, is given in

[41, p. 255, Theorem 5.1].

Theorem 23.2.6 Assume that {[F ′(x)]k}∞k=1 is an asymptotic sequence as x →∞, and
that

F(x) ∼ A +
∞∑

k=1
αk[F

′(x)]k as x →∞. (23.2.8)

Assume, in addition, that both sides of (23.2.8) can be differentiated term by term. Then

Vn(x)− A ∼
∞∑

k=n+1
αk

[ n∏

s=1
(1− k/s)

]

[F ′(x)]k as x →∞. (23.2.9)

We do not know of another more convenient way of defining the Vn(x) except through
the recursion relation of Algorithm 23.2.5. This recursion relation, however, requires us
to first obtain Vn(x) in closed form and then differentiate it. Of course, this task can be
achieved only in some cases, and by using symbolic computation. Thus, the confluent
form of the method of Overholt is not very useful.
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The confluent form of the θ -algorithm is obtained similarly in [41]. As mentioned
there, this confluent form suffers from the same deficiency as the confluent form of the
method of Overholt; hence, it is not very useful.

23.3 Confluent D(m)-Transformation

With the approach of the preceding sections, it is possible to derive confluent forms
of additional transformations. For example, Levin and Sidi [165, Section 3] give the
confluent form of the D(m)-transformation for infinite-range integrals

∫∞
0 f (t) dt (called

the C-transformation in [165]) that is obtained in the same way as the first confluent
form of the Richardson extrapolation process. This derivation reads as follows:

F(x) = Cn(x)+
m∑

k=1
xk f (k−1)(x)

nk−1∑

i=0
β̄ki x

−i ,

F (s)(x) = ds

dxs

{ m∑

k=1
xk f (k−1)(x)

nk−1∑

i=0
β̄ki x

−i

}

, s= 1, 2, . . . , N , (23.3.1)

where F(x) = ∫ x
0 f (t) dt hence F (s)(x) = f (s−1)(x) for all s ≥ 1, n = (n1, . . . , nm), and

N =∑m
k=1 nk . Gray and Wang [114] provide convergence results concerning Cn(x) as

x →∞. See also Gray and Wang [113].
Now, this first confluent form requires the computation of the derivatives of f (x) of

order as high as N + m − 1, whichmay be inconvenient as N is a large integer generally.
Here, we propose the second confluent form, which circumvents this inconvenience
entirely. From the formalism of Section 23.1, this reads as follows:

F(x) = C ( j)
n (x)+

m∑

k=1
xk f (k−1)(x)

nk−1∑

i=0
β̄ki x

−i ,

F ′(xl) = d

dx

{ m∑

k=1
xk f (k−1)(x)

nk−1∑

i=0
β̄ki x

−i

}∣∣
∣
∣
x=xl

, j ≤ l ≤ j + N − 1, (23.3.2)

where F(x), n, and N are as before and the xl are chosen to satisfy 0 < x0 < x1 < · · · ,
and liml→∞ xl = ∞. Once the β̄ki are determined from the last N of the equations in
(23.3.2), they can be substituted in the first equation to compute C ( j)

n (x), with x = x j ,
for example.
Obviously, this transformation requires the computation of only one (finite-range)

integral F(x), and knowledge of the derivatives f (k)(x), k = 1, 2, . . . ,m, independently
of the size of N . As before, the question about the “best” choice of x and the xl is of
interest.

23.3.1 Application to the D(1)-Transformation and Fourier Integrals

As a special case, let us consider application of the second confluent form of the
D(1)-transformation to the Fourier integral

∫∞
0 eiωt g(t) dt , where g ∈ A(γ ). Replacing

the k = 1 term in the summations of the equations in (23.3.2) by f (x) = eiωx g(x) (recall
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that ρ0 = 0 for such integrals), letting m = 1, these equations become

F(x) = C ( j)
n (x)+ f (x)

n−1∑

i=0
β̄i x

−i

f (xl) = − f (xl)
n−1∑

i=1
i β̄i x

−i−1
l + f ′(xl)

n−1∑

i=0
β̄i x

−i , j ≤ l ≤ j + n − 1. (23.3.3)

Substituting f ′(x) = [iω + g′(x)/g(x)] f (x) in the last n equations, we see that the β̄s

can be obtained by solving the linear system

n−1∑

s=0

[

iω + g′(xl)
g(xl)

− s

xl

]
1

xs
l

β̄s = 1, j ≤ l ≤ j + n − 1. (23.3.4)

Obviously, this is a rather inexpensive way of approximating the integral in question,
since it requires the computation of only one finite-range integral, namely, the integral
F(x) in (23.3.3).



24
Formal Theory of Sequence Transformations

24.1 Introduction

The purpose of this chapter is to present a formal theory of sequence transformations
that was begun recently by Germain-Bonne [96], [97]. The theory of Germain-Bonne
covers very few cases. It was later extended by Smith and Ford [317] to cover more
cases. Unfortunately, even after being extended, so far the formal theory includes a very
small number of cases of interest and excludes the most important ones. In addition, for
the cases it includes, it has produced results relevant to column sequences only, and these
results are quite weak in the sense that they do not give any information about rates of
acceleration. Nevertheless, we have chosen to present its present achievements briefly
here for the sake of completeness. Our treatment of the subject here follows those of
Smith and Ford [317] and Wimp [366, Chapter 5, pp. 101–105].
Let us denote the approximations that result by applying an extrapolation method

ExtM to the sequence {Am}∞m=0 by Sn, j , where

Sn, j = Gn, j (A j , A j+1, . . . , A j+n) (24.1.1)

for some function Gn, j (x0, x1, . . . , xn). We assume that this function satisfies

Gn, j (αx0 + β, αx1 + β, . . . , αxn + β) = αGn, j (x0, x1, . . . , xn)+ β (24.1.2)

for all scalars α and β. This, of course, means that ExtM is a quasi-linear sequence
transformation, in the sense defined in the Introduction. It is clear that

Gn, j (0, 0, . . . , 0) = 0, Gn, j (β, β, . . . , β) = β.

Using (24.1.2), we can write

Gn, j (x0, x1, . . . , xn) = x0 + (x1 − x0)Gn, j (0, Y1, Y2, . . . , Yn), (24.1.3)

where we have defined

Yk = xk − x0
x1 − x0

, k = 1, 2, . . . . (24.1.4)

Letting

�xk = xk+1 − xk and Xk = �xk
�xk−1

, (24.1.5)

407
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we see that

Y1 = 1, Yk = 1+
k−1∑

i=1
X1X2 · · · Xi , k = 2, 3, . . . . (24.1.6)

Using (24.1.4)–(24.1.6), and defining the function gn, j through

gn, j (X1, . . . , Xn−1) = Gn, j (0, 1, Y2, . . . , Yn), (24.1.7)

we now write (24.1.3) in the form

Gn, j (x0, x1, . . . , xn) = x0 + (�x0)gn, j (X1, X2, . . . , Xn−1). (24.1.8)

Let S stand for the limit or antilimit of {Am}, and define

Rm = Am+1 − S

Am − S
, rm = �Am+1

�Am
, m = 0, 1, . . . . (24.1.9)

Going back to Sn, j in (24.1.1), and invoking (24.1.8), we thus have that

Sn, j = A j + (�A j ) gn, j (r j , . . . , r j+n−2), (24.1.10)

and hence

Sn, j − S

A j − S
= 1+ �A j

A j − S
gn, j (r j , . . . , r j+n−2). (24.1.11)

Before going on, we mention that, in the theory of Germain-Bonne, the functionsGn, j

and hence gn, j do not depend on j explicitly, that is, they are the same for all j . It is this
aspect of the original theory that makes it relevant for only a limited number of cases.
The explicit dependence on j that was introduced by Smith and Ford allows more cases
to be covered. We present examples of both types of gn, j in the next section.

24.2 Regularity and Acceleration

We now investigate the regularity and acceleration properties of Sn, j as j →∞, while
n is being held fixed. The following results are direct consequences of (24.1.10) and
(24.1.11).

Proposition 24.2.1

(i) Provided the sequence {gn, j (r j , . . . , r j+n−2)}∞j=0 is bounded, ExtM is regular on
{Am} as j →∞, that is, lim j→∞ Sn, j = lim j→∞ A j = S.

(ii) {Sn, j }∞j=0 converges faster than {Am}, that is, lim j→∞(Sn, j − S)/(A j − S) = 0, if
and only if

lim
j→∞

(1− R j ) gn, j (r j , . . . , r j+n−2) = 1. (24.2.1)
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24.2.1 Linearly Convergent Sequences

In case the functions gn, j for fixed n are all the same function gn , and the sequence {Am}
converges linearly, the previous proposition can be refined considerably. In the present
context, {Am} is linearly converging if, with Rm as defined in (24.1.9), there holds

lim
m→∞ Rm = λ for some λ, 0 < |λ| < 1. (24.2.2)

Asmentioned in the proof of of Theorem 15.3.1, (24.2.2) implies that limm→∞ rm = λ as
well, where rm is as defined in (24.1.9). Note also that the family of sequences b(1)/LIN
is a subset of the set of linearly convergent sequences.
Using these in Proposition 24.2.1, we can now state the following theorem, whose

proof we leave to the reader.

Theorem 24.2.2 Let {Am} be a linearly convergent sequence as in (24.2.2). In the
sequence transformation ExtM, let

lim
j→∞

gn, j (X1, . . . , Xn−1) = gn(X1, . . . , Xn−1), (24.2.3)

and assume that gn is continuous in a neighborhood of (λ, λ, . . . , λ), λ �= 1, and satisfies

gn(λ, λ, . . . , λ) = 1

1− λ
. (24.2.4)

Then Proposition 24.2.1 applies, that is, ExtM is regular and accelerates the convergence
of {Am} in the sense described there.

Of course, (24.2.3) is automatically satisfied in case gn, j = gn for every j . When this
is the case, under the rest of the conditions of Theorem 24.2.2, the sequence of the partial
sums of the geometric series

∑∞
i=0 λ

i , λ �= 1, is in the kernel of ExtM, in the sense that
Sn, j = S = 1/(1− λ) for every j .
We now illustrate Theorem 24.2.2 with a few examples.

• The conditions of Theorem 24.2.2 hold when ExtM is the�2-process, because in this
case g2, j (x) = g2(x) = 1/(1− x), as can be shownwith the help of the formula S2, j =
A j − (�A j )2/(�2A j ). (We already proved in Theorem 15.3.1 that the �2-process is
regular for and accelerates the convergence of linearly convergent sequences.)

• The conditions of Theorem 24.2.2 hold also when ExtM is the W -transformation
of Lubkin. In this case, g3, j (x, y) = g3(x, y) = (1− 2y + x)/(1− 2y + xy), and the
singularities of this function occur only along y = 1/(2− x), which meets y = x
only at (1, 1). Therefore, g3(x, y) will be continuous in any neighborhood of (λ, λ)
with λ �= 1. This has been stated by Smith and Ford [317]. (We already stated prior
to Theorem 15.4.1 that he Lubkin transformation is regular for and accelerates the
convergence of linearly convergent sequences.)

• Smith and Ford [317] show that Proposition 24.2.1 applies to the functions gn, j asso-
ciated with the Levin t-, u-, and v-transformations. Therefore, these transformations
are regular on and accelerate the convergence of linearly convergent sequences as
j →∞. Here we treat the u-transformation, the treatment of the rest being similar.
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Because L( j)
n in (19.2.4), with ωm = mam there, depends on A j , A j+1, . . . , A j+n+1,

we have that

gn+1, j (X1, . . . , Xn) =

n∑

i=1
(−1)i

(
n

i

)

( j + i + 1)n−2
1+∑i−1

s=1 X1 · · · Xs

X1X2 · · · Xi

n∑

i=0
(−1)i

(
n

i

)

( j + i + 1)n−2
1

X1X2 · · · Xi

. (24.2.5)

Thus,

lim
j→∞

gn+1, j (X1, . . . , Xn) = gn(X1, . . . , Xn) =

n∑

i=1
(−1)i

(
n

i

)
1+∑i−1

s=1 X1 · · · Xs

X1X2 · · · Xi

n∑

i=0
(−1)i

(
n

i

)
1

X1X2 · · · Xi

.

(24.2.6)

Substituting X1 = · · · = Xn = λ in (24.2.6), it can be shown that (24.2.4) is satisfied,
and hence Theorem 24.2.2 applies.

• With the techniquewe used for the Levin transformations, it can be shown that Proposi-
tion 24.2.1 also applies to the functions gn, j associated with the Sidi S-transformation.
For this transformation too, the functions gn, j depend on j explicitly. Actually, with
S ( j)
n as in (19.3.3), and ωm = mam there, the function gn+1, j (X1, . . . , Xn) is ob-

tained from (24.2.5) by replacing the expression ( j + i + 1)n−2 by ( j + i + 1)n−2 for
each i . Consequently, (24.2.6) holds without any change, and hence Theorem 24.2.2
applies.

For additional examples, see Weniger [353].

24.2.2 Logarithmically Convergent Sequences

So far our treatment has been concerned with linearly convergent sequences as de-
fined in (24.2.2). We have seen that convergence acceleration of all such sequences
can be achieved by more than one method. We now turn to logarithmically convergent
sequences. In this context, a sequence {Am} converges logarithmically if it satisfies

lim
m→∞ Rm = 1 and lim

m→∞ rm = 1. (24.2.7)

Here Rm and rm are as defined in (24.1.9). Note that the family of sequences b(1)/LOG
is a subset of the set of logarithmically convergent sequences.
Such sequences are very difficult to treat numerically and to analyze analytically. This

fact is also reflected in the problems one faces in developing a formal theory for them.
The main results pertaining to linearly convergent sequences were given by Delahaye
andGermain-Bonne [66], [67]. These authors first define a property they call generalized
remanence:
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Definition 24.2.3 A set M of real convergent sequences is said to possess the property
of generalized remanence if the following conditions are satisfied:

1. There exists a convergent sequence {Ŝm} with limit Ŝ such that Ŝm �= Ŝ for all m, and
such that
(i) there exists {S0m} ∈ M such that limm→∞ S0m = Ŝ0,
(ii) for any m0 ≥ 0, there exists p0 ≥ m0 and {S1m} ∈ M such that limm→∞ S1m = Ŝ1

and S1m = S0m for m ≤ p0,
(iii) for anym1 > p0, there exists p1 ≥ m1 and {S2m} ∈ Msuch that limm→∞ S2m = Ŝ2

and S2m = S1m for m ≤ p1,
(iv) .........................

2. The sequence {S00 , S01 , . . . , S0p0 , S1p0+1, S1p0+2, . . . , S1p1 , . . . } is in M.

(Note that the notion of generalized remanence was given in [67] and it was preceded
in [66] by the notion of remanence.)
Delahaye and Germain-Bonne next prove that a sequence set M that has the property

of generalized remanence cannot be accelerated, in the sense that there does not exist
a sequence transformation that accelerates the convergence of all sequences in M. Fol-
lowing this, they prove that the set of logarithmically convergent sequences possesses
the property of generalized remanence and therefore cannot be accelerated.
Techniques other than that involving (generalized) remanence but similar to it have

been used to determine further sets of sequences that cannot be accelerated. See
Kowalewski [155], [156], and Delahaye [65]. For a list of such sets, see Brezinski and
Redivo Zaglia [41, pp. 40–41].
The fact that there does not exist a sequence transformation that can accelerate the

convergence of all sequences in a certain set means that the set is too large. This suggests
that one should probably investigate the possibility of finding (proper) subsets of this set
that can be accelerated. It would be interesting to knowwhat the largest such subsets are.
Similarly, it would be interesting to know the smallest subsets that cannot be accelerated.
For some progress in this direction, see Delahaye [65] and Osada [224].

24.3 Concluding Remarks

Asmentioned in the beginning of this chapter, the formal theory of sequence transforma-
tions, despite its elegance, is of limited scope. Indeed, its positive results concern mostly
sequences that converge linearly [in the sense of (24.2.2)], whereas its results concerning
sequences that converge logarithmically [in the sense of (24.2.7)] are mostly negative.
We have seen that this theory, as it applies to linearly convergent sequences, shows

only regularity and acceleration for {Sn, j }∞j=0, but gives no information on rates of con-
vergence. Thus, it does not tell anything about the relative efficiencies of Sn, j and Sn+1, j ,
that is, whether {Sn+1, j }∞j=0 converges more quickly than {Sn, j }∞j=0. In addition, so far
no results about the diagonal sequences {Sn, j }∞n=0 have been obtained within the frame-
work of the formal theory. (This should be contrasted with the rather complete results
we obtained for sequences in b(1)/LIN and b(1)/LOG.) It seems that these subjects may
serve as new research problems for the formal theory.
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One way of enlarging the scope of the formal theory can be by investigating sets other
than those mentioned so far. An interesting set can be, for example, that containing linear
combinations of linearly convergent sequences, such as real Fourier series. The reason
for this is that such series are not necessarily linearly convergent in the sense of (24.2.2),
as can be verified with simple examples. Recall that we considered such sequences in
Chapter 6. It would be interesting to see, for example, whether it is possible to obtain
positive results analogous to Theorem 24.2.2.
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25
Further Applications of Extrapolation Methods

and Sequence Transformations

In Parts I and II of this book, we studied in some detail the Richardson extrapolation and
its generalizations and various important sequence transformations. We also mentioned
several applications of them. Actually, we discussed in detail the Romberg integration
of finite-range integrals of regular integrands, numerical differentiation, and the compu-
tation of infinite-range integrals by the D-transformation. We discussed the application
of the various generalizations of the D-transformation to the computation of oscillatory
infinite-range integrals, including some important integral transforms. We also treated
in detail the acceleration of convergence of infinite series, including power series and
Fourier series and their generalizations, by the d-transformation and other methods,
such as the Shanks transformation, the θ -algorithm, the Baker–Gammel approximants
and their extensions, and so on. In connection with acceleration of convergence of power
series, we also discussed in some detail the subject of prediction via the d-transformation
and mentioned that the approach presented can be used with any sequence transforma-
tion. In this chapter, we add further applications of special interest.
We would like to note that extensive surveys and bibliographies covering the appli-

cation of extrapolation methods to numerical integration can be found in Joyce [145],
Davis and Rabinowitz [63], and Rabinowitz [234].

25.1 Extrapolation Methods in Multidimensional Numerical Quadrature

25.1.1 By GREP and d-Transformation

Multidimensional Euler–Maclaurin Expansions

One of the important uses of the Richardson extrapolation process is in computation of
finite-range integrals over the s-dimensional hypercube C or hypersimplex S, namely,
of the integrals

IC [ f ] =
∫

C
f (x) dx, IS[ f ] =

∫

C
f (x) dx; x = (x1, . . . , xs), dx =

s∏

i=1
dxi .

Here C and S are given, respectively, by

C = {
(x1, . . . , xs) : 0 ≤ xi ≤ 1, i = 1, . . . , s

}

415
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and

S = {
(x1, . . . , xs) : 0 ≤ xi ≤ 1, i = 1, . . . , s; x1 + · · · + xs ≤ 1

}
.

Let TC (h) and TS(h) be approximations to IC [ f ] and IS[ f ], respectively, that are
obtained by applying the trapezoidal rule in each of the variables x1, . . . , xs , with stepsize
h = 1/n, where n is a positive integer. (We restrict our attention to this simple rule for
simplicity. Other more sophisticated rules can also be defined.) Thus, TC (h) and TS(h)
are given by

TC (h) = hs
n∑

i1=0

′′
n∑

i2=0

′′ · · ·
n∑

is=0

′′
f (i1h, i2h, . . . , ish)

and

TS(h) = hs
n∑

i1=0

′′
n−i1∑

i2=0

′′ · · ·
n−i1−···−is−1∑

is=0

′′
f (i1h, i2h, . . . , ish),

where
∑′′k

i=0 ai = 1
2a0 +

∑k−1
i=1 ai + 1

2ak . Let us denote C or S by $, IC [ f ] or IS[ f ] by
I [ f ], and TC (h) or TS(h) by Qn .
In case f (x) ∈ C∞($), the generalized Euler–Maclaurin expansions for Qn read

Qn ∼ I [ f ]+
∞∑

k=1
αkn

−2k as n →∞,

for some constants αk independent of h. Thus, the polynomial Richardson extrapolation
can be applied to {Qn} effectively. See Lyness and McHugh [200] and Lyness and
Puri [203] for these results. In a recent work, Lyness and Rüde [204] consider double
integralswhose integrands involve derivatives of known functions; they derive quadrature
formulas Qn based on function values only and show that Qn have asymptotic (Euler–
Maclaurin) expansions in powers of n−2 as well. Thus, the polynomial Richardson
extrapolation can be applied to {Qn} to obtain approximations of high accuracy to such
integrals too.
In case f (x) is a C∞ function in the interior of the set $ but has algebraic and/or

logarithmic singularities at corners and/or along edges and/or on surfaces of $, the
Euler–Maclaurin expansions assume the following more general form:

Qn ∼ I [ f ]+
µ∑

i=1

∞∑

k=0

∑qi
p=0 αikp(log n)p

nδi+k
as n →∞, qi ≥ 0 integers.

Here, Qn are approximations to I [ f ] constructed bymodifying the rules TC (h) and TS(h)
suitably by avoiding the singularities of f (x) on the boundary. The δi and qi depend on
the nature of the singularities, and the αikp are constants independent of n. Generally
speaking, µ is the number of the different types of singularities of f (x).
We do not go into the details of each expansion here. For specific results about corner

singularities, we refer the reader to the original works by Lyness [196] and Lyness and
Monegato [201]; for results about line and edge singularities, see Sidi [283], and for
those concerning full (line and corner) singularities, see Lyness and de Doncker [199].
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Direct Application of GREP to {Qn}
In case δi and qi are known, we can apply GREP(m) of Definition 4.2.1 to the se-
quence {Qn} – rather, to the function A(y), where A(y)↔ Qn –withm =∑µ

i=1(qi + 1),
y = n−1, and with rk = 1 and the φk(y) chosen as (log n)pn−δi , 0 ≤ p ≤ qi , 1 ≤ i ≤ µ.
The method can then be efficiently implemented by the W(m)-algorithm. Now, the com-
putation of Qn for given n requires O(ns) integrand evaluations. Therefore, to keep the
cost of computation in check, it is appropriate to choose yl = 1/(l + 1), l = 0, 1, . . . .
The numerical instability that results from this choice of the yl can be controlled by using
high-precision floating-point arithmetic, as was discussed in Section 2.1. This approach
was originally suggested by Lyness [195] for integrals over hypercubes of functions with
a corner singularity. Its use for functions with line singularities was considered by Sidi
in [271], an earlier version of [283]. See also Davis and Rabinowitz [63] and Sidi [287]
for brief reviews.

Application of the d-Transformation for Infinite Sequences to {Qn}
We next propose using the d (m)-transformation for infinite sequences (as in Defini-
tion 6.2.2) to accelerate the convergence of the sequence {Qn} in case the δi and qi are
not all known. We give a theoretical justification of the proposed approach next.
Let us first consider the case in which qi = 0 for each i . In this case, Qn = I [ f ]+∑µ

i=1 Hi (n), where Hi (n) ∈ A(−δi )
0 , i = 1, . . . , µ. Thus, Theorem 6.8.5 applies to {Qn},

that is, Qn = I [ f ]+∑µ

k=1 n
k(�k Qn)gk(n) for some gk ∈ A(0)

0 , k = 1, . . . , µ, and we
conclude that the d (µ)-transformation for infinite sequences can be used on this sequence.
In general, when not all qi are zero, we first observe that Qn = I [ f ]+∑µ

i=1 G
(i)
n ,

whereG(i)
n =∑qi

p=0 uip(n)(log n)p withuip(n) ∈ A(−δi )
0 , 0 ≤ p ≤ qi . Thus,wehave from

Example 6.4.9 that, for each i , {G(i)
n } is in b(qi+1), and so is {�G(i)

n } by Proposition 6.1.6.
Consequently, by the fact that �Qn =

∑µ

i=1�G(i)
n and by part (ii) of Heuristic 6.4.1,

{�Qn} ∈ b(m) with m =∑µ

i=1(qi + 1). We can thus approximate I [ f ] effectively by
applying the d (m)-transformation for infinite sequences to the sequence {Qn}.

To keep the cost of computation under control, again it is appropriate to choose
Rl = l + 1, l = 0, 1, . . . , inDefinition 6.2.2, and use high-precision floating-point arith-
metic. Note that the only input needed for this application is the integrand f (x) and the
integer m. In case m is not known, we can start with m = 1 and increase it if necessary
until acceleration takes place. We already know no extra cost is involved in this strat-
egy. Numerical experiments show that this approach produces approximations of high
accuracy to I [ f ].
One may wonder whether other sequence transformations can be used to accelerate

the convergence of the sequence {Qn} when the δi and qi are not all known. Judging
from the form of the Euler–Maclaurin expansion of Qn , and invoking Theorems 16.4.6
and 16.4.9, it becomes clear that the only other transformation that is relevant is that
of Shanks, provided it is applied to the sequence {Qr ·σ n }, where r ≥ 1 and σ ≥ 2 are
integers. Clearly, this approach is very costly even for moderate s. In view of all this, the
d (m)-transformation, when applied as proposed here, seems to be the most appropriate
sequence transformation for computing singular multidimensional integrals over hyper-
cubes and hypersimplices when the δi and qi in the expansion of Qn are not available.
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Another Use of GREP

Finally, we mention an approach introduced in two papers by Espelid [78], [79] that
uses extrapolation in a different way. This approach can be explained in a simple
way via the double integral I [ f ] = ∫ 1

0

∫ 1
0 f (x, y) dx dy, where f (x, y) = xµg(x, y)

and g ∈ C∞([0, 1]× [0, 1]). (When µ is not an integer, this integral has an edge
singularity along the y-axis.) Here we compute the sequence of nonsingular inte-
grals F(h) = ∫ 1

0 [
∫ 1−h
0 f (x, y) dx]dy for different values of h. Then I [ f ]− F(h) =∫ h

0 xµG(x) dx, where G(x) = ∫ 1
0 g(x, y) dy ∈ C∞[0, 1]. Expanding G(x) at x = 0, we

obtain the asymptotic expansion F(h) ∼ I [ f ]+∑∞
k=1 αkhµ+k as h → 0. Now apply

the Richardson extrapolation process (GREP(1) in this particular case) to {F(hl)}, where
h0 > h1 > · · · , and liml→∞ hl = 0. For good numerical results, we should compute
the integrals F(hl) with sufficient accuracy. The generalization to arbitrary dimension
and edge or corner singularities is now clear. For details and numerical examples, see
Espelid [78], [79]. We note that the approach of Espelid seems to be an extension of that
of Evans, Hyslop, and Morgan [80] for one-dimensional integrals

∫ 1
0 f (x) dx , where

f (x) has a singularity at x = 0. The approach of [80] is heuristic, and the extrapolation
method employed is the ε-algorithm.

25.1.2 Use of Variable Transformations

The performance of GREP and the d-transformation (and the method of Espelid as well)
in numerical integration over the hypercube C can be enhanced by first transforming the
integral via so-called variable transformations, namely, xi = ξi (t), i = 1, . . . , s, where
the functions ψ(t) = ξi (t), for each i , possess the following properties:

(a) ψ(t) ∈ C∞[0, 1]maps [0, 1] to [0, 1], such thatψ(0) = 0andψ(1) = 1andψ ′(t)> 0
on (0, 1).

(b) ψ ′(1− t) = ψ ′(t) so that ψ(1− t) = 1− ψ(t).
(c) ψ (p)(0) = ψ (p)(1) = 0, p = 1, . . . , p̄, for some p̄, 1 ≤ p̄ ≤ ∞. In other words,

when p̄ is finite,

ψ(t) ∼
∞∑

i=0
ci t

p̄+i+1 as t → 0+, ψ(t) ∼ 1−
∞∑

i=0
ci (1− t) p̄+i+1 as t → 1−,

while for p̄ = ∞ these asymptotic expansions are empty.

Following these variable transformations, we obtain

I [ f ] =
∫

C
g(t) dt, g(t) = f (ξ1(t1), . . . , ξs(ts))

s∏

i=1
ξ ′i (ti ).

with t = (t1, . . . , ts) and dt =∏s
i=1 dti , as usual. Now let h = 1/n and approximate

the transformed integral
∫
C g(t)dt (using the trapezoidal rule in each of the variables ti )

by

Q̂n = T̂C (h) = hs
n−1∑

i1=1

n−1∑

i2=1
· · ·

n−1∑

is=1
g(i1h, i2h, . . . , ish).
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[Here we have used the fact that g(t) = 0 when, for each i, ti = 0 or ti = 1, because
ξ
′
i (0) = ξ

′
i (1) = 0.] Then, Q̂n has the asymptotic expansion

Q̂n ∼ I [ f ]+
µ∑

i=1

∞∑

k=0

∑qi
p=0 α̂ikp(log n)p

nδ̂i+k
as n →∞, qi ≥ 0 integers.

By property (c) of the ξi (t), the new integrand g(t) will be such that�δ̂i > �δi , so that
Q̂n − I [ f ] tends to 0 faster than Qn − I [ f ]. This also means that, when GREP or the
d-transformation is used to accelerate the convergence of {Q̂n}, the computational effort
spent to obtain a required level of accuracy will be smaller than that spent on {Qn} for
the same purpose. In case ξ (p)i (0) = ξ

(p)
i (1) = 0 for all p ≥ 1, the asymptotic expansion

of Q̂n − I [ f ] is even empty. In such a case, the convergence of {Q̂n} to I [ f ] is very
quick and extrapolation does not improve things.
The Euler–Maclaurin expansions for the Q̂n and the application of GREP to the

sequences {Q̂n} have been considered recently by Verlinden, Potts, and Lyness [347].
We close this section by giving a list of useful variable transformations x = ψ(t).

1. The Korobov [154] transformation:

ψ(t) = (2m + 1)

(
2m

m

)∫ t

0
[u(1− u)]m du.

Thus,ψ (p)(0) = ψ (p)(1) = 0 for p = 1, . . . ,m.Analysis of the trapezoidal and mid-
point rules following the Korobov transformation was given by Sidi [293] for regular
integrands and by Verlinden, Potts, and Lyness [347] for integrands with endpoint
singularities.

2. The Sag and Szekeres [254] tanh-transformation:

ψ(t) = 1

2
tanh

[

− c

2

(
1

t
− 1

1− t

)]

+ 1

2
, c > 0.

In this case, we have ψ (p)(0) = ψ (p)(1) = 0 for all p ≥ 1.
3. The IMT-transformation of Iri, Moriguti, and Takasawa [138]:

ψ(t) =
∫ t
0 φ(u) du∫ 1
0 φ(u) du

, φ(t) = exp

[

− c

t(1− t)

]

, c > 0.

In this case too, we have ψ (p)(0) = ψ (p)(1) = 0 for all p ≥ 1. For a most elegant
theory of this transformation, we refer the reader to Iri, Moriguti, and Takasawa [138].

4. The double exponential transformation of Mori [214]:

ψ(t) = 1

2
tanh

{

a sinh

[

b

(
1

1− t
− 1

t

)]}

+ 1

2
, a, b > 0.

In this case too, ψ (p)(0) = ψ (p)(1) = 0 for all p ≥ 1.
5. The Sidi [293] class Sm transformations: These transformations satisfy properties (a)

and (b). They also satisfy property (c) with p̄ = m and with the refinement

ψ ′(t) ∼
∞∑

i=0
ci t

m+2i as t → 0+, ψ ′(t) ∼
∞∑

i=0
ci (1− t)m+2i as t → 1− .
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It is this refinement that makes class Sm transformations very useful, especially when
m is chosen to be an even integer. For the rigorous analysis of the trapezoidal and
midpoint rules following these transformations see [293].
A special representative of class Sm transformations, given already by Sidi [293],

is the sinm-transformation:

ψ(t) =
∫ t
0 φ(u) du∫ 1
0 φ(u) du

, φ(t) = (
sinπ t

)m
.

