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Inviscid and viscous aerodynamics of dense gases
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A numerical investigation of transonic and low-supersonic flows of dense gases of the
Bethe–Zel’dovich–Thompson (BZT) type is presented. BZT gases exhibit, in a range
of thermodynamic conditions close to the liquid/vapour coexistence curve, negative
values of the fundamental derivative of gasdynamics. This can lead, in the transonic
and supersonic regime, to non-classical gasdynamic behaviours, such as rarefaction
shock waves, mixed shock/fan waves and shock splitting. In the present work, inviscid
and viscous flows of a BZT fluid past an airfoil are investigated using accurate thermo-
physical models for gases close to saturation conditions and a third-order centred
numerical method. The influence of the upstream kinematic and thermodynamic
conditions on the flow patterns and the airfoil aerodynamic performance is analysed,
and possible advantages deriving from the use of a non-conventional working fluid
are pointed out.

1. Introduction
Dense gases are defined as single-phase vapours characterized by complex molecules

and moderate to large molecular weights, operating at temperatures and pressures
of the order of magnitude of those of their thermodynamic critical point. At these
conditions, real gas effects play a crucial role in the dynamic behaviour of the fluid.
The study of the complicated dynamics of compressible flows of dense gases is
strongly motivated by the potential technological advantages of their use as working
fluids in energy-conversion cycles. Specifically, such fluids possess large heat capacities
compared to their molecular weight, which makes them excellent heat transfer fluids
in organic Rankine cycles (ORCs). Specific interest has been developed in a class of
dense gases of the retrograde type (i.e. gases that superheat when expanded), known
as the Bethe–Zel’dovich–Thompson (BZT) fluids. These gases exhibit non-classical
gasdynamic behaviours, such as expansion shock waves mixed shock/fan waves and
splitting shocks, in a range of thermodynamic conditions above the liquid/vapour
coexistence curve, such that the fundamental derivative of gasdynamics (Thompson
1971):

Γ := 1 +
ρ

a

(
∂a

∂ρ

)
s

, (1.1)

with ρ the fluid density, a the sound speed of, and s the entropy, becomes negative. Γ

measures the rate of change of the sound speed in isentropic perturbations: if Γ < 1,
the flow exhibits a reversed sound speed variation: a grows in isentropic expansions
and falls in isentropic compressions, contrarily to what happens in ‘common’ fluids, e.g.
perfect gases, for which Γ = (γ + 1)/2 is strictly greater than one for thermodynamic
stability reasons, γ being the specific heat ratio of the fluid. The thermodynamic
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region where Γ < 0 is referred to as the inversion zone, and the Γ = 0 contour is said
to be the transition line (Cramer & Kluwick 1984). In flow regions with negative Γ ,
the second law of thermodynamics requires that compression shocks cannot form,
whereas expansion shocks are physically admissible (see Cramer & Kluwick 1984). It
is possible to show that the entropy change across a weak shock can be written as:

�s = −a2Γ

v3

(�v)3

6T
+ O((�v)4), (1.2)

where � represents a change in a given fluid property through the shock, v =1/ρ is
the specific volume, and T is the absolute temperature. As a result, in order to satisfy
the second law of thermodynamics, a negative change in the specific volume, i.e. a
compression, is required if Γ > 0, whereas a positive change, i.e. an expansion, is the
only physically admissible solution when Γ < 0. In practice, Γ rarely has constant
negative sign throughout the flow, because of the finite extent of the inversion zone.
At points where Γ vanishes, the genuine nonlinearity of the flow characteristic fields
is lost, and non-classical waves can be generated, such as mixed shock/fan waves and
splitting shocks (Cramer 1991, 1989b). For example, it can happen that a compressive
wave would start in the positive Γ region as a shock, and then split into a compression
fan as the flow enters the inversion zone. This also results in discontinuities of limited
strength for thermodynamic conditions close to the transition line (Cramer & Kluwick
1984). Specifically, the shock strength is reduced up to one order of magnitude from
that predicted by (1.2) for thermodynamic conditions where Γ ≈ 0. A steady, inviscid
dense gas flow at transonic speeds undergoing small disturbances of the speed,
pressure, density, etc. is then characterized by much smaller changes of the specific
entropy, and the flow can be considered, in the leading orders of the disturbances, as
isentropic.

Past efforts toward demonstrating the existence of BZT fluids (see Lambrakis &
Thompson 1972; Thompson & Lambrakis 1973; Cramer 1989a) indicate that several
heavy compounds employed for heat transfer applications and as working fluids
in organic Rankine power cycles (ORC) do possess BZT properties. Now, ORC
turbines typically work in the transonic/low supersonic regime and their major loss
mechanism is related to the generation of shock waves and their interactions with the
blade boundary layers. Therefore, on the one hand a detailed study of turbomachinery
flows of dense gases is necessary to predict the system behaviour correctly; on the other
hand, non-classical dense gas phenomena could be exploited to improve efficiency:
namely, shock formation and subsequent losses could be ideally suppressed, if turbine
expansion could happen entirely within or in the immediate neighbourhood of the
inversion zone. Previous works on BZT transonic flows past airfoils (Cramer &
Tarkenton 1992) and through turbine cascades (Monaco, Cramer & Watson 1997;
Brown & Argrow 2000) show that, properly operating the turbine in the very nei-
ghbourhood of the Γ = 0 curve, the flow field evolves almost entirely within the
inversion zone and is shock-free: as a result, except for viscous drag, the flow remains
almost isentropic through the entire cascade. Unfortunately, the inversion zone has
a limited extent: therefore, a reduction in the temperature jump between the heater
and condenser stages is generally required in order to operate the turbine completely
within it. Now, it is well-known from thermodynamic theory of heat engines (see
for example Cengel & Boles 2006) that too small a temperature jump implies low
thermal cycle efficiency. Moreover, a small temperature (i.e. enthalpy) jump also
means low cycle power output. This important drawback has been the stumbling
block to the development of real-world BZT ORCs. In practice, BZT gas effects can
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find application in ORC turbomachinery only if a reasonable trade-off between the
above-mentioned opposite requirements is found.

