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A pseudo-analytic approach is suggested to determine the optimal launching conditions for maximizing 
the altitude of a sounding rocket flying with a constant mass flow of propellant in a standard atmosphere. 
The one-dimensional rocket momentum equation including thrust, gravitational force, and aerodynamic 
drag is considered, for which it is impossible to obtain the analytic solutions since the governing equation 
is nonlinear. The piecewise pseudo-analytic solutions are obtained with a constant control parameter 
introduced to make the velocity integral in the governing equation be analytic. The rocket flight in 
the standard atmosphere is analyzed by dividing the entire range into small intervals where the drag 
parameter or the gravitational acceleration can be treated as a constant in each interval. The pseudo-
analytic approach gives precise predictions of the rocket velocity and the rocket altitude that agree well 
with the numerical ones. A characteristic equation exists and provides accurate predictions of the optimal 
mass flow rate for maximizing the altitude at burn-out state or at apogee.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Many countries use sounding rocket programs in an effort to 
develop technologies related to sounding rockets, since scientific 
studies employing such programs are simple, efficient, and inex-
pensive compared to those with a satellite [1–12]. Most scientific 
measurements, observations, or experiments for sounding rocket 
missions are carried out near apogee. This is the case because the 
low speed near apogee provides unique opportunities to explore or 
observe the surrounding space in a short time period. Furthermore, 
there are some important regions of space that are too close to 
the earth’s surface to be sampled by satellites; however, sounding 
rockets provide platforms for carrying out in-situ measurements in 
these regions [9]. Some microgravity environments [13,14] are car-
ried after burn-out state and some scramjet experiments [15,16]
are conducted during free-fall which provides a good hypersonic 
condition at a low cost. Therefore, the design target of a sounding 
rocket is the altitude at burn-out state or apogee. The rocket alti-
tude can change based on the ejection conditions of the propellant 
jet. Therefore, it is necessary to determine an optimal condition for 
maximizing the altitude for given launching conditions.

The Goddard problem of optimal thrust programming for max-
imizing the altitude of a rocket in vertical flight has been exten-
sively studied using variation methods, asymptotic approaches or 
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optimal control theories [17–20]. These are not based on the an-
alytic solution of the rocket momentum equation, since there is 
no general analytic solution due to the nonlinearity of the govern-
ing equation. There are also approximate solutions using the Tay-
lor series expansion, the perturbation method or the least square 
method [21], but they are complex and do not provide informa-
tion about the optimal conditions. An analytic exact solution of the 
rocket momentum equation including thrust, gravitational force 
and aerodynamic drag force exists only in a typical situation where 
the three forces are well balanced. A previous study [22] presented 
an analytic approach to obtain analytic solution and to determine 
the optimal conditions for the typical situations. This approach was 
extended to rocket flight in a standard atmosphere [23]. However 
the existence of an analytic solution requires the balance of the 
three forces and thus the typical control of the mass flow rate 
of propellant. Thus these analytic approaches have serious limita-
tions in real applications. For instance, most sounding rockets use 
a constant mass flow rate of propellant in which the rocket motion 
cannot be solved with an analytic approach. Hence, in the present 
study, a pseudo-analytic approach to obtain an approximate so-
lution and determine the optimal conditions for maximizing the 
altitude of a sounding rocket are suggested and verified.

We consider the motion of a sounding rocket launched in the 
vertical direction for simplicity. Then, the motion of a sounding 
rocket can be described using a one-dimensional momentum equa-
tion that includes thrust, gravitational force, and aerodynamic drag 
force. The rocket mass varies with time, and the aerodynamic drag 
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Nomenclature

F = thrust
G = ratio between inertia and drag
g = gravitational acceleration
h = altitude
J = pseudo drag parameter
K = drag parameter
M = Mach number
m = rocket mass
ṁ = rate of rocket mass change or mass flow rate of pro-

pellant jet
q = velocity parameter for rocket velocity
r = control parameter for rocket velocity
t = time
u = velocity of propellant jet
v = rocket vertical velocity

p = static pressure
T = temperature
γ = specific heats ratio
ρ = density
Ω = rocket mass ratio between total mass and dry-mass
ω = rocket mass ratio between adjacent intervals

Subscripts

a = ambient air
b = burn-out state
c = rocket combustor
e = jet condition at rocket nozzle exit
o = ground state
opt = optimal condition for maximizing altitude
s = stationary state (apogee)
is proportional to the square of the rocket velocity, which makes 
the governing equation nonlinear. Thus, we cannot obtain an ana-
lytic solution in a general form. We also consider the case where 
the mass flow rate of propellant is constant for which analytic so-
lutions of the rocket momentum equation do not exist. We cannot 
use the analytic approaches, but there is a possibility to extend 
the previous analytic approaches [22,23] to build a pseudo-analytic 
approach for finding solutions. The reason why we cannot obtain 
analytic solutions is that the governing differential equation cannot 
be integrated in an analytic way. However, if the governing equa-
tion is multiplied by a proper parameter, one side of the differen-
tial equation can be analytically integrated. On the other hand, the 
other side of the governing differential equation cannot be inte-
grated in an analytic way. A similar situation occurs when we deal 
with rocket flight in the standard atmosphere [24], where the air 
density dramatically changes with the altitude. Further, the gravi-
tational acceleration cannot be treated as a constant when rockets 
reach the upper atmosphere. Moreover, the aerodynamic drag coef-
ficient changes with the flight Mach number especially around the 
Mach number of unity. Hence, the aerodynamic drag is a variable 
that changes with the altitude or rocket velocity. A previous study 
[23] shows that the “divide-and-conquer” strategy might be a way 
to avoid these serious issues. Hence, we can exploit this strategy 
to solve the problem in the present study. If we divide the en-
tire flight range into intervals that are small enough, we can treat 
the following terms as constants in each interval: the parameter 
multiplied to both sides of the governing equation, the air den-
sity, the gravitational acceleration and the drag coefficient. We can 
then have piecewise pseudo-analytic solutions and also determine 
the optimal conditions at burn-out state or apogee.

The rocket model considered in the present study is the same 
one in the previous study [23] that is a simplified model based on 
the Korea Sounding Rocket Program (KSR II and III) [8]. KSR II is a 
solid propellant rocket with a total the weight of 2.0 ton, a diame-
ter of 0.42 m and a length of 11.0 m. KSR III is a liquid propellant 
rocket with a weight of 6.1 ton, a diameter of 1.0 m and a length 
of 13.5 m. In the present study, we consider the medium specifi-
cation between KSR II and KSR III.