Denoting ψ(t) by ψm(t), it is easy to show by integration parts that the ψm(t) can be
computed recursively via

ψ0(t) = t, ψ1(t) =
(

sin
π t

2

)2

,

ψm(t) = ψm−2(t)−
�(m2 )

2
√
π�(m+12 )

(sinπ t)m−1 cosπ t, m = 2, 3, . . . .

In particular, ψ2(t) = t − (sin 2π t)/(2π ) is quite effective.
Additional transformations in Sm for some values ofm can be obtained by compo-

sition of several transformations in Smi . In particular, if� = ψ1 ◦ ψ2 ◦ · · · ◦ ψr with
ψi ∈ Smi , then � ∈ SM with M =∏r

i=1(mi + 1)− 1. Also, M is even if and only if
mi are all even. See [293].
Another transformation that is in the classSm and similar to the sinm-transformation

(with even m only) was recently given by Elliott [76], and the analysis given by
Sidi [293] covers it completely. (Note that the lowest-order transformation of [76]
is nothing but the sin2-transformation of [293].) Finally, Laurie [160] has given a
polynomial transformation that satisfies the refined property (c) partially. We refer
the interested reader to the original works for details.

It follows from the results of Sidi [293, p. 369, Remarks] that, when applied to regular
integrands, class Sm variable transformations with even m are much more effective than
the Korobov transformation with the same m, even though they both behave in the same
(polynomial) fashion asymptotically as t → 0+ and as t → 1−. In addition, numerical
work with class Sm variable transformations is less prone to overflows and underflows
than that with the tanh-, IMT-, and the double exponential transformations that behave
exponentially as t → 0+ and as t → 1−. See [293] for details.
Finally, we would like to mention that variable transformations were originally

considered within the context of multidimensional integration over the hypercube by
the so-called lattice methods. These methods can be viewed as generalizations of
the one-dimensional trapezoidal rule to higher dimensions. It turns out that the sinm-
transformations with even m are quite effective in these applications too. See, for exam-
ple, Sloan and Joe [316] and Hill and Robinson [133] and Robinson and Hill [239]. Of
these, [316] is an excellent source of information for lattice methods.
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25.2 Extrapolation of Numerical Solutions of Ordinary Differential Equations

Another useful application of the Richardson extrapolation process is to numerical so-
lution of ordinary differential equations by finite-difference methods. We explain the
general idea via the solution of initial value problems by linear multistep methods.
Consider the initial value problem Y ′ = f (x, Y ) with Y (a) = y0, whose solution we

denote Y (x). Let xn = a + nh, n = 0, 1, . . . , for some h > 0, and let {yn} be the nu-
merical solution to this problem obtained by a linear multistep method with the fixed
stepsize h. That is, yn ≈ Y (xn), n = 1, 2, . . . .

Let us recall that a linear multistep method (of stepnumber k) is of the form

k∑

j=0
α j yn+ j = h

k∑

j=0
β j fn+ j ; fm ≡ f (xm, ym),

for which the initial values y1, . . . , yk−1 should be provided by the user with sufficient
accuracy. Here α j and β j are fixed constants and αk �= 0 and |α0| + |β0| �= 0. When
βk = 0, the method is said to be explicit; otherwise, it is implicit.
Let us fix x such that x = a + mh. Let us also assume, for simplicity, that f (x, y) is

infinitely differentiable with respect to x and y. Provided the linear multistep method
satisfies certain suitable conditions, there holds

ym ∼ Y (x)+
∞∑

i=0
ci (x)h

p+i as m →∞ and h → 0, lim
m→∞
h→0

mh = x − a. (25.2.1)

Here p is some positive integer that depends on the local error of the linear multistep
method and the ci (x) are independent of h. Provided the method satisfies some “sym-
metry” condition, (25.2.1) assumes the refined form

ym ∼ Y (x)+
∞∑

i=0
di (x)h

p+2i as m →∞ and h → 0, lim
m→∞
h→0

mh = x − a. (25.2.2)

When {yn} is generated by the Euler method, that is, yn+1 = yn + h f (xn, yn), (25.2.1)
holds with p = 1. When {yn} is generated by the “trapezoidal rule”, that is, yn+1 = yn +
h
2 [ f (xn, yn)+ f (xn+1, yn+1)], then (25.2.2) holds with p = 2. The same is true when
the “implicit midpoint rule” is used, that is, when yn+1 = yn−1 + h f ( xn+xn+1

2 ,
yn+yn+1

2 ).
(Note that this last method is not a linear multistep method.)
The existence of the asymptotic expansions in (25.2.1) and (25.2.2) immediately

suggests that the Richardson extrapolation process can be used to improve the accuracy
of the numerical solutions. Let us first denote the yn by yn(h). Nowwe start with a stepsize
h0 and xn = a + nh0, n = 0, 1, . . . , and apply the linear multistep method to compute
the approximations yn(h0). We next apply the same method with stepsizes hi = h0/2i ,
i = 1, 2, . . . , to obtain the approximations yn(hi ). [Obviously, y2i n(hi ) ≈ Y (xn) and
limi→∞ y2i n(hi ) = Y (xn) for each fixed n.] Finally, for each n = 1, 2, . . . , we apply
the Richardson extrapolation process to the sequence {y2i n(hi )}∞i=0, to obtain better and
better approximations to Y (xn), n = 1, 2, . . . .
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Clearly, the most important research topics of this subject are (i) classification of
those difference methods that give rise to expansions of the forms described in (25.2.1)
and (25.2.2), and (ii) explicit construction of these asymptotic expansions. The rest is
immediate.
This interesting line of research was initiated by Gragg [104], [105]. [Before the work

of Gragg, the existence of the asymptotic expansions in (25.2.1) and (25.2.2) was tacitly
assumed.] Important contributions to this topic have been made by several authors. See,
for example, the works Stetter [323], [324], [325], and Hairer and Lubich [121]. See
also Stoer and Bulirsch [326], Marchuk and Shaidurov [206], and Hairer, Nørsett, and
Wanner [122]. For introductions and summaries, see also Lambert [157, Chapter 6] and
Walz [349, Chapter 3].
Asymptotic expansions of the forms given in (25.2.1) and (25.2.2) have also been

derived for difference solutions of two-point boundary value problems in ordinary dif-
ferential equations and linear and nonlinear integral and integro-differential equations of
Volterra and Fredholm types. Again, the resulting numerical solutions can be improved
by applying the Richardson extrapolation process precisely as described here. We do not
consider these problems here but refer the reader to the relevant literature.

25.3 Romberg-Type Quadrature Formulas for Periodic Singular and
Weakly Singular Fredholm Integral Equations

25.3.1 Description of Periodic Integral Equations

The numerical solution of Fredholm integral equations

ω f (t)+
∫ b

a
K (t, x) f (x) dx = g(t), a ≤ t ≤ b, (25.3.1)

is of practical interest in different disciplines. (Such equations are of the first or the second
kind depending on whether ω = 0 or ω = 1, respectively.) In this section, we consider a
special class of such equations that arise from so-called boundary integral formulation of
two-dimensional elliptic boundary value problems in a bounded domain$. The integral
term in (25.3.1) in such a case is actually a line integral along the boundary curve ∂$ of
the domain $. These equations have the following important features: (i) Their kernel
functions K (t, x) are singular along the line x = t . (ii) The input functions K (t, x) and
g(t) and the solution f (t) are all periodic with period T = b − a. (iii)When the curve
∂$ is infinitely smooth and the function g is infinitely smooth along ∂$, that is, when
g(t) ∈ C∞(−∞,∞), so is the solution f .
In case K (t, x) has an integrable singularity across x = t , (25.3.1) is said to be weakly

singular. In case K (t, x) ∼ c/(x − t) as x → t for some constant c �= 0, and the integral∫ b
a K (t, x) f (x) dx is defined only in the Cauchy principal value sense, it is said to be

singular.
Here we consider those integral equations with the following properties:

(i) The kernel K (t, x) is periodic both in t and in x with period T = b − a and is in-
finitely differentiable in (−∞,∞) \ {t + kT }∞k=−∞. It either has a polar singularity
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(PS) and can be expressed as in

K (t, x) = H1(t, x)

x − t
+ H2(t, x), (PS), (25.3.2)

or it has an algebraic singularity (AS) and can be expressed as in

K (t, x) = H1(t, x)|t − x |s + H2(t, x), �s > −1, (AS), (25.3.3)

or it has a logarithmic singularity (LS) and can be expressed as in

K (t, x) = H1(t, x) log |t − x | + H2(t, x), (LS), (25.3.4)

or has an algebraic-logarithmic singularity (ALS) and can be expressed as in

K (t, x) = H1(t, x)|t − x |s log |t − x | + H2(t, x), �s > −1, (ALS), (25.3.5)

and H1(t, x) and H2(t, x) in all cases are infinitely differentiable for all t, x ∈ [a, b]
(including t = x), but are not necessarily periodic. In all cases, we assume that
H1(t, t) �≡ 0.

(ii) The function g(t) is periodic in t with period T and infinitely differentiable in
(−∞,∞).

(iii) Finally, we assume that the solution f (t) exists uniquely and is periodic in t with
period T and infinitely differentiable in (−∞,∞). (This assumption seems to hold
always. For a heuristic justification, see Sidi and Israeli [310, Section 1].)

A common approach to the numerical solution of integral equations is via so-called
quadraturemethods,where one replaces the integral in (25.3.1) by anumerical quadrature
formula and then collocates the resulting equation at the abscissas xi of this formula, thus
obtaining a set of equations for the approximations to the f (xi ). When treating singular
andweakly singular integral equations, such an approach produces low accuracy because
of the singularity in the kernel. Here we would like to describe an approach due to Sidi
and Israeli [310] that is suitable precisely for such (periodic) integral equations and that
makes use of appropriate Romberg-type numerical quadrature formulas of high accuracy.
(See also Section D.6 of Appendix D, where the relevant Euler–Maclaurin expansions
are summarized.)

25.3.2 “Corrected” Quadrature Formulas

Let n be a positive integer and set h = T/n and xi = a + ih, i = 1, . . . , n. In addition,
let t ∈ {x1, . . . , xn}. Following Section D.6 of Appendix D, let us now define the “cor-
rected” trapezoidal rule approximations I [h; t] to the integral I [t] = ∫ b

a K (t, x) f (x) dx
as in

I [h; t] =
n∑

i=1
wn(t, xi ) f (xi ), (25.3.6)

where

wn(t, x) = hK (t, x) for x �= t, h = T/n, (25.3.7)
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and

wn(t, t) =






0 (PS)
h[H2(t, t)− 2ζ (−s)H1(t, t)hs] (AS)

h[H2(t, t)+ H1(t, t) log( h
2π )] (LS)

h[H2(t, t)+ 2{ζ ′(−s)− ζ (−s) log h}H1(t, t)hs] (ALS)

(25.3.8)

[Here, ζ (−s) and ζ ′(−s) can be computed by accelerating the convergence of the series∑∞
k=1 k

−z and
∑∞

k=1 k
−z log k for suitable z and by using Riemann’s reflection formula

when necessary. See Appendix E.] These I [h; t] have the asymptotic expansions

I [h; t] = I [t]+ γ (t)h + O(hµ) as h → 0, for every µ > 0, (PS) (25.3.9)

I [h; t] ∼ I [t]+
∞∑

k=1
αk(t ; s)h

s+2k+1 as h → 0, (AS) (25.3.10)

I [h; t] ∼ I [t]+
∞∑

k=1
βk(t ; 0)h

2k+1 as h → 0, (LS) (25.3.11)

I [h; t] ∼ I [t]+
∞∑

k=1
[αk(t ; s) log h + βk(t ; s)]h

s+2k+1 as h → 0, (ALS) (25.3.12)

where γ (t), the αk(t ; s), and the βk(t ; s) depend only on t but are independent of h:

γ (t) = −H2(t, t) f (t)− ∂

∂x
[H1(t, x) f (x)]

∣
∣
x=t

,

αk(t ; s) = 2
ζ (−s − 2k)

(2k)!

∂2k

∂x2k
[H1(t, x) f (x)]

∣
∣
x=t

, k = 1, 2, . . . , (25.3.13)

βk(t ; s) = −2ζ
′(−s − 2k)

(2k)!

∂2k

∂x2k
[H1(t, x) f (x)]

∣
∣
x=t , k = 1, 2, . . . .

From these expansions, it follows that I [h; t]− I [t] is O(h) for PS, O(hs+3) for AS,
O(h3) for LS, and O(hs+3 log h) for ALS.
When s is a positive even integer in (25.3.5) (ALS), say s = 2p with p = 1, 2, . . . ,

we have αk(t ; 2p) = 0 for all k. Therefore, in this case,

wn(t, t) = h[H2(t, t)+ 2ζ ′(−2p)H1(t, t)h
2p], (25.3.14)

I [h; t] ∼ I [t]+
∞∑

k=1
βk(t ; 2p)h

2p+2k+1 as h → 0, (25.3.15)

from which we also have I [h; t]− I [t] = O(h2p+3) as h → 0. [The case that normally
arises in applications is that with s = 2, and the (ALS) formula I [h; t] in (25.3.6) with
(25.3.7) and (25.3.14), and with p = 1, has been used in a recent paper by Christiansen
[52]. In this case, we have I [h; t]− I [t] = O(h5) as h → 0.]
Note that, in constructing I [h; t] for the weakly singular cases, we do not need to

know H1(t, x) and H2(t, x) for all t and x , but only for x = t . We can obtain H1(t, t) and
H2(t, t) simply by expanding K (t, x) for x → t . For the singular case, neither H1(t, t)
nor H2(t, t) needs to be known.
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The quadraturemethod based on any of the rules I [h; t] is nowdefined by the equations

ω f̃ k + I [h; xk] = g(xk), k = 1, 2, . . . , n. (25.3.16)

More explicitly, these equations are

ω f̃ k +
n∑

i=1
wn(xk, xi ) f̃ i = g(xk), k = 1, 2, . . . , n, (25.3.17)

where f̃ i is the approximation to f (xi ). In general, the accuracy of the f̃ i is the same as
that of the underlying numerical quadrature formula, which is I [h; t] in this case.We can
increase the accuracy of the quadrature method by increasing that of I [h; t], which we
propose to achieve by using extrapolation. What makes this possible is the periodicity
of the integrand K (t, x) f (x) as a function of x . We turn to this subject next.

25.3.3 Extrapolated Quadrature Formulas

Treatment of the Singular Case

We start by illustrating this point for the case of PS, where one extrapolation suffices
to remove the single term γ (t)h from the expansion of I [h; t]. Let us choose h = T/n
for some even integer n and let xi = a + ih, i = 0, 1, . . . , n. Performing this single
extrapolation, we obtain the Romberg-type quadrature rule

J [h; t] = 2I [h; t]− I [2h; t] (25.3.18)

as the new approximation to I [t]. Consequently, we also have

J [h; t] = I [t]+ O(hµ) as h → 0, for every µ > 0. (25.3.19)

That is, as n →∞, the error in J [h; t] tends to zero faster than any negative power of
n. The quadrature method for (25.3.1) based on J [h; t] is thus

ω f̃ k + J [h; xk] = g(xk), k = 1, 2, . . . , n. (25.3.20)

More explicitly,

ω f̃ k + 2h
n∑

i=1
εk,i K (xk, xi ) f̃ i = g(xk), k = 1, 2, . . . , n, (25.3.21)

where we have defined

εk,i =
{
1 if k − i odd,
0 if k − i even.

(25.3.22)

Surprisingly, J [h; t] is the midpoint rule approximation (with n/2 abscissas) for the
integral

I [t] =
∫ t+T/2

t−T/2
G(x) dx =

∫ T/2

−T/2
G(t + ξ ) dξ ; G(x) ≡ K (t, x) f (x).
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From symmetry, this can also be written as

I [t] =
∫ T/2

−T/2
Ge(ξ ) dξ ; Ge(ξ ) ≡ 1

2
[G(t + ξ )+ G(t − ξ )].

Note thatGe(ξ ) is periodicwith period T and has no singularities in (−∞,∞). In view of
this, the error term given in (25.3.19) can be improved substantially in case the integrand
G(x) possesses certain analyticity properties. This improvement was given by Sidi and
Israeli [310, Theorem 9], and we include it here for completeness.

Theorem 25.3.1 Let K (t, z) f (z) ≡ G(z), for fixed t and variable complex z, be an-
alytic in the strip |!z| < σ for some σ > 0, except at the simple poles t + kT ,
k = 0,±1,±2, . . . . Define

M(τ ) = max

{

max−∞<x<∞ |Ge(x + iτ )|, max−∞<x<∞ |Ge(x − iτ )|
}

,

where Ge(ξ ) is as defined above. Then

|J [h; t]− I [t]| ≤ 2T M(σ ′)
exp(−nπσ ′/T )

1− exp(−nπσ ′/T )
, for every σ ′ ∈ (0, σ ).

Simply put, this theorem says that the error in J [h; t] tends to zero as n →∞ expo-
nentially in n, like e−nπσ/T , for all practical purposes.

Treatment of the Weakly Singular Case

For the case of LS, we start by using only one extrapolation to eliminate the term
β1(t ; 0)h3 from the asymptotic expansion of I [h; t]. Let us choose h = T/n for some
even integer n and let xi = a + ih, i = 0, 1, . . . , n. Performing this single extrapolation,
we obtain the Romberg-type quadrature rule

J1[h; t] = 8

7
I [h; t]− 1

7
I [2h; t] (25.3.23)

as the new approximation to I [t]. We also have

J1[h; t] ∼ I [t]+
∞∑

k=2

23 − 22k+1

7
βk(t ; 0)h

2k+1 as h → 0, (25.3.24)

hence J1[h; t]− I [t] = O(h5) as h → 0. The quadrature method for (25.3.1) based on
J1[h; t] is thus

ω f̃ k + J1[h; xk] = g(xk), k = 1, 2, . . . , n. (25.3.25)

More explicitly,

ω f̃ k +
n∑

i=1

[
8

7
wn(xk, xi )− 1

7
ε
(1)
k,iwn/2(xk, xi )

]

f̃ i = g(xk), k = 1, 2, . . . , n,

(25.3.26)
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where

ε
(1)
k,i =

{
1 if k − i even,
0 if k − i odd.

(25.3.27)

By applying two extrapolations, we can remove the termsβk(t ; 0)h2k+1, k = 1, 2, from
the asymptotic expansion of I [h; t]. This time we choose h = T/n for an integer n that is
divisible by 4, and let xi = a + ih, i = 0, 1, . . . , n. Performing the two extrapolations,
we obtain the Romberg-type quadrature rule

J2[h; t] = 32

31
J1[h; t]− 1

31
J1[2h; t]

= 256

217
I [h; t]− 40

217
I [2h; t]+ 1

217
I [4h; t] (25.3.28)

as the new approximation to I [t]. We also have

J2[h; t] ∼ I [t]+
∞∑

k=3

23 − 22k+1

7
· 2

5 − 22k+1

31
βk(t ; 0)h

2k+1 as h → 0, (25.3.29)

hence J2[h; t]− I [t] = O(h7) as h → 0. The quadrature method for (25.3.1) based on
J2[h; t] is thus

ω f̃ k + J2[h; xk] = g(xk), k = 1, 2, . . . , n. (25.3.30)

More explicitly,

ω f̃ k +
n∑

i=1

[
256

217
wn(xk, xi )− 40

217
ε
(1)
k,iwn/2(xk, xi )+ 1

217
ε
(2)
k,iwn/4(xk, xi )

]

f̃ i = g(xk),

k = 1, 2, . . . , n, (25.3.31)

where ε(1)k,i are as before and

ε
(2)
k,i =

{
1 if k − i divisible by 4,
0 otherwise.

(25.3.32)

For the development of Romberg-type formulas of all orders for all types of weak
singularities, we refer the reader to Sidi and Israeli [310].

25.3.4 Further Developments

Once the f̃ i have been obtained, we can construct a trigonometric polynomial Pn(t)
in cos(2πkt/T ), sin(2πkt/T ), k = 0, 1, . . . , that satisfies the interpolation condi-
tions Pn(xi ) = f̃ i , i = 1, 2, . . . , n. As the f̃ i are good approximations to the f (xi )
for all i = 1, . . . , n, we expect Pn(t) to be a good approximation to f (t) throughout
[a, b].
It is easy to see that the methodology presented here can be applied to systems of

periodic integral equations in several unknown functions, where the integral terms may



428 25 Further Applications of Extrapolation Methods

contain both singular and weakly singular kernels of the forms discussed. All these
kernels have their singularities only along x = t . Such systems occur very frequently in
applications.
In case g(t) ≡ 0 in (25.3.1), we have an eigenvalue problem. It is clear that our

methodology can be applied without any changes to such problems too.
The approach of Sidi and Israeli [310] to the solution of periodic singular and weakly

singular Fredholm integral equations outlined partially here has been used successfully
in different applications involving boundary integral equation formulations. See, for ex-
ample, Almgren, Dai, and Hakim [5], Coifman et al. [55], Fainstein et al. [82], Haroldsen
and Meiron [124], Hou, Lowengrub, and Shelley [136], McLaughlin, Muraki, and
Shelley [209], Nie and Tian [219], Nitsche [221], Shelley, Tian, and Wlodarski [266],
and Tyvand and Landrini [342].
For the case of LS [with a special kernel K (t, x) only], Christiansen [51] derived a

numerical quadrature rule that has the same appearance as the rule I [h; t] given through
(25.3.6) and (25.3.7). It differs from our I [h; t] in itswn(t, t), which is more complicated
than ourwn(t, t) in (25.3.8) (LS). The asymptotic expansion of the error in Christiansen’s
rule was given in Sidi [289], where it was shown that this rule too has an error that is
O(h3) and its asymptotic expansion contains all the powers h3+k , k = 0, 1, . . . . This
should be compared with the error of our I [h; t], whose asymptotic expansion has only
the odd powers h3+2k , k = 0, 1, . . . .We are thus led to conclude that the Romberg-type
quadrature formulas based on the I [h; t] presented here will be more effective than those
based on the rule of Christiansen [51]. This conclusion has also been verified numerically
in Sidi [289].

25.4 Derivation of Numerical Schemes for Time-Dependent Problems
from Rational Approximations

Rational approximations have been used in deriving numerical schemes (finite differ-
ences, finite elements, etc.) for time-dependent problems. Let us consider the solution
of the problem

∂U

∂t
= AU, (25.4.1)

where t denotes time and A is an operator independent of t . At least formally, we can
write

U (t +�t) =
∞∑

k=0

(
∂k

∂t k
U (t)

)
(�t)k

k!
= exp

(

�t · ∂
∂t

)

U (t) = exp(�t · A)U (t).

(25.4.2)

Let us now approximate exp(z) by a rational function r (z) = p(z)/q(z), and use this to
replace (25.4.2) by the approximate equation

U (t +�t) ≈ r (�t · A)U (t) ⇒ q(�t · A)U (t +�t) ≈ p(�t · A)U (t). (25.4.3)
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If we write p(z) =∑K
i=0 ai z

i and q(z) =∑L
i=0 bi z

i , and denote U (k) ≡ U (k�t), then
(25.4.3) can be written in the form

L∑

i=0
bi (�t)i AiU (k+1) ≈

K∑

i=0
ai (�t)i AiU (k). (25.4.4)

Finally, replacing the operator A by a suitable approximation Â if necessary, we obtain
from the approximate equation in (25.4.4) the numerical scheme

L∑

i=0
bi (�t)i Âi u(k+1) =

K∑

i=0
ai (�t)i Âi u(k), (25.4.5)

where u(k) is an approximation for U (k). We expect the numerical solution u(k) to have
high accuracy, provided r (z) and Â are high-accuracy approximations for exp(z) and A,
respectively.
As an example, let us consider the one-dimensional heat equation

∂U

∂t
= κ

∂2U

∂x2
, 0 < x < 1, t > 0, (25.4.6)

subject to the boundary and initial conditions

U (0, t) = f0(t), U (1, t) = f1(t); U (x, 0) = g(x). (25.4.7)

First, choosing r (z) = (1+ 1
2 z)/(1− 1

2 z), the [1/1] Padé approximant to exp(z) for
which exp(z)− r (z) = O(z3), we obtain [cf. (25.4.4)]

(

I − 1

2
(�t)A

)

U (k+1) ≈
(

I + 1

2
(�t)A

)

U (k); A ≡ κ
∂2

∂x2
. (25.4.8)

Letting �x = 1/N and xi = i�x , i = 0, 1, . . . , N , and denoting U (xi , t) = Ui (t) for
short, we next approximate A via the central difference of order 2

∂2

∂x2
Ui (t) ≈ Ui+1(t)− 2Ui (t)+Ui−1(t)

(�x)2
, i = 1, . . . , N − 1. (25.4.9)

Consequently, the equations in (25.4.5) become

u(k+1)
i − 1

2
ω
(
u(k+1)
i+1 − 2u(k+1)

i + u(k+1)
i−1

) = u(k)
i + 1

2
ω
(
u(k)
i+1 − 2u(k)

i + u(k)
i−1
)
,

i = 1, . . . , N − 1, k = 0, 1, . . . ; ω ≡ κ
�t

(�x)2
, (25.4.10)

with the boundary and initial conditions

u(k)
0 = f0(k�t), u(k)

N = f1(k�t); u(0)
i = g(xi ), i = 0, 1, . . . , N . (25.4.11)

Here u(k)
i is an approximation to U (k)

i = Ui (k�t) = U (i�x, k�t). The resulting (im-
plicit) finite-difference method is known as the Crank–Nicolson method and can be
found in standard books on numerical solution of partial differential equations. See, for
example, Ames [10] or Iserles [141]. It is unconditionally stable, that is,�x and�t can
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be reduced independently. Let us express the difference equations in (25.4.10) in the
form

Fi,k(u) = 0,

where, with v(k)i = v(i�x, k�t) for arbitrary v(x, t),

Fi,k(v) ≡ v
(k+1)
i − v

(k)
i

�t
+ κ

2

[
v
(k)
i+1 − 2v(k)i + v

(k)
i−1

(�x)2
+ v

(k+1)
i+1 − 2v(k+1)i + v

(k+1)
i−1

(�x)2

]

.

Then, the local truncation error of the Crank–Nicolson method is given as

Fi,k(U ) = O((�x)2)+ O((�t)2).

[Recall that U (x, t) is the exact solution of (25.4.6).] Thus, the method is second-order-
accurate in both �x and �t .
Rational approximations, Padé approximants and others, to exp(z) have been used to

derive numerical methods for the solution of ordinary differential equations as well. For
such problems, the relevant rational approximations r (z) are required to beA-acceptable,
that is, they are required to satisfy |r (z)| < 1 for �z < 0. (This is the same as requiring
that the corresponding numerical method be A-stable.) An important technique that has
been used in the study of A-acceptability is that of order stars, developed first inWanner,
Hairer, and Nørsett [350]. These authors applied the technique to Padé approximants
and showed that the [m/n] Padé approximants are A-acceptable if and only if m ≤ n ≤
m + 2. These results were generalized to approximations other than Padé by Iserles
[140]. See also Iserles and Nørsett [142].

25.5 Derivation of Numerical Quadrature Formulas
from Sequence Transformations

Let µ(t) be a nondecreasing function on an interval [a, b] with infinitely many points of
increase there, and let the integral

I [ f ] =
∫ b

a
f (x) dµ(x) (25.5.1)

be defined in the sense of Stieltjes. Let us approximate this integral by the n-point
numerical quadrature formula

In[ f ] =
n∑

k=1
wn,k f (xn,k), (25.5.2)

where the xn,k and wn,k are, respectively, the abscissas and weights of this formula.
Furthermore, xn,k ∈ [a, b]. One way of viewing the numerical quadrature formula In[ f ]
is as follows: Let f (z) be analytic in a domain$ of the z-plane that contains the interval
[a, b] in its interior. Then, we can write

I [ f ] = 1

2π i

∫

C
H (z) f (z) dz, In[ f ] = 1

2π i

∫

C
Hn(z) f (z) dz, (25.5.3)
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where C is a closed contour that is in the interior of $ and that contains [a, b] in its
interior, and the functions H (z) and Hn(z) are defined via

H (z) =
∫ b

a

dµ(x)

z − x
, Hn(z) =

n∑

k=1

wn,k

z − xn,k
. (25.5.4)

We see that H (z) is analytic in the z-plane cut along the interval [a, b] and that Hn(z)
is a rational function of z, its numerator and denominator polynomials being of degree
n − 1 and n, respectively. From the error expression

I [ f ]− In[ f ] = 1

2π i

∫

C
[H (z)− Hn(z)] f (z) dz, (25.5.5)

it is clear that, for In[ f ] to converge to I [ f ], Hn(z) must converge to H (z) in the z-plane
cut along the interval [a, b].
Now, H (z) has the asymptotic expansion

H (z) ∼
∞∑

i=0
µi z

−i−1 as z →∞; µi =
∫ b

a
xi dµ(x), i = 0, 1, . . . . (25.5.6)

In view of (25.5.6), one effective way of approximating H (z) is via Padé approximants,
that is, by choosing Hn(z) = z−1 Ĥn−1,n(z−1), where Ĥm,n(ζ ) is the [m/n] Padé approx-
imant from the power series

∑∞
i=0 µiζ

i . As we saw in Section 17.9, the approximation
In[ f ] that results from this is nothing but the n-point Gaussian quadrature formula for
I [ f ], for which In[ f ] = I [ f ] for all f (x) that are polynomials of degree at most 2n − 1.
Recall that Padé approximants from

∑∞
i=0 µiζ

i are also obtained by applying the
Shanks transformation to the sequence (of partial sums) {∑n

i=0 µiζ
i }∞n=0. This means

that numerical quadrature formulas other than Gaussian can be derived by applying to
this sequence suitable sequence transformations other than that of Shanks. For example,
we may use the Levin transformations or appropriate modifications of them for this
purpose, provided {µn} ∈ b(1).
Let us first observe that

H (z)− An−1(z) = 1

zn−1

∫ b

a

xn−1

z − x
dµ(x); Ak(z) =

k−1∑

i=0
µi z

−i−1, k = 1, 2, . . . .