Previous works on transonic dense gas flows past airfoils and through turbine
cascades generally consider operating conditions in the vicinity of the transition line.
Cramer & Tarkenton (1992) studied transonic flows past thin airfoils by solving an
extended transonic small disturbance equation derived for flows with Γ ≈ 0, M ≈ 1
(with M the Mach number), and also characterized by small values of the second
nonlinearity parameter Λ := ρ(∂Γ/∂ρ)s (Cramer & Kluwick 1984). They found a
significant increase of the critical Mach number in flows of BZT fluids over profiles.
Numerical solutions of the small disturbance equation completed by the Martin–Hou
gas model revealed substantial reductions in the strength of compression shocks.
Morren (1991) performed numerical simulations using the Euler equations and the
van der Waals equation of state, and observed an evident decrease in the pressure drag
over the airfoil. Transonic flows of a dense gas around the leading edge of a thin airfoil
with a parabolic nose have been studied by Rusak & Wang (1997). Once again, the
oncoming flow was supposed to be almost sonic, and characterized by small values of
Γ and Λ. Asymptotic expansions of the velocity potential function were constructed
in terms of the airfoil thickness ratio in an outer region around the airfoil and in an
inner region near the nose. The numerical solution of the inner problem resulted in a
symmetric flow around the nose, with a stagnation point located at the leading edge
for every transonic Mach number and any shape and small angle of attack of the
airfoil. Wang & Rusak (1999) also provided numerical studies of transonic BZT flows
past a NACA0012 airfoil at zero angle of attack (non-lifting case) for oncoming flow
conditions such that Γ∞, Λ∞ ≈ 0. They developed a transonic small-disturbance solver
for computing the nonlinear BZT gas flow in the outer region around most of the
airfoil, while the flow in the inner region near the nose of the airfoil was computed
by solving the problem of a sonic flow around a parabola. Numerical results of
the composite solutions calculated from the asymptotic theory were compared with
solutions of the Euler equations provided by the numerical code of Morren (1991).
A discussion on the flow patterns around an airfoil at transonic speeds and various
upstream thermodynamic conditions was also presented. Numerical solutions of the
Euler equations for isenthalpic flows through turbine cascades by using the Martin–
Hou gas model have been provided by Monaco et al. (1997) for incoming flow
conditions characterized by small values of Γ . Numerical comparisons between BZT
fluids and lighter fluids such as steam were presented, showing that BZT effects
can result in significant reductions of adverse pressure gradients associated to shock
wave impingement on neighbouring blades. Finally, results concerning flows through
realistic impulse turbine cascades have been presented by Brown & Argrow (2000),
who solved the Euler equations closed by the Martin–Hou gas model. Their results
show significant improvements in turbine efficiency for BZT working fluids over
conventional ones.

Cinnella & Congedo (2005a) have investigated the influence of BZT effects on
the system performance of inviscid transonic lifting flows past a NACA0012 airfoil.
Numerical simulations were performed by solving the Euler equations discretized by
a third-order-accurate numerical scheme on very fine meshes. The gas response was
modelled by the van der Waals equation of state for polytropic gases. In contrast with
previous studies, the investigation was not restricted to flows with small free-stream
Γ . On the contrary, the objective was to explore the possibility of keeping part of the
benefits deriving from BZT behaviour while enlarging the operation range. To this
purpose, a detailed parametric investigation of the airfoil aerodynamic performance
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Figure 1. Aerodynamic performance of transonic flows at M∞ = 0.85, α = 1◦ of a BZT van der
Waals gas (γ = 1.0125) past the NACA0012 airfoil. (a) Choice of the upstream thermodynamic
conditions (black dots); (b) lift coefficient and lift-to-drag ratio versus free-stream fundamental
derivative for a perfect gas (PFG) and for the dense van der Waals gas (DG).

was undertaken, with specific interest in configurations providing the best trade-off
between high lift and low drag. Figure 1 summarizes the results obtained for a
BZT van der Waals gas flowing at M∞ =0.85, α = 1◦ over the NACA0012 airfoil for
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various free-stream thermodynamic conditions, corresponding to a series of operation
points selected along constant-entropy lines (isentropes) crossing the inversion zone
(figure 1a); for each isentrope, the lift coefficient and the lift-to-drag ratio are plotted
against the free-stream value of Γ (figure 1b). Note that the fundamental derivative
does not vary monotonically along an isentrope. Nevertheless, the operating region of
interest for ORCs is located at the high-pressure side of the inversion zone, where Γ

monotonically increases with pressure. For the smallest values of Γ∞, results presented
in previous studies are recovered, namely, the flow is subcritical and characterized
by zero drag (in the limit of vanishing mesh size). Consequently, the lift-to-drag
ratio tends to infinity. The price to pay is decreased lift with respect to a system
using a perfect gas as the working fluid: this is the counterpart, for an airfoil, of
the aforementioned trade-off between high turbine efficiency and high cycle power
output for energy-conversion systems. When Γ is sufficiently high (approximately in
the range 2–3), a significant growth in both lift and drag is observed: the increase in
lift is produced by the formation of an expansion shock, close to the leading edge,
which strongly enhances the suction peak at the airfoil upper surface. The increase
in drag is due to the occurrence of shocks on the airfoil surface. Nevertheless, losses
introduced by flow discontinuities are very low, owing to the smallness of entropy
changes across weak shocks in the vicinity of the transition line. In fact, the lift-to-drag
ratio remains one order of magnitude greater than in perfect gas flow. Finally, when
Γ∞ reaches higher values, far from the inversion zone, the flow becomes qualitatively
similar to that of a perfect gas, with even poorer performance, and the benefits due
to BZT effects progressively disappear. In summary, the results presented in Cinnella
& Congedo (2005a) suggest that the choice of upstream conditions within or very
close to the transition line is not only not mandatory in order to improve airfoil
performance, as suggested in previous studies, but also not optimal. Specifically,
optimal aerodynamic performance (i.e. the best trade-off between high lift and low
drag) is obtained for Γ =O(1), more precisely Γ ≈ 3. This is of great importance, in
light of the design of BZT organic Rankine cycles, since it suggests the possibility of
enlarging the operation range of the expansion stage without losing the benefits of
dense gas effects.