In Section 2, the one-dimensional rocket equation in boost 
phase and coast phase are briefly described. Section 3.1 provides 
alternative approach to obtain a pseudo-analytic solution of the 
governing equation. Sections 3.2 and 3.3 show how to build the 
characteristic equations to obtain the optimal conditions for max-
imizing altitude at burn-out state and at apogee. Section 4 shows 
the procedure of the numerical discretization of the governing 
equation. Section 5 provides calculation conditions such as atmo-
sphere, aerodynamic drag coefficient and launching conditions. Re-
sults of calculations are discussed in Section 6.

2. One-dimensional rocket equation

2.1. Governing equation in boost phase

The motion of a rocket in boost phase climbing in the verti-
cal direction can be described with the following one-dimensional 
rocket equation including thrust and aerodynamic drag as follows 
[25,26]:

m
dv

dt
= F − mg − K v2, (2.1a)

F = ṁue + Ae(pe − pa), (2.1b)

K = S

2
Cdρa. (2.1c)

The mass flow rate ṁ is equal to the rate of the rocket mass change 
and has a negative sign. In the present study, we consider the cases 
with a constant mass flow rate of propellant.

ṁ = dm

dt
= const. (2.2a)

The mass of a rocket decreases with the mass flow of propellant.

m = mo +
t∫

o

ṁdt = mo + ṁt. (2.2b)

If we use the constant specific heats ratio, the mass flow rate 
through a supersonic nozzle is determined as follows:

ṁ =

√√√√γ

R

(
2

γ + 1

) γ +1
γ −1

Ath
pc√
Tc

. (2.2c)

The subscript th denotes the throat of a rocket nozzle.
The term Ae in equation (2.1b) is the cross-sectional area at the 

nozzle exit. For an adiabatic nozzle flow, the total enthalpy is con-
stant, and we can then assume that the jet velocity ue and the 
pressure at exit are constant. However, the ambient pressure de-
creases with the altitude and thus the second term of the thrust 
increases with the altitude. The jet velocity has a negative sign 
since its direction is opposite of the rocket velocity; thus, the 
thrust term ṁue has a positive sign.
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If the Mach number at the nozzle exit is given, the tempera-
ture, pressure, jet velocity and nozzle area at the nozzle exit are 
determined as follows:

Te = Tc

(
1 + γ − 1

2
M2

e

)−1

, (2.3a)

pe = pc

(
1 + γ − 1

2
M2

e

) −γ
γ −1

, (2.3b)

ue = Me
√

γ RTe, (2.3c)

Ae = Ath

Me

(
2

γ + 1
+ γ − 1

γ + 1
M2

e

) γ +1
2(γ −1)

. (2.3d)

The terms S and Cd in equation (2.1c) are the cross-sectional 
area of a rocket body and the aerodynamic drag coefficient, respec-
tively. The air density in a standard atmosphere is not a constant 
but changes with the altitude. The aerodynamic drag coefficient in-
creases sharply near the Mach number of unity and after then de-
creases gradually with increasing Mach number [21,27,28]. Hence, 
the drag parameter K changes with the altitude and the flight 
Mach number.

K = K (h, M). (2.4)

We adopt a modified model for estimating the aerodynamic drag 
coefficient that guarantees smooth changes of the coefficient at all 
Mach numbers. The details will be presented in section 5.3.

The change in the gravitational force based on the altitude 
should be considered for high altitude sounding rockets. In the 
present study, the following relation is used.

g = go
R2

E

(R E + h)2
. (2.5)

The terms go and R E in equation (2.5) are the gravitational ac-
celeration and average radius of the earth at sea level, which are 
9.8067 m/s2 and 6.371 × 106 m, respectively.

As shown in previous studies [22,23], by introducing a velocity 
parameter, the governing equation can be expressed as follows:

dv

q2 − v2
= K

ṁ

dm

m
, (2.6a)

q =
√

F − mg

K
=

√
ṁue + Ae(pe − pa) − mg

K
. (2.6b)

In the previous studies [22,23], the thrust based on the pressure 
difference was ignored since the term has only minor effects on 
the total thrust and it also raises some difficulties in manipulating 
the formulation. In the present study, the pressure thrust is taken 
into account for real situations.

If the mass flow rate is constant, the left hand side of equation 
(2.6a) cannot be analytically integrated since the velocity param-
eter changes with the mass, the drag parameter or the ambient 
pressure as shown in equation (2.6b). Thus, we cannot obtain an-
alytic solutions for the governing equation and subsequently we 
would like to find a way to obtain pseudo-analytic solutions by re-
placing the velocity parameter with a constant control parameter. 
This will be discussed in section 3.1.

Even though we could find a way to integrate the left hand side 
of the governing equation (2.6a) in a pseudo-analytic way, the right 
hand side of the governing equation cannot be analytically inte-
grated over the entire flight time since the drag parameter changes 
with the altitude or the Mach number. Thus the right hand side 
of the governing equation could not be expressed as an explicit 
function of the time or the mass. Hence, we could not obtain ana-
lytic solutions valid for the entire flight time. As a result, we have 
to find another way to avoid such serious difficulties, such as ex-
tending the “divide-and-conquer” strategy. This will be discussed 
in section 3.1.

2.2. Governing equation in coast phase

After the propellant of a rocket is totally consumed, the flight 
phase turns into coast phase, where the rocket climbs with inert 
force until the stationary state or apogee. The rocket equation then 
becomes

mb
dv

dt
= −K v2 − mb g. (2.7a)

Separating variables leads to

vdv

K v2 + mb g
= − 1

mb
dh. (2.7b)

An analytic solution of the above equation can be obtained if and 
only if the drag parameter is constant. As mentioned in the above 
section, we could not obtain analytic solutions valid for the entire 
flight time since the drag parameter cannot be expressed as an 
explicit function of the velocity. This will be discussed in detail in 
the next section.