(25.5.7)

If the integral on the right-hand side of (25.5.7) has an asymptotic expansion of the form
cn
∑∞

i=0 δi n
−i as n →∞, then we can approximate H (z) by applying GREP(1) to the

sequence {An(z)} via the equations

Ar−1(z) = A( j)
n (z)+ cr

zr−1

n−1∑

i=0

δ̄i

r i
, r = j + 1, . . . , j + n + 1. (25.5.8)

[Here we have defined A0(z) = 0.] The approximation A(0)
n (z) to H (z) is given by

A(0)
n (z) =

∑n
i=0 λi zi Ai (z)∑n

i=0 λi zi
; λi = (−1)i

(
n

i

)
(i + 1)n−1

ci+1
, i = 0, 1, . . . , n. (25.5.9)
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Obviously, when the ci are independent of z, so are the λi , and hence A(0)
n (z) is a

rational function whose numerator and denominator polynomials are of degree n − 1
and n, respectively. Therefore, we can choose Hn(z) to be A(0)

n (z). Then, the abscissas
xn,k of In[ f ] are the poles of Hn(z) [equivalently, the zeros of the polynomial

∑n
i=0 λi zi ],

while the weights wn,k of In[ f ] are the residues of A(0)
n (z) at the xn,k , namely,

wn,k =
∑n

i=1 λi zi
(∑i−1

r=0 µr z−r−1)
∑n

i=1 iλi zi−1

∣
∣
∣
∣
z=xn,k

, k = 1, . . . , n, (25.5.10)

provided the poles xn,k are simple. This approach to the derivation of numerical quadra-
ture formulaswas proposed by Sidi [275] for finite-range integrals, and it was extended to
infinite-range integrals in Sidi [279], [282]. See also Davis and Rabinowitz [63, p. 307].
We show in the following how this approach is applied to finite-range integrals with
algebraic-logarithmic endpoint singularities.
When [a, b] = [0, 1] and dµ(x) = w(x)dx , where w(x) = (1− x)αxβ(− log x)ν ,

α+ ν > −1, β > −1, we have that {µn} ∈ b(1) indeed. By making the transformation
of variable x = e−t in (25.5.7), we obtain

H (z)− An−1(z) = 1

zn−1

∫ ∞

0
e−nt t

ν(1− e−t )αe−βt

z − e−t
dt. (25.5.11)

which, upon applying Watson’s lemma, yields the asymptotic expansion

H (z)− An−1(z) ∼ 1

zn−1nα+ν+1

∞∑

i=0
ui (z)n

−i as n →∞, (25.5.12)

where u0(z) = �(α+ν+1)
z−1 . Note that this asymptotic expansion is valid for all complex

z �∈ [0, 1]. Thus, we can construct Hn(z) = A(0)
n (z) as in (25.5.9) with cn = n−(α+ν+1).

As is shown by Sidi [275] for integer α + ν and by Sidi and Lubinsky [314] for arbitrary
α + ν, the polynomial

∑n
i=0 λi zi of (25.5.9) has n simple real zeros xn,k in the open

interval (0, 1). Furthermore, these zeros are clustered near 0. (There are similar formulas
for integrals of the form

∫ 1
−1w(x) f (x) dx , withw(x) = (1− x2)α , for example, that have

their abscissas in (−1, 1) and located symmetrically with respect to 0. See Sidi [275] for
details.)
The resulting formulas In[ f ] are remarkable in that their abscissas are independent

of β and depend only on α + ν. Thus, by setting cn = n−1 in (25.5.9) and (25.5.10), we
are able to obtain numerical quadrature formulas forw(x) = xβ for any β. Furthermore,
cn = n−1 can also be used to obtain formulas for w(x) = xβ(− log x)ν , where ν is a
small integer such as 1, 2, . . . . All these formulas have the same set of abscissas.
More generally, by setting cn = n−γ in (25.5.9) and (25.5.10), we are able to obtain
numerical quadrature formulas for w(x) = (1− x)αxβ(− log x)ν , where β is arbitrary
and α + ν + 1 = γ + s, where s is a small integer like 1, 2, . . . . All these formulas too
have the same set of abscissas. Numerical experiments show that these rules are very
effective. Their accuracy appears to be comparable to that of the corresponding Gaussian
formulas, at least for moderate n.
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When we apply the formulas corresponding to w(x) = 1 [that is, with cn = n−1

and µn = (n + 1)−1] to integrals I [ f ] = ∫ 1
0 f (x) dx , where f (x) has an integrable

singularity at x = 0 and is infinitely differentiable everywhere in (0, 1], the new rules
seem to be more effective than the corresponding Gaussian rules, as suggested by the
numerical examples in [275]. In view of this observation, let us transform the variable
x via x = 2ψ(u/2), where ψ(t) is precisely as in Subsection 25.1.2. This results
in I [ f ] = ∫ 1

0 g(u) du, where g(u) ≡ f (2ψ(u/2))ψ ′(u/2). In case ψ(t) is infinitely
differentiable on [0, 1], the transformed integrand g(u) is infinitely differentiable on
(0, 1] and may have a singularity at u = 0 that is weaker than the singularity of f (x)
at x = 0. Thus, the new rules can be much more effective on

∫ 1
0 g(u) du than on

∫ 1
0 f (x) dx . (This idea was proposed by Johnston [143], who used Gaussian quadrature.
Johnston [143] also demonstrated via numerical experiments that class Sm variable
transformations are very appropriate for this purpose.)

25.6 Computation of Integral Transforms with Oscillatory Kernels

25.6.1 Via Numerical Quadrature Followed by Extrapolation

In Chapter 11, we considered in detail the application of various powerful extrapolation
methods such as the D̃-, D̄-, sD-, andmW -transformations and their variants to integrals
of the form I [ f ] = ∫∞

0 f (t) dt , where f (x) = u(x)K (x), u(x) either does not oscillate
at infinity or oscillates very slowly there, and the kernel function K (x) oscillates about
zero infinitely many times as x →∞ with its phase of oscillation being polynomial
ultimately. Here we recall briefly the main points of Chapter 11 on this topic.
To set the background,we beginwith the use of (the variant of) themW -transformation

on such integrals. In this method, we first choose a sequence of points xl , 0 < x0 <
x1 < · · · , as the consecutive zeros of K (x) or of K ′(x). We next compute the inte-
grals ψ(xl) =

∫ xl+1
xl

f (t) dt and F(xl) =
∫ xl
0 f (t) dt , l = 0, 1, . . . . Finally, we define

the approximations W ( j)
n to I [ f ] via the linear systems

F(xl) = W ( j)
n + ψ(xl)

n−1∑

i=0

β̄ i

x i
l

, j ≤ l ≤ j + n.

These systems can be solved for the W ( j)
n very efficiently via the W-algorithm, as de-

scribed in Subsection 11.1.1.
Since (in case of convergence) I [ f ] =∑∞

k=0 ck , where c0 =
∫ x0
0 f (t) dt and ck =

ψ(xk−1), k = 1, 2, . . . , we can approximate I [ f ] by accelerating the convergence of
the series

∑∞
k=0 ck . In view of the fact that this series is alternating, several sequence

transformations are effective for this purpose. For example, we can apply the iterated
�2-process, the iterated Lubkin transformation, the Shanks transformation (the
ε-algorithm), and the Levin t- and u-transformations successfully. This line of research
was begun by Longman [170], [171], who used the Euler transformation. Later the
use of the iterated Shanks transformations was demonstrated by Alaylioglu, Evans, and
Hyslop [3], and the use of the Shanks and Levin transformations was demonstrated in
the survey paper by Blakemore, Evans, and Hyslop [27].
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In their surveys on the numerical computation of Bessel function integrals [the case
K (x) = Jν(ρx), ν > 0, ρ > 0], Lucas and Stone [189] and Michalski [211] test a large
battery of methods and conclude that themW -transformation and its variants are among
the most effective. In particular, the mW -transformation with equidistant xl , namely,
xl = x0 + lπ/ρ, l = 0, 1, . . . , produces very good results for moderate values of ν. For
large values of ν, the mW -transformation, with the xl chosen as the zeros of K (x) or
K ′(x), produces very high accuracy. The work of Lucas and Stone [189] is concerned
with the case of large values of ν. The numerical experiments of Sidi [299] show the
D̄-transformation and its variants to be equally effective for small and for large ν.
In connection with Bessel function integrals, we would like to also mention that the
use of equidistant xl as above was first proposed by Sidi [274], [281] in connection
with application of the D̃- and W -transformations. The same xl were later used by
Lyness [197] in connection with application of the Euler transformation.
Finally, we recall the variant of the mW -transformation given in Subsection 11.8.4,

which is defined via the linear systems

F(xl) = W ( j)
n + ψ(xl)

n−1∑

i=0

β̄ i

(l + 1)i/m
, j ≤ l ≤ j + n,

when xl ∼
∑∞

i=0 ai l
(1−i)/m as l →∞, a0 > 0. Here xl and ψ(xl) are as before. As

mentioned in Subsection 11.8.4, this method is comparable to other variants of themW -
transformation as far as its performance is concerned, and it can also be implemented
via the W-algorithm.

25.6.2 Via Extrapolation Followed by Numerical Quadrature

We continue with other uses of sequence transformations that are relevant to Fourier
and inverse Laplace transforms. Let us consider the case in which K (x) is periodic with
period 2τ and assume that K (x + τ ) = −K (x) for all x ≥ 0. [This is the case when
K (x) = sin(πx/τ ), for example.] Let us choose xl = (l + 1)τ , l = 0, 1, . . . . We can
write

I [ f ] =
∞∑

k=0
(−1)k

∫ τ

0
u(kτ + ξ )K (ξ ) dξ.

Upon interchanging the order of integration and summation, we obtain

I [ f ] =
∫ τ

0
S(ξ )K (ξ ) dξ, S(ξ ) =

∞∑

k=0
(−1)ku(kτ + ξ ).

Being an infinite series that is ultimately alternating, S(ξ ) can be summed by an ap-
propriate sequence transformation. Following that, the integral

∫ τ
0 S(ξ )K (ξ ) dξ can be

approximated by a low-order Gaussian quadrature formula, for example.
The xl can be chosen to be consecutive zeros of K (x) or of K ′(x) too. Obviously,

xl+1 − xl = τ for all l. In this case, we can write

I [ f ] =
∫ x0

0
u(ξ )K (ξ ) dξ +

∞∑

k=0
(−1)k

∫ τ

0
u(x0 + kτ + ξ )K (x0 + ξ ) dξ.
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Upon interchanging the order of integration and summation, we obtain

I [ f ] =
∫ x0

0
u(ξ )K (ξ ) dξ +

∫ τ

0
S(ξ )K (x0 + ξ ) dξ,

S(ξ ) =
∞∑

k=0
(−1)ku(x0 + kτ + ξ ).

Now we proceed as before.

25.6.3 Via Extrapolation in a Parameter

An extrapolation method for (convergent) oscillatory integrals I [ f ] = ∫∞
0 f (t) dt , com-

pletely different from the ones discussed earlier, was given by Toda and Ono [335]. In
this method, one first computes the integral A(σ ) = ∫∞

0 e−σ t f (t) dt , σ > 0, for a de-
creasing sequence of values σk , k = 0, 1, . . . , tending to zero. (Toda and Ono choose
σk = 2−k .) Next, one applies the polynomial Richardson extrapolation to the sequence
{A(σk)} assuming that A(σ ) has the asymptotic expansion

A(σ ) ∼ I [ f ]+
∞∑

k=1
αkσ

k as σ → 0+; αk constants. (25.6.1)

Intuitively, this method is likely to be useful because, for σ > 0, the integral∫ x
0 e−σ t f (t) dt converges as x →∞ more quickly than

∫ x
0 f (t) dt , thus allowing the

integral A(σ ) to be computed more easily than I [ f ] itself.
Toda and Ono showed by example that their method works well for integrals such

as
∫∞
0 sin t/t dt ,

∫∞
0 cos t/t dt , and

∫∞
0 (cos t − cos 2t)/t dt . As part of their method,

Toda and Ono also suggest that A(σ ) be approximated as follows: Letting σ t = u,
first rewrite A(σ ) in the form A(σ ) = ∫∞

0 e−u f (u/σ ) du/σ. Next, transform this in-
tegral by letting u = ψ(v), where ψ(v) = exp(v − e−v), one of the double exponen-
tial formulas of Takahasi and Mori [333]. This results in A(σ ) = ∫∞

−∞ Q(v) dv, where
Q(v) = exp(−ψ(v)) f (ψ(v)/σ )ψ ′(v)/σ . Finally, this integral is approximated by the
trapezoidal rule T (h) = h

∑∞
m=−∞ Q(mh). It is clear that the doubly infinite summation

defining T (h) converges quickly for all small h.
An approach similar to that of Toda and Ono [335] was later used by Lund [194] in

computing Hankel transforms.
The theoretical justification of the method of Toda and Ono was given in a paper

by Sugihara [331]. This paper shows that limh→0 T (h) = A(σ ) and that the asymptotic
expansion in (25.6.1) is valid for a quite general class of kernel functions that includes,
for example, K (x) = e±ix and K (x) = Jν(x) with integer ν. Here we provide a different
proof of the validity of (25.6.1) in the context of Abel summability, whether the integral∫∞
0 f (t) dt converges or not. This proof is simpler than the one given by Sugihara [331].
We recall only the definition of Abel summability: If limε→0+

∫∞
a e−εt g(t) dt = γ for

some finite γ , then we say that the integral
∫∞
a g(t) dt exists in the sense of Abel

summability and γ is its Abel sum. Of course, in case
∫∞
a g(t) dt exists in the ordinary

sense, its value and itsAbel sum are the same.We beginwith the following simple lemma.
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Lemma 25.6.1 Let f ∈ C[a, b] and f ′ ∈ C(a, b] such that limx→a+ f ′(x) = δ. Then
f ∈ C1[a, b] as well, and f ′(a) = δ.

Proof. By the mean value theorem, we have

f (x)− f (a)

x − a
= f ′(x̂), for some x̂ ∈ (a, x).

Letting x → a+ on both sides of this equality, and noting that limx→a+ x̂ = a, we have

lim
x→a+

f (x)− f (a)

x − a
= δ,

from which it follows that f ′(x) is continuous at x = a from the right and that
f ′(a) = δ. �

Theorem 25.6.2 Let the function f (t) be such that | f (t)| is integrable on any finite
interval (a, x), a ≥ 0, and f (t) = O(t c) as t →∞, for some real constant c. In addition,
for each k = 0, 1, . . . , assume that the integrals

∫∞
a tk f (t) dt exist in the sense of

Abel summability, and denote their corresponding Abel sums by (−1)kβk . Define also
A(σ ) = ∫∞

a e−σ t f (t) dt, σ > 0. Then

A(σ ) ∼ I [ f ]+
∞∑

k=1

βk

k!
σ k as σ → 0+; I [ f ] = β0. (25.6.2)

Proof. First, we realize that A(σ ) is the Laplace transform of H (t − a) f (t), where H (x)
is the Heaviside unit step function, and that A(σ ) is an analytic function of σ for�σ > 0.
Next, we recall that A(k)(σ ) = (−1)k ∫∞a e−σ t t k f (t) dt for �σ > 0 and all k. It thus fol-
lows from theAbel summability of the integrals

∫∞
a tk f (t) dt that limσ→0+ A(k)(σ )=βk ,

k = 0, 1, . . . . Let us now define A(0) = β0. This makes A(σ ) continuous at σ = 0 from
the right.Applying nowLemma25.6.1 to A(σ ),we conclude that A′(σ ) is also continuous
at σ = 0 from the right with A′(0) = β1. By repeated application of this lemma, we con-
clude that A(σ ) is infinitely differentiable at σ = 0 from the right and that A(k)(0) = βk

for each k. Therefore, A(σ ) has the Maclaurin series

A(σ ) =
N−1∑

k=0

βk

k!
σ k + A(k)(σ ′)

N !
σ N , for some σ ′ ∈ (0, σ ). (25.6.3)

By the fact that N is arbitrary and that limσ→0+ σ ′ = 0, we have that

lim
σ→0+

[

A(σ )−
N−1∑

k=0

βk

k!
σ k

]

σ−N = A(N )(0)

N !
= βN

N !
, (25.6.4)

from which the result in (25.6.2) follows. �

It is easy to see that Theorem 25.6.2 is valid for all functions f (x) in the class B̂
defined in Section 11.8.
A similar treatment for the case in which K (x) = eiqx , with real q , was given by

Lugannani and Rice [190]. In this method, one first computes the integral B(σ ) =∫∞
a e−σ

2t2/2 f (t) dt for a decreasing sequence of values σk , k = 0, 1, . . . , tending to
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zero. Again, because, for σ > 0, the integral
∫ x
0 e−σ

2t2/2 f (t) dt converges as x →∞
more quickly than

∫ x
0 f (t) dt , the integral B(σ ) can be computed more easily than I [ f ]

itself. Again, it can be shown that

B(σ ) ∼ I [ f ]+
∞∑

k=1
αkσ

2k as σ → 0+; αk constants. (25.6.5)

As a result, we can apply the polynomial Richardson extrapolation process to the se-
quence {B(σk)} to approximate I [ f ]. See Lugannani and Rice [190] for details.

25.7 Computation of Inverse Laplace Transforms

In this section, we discuss various methods, based on extrapolation processes and se-
quence transformations, that have been used in the numerical inversion of Laplace
transforms.

25.7.1 Inversion by Extrapolation of the Bromwich Integral

First, we concentrate on the extrapolation methods used in computing the Bromwich
integral. In Section 11.8, we showed that if û(z) is the Laplace transform of u(t), that is,
if û(z) = ∫∞

0 e−zt u(t) dt , then the Bromwich integral for the inverse transform u(t) can
be expressed as in

u(t+)+ u(t−)
2

= ect

2π

[∫ ∞

0
eiξ t û(c + iξ ) dξ +

∫ ∞

0
e−iξ t û(c − iξ ) dξ

]

.

Here c is real and we have assumed that û(z) is analytic for �z ≥ c. We mentioned
in Section 11.8 that, in case û(z) = e−zt0 û0(z) with û0(z) ∈ A(γ ) for some γ [and even
in more general cases where û0(z) oscillates very slowly as !z →±∞], the mW -
transformation with ξl = (l + 1)π/(t − t0), l = 0, 1, . . . , is very effective.
The P-transformation developed by Levin [162] is very similar to the mW -

transformation but uses the points ξl = (l + 1), l = 0, 1, . . . . Because these points
do not take into consideration the fact that the phase of oscillation of the integrands
e±iξ t û(c ± iξ ) is proportional to t − t0, this transformation will be costly when |t − t0|
is too small or too large.

25.7.2 Gaussian-Type Quadrature Formulas for the Bromwich Integral

Expressing the Bromwich integral in the form

u(t) = u(t+)+ u(t−)
2

= 1

2π t i

∫ ct+i∞

ct−i∞
eζ û(ζ/t) dζ, (25.7.1)

we can develop numerical quadrature formulas of Gaussian type for this integral. In
case û(z) ∈ A(−s), let us write û(ζ/t) = tζ−sV (ζ ). Of course, V (ζ ) ∈ A(0), and we can
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rewrite (25.7.1) in the form

u(t) = 1

2π i

∫ ct+i∞

ct−i∞
w(ζ )V (ζ ) dζ, w(ζ ) = eζ ζ−s . (25.7.2)

Here w(ζ ) is viewed as a (complex-valued) weight function. Salzer [255], [256], [257]
showed that it is possible to obtain numerical quadrature formulas of Gaussian type for
this integral that are of the form

un(t) =
n∑

k=1
wn,kV (ζn,k) = t−1

n∑

k=1
wn,kζ

s
n,k û(ζn,k/t) (25.7.3)

with complex abscissas ζn,k andweightswn,k . These formulas are obtained by demanding
that

n∑

k=1
wn,k p(ζn,k) = 1

2π i

∫ ct+i∞

ct−i∞
w(ζ )p(ζ ) dζ, (25.7.4)

for all p(ζ ) that are polynomials of degree at most 2n − 1 in ζ−1. As shown by Zakian
[377], [378], their abscissas and weights are related to the partial fraction expansions of
the [n − 1/n] Padé approximantsWn−1,n(τ ) from the power seriesW (τ ) :=∑∞

k=0 µkτ
k ,

where

µk = 1

2π i

∫ ct+i∞

ct−i∞
w(ζ )ζ−k dζ = 1

�(s + k)
, k = 0, 1, . . . . (25.7.5)

[Note that W (τ ) converges for all τ and hence represents an entire function, which we
denote W (τ ) as well. For s = 1, we have W (τ ) = eτ .] Actually, there holds

Wn−1,n(τ ) =
n∑

k=1

wn,k

1− τ/ζn,k
. (25.7.6)

It turns out that the abscissas ζn,k are in the right half plane �z > 0. For even n, they
are all complex and come in conjugate pairs. For odd n, only one of the abscissas is real
and the rest appear in conjugate pairs. See Piessens [230].
Now the assumption that û(z) ∈ A(−s) means that u(t) ∼∑∞

i=0 ci t
s−1+i as t → 0+.

With this u(t), we actually have that û(z) ∼∑∞
i=0 ci�(s + i)z−s−i as �z →∞, as can

be verified with the help of Watson’s lemma. Substituting this in (25.7.3), and invoking
(25.7.5), it is easy to show that

un(t)− u(t) = O(t s+2n−1) as t → 0+ . (25.7.7)

In other words, the Gaussian formulas produce good approximations to u(t) for small to
moderate values of t .
For an extensive list of references on this subject, see Davis and Rabinowitz [63,

pp. 266–270].
Note that rational approximations other than Padé approximants can be used to derive

numerical quadrature formulas of the form (25.7.3). Because the sequence {µk} with µk

as in (25.7.5) is in b(1), we can use the Levin t- or the Sidi S-transformation to replace the
Padé approximants from the series W (τ ). It turns out that the abscissas and weights of
the formulas that are obtained from the t-transformation grow in modulus very quickly,
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which ultimately causes numerical instabilities in finite-precision arithmetic. The ones
obtained from the S-transformation grow much more slowly; actually, their growth
rates are similar to those of the Gaussian-type formulas. (Interestingly, for s = 1 these
formulas are the same as the corresponding Gaussian-type formulas.) The abscissas and
weights that result from the S-transformation on the series W (τ ) satisfy

S (0)
n (τ ) =

∑n
i=0 λiτ

n−i
∑i−1

r=0 µrτ
r

∑n
i=0 λiτ n−i

=
n∑

k=1

wn,k

1− τ/ζn,k
; λi = (−1)i

(
n

i

)
(i + 1)n−1

µi
.

(25.7.8)

In other words, the ζn,k are the zeros of the polynomial
∑n

i=0 λiτ
n−i [equivalently, the

poles of S (0)
n (τ )], and the wn,k are given by

wn,k = −1

τ
·
∑n

i=0 λiτ
n−i

∑i−1
r=0 µrτ

r

∑n
i=0(n − i)λiτ n−i−1

∣
∣
∣
∣
τ=ζn,k

. (25.7.9)

This approach to Laplace transform inversion was used in the M.Sc. thesis of
Shelef [265], which was done under the supervision of the author.

25.7.3 Inversion via Rational Approximations

We continue by describing a method for computing inverse Laplace transforms that
is based on rational approximations in the complex plane. Let û(z) be the Laplace
transform of u(t). One way of approximating the inverse transform u(t) is by generating
a sequence of rational approximations {φ̂n(z)} to û(z) and inverting each φ̂n(z) exactly
to obtain the sequence {φn(t)}. Of course, we hope that {φn(t)} will converge to u(t)
quickly. For this to happen, {φ̂n(z)} should tend to û(z) quickly in the z-plane. Also, as
limz→∞ û(z) = 0, we must require that limz→∞ φ̂n(z) = 0 as well. This means that the
degree of the numerator polynomial Pn(z) of φ̂n(z) should be strictly smaller than that
of its denominator polynomial Qn(z) for each n. Let the degree of Qn(z) be exactly n
and assume, for simplicity, that the zeros α1, . . . , αn of Qn(z) are simple. Then, φ̂n(z)
has the partial fraction expansion

φ̂n(z) =
n∑

k=1

Ak

z − αk
; Ak = Pn(αk)

Q′
n(αk)

, k = 1, . . . , n, (25.7.10)

and φn(t) is given by

φn(t) =
n∑

k=1
Ake

αk t . (25.7.11)

The rational functions φ̂n(z) can be obtained by applying a sequence transformation
to the Taylor series of û(z) at a point z0 in the right half plane where û(z) is analytic.
Thus, we can use the [n − 1/n] Padé approximants for this purpose. We can also use
the Sidi–Levin rational d-approximants when appropriate. In particular, we can use the
rational approximations obtained by applying the Levin L-transformation or the Sidi
S-transformation whenever this is possible. If z0 = 0 and

∑∞
i=0 ci z

i is the Taylor series
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of û(z), then the appropriate L-approximants are given by

L(0)
n (z) =

∑n
i=0 λi zn−i

∑i−1
r=0 cr z

r

∑n
i=0 λi zn−i

; λi = (−1)i
(
n

i

)
(i + 1)n−1

ci
. (25.7.12)

Because the φ̂n(z) are obtained from information on û(z) at z = 0, the φn(t) will produce
good approximations for large t .
Sometimes û(z) assumes the form û(z) = z−1v(z), where v(z) is analytic at z = 0. In

this case, we choose φ̂n(z) = z−1vn,n(z), where vn,n(z) are the [n/n] Padé approximants
from the expansion of v(z) at z = 0. Again, other rational approximations can be used
instead of Padé approximants.
If û(z) ∼∑∞

i=0 di z
−i−1 as z →∞, then we can choose φ̂n(z) = z−1Un−1,n(z−1),

where Un−1,n(τ ) is the [n − 1/n] Padé approximant from the power series U (τ ) :=∑∞
i=0 diτ

i . Because in this case u(t) ∼∑∞
i=0 di t

i/i! as t → 0+, it follows that

φn(t)− u(t) = O(t2n) as t → 0+ . (25.7.13)

We can also choose φ̂n(z) as a two-point Padé approximant from the expansions
û(z) =∑∞

i=0 ci z
i and û(z) ∼∑∞

i=0 di z
−i−1 as z →∞ and invert these exactly to obtain

the φn(t). In this case, we expect the φn(t) to approximate u(t) well both for small and
for large values of t .
The preceding methods should be very practical in case û(z) is difficult to compute

accurately, but its expansions as z → 0 and/or z →∞ can be obtained relatively easily.
The general ideas were suggested by Luke and were developed further and used ex-
tensively (through continued fractions, Padé approximants, and rational approximations
from the Levin transformation) by Longman in the solution of problems in theoreti-
cal seismology and electrical circuit theory. See, for example, Luke [191], [192], and
Longman and [173], [175], [176], [177].
Two-point Padé approximants were used also by Grundy [117] but in a different

manner. In Grundy’s approach, the approximations φn(t) are not sums of exponential
functions but two-point Padé approximants obtained from two asymptotic expansions of
the inverse transform u(t) in some fixed power of t . One of these expansions is at t = 0
and is obtained from that of û(z) at z = ∞, which we have already discussed. The other
expansion is at some finite point t0 that is determined by the singularity structure of û(z).
For details and examples, see Grundy [117].

25.7.4 Inversion via the Discrete Fourier Transform

Finally, we mention a method that was originally introduced by Dubner and Abate [70]
and improved by Durbin [71] that uses the discrete Fourier transform. Taking u(t) to be
real for simplicity, Durbin gives the following approximation to u(t):

uT (t)= eat

T

[
1

2
û(a)+

∞∑

k=1

{

�û

(

a+ i
kπ

T

)

cos

(
kπ t

T

)

−!û
(

a+ i
kπ

T

)

sin

(
kπ t

T

)}]

.

(25.7.14)
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Here a is a real constant chosen such that û(z) is analytic for �z ≥ a. The error in this
approximation is given by

uT (t)− u(t) =
∞∑

k=1
e−2kaT u(2kT + t), (25.7.15)

and, provided |u(t)| ≤ C for all t , it satisfies

|uT (t)− u(t)| ≤ Ce−2aT for all t ∈ [0, 2T ]. (25.7.16)

We see from (25.7.16) that, by choosing aT large, we make the error in uT (t) small.
However, in general we can only approximate the sum of the Fourier series inside the
square brackets in (25.7.14), and the error we commit in this approximation is magnified
by the factor eat , which may be large when t is of order T . This suggests that we should
obtain the sum of this series as accurately as possible. This can be achieved by using
appropriate sequence transformations. Crump [58] uses the Shanks transformation. For
the same problem Kiefer and Weiss [151] also use summation by parts. Of course, the
d-transformation with the complex series approach and APS can be used to give very
high accuracy, as was done by Sidi [294]. [The latter is discussed in Chapter 12.] In this
case, it is easy to see that (25.7.14) can be rewritten as in

uT (t) = eat

T
�
[
1

2
û(a)+

∞∑

k=1
û

(

a + i
kπ

T

)

ζ k

]

, ζ ≡ exp

(

i
π t

T

)

, (25.7.17)

and this is very convenient for the complex series approach.When û(z) ∈ A(−s) for some
s, we can use the d (1)-transformation and other sequence transformations such as the
θ -algorithm. For more complicated û(z), however, we can use only the d (m)- and Shanks
transformations.

25.8 Simple Problems Associated with {an} ∈ b(1)

In this section, we treat two simple problems associated with sequences {an} that are
in b(1).

1. Given that an = h(n) ∈ A(γ )
0 strictly for some γ �= 0, we would like to find γ . We can

easily show that

�an

an
= �h(n)

h(n)
∼

∞∑

i=0

ci
ni+1 as n →∞; c0 = γ.

Thus, Un = n(�an/an) satisfies

Un ∼ γ +
∞∑

i=1

ci
ni

as n →∞.

[Compare this with the asymptotic expansion given in (15.3.18).]
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2. Given that an = ζ nh(n), with ζ �= 1 and h(n) ∈ A(γ )
0 strictly for some γ , we would

like to find ζ and γ . This time, we have that

Vn = an+1
an

= ζ
h(n + 1)

h(n)
= ζ

(

1+ �h(n)

h(n)

)

∼ ζ +
∞∑

i=0

ζci
ni+1 as n →∞.

Similarly, we can show that

− �Vn

Vn
= −�(h(n + 1)/h(n))

h(n + 1)/h(n)
∼

∞∑

i=0

ei
ni+2 as n →∞; e0 = γ.

Thus, Wn = −n2(�Vn/Vn) satisfies

Wn ∼ γ +
∞∑

i=1

ei
ni

as n →∞.

It is thus clear that γ in the first problem and ζ and γ in the second problem can be
determined by applying the polynomial Richardson extrapolation to the sequences {Un},
{Vn}, and {Wn}. They can also be determined via the Levin u-transformation, the iterated
Lubkin transformation, the ρ-algorithm, and the θ-algorithm.

25.9 Acceleration of Convergence of Infinite Series with Special Sign Patterns

Let us first consider infinite series of the form
∑∞

k=0(−1)�k/q�vk , where q is a positive in-
teger and {vn} ∈ b(r ) for some r . Note that the sequence of the factors (−1)�k/q� comprises
q (+1)s, followed by q (−1)s, followed by q (+1)s, and so on. We have already seen one
such example (with q = 2 and r = 1), namely, Lubkin’s series

∑∞
k=0(−1)�k/2�/(k + 1),

in our discussion of the �2-process in Chapter 15.
In case q ≥ 2 or r ≥ 2 or both, such series cannot be handled by the iterated

�2-process, the iterated Lubkin transformation, the Levin transformations, and the
θ -algorithm. When the term (−1)�n/q�vn has no nonoscillatory part in its asymptotic
expansion as n →∞, the transformations of Euler and of Shanks can be applied effec-
tively. Otherwise, they are not useful. The d (m)-transformation with m = qr is always
effective, however. We now discuss the reason for this.
Denote ck = (−1)�k/q�. Then the ck satisfy the linear (q + 1)-term recursion relation

cn+q + cn = 0, hence the linear difference equation cn = −∑q
k=1

1
2

(q
k

)
�kcn . Therefore,

{cn} ∈ b(q). In fact, cn is of the form cn =
∑q

s=1 αsω
n
s , where ωs = exp[i (2s − 1)π/q],

s = 1, . . . , q, and the constants αs are determined from the initial conditions c0 = · · · =
cq−1 = 1. As a result of this, we have that {(−1)�n/q�vn} ∈ b(m) for some m ≤ qr , by
Heuristic 6.4.1. Hence, the d (qr )-transformation is effective.
To illustrate this, let us consider Lubkin’s series again. For this example, cn =

(−1)�n/2� = √
2 cos(nπ/2− π/4). Therefore, the term (−1)�n/2�/(n + 1) has no

nonoscillatory part asn →∞. Consequently, theEuler, Shanks, andd (2)-transformations
are effective on this example. Others are not, as mentioned in Wimp [366, p. 171].
Incidentally, after some complicated manipulations involving the functions β(x) =∑∞
k=0

(−1)k
x+k and ψ(x) = d

dx log�(x), it can be shown for the generalization of Lubkin’s
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series, where (−1)�k/2� is replaced by (−1)�k/q�, that
∞∑

k=0

(−1)�k/q�
k + 1

= 1

q
log 2+ π

2q

q−1∑

k=1
tan

kπ

2q
, q = 1, 2, . . . , (25.9.1)

which seems to be new. This series can be summed very efficiently by the d (q)-
transformation.