Results presented in Cinnella & Congedo (2005a) have been obtained using the
van der Waals equation of state, also used in many former studies, as the simplest
gas model accounting for BZT effects: it is computationally inexpensive, and allows
the capture of qualitative features of BZT fluid flows. On the other hand, this model
is not accurate for thermodynamic conditions close to saturation, i.e. the region of
interest in the present study, and largely over-predicts the extent of the inversion zone
(Thompson & Lambrakis 1973). The Amagat (p − v) diagrams in figure 2 give an
idea of the different behaviour of a polytropic van der Waals gas with γ = 1.0125,
representative of a generic heavy fluorocarbon, and of a real gas modelled through
the more realistic Martin–Hou equation of state, namely, the heavy perfluorocarbon
pf-perhydrofluorene (commercial name PP10). The van der Waals gas exhibits a
large inversion zone. Outside this zone, the fundamental derivative quickly increases,
reaching values close to 3 at a short distance from the transition line, and tends to
the perfect gas value when the specific volume tends to infinity. On the contrary,
the inversion zone for PP10 is much smaller. Nevertheless, the increase of Γ outside
the inversion zone for increasing pressure is much slower. In the following, it will
be shown that this particular variation of Γ counterbalances to some extent the
reduction in the inversion zone size encountered in real-world gases, and favourably
affects the system performance.
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Figure 2. Amagat diagrams for (a) a BZT van der Waals gas (γ = 1.0125) and (b) for PP10.

Another limitation of Cinnella & Congedo (2005a) is related to the thermo-
viscous effects being completely neglected, as in almost all previous studies. Indeed,
viscous effects in flows of dense gases have remained largely unexplored. One of the
most important differences between dense gases and perfect gases is the downward
curvature and nearly horizontal character of the isotherms in the neighbourhood
of the critical point and upper saturation curve in the (p, v)-plane: the region of
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downward curvature of the isotherms is associated with the aforementioned reversed
behaviour of the sound speed in isentropic perturbations. In the same region, the
specific heat at constant pressure, cp , can become quite large: this strongly influences
the development of the thermal boundary layer and its coupling with the viscous
boundary layer in high-speed flows. A second consideration is that in the dense
gas regime, the dynamic viscosity µ and the thermal conductivity κ cannot any
longer be considered independent of the temperature and pressure, even in flows
with relatively small temperature variations. On the other hand, the well-known
Sutherland law, commonly used to represent viscosity variation with temperature,
becomes invalid, since it is based on the hypothesis that the gas molecules act as non-
interacting rigid spheres, and intermolecular forces are neglected. The complexity of
the behaviour of µ in the dense regime can be anticipated by recalling that the viscosity
of liquids tends to decrease with increasing temperature, whereas that of gases tends to
increase: the dense gas regime is a transition between these two qualitatively different
behaviours. Similarly, the classical approximation of nearly constant Prandtl number
(Pr = µcp/κ ≈ const) cannot be used any more. As the thermal conductivity has
roughly the same variation as viscosity with temperature and pressure, the behaviour
of Pr tends to be controlled by variations of cp . In regions where cp becomes large,
strong variations of Pr can be observed, contrary to what happens in perfect gases.
Nevertheless, if the immediate vicinity of the thermodynamic critical point is excluded
from consideration, the Prandtl number remains of order one, similar to perfect gases.
In contrast, the Eckert number (Ec = U 2

0 /(2 cpT0), where U0 and T0 represent velocity
and temperature of a suitable reference state) decreases significantly. A small flow
Eckert number implies reduced sensitivity of the boundary layer to friction heating,
which remains negligible even at moderately large supersonic Mach numbers.

In the past, investigations of the viscous structure of one-dimensional non-classical
shocks have been presented in Cramer & Crickenberg (1991). Cramer, Whitlock &
Tarkenton (1996) have presented a numerical investigation of laminar flows of dense
gases over a flat plate. The results indicate a failure of classical scaling laws for
compressible boundary-layers (Chapman–Rubesin scaling), and a reduction of the
boundary-layer friction heating in complex gases with large heat capacities. Numerical
results showing a suppression of shock-induced separation in supersonic Bethe–
Zel’dovich–Thompson flows past sharp compression corners have been provided
by Cramer & Park (1999). Kluwick (2000) has discussed a new form of marginal
boundary-layer separation in laminar flows of dense gases using asymptotic methods:
the non-monotonic Mach-number variation with pressure leads to non-conventional
distributions of the shear stress and displacement body in boundary layers subjected
to adverse pressure gradients, which contributes to delay separation. Kluwick &
Wrabel (2004) investigated shock/boundary-layer interaction in dense gases via the
triple deck theory. Their results show that it is possible to reduce the size of the
separation bubble or even to avoid the occurrence of flow separation by choosing an
optimal operation thermodynamic state.

In the present work, a numerical investigation of two-dimensional inviscid and
viscous dense gas flows past an isolated airfoil is provided. Dense gas effects
are modelled through the realistic equation of state of Martin & Hou (1955),
involving five virial expansion terms. This equation is widely accepted as the reference
thermodynamic model for dense gases (see for example Emanuel 1994; Guardone,
Vigevano & Argrow 2004). The equation is implemented within a numerical code for
dense gas flow simulations, based on a simple and efficient third-order accurate centred
solver (Cinnella & Congedo 2005b). The code also includes proper thermophysical
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models for the variation of the dynamic viscosity and thermal conductivity of dense
gases (Chung et al. 1988). The aim of the present investigations is twofold: (i)
to further investigate, using more predictive thermodynamic models, mechanisms
affecting aerodynamic performance (lift, drag, lift-to-drag ratio) for inviscid dense gas
flows past an airfoil, providing a more quantitative evaluation of the possible gains;
(ii) to investigate for the first time, to our knowledge, how the peculiar behaviour of
BZT gases affects the viscous-flow performance of an airfoil. A parametric study of the
influence of free-stream thermodynamic conditions on the aerodynamic performance
of BZT inviscid and viscous transonic flows past a NACA0012 airfoil has been
undertaken. The results are critically analysed and compared to those obtained for
a perfect diatomic gas flowing past the same configuration, pointing out peculiarities
related to the use of non-conventional working fluids.

2. Governing equations and thermodynamic models
We consider the Navier–Stokes equations for compressible single-phase flows,

written in integral form for a control volume Ω with boundary ∂Ω:

d

dt

∫
Ω

w dΩ +

∮
∂Ω

( f − f v) · n dS = 0. (2.1)

In (2.1), w =(ρ, ρv, ρE)T (with v the velocity vector, E = e + |v|2/2 the total energy
per unit mass, and e the internal energy per unit mass) is the conservative variable
vector, n is the unit outer normal to Ω , and f , f v are the inviscid and the viscous
part of the flux density, respectively, given by

f e = (ρv, ρvv + pI, ρvH )T ,

with H = E + p/ρ the total enthalpy per unit mass and I the unit tensor, and

f v = (0, τ , τv − q)T ,

where τ = µ(∇v + ∇vT ) − 2
3
µ(∇ · v)I is the viscous stress tensor and q = −κ∇T is the

heat flux vector.
The equations are completed by a thermal equation of state:

p = p(ρ, T )

and by a caloric equation of state,

e = e(ρ, T ).