3. Pseudo-analytic approaches

3.1. Solution of the governing equation

3.1.1. Solution in boost phase
The velocity parameter q can be replaced with a constant con-

trol parameter r to allow the left hand side of the following gov-
erning equation to be analytically integrated. The governing equa-
tion can then be represented as follows:

dv

r2 − v2
= J

ṁ

dm

m
, (3.1.1a)

J = K
q2 − v2

r2 − v2
. (3.1.1b)

The control parameter r should have a velocity dimension to 
maintain a consistency of the governing equation. The control pa-
rameter should be determined not to make any singularity in the 
governing equation and thus be greater than the rocket velocity 
at burn-out state, since a rocket has the maximum velocity at 
burn-out state. Considering that the goal of the present study is 
to determine the optimal mass flow rate of propellant, the follow-
ing definition is a reasonable candidate.

r =
√

ṁue

K∗
. (3.1.2a)

The critical drag parameter K∗ can be an arbitrary constant. How-
ever, if the critical drag parameter is determined to satisfy the 
relation that Jb = Kb , we can guarantee a smooth phase transi-
tion of the governing equations from boost phase to coast phase 
and provide a control parameter greater than the rocket velocity at 
burn-out state. Thus we take the following definition of the critical 
drag coefficient from equations (2.6b) and (3.1.1b).

K∗ = Kb

(
1 + Ae(pe − pa,b) − mb gb

ṁue

)−1

. (3.1.2b)

The velocity parameter q then can be expressed as functions of the 
control parameter as follows:



S.-H. Lee / Aerospace Science and Technology 55 (2016) 64–75 67
q = r

√
K∗
K

[
1 + Ae(pe − pa) − mg

ṁue

]

= r

√
K∗
K

[
1 + Ae(pe − pa) − mg

K∗r2

]
. (3.1.2c)

The parameter J in equation (3.1.1b) changes with the rocket 
velocity or the velocity parameter. Hence we cannot obtain analytic 
integration of the right hand side even though the drag coefficient 
is constant. At this point, we can exploit the strategy of divide-
and-conquer [23] to obtain piecewise pseudo-analytic solutions in 
a similar way. If we divide the entire range into small intervals 
where the parameter J can be treated as a constant in each inter-
val, we can obtain a pseudo-analytic integration of the right hand 
side of the above equation.

Then, the governing equation integrated from ground state to 
the (n) state can be represented as follows:

n∫
o

dv

r2 − v2
=

n∑
i=1

J̄ i

ṁ

i∫
i−1

dm

m
. (3.1.3a)

The over-bar placed over the parameter J denotes the mean value 
of the parameter in the interval between the (n − 1) and (n) states 
as follows:

J̄n = Jn−1 + Jn

2
. (3.1.3b)

The term with an over-bar will be treated as a constant in the 
interval.

The rocket mass ratio and piecewise mass ratio between masses 
at the (n − 1) and (n) states are defined as follows:

Ω = mo

mb
> 1, (3.1.4a)

ωn = mn−1

mn
> 1. (3.1.4b)

Hence integrating the governing equation (3.1.1) from ground 
state to the (n) state with the strategy of divide-and-conquer yields

1

2r
ln

(
r + vn

r − vn

)
= − 1

ṁ

n∑
i=1

J̄ i ln(ωi). (3.1.5)

Rearranging this equation leads to

vn = r
xn − 1

xn + 1
, (3.1.6a)

xn = exp

[
−2r

ṁ

n∑
i

J̄ i ln(ωi)

]
= exp

[
− 2ue

K∗r

n∑
i

J̄ i ln(ωi)

]
.

(3.1.6b)

The drag coefficient at the interval between the (n − 1) and (n) 
states is not determined until the velocity at the (n) state is deter-
mined. Thus it is necessary to calculate the drag coefficient using 
an iterative approach. The term x in equation (3.1.6b) at the ground 
state or at burn-out state becomes

xo = exp

[
− 2ue

K∗r
ln

(
mo

mo

)]
= 1, (3.1.7a)

xb = exp

[
− 2ue

K∗r

b∑
i=1

J̄ i ln(ωi)

]
. (3.1.7b)

The flight time can be represented as a function of the mass.

t = m − mo
. (3.1.8)
ṁ

The altitude of a rocket at burn-out state can be obtained using 
the time integration of the velocity as follows:

hb =
tb∫

o

vdt = 1

ṁ

b∑
i=1

mi∫
mi−1

r
x − 1

x + 1
dm. (3.1.9)

The above integral cannot be obtained analytically, and thus should 
be calculated numerically. In the present study, numerical integra-
tion using Simpson’s rule [29] is applied to obtain the altitude.

3.1.2. Solution in coast phase
In coast phase, the governing equation cannot be integrated an-

alytically since the drag coefficient is not constant. Hence we also 
have to apply the divide-and-conquer strategy. The differential of 
the altitude between the (n − 1) and (n) states can be expressed as 
follows:

dh = −mb
vdv

mb ḡn + K̄n v2
, (3.1.10a)

z̄n = zn−1 + zn

2
, z = g, K . (3.1.10b)

Integrating this equation between the (n − 1) and (n) states 
yields

hn − hn−1 = −mb

2

1

K̄n
ln

(
mb ḡn + K̄n v2)vn

vn−1

= mb

2

1

K̄n
ln

(
mb ḡn + K̄n v2

n−1

mb ḡn + K̄n v2
n

)
. (3.1.11a)

Then the altitude change from the burn-out state to the stationary 
state becomes

hbs = hs − hb = mb

2

s∑
i=b+1

1

K̄ i
ln

(
Gb,i + v2

i−1

Gb,i + v2
i

)
, (3.1.11b)

Gb,i = mb ḡi

K̄ i
. (3.1.11c)

3.2. Optimal condition at burn-out state

The rocket altitude changes with the control parameter, since 
the rocket velocity also changes with the control parameter. Now, 
we discuss a way to determine the optimal control parameter for 
maximizing the altitude at burn-out state. The governing equa-
tion (2.6a) can be rewritten according to the altitude instead of 
the time as follows:

dv

r2 − v2
= J

m

dh

v
. (3.2.1a)

Separating the variables and integrating the above equation from 
ground state to burn-out state yields

vb∫
o

vdv

r2 − v2
=

hb∫
o

J

m
dh. (3.2.1b)

The left hand side of the above equation is then reduced to

−1

2
ln

(
r2 − v2)vb

o = −1

2
ln

(
1 − v2

b

r2

)
= −1

2
ln

[
4xb

(xb + 1)2

]
.

(3.2.2a)

Differentiating this term with respect to the control parameter 
yields(

− 1 + 1
)

dxb = 1 xb − 1 dxb
. (3.2.2b)
2xb xb + 1 dr 2xb xb + 1 dr
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Differentiating the right hand side of equation (3.2.1b) with respect 
to the control parameter yields

d

dr

hb∫
o

J

m
dh =

hb∫
o

d

dr

J

m
dh + Jb

mb

dhb

dr
− Jo

mo

dho

dr
. (3.2.3)

The Leibniz rule [30] that prescribes the process to differentiate a 
definite integral over a variable range is applied in the above equa-
tion. The derivative of the altitude at ground state is zero. Also, 
for the maximum altitude, the derivative of the altitude at burn-
out state should be zero. Thus the following characteristic equation 
must be satisfied for the maximum altitude at burn-out state.