25.9.1 Extensions

Let us now consider the more general case of the series
∑∞

k=0 ckvk , where {vn} ∈ b(r ) for
some r , as before, and the cn are either +1 or −1 [but not necessarily (−1)�n/q�], such
that cn+q = −cn . This means that c0, c1, . . . , cq−1 take on the values +1 or −1 in any
order, and the remaining ck satisfy cn+q = −cn . (For example, with q = 4, the ck may be
such that |ck | = 1andhave the signpattern+−++−+−−+−++−+−− · · · .)
Since these cn satisfy the recursion cn+q + cn = 0 too, we see that {cnvn} ∈ b(m) for some
m ≤ qr , as before. Therefore, the d (m)-transformation can be applied with no changes
to these series.
Finally, the argument of the preceding paragraph is valid for those series

∑∞
k=0 ckvk ,

where {vn} ∈ b(r ) for some r , as before, and the cn are either +1 or −1, such that
cn+q = cn . This means that c0, c1, . . . , cq−1 take on the values +1 or −1 in any order,
and the remaining ck satisfy cn+q = cn , n = 0, 1, . . . . (For example, with q = 4, the ck
may be such that |ck | = 1 and have the sign pattern+−+++−++ · · · .) Since these
cn satisfy the recursion cn+q − cn = 0 too, we see that {cnvn} ∈ b(m) for some m ≤ qr ,
as before. Therefore, the d (m)-transformation can be applied with no changes to these
series as well.

25.10 Acceleration of Convergence of Rearrangements of Infinite Series

An interesting series that was considered by Lubkin [187, Example 2] is S :=∑∞
k=0 ak =

−1/2+ 1− 1/4+ 1/3− 1/6+ 1/5− · · · , which is a rearrangement of the series
T :=∑∞

k=0 uk =
∑∞

k=0(−1)k/(k + 1) = 1− 1/2+ 1/3− 1/4+ · · · , the sum of T be-
ing log 2. Despite the fact that T converges conditionally, it is easy to see that the rear-
rangement S has log 2 as its sum too.
Since {(−1)n/(n + 1)} ∈ b(1), the series T can be summed very accurately by most

sequence transformations we discussed earlier, such as the iterated �2-process, the it-
erated Lubkin transformation, the transformations of Euler, Shanks, and Levin, and the
θ -algorithm. None of these methods accelerates the convergence of the rearrangement
series S, as numerical computations show, however. The only method that is effective
on S appears to be the d (2)-transformation. The reason for this is that the sequence {an}
is in b(2), as we show for a more general case next.
Let {un} ∈ b(1), and consider the rearrangement series S :=∑∞

k=0 ak = u1 + u0 +
u3 + u2 + u5 + u4 + · · · . Thus,

a2k = u2k+1, and a2k+1 = u2k, k = 0, 1, . . . .
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We would like to show that {an} ∈ b(2) in the relaxed sense of Section 6.4, that is, that
there exists a 3-term recursion relation of the form

an+2 + µ(n)an+1 + ν(n)an = 0, n = 0, 1, . . . , (25.10.1)

withµ(n) ∈ A(r )
0 and ν(n) ∈ A(s)

0 for some integers r and s. Lettingn = 2k andn= 2k+ 1
in (25.10.1), the latter can be written in terms of the un as follows:

u2k+3 + µ(2k)u2k + ν(2k)u2k+1 = 0, n = 2k,

u2k+2 + µ(2k + 1)u2k+3 + ν(2k + 1)u2k = 0, n = 2k + 1. (25.10.2)

Now, we know that un+1 = c(n)un for some c(n) ∈ A(q)
0 , q an integer. Therefore, un+2 =

c(n + 1)c(n)un , un+3 = c(n + 2)c(n + 1)c(n)un , etc. Substituting these in (25.10.2), we
obtain the equations

c(2k + 2)c(2k + 1)c(2k)+ µ(2k)+ ν(2k)c(2k) = 0,

c(2k + 1)c(2k)+ µ(2k + 1)c(2k + 2)c(2k + 1)c(2k)+ ν(2k + 1) = 0. (25.10.3)

Letting 2k = n in the first of these equations, and 2k + 1 = n in the second, we finally
obtain the following linear system for µ(n) and ν(n):

µ(n)+ c(n)ν(n) = −c(n + 2)c(n + 1)c(n)
c(n + 1)c(n)c(n − 1)µ(n)+ ν(n) = −c(n)c(n − 1)

(25.10.4)

Since c(n) ∈ A(q)
0 , q an integer, the elements of the matrix of these equations and the

right-hand-side vector are also inA(σ )
0 for some integers σ . By Cramer’s rule, so areµ(n)

and ν(n), which implies that {an} ∈ b(2).

25.10.1 Extensions

We can use this approach to treat other rearrangement series, S :=∑∞
k=0 ak , such as

that obtained alternately from p terms of T :=∑∞
k=0 uk with even index followed by q

terms with odd index, namely, S := u0 + u2 + · · · + u2p−2 + u1 + u3 + · · · + u2q−1 +
u2p + · · · . Using the same technique, we can now show that {an} ∈ b(p+q) when
{un} ∈ b(1). As a result, the only acceleration method that is effective on such series
is the d (p+q)-transformation. Thus, the d (3)-transformation sums the series 1+ 1/3−
1/2+ 1/5+ 1/7− 1/4+ · · · very efficiently to 3

2 log 2. The d (5)-transformation sums
the series 1+ 1/3+ 1/5− 1/2− 1/4+ 1/7+ 1/9+ 1/11− 1/6− 1/8+ · · · very
efficiently to log 2+ 1

2 log(3/2).
All this can be generalized in a straightforwardmanner to the case inwhich {un} ∈ b̃(m).

We leave the details to the reader.

25.11 Acceleration of Convergence of Infinite Products

Wenow consider the efficient computation of some classes of infinite products by extrap-
olation. Let {An} be the sequence of the partial products of the convergent infinite product
A =∏∞

k=1(1+ vk). That is to say, An =
∏n

k=1(1+ vk), n = 1, 2, . . . . We propose to
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accelerate the convergence of the sequence {An}. As we show next, this can be achieved
provided the vk have suitable properties.
First, the infinite product converges if and only if

∑∞
k=1 vk converges. Next, let

us assume that vn = w(n) ∈ Ã(−s/m,m)
0 strictly for some integer s, that is, vn ∼∑∞

i=0 εi n
−(s+i)/m as n →∞, ε0 �= 0, and convergence implies that s ≥ m + 1.

Now, An = An−1(1+ vn), from which we obtain�An−1 = vn An−1. If we let a1= A1

and an = An − An−1, n ≥ 2, so that An =
∑n

k=1 ak , n≥ 1, then the latter equality
becomes an/vn = An−1. Applying � to both sides of this last equality, we have
�(an/vn)= an , which can be written in the form an = p(n)�an , where p(n) = (

vn+1 +
�vn/vn

)−1
. A careful analysis shows that p(n) ∈ Ã(1,m)

0 strictly, with p(n) ∼ −(m/s)n
as n →∞. By Theorem 6.6.5, this implies that {an} ∈ b̃(m); hence, both the d̃ (m)- and the
d (m)-transformations can be applied successfully. In addition, for best numerical results
we can use GPS. The iterated Lubkin transformation and the θ-algorithm can also be
applied to {An}.

25.11.1 Extensions

We now extend this approach to infinite products of the form A =∏∞
k=1(1+ ckvk),

where vn = w(n) ∈ Ã(−s/m,m)
0 strictly for some integer s, as before, and the cn are such

that cn+q = cn for all n. This means that c1, . . . , cq take on arbitrary nonzero values,
and the remaining ck are determined by cn+q = cn .
As an illustration, let us consider the case in which the cn are either+1 or−1, such that

cn+q = cn . Two simple examples of this are cn = (−1)n for q = 2, and cn = (−1)�n/2�
for q = 4. Another more complex example with q = 5 is one in which the ck are such
that |ck | = 1 and have the sign pattern + + − + − + + − + − · · · .
In this case, we have An+q = An

∏n+q
k=n+1(1+ ckvk). Replacing n by qn, denoting

Aqn = A′n , and using the fact that cqn+k = ck for all k, this becomes

A′n+1 = A′n
qn+q∏

k=qn+1
(1+ ckvk) = A′n

q∏

k=1
(1+ ckvqn+k).

Now, by the fact that vn = w(n) ∈ Ã(−s/m,m)
0 , there holds

q∏

k=1
(1+ ckvqn+k) = 1+ v′n, v′n = w′(n) ∈ Ã(−s ′/m,m)

0 strictly,

for some integer s ′ ≥ s. (Note that s ′ = swhen
∑q

k=1 ck �= 0, but s ′ > s for
∑q

k=1 ck = 0.)
Thus, we have shown that {A′n} is the sequence of partial products of the infinite product
A =∏∞

k=1(1+ v′k) and that this infinite product is precisely of the form treated in the
beginning of this section. Therefore, we can accelerate the convergence of {A′n} in exactly
the same form described there.
New nonlinear methods for accelerating the convergence of infinite products of the

forms
∏∞

k=1(1+ vk) and
∏∞

k=1[1+ (−1)kvk], with vn = w(n) ∈ A(−s)
0 for some posi-

tive integer s, have recently been devised in a paper by Cohen and Levin [54]. These
methods are derived by using an approach analogous to that used in deriving the



446 25 Further Applications of Extrapolation Methods

L- and the d (2)-transformations. Unlike the d-transformations, they require knowledge
of s, however.
One interesting problem treated by Cohen and Levin [54] is that of approximating

the limit of the product A(z) =∏∞
k=1(1+ vk z), with vn = w(n) ∈ Ã(−s/m,m)

0 strictly for
some integer s ≥ m + 1, as before. Here A(z), as a function of z, vanishes at the points
zk = −1/vk , k = 1, 2, . . . , and we would like to find approximations to A(z) that will
vanish at the first µ zeros z1, . . . , zµ. Such approximations can be obtained as follows:
First, accelerate the convergence of the sequence of partial products of

∏∞
k=µ+1(1+ vk z)

via the d (m)- or d̃ (m)-transformations. Call the resulting approximations A( j)
n (z;µ). Next,

approximate A(z) by [
∏µ

k=1(1+ vk z)]A
( j)
n (z;µ). This procedure is analogous to the one

proposed in [54].

25.12 Computation of Infinite Multiple Integrals and Series

The problem of accelerating the convergence of infinite multiple series and integrals by
extrapolation methods has been of some interest recently.
The first work in this field seems to be due to Streit [327] who considered the gener-

alization of the Aitken �2-process to double series.
The first paper in multiple power series acceleration was published by Chisholm [48].

In this paper, Chisholm defines the diagonal Padé approximants to double power se-
ries f (x, y) :=∑∞

i=0
∑∞

j=0 ci j x
i y j . These approximants are of the form fn,n(x, y) =∑n

i=0
∑n

j=0 ui j x i y j/
∑n

i=0
∑n

j=0 vi j x
i y j .

The nondiagonal approximants fm,n(x, y) were later defined by Graves-Morris,
Hughes Jones, andMakinson [109]. The diagonal approximants of [48] and the nondiag-
onal ones of [109] were generalized to power series in an arbitrary number of variables
by Chisholm and McEwan [50] and by Hughes Jones [137], respectively. General order
Padé approximants for multiple power series were defined by Levin [163] and further
developed by Cuyt [59], [60], [61].
A general discussion on accelerating the convergence of infinite double series and

integrals was presented by Levin [164], who also gave a generalization of the Shanks
transformation. Generalizations of the Levin and the Shanks transformations to multiple
infinite series were also considered in Albertsen, Jacobsen, and Sørensen [4].
A recent paper byGreif and Levin [115] combines the general idea of Levin [164] with

an approach based on the D-transformation for one-dimensional infinite-range integrals
and thed-transformation for one-dimensional infinite series. Earlier, Sidi [268,Chapter 4,
Section 6] proposed an approach in which one uses of the d-transformation sequentially
in summation of multiple series and provided some theoretical justification for it at the
same time. The same approach can be used to compute multiple infinite-range integrals.
In a more recent work by Levin and Sidi [166], multidimensional generalizations of
GREP and of the D- and d-transformations are reviewed and some new methods are
derived. We do not go into these methods here, as this would require new definitions and
notation. However, we do describe the approach of Sidi [268], because it is simple to
explain and use; it is very effective as well. Our description here is precisely that given
by Levin and Sidi [166].
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25.12.1 Sequential D-Transformation for s-D Integrals

Let us consider the s-dimensional (s-D) integral I [ f ] = ∫
IRs

0
f (t) dt, where we have de-

noted IRs
0 = {(t1, . . . , ts) : ti ≥ 0, i = 1, . . . , s}, t = (t1, . . . , ts), and dt =∏s

j=1 dt j ,
and let us define

H1(t1, . . . , ts) = f (t) = f (t1, . . . , ts),

Hk+1(tk+1, . . . , ts) =
∫ ∞

0
Hk(tk, . . . , ts) dtk, k = 1, . . . , s − 1.

Then I [ f ] = ∫∞
0 Hs(ts) dts . Let us now assume that, for each k and for fixed tk+1, . . . , ts ,

and as a function of tk , Hk(tk, . . . , ts) ∈ B(mk ) for some integer mk . [This assumption
seems to hold when f (t), as a function of the variable tk – the rest of the variables being
held fixed – is in B(mk ).] This means we can compute Hk+1(tk+1, . . . , ts) by applying the
D(mk )-transformation to the integral

∫∞
0 Hk(tk, . . . , ts) dtk . The computation of I [ f ] can

thus be completed by applying the D(ms )-transformation to the integral
∫∞
0 Hs(ts) dts .

It is very easy to see that the preceding assumption is automatically satisfied when
f (x) =∏s

j=1 f j (x j ), with f j ∈ B(m j ) for some integers m j . This then serves as the
motivation for sequential use of the D-transformation.
As an example, consider the function f (x, y) = e−axu(y)/(x + g(y)), where a is

a constant with �a > 0, u(y) ∈ B(q), and g(y) ∈ A(r ) for some positive integer r and
g(y) > 0 for all large y. [We have q = 2 when u(y) = cos by or u(y) = Jν(by), for
example.] First, f (x, y) is in B(1) as a function of x (with fixed y) and f (x, y) is in B(q)

as a function of y (with fixed x). Next, invoking the relation 1/c = ∫∞
0 e−cξ dξ ,�c > 0,

we can show that

H2(y) =
∫ ∞

0
f (x, y) dx = u(y)

∫ ∞

0
e−ξg(y)/(a + ξ ) dξ.

ApplyingWatson’s lemma to this integral, we see that H2(y) has an asymptotic expansion
of the form

H2(y) ∼ u(y)
∞∑

i=0
αi [g(y)]

−i−1 ∼ u(y)
∞∑

i=0
δi y

−i−r as y →∞.

This implies that H2(y) ∈ B(q).

25.12.2 Sequential d-Transformation for s-D Series

Sequential use of the d-transformation for computing s-D infinite series is analogous to
the use of the D-transformation for s-D integrals. Let us now consider the s-D infinite
series S({ai}) =

∑∞
i∈ZZs

+
ai, where ZZs

+ = {(i1, . . . , is) : i j integer ≥ 1, j = 1, . . . , s},
and define

L1(i1, . . . , is) = ai = ai1,... ,is ,

Lk+1(ik+1, . . . , is) =
∞∑

ik=1
Lk(ik, . . . , is), k = 1, . . . , s − 1.
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Table 25.12.1: Numerical results by the
sequential d-transformation on the double

power series of Example 25.12.1

x y approximation

−0.5 −0.5 0.3843515211843
−1.0 −1.0 0.3149104237
−1.5 −1.5 0.26744390
−2.0 −2.0 0.2337732
−2.5 −2.5 0.207640

Hence, S({ai}) =
∑∞

is=1 Ls(is). Let us assume that, for each k and for fixed ik+1, . . . , is ,
the sequence {Lk(ik, . . . , is)}∞ik=1 is in b(mk ) for some integer mk . [This assumption
seems to hold when {ai}∞ik=1 ∈ b(mk ), for each k and for ik+1, . . . , is fixed.] Therefore,
we can compute Lk+1(ik+1, . . . , is) by applying the d (mk )-transformation to the series∑∞

ik=1 Lk(ik, . . . , is), and the computation of S({ai}) can be completed by applying the
d (ms )-transformation to the series

∑∞
is=1 Ls(is).

What motivates this approach to the summation of s-D series is the fact that the
preceding assumption is automatically satisfied when ai =

∏s
j=1 a

( j)
i j
, with {a( j)i }∞i=1 ∈

b(m j ) for some integers m j .
As an example, consider the double series

∑∞
j=1

∑∞
k=1 a j,k , where a j,k = x juk/

( j + g(k)), where |x | < 1, {uk} ∈ b(q), and g(k) ∈ A(r )
0 for some positive integer r and

g(k) > 0 for all large k. [We have q = 2 when uk = cos kθ or uk = Pk(y), the kth
Legendre polynomial, for example.] First, {a j,k}∞j=1 ∈ b(1) with fixed k, while {a j,k}∞k=1 ∈
b(q) with fixed j . Next, invoking the relation 1/c = ∫∞

0 e−cξ dξ , �c > 0, we can show
that

L2(k) =
∞∑

j=1
a j,k = xuk

∫ ∞

0
e−ξg(k)/(eξ − x) dξ.

Applying Watson’s lemma, we can show that L2(k) has the asymptotic expansion

L2(k) ∼ uk

∞∑

i=0
αi [g(k)]

−i−1 ∼ uk

∞∑

i=0
δi k

−i−r as k →∞.

Therefore, {L2(k)} ∈ b(q).
The following examples have been taken from Sidi [268]:

Example 25.12.1 Consider the double power series

∞∑

j=1

∞∑

k=1
c j,k x

j−1yk−1, c j,k = 1

j2 + k3
.

Because {c j,k x j−1yk−1}∞j=1 ∈ b(1) and {c j,k x j−1yk−1}∞k=1 ∈ b(1), we apply the sequential
d-transformation with p = 1 and q = 1. Using about 100 terms of the series, in double-
precision arithmetic, this method produces the results shown in Table 25.12.1.
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Note that the series diverges when |x | > 1 or |y| > 1, but the method produces its
sum very efficiently. (The accuracy decreases as the rate of divergence increases, since
the absolute errors in the partial sums of the series increase in finite-precision arithmetic
in this case.) The series converges very slowly when |x | = 1 or |y| = 1, and the method
produces very accurate results for such x and y.

Example 25.12.2 Consider the double Fourier sine series

U (x, y) =
∞∑

j=1

∞∑

k=1
c j,k sin

(
jπx

a

)

sin

(
kπy

b

)

, c j,k = 32

π4
· 1

jk( j2/a2 + k2/b2)
.

The function U (x, y) is the solution of the 2-D Poisson equation �U = −2 for
(x, y) ∈ R, where R = {(x, y) : 0 < x < a, 0 < y < b}, with homogeneous boundary
conditions on ∂R. Obviously, this double series converges very slowly. It is easy to see
that {c j,k sin( jπx/a) sin(kπy/b)}∞j=1 ∈ b(2) and {c j,k sin( jπx/a) sin(kπy/b)}∞k=1 ∈b(2).
Therefore, we apply the sequential d-transformation with p = 2 and q = 2. Using about
400 terms of this series, we can obtain its sum to 13-digit accuracy in double-precision
arithmetic. The exact value of U (x, y) can easily be obtained from the simple series

U (x, y) = x(a − x)− 8a2

π3

∞∑

n=1
n odd

cosh[nπ(2y − b)/(2a)]

n3 cosh[nπb/(2a)]
sin

(
nπx

a

)

,

which converges very quickly for 0 < y < b.

25.13 A Hybrid Method: The Richardson–Shanks Transformation

In Section 16.4, we saw via Theorems 16.4.3, 16.4.6, and 16.4.9 that the Shanks transfor-
mation is a very effective extrapolation method for sequences {Am} that satisfy (16.4.1)
and (16.4.2), namely, for

Am ∼ A +
∞∑

k=1
αkλ

m
k as m →∞, (25.13.1)

λk distinct, λk �= 1 for all k; |λ1| ≥ |λ2| ≥ · · · ; lim
k→∞

λk = 0. (25.13.2)

We now describe a hybrid approach that reduces the cost of this transformation when
some of the largest λk are available. We assume that λ1, . . . , λs are available.
The first step of this approach consists of eliminating the known λk explicitly from

the asymptotic expansion of Am in (25.13.1), to obtain a new sequence { Ãm}. This is
achieved by applying to {Am} the Richardson extrapolation process as follows:

x ( j)0 = A j , j = 0, 1, . . . ,

x ( j)p = x ( j+1)p−1 − λpx
( j)
p−1

1− λp
, j = 0, 1, . . . , p = 1, 2, . . . , s.

Ã j = x ( j)s , j = 0, 1, . . . . (25.13.3)
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From Theorem 1.5.1, it follows that the new sequence satisfies

Ãm ∼ A +
∞∑

k=s+1
α̃kλ

m
k as m →∞; α̃k = αk

s∏

i=1

λk − λi

1− λi
. (25.13.4)

Thus, the Richardson extrapolation process functions as a genuine linear filter in this
step.
The second step consists of applying the Shanks transformation to { Ãm}, which will

be effective judging from (25.13.4). Let us denote the resulting approximations ε( j)2n by
ε̃
( j)
2n ({Ak}). Then, Theorem 16.4.3 says that

ε̃
( j)
2n ({Ak})− A = O(λ j

s+n+1) as j →∞, (25.13.5)

provided |λs+n| > |λs+n+1|.
It is clear that, formally speaking, the “elimination” of the terms αkλ

m
k , k= 1, . . . ,

s+ n, from (25.13.1) by this procedure requires using of Am , j ≤ m ≤ j + s + 2n,
whereas application of the Shanks transformation directly to {Am} for “eliminating” the
same terms requires using Am , j ≤ m ≤ j + 2s + 2n.
We denote the procedure developed here the Richardson–Shanks transformation

(R-EPS). This approach and its application as in the next subsection are due to Sidi
and Israeli [311]. Obviously, it can be applied using APS when necessary.

25.13.1 An Application

An interesting application of R-EPS is to problems in which a sequence {Bm} satisfies

Bm ∼ B +
s∑

k=1
βkµ

m
k +

∞∑

k=1
δkν

m
k as m →∞; |ν1| ≥ |ν2| ≥ · · · , (25.13.6)

such that µ1, . . . , µs are known, and we are required to determine

B̃(m) ≡ B +
s∑

r=1
βrµ

m
r . (25.13.7)

This means we need to find β1, . . . , βs , in addition to B.
First, B can be approximated by applying R-EPS with Am = Bm and λk = µk for

k = 1, . . . , s, in (25.13.1) and (25.13.2). Thus, the approximations to B produced by
R-EPS are ε̃( j)2n ({Bk}).
To approximate βr , r ∈ {1, . . . , s}, we propose the following course of action: First,

multiply Bm by µ−m
r , r = 1, 2, . . . , and denote Bmµ

−m
r = Am and βr = A. Therefore,

Am ∼ A + B

(
1

µr

)m

+
s∑

k=1
k �=r

βk

(
µk

µr

)m

+
∞∑

k=1
δk

(
νk

µr

)m

as m →∞. (25.13.8)

Next, apply R-EPS to the sequence {Am} with λk = µk/µr for 1 ≤ k ≤ s, k �= r , and
λr = 1/µr , to obtain the approximations ε̃( j)2n ({Bkµ

−k
r }). Then,

ε̃
( j)
2n ({Bkµ

−k
r })− βr = O(|νn+1/µr | j ) as j →∞, (25.13.9)

provided |νn| > |νn+1|.
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Once B and the βr are approximated, we form

B̃
( j)
n (m) ≡ ε̃

( j)
2n ({Bk})+

s∑

r=1
ε̃
( j)
2n ({Bkµ

−k
r })µm

r (25.13.10)

as an approximation to B̃(m). When |νn| > |νn+1|, we also have

B̃
( j)
n (m)− B̃(m) = O(|νn+1/ρ| j ) as j →∞; ρ = min{1, |µ1|, . . . , |µs |}.

(25.13.11)

Sequences of the type described here arise, for example, when solving numerically
time-dependent problems with steady-state solutions that are periodic in time. This
may be the result of the periodicity being built directly into the associated equations
and/or of the presence of boundary conditions that are periodic in time. (The numerical
solutions involve marching in time with a fixed time increment.) For such problems,
it turns out that |µk | = 1 for k = 1, . . . , s, and |νk | < 1 for all k = 1, 2, . . . , so that
Bm = Bsteady

m + o(1) as m →∞, where Bsteady
m = B +∑s

k=1 βkµ
m
k is the numerical

steady-state solution, and we are interested in determining Bsteady
m .

Important Remark. In some problems, we may be given not the whole sequence {Bm}
but only {Bm}∞m= j for some possibly unknown j , and we may be asked to approxi-
mate B̃(m). This can be achieved by applying R-EPS to the sequence {B ′k}∞k=0, where
B ′k = Bj+k , k = 0, 1, . . . , exactly as before. Then, with B̃

( j)
n (m) as defined in (25.13.10),

there holds

B̃
( j)
n ( j + p) = ε̃

(0)
2n ({B ′k})+

s∑

r=1
ε̃
(0)
2n ({B ′kµ−k

r })µp
r . (25.13.12)

The key to this is the fact that R-EPS, being a composition of two quasi-linear pro-
cesses, the Richardson extrapolation and the Shanks transformation, is itself quasi-
linear too. That is, for any two constants a �= 0 and b, there holds ε̃( j)2n ({aAk + b}) =
aε̃( j)2n ({Ak})+ b. Therefore,

ε̃
( j)
2n ({Bkµ

−k
r }) = µ− j

r ε̃
( j)
2n ({Bkµ

j−k
r }) = µ− j

r ε̃
(0)
2n ({B ′kµ−k

r }), r = 1, . . . , s. (25.13.13)

In addition,

ε̃
( j)
2n ({Bk}) = ε̃

(0)
2n ({B ′k}). (25.13.14)

The validity of (25.13.12) is nowa consequence of (25.13.10), (25.13.13), and (25.13.14).
Wewould like emphasize that the procedure describedhere does not require knowledge

of j because {B ′kµ−k
r }∞k=0 = {Bj , µ

−1
r B j+1, µ−2r B j+2, . . . } in (25.13.12).

Example 25.13.1 As a model, consider the linear system of ordinary differential equa-
tions

y′(t) = Cy(t)+ f(t), t > 0; y(0) = y0. (25.13.15)

Here y(t) = [y1(t), . . . , yr (t)]T , andC is a constant r × r matrixwhose eigenvalues have
negative real parts, and the “forcing function” f(t) = [ f1(t), . . . , fr (t)]T is periodic with
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period τ . Using the fact that

y(t) = eCty0 +
∫ t

0
eC(t−s)f(s) ds, (25.13.16)

it can be shown that y(t) = ytrans(t)+ ysteady(t), where ytrans(t) is the transient, that is, it
satisfies limt→∞ ytrans(t) = 0, and ysteady(t) is periodic with period τ . Let us now solve
this system numerically by a linear multistep method with a fixed time step�t = h. For
simplicity of presentation, we use the Euler method, namely,

ym+1 = Qym + hfm, m = 0, 1, . . . ; Q = I + hC, fm = f(mh), ym ≈ y(mh).

(25.13.17)

Here we choose h = τ/M , M = 2K + 1 for some integer K . Then, fm+pM = fm for
integers p. We also choose h small enough so that all eigenvalues of Q are smaller than
unity inmodulus; hence, thematrix cI − Q, where |c| = 1, is nonsingular. By induction,
it follows that

ym = Qmy0 + h
m−1∑

j=0
Qm−1− j f j , m = 0, 1, . . . . (25.13.18)

Letting {gk}Kk=−K be the discrete Fourier transform of {f j }2Kj=0, we can write

f j =
K∑

k=−K

gkω jk, j = 0, 1, . . . ; ω = exp

(

i
2π

2K + 1

)

. (25.13.19)

Of course, just like f j , gk are r -dimensional vectors. Substituting (25.13.19) in (25.13.18),
we can show after some manipulation that

ym = ytransm + ysteadym ;

ytransm = Qm

[

y0 − h
K∑

k=−K

(ωk I − Q)−1gk

]

, ysteadym = h
K∑

k=−K

(ωk I − Q)−1gkωkm .

(25.13.20)

Obviously, ytransm is the transient since limm→∞ ytransm = 0 by the fact that the eigenvalues
of Q are all less than unity in modulus, and ysteadym is the periodic steady-state solution
because ysteadym+pM = ysteadym for every integer p. If we assume, for simplicity, that C is di-
agonalizable, then Q is diagonalizable as well. Let us denote its distinct eigenvalues by
νk , k = 1, . . . , q . Then we have ytransm =∑q

k=1 dkν
m
k , where dk is an eigenvector corre-

sponding to νk . We also have ysteadym =∑K
k=−K bk(ωk)m , where bk = h(ωk I − Q)−1gk

for each k. The vectors bk and dk are independent ofm. Combining all this in (25.13.20),
we finally have that

ym =
K∑

k=−K

bk(ω
k)m +

q∑

k=1
dkν

m
k . (25.13.21)

We now apply R-EPS to the sequence {ym} componentwise to determine the vectors bk ,
−K ≤ k ≤ K , hence ysteadym . It is clear that, for errors that behave like |νn+1| j , we need
to store and use the vectors ym , m = j, j + 1, . . . , j + 2K + 2n.
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Let us consider the special case in which

f(t) =
L∑

k=−L

ck exp(i 2kπ t/τ )

= c0 +
L∑

k=1
(ck + c−k) cos(2kπ t/τ )+

L∑

k=1
i (ck − c−k) sin(2kπ t/τ ),

for some integer L . Choosing K ≥ L , we have in this case f j =
∑L

k=−L ckω
jk , j =

0, 1, . . . , with ω as in (25.13.19). Consequently,

ym =
L∑

k=−L

bk(ω
k)m +

q∑

k=1
dkν

m
k . (25.13.22)

If L is considerably small compared with K , then the cost of applying R-EPS to the
sequence {ym} in (25.13.22) is much smaller than that incurred by applying R-EPS to
the sequence in (25.13.21). For errors that behave like |νn+1| j , this time we need to store
and use the vectors ym , m = j, j + 1, . . . , j + 2L + 2n.
Such a situation can also arise (approximately) in case f(t) is infinitely differentiable

on (−∞,∞). Now, f(t) can be approximated with very high accuracy via a small number
of terms of its Fourier series, namely, f(t) ≈∑L

k=−L ck exp(i 2kπ t/τ ) with a small L , so
that

ym ≈
L∑

k=−L

bk(ω
k)m +

q∑

k=1
dkν

m
k .