The latter is not completely independent from the first one, since it has to satisfy the
compatibility relation:

e = er +

∫ T

Tr

cv∞ dT ′ −
∫ ρ

ρr

[
T

(
∂p

∂T

)
ρ

− p

]
dρ ′

ρ ′2 .

In the above, cv∞ = cv∞(T ) is the low-pressure, i.e. ideal gas, specific heat at constant
volume, and supscript r indicates a reference state. The caloric equation of state is
completely determined once a variation law for cv∞ is specified. Moreover, thermo-
dynamic models relating the dynamic viscosity, µ, and thermal conductivity, κ , to the
gas temperature and pressure are required.

In the present work, the Martin–Hou thermal equation of state is used (Martin &
Hou 1955), which provides a realistic description of the gas behaviour and of the
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inversion zone size. Such an equation, involving five virial terms and satisfying
ten thermodynamic constraints, ensures high accuracy with a minimum amount of
experimental information. A power law of the form:

cv∞ = cv∞(Tc)

(
T

Tc

)n

is used to model variations of the low-density specific heat with temperature, where
n is a material-dependent parameter. The fluid viscosity and thermal conductivity are
evaluated using the method proposed in Chung et al. (1988). The same model has
also been used in Cramer et al. (1996) and Cramer & Park (1999)

In the following computations, the working fluid is the heavy perfluorocarbon
PP10. The material-dependent quantities required by the thermodynamic models
include the boiling temperature, the molecular weight, the acentric factor, and the
dipole moment of the molecule. Most of the required data for PP10 have been taken
from Cramer (1989a). The acentric factor was calculated by its definition formula (see
Reid, Prausnitz & Poling 1987), as a function of vapour-pressure data and critical
properties. The dipole moment was taken as equal to zero, since perfluorocarbons are
essentially non-polar substances.

3. Flow solver
The governing equations are discretized using a cell-centred finite-volume scheme

of third-order accuracy, extended to the computation of flows with an arbitrary
equation of state (Cinnella & Congedo 2005b). The scheme is constructed by
correcting the dispersive error term of the second-order-accurate Jameson’s scheme
(Jameson, Schmidt & Turkel 1981). The use of a scalar dissipation term simplifies
the scheme implementation with highly complex equations of state and greatly
reduces computational costs. In order to preserve the high accuracy of the scheme
on non-Cartesian grids, the numerical fluxes are evaluated using suitably weighted
discretization formula, which take into account mesh deformations: this ensures a
truly third-order accuracy on moderately deformed meshes and at least second-order
accuracy on highly distorted meshes (see Rezgui, Cinnella & Lerat 2001 for details).
The governing equations are integrated in time using a four-stage Runge–Kutta
scheme. Local time-stepping, implicit residual smoothing and multigrid are used to
drive the solution efficiently to the steady state.

The numerical method has been successfully validated for a variety of perfect and
real gas flows (see Cinnella & Congedo 2005a, b and references therein). Hereinafter
an example of its grid-convergence properties is provided for one of the most difficult
transonic turbulent BZT flows discussed in the following. Specifically, PP10 flowing
over a NACA0012 airfoil at M∞ = 0.85, α = 1◦, Re = 9×106 and thermodynamic free-
stream conditions p∞/pc =1.08, ρ∞/ρc = 0.882 is considered. The flow is characterized
by compression shock waves at both airfoil surfaces and post-shock separation at the
upper side. Figure 3 displays Mach number contours and wall distributions of the
temperature, pressure coefficient and skin friction obtained on C-grids composed by
256 × 64 and 256 × 128 cells, respectively. The finer grid is generated from the coarser
one by doubling the number of grid points in the direction normal to the wall. The
outer boundary is located about 20 chords away from the airfoil. The average height
of the cells closest to the wall in terms of the viscous layer coordinate is y+ ≈ 5 on
the coarsest grid and y+ ≈ 1 on the finer one. Recall that y+ := y

√
ρwτw/µ2

w where
τ is the shear stress and the subscript w refers to wall quantities. Results obtained
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Figure 3. Analysis of grid convergence for the numerical method. (a) Iso-Mach contours,
(b) wall temperature, (c) pressure coefficient, (c) skin friction. —, 256 × 128; - - -, 256 × 64.

on both grids are close to each other (differences within 1 % for the wall quantities),
showing that the numerical solution is grid-converged.

4. Dense gas aerodynamics
The preceding numerical method is used to investigate inviscid and viscous transonic

flows of a BZT dense gas (DG) past a NACA0012 airfoil. The objective is to explore
the influence of dense-gas effects on the airfoil aerodynamic performance, also in
comparison with reference results for a perfect gas (PFG) flowing at the same free-
stream conditions.

4.1. Choice of the operating conditions

For a dense gas, the parameters governing the flow are, in addition to the free-
stream Mach number and angle of attack, the free-stream thermodynamic conditions,
i.e. the thermodynamic operation point. Since typical ORC turbine blades work
in the high-subsonic/low-supersonic regimes, flows past the NACA0012 airfoil are
investigated for three different free-stream conditions: high-subsonic; sonic; and low-
supersonic. The angle of attack is taken fixed and equal to 1◦. As mentioned in
§ 1, BZT inviscid steady flows with weak shocks can be considered as isentropic
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to a first approximation. Consequently, in the (p, v)-plane, the locus of all possible
thermodynamic states in the flow field lies roughly on the isentrope corresponding to
free-stream conditions. The locus is approximately superposed with the arch of the
isentrope included between the minimum and maximum pressures in the flow. If the
locus crosses the inversion zone, the flow field exhibits a region of BZT effects. The
operation points chosen for the present study are picked on five different isentropes
of the (p, v)-plane. These correspond to values of the non-dimensional free-stream
entropy (defined as (s∞ − sc)/(R Zc), with R the gas constant and Zc = pc/(RρcTc)
the critical compressibility factor) equal to 15.06, 15.33, 15.51 and 15.94, respectively.
Figure 4 shows the five isentropes, the operation points, the inversion zone and the
dense gas region (Γ < 1) for PP10. When moving from right to left along an isentrope,
the free-stream fundamental derivative Γ∞, initially positive, decreases, changes its
sign where the isentrope crosses the inversion zone, reaches a minimum, and increases
again (see figure 5). For high-pressure operation points, Γ∞ is greater than one. For
these points, asymptotic theories based on the assumption |Γ | � 1 are no longer
valid. Isentropes S1 to S3 cross the inversion zone. Isentrope S4 is approximately
tangent to the transition line and represents a limiting case. Finally, isentrope S5 lies
completely outside the inversion zone, but crosses the extended thermodynamic region
where Γ < 1. For flows with free-stream entropy S5, BZT effects cannot appear, but
significant DG effects related to reverse sound speed behaviour are expected.