1

2xb

xb − 1

xb + 1

dxb

dr
=

hb∫
o

d

dr

J

m
dh. (3.2.4)

Taking the logarithm of the term xb in equation (3.1.7b) yields

ln(xb) = − 2ue

K∗r

b∑
i=1

J̄ i ln(ωi). (3.2.5a)

Then differentiating this equation with respect to the control pa-
rameter yields

1

xb

dxb

dr
= −1

r

[
ln(xb) + 2ue

K∗

b∑
i=1

ln(ωi)
d J̄ i

dr

]
. (3.2.5b)

The derivative of the parameter J with respect to the control pa-
rameter can be expressed as

d J

dr
= K

(r2 − v2)2

[(
2r

K∗
K

(
1 + pe − pa

ρeu2
e

)
− 2v

dv

dr

)(
r2 − v2)

− (
q2 − v2)(2r − 2v

dv

dr

)]
. (3.2.5c)

Since the derivative of the term (x − 1)/(x + 1) in equation (3.1.6a)
with respect to the control parameter is relatively small, we as-
sume that the term is constant. Then the derivative of the param-
eter J with respect to the control parameter between the (n − 1) 
and (n) states can be reduced to

d J̄n

dr
= ϕn

2r
, (3.2.5d)

ϕn = 1

x̄n

[
K∗

(
1 + 1 − pa/pe

γ M2
e

)
(x̄n + 1)2 − K̄n(x̄n − 1)2 − 4 J̄n x̄n

]
.

(3.2.5e)

The drag coefficient changes with the control parameter due to 
the change in the altitude. However, at the maximum altitude, the 
derivative of the altitude becomes zero and thus we can ignore 
the derivative of the drag coefficient. Then equation (3.2.5b) can 
be reduced to

1

xb

dxb

dr
= −1

r

[
ln(xb) + 1

r

ue

K∗

b∑
i=1

ln(ωi)ϕi

]
. (3.2.5f)

The rocket mass at a given altitude can be expressed as a func-
tion of the time and the control parameter.

m = m(t, r). (3.2.6a)

The derivative of the mass with respect to the control parameter 
becomes

dm

dr
= ∂m

∂t

)
dt

dr
+ ∂m

∂r

)
. (3.2.6b)
r t
The partial derivative of the mass with respect to the control pa-
rameter is

∂m

∂r
= t

dṁ

dr
= m − mo

ṁ

d

dr

K∗r2

ue
= 2K∗r(m − mo)

ṁue
= 2(m − mo)

r
.

(3.2.6c)

The derivative of the time with respect to the control parameter 
contains the derivative of the mass with respect to the control 
parameter. Thus, equation (3.2.6b) is trivial and does not give an 
explicit expression of the derivative of the mass with respect to 
the control parameter. As suggested in previous studies [22,23], 
the derivative of the mass with respect to the control parameter 
can be expressed as follows:

dm

dr
= 2(m − βmb)

r
. (3.2.6d)

The parameter β in equation (3.2.6d) could be interpreted as a bal-
ancing weight. Since the rocket mass at a given altitude changes 
with the mass flow rate, the derivative of the mass with respect to 
the control parameter is dependent on the mass flow rate. There-
fore, the coefficient β could be determined to satisfy the optimal 
condition for maximizing altitude.

The right hand side of equation (3.2.4) then becomes

hb∫
o

d

dr

J

m
dh =

hb∫
o

− J

m2

dm

dr
+ 1

m

d J

dr
dh

= −1

r

b∑
i=1

hi∫
hi−1

1

m

[
2 J̄ i

(
1 − β

mb

m

)
− 1

2
ϕi

]
dh. (3.2.6e)

Hence, the following characteristic equations should be satisfied 
to maximize the altitude at burn-out state.

r = − ue

K∗
Lb

ln(xb) − Sb
, (3.2.7a)

Lb =
b∑

i=1

ln(ωi)ϕi, (3.2.7b)

Sb = xb + 1

xb − 1

b∑
i=1

hi∫
hi−1

1

m

[
4 J̄ i

(
1 − β

mb

m

)
− ϕi

]
dh. (3.2.7c)

The solution of the characteristic equation cannot be obtained 
analytically since the undetermined solution exists implicitly. Thus, 
we try to obtain the solution using an iterative solution method. 
The iterative procedure is very sensitive to the control parame-
ter and the parameter β . When the rocket mass ratio is high, a 
serious numerical instability might occur. Hence we introduce an 
ad-hoc to relax the sensitivity of the characteristic equation (3.2.7)
with dispersing the side effects. We introduce the stabilizer λ to 
relax numerical instabilities that might occur during iterative cal-
culations.

rk+1 = ue

K∗,k

Lb,k

ln(xb,k) − Sb,k
, (3.2.8a)

Lb,k =
{

b∑
i=1

ln(ωi)ϕi

}
k

, (3.2.8b)

Sb,k =
{

λ
xb + 1

xb − 1

b∑
i=1

hi∫
h

1

m

[
4 J̄ i

(
1 − β

mb

m

)
− ϕi

]
dh

}
k

. (3.2.8c)
i−1
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The stabilizer would be a function of the parameter β , since the 
stabilizer λ in the above equation introduced to disperse the side 
effects from the variation of the parameter β . A preliminary nu-
merical experiment shows that the following function works well.

λk = 1

2
+ βk. (3.2.8d)

The initial guess of the control parameter should guarantee that 
the thrust be larger than the gravitational force at ground state. 
We take the following initial guess.

r0 =
√

2
mo go − Ae(pe − po)

C K Ko
. (3.2.8e)

The coefficient C K is determined by experience to ensure the ini-
tial guess of the control parameter in equation (3.2.8e) sufficiently 
high. A preliminary numerical experiment shows that the coeffi-
cient C K of 0.01 guarantees stable convergence up to a mass ratio 
of 6.

After updating the control parameter, the mass flow rate and 
the critical drag coefficient K∗ should be updated. During the up-
dating procedure of the critical drag coefficient the mass flow rate 
should be kept unchanged. Thus the control parameter should be 
adjusted to maintain the consistency of the relation. Hence the up-
dating procedure should be conducted in the following order.