Adifferent approach to the problem described herewas suggested by Skelboe [315]. In
this approach, ysteadym is obtained by applying the Shanks transformation to the sequences
{yMm+i }∞m=0, i = 0, 1, . . . ,M − 1. The limits of these sequences are, of course, ysteadyi ,
i = 0, 1, . . . ,M − 1, and these determine ysteadym completely. With large M , this ap-
proach seems to have a larger cost than the R-EPS approach we have proposed.

25.14 Application of Extrapolation Methods to Ill-Posed Problems

An interesting application of extrapolation methods to ill-posed problems appears in
Brezinski and Redivo Zaglia [41, Section 6.3]. Consider the linear system

Ax = b, (25.14.1)

where the matrix A is nonsingular. As is well known, the numerical solution of this
system will have poor accuracy if the condition number of A is large. To avoid this
problem partially, we solve instead of (25.14.1) the perturbed problem

(A + εB)x(ε) = b (25.14.2)

with some small ε, such that the matrix A + εB is better conditioned. This is the so-
called Tikhonov regularization technique. Of course, x(ε) may be quite different from
x = x(0). The problem now is how to apply this technique and still obtain a reasonable
numerical approximation to x .
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From (25.14.2), we have

x(ε) = (A + εB)−1b = (I + εM)−1x, M = A−1B. (25.14.3)

Provided ε < 1/ρ(M), where ρ(M) is the spectral radius of M , we obtain from (25.14.3)
the convergent expansion

x(ε) = x +
∞∑

k=1
[(−1)kMkx]εk . (25.14.4)

It is now easy to see from (25.14.4) that we can apply the polynomial Richardson extrapo-
lation or the rational extrapolation to x(ε) componentwise to obtain approximations to x .
Practically, the methods are applied to a sequence {x(εm)}, where ε0 > ε1 > · · · , and
limm→∞ εm = 0.
Ill-posed problems arise frequently from the discrete solution of Fredholm integral

equations of the first kind. They may also arise in the solution of the least squares
problems

minimize ‖Ax − b‖,
where, this time, A may be a rectangular matrix of full column rank. If this problem is
replaced by a regularized one of the form

minimize (‖Ax − b‖2 + ε‖Bx‖2),
where B is some suitable matrix (for example, B = I ), and ‖y‖ = √

y∗y is the standard
Euclidean norm, then the solution x(ε) to this problem can be shown to satisfy the linear
system

(A∗A + εB∗B)x(ε) = A∗b

that is precisely of the form discussed above.
For numerical examples and for additional applications of similar nature, including

the relevant bibliography, we refer the reader to Brezinski and Redivo Zaglia [41].

25.15 Logarithmically Convergent Fixed-Point Iteration Sequences

We close this chapter by mentioning a rare and yet interesting type of sequences that
arise from fixed-point iterative methods applied to a nonlinear equation x = g(x), for
which g′(s) = 1, where s denotes the solution. (Recall that we discussed the case in
which |g′(s)| < 1 when we studied the�2-process.) These sequences have been studied
in detail in de Bruijn [42, pp. 153–175].
Let us pick x0 and compute x1, x2, . . . , according to xm+1 = g(xm). Let us denote em =

xm − s, m = 0, 1, . . . . Assume that g(x) is infinitely differentiable in a neighborhood
of s, so that

g(x)− s = u +
∞∑

i=1
αp+i u

p+i , p ≥ 1 integer, αp+1 < 0, u ≡ x − s > 0.

(25.15.1)
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Then, provided x0 > s is sufficiently close to s, {xm} converges to s. Actually, {xm}
converges logarithmically, and there holds xm − s ∼ (−pαp+1m)−1/p as m →∞.

As follows from [42, p. 175, Exercise 8.11], the equation

ψ(ḡ(u)) = 1+ ψ(u), ḡ(u) ≡ g(s + u)− s, (25.15.2)

has a unique solution ψ(u) that has an asymptotic expansion of the form

ψ(u) ∼
p∑

i=1
c−i u

−i + c0 log u +
∞∑

i=1
ciu

i as u → 0+, c−p �= 0. (25.15.3)

The coefficients ci are determined by the expansion of g(x) in (25.15.1) and from
(25.15.2).
The asymptotic behavior of xm can be obtained by analyzing the relation

ψ(em) = m + ψ(e0), m = 1, 2, . . . . (25.15.4)

Taking s = 0 for simplicity, Sablonnière [246] gives the following results for the cases
p = 1, 2:
When p = 1,

xm ∼ s +
∞∑

k=1
βkm

−k as m →∞; (c0 = 0),

xm ∼ s +
∞∑

k=1

[k−1∑

i=0
βk,i (logm)i

]

m−k as m →∞; (c0 �= 0),

and when p = 2 and g(x) is odd,

xm ∼ s +
∞∑

k=1
βkm

−k+1/2 as m →∞; (c0 = 0),

xm ∼ s +
∞∑

k=1

[k−1∑

i=0
βk,i (logm)i

]

m−k+1/2 as m →∞; (c0 �= 0).

When p = 2 and α4 �= 0, hence g(x) is not necessarily odd,

xm ∼ s +
∞∑

k=1

{[k−1∑

i=0
β ′k,i (logm)i

]

m−k+1/2

+
[k−1∑

i=0
β ′′k,i (logm)i

]

m−k

}

as m →∞; (c0 �= 0).

The βk , βk,i , etc. depend on the αk . Explicit expressions for the first few of them are
given by Sablonnière [246].
We see that whether c0 vanishes or not makes a big difference in the nature of the

asymptotic expansion of xm . When c0 �= 0, xm has powers of logm in its asymptotic
expansion, and this will surely cause problems when convergence acceleration methods
are applied to {xm}. Surprisingly, numerical and theoretical results given by Sablonnière
[246], [247] and Sedogbo [262] show that, when c0 �= 0, the iterated Lubkin transfor-
mation and the θ -algorithm are very effective when applied to {xm}. For example, when



456 25 Further Applications of Extrapolation Methods

p = 1, the kth column in these methods will “eliminate” all the terms in the summation
[
∑k−1

i=0 βk,i (logm)i ]m−k simultaneously. The iterated �2-process and the ε-algorithm,
when modified suitably as described in [246], [247], and [262], perform similarly. We
refer the reader to these papers for more results and details.
Before we end, we recall that g′(s) = 1 implies that s is a multiple root of the equation

f (x) = x − g(x) = 0. It is known that, when applied to f (x) = 0, the Newton-Raphson
method converges linearly. It can even be modified slightly to converge quadratically.
See, for example, Ralston and Rabinowitz [235]. [The sequence {xm} generated via the
fixed-point iterations xm+1 = g(xm) treated here converges logarithmically, hence it is
inferior to that generated by the Newton-Raphson method.]



Part IV
Appendices





A
Review of Basic Asymptotics

As the subject of extrapolation methods depends heavily on asymptotics, it is important and
useful to review some of the fundamentals of the latter. It is correct to say that, without a good
understanding of asymptotics, it is impossible to appreciate the beauty, relevance, and intricacies,
both mathematical and practical, of the research that has been done in the area of extrapolation
methods.

For thorough treatments of asymptotic methods, we refer the reader to the books by Olver [223],
Murray [215], Erdélyi [77], de Bruijn [42], and Bender and Orszag [21]. See also Henrici [132,
Chapter 11].

A.1 The O , o, and ∼ Symbols

Definition A.1.1 Let x0 ≥ 0 be finite or infinite. Let f (x) and g(x) be two functions defined on an
interval I that is (i) of the form (x0, x0 + δ), δ > 0, when x0 is finite and (ii) of the form (X,∞),
X > 0, when x0 is infinite. Finally, let limx→x0 stand for limx→x0+ when x0 is finite and for limx→∞
when x0 is infinite.

(i) We write

f (x) = O(g(x)) as x → x0 if | f (x)/g(x)| is bounded on I.

In words, f is of order not exceeding g.
(ii) We write

f (x) = o(g(x)) as x → x0 if lim
x→x0

f (x)/g(x) = 0.

In words, f is of order less than g.
(iii) We write

f (x) ∼ g(x) as x → x0 if lim
x→x0

f (x)/g(x) = 1.

In words, f is asymptotically equal to g.

Special cases of these definitions are f (x) = O(1) as x → x0, whichmeans that f (x) is bounded
as x → x0, and f (x) = o(1) as x → x0, which means that f (x)→ 0 as x → x0.
The notations O(g) and o(g) can also be used to denote the classes of functions f that satisfy

f = O(g) and f = o(g), respectively, or to denote generically unspecified functions f with these
properties.

Thus, in terms of the o-notation,

f (x) ∼ g(x) as x → x0 if and only if f (x) = g(x)[1+ o(1)] as x → x0.

Here are some important consequences of Definition A.1.1:

1. Obviously, f = o(g) implies f = O(g), but the converse of this is not true.
2. We must also realize that f = O(g) does not imply g = O( f ). As a consequence, f = O(g)

does not imply 1/ f = O(1/g) either. The latter holds provided g = O( f ).
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3. On the other hand, if f ∼ g, then g ∼ f too. Of course, we have 1/ f ∼ 1/g as well. Clearly,
f ∼ g implies both f = O(g) and g = O( f ), and hence both 1/ f = O(1/g) and 1/g =
O(1/ f ).

4. From what we have seen so far, we understand that the amount of information contained
in f ∼ g is largest; this is followed by f = O(g) and g = O( f ) simultaneously, which is
followed by f = O(g) only. Also, f = o(g) contains more information than f = O(g). In
case g = o(h), the relation f = O(g) contains more information than f = o(h). Thus, as
x → 0+, f (x) ∼ x3 is better than cx3 ≤ | f (x)| ≤ dx3 for some c > 0 and d > 0, which is
better than f (x) = O(x3), which is better than f (x) = o(x2).

If the functions f (x) and g(x) in Definition A.1.1 are replaced by the sequences {an} and {bn},
we can analogously define an = O(bn), an = o(bn), and an ∼ bn as n →∞. Only this time, we
should keep in mind that n →∞ through integer values only.

A.2 Asymptotic Expansions

Definition A.2.1 The sequence of functions {φk(x)}∞k=0 is called an asymptotic sequence or an
asymptotic scale as x → x0 if

φk+1(x)
φk(x)

= o(1) as x → x0, k = 0, 1, . . . .

Two most important examples of asymptotic sequences are (i) {(x − x0)k}when x0 is finite, and
(ii) {x−k} when x0 = ∞.

Definition A.2.2 We say that the (convergent or divergent) series
∑∞

k=0 akφk(x) represents the
function f (x) asymptotically as x → x0 [or that it is an asymptotic expansion of f (x) as x → x0],
and write

f (x) ∼
∞∑

k=0
akφk(x) as x → x0,

if {φk(x)}∞k=0 is an asymptotic sequence and if for every integer n ≥ 0 there holds

f (x)−
n−1∑

k=0
akφk(x) = O(φn(x)) as x → x0.

Theorem A.2.3 Let {φk(x)}∞k=0 be an asymptotic sequence. Then the following three statements
are equivalent:

(i) The infinite expansion
∑∞

k=0 akφk(x) represents the function f (x) asymptotically as x → x0;
i.e.,

f (x) ∼
∞∑

k=0
akφk(x) as x → x0.

(ii) For every integer n ≥ 0, there holds

f (x)−
n∑

k=0
akφk(x) = o(φn(x)) as x → x0.

(iii) For every integer n ≥ 0,

lim
x→x0

f (x)−∑n−1
k=0 akφk(x)

φn(x)
exists and equals an .

When x0 is finite, the sequence {(x − x0)k}∞k=0 is asymptotic as x → x0, as already mentioned.
If f ∈ C∞[x0, x0 + δ], δ > 0, then its Taylor series about x0, namely,

∑∞
k=0

f (k)(x0)
k! (x − x0)k ,

whether convergent or not, represents f (x) asymptotically as x → x0+. This can be proved by
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using the Taylor series with the remainder. As is known, if f (x) is analytic at x0, then its Taylor
series at x0 converges when |x − x0| < δ for some δ > 0 and f (x) is equal to the sum of this
series when |x − x0| < δ. In case f (x) is not analytic at x0, its Taylor series at x0 diverges for
all x �= x0.

All this remains valid when x0 = ∞, provided we replace the sequence {(x − x0)k}∞k=0 by
{x−k}∞k=0, and make other suitable modifications.

An immediate consequence of the preceding theorem is that, if the series
∑∞

k=0 akφk(x) is an
asymptotic expansion of the function f (x) as x → x0, then it is unique. (The converse is not neces-
sarily true; that is, more than one function may be represented by the same asymptotic expansion.
The question of the uniqueness of f (x) when f (x) ∼∑∞

k=0 akx−k as x →∞ is discussed at
length in Hardy [123, Section 8.11], where it is assumed that f (z) is analytic in some sector of the
z-plane.)

A.3 Operations with Asymptotic Expansions

The following results on the algebra of asymptotic expansions can be proved with Theorem A.2.3.

Theorem A.3.1 Let f (x) ∼∑∞
k=0 akφk(x) and g(x) ∼∑∞

k=0 bkφk(x) as x → x0. Then, for arbi-
trary constants α and β, there holds

α f (x)+ βg(x) ∼
∞∑

k=0
(αak + βbk)φk(x) as x → x0.

Theorem A.3.2 Let φk(x) = (x − x0)k when x0 is finite and φk(x) = x−k when x0 = ∞. Let
f (x) ∼∑∞

k=0 akφk(x) and g(x) ∼∑∞
k=0 bkφk(x) as x → x0. Then the following are true:

(i) The product f (x)g(x) is represented asymptotically as x → x0 by the Cauchy product of the
asymptotic expansions of f (x) and g(x). That is,

f (x)g(x) ∼
∞∑

k=0

( k∑

i=0
ak−i bi

)

φk(x) as x → x0.

(ii) If a0 �= 0, then the function g(x)/ f (x) has an asymptotic representation given by

g(x)/ f (x) ∼
∞∑

k=0
dkφk(x) as x → x0,

where the dk are determined recursively from the equations

k∑

i=0
ak−i di = bk, k = 0, 1, . . . .

In particular, the function 1/ f (x) has an asymptotic representation given by

1/ f (x) ∼
∞∑

k=0
ckφk(x) as x → x0,

where the ck are determined recursively from the equations

c0a0 = 1 and
k∑

i=0
ak−i ci = 0, k = 1, 2, . . . .

In the next theorem, we discuss the asymptotic expansion of the composition of two functions.
For the sake of clarity, we restrict ourselves only to the case in which x0 = ∞ and φk(x) = x−k,
k = 0, 1, . . . .
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Theorem A.3.3 Assume that f (x) ∼ a1x−1 + a2x−2 + · · · as x →∞. Assume also that g(w) ∼
b0 + b1w + b2w2 + · · · as w→ 0. Then the function g( f (x)) admits an asymptotic expansion of
the form

g( f (x)) ∼
∞∑

k=0
dkx

−k as x →∞.

for some constants dk . In particular, we have d0 = b0, d1 = b1a1, d2 = b1a2 + b2a2
1 , etc.

We nowmake a few important remarks about other operations with asymptotic expansions such
as integration and differentiation.

Theorem A.3.4 Let f (x) ∼∑∞
k=2 akx−k as x →∞. Then

∫ ∞

x
f (t) dt ∼

∞∑

k=2

ak

k − 1
x−k+1 as x →∞.

If f (x) ∼∑∞
k=0 akx−k as x →∞, then
∫ x

c
f (t) dt ∼ K + a0x + a1 log x +

∞∑

k=2

ak

−k + 1
x−k+1 as x →∞,

where c > 0 and K = ∫∞
c [ f (t)− a0 − a1t−1] dt − a0c − a1 log c. Thus, term-by-term integration

of the asymptotic expansion of f (x) is permitted.

Term-by-term differentiation of asymptotic expansions is not always permitted. Concerning this
problem, we do have the following results, however.

Theorem A.3.5 Let f (x) ∼∑∞
k=0 akx−k as x →∞. Assume that f ′(x) is continuous for all

large x and that f ′(x) ∼∑∞
k=1 bkx−k−1 as x →∞ holds. Then bk = −kak , k = 1, 2, . . . . Thus,

term-by-term differentiation of the asymptotic expansion of f (x) is permitted in this case.

Theorem A.3.6 Let f (z) be analytic in the closed annular sector S = {z : |z| ≥ ρ > 0, α ≤
arg z ≤ β}, and let f (z) ∼∑∞

k=0 akz−k as z →∞ in S. This asymptotic expansion can be differ-
entiated term-by-term any number of times in the interior of S.

Other operations on asymptotic expansions likewise are not straightforward and need to be
carried out with care. Similarly, if L is an operator and f = O(g), for example, then L( f ) =
O(L(g)) does not necessarily hold. This remark applies equally to f = o(g) and to f ∼ g.
To illustrate this point, consider the behavior as x →∞ of L( f ; x) defined by

L( f ; x) =
∣
∣
∣
∣

f (x) � f (x)
� f (x) �2 f (x)

∣
∣
∣
∣ ; � f (x) = f (x + 1)− f (x), �2 f (x) = �(� f (x)).

If g(x) = xγ , γ real and not an integer for simplicity, then we have L(g; x) ∼ −γ x2γ−2. If f (x) ∼
xγ , we cannot be sure that L( f ; x) ∼ −γ x2γ−2, however. (i)When f (x) = xγ + O(xγ−1), the
best we can say is that L( f ; x) = O(x2γ−1). (ii)When f (x) = xγ + axγ−1 + O(xγ−2), the best
we can say is that L( f ; x) = O(x2γ−2). (iii) Only when f (x) = xγ + axγ−1 + bxγ−2 + o(xγ−2)
do we have that L( f ; x) ∼ −γ x2γ−2. Observe that, in all three cases, f (x) ∼ xγ .



B
The Laplace Transform and Watson’s Lemma

B.1 The Laplace Transform

Definition B.1.1 The Laplace transform L[ f (t); z] ≡ f̂ (z) of the function f (t) is defined by the
integral

f̂ (z) =
∫ ∞

0
e−zt f (t) dt (B.1.1)

whenever this integral exists.

For simplicity of treatment, in this book we assume that

(i) f (t) is integrable in the sense of Riemann on any interval (0, T ), T > 0, and that
(ii) there exist positive constants M , a, and t0 for which

| f (t)| ≤ Meat for every t ≥ t0.

Functions with these properties are said to be of exponential order.
With these restrictions on f (t), the integral in (B.1.1) converges absolutely for each z that satisfies

�z > a. In addition, f̂ (z) is analytic in the right half plane �z > a, and lim�z→∞ f̂ (z) = 0. The
derivatives of f̂ (z) are given by

f̂ (n)(z) = (−1)n
∫ ∞

0
e−zt t n f (t) dt, (B.1.2)

and these integral representations converge for �z > a too.
If f (k)(t), k = 1, . . . , n − 1, are continuous for all t ≥ 0, and f (n)(t) is of exponential order,

then the Laplace transform of f (n)(t) is given in terms of f̂ (z) by

L[ f (n)(t); z] = zn f̂ (z)−
n−1∑

i=0
zn−i−1 f (i)(0+).

The following inversion formula is known as the Bromwich integral:

f (t+)+ f (t−)
2

= 1

2π i

∫ c+i∞

c−i∞
ezt f̂ (z) dz,

where the path of integration is the straight line �z = c, which is parallel to the !z-axis, and f̂ (z)
has all its singularities to the left of �z = c.

For an extensive treatment of Laplace transforms, see Sneddon [319].

B.2 Watson’s Lemma

One of the most important tools of asymptotic analysis that we make use of in this book is
Watson’s lemma. This lemma forms the basis of the method of Laplace and the method of
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steepest descent for the asymptotic expansion of integrals. For the proof, see Olver [223] or
Murray [215].

Theorem B.2.1 Let the function f (t) be of exponential order and satisfy

f (t) ∼
∞∑

k=0
ckt

αk as t → 0+,

where −1 < �α0 < α1 < · · · , and limk→∞ �αk = +∞. Then, for any δ > 0,

f̂ (z) =
∫ ∞

0
e−zt f (t) dt ∼

∞∑

k=0

ck�(αk + 1)

zαk+1
as z →∞, | arg z | < π/2− δ.



C
The Gamma Function

The Gamma function �(z) is defined as in

�(z) =
∫ ∞

0
e−t t z−1 dt, �z > 0,

and hence is analytic in the right half plane �z > 0.
For positive integer values of z, it assumes the special values

�(n) = (n − 1)!, n = 1, 2, . . . .

By integrating by partsm times,we obtain from the preceding integral representation the equality

�(z) = �(z + m)

z(z + 1) · · · (z + m − 1)
.

But the right-hand side of this equality is defined and analytic as well in the right half plane �z >
−m except at z = 0,−1,−2, . . . ,−m + 1 . Thus, through this equality, �(z) can be continued
analytically to the whole complex plane except the points z = −n, n = 0, 1, . . . , where it has
simple poles, and the residue at z = −n is (−1)n/n! for each such n.

Another representation of �(z) that is also valid for all z is Euler’s limit formula

�(z) = lim
n→∞

n!nz

z(z + 1)(z + 2) · · · (z + n)
.

Two important identities that result from Euler’s limit formula are the reflection formula

�(z)�(1− z) = π

sinπ z
, z �= 0,±1,±2, . . . ,

and the duplication formula

�(2z) = 22z−1

π 1/2
�(z)�(z + 1

2 ), 2z �= 0,−1,−2, . . . .

The following infinite product representation is valid for all z:

1

�(z)
= zeCz

∞∏

k=1

{(
1+ z

k

)
e−z/k

}
.

Here, C = 0.5772156 · · · is Euler’s constant defined by

C = lim
n→∞

( n∑

k=1

1

k
− log n

)

.

From this product representation, it is obvious that the function 1/�(z) is entire; i.e., it is analytic
everywhere in the complex plane. Therefore, �(z) has no zeros.
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The logarithmic derivative of �(z), namely, �′(z)/�(z), is called the Psi function and is denoted
ψ(z). From the product representation, it follows that

ψ(z) = −C − 1

z
+

∞∑

k=1

(
1

k
− 1

k + z

)

, z �= 0,−1,−2, . . . ,

from which it also follows that

�′(1) = ψ(1) = −C.

The following asymptotic expansion is known as Stirling’s formula:

�(z) ∼
√
2π zz−1/2e−z

(

1+ 1

12z
+ 1

288z2
− · · ·

)

as z →∞, |argz| < π.

In particular, we have

�(x + 1) =
√
2πxx+1/2 exp

(

−x + θ(x)

12x

)

for x > 0; (0 < θ (x) < 1).

One of the useful consequences of Stirling’s formula is the asymptotic expansion

�(z + a)

�(z + b)
∼ za−b

(

1+
∞∑

k=1
ckz

−k

)

as z →∞,

along any curve joining z = 0 and z = ∞ providing z + a and z + b are different from 0,−1,
−2, . . . . Here ck are some constants that depend only a and b.

For more details, see Olver [223] or Abramowitz and Stegun [1].



D
Bernoulli Numbers and Polynomials and

the Euler–Maclaurin Formula

D.1 Bernoulli Numbers and Polynomials

The Bernoulli numbers Bn, n = 0, 1, . . . , are defined via

t

et − 1
=

∞∑

n=0
Bn

tn

n!
,

i.e., Bn = dn

dtn

(
t

et−1
) |t=0 , n = 0, 1, . . . . They can be computed from the recursion relation

B0 = 1 and
n∑

k=0

(
n + 1

k

)

Bk = 0, n = 1, 2, . . . .

The first few of the Bernoulli numbers are thus B0 = 1, B1 = −1/2, B2 = 1/6, B4 =
−1/30, . . . , and B3 = B5 = B7 = · · · = 0. The Bernoulli numbers B2n are related to the Riemann
Zeta function ζ (z) as in

ζ (2n) =
∞∑

k=1

1

k2n
= (−1)n−1 (2π )

2n B2n

2(2n)!
, n = 1, 2, . . . ,

which also shows that (−1)n−1B2n > 0, n = 1, 2, . . . , and also that B2n/(2n)! = O((2π )−2n)
as n →∞.

The Bernoulli polynomials Bn(x), n = 0, 1, . . . , are defined via

text

et − 1
=

∞∑

n=0
Bn(x)

tn

n!
,

and they can be computed from

Bn(x) =
n∑

k=0

(
n

k

)

Bkx
n−k, n = 0, 1, . . . .

Thus, B0(x) = 1, B1(x) = x − 1
2 , B2(x) = x2 − x + 1

6 , etc., and Bn(0) = Bn, n = 0, 1, . . . .
They satisfy

Bn(x + 1)− Bn(x) = nxn−1 and Bn(1− x) = (−1)n Bn(x), n = 1, 2, . . . ,

from which

Bn(1) = (−1)n Bn, n = 1, 2, . . . ,

and B1( 12 ) = B3( 12 ) = B5( 12 ) = · · · = 0. They also satisfy

B2n( 12 ) = −(1− 21−2n)B2n, n = 1, 2, . . . ,

and

B ′n(x) = nBn−1(x),
∫ 1

0
Bn(x) dx = 0, n = 1, 2, . . . .
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Finally,

|B2n(x)| < |B2n| when x ∈ (0, 1), n = 1, 2, . . . ,

so that, for n = 1, 2, . . . , the sign of B2n − B2n(x) on (0, 1) is the same as that of B2n ; thus,
(−1)n−1[B2n − B2n(x)] ≥ 0 on [0, 1]. Actually, B2n − B2n(x) = 0 only for x = 0 and x = 1. In
addition, (−1)n−1[B2n − B2n(x)] achieves its maximum on [0, 1] at x = 1/2, as a result of which,
(−1)n[B2n( 12 )− B2n(x)] ≥ 0 on [0, 1] too.

For each n, the periodic Bernoullian function B̄n(x) is defined to be the 1-periodic extension of
the Bernoulli polynomial Bn(x). That is,

B̄n(x) = Bn(x − i), when x ∈ [i, i + 1), i = 0,±1,±2, . . . .
Thus, B̄1(x) is a piecewise linear sawtooth function, and B̄n(x) ∈ Cn−2(−∞,∞), n = 2, 3, . . . .
They also satisfy

B̄ ′n(x) = n B̄n−1(x) and
∫ a+1

a
B̄n(x) dx = 0 for every a, n = 1, 2, . . . .

For more details, see Abramowitz and Stegun [1] and Steffensen [322].

D.2 The Euler–Maclaurin Formula

D.2.1 The Euler–Maclaurin Formula for Sums

An important tool of asymptotic analysis is the famous Euler–Maclaurin formula. In the following
theorem, we give the most general form of this formula with its remainder.

Theorem D.2.1 Let F(t) ∈ Cm[r,∞), where r is an integer, and let θ ∈ [0, 1] be fixed. Then, for
any integer n > r ,

n−1∑

i=r

F(i + θ ) =
∫ n

r
F(t) dt +

m∑

k=1

Bk(θ )

k!

[
F (k−1)(n)− F (k−1)(r )

]+ Rm(n; θ ),

where the remainder term Rm(n; θ ) is given by

Rm(n; θ ) = −
∫ n

r
F (m)(t)

B̄m(θ − t)

m!
dt.

For the important special cases in which θ = 0 and θ = 1/2, Theorem D.2.1 assumes the
following forms:

Theorem D.2.2 Let F(t) ∈ C2m[r,∞), where r is an integer. Then, for any integer n > r ,

n∑

i=r

′′
F(i) =

∫ n

r
F(t) dt +

m−1∑

k=1

B2k

(2k)!

[
F (2k−1)(n)− F (2k−1)(r )

]+ Rm(n),

where the double prime on the summation on the left-hand side means that the first and last terms
in the summation are halved, and the remainder term Rm(n) is given by

Rm(n) =
∫ n

r
F (2m)(t)

B2m − B̄2m(t)

(2m)!
dt

= (n − r )
B2m

(2m)!
F (2m)(ηm,n) for some ηm,n ∈ (r, n).

Theorem D.2.3 Let F(t) ∈ C2m[r,∞), where r is an integer. Then, for any integer n > r ,

n−1∑

i=r

F(i + 1
2 ) =

∫ n

r
F(t) dt +

m−1∑

k=1

B2k( 12 )

(2k)!

[
F (2k−1)(n)− F (2k−1)(r )

]+ Rm(n),
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where the remainder term Rm(n) is given by

Rm(n) =
∫ n

r
F (2m)(t)

B2m( 12 )− B̄2m(t + 1
2 )

(2m)!
dt

= (n − r )
B2m( 12 )

(2m)!
F (2m)(ηm,n) for some ηm,n ∈ (r, n).

These theorems can be used to find the asymptotic expansion of the sum
∑n

i=r F(i + θ ) as
n →∞ or to approximate its limit as n →∞ when this limit exists. We give one such example
in the next section.

D.2.2 The Euler–Maclaurin Formula for Integrals

Taking r = 0 and making the transformation of variable t = n(x − a)/(b − a) in Theorem D.2.1,
and defining f (x) ≡ F(n(x − a)/(b − a)), we obtain the following Euler–Maclaurin formula for
the offset trapezoidal rule approximation of integrals:

Theorem D.2.4 Let f (x) ∈ Cm[a, b] and let θ ∈ [0, 1] be fixed. Set h = (b − a)/n for n integer
and define

T̃n(θ) = h
n−1∑

i=0
f (a + ih + θh) and I =

∫ b

a
f (x) dx .

Then,

T̃n(θ ) = I +
m∑

k=1

Bk(θ )

k!

[
f (k−1)(b)− f (k−1)(a)

]
hk +Um(h; θ ),

where the remainder term Um(h; θ ) is given by

Um(h; θ ) = −hm

∫ b

a
f (m)(x)

B̄m

(
θ − n x−a

b−a

)

m!
dx .

Obviously, Um(h; θ ) = O(hm) as h → 0 [equivalently, Um(h; θ ) = O(n−m) as n →∞].
If we let θ = 0 and θ = 1/2 in Theorem D.2.4, then half the terms in the summation on k there

disappear, and we obtain the following special forms of the Euler–Maclaurin expansion for the
trapezoidal and midpoint rule approximations of

∫ b
a f (x) dx :

Theorem D.2.5 Let f (x) ∈ C2m[a, b] and define

Tn = T̃n(0)− B1[ f (b)− f (a)] h = h
n∑

i=0

′′
f (a + ih) and I =

∫ b

a
f (x) dx,

where the double prime on the summation on the right-hand side means that the first and last terms
in this summation are halved. Then,

Tn = I +
m−1∑

k=1

B2k

(2k)!

[
f (2k−1)(b)− f (2k−1)(a)

]
h2k +Um(h),

with the remainder term Um(h) being given by

Um(h) = h2m

∫ b

a
f (2m)(x)

B2m − B̄2m(n x−a
b−a )

(2m)!
dx

= (b − a)
B2m

(2m)!
f (2m)(ξm,n) h

2m for some ξm,n ∈ (a, b).
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Theorem D.2.6 Let f (x) ∈ C2m[a, b] and define

Mn = T̃n( 12 ) = h
n−1∑

i=0
f (a + ih + 1

2h) and I =
∫ b

a
f (x) dx .

Then,

Mn = I +
m−1∑

k=1

B2k( 12 )

(2k)!

[
f (2k−1)(b)− f (2k−1)(a)

]
h2k +Um(h),

where the remainder term Um(h) is given by

Um(h) = h2m

∫ b

a
f (2m)(x)

B2m( 12 )− B̄2m( 12 + n x−a
b−a )

(2m)!
dx

= (b − a)
B2m( 12 )

(2m)!
f (2m)(ξm,n) h

2m for some ξm,n ∈ (a, b).

When f (x) ∈ C∞[a, b] in Theorems D.2.4–D.2.6, the finite summations on k can be replaced
by the infinite summations

∑∞
k=1 and the remainder can be deleted, and this gives asymptotic

expansions of the approximations to
∫ b
a f (x) dx as h → 0 (equivalently, as n →∞). For example,

the result of Theorem D.2.4 becomes

T̃n(θ ) ∼ I +
∞∑

k=1

Bk(θ)

k!