4.2. Inviscid flow behaviour

Inviscid flow computations are performed using three C-grids, formed by 136 × 20,
272 × 40 and 544 × 80 cells, respectively. The finest and the coarsest grids are generated
by doubling or halving, respectively, the number of cells of the medium one in each
direction. The outer boundary is about 20 chords away from the airfoil, and the mean



190 P. Cinnella and P. M. Congedo

Γ∞

0.8 0.9 1.0

p∞ /pc

1.1 1.2

0

1

2

S1
S2
S3
S4
S5

Figure 5. Fundamental derivative versus pressure along selected isentropes.

height of the first cell closest to the wall is about 5 × 10−2 chords on the medium
grid. For most of the computations presented in the following, grid convergence for
the wall pressure and Mach number distributions has been obtained on the medium
grid. However, the results presented in the following have been obtained on the finest
grid. For a more accurate evaluation of the solution’s convergence, the scheme’s
order of convergence is estimated following Roache’s method (Roache 1998), based
on Richardson extrapolation. Given three numerical solutions computed on grids
of increasing spacing, with constant grid refinement ratio r , the actual order of
convergence is:

q = ln

(
f3 − f2

f2 − f1

)/
ln(r),

where f is a solution functional and indices 1 and 3 refer to the finest and the
coarsest grid solution, respectively. For the present computations, a computed order
of convergence of 2.2 or higher is found, based on the lift coefficient Cl . This value is
used to compute Roache’s grid convergence index (GCI) on the finest and medium
grid, which represents an estimate of how far the numerical solution is from its
asymptotic value. GCIs of 0.08 % and 0.39 % are found for the finer and the medium
grid, respectively, indicating that the solution is well within the asymptotic range.
Such values are likely to be conservative.

4.2.1. Dense gas flows in high-subsonic free stream

The reference solution for a perfect diatomic gas (specific heat ratio γ = 1.4) flowing
at M∞ =0.85, α =1◦ is first considered. This is a well-known test case, which has been
often used for the validation of numerical schemes for the Euler equations (see for
instance Dervieux, van Leer & Rizzi 1989; Cinnella & Congedo 2005b): therefore,
detailed results are not reported for brevity. The flow is characterized by two shocks
at about 85 % of the chord at the suction side, and 63 % at the pressure side. The
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computed lift and drag coefficients, and lift-to-drag ratio are:

Cl = 0.373, Cd = 5.74 × 10−2, Cl/Cd = 6.51.

These values agree reasonably with other results reported for the same case (Dervieux
et al. 1989). Then, flows of the dense gas PP10 past the same airfoil are computed.
Results for lift, drag and lift-to-drag ratio obtained for different choices of the free-
stream fundamental derivative and free-stream entropy are summarized in figure 6,
along with some results from small-disturbance theory, discussed later in this section.
For the lowest values of Γ∞, the drag is almost equal to zero (order 10−4), and increases
monotonically with it. The lift coefficient initially grows, reaches a maximum, and
then drops dramatically. The lift-to-drag ratio is poor for high Γ∞ flows, but tends to
infinity as the free-stream value of the fundamental derivative approaches unity. The
best aerodynamic performance, offering a satisfactory trade-off between high lift and
low drag is obtained for Γ∞ approximately in the range 1–1.3; in such conditions,
the flow displays higher lift and significantly reduced wave drag compared to PFG
results. Note that the curves exhibit sudden changes in slope, related to corresponding
changes in the flow patterns. In order to explain the computed behaviour of the
aerodynamic performance, a detailed analysis of the flow fields obtained for each
operating condition is undertaken, which allows us to identify three typical flow
regimes, described in the following.

For flows characterized by relatively low free-stream pressures and small values of
the free-stream fundamental derivative (Γ∞ less than about 1), the computed lift-to-
drag ratio is extremely high, although the lift coefficient is lower than in the perfect
gas case. Inspection of the Mach number field shows that such flows remain entirely
subsonic. Since the free stream is uniform and steady and no viscous effects are taken
into account, the flow should also be isentropic, with drag coefficient exactly equal to
zero. In practice, small entropy gradients are generated close to the wall, because of
numerical errors introduced by the numerical scheme and boundary conditions, which
lead to small non-zero values, O(10−4), for the computed drag. As a consequence, the
computed lift-to-drag ratio is not unbounded, but O(103). An estimate for the critical
Mach number, Mc, in BZT transonic flows with Γ∞ ≈ 0, Λ∞ ≈ 0, has been provided by
Cramer & Tarkenton (1992), using an extended transonic small-disturbance theory.
These authors demonstrated that for flows with Λ∞ < 0, at least one sonic point
necessarily appears in the flow field. On the contrary, for flows characterized by
Λ∞ > 0, i.e. at the high-pressure border of the inversion zone, sonic points appear if
the free-stream Mach number is greater than the critical value:

Mc =

(
1 − Γ 2

∞
Λ∞

)−1/2

≈ 1 − Γ 2
∞

2Λ∞
, (4.1)

where Λ is the previously defined second nonlinearity parameter, representing the
rate of change of Γ along an isentrope. Figure 7(a) shows the distribution of Λ∞
associated to the chosen operation points (Λ∞ is evaluated numerically using second-
order weighted central differences). Figure 7(b) displays the critical Mach numbers
predicted by formula (4.1) versus the maximum Mach number in the computed flow
field for flow cases with Λ∞ > 0. Since the free-stream Mach number is always equal
to 0.85, then for operating conditions such that Mc <M∞, the flow is expected to be
supercritical according to the small-disturbance theory, i.e. the point of coordinates
(Mc, Mmax) should lie within quadrant II of figure 7(b) (Mmax > 1). On the contrary,
for operating conditions such that Mc >M∞, the same point should lie in quadrant
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IV (Mmax < 1). For points lying in shaded regions, predictions from small-disturbance
theory are not verified. Inspection of figure 7(b) shows that there is good agreement
between estimate (4.1) and the present numerical results. The estimate just fails
for operating conditions p∞/pc = 1.07, ρ∞/ρc = 0.850 (Γ∞ = 1.15), where the flow is
found to be supercritical although M∞ is slightly below Mc, and for conditions
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p∞/pc =0.821, ρ∞/ρ =0.821 (Γ∞ = 0.335), where supercritical flow is also found in
spite of free-stream conditions below the critical value. In the first case, the estimated
critical Mach number (equal to 0.858), is very close to the free-stream value, and the
disagreement may be due to numerical inaccuracies in the evaluation of Λ. On the
other hand, the operation point corresponding to the latter condition lies quite far
outside the inversion zone, and the use of approximation (4.1) is not really justified.