(1) ṁk+1 = K∗,kr2
k+1,temp

ue
, (3.2.9a)

(2) K∗,k+1 =
{

Kb − Ae(pe − pa,b) − mb gb

r2

}
k+1

, (3.2.9b)

(3) rk+1 =
√

ṁk+1ue

K∗,k+1
. (3.2.9c)

The term rk+1,temp stands for the temporal control parameter cal-
culated by equation (3.2.8a), while the term rk+1 does the adjusted 
control parameter.

As mentioned above right after equation (3.2.6d), if the parame-
ter β is determined to match the optimal condition for maximizing 
altitude, we could obtain the optimal control parameter. The term 
Sb in equation (3.2.8c) decreases and thus the estimated control 
parameter increase as the coefficient β increases. Therefore, we 
can determine the coefficient β with the following iterative rela-
tion as

βk+1 = βk

[
1 − Cβ

(
r

hb

dhb

dr

)
k

]
. (3.2.10a)

The coefficient Cβ is determined by experience to keep the conver-
gence of the iterative procedure stable by controlling the changing 
rate of the coefficient β . A large value of the coefficient Cβ in the 
above equation gives fast convergence but would result in seri-
ous instabilities. In the present study, the constant of 0.05 is used. 
In contrast to the cases with a constant drag parameter consid-
ered in the previous study [22], the derivative of the altitude with 
respect to the control parameter cannot be explicitly determined 
since the drag parameter changes with the altitude, which is not 
yet determined. A reasonable and simple alternative is the numer-
ical derivative represented as follows:

∂hb

∂r
≈ hb(r + 
r) − hb(r − 
r)

2
r
. (3.2.10b)

A small value of the difference in the control parameter 
r gives 
precise differentiation but would result in serious instabilities. 
A preliminary numerical experiment shows that the difference in 
the control parameter 
r between 0.1% and 1.0% of the control 
parameter guaranteed stable convergences. In the present study, 
a difference of 0.5% of the control parameter is used.
3.3. Optimal condition at apogee

The rocket in coast phase ascends until apogee. Hence, the op-
timal condition for maximizing the altitude at apogee would differ 
from that at burn-out state. In coast phase, the thrust is termi-
nated and the mass is constant. Therefore, the governing equation 
becomes

−
o∫

vb

K vdv

K v2 + mb g
=

hs∫
hb

K

mb
dh. (3.3.1)

Adding the above equation to equation (3.2.1b) yields

vb∫
o

vdv

r2 − v2
−

o∫
vb

K vdv

K v2 + mb g
=

hb∫
o

J

m
dh +

hs∫
hb

K

mb
dh. (3.3.2)

The previous study [23] shows the second integral in the left 
hand side of equation (3.3.2) can be reduced to

−
o∫

vb

K vdv

K v2 + mb g
= 1

2 + ψ
ln

(
Gb,b + v2

b

Gb,b

)
, (3.3.3a)

ψ = ln[K (vb)/K (vb/2)]
ln(2)

, (3.3.3b)

Gb,b = mb gb

Kb
. (3.3.3c)

Further, the previous study [23] shows that the derivative of the 
above term with respect to the control parameter can be reduced 
to

d

dr

1

2 + ψ
ln

(
Gb,b + v2

b

Gb,b

)

= 2

2 + ψ

xb − 1

xb + 1

r

Gb,b + v2
b

[
xb − 1

xb + 1
+ 2r

(xb + 1)2

dxb

dr

]
. (3.3.3d)

Differentiating the right hand side of equation (3.3.2) with respect 
to the control parameter yields

d

dr

( hb∫
o

J

m
dh +

hs∫
hb

K

mb
dh

)

=
hb∫

o

d

dr

J

m
dh +

hs∫
hb

d

dr

K

mb
dh + Jb

mb

dhb

dr
− Jo

mo

dho

dr
+ Ks

mb

dhs

dr

− Kb

mb

dhb

dr
. (3.3.4)

The Leibniz rule [30] is applied. The second and the last terms can-
cel out. The derivative of the altitude at ground state is zero, and, 
for the maximum altitude, the derivative of the altitude at apogee 
should be zero. The rocket mass after burn-out state is constant, 
and thus its derivative is zero, and the derivative of the drag pa-
rameter vanishes. Thus we can ignore the second term. The third 
term and the last term could cancel out since, as mentioned in 
equation (3.1.2b), the parameter J becomes the drag parameter K
at burn-out state.

Hence, only the first term in equation (3.3.4) remains and the 
characteristic equation to indicate the optimal condition for maxi-
mizing the altitude at apogee becomes
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1

2xb

xb − 1

xb + 1

dxb

dr
+ 2

2 + ψ

xb − 1

xb + 1

r

Gb,b + v2
b

×
[

xb − 1

xb + 1
+ 2rxb

(xb + 1)2

1

xb

dxb

dr

]
=

hb∫
o

d

dr

J

m
dh. (3.3.5a)

Rearranging the above equation yields

Γb
1

xb

dxb

dr
+ 4r

2 + ψ

xb − 1

xb + 1
= 2

(
Gb,b + v2

b

) xb + 1

xb − 1

hb∫
o

d

dr

J

m
dh,

(3.3.5b)

Γb = Gb,b + v2
b + 8r2

2 + ψ

xb

(xb + 1)2
. (3.3.5c)

Inserting equation (3.2.5f) and equation (3.2.6e) into the above 
equation yields[

ln(xb) + 1

r

ue

K∗
Lb

]
Γb − 4r2

2 + ψ

xb − 1

xb + 1
= (

Gb,b + v2
b

)
Sb. (3.3.5d)

Therefore, the following characteristic equations should be sat-
isfied to maximize the altitude of a rocket at apogee.

r = ue

K∗
Lb

ln(xb) − Ss
, (3.3.6a)

Lb =
b∑

i=1

ln(ωi)ϕi, (3.3.6b)

Ss = 4r2

Γb(2 + ψ)

xb − 1

xb + 1
+ Gb,b + v2

b

Γb

xb + 1

xb − 1

×
b∑

i=1

hi∫
hi−1

1

m

[
4 J̄ i

(
1 − β

mb

m

)
− ϕi

]
dh. (3.3.6c)

The solution of the characteristic equation cannot be obtained an-
alytically since the undetermined solution exists implicitly in the 
second term. Thus, we try to obtain the solution using the follow-
ing iterative solution method. As mentioned in the above section, 
the iterative procedure is very sensitive to the control parameter 
and the parameter β . Thus we introduce a stabilizer λ.