[
f (k−1)(b)− f (k−1)(a)

]
hk as h → 0.

For more details, see Steffensen [322].

D.3 Applications of Euler–Maclaurin Expansions

D.3.1 Application to Harmonic Numbers

We continue by applying Theorem D.2.2 to the function F(t) = 1/t to derive an asymptotic
expansion for the harmonic number Hn =

∑n
i=1 1/ i as n →∞. Taking r = 1 in Theorem D.2.2,

we first obtain

Hn = log n + 1

2
+ 1

2n
+

m−1∑

k=1

B2k

2k
−

m−1∑

k=1

B2k

2k
n−2k + Rm(n),

where

Rm(n) =
∫ n

1

B2m − B̄2m(t)

t2m+1
dt.

Because B2m − B̄2m(t) is bounded for all t , Rm(∞) exists, and hence

Rm(n) = Rm(∞)−
∫ ∞

n

B2m − B̄2m(t)

t2m+1
dt = Rm(∞)+ O(n−2m) as n →∞.

By the well-known fact that Hn − log n → C as n →∞, where C = 0.5772156 · · · is Euler’s
constant, we realize that Rm(∞)+∑m−1

k=1 B2k/(2k)+ 1/2 = C , independently of m. Thus, we
have obtained the asymptotic expansion

Hn ∼ log n + C + 1

2n
−

∞∑

k=1

B2k

2k
n−2k as n →∞.
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D.3.2 Application to Cauchy Principal Value Integrals

Let f (x) = g(x)/(x − t) for some t ∈ (a, b), and assume that g(t) �= 0. Then the integral∫ b
a f (x) dx does not exist in the ordinary sense. Provided g(x) is differentiable at x = t , it is
defined in the Cauchy principal value sense; that is,

I = lim
ε→0

[∫ t−ε

a
+
∫ b

t+ε

]

f (x) dx

exists. For such integrals, the following result has been given by Sidi and Israeli [310, Theorem 4
and Corollary]:

Theorem D.3.1 Let h = (b − a)/n for some integer n ≥ 1 and xi = a + ih, i = 0, 1, . . . , n. Let
t be fixed and t ∈ {x1, . . . , xn−1}. Define the trapezoidal rule approximation to I by

T̂n = h
n∑

i=0
xi �=t

′′
f (xi )+ g′(t)h.

Provided g(x) ∈ C2m[a, b], there holds

T̂n = I +
m−1∑

k=1

B2k

(2k)!

[
f (2k−1)(b)− f (2k−1)(a)

]
h2k + Ûm(h),

where Ûm(h) = O(h2m) as h → 0 (such that t ∈ {x1, . . . , xn−1} always), and Ûm(h) is given by
the Cauchy principal value integral

Ûm(h) = h2m

∫ b

a
f (2m)(x)

B2m − B̄2m(n x−a
b−a )

(2m)!
dx .

This result follows in a nontrivial fashion from Theorem D.2.5.

D.4 A Further Development

We now use Theorems D.2.4–D.2.6 to prove the following interesting result that appears to be
new. We take [a, b] = [0, 1] for simplicity.

TheoremD.4.1 Set t = n−2 in TheoremD.2.5. If f ∈ C2m[0, 1], then the trapezoidal rule approx-
imation Tn can be continued to a function w(t) defined for all real t ∈ [0, 1] [i.e., w(n−2) = Tn,
n = 1, 2, . . . ] such that w(t) ∈ Cq [0, 1], where q = (2m/3) − 1; i.e., q is the greatest integer
less than 2m/3. Thus, if f ∈ C∞[0, 1], then w(t) ∈ C∞[0, 1] as well.

The same holds when Tn is replaced by the midpoint rule approximation Mn of Theorem D.2.6.
A similar result holds for the general offset trapezoidal rule approximation T̃n(θ ) of

Theorem D.2.4 (with θ �= 0, 1/2, 1). Only this time, t = n−1, and q = (m/2) − 1 when f (x) ∈
Cm[0, 1].

Proof. We give the proof for Tn only. That for Mn is identical and that for T̃n(θ ) is similar.
By Theorem D.2.5, it seems natural to try

w(t) =
m∑

k=0
ckt

k +Wm(t),

where c0 =
∫ 1
0 f (x) dx and ck = B2k[ f (2k−1)(1)− f (2k−1)(0)]/(2k)!, k = 1, 2, . . . , and

Wm(t) = −tm
∫ 1

0
f (2m)(x)

B̄2m(xt−1/2)
(2m)!

dx .

Obviously,
∑m

k=0 ckt
k , the polynomial part of w(t), is in C∞[0, 1]. By the fact that B̄2m(x) ∈

C2m−2(−∞,∞), Wm(t) is in C2m−2(0, 1]; hence, we have to analyze its behavior at t = 0. First,
provided m ≥ 1, Wm(t) is continuous at t = 0 because limt→0 Wm(t) = 0. Next, provided m ≥ 2,
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we can differentiate the integral expression with respect to t for t > 0. Using also the fact that
B̄
′
k(x) = k B̄k−1(x), we obtain

W ′
m(t) = −mtm−1

∫ 1

0
f (2m)(x)

B̄2m(xt−1/2)
(2m)!

dx + tm−3/2
∫ 1

0
x f (2m)(x)

B̄2m−1(xt−1/2)
2(2m − 1)!

dx,

from which limt→0 W ′
m(t) = 0, implying that W ′

m(t) is continuous at t = 0. Continuing this
way, and provided m > 3p/2, we obtain W (p)

m (t) = Ŵ (t)+ W̃ (t), where

Ŵ (t) = (−1)p+1tm−3p/2
∫ 1

0
x p f (2m)(x)

B̄2m−p(xt−1/2)
2p(2m − p)!

dx,

hence limt→0 Ŵ (t) = 0, and W̃ (t) is smoother than Ŵ (t) at t = 0. This completes the proof. �

D.5 The Euler–Maclaurin Formula for Integrals with Endpoint Singularities

TheoremsD.2.4–D.2.6 concerned integrands f (x) that were sufficiently smooth on [a, b].We now
want to treat functions f (x) that are smooth on (a, b) but have singularities at one or both endpoints
x = a and x = b. Here we give Navot’s extensions of the Euler–Maclaurin formula for integrals
with algebraic and/or logarithmic end point singularities. Navot’s results were rederived by Lyness
and Ninham [202] by a different technique that uses generalized functions. For a generalization
of Navot’s results to integrands with other singularities, see Waterman, Yos, and Abodeely [351].
For an extension to Hadamard finite part integrals, see Monegato and Lyness [213].

These results have been extended to multidimensional integrals over hypercubes and hypersim-
plices in the works of Lyness [196], Lyness and Monegato [201], Lyness and de Doncker [199],
and Sidi [283]. Recently, numerical integration over curved surfaces and accompanying Euler–
Maclaurin expansions have been considered. See the works by Georg [95], Verlinden and Cools
[346], and Lyness [198], for example.

D.5.1 Algebraic Singularity at One Endpoint

Westart by stating a result of fundamental importance that is due toNavot [216] and that generalizes
Theorem D.2.4 to the case in which f (x) has an algebraic singularity at x = a. As before, h =
(b − a)/n throughout this section too.

Theorem D.5.1 Let g(x) ∈ Cm[a, b] and let α be a constant such that α �= 0, 1, 2, . . . , and
�α > −1. Let also θ ∈ (0, 1] be fixed. Set f (x) = (x − a)αg(x). Then, with T̃n(θ) as in
Theorem D.2.4, and with p = (�α + m), sm(x) =

∑m−1
j=0

g( j)(a)
j! (x − a) j+α and �m(x) =

f (x)− sm(x), we have

T̃n(θ) = I +
m∑

k=1

Bk(θ )

k!
f (k−1)(b) hk +

m−1∑

j=0
ζ (−α − j, θ )

g( j)(a)

j!
hα+ j+1 +Um,p(h; θ),

where the remainder term Um,p(h; θ ) is given by

Um,p(h; θ ) = −hm

∫ b

a
�(m)

m (x)
B̄m(θ − n x−a

b−a )

m!
dx

+
p∑

k=m+1

Bk(θ )

k!
s(k−1)m (b) hk + h p

∫ ∞

b
s(p)m (x)

B̄ p(θ − n x−a
b−a )

p!
dx,

where ζ (z, θ ) is the generalized Zeta function defined by ζ (z, θ ) =∑∞
n=0(n + θ )−z for �z > 1

and continued analytically to the complex z-plane.
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The generalized Zeta function has properties very similar to those of the “standard” Riemann
Zeta function, and both are considered in some detail in Appendix E.

Obviously, Um,p(h; θ ) = O(hm) as h → 0 [equivalently, Um,p(h; θ ) = O(n−m) as n →∞].
Also, when −1 < �α < 0, we can take p = m.

Using the fact that

ζ (− j, θ ) = − Bj+1(θ )
j + 1

, j = 0, 1, . . . ,

it can be shown that the result of Theorem D.5.1 reduces precisely to that of Theorem D.2.4
as α→ 0.

When g(x) ∈ C∞[a, b], we have the asymptotic expansion

T̃n(θ ) ∼ I +
∞∑

k=1

Bk(θ )

k!
f (k−1)(b) hk +

∞∑

j=0
ζ (−α − j, θ )

g( j)(a)

j!
hα+ j+1 as h → 0.

If we let θ = 1 and θ = 1/2 in Theorem D.5.1, half the terms in the summation on k disappear.
Let us now define

T ′
n = T̃n(1)− B1(1) f (b) h = h

n∑

i=1

′
f (a + ih),

where the prime on the summation on the right-hand sidemeans that the last term in the summation
is halved.

Thus, when g(x) ∈ C∞[a, b], the asymptotic expansions of T ′
n and Mn become, respectively,

T ′
n ∼ I +

∞∑

k=1

B2k

(2k)!
f (2k−1)(b) h2k +

∞∑

j=0
ζ (−α − j)

g( j)(a)

j!
hα+ j+1 as h → 0,

because ζ (z, 1) is nothing but ζ (z), and

Mn ∼ I +
∞∑

k=1

B2k( 12 )

(2k)!
f (2k−1)(b) h2k +

∞∑

j=0
ζ (−α − j, 1

2 )
g( j)(a)

j!
hα+ j+1 as h → 0.

D.5.2 Algebraic-Logarithmic Singularity at One Endpoint

Theorem D.5.1 enables us to treat integrals of functions u(x) with an algebraic-logarithmic sin-
gularity at x = a of the form u(x) = (log(x − a))(x − a)αg(x) with g(x) ∈ Cm[a, b].

We first observe that, if J = ∫ b
a u(x) dx and I = ∫ b

a (x − a)αg(x) dx , then J = d
dα I . This sug-

gests that we differentiate with respect to α the Euler–Maclaurin expansion associated with I given
in Theorem D.5.1. A careful analysis reveals that d

dαUm,p(h; θ ) = O(hm) as h → 0. Thus, if we
define

S̃n(θ) = h
n−1∑

i=0
u(a + ih + θh),

then

S̃n(θ ) = J +
m∑

k=1

Bk(θ)

k!
u(k−1)(b) hk

+
m−1∑

j=0

g( j)(a)

j!

[
ζ (−α − j, θ ) log h − ζ ′(−α − j, θ )

]
hα+ j+1 + O(hm) as h → 0,
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where ζ ′(z, θ ) = d
dz ζ (z, θ ). When g(x) ∈ C∞[a, b], we have the asymptotic expansion

S̃n(θ ) ∼ J +
∞∑

k=1

Bk(θ)

k!
u(k−1)(b) hk

+
∞∑

j=0

g( j)(a)

j!

[
ζ (−α − j, θ ) log h − ζ ′(−α − j, θ )

]
hα+ j+1 as h → 0.

Simplifications take place in this expansion when we take θ = 1 and θ = 1/2 as before. Further
simplifications take place when α = 0. All these developments too are due to Navot [217].

Needless to say, this approach can be used to treat those integrals J = ∫ b
a u(x) dx with u(x) =

(log(x − a))r (x − a)αg(x), where r is a positive integer. In case g(x) ∈ C∞[a, b], this results in
an asymptotic expansion of the form

S̃n(θ ) ∼ J +
∞∑

k=1

Bk(θ)

k!
u(k−1)(b) hk

+
∞∑

j=0

g( j)(a)

j!

( r∑

i=0
c ji (log h)

i

)

hα+ j+1 as h → 0,

where c ji are constants independent of g(x) andn; they dependon ζ (s)(−α − j, θ ), s = 0, 1, . . . , r .
Here, ζ (s)(z, θ ) = ds

dzs ζ (z, θ ).

D.5.3 Algebraic-Logarithmic Singularities at Both Endpoints

We end by discussing briefly the case in which f (x) = (x − a)α(b − x)βg(x), where α, β �=
0, 1, . . . , and �α,�β > −1 and g(x) is sufficiently smooth on [a, b]. For simplicity, we assume
that g(x) ∈ C∞[a, b]. With θ ∈ (0, 1) and T̃n(θ ) as in Theorem D.2.4, we then have

T̃n(θ ) ∼ I +
∞∑

j=0
ζ (−α − j, θ)

g( j)
a (a)

j!
hα+ j+1

+
∞∑

j=0
(−1) jζ (−β − j, 1− θ)

g( j)
b (b)

j!
hβ+ j+1 as h → 0,

where we have defined ga(x) = (b − x)βg(x) and gb(x) = (x − a)αg(x).
This result was first stated by Lyness and Ninham [202]. It can be obtained by applying Theo-

remD.5.1 to the integrals
∫ c
a u(x) dx and

∫ b
c u(x) dx , where c = a + kh for some integer k ≈ n/2,

and by adding the resulting Euler–Maclaurin expansions, and recalling that Bk(1− θ ) =
(−1)k Bk(θ) for all k. We leave the details to the interested reader.

When θ = 1, this result should be modified as follows: Define

Ťn = h
n−1∑

i=1
f (a + ih).

Then,

Ťn ∼ I +
∞∑

j=0
ζ (−α − j)

g( j)
a (a)

j!
hα+ j+1

+
∞∑

j=0
(−1) jζ (−β − j)

g( j)
b (b)

j!
hβ+ j+1 as h → 0.

By repeated differentiation with respect to α and β, we can extend these results to the case in
which the integrand is of the form

u(x) = (log(x − a))r (x − a)α(log(b − x))s(b − x)βg(x),

where r and s are some nonnegative integers.
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D.6 Application to Singular Periodic Integrands

An interesting application of the results of the previous sections is to integrals I = ∫ b
a f (x) dx ,

where f (x) is periodic with period T = b − a, and infinitely differentiable on (−∞,∞) ex-
cept at the points x = t + kT , k = 0,±1,±2, . . . , where it may have polar or algebraic and/or
logarithmic singularities.

(i) When f (x) has a polar singularity at t ∈ (a, b), it is of the form f (x) = g(x)/(x − t)+ g̃(x)
for x ∈ [a, b], and g(t) �= 0.

(ii) When f (x) has an algebraic singularity at t ∈ (a, b), it is of the form f (x) = g(x)|x − t |s +
g̃(x), �s > −1, for x ∈ [a, b].

(iii) When f (x) has a logarithmic singularity in t ∈ (a, b), it is of the form f (x) = g(x) log |x −
t | + g̃(x) for x ∈ [a, b],

(iv) When f (x) has an algebraic-logarithmic singularity at t ∈ (a, b), it is of the form f (x) =
g(x)|x − t |s log |x − t | + g̃(x), �s > −1, for x ∈ [a, b].

In the case of the polar singularity,
∫ b
a f (x) dx does not exist as an ordinary integral but is defined

in the Cauchy principal value sense. In the remaining cases,
∫ b
a f (x) dx exists because f (x) is

integrable across x = t , and we say that these singularities are weak.
Of course, in all four cases, g, g̃ ∈ C∞[a, b], but g, g̃ �∈ C∞(−∞,∞), and they are not neces-

sarily periodic. Such integrals arise as part of periodic singular and/or weakly singular Fredholm
integral equations. For these integrals, Sidi and Israeli [310, Theorem 7] derived “corrected” trape-
zoidal rule approximations T (h; t), and obtained asymptotic expansions for T (h; t) as h → 0,
where h = (b − a)/n = T/n as usual. (See also Sidi [289] for further considerations and com-
parisons with other works.)

(i) In case of a polar singularity,

T (h; t) = h
n−1∑

i=1
f (t + ih),

T (h; t) = I − [g̃(t)+ g′(t)]h + O(hµ) as h → 0, for every µ > 0.

(ii) In case of an algebraic singularity,

T (h; t) = h
n−1∑

i=1
f (t + ih)+ g̃(t)h − 2ζ (−s)g(t)hs+1,

T (h; t) ∼ I + 2
∞∑

k=1

ζ (−s − 2k)

(2k)!
g(2k)(t)hs+2k+1 as h → 0.

(iii) In case of a logarithmic singularity,

T (h; t) = h
n−1∑

i=1
f (t + ih)+ g̃(t)h + g(t)h log

(
h

2π

)

,

T (h; t) ∼ I − 2
∞∑

k=1

ζ ′(−2k)
(2k)!

g(2k)(t)h2k+1 as h → 0.

(iv) In case of an algebraic-logarithmic singularity,

T (h; t) = h
n−1∑

i=1
f (t + ih)+ g̃(t)h + 2[ζ ′(−s)− ζ (−s) log h]g(t)hs+1,

T (h; t) ∼ I + 2
∞∑

k=1

ζ (−s − 2k) log h − ζ ′(−s − 2k)

(2k)!
g(2k)(t)hs+2k+1 as h → 0.
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Here we used the fact that
∫ b
a f (x) dx = ∫ t+T

t f (x) dx . This is so because, by the periodicity
of f (x),

∫ b
a f (x) dx = ∫ b′

a′ f (x) dx for any a′ and b′ such that b′ − a′ = T . We refer the reader to
Sidi and Israeli [310] for details and for further results.

Three types of the integrals treated here occur commonly in applications:

1. Those with a polar singularity, for which we have T (h; t)− I = −[g̃(t)+ g′(t)]h + O(hµ) as
h → 0, for every µ > 0.

2. Those with a logarithmic singularity, for which we have T (h; t)− I = O(h3) as h → 0.
3. Those with an algebraic-logarithmic singularity with s = 2. [In this case too the singularity is

only logarithmic in nature, because |x − t |s = (x − t)s is analytic for all x including x = t when
s is a positive even integer.] Now in Appendix E it is stated that ζ (−2 j) = 0 for j = 1, 2, . . . .
Therefore, for s = 2p, p > 0 an integer, T (h; t) and its asymptotic expansion become

T (h; t) = h
n−1∑

i=1
f (t + ih)+ g̃(t)h + 2ζ ′(−2p)g(t)h2p+1,

T (h; t) ∼ I − 2
∞∑

k=1

ζ ′(−2p − 2k)

(2k)!
g(2k)(t)h2p+2k+1 as h → 0.

Consequently, T (h; t)− I = O(h2p+3) as h → 0. In particular, when s = 2, i.e., when p = 1,
we have T (h; t)− I = O(h5) as h → 0.

When s = 1, 2, . . . , in f (x) = g(x)|x − t |s + g̃(x), we take T (h; t) = h
∑n−1

i=0 f (t + ih); that
is, T (h; t) is simply the trapezoidal rule approximation to

∫ b
a f (x) dx . When s is an even integer,

f (x) has no singularity across x = t . In this case, T (h; t)− I has an empty asymptotic expansion,
which implies that T (h; t) = I + O(hµ) as h → 0, for every µ > 0. When s is an odd integer, the
derivatives of f (x) have finite jump discontinuities across x = t , and T (h; t) has an asymptotic
expansion of the form T (h; t) ∼ I +∑∞

k=1 αk(t)h2k as h → 0, as has been shown by Averbuch
et al. [14].



E
The Riemann Zeta Function and the Generalized

Zeta Function

E.1 Some Properties of ζ (z)

The Riemann Zeta function ζ (z) is defined to be the sum of the (convergent) Dirichlet series∑∞
k=1 k

−z for �z > 1. From the theory of Dirichlet series, it is known that ζ (z) is an analytic
function of z for �z > 1. It turns out that ζ (z) can be continued analytically to the whole z-plane
except z = 1, where it has a simple pole with residue 1, and we denote its analytic continuation
again by ζ (z). The reflection formula due to Riemann, namely,

ζ (1− z) = 21−zπ−z cos( 12π z)�(z)ζ (z),

can be used to continue ζ (z) analytically. It is interesting to note the following special values that
this analytic continuation assumes:

ζ (0) = −1

2
; ζ (−2n) = 0 and ζ (1− 2n) = − B2n

2n
, n = 1, 2, . . . .

We also have

ζ ′(0) = −1

2
log(2π ),

ζ ′(−2n) = (−1)n2−2n−1π−2n�(2n + 1)ζ (2n + 1), n = 1, 2, . . . .

Let us, in addition, recall the connection between ζ (2n) and B2n , namely,

ζ (2n) =
∞∑

k=1

1

k2n
= (−1)n−1 (2π )

2n B2n

2(2n)!
, n = 1, 2, . . . .

The Zeta function has no zeros in the right half plane �z > 1, and its only zeros in the left half
plane �z < 0 are−2,−4,−6, . . . . As for the zeros in the remaining strip 0 ≤ �z ≤ 1, a famous
and still unproved conjecture by Riemann claims that they all lie on the midline �z = 1

2 .

E.2 Asymptotic Expansion of
∑n−1

k=0(k + θ)−z

We now derive the asymptotic expansion as n →∞ of the partial sum Sn(z) =
∑n−1

k=0(k + θ )−z

with θ > 0 whether
∑∞

k=0(k + θ )−z converges or not. Simultaneously, we also obtain the analytic
structure of the generalized Zeta function ζ (z, θ ), which is defined via ζ (z, θ ) =∑∞

k=0(k + θ )−z

for �z > 1 and then continued analytically to the complex z-plane, and hence of the Riemann
Zeta function ζ (z) as well. [Observe that ζ (z, 1) = ζ (z).] This can be achieved by using the Euler–
Maclaurin expansion, as was done in Section D.3 of Appendix D. Our approach here is quite
different in that it involves the Laplace transform and thus enables us to conclude also that the
partial sum Sn(z) is associated with a function A(y) in F(1)

∞ .
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Using the fact that a−z = (∫∞
0 e−at t z−1 dt

)
/�(z), a > 0 and �z > 0, we obtain

Sn(z) =
n−1∑

k=0
(k + θ )−z = 1

�(z)

∫ ∞

0
t z−1

(n−1∑

k=0
e−(k+θ )t

)

dt,

which, by the additional fact that
∑n−1

k=0 τ
k = (1− τ n)/(1− τ ), gives

Sn(z) = 1

�(z)

∫ ∞

0

t z−1e(1−θ )t

et − 1
dt − 1

�(z)

∫ ∞

0
e−nt

(
t z−1e(1−θ )t

et − 1

)

dt, �z > 1. (E.2.1)

Because t z−1e(1−θ )t/(et − 1) = t z−2 + O(t z−1) as t → 0+, the second integral in (E.2.1) is
O(n−z+1), hence tends to 0 as n →∞, as can be shown by using Watson’s lemma. Therefore, we
conclude that

ζ (z, θ ) = 1

�(z)

∫ ∞

0

t z−1e(1−θ )t

et − 1
dt, �z > 1,

and hence that

ζ (z, θ) = Sn(z)+ 1

�(z)

∫ ∞

0
e−nt

(
te(1−θ )t

et − 1

)

t z−2 dt, �z > 1. (E.2.2)

Now, from Appendix D, we have for any positive integer m,

te(1−θ )t

et − 1
=

m−1∑

s=0

Bs(1− θ )

s!
t s +Wm(t), Wm(t) = O(tm) as t → 0.

Substituting this in (E.2.2) and making use of the facts that �(z + k)/�(z) = (z)k = z(z + 1) · · ·
(z + k − 1) and Bk(1− θ ) = (−1)k Bk(θ ) for all k, we obtain for �z > 1

ζ (z, θ ) = Sn(z)+ n−z+1

z − 1
+

m−1∑

s=1
(−1)s (z)s−1Bs(θ)

s!
n−s−z+1 + 1

�(z)

∫ ∞

0
e−ntWm(t)t

z−2 dt.

(E.2.3)

The first term on the right-hand side of (E.2.3), namely, the term Sn(z), is an entire function of z.
The second term, n−z+1/(z − 1), is analytic everywhere except at z = 1, where it has a simple pole
with residue 1. The third term, namely, the summation

∑m−1
s=1 , being a polynomial in z multiplied

by n−z , is entire just as the first one. Finally, because Wm(t)t z−2 is (i) O(tm+z−3) as t →∞, and
(ii) O(tm+z−2) as t → 0, and because 1/�(z) is entire, the last term,

[∫∞
0 e−ntWm(t)t z−2 dt

]
/�(z),

exists and is analytic for �z > −m + 1. In addition, it is O(n−m−z+1) as n →∞, by Watson’s
lemma. Putting everything together, we conclude that the right-hand side of (E.2.3) is analytic
in the half plane �z > −m + 1 except at z = 1, where it has a simple pole with residue 1, and
it is thus the analytic continuation of the left-hand side. We have thus shown that ζ (z, θ ) can be
continued analytically to the whole complex plane except z = 1, where it has a simple pole with
residue 1.

When z = 0,−1,−2, . . . ,−m + 2, the integral term on the right-hand side of (E.2.3) vanishes
because 1/�(z) = 0 for these values of z. Thus, for z = −p, p = 0, 1, . . . , (E.2.3) reduces to

n−1∑

k=0
(k + θ )p = np+1

p + 1
−

p+1∑

s=1
(−1)s (−p)s−1Bs(θ )

s!
np−s+1 + ζ (−p, θ ).

Comparing this with the Euler–Maclaurin formula for the sum
∑n−1

k=0(k + θ )p , which is obtained
by applying Theorem D.2.1 to the function F(t) = t p , we obtain the following well-known
result:

ζ (−p, θ ) = − Bp+1(θ )
p + 1

, p = 0, 1, . . . . (E.2.4)
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[Note that the relations ζ (−2n) = 0 and ζ (1− 2n) = −B2n/(2n), n = 1, 2, . . . ,mentioned in the
preceding section can be obtained by letting θ = 1 in (E.2.4).]

We have also shown that, for all other values of z, Sn(z) has the asymptotic expansion

Sn(z) ∼ ζ (z, θ )− n−z+1

z − 1
−

∞∑

s=1
(−1)s (z)s−1Bs(θ )

s!
n−z−s+1 as n →∞, z �= 1, (E.2.5)

whether
∑∞

k=0(k + θ)−z converges or not.
Note that, when

∑∞
k=0(k + θ )−z converges, that is, when�z > 1, this asymptotic expansion can

be obtained by applying Watson’s lemma to the second integral in (E.2.1).
Let z �= 1 and �z > −m + 1 for some positive integer m. We can rewrite (E.2.3) in the form

Sn(z) = ζ (z, θ )+ n−z+1g(n), where g(x) is given by

g(x) = −(z − 1)−1 −
m−1∑

s=1
(−1)s (z)s−1Bs(θ )

s!
x−s − xz−1

�(z)

∫ ∞

0
e−xtWm(t)t

z−2 dt,

and hence g(x) ∈ A(0)
0 . It is clear from one of the examples of functions in the class A(γ ) that are

given in Section 5.1 that g(x) ∈ A(0). This shows that A(y) ≡ ζ (z, θ )+ yz−1g(y−1) is not only in
F(1) but also in F(1)

∞ .
We continue our approach to show that the asymptotic expansion of d

dz Sn(z) =
−∑n−1

k=0(k + θ)−z log(k + θ ) as n →∞ can be obtained by differentiating that of Sn(z) given in
(E.2.5) term by term. This can be done by differentiating both sides of (E.2.3), and realizing that

d

dz

∫ ∞

0
e−ntWm(t)t

z−2 dt =
∫ ∞

0
e−nt log t Wm(t)t

z−2 dt = O(n−m−z+1 log n) as n →∞.

This last assertion follows from the fact that, when f (t) is of exponential order and also satis-
fies f (t) = O(t p) as t → 0+, p > −1, then ∫∞0 e−λt log t f (t) dt = O(λ−p+1 log λ) as λ→∞,
| arg λ | < π/2− δ, for any δ > 0. Thus,

S′n(z) ∼ ζ ′(z, θ )+
∞∑

s=0

[
cs(z) log n − c′s(z)

]
n−z−s+1 as n →∞, for any z �= 1, (E.2.6)

where c0(z) = 1/(z − 1) and cs(z) = (−1)s(z)s−1Bs(θ )/s!, s = 1, 2, . . . , again whether∑∞
k=0(k + θ )−z log(k + θ) converges or not. Here, g′(z) stands for d

dz g(z) in general.
Formore details on theZeta function, seeOlver [223],Abramowitz andStegun [1], orTitchmarsh

[334].



F
Some Highlights of Polynomial Approximation Theory

F.1 Best Polynomial Approximations

Let f (x) be defined on the finite interval [a, b], and let #n denote the set of all polynomials of
degree at most n. The best polynomial approximation of degree at most n in the L∞-norm on [a, b]
to f (x) is that polynomial p∗(x) ∈ #n that satisfies

max
x∈[a,b]

| f (x)− p∗(x)| ≤ max
x∈[a,b]

| f (x)− p(x)| for all p ∈ #n .

It is known that, when f ∈ C[a, b], p∗(x) exists and is unique.
Let us denote

En( f ) = max
x∈[a,b]

| f (x)− p∗(x)|.

What interests us here are the convergence properties of the sequence of best polynomial approx-
imations when f (x) is infinitely smooth. We recall one of Jackson’s theorems:

Theorem F.1.1 Let {p∗n(x)} be the sequence of best polynomial approximations to f (x) on [a, b],
where p∗n(x) ∈ #n. If f ∈ Ck[a, b], then

En( f ) = O(n−k) as n →∞.

The following result is an immediate consequence of Jackson’s theorem.

Theorem F.1.2 Let {p∗n(x)} be the sequence of best polynomial approximations to f (x) on [a, b],
where p∗n(x) ∈ #n. If f ∈ C∞[a, b], then

En( f ) = O(n−µ) as n →∞, for every µ > 0.

A theorem of Bernstein says that, if f (z) is analytic in an open domain that contains the interval
[a, b] in its interior, then the result of Theorem F.1.2 can be improved to read

En( f ) = O(e−αn) as n →∞, for some α > 0.

α depends on the location of the singularity of f (z) that is closest to [a, b] in some well-defined
sense, which we omit.

If f (z) is an entire function, that is, it is analytic in the entire z-plane, an additional improvement
takes place, and we have

En( f ) = O(e−αn) as n →∞, for every α > 0.

F.2 Chebyshev Polynomials and Expansions

Let x = cos θ for θ ∈ [0, π ]. The Chebyshev polynomials are defined by

Tn(x) = cos(nθ ), n = 0, 1, . . . .

480
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Thus, T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, . . . . From this definition, it follows that the Tn(x)
satisfy the three-term recursion relation

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, . . . ,

from which it can be shown that Tn(x) is a polynomial in x of degree exactly n and that Tn(x) is
even or odd depending on whether n is an even or an odd integer.

Because the transformation x = cos θ is one-to-one between −1 ≤ x ≤ 1 and 0 ≤ θ ≤ π , we
see from the definition of the Tn(x) that

|Tn(x)| ≤ 1 for x ∈ [−1, 1].
In other words, for x ∈ [−1, 1], Tn(x) assumes values between −1 and 1 only.