Subcritical (shock-free) flow can be obtained even for operating conditions outside
the inversion zone. This leads us to conclude that beneficial effects on the aerodynamic
performance can also be obtained using non-BZT working fluids, provided they
display a sufficiently large region of very small, albeit positive, Γ values. A typical
pressure contour plot for subcritical flow cases is displayed in figure 8 along with Γ = 0
contours. Typical distributions of the Mach number, pressure coefficient, fundamental
derivative, and sound speed at the wall are presented in figure 9. When a fluid particle
from the free stream approaches the airfoil along the wall streamline, it undergoes
a compression and the local fundamental derivative grows, reaching a maximum
at the stagnation point where Γmax ≈ 1.5–2. Then, Γ suddenly drops when the flow
begins to expand accelerating over the top of the airfoil. Both pressure coefficient and
Γ variations in the neighbourhood of the stagnation point are very large: if Γ∞ is
sufficiently small, roughly Γ∞ < 1, the local fundamental derivative becomes smaller
than 1, or even negative, less than 0.01 chords downstream of the leading edge:
consequently, the speed of sound grows sharply enough to couterbalance the increase
of velocity and the flow remains subsonic. The smaller Γ , the steeper is the sound
speed growth. As high values of the sound speed are associated to low values of the
adiabatic compressibility coefficient βs = (1/ρ)(∂ρ/∂p)s = 1/(ρ a2), flows with low Γ∞
conserve a behaviour closer to the incompressible one. This can be seen better by using
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results from the small transonic disturbance theory (Cramer & Tarkenton 1992). In
fact, writing the classical transonic similarity parameter in terms of Γ∞ (Hayes 1966):

K =
1 − M2

∞
(Γ∞ε)2/3

,

with ε the airfoil thickness, and using the well-known Prandtl–Glauert similarity law:

Cp =
C inc

p

εK1/2
,

where C inc
p is the pressure coefficient for the same airfoil, albeit in incompressible

flow, we find that:

Cp =
C inc

p Γ 1/3
∞

ε2/3
√

1 − M2
∞

, (4.2)

that is, the pressure coefficient approximately grows as Γ 1/3
∞ , and a similar behaviour

can be expected for the lift. For Γ∞ = 0, equation (4.2) predicts Cp = 0. Of course, this
does not occur in practice, because of higher-order effects in the airfoil nose region (for
an estimate of the pressure coefficient variation for flows with Γ∞ = 0, Λ∞ =0 around
airfoils with a parabolic nose, see Rusak & Wang 1997). Results plotted in figure 6(a)
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Figure 10. Wall distributions of the pressure coefficient for different operating conditions in
the BZT subcritical regime.

show how, for flow conditions characterized by low Γ∞, the lift coefficient actually
follows quite well a law of the form Cl = Cl0 (1 + Γ∞)1/3, where the coefficient Cl0

has been computed from numerical results obtained for Γ∞ ≈ 0. In practice, however,
owing to nonlinear effects and strong gradients in the leading-edge region, subcritical
flow is also obtained for free-stream conditions characterized by values of Γ∞ not
really ‘small’, but O(1). In this sense, predictions from the small-disturbance theory
are conservative. Pressure coefficient distributions for different values of Γ∞ (at fixed
entropy) are shown for completeness in figure 10, which illustrates well the growth
of Cp with Γ∞.

In summary, for ‘sufficiently low’ Γ∞ (<1):
(a) the flow past the airfoil is subcritical;
(b) the drag coefficient vanishes;
(c) lift is lower than in the perfect gas case, because of the reduced flow com-

pressibility;
(d) lift tends to increase with Γ∞.
When Γ∞ is approximately in the range 1–1.5, the flow patterns change dramatically.

In this range, a significant growth in both lift and drag is observed with respect to
the previous case (see figure 6a). Nevertheless, the lift-to-drag ratio is still about one
order of magnitude greater than in the perfect gas case owing, on the one hand, to
high values obtained for the lift and, on the other, to very low wave drag. In this
regime, the flow becomes supercritical, in agreement with estimate (4.1). For operating
conditions lying on S1 to S4, the flow-field displays significant BZT effects, which
are responsible for the high aerodynamic performance. On the other hand, no BZT
effects appear for operating conditions S5; however, since the fundamental derivative
takes very small albeit positive values, the overall flow behaviour does not differ very
much from the other two cases: the flow patterns are similar to those obtained at
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operating conditions S1–S4 at slightly higher pressures. A typical view of the pressure
contours for this flow regime is presented in figure 11, whereas figure 12 shows the wall
distributions of the Mach number, pressure coefficient, fundamental derivative, and
sound speed. For this kind of flow, characterized by higher free-stream Γ , the reversed
behaviour of the sound speed associated to flow regions with Γ < 1 is delayed, and
the flow expands to supersonic conditions downstream of the leading edge. Along the
upper surface, if the free-stream values of Γ and of the entropy are sufficiently low,
Γ may become negative just downstream of the stagnation point, where the pressure
is still falling steeply, so that an expansion shock is generated a short distance from
the airfoil wall. Downstream of this shock, the pressure coefficient drops to values
much lower than in the perfect gas case. The expansion shock is followed first by
a continuous expansion and then by a gradual compression, which terminates in a
compression shock as soon as the flow exits the inversion zone. Increasing Γ∞ and/or
the free-stream entropy, the change of sign of the fundamental derivative is delayed,
or never happens (this is the case of conditions S5), and no expansion shock appears,
the flow being always recompressed through a classical shock at the rear part of
the upper surface. Along the lower surface, only a weak compression shock forms.
Both expansion and compression shocks have jump conditions in the vicinity of the
transition line: the entropy jump across such shocks (normalized with the free-stream
entropy) is O((�p)4), whereas it is O((�p)3) for perfect gas flow. Accordingly, the wave
drag is approximately one order of magnitude lower with respect to the PFG value.
In summary, flows in the second regime (called hereinafter the low-pressure transonic
BZT regime) are supercritical and characterized by high lift and very low wave drag,
because shock waves occurring in the vicinity of the transition line are much weaker
than usual. For operating conditions characterized by sufficiently low values of Γ∞
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and s∞, the aerodynamic performance is even further improved by the formation of
an expansion shock close to the leading edge, which strongly enhances the suction
peak, and consequently the lift, at the airfoil upper surface. This mechanism is similar
to that observed by Cinnella & Congedo (2005a) for BZT flows of a van der Waals
gas.