rk+1 = ue

K∗,k

Lb,k

ln(xb,k) − Ss,k
, (3.3.7a)

Lb,k =
{

b∑
i=1

ln(ωi)ϕi

}
k

, (3.3.7b)

Ss,k =
{

4r2

λΓb(2 + ψ)

xb − 1

xb + 1
+ λ

Gb,b + v2
b

Γb

xb + 1

xb − 1

×
b∑

i=1

hi∫
hi−1

1

m

[
4 J̄ i

(
1 − β

mb

m

)
− ϕi

]
dh

}
k

, (3.3.7c)

Γb,k =
{

Gb,b + v2
b + λ

8r2

2 + ψ

xb

(xb + 1)2

}
k
, (3.3.7d)

λk = 1

2
+ βk. (3.3.7e)

If the optimal condition at burn-out state is known, we can easily 
determine the initial value of the control parameter as follows:

r0 =
√

2
mo go − Ae(pe − po)

Kb,optb
. (3.3.7f)
The updating procedure of the mass flow rate and the critical 
drag parameter at the (k + 1) step and the adjustment of the con-
trol parameter are the same as those in equations (3.2.9a)–(3.2.9c).

The term Ss,k in equation (3.3.7c) decreases and thus the es-
timated control parameter rk+1 increases as the coefficient β in-
creases. Therefore, we can determine the coefficient β with the 
following iterative relation.

βk+1 = βk

[
1 − Cβ

(
r

hs

dhs

dr

)
k

]
. (3.3.8a)

As mentioned in section 3.2, the derivative of the altitude with re-
spect to the control parameter could not be explicitly determined 
since the drag parameter changes with the altitude, which is not 
yet determined. A reasonable and simple alternative is the numer-
ical derivative represented as follows:

∂hs

∂r
≈ hs(r + 
r) − hs(r − 
r)

2
r
. (3.3.8b)

A large value of the coefficient Cβ in equation (3.2.9a) gives fast 
convergence but would result in serious instabilities. In the present 
study, the constant 0.05 is used. On the other hand, a small value 
in the difference of the control parameter 
r gives precise dif-
ferentiation but would result in serious instabilities. Preliminary 
numerical experiments showed that a difference in the control 
parameter 
r between 0.1% and 1.0% of the control parameter 
guaranteed stable convergence. In the present study, a difference 
of 0.5% of in control parameter is adopted.

4. Numerical solutions

If the mass and the rocket velocity are known at the (n − 1) 
state, then the velocity at the (n) state can be numerically ob-
tained. The discretized governing equation of the rocket motion in 
boost phase becomes

m̄n
vn − vn−1


t
= F̄e,n − K̄n v̄2

n − m̄n ḡn, (4.1a)

F̄e,n = ṁue + Ae(pe − p̄a,n), (4.1b)


t = tn − tn−1 = mn − mn−1

ṁ
. (4.1c)

The over-bar denotes the average of the variable between the (n −
1) and (n) states.

z̄n = zn−1 + zn

2
, z = m, v, g, pa, K . (4.1d)

The governing equation is then rewritten as follows:

m̄n
vn − vn−1


t
= F̄e,n − K̄n

4

(
v2

n−1 + 2vn−1 vn + v2
n

) − m̄n ḡn.

(4.2a)

This discretized equation becomes quadratic, as follows:

v2
n + 2

(
vn−1 + 2

m̄n

K̄n
t

)
vn + v2

n−1

− 4

K̄n

(
m̄n

vn−1


t
+ F̄e,n − m̄n ḡn

)
= 0. (4.2b)

The solution of the above equation at the (n) state is

vn = −B +
√

B2 − C, (4.3a)

B = vn−1 + 2
m̄n

K̄n
t
,

C = v2
n−1 − 4

¯
(

m̄n
vn−1 + F̄e,n − m̄n ḡn

)
. (4.3b)
Kn 
t
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The discretized governing equation of the rocket motion in 
coast can be constructed if the thrust term is extracted and the 
mass is fixed as that at the burn-out state.

vn = −B +
√

B2 − C, (4.4a)

B = vn−1 + 2
mb

K̄n
t
, C = v2

n−1 − 4

K̄n

(
mb

vn−1


t
− mb ḡn

)
.

(4.4b)

5. Calculation conditions

5.1. Atmosphere

The solution of the rocket equation depends strongly on the 
drag coefficient, which varies with the ambient air density. There-
fore, for the flight of a rocket in a real atmosphere, the density 
change with the altitude raises a critical issue for rocket dynamics. 
In the present study, the density is determined according to the 
US standard atmosphere [24] where the effects of wind, location 
or time are excluded. The standard atmosphere is composed of the 
troposphere, stratosphere, mesosphere, and thermosphere.

The temperature at an altitude between the adjacent layers is 
obtained with a linear interpolation. The pressure in each inter-
val is expressed as an exponential function of the altitude. Then 
the pressure at an altitude between the adjacent layers is obtained 
with an exponential interpolation. We can then determine the den-
sity as a function of the altitude with the thermodynamic state 
function for the ideal gas of air. For detail, refer to the article [23].

5.2. Aerodynamic drag coefficient

The cross-sectional diameter of the rocket is 0.6 m. The aerody-
namic drag coefficient Cd is not a constant but is instead a function 
of the Mach number. The basic model used to simulate the effect 
of the Mach number is the one used by Ganji [21]. However the 
basic model showed some unstable behavior near the Mach num-
ber of one. Hence, in the present study, the following model [23], 
which is modified to have smooth transitions near the Mach num-
ber of one, is adopted.

Cd = Cdo
[
1 + Rd fd(M)

]
, (5.1a)

fd(M) =
⎧⎨
⎩

A0M4, M ≤ 1
1 − A1(M − M1)

4, 1 < M ≤ M2

A2(M + 1 − M2)
−1 M2 < M

, (5.1b)

A1 = 1 − A0

(M1 − 1)4
, A2 = 1 − A1(M2 − M1)

4. (5.1c)

The aerodynamic drag coefficient at ground state Cdo and the jump 
ratio of the drag coefficient Rd are set as 0.8 and 1.1, respectively. 
The Mach numbers M1 and M2 in the above equation are set as 1.2 
and 1.325, respectively. The coefficient A0 is fixed as 0.75. These 
coefficient A0 and Mach numbers M1 and M2 are determined ar-
bitrary to make smooth change of the drag coefficient.