When x is real and |x | > 1, the Tn(x) can be shown to satisfy

Tn(x) = (sign x)n cosh(nφ), where φ > 0 and eφ = |x | +
√
x2 − 1 > 1.

As a result, we have that

Tn(x) ∼ 1

2
(sign x)nenφ = 1

2
(sign x)n(|x | +

√
x2 − 1)n as n →∞.

In other words, when |x | > 1, the sequence {|Tn(x)|} increases to infinity like enφ for some φ > 0
that depends on x .

The Tn(x) also satisfy the orthogonality property

∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx =





0 if m �= n
1
2π if m = n �= 0.
π if m = n = 0

If f (x) satisfies
∫ 1
−1(1− x2)−1/2| f (x)|2 dx <∞, then it can be expanded in a series of

Chebyshev polynomials in the form

f (x) =
∞∑

n=0

′
anTn(x); an = 2

π

∫ 1

−1

f (x)Tn(x)√
1− x2

dx, n = 0, 1, . . . ,

where the prime on the summation indicates that the n = 0 term is to be multiplied by 1/2. It is
known that the sequence of the partial sums converges to f (x) in the sense that

lim
n→∞

∫ 1

−1

1√
1− x2

[

f (x)−
n∑

i=0

′
ai Ti (x)

]2
dx = 0.

As we are interested in approximation of functions on an arbitrary finite interval [a, b], we
consider the Chebyshev expansions of functions on such an interval in the sequel. First, it is clear
that the expansion of f (x) in a Chebyshev series on [a, b] can be achieved by transforming [a, b]
to [−1, 1] by the linear transformation x = ξ (t) = (b + a)/2+ (b − a)t/2, so that t ∈ [−1, 1]
when x ∈ [a, b]. Then, with τ (x) = (2x − a − b)/(b − a), we have

f (x) =
∞∑

n=0

′
anTn(τ (x)); an = 2

π

∫ 1

−1

f (ξ (t))Tn(t)√
1− t2

dt, n = 0, 1, . . . .

Let us denote

Wn( f ) = max
x∈[a,b]

∣
∣
∣
∣ f (x)−

n∑

i=0

′
ai Ti (τ (x))

∣
∣
∣
∣.

Theorem F.2.1 Let f ∈ Ck[a, b]. Then

an = o(n−k) and Wn( f ) = o(n−k+1) as n →∞.

Thus, for k ≥ 2 f (x) has a Chebyshev expansion that converges uniformly on [a, b].

The following result is an immediate consequence of Theorem F.2.1.
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Theorem F.2.2 Let f ∈ C∞[a, b]. Then

an = O(n−µ) and Wn( f ) = O(n−µ) as n →∞, for every µ > 0.

If f (z) is analytic in an open domain that contains the interval [a, b] in its interior, then the
result of Theorem F.2.2 can be improved to read

an = O(e−αn) and Wn( f ) = O(e−αn) as n →∞, for some α > 0.

α depends on the location of the singularity of f (z) that is closest to [a, b] in some well-defined
sense, which we omit.

If f (z) is an entire function, an additional improvement takes place, and we have

an = O(e−αn) and Wn( f ) = O(e−αn) as n →∞, for every α > 0.

For the preceding and more, see, for example, the books by Cheney [47] and Davis [62].



G
A Compendium of Sequence Transformations

For the sake of convenience, we collect here the definitions of the various sequence transformations
and the algorithms used in their implementation. {Am} is the sequence we wish to extrapolate.

1. Richardson Extrapolation Process (REP)

Given the distinct scalars c1, c2, . . . , such that ck �= 1 for all k, define A( j)
n through

Ar = A( j)
n +

n∑

k=1
ᾱkc

r
k, j ≤ r ≤ j + n.

The A( j)
n can be computed recursively via Algorithm 1.3.1; that is,

A( j)
0 = A j , j ≥ 0; A( j)

n = A( j+1)
n−1 − cn A

( j)
n−1

1− cn
, j ≥ 0, n ≥ 1.

2. Polynomial Richardson Extrapolation Process [REP-POL(γ )]

Given the scalar γ �= 0, choose integers Rl such that R0 < R1 < R2 < · · · , and define A( j)
n through

ARl = A( j)
n +

n∑

k=1

ᾱk

Rkγ
l

, j ≤ r ≤ j + n.

Letting λ( j)n = (Rj/Rj+n)γ , the A( j)
n can be computed recursively via Algorithm 2.2.1; that is,

A( j)
0 = A j , j ≥ 0; A( j)

n = A( j+1)
n−1 − λ( j)n A( j)

n−1
1− λ

( j)
n

, j ≥ 0, n ≥ 1.

3. Richardson Extrapolation Process with Confluence (REP-CONF)

Given the distinct scalars c1, c2, . . . , such that ck �= 1 for all k, and the nonnegative integers
q1, q2, . . . , first let

λi = c1,

λν1+i = c2,

λν1+ν2+i = c3,

gi (m) = cm1 m
i−1, 1 ≤ i ≤ ν1 ≡ q1 + 1,

gν1+i (m) = cm2 m
i−1, 1 ≤ i ≤ ν2 ≡ q2 + 1,

gν1+ν2+i (m) = cm2 m
i−1, 1 ≤ i ≤ ν3 ≡ q3 + 1,

and so on. Then, define A( j)
n through

Ar = A( j)
n +

n∑

k=1
ᾱkgk(r ), j ≤ r ≤ j + n.
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The A( j)
n can be computed recursively via the SGRom-algorithm (Algorithm 14.1.1); that is,

A( j)
0 = A j , j ≥ 0; A( j)

n = A( j+1)
n−1 − λn A

( j)
n−1

1− λn
, j ≥ 0, n ≥ 1.

4. Iterated �2-Process (IDELTA)

Define first

φm({As}) = Am+1 − (�Am)(�Am+1)
�2Am

.

Next, define B( j)
n recursively from

B( j)
0 = A j , j ≥ 0; B( j)

n+1 = φ j ({B(s)
n }), j, n ≥ 0.

5. Iterated �2(γ )- and �2(γ, p)-Processes [IMDELTA(γ, p)]

Given the scalar γ and the integer p ≥ 1, define first

ψm({As}; γ ) = Am+1 − γ − 1

γ

(�Am)(�Am+1)
�2Am

.

Next, define B( j)
n recursively from

B( j)
0 = A j , j ≥ 0; B( j)

n+1 = ψ j ({B(s)
n }; γ − 2n), j, n ≥ 0, for p = 1,

B( j)
0 = A j , j ≥ 0; B( j)

n+1 = ψ j ({B(s)
n }; γ − n/p), j, n ≥ 0, for p ≥ 2.

For p ≥ 2, IMDELTA(γ, p) is the iterated �2(γ, p)-process [see (15.7.2)], whereas for p = 1, it
is the iterated �2(γ )-process [see (15.3.15)].

6. Iterated Lubkin Transformation (ILUBKIN)

Define first

Wm({As}) = �2(Am/�Am)

�2(1/�Am)
.

Next, define B( j)
n recursively from

B( j)
0 = A j , j ≥ 0; B( j)

n+1 = Wj ({B(s)
n }), j, n ≥ 0.

7. Shanks Transformation (EPSILON)

Define en(A j ) through

Ar = en(A j )+
n∑

k=1
ᾱk�Ar+k−1, j ≤ r ≤ j + n.

Next, define the ε( j)k recursively via the ε-algorithm (Algorithm 16.2.1); that is,

ε
( j)
−1 = 0, ε

( j)
0 = A j , j ≥ 0; ε

( j)
k+1 = ε

( j+1)
k−1 + 1

ε
( j+1)
k − ε

( j)
k

, j, k ≥ 0.

Then, en(A j ) = ε
( j)
2n for all j and n.

8. Higher-Order G-Transformation (G-TRAN)

Given the scalars u0, u1, . . . , define A( j)
n through

Ar = A( j)
n +

n∑

k=1
ᾱkur+k−1, j ≤ r ≤ j + n.
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The A( j)
n can be computed with the help of the rs-algorithm (Algorithm 21.3.1) or the FS/qd-

algorithm (Algorithm 21.3.2). Here are the steps of the FS/qd-algorithm:

e( j)0 = 0, q ( j)
1 = u j+1

u j
, M ( j)

0 = A j

u j
, N ( j)

0 = 1

u j
, j ≥ 0.

e( j)n = q ( j+1)
n − q ( j)

n + e( j+1)n−1 , q ( j)
n+1 =

e( j+1)n

e( j)n

q ( j+1)
n ,

M ( j)
n = M ( j+1)

n−1 − M ( j)
n−1

e( j)n

, N ( j)
n = N ( j+1)

n−1 − N ( j)
n−1

e( j)n

, A( j)
n = M ( j)

n

N ( j)
n

, j ≥ 0, n ≥ 1.

9. The L-Transformation (L-TRAN)

Define L( j)
n through

Ar = L( j)
n + ωr

n−1∑

i=0

β̄ i

r i
, J ≤ r ≤ J + n; J = j + 1.

Then, L( j)
n is given by the closed-form expression

L( j)
n = �n

(
J n−1 AJ/ωJ

)

�n
(
J n−1/ωJ

) =
∑n

i=0(−1)i
(n
i

)
(J + i)n−1 AJ+i/ωJ+i

∑n
i=0(−1)i

(n
i

)
(J + i)n−1 /ωJ+i

; J = j + 1.

Here the choices ωm = �Am−1 and ωm = m�Am−1 give rise to the t- and u-transformations,
respectively. The choice ωm = m�Am−1 (u-transformation) is the more useful.

10. The S-Transformation (S-TRAN)

Define S ( j)
n through

Ar = S ( j)
n + ωr

n−1∑

i=0

β̄ i

(r )i
, J ≤ r ≤ J + n; J = j + 1.

Then, S ( j)
n is given by the closed-form expression

S ( j)
n = �n ((J )n−1 AJ/ωJ )

�n ((J )n−1/ωJ )
=
∑n

i=0(−1)i
(n
i

)
(J + i)n−1 AJ+i/ωJ+i

∑n
i=0(−1)i

(n
i

)
(J + i)n−1 /ωJ+i

; J = j + 1.

Here too we can make the choices ωm = �Am−1 or ωm = m�Am−1 to obtain transformations
analogous to, respectively, the t- or the u-transformation.

11. The d (1)-Transformation (d (1)-TRAN)

Pick integers Rl such that 1 ≤ R0 < R1 < R2 < · · · , and define d (1, j)
n = A( j)

n through

ARl = A( j)
n + Rl (�ARl−1)

n−1∑

i=0

β̄ i

Ri
l

, j ≤ l ≤ j + n.

The A( j)
n and the corresponding �( j)

n and !( j)
n can be computed recursively via the W-algorithm

(Algorithm 7.2.4). We give here the steps of the resulting algorithm:
1. For j ≥ 0, set

M ( j)
0 = ARj

R j (�ARj−1)
, N ( j)

0 = 1

Rj (�ARj−1)
, H ( j)

0 = (−1) j |N ( j)
0 |, K ( j)

0 = (−1) j |M ( j)
0 |.

2. For j ≥ 0 and n ≥ 1, compute M ( j)
n , N ( j)

n , H ( j)
n , and K ( j)

n recursively from

Q( j)
n = Q( j+1)

n−1 − Q( j)
n−1

R−1j+n − R−1j
,

where Q( j)
n stand for M ( j)

n or N ( j)
n or H ( j)

n or K ( j)
n .
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3. For j, n ≥ 0, set

A( j)
n = M ( j)

n

N ( j)
n

, �( j)
n =

∣
∣
∣
∣
H ( j)

n

N ( j)
n

∣
∣
∣
∣, !( j)

n =
∣
∣
∣
∣
K ( j)

n

N ( j)
n

∣
∣
∣
∣.

When Rl = l + 1, l = 0, 1, . . . , we have d (1, j)
n = L( j)

n with ωm = m�Am−1, that is, the d (1)-
transformation reduces to the u-transformation.

12. The d (m)-Transformation (d (m)-TRAN)

Pick integers Rl such that 1 ≤ R0 < R1 < R2 < · · · , let n = (n1, n2, . . . , nm), and define d (m, j)
n

through

ARl = d (m, j)
n +

m∑

k=1
Rk

l (�
k ARl−1)

nk−1∑

i=0

β̄ki

Ri
l

, j ≤ l ≤ j + N ; N =
m∑

k=1
nk .

The d (m, j)
n can be computed recursively via the W(m)-algorithm (Algorithm 7.3.5) when m > 1.

13. The d̃ (m)-Transformation (d̃ (m)-TRAN)

Pick integers Rl such that 1 ≤ R0 < R1 < R2 < · · · , and define d̃ (m, j)
n = A( j)

n through

ARl = A( j)
n + Rl (�ARl−1)

n−1∑

i=0

β̄ki

Ri/m
l

, j ≤ l ≤ j + n.

The A( j)
n and the corresponding �( j)

n and !( j)
n can be computed recursively via the W-algorithm

(Algorithm 7.2.4). We give here the steps of the resulting algorithm:
1. For j ≥ 0, set

M ( j)
0 = ARj

R j (�ARj−1)
, N ( j)

0 = 1

Rj (�ARj−1)
, H ( j)

0 = (−1) j |N ( j)
0 |, K ( j)

0 = (−1) j |M ( j)
0 |.

2. For j ≥ 0 and n ≥ 1, compute M ( j)
n , N ( j)

n , H ( j)
n , and K ( j)

n recursively from

Q( j)
n = Q( j+1)

n−1 − Q( j)
n−1

R−1/mj+n − R−1/mj

,

where Q( j)
n stand for M ( j)

n or N ( j)
n or H ( j)

n or K ( j)
n .

3. For j, n ≥ 0, set

A( j)
n = M ( j)

n

N ( j)
n

, �( j)
n =

∣
∣
∣
∣
H ( j)

n

N ( j)
n

∣
∣
∣
∣, !( j)

n =
∣
∣
∣
∣
K ( j)

n

N ( j)
n

∣
∣
∣
∣.

14. The ρ-, ρ(γ )-, and ρ(γ, p)-Algorithms [RHO(γ, p)]

Given the scalar γ and the positive integer p, let

C (γ,p)
k = −γ + k if p = 1,

C (γ,p)
2n = −γ + n

p
and C (γ,p)

2n+1 = −γ + n

p
+ 1 if p ≥ 2,

and define ρ̂( j)
k recursively via the recursion relation

ρ̂
( j)
−1 = 0, ρ̂

( j)
0 = A j , j ≥ 0; ρ̂

( j)
k+1 = ρ̂

( j+1)
k−1 + C (γ,p)

k

ρ̄
( j+1)
k − ρ̄

( j)
k

, j, k ≥ 0.

Here, the relevant quantities are the ρ̂
( j)
2n . For p ≥ 2, RHO(γ, p) is the ρ(γ, p)-algorithm

(Algorithm 20.1.6), and for p = 1 it reduces to the ρ(γ )-algorithm (Algorithm 20.1.3). For p = 1
and γ = −1, RHO(γ, p) reduces to the ρ-algorithm (Algorithm 20.1.1).
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15. The θ -Algorithm (THETA)

Define θ ( j)k recursively via Algorithm 20.2.1; that is,

θ
( j)
−1 = 0, θ

( j)
0 = A j , j ≥ 0;

θ
( j)
2n+1 = θ

( j+1)
2n−1 + D( j)

2n ; D( j)
k = 1/�θ ( j)k for all j, k ≥ 0,

θ
( j)
2n+2 = θ

( j+1)
2n − �θ

( j+1)
2n

�D( j)
2n+1

D( j)
2n+1, j, n ≥ 0.

Here, the relevant quantities are the θ ( j)2n .

16. The Overholt Transformation (OVERH)

Let λ( j)n = (�A j+n/�A j+n−1)n , and define A( j)
n recursively as in (22.1.4); that is,

A( j)
0 = A j , j ≥ 0; A( j)

n = A( j+1)
n−1 − λ( j)n A( j)

n−1
1− λ

( j)
n

, j ≥ 0, n ≥ 1.

17. The Wimp Transformation (WIMP)

Let λ( j)n = �A j+n/�A j , and define A( j)
n recursively as in (22.2.2); that is,

A( j)
0 = A j , j ≥ 0; A( j)

n = A( j+1)
n−1 − λ( j)n A( j)

n−1
1− λ

( j)
n

, j ≥ 0, n ≥ 1.



H
Efficient Application of Sequence

Transformations: Summary

In this appendix, we summarize the types of sequences {Am} and series
∑∞

k=1 ak treated in this
book and point to the sequence transformations appropriate for each type. Our conclusions are
based on numerical comparisons carried out in double- and quadruple-precision arithmetic. It is
worth emphasizing that the differences between the various methods become more pronounced
in quadruple-precision arithmetic. Therefore, we urge the reader to use quadruple-precision arith-
metic in comparing the methods.

For convenience, we adopt the shorthand names introduced in Appendix G. In addition, by
L-TRAN and S-TRAN, we mean the L- and S-transformations with ωr = rar .

1. Exponential Sequences

Let {Am} be such that

Am ∼ A +
∞∑

k=1
αkc

m
k as m →∞,

where αk and ck are scalars independent of m and

ck distinct, ck �= 1 for all k; c1| ≥ |c2| ≥ · · · ; lim
k→∞

ck = 0.

In case the ck are not known, the only methods that can be used to accelerate the convergence
of {Am} are EPSILON and IDELTA. We must remember, however, that application of the latter
may be problematic in some cases, as exemplified in Theorem 15.3.5.

If the ck are known, the more appropriate method is REP, because it is less expensive than
EPSILON and IDELTA.

2. Exponential Sequences with Confluence

Let {Am} be such that

Am ∼ A +
∞∑

k=1
Pk(m)cmk as m →∞,

where Pk(m) are polynomials in m, and ck are constants independent of m satisfying

ck distinct, ck �= 1 for all k; c1| ≥ |c2| ≥ · · · ; lim
k→∞

ck = 0.

In case the ck are not known, the only method that can be used to accelerate the convergence of
{Am} is EPSILON.

If the ck and the degrees of the polynomials Pk(m) (or some upper bounds for them), say qk , are
known, the more appropriate method is REP-CONF, because it is less costly than EPSILON.
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3. Exponential Sequences (Cont’d)

Am ∼ A +
∞∑

k=1
αkλ

km as m →∞,

where αk are constants independent of m and |λ| < 1.
If λ is not known, only OVERH, WIMP, EPSILON, and IDELTA can be used effectively. Of

these, OVERH and WIMP appear to be the most effective.
If λ is known, we can also apply REP with ck = λk .

4. Asymptotically Polynomial Sequences

Let {Am} be such that

Am ∼ A +
∞∑

k=1
αkm

−kγ as m →∞, �γ > 0,

and γ is known. The appropriate method for this case is REP-POL(γ ).

5. Sequences in b(1)/LOG

Let {Am} be such that

Am ∼ A +
∞∑

i=0
αim

γ−i as m →∞, γ �= 0, 1, . . . , α0 �= 0.

Such sequences also arise as partial sums of infinite series
∑∞

k=1 ak , where

am ∼
∞∑

i=0
eim

γ−i−1 as m →∞.

If γ is not known, the methods appropriate for such sequences are ILUBKIN, THETA, and
L-TRAN. Here L-TRAN appears to be the most effective. When γ is known, we can also apply
IMDELTA(γ, 1) and RHO(γ, 1).

When approximations with highest possible accuracy in finite-precision arithmetic are desired,
d (1)-TRAN in the GPS mode, that is, with Rl chosen as in

R0 ≥ 1, Rl =
{
Rl−1 + 1 if �σ Rl−1� = Rl−1,
�σ Rl−1� otherwise, l = 1, 2, . . . ; σ > 1,

produces the best results.

6. Sequences in b(1)/LIN

Let {Am} be such that

Am ∼ A + ζm
∞∑

i=0
αim

γ−i as m →∞, ζ �= 1, α0 �= 0.

Such sequences also arise as partial sums of infinite series
∑∞

k=1 ak , where

am ∼ ζm
∞∑

i=0
eim

γ−i as m →∞.

The methods appropriate for such sequences are IDELTA, ILUBKIN, EPSILON, THETA, L-
TRAN, and S-TRAN. Of these, the last two appear to be the most effective.

When approximations with highest possible accuracy in finite-precision arithmetic are desired,
all these methods can be applied in the APS mode; that is, they can be applied to the subsequences
{Aκm+η}, where κ ≥ 1 and η ≥ 0 are appropriate integers. For the same purpose, d (1)-TRAN in the
APS mode, that is, with Rl = κ(l + 1), κ ≥ 1 integer, produces the best results. For d (1)-TRAN,
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it is not necessary to choose κ as an integer, however. Excellent results are produced in the APS
mode also when κ ≥ 1 is not necessarily an integer, and the Rl are chosen as follows:

Rl = �κ(l + 1)�, l = 0, 1, . . . .

7. Sequences in b(1)/FAC

Let {Am} be such that

Am ∼ A + (m!)−rζm
∞∑

i=0
αim

γ−i as m →∞, r > 0 integer, α0 �= 0.

Such sequences also arise as partial sums of infinite series
∑∞

k=1 ak , where

am ∼ (m!)−rζm
∞∑

i=0
eim

γ−i+r as m →∞.

The methods appropriate for such sequences are IDELTA, ILUBKIN, EPSILON, THETA, L-
TRAN, and S-TRAN. Of these, the last two appear to be the most effective.

8. Factorially Divergent Sequences in b(1)/FACD

Let {Am} be the sequence of the partial sums of the infinite series
∑∞

k=1 ak , where

am = (m!)rζmh(m), h(m) ∼
∞∑

i=0
eim

γ−i as m →∞, r > 0 integer, e0 �= 0.

Then,
∑∞

k=1 ak is divergent, and

Am ∼ (m!)rζm
∞∑

i=0
αim

γ−i as m →∞.

When h(m) is independent of ζ and h(m) = mω
∫∞
0 e−mtϕ(t) dt for some integerω ≥ 0 and some

ϕ(t) of exponential order, the divergent series
∑∞

k=1 ak has a (generalized) Borel sum, which, as a
function of ζ , is analytic in the ζ -plane cut along the real interval [0,+∞). In such a case, IDELTA,
ILUBKIN, EPSILON, THETA, L-TRAN, and S-TRAN can be applied to produce approximations
to the (generalized) Borel sum. Of these transformations, S-TRAN appears to produce the best
results and is followed by L-TRAN.

9. Sums of Sequences in b(1)/LOG/LIN/FAC

When {Am} is the sum of different sequences in b(1)/LOG, b(1)/LIN, and b(1)/FAC, the only
appropriate methods that produce good results appear to be d (p)-TRAN with some p > 1 always
and EPSILON in certain cases. (IDELTA, ILUBKIN, THETA, L-TRAN, and S-TRAN do not
produce any acceleration in general.)

Important special cases of such sequences are

(i) Am = A +
p∑

k=1
hk(m), hk(m) ∈ A(γk )

0 , γk distinct, γk �= 0, 1, . . . ,

(ii) Am = A +
p∑

k=1
ζm
k hk(m), hk(m) ∈ A(γk )

0 , ζk distinct, ζk �= 1.

EPSILON is effective in case (ii) but does not produce any acceleration in case (i). It is also not
effective when {Am} is a sum of sequences from both b(1)/LOG and b(1)/LIN.

The APS and GPS strategies can be used effectively wherever necessary. Highest possible ac-
curacy for sequences described in case (i), for example, can be achieved only by d (p)-TRAN with
GPS.
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Now, sequences {Am} for which

Am ∼ A +
∞∑

i=0
αim

γ−i/p as m →∞, γ �= i

p
, i = 0, 1, . . . , p > 0 integer, α0 �= 0,

are special instances of case (i) with γk = γ − (k − 1)/p, k = 1, . . . , p. Such sequences also
arise as partial sums of infinite series

∑∞
k=1 ak , where

am ∼
∞∑

i=0
eim

γ−1−i/p as m →∞.

The sequence {am} is also in b̃(p), which is discussed in the following. For these sequences,
ILUBKIN and THETA are also effective. When p is known, d̃ (p)-TRAN is effective as well.
When γ as well as p are known, IMDELTA(γ, p) and RHO(γ, p) are successful too. Highest pos-
sible accuracy for such sequences too can be achieved only by d (p)-TRAN and d̃ (p)-TRAN with
GPS.

10. Series
∑∞

k=1 ak with {ak} ∈ b̃(p)

The most appropriate methods for accelerating the convergence of the series
∑∞

k=1 ak with {ak} ∈
b̃(p), p > 1, that is, with

am ∼ (m!)r/peQ(m)
∞∑

i=0
eim

γ−i/p as m →∞, r integer, Q(m) =
p−1∑

i=0
θim

1−i/p,

seem to be d̃ (p)-TRAN and d (p)-TRAN. When (i) r < 0, or (ii) r = 0 and limm→∞ �Q(m) <∞,
or (iii) r = 0 and Q(m) ≡ 0 and γ �= −1+ i/p, i = 0, 1, . . . , these am give rise to partial sums
Am that satisfy

Am ∼ A + (m!)r/peQ(m)
∞∑

i=0
αim

γ+1−i/p as m →∞.

11. Series
∑∞

k=1 ak with {ak} ∈ b(p)

The only methods that are useful in accelerating the convergence of the series
∑∞

k=1 ak with
{ak} ∈ b(p), p > 1, appear to be d (p)-TRAN always and EPSILON in certain cases.

In many instances, am can be shown to be the sum of products of terms that form sequences
in b(pi ) for various values of pi . Heuristics 6.4.1–6.4.3 can be used to determine the pi and p
conveniently.

12. Power Series
∑∞

k=1 ckz
k−1 with {ck} ∈ b(p)

The only methods that are useful in accelerating the convergence of the series
∑∞

k=1 ckz
k−1 with

{ck} ∈ b(p), p > 1, appear to be d (p)-TRAN (i.e., rational d-approximants) and EPSILON (i.e.,
Padé approximants).

IDELTA, ILUBKIN, THETA, L-TRAN, and S-TRAN do not produce any acceleration when
p > 1, in general. They can be used when p = 1.
APS can be used effectively wherever necessary.

13. (Generalized) Fourier Series and Series of Special Functions

Series of the form
∑∞

k=1 ckφk(x), where {ck} ∈ b(p) for some p, and {φk(x)} is a sequence of
trigonometric functions [such as φk(x) = sin kx] or of special functions [such as φk(x) = Pk(x),
Legendre polynomials], which is in b(2) in most cases of interest, can be treated directly by d (2p)-
TRAN and EPSILON. Using the complex series approach of Chapter 13, they can be treated at
half the cost by d (p)-TRAN and EPSILON. (This cost can be reduced further by using the extended
complex series approach when possible.)

IDELTA, ILUBKIN, THETA, L-TRAN, and S-TRAN do not produce any acceleration when
p > 1, in general. When p = 1, they can be used only with the complex series approach.
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APS can be used effectively wherever necessary.
When φk(x) are orthogonal polynomials, the special-purpose methods of Chapter 18, such as

Padé approximants and Baker–Gammel approximants from orthogonal polynomial expansions,
and their generalizations, can also be used. Their use may be computationally more involved,
however.

Concluding Remarks on Sequence Transformations

We end by collecting some of the information about those sequence transformations that require
no information except the elements of the sequences to be transformed. These are d (m)-TRAN,
d̃ (m)-TRAN, withm = 1, 2, . . . , L-TRAN, S-TRAN, EPSILON, RHO(−1, 1), THETA, IDELTA,
ILUBKIN, OVERH, and WIMP.

1. For {Am} ∈ b(1)/LOG:L-TRAN is the best, followed by ILUBKINandTHETA,while S-TRAN
is inferior. RHO(−1, 1) is effective only for sequences that satisfy {�Am} ∈ A(−2)

0 . The rest of
the methods are useless. For such sequences, all relevant methods are numerically unstable.
For numerically stable results that have very high accuracy, d (1)-TRAN with GPS should be
used.

2. For {Am} ∈ b(1)/LIN/FAC: L-TRAN and S-TRAN are the best, followed by THETA and
ILUBKIN, which are followed by EPSILON and IDELTA. In case {Am} ∈ b(1)/LIN, all these
methods are numerically unstable near points of singularity of the limit or antilimit. In such
situations, d (1)-TRAN with APS should be used or L-TRAN and S-TRAN should be applied
to some subsequence {Aκm+η}, where κ and η are integers.

3. For {Am} ∈ b(1)/FACD: S-TRAN is the best, followed by L-TRAN. THETA, ILUBKIN, EP-
SILON, and IDELTA are inferior.

4. For {�Am} ∈ b̃(p), limm→∞�Am+1/�Am = 1, p ≥ 2: d (p)-TRAN and d̃ (p)-TRAN are the
best, followed by THETA and ILUBKIN. The other methods are useless. Again, numerically
stable and high-accuracy approximations are obtained from d (p)-TRAN and d̃ (p)-TRAN with
GPS.

5. For {Am}, with Am =
∑p

k=1 H
(k)
m , {H (k)

m } ∈ b(1)/LOG, p ≥ 2: d (p)-TRAN is the only useful
method.

6. For {Am}, with Am =
∑p

k=1 H
(k)
m , {H (k)

m } ∈ b(1)/LIN, p ≥ 2: d (p)-TRAN is the best, followed
by EPSILON. The other methods are useless.

7. For general {�Am} ∈ b(p), p ≥ 2: d (p)-TRAN is the only useful method.
8. For general exponential sequences (with or without confluence): EPSILON is the only useful

method. For exponential sequences for which Am ∼ A +∑∞
k=1 αkλ

km , |λ| < 1, such as those
arising from the fixed-point iterative solution of nonlinear equations, WIMP and OVERH may
be preferable. For all types of exponential sequences, the remaining methods are useless.

It is clear that, to accelerate the convergence of the different classes of sequences mentioned
here, it is sufficient to have available the methods d (m)-TRAN, d̃ (m)-TRAN, with m = 1, 2, . . . ,
EPSILON, L-TRAN, S-TRAN, and OVERH or WIMP. Recall also that L-TRAN (as the u-
transformation) is already d (1)-TRAN (and also d̃ (1)-TRAN), with Rl = l + 1.
When additional quantitative information on the nature of {Am} is available, provided they are

applicable, REP, REP-CONF, GREP(m), and REP-POL(γ ) are more economical than others.



I
FORTRAN 77 Program for the d (m)-Transformation

I.1 General Description

In this appendix, we provide a FORTRAN 77 code that implements the d (m)-transformation on
real infinite series of the form

∑∞
k=1 ak via the W(m)-algorithm. After modifying the type decla-

rations in a suitable fashion, this code can be adapted to complex series as well. Here we use the
notation and terminology of Section 7.3.

Themost important part of the codewegive here is SUBROUTINEWMALG,which implements
the W(m)-algorithm with the normal ordering of the ϕk(t)t i . This subroutine is exactly the same as
that given originally in Ford and Sidi [87, Appendix B] and can be included in any implementation
of GREP(m), such as the D(m)-, D̄(m)-, and D̃(m)-transformations. (Recall that, when m = 1, the
W(m)-algorithmbecomes theW-algorithm, asmentioned inChapter 7.Recall also that,whenm = 1
and Rl = l + 1, l = 0, 1, . . . , the d (m)-transformation reduces to the Levin u-transformation.)
SUBROUTINEWMALGproduces the approximationsAPPROX(J,P), 0 ≤ J+P ≤ LMAX,where
APPROX(J,P)=A(J)

P .
Computation of the Rl and gk(l) is carried out in SUBROUTINE MLTAG, which is somewhat

different from that of Ford and Sidi [87, Appendix B] with regard to how the ϕk(t) are ordered and
how the Rl are prescribed:

• To avoid (as much as possible) division by vanishing g1(l), which may arise when some of the
ak may be zero (this may happen with Fourier series, for example), the ϕk(t) are ordered as
follows:

ϕk(t) = nm−k+1�m−kan, k = 1, . . . ,m.