When Γ∞ is even higher, the flow becomes qualitatively similar to that of a perfect
gas since the region of flow characterized by Γ < 0 becomes smaller and finally
disappears. In this third regime (which will be called the high-pressure transonic BZT
regime), the lift coefficient drops abruptly and the drag increases, owing to stronger
entropy gradients generated across the shocks. Consequently, the lift-to-drag ratio
becomes very poor. Typical pressure contours for this kind of flow are shown in
figure 13.

4.2.2. Near-sonic and low-supersonic free stream

Since ORC turbomachinery frequently works in the high-transonic or low-super-
sonic regime, dense flows at M∞ = 0.9999 and M∞ = 1.1 (α = 1◦) past the NACA0012
airfoil are also investigated. Only isentropes S1, S4 and S5 are retained for this study.

The reference solution (not shown for brevity) for a diatomic perfect gas flow
at M∞ = 0.9999 and α = 1◦ is characterized by strong shocks attached to the airfoil
trailing edge and displays a very poor aerodynamic performance:

Cl = 8.98 × 10−2, Cd = 1.06 × 10−1, Cl/Cd = 8.47 × 10−1.
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A similarly poor performance is obtained at M∞ = 1.1, owing to the formation of a
bow-shock upstream of the airfoil nose and oblique shocks attached to the trailing
edge. In this case, the computed lift and drag coefficients, and their ratio, are:

Cl = 9.11 × 10−2, Cd = 1.06 × 10−1, Cl/Cd = 8.63 × 10−1.

Dense gas flows at M∞ = 0.9999 are always beyond critical conditions: very different
flow patterns are found according to the operation point considered. The more
complex patterns are obtained for conditions S1, where non-classical structures owing
to BZT effects appear. Conversely, only classical behaviours are found for flow
conditions S5, and the flow is qualitatively similar to that of a perfect gas with
the same free-stream conditions. An intermediate behaviour is displayed by flows at
conditions S4.

Flow patterns at M∞ = 1.1 are much simpler and do not change much with operating
conditions: they are always characterized by a bow-shock, even for negative free-
stream Γ , since the strong compression upstream of the stagnation point quickly drives
the thermodynamic state outside the (small) inversion zone; in addition, compressive
waves form at the trailing edge. These can be either classical oblique shocks, or mixed
compression waves. Mixed waves are associated with operating conditions with low
Γ∞, and progressively change into oblique shocks when this parameter increases.

Plots of the lift and drag coefficients and their ratio versus free-stream fundamental
derivatives for flows with sonic free stream are shown in figure 14. Markedly different
curves are obtained for different free-stream entropies, owing to dramatic changes in
the flow patterns. Similarly to the preceding transonic case, the lift coefficient displays
an optimum for Γ∞ = O(1). For Γ∞ less than approximately 0.8–1, the lift coefficient
is twice, or more, the PFG value. On the other hand, since the flow is supercritical



200 P. Cinnella and P. M. Congedo

0.5(a)

(b)

(c)

0.4

0.3

0.2

0.1

0.3

0.2

0.1

0

6

5

4

3

2

1

0

0
0 0.4 0.8 1.2 1.6 2.0

0 0.4 0.8 1.2 1.6 2.0

0 0.4 0.8 1.2 1.6 2.0

L
if

t c
oe

ff
ic

ie
nt

D
ra

g 
co

ef
fi

ci
en

t
L

if
t-

to
-d

ra
g

Perfect gas value

Perfect gas value

Perfect gas value

Free-stream fundamental derivative

S1
S4
S5

Figure 14. Aerodynamic coefficients versus free-stream fundamental derivative for flows at
M∞ =0.9999, α = 1◦ past a NACA0012.

at all operating conditions, the drag coefficient remains approximately of the same
order of magnitude as in PFG flow, owing to the appearance of strong discontinuities.
As a consequence, efficiency improvements due to the use of a BZT working fluid
are not as impressive as in the previous transonic case; nevertheless, the lift-to-drag
ratio is above the PFG value for the whole range of operating conditions considered
in the study, and it is more than five times greater at peak performance conditions.
At operating conditions p∞/pc = 0.863, ρc = 0.455 (Γ∞ =0.064) and p∞/pc =0.911,
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ρc = 0.526 (Γ∞ = −0.101) (isentrope S1), the drag coefficient is specially large, owing
to the occurrence of weak bow-shocks upstream of the airfoil nose in spite of subsonic
free-stream conditions (see for example the pressure coefficient and Γ = 0 contour
plot for the latter operation point on figure 15a). This non-classical effect, related
to the non-monotonic variation of the Mach number with pressure in dense gases,
has been described by Cramer & Tarkenton (1992) for flows of the fluorocarbon
PP11 over a circular arc airfoil, and by Wang & Rusak (1999) and Cinnella &
Congedo (2005a) for flows of van der Waals gases over a NACA0012 airfoil, and
will not be discussed further. At peak efficiency operating conditions p∞/pc = 0.966,
ρ/ρc = 0.653 (Γ∞ = −0.121) on isentrope S1, the flow field changes radically. When the
flow approaches the stagnation point, Γ grows beyond 1, the Mach number behaves
in a classical way and no bow-shock is formed. The flow is characterized merely by
a classical shock wave located about mid-chord at the upper surface. This shock has
jump conditions in the vicinity of the transition line, and the associated losses are
very low. Consequently, the drag coefficient reaches a minimum. Pressure coefficient
contour plots for this case are shown in figure 15(b), where Γ =0 contours are also
reported. Finally, at higher operating pressures/entropies, the flow returns to similar
to that of a PFG.

Figure 16 shows the lift and drag coefficients and the lift-to-drag ratio for supersonic
flow cases: they increase with operating pressure for flow conditions such that Λ∞ < 0,
and reverse their behaviour when Λ∞ > 0. The lift and lift-to-drag ratio are greater
than in the reference PFG case for almost all of the investigated operation points
albeit the drag exerted on the airfoil is somewhat higher. For these flow conditions,
optimal aerodynamic performance is no longer obtained for Γ∞ =O(1), but instead
for Γ∞ ≈ 0. Typical pressure coefficient contours at M∞ =1.1 are shown in figure 17.