5.3. Rocket launching conditions

In the present study, a rocket dry-mass of 750 kg is considered. 
Rocket dry-masses of 500 kg and 1000 kg are also considered for 
comparisons. The total mass or the propellant mass is determined 
according to the mass ratio Ω . The mass ratio is varied from 2 
to 6, which means the rocket total mass is changed from 1500 kg 
to 4500 kg.

We consider the launching conditions of KSR III. The combustor 
temperature and pressure are fixed as 2500 K and 750 kPa, re-
spectively. The Mach number at the nozzle exit is determined by 
considering the jet pressure at the nozzle exit to be larger than the 
one third of the ambient pressure at ground state to prevent flow 
separation at the nozzle exit. Therefore, in the present study, the 
Mach number at nozzle exit is fixed as 4.0. The specific heat ra-
tio is fixed as 1.27. Then the temperature and the pressure at the 
nozzle exit are determined by the isentropic equations (2.3a) and 
(2.3b) as 791.1 K and 33.47 kPa, respectively. The jet velocity at the 
nozzle exit is determined by equation (2.3c) as 2148 m/s.

The mass flow rate of propellant changes according to the con-
trol parameter and thus is determined with equation (3.1.2a) if the 
control parameter is determined. The nozzle throat area is deter-
mined according to the mass flow rate with equation (2.2c). Then 
the nozzle exit area is determined by equation (2.3d).

5.4. Numerical calculations

If the number of piecewise intervals increases, the numerical 
solution or the piecewise analytic solution becomes more exact. 
A preliminary numerical experiment shows that in case the num-
ber of intervals for boost phase is as high as 150, then numerical 
integration with the trapezoid rule yields almost the same result 
as that with Simpson’s rule [29]. The number of piecewise inter-
vals for boost phase and coast phase are both fixed as 400. The 
mass change during each interval is assumed to be constant.

mn − mn−1 = mb − mo

Nb
= const. (5.2)

During the calculations of equation (3.2.8) or (3.3.7), three key 
parameters are updated: the control parameter r, the coefficient β
and the critical drag parameter K∗ . Simultaneous changes in the 
key parameters could cause serious numerical instabilities. If we 
calculate the coefficient βk+1 in equation (3.2.10) or (3.3.8) with 
the newly updated control parameter rk+1, we could encounter a 
serious numerical instability.

Sometimes, an abrupt numerical instability might occur during 
iterative calculations, which is usually due to the situation where 
the temporary calculated control parameter is too small and thus 
the thrust is smaller than the gravitational force. In this case, we 
should make sure that the thrust is larger than the gravitational 
force and calculate the characteristic equations with a smaller co-
efficient Cβ in equation (3.2.10) or (3.3.8).

6. Results

6.1. Solution profiles

Fig. 1 compares the velocity profiles between the pseudo-
analytic and the numerical solutions. The vertical dashed line indi-
cates the burn-out time. The rocket velocities increase steeply from 
ground state and furthermore the accelerations grow due to the 
reduction of the rocket mass until burn-out state. In coast phase, 
the velocities decrease due to the gravity force and aerodynamic 
drag. Fig. 1a shows the variations in the velocity profile according 
to the rocket mass ratio with a fixed rocket mass of 750 kg. Re-
gardless of the rocket mass ratio, each pseudo-analytic solution is 
identical to the numerical one. The case with a higher mass ratio 
yields a higher rocket velocity and a longer time to apogee. Fig. 1b 
shows the variation in the velocity profiles based on the rocket 
mass with a fixed rocket mass ratio of 4. Regardless of the rocket 
mass, each pseudo-analytic solution is identical to the numerical 
one. The case with a higher mass yields a slight higher velocity 
but a similar time to apogee.

Fig. 2 shows the changes in the altitude with time. The vertical 
dashed line indicates the burn-out time. In boost phase, the rocket 
altitude increases through a concave curve due to the increasing 
velocity until burn-out state. In coast phase, the rocket altitude 
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Fig. 1. Velocity profile as a function of time.

changes through a convex curve, since the rocket is decelerated by 
gravity.

Fig. 2a shows the variations in the altitude as a function of the 
rocket mass ratio with a fixed rocket mass of 750 kg. The increase 
in the rocket mass ratio results in an increase in the maximum 
altitude. Fig. 2b shows the variation of the altitude according to 
the rocket mass with a fixed rocket mass ratio of 4. The case with 
a higher mass yields a higher altitude but a similar time to apogee.

6.2. Optimal conditions at burn-out state

To estimate the characteristic changes in the altitude at burn-
out state according to the control parameter, the normalized con-
trol parameter and the normalized altitude at burn-out state are 
introduced as follows:

φb = r − ropt,b

ropt,b
, (6.1a)

ηb = hb

hb(ropt,b)
. (6.1b)

Fig. 3 shows variations in the altitude at burn-out state ac-
cording to the control parameter. The vertical dashed lines indi-
cate the normalized optimal control parameter calculated by equa-
tion (3.2.8). The characteristic equation gives exact predictions of 
the optimal control parameter regardless of the rocket masses or 
mass ratios. The mass flow rates in the figures represent the opti-
mal values at burn-out state. Fig. 3a represents the effects of the 
mass ratio on the rocket altitude. The case with a mass ratio of 
2 seems much less sensitive to the control parameter than the 
other cases. Fig. 3b represents the effects of the rocket mass on 
the rocket altitude. The normalized curves with different rocket 
masses nearly coincide even though the difference in the rocket 
Fig. 2. Changes in altitude as a function of time.

Fig. 3. Variation in altitude at burn-out state as a function of the control parameter.
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Fig. 4. Variation in optimal mass flow rate at burn-out state.

mass is large. This suggests that the variation in the normalized 
altitude is largely insensitive to the rocket mass. From equation 
(3.1.2a), we can deduce the relation: dṁ/ṁ = 2dr/r, which implies 
that the same relative change of the control parameter results in 
the same relative change of the thrust. As shown in Fig. 3b, the ra-
tios between the rocket mass and the mass flow rate are almost 
same with each other. Hence, if we neglect the effects of the aero-
dynamic drag, the same changes of the relative control parameter 
(φb) result in the same changes of acceleration. This may be the 
reason why the curves coincide.

Fig. 4 shows variations in the optimal mass flow rate with 
the rocket mass or the rocket mass ratio at burn-out state. For a 
given rocket mass ratio, the optimal mass flow rate grows with the 
rocket mass but the growth rate slightly decreases as the rocket 
mass increases.