Thus, ϕ1(t) = nm�m−1an , with t = 1/n.
• The Rl in the d (m)-transformation are assigned in one of the following two ways:

1. Arithmetic Progression Sampling (APS). For some κ ≥ 1, set

Rl = �κ(l + 1)�, l = 0, 1, . . . . (I.1.1)

2. Geometric Progression Sampling (GPS). For some σ > 1, set

R0 = 1, Rl =
{
Rl−1 + 1 if �σ Rl−1� = Rl−1,
�σ Rl−1� otherwise, l = 1, 2, . . . . (I.1.2)

Finally, the elements ak , k = 1, 2, . . . , of the infinite series are computed by FUNCTION CF
via ak = CF(K).
The user is to supply the parameters m, κ , and σ . In the computer program, we have m = M,

κ = KAPPA, and σ = SIGMA. We note that, to invoke APS via (I.1.1), SIGMA = 1 must be
prescribed. When invoking GPS via (I.1.2), KAPPA can be assigned any value.
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The computer code we give here has in it the following convergent series as test cases, with the
appropriate m, κ , and σ .

(1)
∑∞

n=1
1
n2
= π2

6 m = 1

(2)
∑∞

n=1(
1

n3/2
+ 1

n2
) = 4.25730941553371477982098273457009 · · · m = 2

(3)
∑∞

n=1
cos nθ

n = − log
∣
∣2 sin θ

2

∣
∣ m = 2

(4)
∑∞

n=1
(−1)n−1

n = log 2 m = 1

(5)
∑∞

n=1
(−1)�(n−1)/2�

n = S2 m = 2

(6)
∑∞

n=1
(−1)�(n−1)/3�

n = S3 m = 3

(7)
∑∞

n=1
(−1)�(n−1)/4�

n = S4 m = 4

(8)
∑∞

n=1(cn − cn+1) = c1 = e−0.1
2 ; cn = exp(−0.1n1/2)

1+n1/2
m = 2

(9)
∑∞

n=1(cn − cn+1) = c1 = e0.1

2 ; cn = exp(−0.1n2/3+0.2n1/3)
1+n1/3

m = 3

(10) − 1
2 + 1− 1

4 + 1
3 − 1

6 + 1
5 − · · · = log 2 m = 2

(11) 1+ 1
3 − 1

2 + 1
5 + 1

7 − 1
4 + · · · = 3

2 log 2 m = 3

(12) 1+ 1
3 + 1

5 − 1
2 − 1

4 + 1
7 + 1

9 + 1
11 − 1

6 − 1
8 + · · · = 1

2 log 6. m = 5

In series (3), the value of θ should be provided by the user through the variable THETA in the
main program.

In the series (5)–(7), S2, S3, and S4 are special cases of (25.9.1), namely,

Sq =
∞∑

k=0

(−1)�k/q�
k + 1

= 1

q
log 2+ π

2q

q−1∑

k=1
tan

kπ

2q
, q = 1, 2, . . . .

The series (10)–(12) are rearrangements of series (4), which converges conditionally.
For gaining experience with the use of the d-transformation, we urge the reader to run this code

in both double- and quadruple-precision arithmetic, with the values of KAPPA and SIGMA as
recommended in the main program and with other values as well. (As the code is already in double
precision, it can be run in quadruple precision without any changes.)

Following these series, we suggest that the reader apply the code to other series that diverge,
such as

(13)
∑∞

n=1 n
1/2 antilimit: ζ (− 1

2 ) m = 1

(14)
∑∞

n=1(−1)n−1n1/2 antilimit: (1− 23/2)ζ (− 1
2 ) m = 1

(15)
∑∞

n=0
(2n+1)(s)n
2s (1−s)n+1 Pn(x), s ≥ 3

4 antilimit: (1− x)−s m = 2

In series (15), Pn(x) are the Legendre polynomials and, as before,

(u)0 = 1, (u)n = u(u + 1) · · · (u + n − 1), n = 1, 2, . . . .

For s < 3/4, this series converges to (1− x)−s provided x ∈ [−1, 1). For all other x in the complex
plane cut along [1,+∞), it diverges for every s with antilimit (1− x)−s . See Davis [62, p. 327,
Exercise 16].

I.2 The Code

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C THIS PROGRAM APPLIES THE LEVIN-SIDI d^(m)-TRANSFORMATION TO INFINITE

C SERIES (SUM OF CF(I) FOR I=1 UP TO I=INFINITY) OF VARIOUS FORMS.

C

C THE d^(m)-TRANSFORMATION IS IMPLEMENTED BY THE W^(m)-ALGORITHM OF

C FORD AND SIDI.

C

C THE FOLLOWING ARE NEEDED AS INPUT AND SHOULD BE PROVIDED BY THE

C USER VIA THE PARAMETER STATEMENTS: NP, M, LMAX, POSITIVE INTEGERS,

C KAPPA, SIGMA, DOUBLE PRECISION CONSTANTS .GE. 1D0.



I.2 The Code 495

C WHEN NP=3 THETA SHOULD ALSO BE PROVIDED.

C

C THE USER IS TO PROVIDE CF(I) AS A FUNCTION SUBPROGRAM.

C

C MDIM.GE.M AND LDIM.GE.LMAX SHOULD ALWAYS BE SATISFIED. MDIM AND

C LDIM CAN BE INCREASED BY THE USER TO ACCOMMODATE LARGE VALUES OF

C M AND LMAX.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C THE FOLLOWING CASES ARE INCLUDED IN THE PRESENT CF(I):

C IF NP=1, THEN M=1, KAPPA=1D0, SIGMA=1.3D0

C IF NP=2, THEN M=2, KAPPA=1D0, SIGMA=1.3D0

C IF NP=3, THEN M=2, KAPPA=?, SIGMA=1D0 (THIS IS A FOURIER SERIES.)

C (KAPPA DEPENDS ON X=ABS(THETA), WHERE THETA IS THE ANGLE.)

C (FOR X LARGE KAPPA=1D0 IS ENOUGH.)

C (FOR X SMALL TRY KAPPA>1D0)

C (E.G., FOR X=PI/3, KAPPA=1D0)

C (E.G., FOR X=PI/6, KAPPA=2D0)

C (E.G., FOR X=PI/50, KAPPA=20D0)

C IF NP=4, THEN M=1, KAPPA=1D0, SIGMA=1D0

C IF NP=5, THEN M=2, KAPPA=1D0, SIGMA=1D0

C IF NP=6, THEN M=3, KAPPA=1D0, SIGMA=1D0

C IF NP=7, THEN M=4, KAPPA=1D0, SIGMA=1D0

C IF NP=8, THEN M=2, KAPPA=1D0, SIGMA=1.15D0

C IF NP=9, THEN M=3, KAPPA=1D0, SIGMA=1.15D0

C IF NP=10, THEN M=2, KAPPA=1D0, SIGMA=1D0

C IF NP=11, THEN M=3, KAPPA=2D0, SIGMA=1D0

C IF NP=12, THEN M=5, KAPPA=4D0, SIGMA=1D0

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C NOTE THAT IRL(L)=R_L , L=0,1,..., OF THE d-TRANSFORMATION, AND

C APPROX(J,P) IS THE APPROXIMATION RETURNED BY THE d^(M)-TRANSFORMATION

C THAT IS OBTAINED FROM THE PARTIAL SUMS A_{R_0}, A_{R_1},...,

C A_{R_{J+P}} OF THE GIVEN SERIES.

C

C IN THE OUTPUT ERROR(L,0) IS THE ABSOLUTE ERROR IN THE PARTIAL SUM

C A_{R_L}, WHILE ERROR(0,L) IS THE ABSOLUTE ERROR IN APPROX(0,L).

C THE EXACT SUM OF THE SERIES IS CONTAINED IN THE VARIABLE RESULT.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DOUBLE PRECISION KAPPA,KAPPAP

PARAMETER (MDIM=6,LDIM=120,EPSDIV=1D-77)

PARAMETER (NP=12,M=5,LMAX=100,KAPPA=4D0,SIGMA=1.0D0)

DIMENSION G(MDIM),PSIAI(0:LDIM,2,2),BIGPSI(0:LDIM,MDIM,2)

DIMENSION PSIG(0:MDIM,2:MDIM+1,2),APPROX(0:LDIM,0:LDIM)

EXTERNAL MLTAG

COMMON /SIGKAP/SIGMAP,KAPPAP

COMMON /NP/NPP/THETA/THETA

COMMON /RL/IRL(0:LDIM)

WRITE(6,111)

111 FORMAT(‘SUMMATION OF CF(I) FROM I=1 TO I=INFINITY’,//)

NPP=NP

PI=DACOS(-1D0)

THETA=PI/50D0

SIGMAP=SIGMA

KAPPAP=KAPPA

CALL EXACT(RESULT)

CALL WMALGM(MDIM,LDIM,M,LMAX,MLTAG,G,PSIAI,BIGPSI,PSIG,

* APPROX,EPSDIV)

WRITE(6,121)
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121 FORMAT(/,3X,‘L’,5X,‘R_L’,7X,‘ERROR(L,0)’,5X,‘ERROR(0,L)’)

DO 20 L=0,LMAX

ER1=DABS(APPROX(L,0)-RESULT)

ER2=DABS(APPROX(0,L)-RESULT)

WRITE(6,131) L,IRL(L),ER1,ER2

20 CONTINUE

131 FORMAT(I4,2X,I6,2X,1P,2D15.3)

WRITE (6,*) ‘EXACT SUM =’,RESULT

STOP

END

SUBROUTINE WMALGM(MDIM,LDIM,M,LMAX,MLTAG,G,PSIAI,BIGPSI,PSIG,

* APPROX,EPSDIV)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C THIS SUBROUTINE GIVES THE IMPLEMENTATION OF SIDI’S GENERALIZED

C RICHARDSON EXTRAPOLATION PROCESS GREP^(m) VIA THE W^(m)-ALGORITHM

C OF FORD AND SIDI.

C

C THE APPROXIMATIONS TO THE LIMIT OR ANTILIMIT OF THE SEQUENCE IN

C QUESTION ARE CONTAINED IN THE ARRAY APPROX. IN PARTICULAR,

C APPROX(0,L), L=0,1,..., SEEM TO BE THE BEST IN GENERAL.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

INTEGER CUR,TEMP,P,PM,Q,QP

DIMENSION G(MDIM),PSIAI(0:LDIM,2,2)

DIMENSION BIGPSI(0:LDIM,MDIM,2),PSIG(0:MDIM,2:MDIM+1,2)

DIMENSION APPROX(0:LDIM,0:LDIM)

CUR=1

TEMP=2

CALL MLTAG(M,0,T,A,G)

APPROX(0,0)=A

PSIAI(0,1,CUR)=A/G(1)

PSIAI(0,2,CUR)=1D0/G(1)

BIGPSI(0,1,CUR)=1D0/T

DO 10 K=2,M

PSIG(0,K,CUR)=G(K)/G(1)

10 CONTINUE

PSIG(0,M+1,CUR)=T

DO 80 L=1,LMAX

CALL MLTAG(M,L,T,A,G)

APPROX(L,0)=A

PSIAI(0,1,TEMP)=A/G(1)

PSIAI(0,2,TEMP)=1D0/G(1)

BIGPSI(0,1,TEMP)=1D0/T

DO 20 K=2,M

PSIG(0,K,TEMP)=G(K)/G(1)

20 CONTINUE

PSIG(0,M+1,TEMP)=T

SIGN=-1D0

DO 60 P=1,L

IF (P.LE.M) THEN

D=PSIG(P-1,P+1,TEMP)-PSIG(P-1,P+1,CUR)

DO 30 I=P+2,M+1

PSIG(P,I,TEMP)=(PSIG(P-1,I,TEMP)-PSIG(P-1,I,CUR))/D

30 CONTINUE

END IF

IF (P.LT.M) THEN

BIGPSI(P,P+1,TEMP)=SIGN/PSIG(P,M+1,TEMP)
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SIGN=-SIGN

END IF

PM=MIN0(P-1,M-1)

DO 40 Q=1,PM

PS=BIGPSI(P-2,Q,CUR)

DQ=PS/BIGPSI(P-1,Q,CUR)-PS/BIGPSI(P-1,Q,TEMP)

QP=Q+1

BIGPSI(P,QP,TEMP)=(BIGPSI(P-1,QP,TEMP)-BIGPSI(P-1,QP,CUR))/DQ

40 CONTINUE

IF (P.GT.M) THEN

PS=BIGPSI(P-2,M,CUR)

D=PS/BIGPSI(P-1,M,CUR)-PS/BIGPSI(P-1,M,TEMP)

END IF

BIGPSI(P,1,TEMP)=(BIGPSI(P-1,1,TEMP)-BIGPSI(P-1,1,CUR))/D

DO 50 I=1,2

PSIAI(P,I,TEMP)=(PSIAI(P-1,I,TEMP)-PSIAI(P-1,I,CUR))/D

50 CONTINUE

60 CONTINUE

DO 70 P=1,L

J=L-P

IF (DABS(PSIAI(P,2,TEMP)).GE.EPSDIV) THEN

APPROX(J,P)=PSIAI(P,1,TEMP)/PSIAI(P,2,TEMP)

ELSE

APPROX(J,P)=1D75

WRITE(6,101)J,P

101 FORMAT(1X,‘APPROX(‘,I3,’,‘,I3,’) IS NOT DEFINED’)

END IF

70 CONTINUE

JJ=CUR

CUR=TEMP

TEMP=JJ

80 CONTINUE

RETURN

END

SUBROUTINE MLTAG(M,L,T,A,G)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C THIS SUBROUTINE IS CALLED BY SUBROUTINE WMALGM AND PROVIDES THE

C LATTER WITH THE NECESSARY INPUT FOR THE d-TRANSFORMATION.

C THE CONSTANT LDIM IN THE PARAMETER STATEMENT BELOW MUST BE THE SAME

C AS THAT IN THE MAIN PROGRAM.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

DOUBLE PRECISION KAPPA

PARAMETER (LDIM=120)

DIMENSION G(M)

COMMON /SIGKAP/SIGMA,KAPPA

COMMON /RL/IRL(0:LDIM)

IF (SIGMA.EQ.1D0) THEN

LSUMP=KAPPA*L+1D-10

LSUM=KAPPA*(L+1)+1D-10

END IF

IF (SIGMA.GT.1D0) THEN

IF (L.EQ.0) THEN

LSUMP=0

LSUM=1

ELSE

LSUM=1
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LSUMP=1

DO 10 I=1,L

IR=SIGMA*LSUM+1D-10

IF (IR.LE.LSUM) THEN

LSUM=LSUM+1

ELSE

LSUM=IR

END IF

IF (I.EQ.L-1) LSUMP=LSUM

10 CONTINUE

END IF

END IF

IRL(L)=LSUM

IF (L.EQ.0) A=0

DO 20 I=LSUMP+1,LSUM

A=A+CF(I)

20 CONTINUE

P=LSUM

T=1D0/P

DO 30 K=1,M

G(K)=CF(LSUM+K-1)

30 CONTINUE

DO 50 I=2,M

DO 40 J=M,I,-1

G(J)=G(J)-G(J-1)

40 CONTINUE

50 CONTINUE

DO 60 K=1,M

G(K)=G(K)*P

P=P*LSUM

60 CONTINUE

DO 70 K=1,M/2

ST=G(K)

G(K)=G(M-K+1)

G(M-K+1)=ST

70 CONTINUE

RETURN

END

FUNCTION CF(I)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C CF(I) IS THE I-TH TERM OF THE INFINITE SERIES, I=1,2,...

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /NP/NP/THETA/THETA

UU(X)=DEXP(-0.1D0*DSQRT(X))/(1+DSQRT(X))

VV(X)=DEXP(-0.1D0*X**(2D0/3D0)+0.2D0*X**(1D0/3D0))

* /(1+X**(1D0/3D0))

FI=DFLOAT(I)

II=I-1

IF (NP.EQ.1) CF=1D0/(FI)**2

IF (NP.EQ.2) CF=1D0/(FI)**1.5D0+1D0/(FI)**2

IF (NP.EQ.3) CF=DCOS((FI)*THETA)/(FI)

IF (NP.EQ.4) CF=(-1)**(II)/(FI)

IF (NP.EQ.5) CF=(-1)**(II/2)/(FI)

IF (NP.EQ.6) CF=(-1)**(II/3)/(FI)

IF (NP.EQ.7) CF=(-1)**(II/4)/(FI)

IF (NP.EQ.8) CF=UU(FI)-UU(FI+1)
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IF (NP.EQ.9) CF=VV(FI)-VV(FI+1)

IF (NP.EQ.10) THEN

IF (I-2*(I/2).EQ.1) CF=-1D0/(I+1)

IF (I-2*(I/2).EQ.0) CF=1D0/(I-1)

END IF

IF (NP.EQ.11) THEN

IF (I-3*(I/3).EQ.1) CF=3D0/(4*I-1)

IF (I-3*(I/3).EQ.2) CF=3D0/(4*I+1)

IF (I-3*(I/3).EQ.0) CF=-3D0/(2*I)

END IF

IF (NP.EQ.12) THEN

IF (I-5*(I/5).EQ.1) CF=5D0/(6*I-1)

IF (I-5*(I/5).EQ.2) CF=5D0/(6*I+3)

IF (I-5*(I/5).EQ.3) CF=5D0/(6*I+7)

IF (I-5*(I/5).EQ.4) CF=-5D0/(4*I-6)

IF (I-5*(I/5).EQ.0) CF=-5D0/(4*I)

END IF

RETURN

END

SUBROUTINE EXACT(RESULT)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C RESULT IS THE EXACT SUM OF THE INFINITE SERIES.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /NP/NP/THETA/THETA

PI=DACOS(-1D0)

IF (NP.EQ.1) RESULT=PI**2/6D0

IF (NP.EQ.2) RESULT=4.25730941553371477982098273457009D0

IF (NP.EQ.3) RESULT=-DLOG(DABS(2D0*DSIN(THETA/2)))

IF (NP.EQ.4) RESULT=DLOG(2D0)

IF (NP.EQ.5) RESULT=DLOG(2D0)/2+PI/4

IF (NP.EQ.6) RESULT=DLOG(2D0)/3+2*PI/(3D0**1.5D0)

IF (NP.EQ.7) RESULT=DLOG(2D0)/4

* +PI/8*(DTAN(PI/8)+DTAN(PI/4)+DTAN(3*PI/8))

IF (NP.EQ.8) RESULT=DEXP(-0.1D0)/2

IF (NP.EQ.9) RESULT=DEXP(0.1D0)/2

IF (NP.EQ.10) RESULT=DLOG(2D0)

IF (NP.EQ.11) RESULT=1.5D0*DLOG(2D0)

IF (NP.EQ.12) RESULT=DLOG(6D0)/2

RETURN

END
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approximations from asymptotic expansions: An application with examples. SIAM Rev.,
18:62–91, 1976.

[90] B. Gabutti. An algorithm for computing generalized Euler’s transformations of series.
Computing, 34:107–116, 1985.

[91] J.L. Gammel. Review of two recent generalizations of the Padé approximant. In P.R.
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Continued fraction, 332
Convergence acceleration methods, 2
Crank–Nicolson method, 429
Cross-multiplied Padé approximants, seeLinear Padé

approximants

D-transformation, 95–120
D(m)-transformation, 103
kernel of, 105

sD(m)-transformation, 105
D̄-transformation, 220
s D̄-transformation, 221
D̃-transformation, 224
d-transformation, 121–157

on integrals over hypercubes and hypersimplices,
155, 417

d (1)-transformation, 132
d (m)-transformation, 130
factorial, 132
for infinite sequences, 131
kernel of, 131

d̃ (m)-transformation, 147
d
dξ d

(1)-transformation, 275
de Montessus’s theorem, 338

extensions of, 339, 340
Deferred approach to the limit, see Richardson

extrapolation process
�2-process, see Aitken �2-process
�2(γ )-process, 289
�2(γ, p)-process, 296
Derivatives of extrapolation methods, 268–276

of GREP(1), 274
application to d (1)-transformation, 275

of Richardson extrapolation, 269
application to numerical quadrature, 271

Derivatives of limits and antilimits, see Derivatives
of extrapolation methods

Divergent integrals
Abel sum of, 120
Hadamard finite part of, 120

ε-algorithm, 9, 301
modifications of, 321

Euler series, 329, 351, 374
Euler transformation, 280
Euler’s constant, 465
Euler–Knopp (E, q) method, 279

analytic properties of, 281
recursive algorithm for, 283

Euler–Maclaurin expansion
for multi-dimensional integrals, 416
for periodic singular integrands, 25
for regular integrands, 24
for singular integrands, 58, 82

Euler–Maclaurin formula
application to harmonic numbers, 470
for Cauchy principal value integrals, 471
for nonsingular integrals, 469–470

for singular integrals, 472–474
of periodic integrands, 475
singularities at both endpoints, 474
singularity at one endpoint, 472

for sums, 468
EW-algorithm, 173–175
Exponential integral, 97, 329, 351, 374
Exponential interpolation, 336

method of Prony, 336
Exponential order, 463
Exponential sequences, 303

with confluence, 309
Extrapolated quadrature formulas for periodic

singular integrals, 425–427
Extrapolation methods, 2

algebraic properties of, 5–8
algorithms for, 8
iteration of, 14
stable, 12
unstable, 12

Extrapolation methods on
ill-posed problems, 453
infinite multiple integrals, 447
infinite multiple series, 447
infinite oscillatory integrals, 433
integrals over hypercubes and hypersimplices, 415
numerical solutions of integral equations, 421
numerical solutions of ordinary differential

equations, 421

F(1) class functions, 176
F(1)
∞ class functions, 176

F(m) class functions, 81
F(m)
∞ class functions, 81

Factorial d-transformation, 132
Factorial sequences, 285
Factorially divergent sequences, 152, 371
First confluent form, 396
First generalization of Richardson extrapolation,

57–80
algebraic properties of, 59–61
algorithms for, 61–65

E-algorithm, 64
FS-algorithm, 62

analysis of columns, 67–77
conditioning, 73
convergence and stability, 69–73

first confluent form, 396–398
second confluent form, 398–399

Fixed-point iterative method, 288
with iterated �2-process, 288
with Shanks transformation, 308

Form factor, see Shape function
FS/qd-algorithm, 387
Function of exponential order, 463
Functions of second kind, 254

G-transformation, 384
Gamma function, 465
Gaussian quadrature, 343
Generalized Fourier series, 254

examples of, 256
Generalized function, 4
Generalized Koenig’s theorem, 341

extensions of, 341
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Generalized Zeta function, 477
Geometric Progression Sampling, see GPS
GPS, 216
GREP, 81–94
GREP(1), 159, 177

analysis for quickly varying A(y), 205–211
analysis for slowly varying A(y), 181–202
efficient application of, 212–217

with APS, 217
with GPS, 216

error formulas for, 177–180
expression for �( j)

n , 161
expression for A( j)

n , 159
GREP(m), 85–86, 164

convergence of, 88–92
Process I, 88
Process II, 88

definition of, 85
extensions of, 93, 173
stability of, 92

H-transformation, 261
Hadamard finite part, 5, 26, 117, 120
Hamburger function, 343
Hamburger series, 343
Hankel determinant, 299, 318
Harmonic numbers, 470
Hermite–Gennochi formula, 180
Hermite–Padé approximants

algebraic, 355
differential, 355
quadratic, 355

Hermite–Padé polynomials, 355
Higher-order G-transformation, 385

algorithms for, 386
FS/qd-algorithm, 387
rs-algorithm, 386

Ill-posed problems, 453
solution via extrapolation, 453

Intermediate rows, see Padé table
IP(τ ), 310, 340
Iterated �2-process, 286
convergence analysis for, 286
on fixed-point iterations, 288
on power method, 287
stability analysis for, 293

Iterated �2(γ )-process, 290
Iterated �2(γ, p)-process, 296
Iterated Lubkin transformation, 292

convergence analysis for, 292
stability analysis for, 294

Iteration of extrapolation methods, 14

Kernel, 16
Koenig’s theorem, see Generalized Koenig’s

theorem

L-transformation, 133, 363
t-transformation, 133
u-transformation, 133
algorithms for, 366
convergence and stability of, 367
kernel of, 365
on factorially divergent sequences, 371
rational approximations from, 242

Laplace transform, 463
Laplace transform inversion, 437–441

by extrapolation of Bromwich integral, 437
by quadrature formulas on Bromwich integral, 437
via discrete Fourier transform, 440
via rational approximations, 439

Linear monotone series, 151
Linear Padé approximants, 356
Linear sequences, 285
Logarithmic sequences, 285
Lubkin W -transformation, 290

kernel of, 291

Markov function, see Stieltjes function, Hamburger
function

Meinardus’s method, 391
Method of Prony, 336
Midpoint rule, 470
Modified �2-process, 289
Moment series, 343
Multiple infinite integrals

computation by extrapolation methods, 447
Multiple infinite series

computation by extrapolation methods, 447
Multipoint Padé approximants, 351
mW -transformation, 229

Neville–Aitken interpolation algorithm, 44
extension of, 50

Nonlinear Padé approximants, 358
Chebyshev–Padé approximants, 359

Normal ordering, 164
Normal Padé table, 325
Numerical differentiation, 23

and Richardson extrapolation, 48–52
Numerical quadrature

formulas from sequence transformations, 430
midpoint rule, 24
Romberg integration, 52
trapezoidal rule, 24

endpoint singularities, 58, 82
periodic singular integrands, 25

variable transformations in, 418
Numerical quadrature formulas for periodic singular

integrals, 423–424

O and o symbols, 459
Offset trapezoidal rule, 469
Orthogonal polynomial expansions

Baker–Gammel approximants from, 360
Padé approximants from

linear (cross-multiplied), 356
nonlinear (properly expanded), 358

Orthogonal polynomials, 343
Oscillatory infinite integrals, 218–237
Overholt’s method, 391

analysis of, 392

Pólya frequency series, 345
Padé approximants

and exponential interpolation, 336
method of Prony, 336

definition of, 323
for hypergeometric functions, 327
from orthogonal polynomial expansions, 356

linear (cross-multiplied), 356
nonlinear (properly expanded), 358
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Padé table, 323
algebraic structure of, 325
analysis for entire functions, 346
analysis for meromorphic functions, 338–342

de Montessus’s theorem, 338
generalized Koenig’s theorem, 341
intermediate rows, 340

analysis for moment series, 342–345
connection with Gaussian quadrature, 343
connection with orthogonal polynomials, 343

analysis for Pólya frequency series, 345
computation of, 330

by Longman’s method, 330
connection with continued fractions, 333

qd-algorithm, 335
identities in, 329
normal, 325
staircase in, 334, 335

Padé–Borel approximants, 362
Padé-type approximants, 348
Periodic Bernoullian functions, 468
Periodic integral equations

numerical solution by quadrature methods, 422
singular, 422
weakly singular, 422

Polynomial Richardson extrapolation, 43–55
algorithm for, 44
error and stability in, 44

Power method, 287
with iterated �2-process, 287
with Shanks transformation, 308

Prediction properties
of rational d-approximants, 245
of sequence transformations, 245

Process I, 88, 89
Process II, 88, 90
Properly expanded Padé approximants, seeNonlinear

Padé approximants
Psi function, 466

qd-algorithm, 335
Quadratic approximants, 355
Quadrature methods, 423
Quadrature methods via extrapolated formulas for

periodic singular integral equations, 425
periodic weakly singular integral equations, 426

Quasi-linearity, 6
of �2-process, 7
of Shanks transformation, 10

Quickly varying A(y), 203

Rational d-approximants, 240
d (1)-approximants on factorial power series, 249
algebraic properties of, 242
approximation of singular points by, 246
efficient application with APS, 247

analysis of d (1)-approximants, 247
prediction properties of, 245
recursive computation of, 244

Rational extrapolation, 55–56
Reduction of D-transformation, 220–237

application to integrals of products of oscillatory
functions, 236

D̄-transformation, 220

s D̄-transformation, 221
application to integral transforms, 222

D̃-transformation, 224
application to oscillatory integrals, 225

W -transformation, 228
mW -transformation, 229

application to integral transforms, 231
theoretical justification of, 230

Reduction of GREP, 218
Regular C-fraction, 333
ρ-algorithm, 375

modifications of, 376
ρ(γ )-algorithm, 377
ρ(γ )-algorithm, automatic, 378
ρ(γ, p)-algorithm, 378

Richardson extrapolation process, 27–41
algebraic properties of, 29
algorithm for, 28
as a summability method, 39–41
conditioning of diagonals, 74
convergence analysis for, 33–37
for sequences, 41
polynomial, 28
stability analysis for, 37–38
with harmonic collocation points, 42

Richardson extrapolation with confluence, 263–268
convergence and stability analysis for, 265–267
generalization of, 267
SGRom-algorithm, 264

Richardson–Shanks transformation, 449–453
application of, 450

to time-periodic steady states, 451
description of, 449

Riemann Zeta function, 25, 84, 477
computation by Richardson extrapolation, 38

Romberg integration, 52
Romberg table, 29
rs-algorithm, 386

S-fraction, 344
S-transformation, 133, 369
algorithms for, 369
convergence and stability of, 370
kernel of, 370
on factorially divergent sequences, 371
rational approximations from, 242

sD(m)-transformation, 105
Second confluent form, 398
Sequence transformations, 2

formal theory of, 407–412
generalized remanence, 410

iteration of, 14
Sequential D-transformation, 447
Sequential d-transformation, 447
SGRom-algorithm, 264
Shanks transformation, 9, 297–322

algorithms for, 301
ε-algorithm, 301

analysis of columns
for exponential sequences, 303–313
for factorial sequences, 316
for linear sequences, 313
for logarithmic sequences, 316

application to numerical quadrature, 312
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derivation of, 297
error formulas for, 302
kernel of, 299
on fixed-point iterations, 308
on power method, 308
on totally monotonic sequences, 318
on totally oscillating sequences, 321

Shape function, 87
Silverman–Toeplitz theorem, 8
Singular integral equations, 422
Slowly varying A(y), 180
Stability of extrapolation methods, 10
Staircase in Padé table, 334, 335
Steffensen’s method, 288
Stieltjes function, 343
Stieltjes series, 343
Stirling’s formula, 466
Summability methods, 6

linear, 6
regular, 8

Sylvester determinant identity, 62

θ -algorithm, 379
convergence and stability of, 380–383

Time-periodic steady state, 451
Totally monotonic sequences, 317
Totally oscillating sequences, 320
Trapezoidal rule, 469
Two-point Padé approximants, 353

determinant representation for, 354

Uniqueness of
nonlinear Padé approximants, 359
Padé approximants, 323
Padé-type approximants, 349
two-point Padé approximants, 353

Vanden Broeck–Schwartz approximations,
350

Vandermonde determinant, 68
Variable transformations, 418
Very oscillatory infinite integrals, 227

W-algorithm, 159–164, 219
W(m)-algorithm, 164–173
normal ordering, 164
the cases m = 1, 2, 171

W -transformation, 228
mW -transformation, 229

variants of, 234
Watson’s lemma, 463
Weakly singular integral equations, 422
Wimp’s method, 391

analysis of, 394
kernel of, 392

X(γ ) class functions, 98
X(γ )
0 class functions, 123

Zeta function, 477
Generalized Zeta function, 477
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