For a given mass, there are two regions where the increasing 
rates of the optimal mass flow rate are slightly different. There are 
also slight concave regions where the rocket mass ratio is between 
1.5 and 2.5. In that region, the rocket velocities at burn-out state 
are near to the speed of sound where the aerodynamic drag coef-
ficient sharply changes. This might be the reason why there exist 
the inversions of the concavities. After the inversion of the concav-
ity, the optimal mass flow rate increases in a linear mode, since 
the flight Mach number is much higher than unity and the rocket 
flies in a rarefied air for a relatively long time.

Fig. 5 shows variations in the maximum altitude at burn-out 
state with the rocket mass or the rocket mass ratio for the optimal 
mass flow rate at burn-out state. The velocities shown the figure 
are the velocities at burn-out state when the rocket dry-mass is 
750 kg. For a given rocket mass ratio, the maximum altitude in-
creases with the rocket mass but the rate slightly decreases as 
the rocket mass increases. For a given rocket mass, the altitude at 
burn-out state grows with the mass ratio in a linear mode at low 
mass ratios and along a convex line at high mass ratios. The con-
vex curve of the altitude at burn-out state at high mass ratios is 
due to the fact that the rocket at a higher velocity suffers a higher 
aerodynamic drag. The altitude at apogee grows with the mass ra-
tio along a concave line until the mass ratio becomes 3.5 and there 
it grows with the mass ratio in a linear fashion.

6.3. Optimal conditions at stationary state

To determine the characteristic changes of the altitude at sta-
tionary state or apogee according to the control parameter, the 
normalized control parameter and the normalized altitude at 
apogee are introduced as follows:

φs = r − ropt,s

r
, (6.2a)
opt,s
Fig. 5. Variations in maximum altitude at burn-out state and at apogee.

ηs = hs

hs(ropt,s)
. (6.2b)

Fig. 6 shows variations in the altitude at apogee according to 
the control parameter. The vertical dashed line indicates the nor-
malized optimal control parameter calculated by the characteristic 
equation (3.3.7). The characteristic equation gives exact predictions 
of the optimal control parameter regardless of the rocket masses 
or mass ratios. The values of the control parameter in the figures 
represent the optimal ones at apogee. Fig. 6a represents the ef-
fects of the mass ratio on the altitude. The case with a lower mass 
ratio is much more sensitive to the control parameter. Fig. 6b rep-
resents the effects of the rocket mass on the altitude. Again, the 
case with a lower mass ratio is much more sensitive to the control 
parameter, which is different from the optimal cases at burn-out 
state.

Fig. 7 shows the variations in the optimal mass flow rate with 
the rocket mass and the rocket mass ratio at apogee. For a given 
rocket mass ratio, the optimal mass flow grows with the rocket 
mass. The optimal mass flow for a given rocket mass decreases 
sharply with the mass ratio until a minimum value where the 
mass ratio is near 1.5 and, after the point, the mass flow turns 
around and grows gradually, which is very different behavior from 
the situation at burn-out state shown in Fig. 4. These characteris-
tic changes look similar to those shown in the previous study [23]. 
After the concave region, the optimal mass flow rate increases in 
a linear mode, since the flight Mach number is much higher than 
unity and the rocket flies in a rarefied air for a relatively long time.

Fig. 8 shows variations in the maximum altitude at apogee with 
the rocket mass and the rocket mass ratio for the optimal mass 
flow rate at apogee. The velocities shown the figure are the veloc-
ities at burn-out state when the rocket dry-mass is 750 kg.

In contrast to the case for the optimal condition at burn-out 
state, the maximum altitudes for a given rocket mass ratio are 
nearly identical, regardless of the rocket mass or the rocket mass 
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Fig. 6. Variation in altitude at apogee as a function of the control parameter.

Fig. 7. Variation in optimal mass flow rate at apogee.

ratio. For a given rocket mass ratio, the maximum altitude at 
apogee increases with the rocket mass but the rate slightly de-
creases as the rocket mass increases. For a given rocket mass, the 
altitude growth rate increases until the mass ratio becomes 3.5, 
and after the altitude grows linearly with the mass ratio. The fi-
nal altitude for the optimal condition at apogee is much higher 
than that for the optimal condition at burn-out state. The linear 
increase of the altitude at apogee with the mass ratio is due to 
the fact that the rocket flies through the coast phase for a rela-
tively long time in a rarefied air where the aerodynamic drag is 
very weak.

7. Conclusions

The one-dimensional rocket momentum equation including 
thrust, gravitational force, and aerodynamic drag is examined to 
pseudo-analytically determine the optimal condition for maximiz-
Fig. 8. Variations in maximum altitude at burn-out state and at apogee.

ing the altitude of a sounding rocket at burn-out state or at apogee. 
The analytic approach for determining the optimal conditions for 
maximizing the altitude of a sounding rocket flying in a standard 
atmosphere is extended to the case in which the mass flow rate of 
propellant is constant. If the mass flow rate is constant, we could 
not obtain an analytic solution of the governing equation. Hence 
we introduce a new pseudo-analytic approach to overcome these 
difficulties. The rocket flights in a standard atmosphere where the 
air density as well as the gravitational acceleration change with 
the altitude are considered. In addition, the change in the aerody-
namic drag coefficient with the Mach number is considered. The 
piecewise pseudo-analytic solutions are obtained with a divide-
and-conquer strategy with which the entire flight time is divided 
into small intervals where the drag parameter and the gravitational 
acceleration can be treated as constants in each interval.

A piecewise pseudo-analytic rocket velocity for a given con-
trol parameter can be obtained that matches the numerical one. 
For a given launching condition, there exists an optimal control 
parameter corresponding to the optimal mass flow rate of propel-
lant for maximizing the altitude at burn-out state or at apogee. 
A pseudo-analytic characteristic equation constructed from the 
pseudo-analytic solution of the governing equation provides ac-
curate predictions of the optimal conditions for maximizing the 
altitude at burn-out state or apogee, which is confirmed by the 
numerical experiments.

In a burn-out situation, the increase in the rocket mass at a 
given mass ratio results in the increases in the optimal mass flow 
rate, but the increasing rate decreases as the rocket mass increases. 
The optimal mass flow rate at a given rocket mass grows with the 
rocket mass ratio in a linear mode. In an apogee situation, the op-
timal mass flow rate for maximizing the altitude at apogee exists 
and is higher than that at the burn-out situation. Like the situa-
tion at burn-out state, the optimal mass flow rate grows with the 
rocket mass, but there is a mass ratio where the optimal mass flow 
rate shows a minimum. This occurs where the mass ratio is near 
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1.5 at a given rocket mass, which is not shown in the burn-out 
situation.
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