4.3. Viscous behaviour

4.3.1. Laminar flow over a flat plate

In order to investigate the influence of DG effects on the development of a laminar
boundary layer, the classical problem of laminar flow over a flat plate with no pressure
gradient is first considered. The incoming flow has M∞ =0.2 and Re = 500, based on
inlet density and velocity, and unit plate length and the plate wall is adiabatic.
Results are computed in the rectangular domain [0, 14] × [0, 5] (the plate leading
and trailing edges being located in (1, 0) and (13, 0), respectively), discretized by a
Cartesian grid of 140 × 50 cells, stretched in the direction normal to the wall, with
first-cell height about 10−2. The numerical results are compared to Blasius’ solution
for incompressible boundary layers. Figure 18(a) compares skin friction distributions
obtained for a perfect gas and for a dense gas at operating conditions close to the
transition line (p∞/pc = 0.976, ρ∞/ρc = 0.571). In both cases, numerical results agree
with theory, compressibility and dense gas effects being negligible. In order to explore
dense gas effects, the flow is also computed at M∞ = 0.9 and M∞ = 2.0. The fluid
viscosity has been rescaled in order to conserve both Mach and Reynolds numbers.
At M∞ = 0.9, results for both operating conditions are still close to Blasius’ solution,
the coupling between the viscous and the thermal boundary layer remaining weak. At
M∞ = 2, friction heating becomes more significant, leading to a growth of boundary-
layer thickness for the perfect gas, in agreement with theory and results available in
the literature (see for example Schlichting & Gersten 2003); conversely, for the dense
gas, the higher specific heat limits such growth (the Eckert number for DG flows under
investigation is one order of magnitude lower than in PFG flows) and the velocity
profile remains close to the incompressible one (figure 18b). This agrees reasonably
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Figure 15. Pressure coefficient contours for flow conditions (a) p∞/pc = 0.863, ρ∞/ρc =0.455,
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Figure 16. Aerodynamic coefficients versus free-stream fundamental derivative for flows at
M∞ = 1.1, α = 1◦ past a NACA0012.

with results previously reported by Kluwick (2004) for laminar zero-pressure-gradient
boundary layers of dense gases with moderately large free-stream Mach numbers.

4.3.2. Laminar transonic flows past an airfoil

The next series of results concerns the symmetric (zero incidence) laminar flow past
the NACA0012 airfoil, at M∞ = 0.85 and Re =1000, Re being the Reynolds number
based on the free-stream conditions and the airfoil chord. The airfoil wall is adiabatic.
Computations are performed using a half-C grid made by 134 × 68 cells, with the
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Figure 17. Pressure coefficient contours for flow conditions p∞/pc = 0.911, ρ∞/ρc =0.526,
Γ∞ = −0.101, M∞ = 1.1, α = 1◦.

mean height of the first cell closest to the wall equal to about 0.0001 chords, and
outer boundary located approximately 20 chords away from the airfoil. Computations
performed on a finer grid of 268 × 136 cells show that the GCI based on the drag
coefficient is less than 3 %.

Mach number contours for the flow of a perfect gas are depicted in figure 19(a):
the flow over-expands to supersonic conditions, then recompresses through a shock
wave approximately 0.8 chords downstream of the leading edge; the boundary layer
separates at about 95 % of the chord. The computed drag coefficient is equal to
0.1848.

Let us compare this solution with that obtained for PP10 flowing at the same
conditions of Mach and Reynolds number and free-stream thermodynamic conditions
p∞/pc =1.01, ρ∞/ρc = 0.676, Γ∞ = 0.168. With the preceding choice of operating
conditions, the flow is subcritical. Except in the stagnation-point region, Mach-
number variations through the flow are very small and the Mach number remains
less than one and close to the free-stream value almost everywhere in the flow (see
Mach contours in figure 19b).

Figure 20 shows the pressure and the skin friction coefficients at the wall for
the two cases. The dense gas flow remains attached. When the flow expands from
stagnation conditions, the boundary layer begins to develop. For a perfect gas, the
flow accelerates to supersonic conditions, which promotes boundary-layer growth.
On the contrary, for the dense gas, the flow remains subsonic during the whole
expansion; moreover, the boundary layer is subject to a much stronger favourable
pressure gradient. As a consequence, boundary-layer growth is slower. Accordingly,
the skin friction coefficient in the leading-edge region takes higher values for the dense
gas with respect to the perfect gas. When the flow begins to recompress, skin friction
drops in both cases. Nevertheless, it remains slightly higher for the dense gas, and no
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Figure 18. Laminar flow over a flat plate (Re= 500). (a) Skin friction distributions for
perfect and dense gas flows at M∞ = 0.2. (b) Velocity profiles at different Mach numbers.

separation point appears. The computed drag coefficient for DG flow, Cd = 0.1652, is
about 10 % lower than the PFG value.

A supersonic flow (M∞ = 2, Re = 1000) over the same airfoil is also considered. In
this case, a bow shock forms ahead of the airfoil nose in both perfect and dense
gas flow (thermodynamic conditions p∞/pc = 1.01, ρ∞/ρc =0.676). This time, the
boundary layer experiences a supersonic outer flow both for the perfect and the dense
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p∞/pc = 1.01, ρ∞/ρc =0.676.

gas case. Nevertheless, friction heating is much lower in the second case: this leads to a
thinner boundary layer and to lower skin friction (see velocity profiles and skin friction
distributions in figure 21b, c; the pressure coefficient is also shown for completeness).
Here again, the computed drag coefficient for the dense gas, Cd = 0.1929, is much
lower (less 16 %) with respect to the perfect gas (Cd = 0.2309).

4.3.3. Turbulent flow behaviour

The last series of results is intended to provide for the first time a data set about
the aerodynamic performance of dense gases flowing at realistic Reynolds-number
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conditions. Since typical Reynolds numbers for flows past turbine blades are in the
range 105–106, turbulence effects will be necessarily taken into account. Given the
very high flow Reynolds numbers, direct simulations are unfortunately not viable.
On the other hand, at this stage, the main objective is to collect information, even
if approximate, about how the presence of a thin turbulent boundary layer affects
the aerodynamic performance of the system in comparison with results obtained for
the previously investigated inviscid case. To this purpose, turbulent DG flows over
a flat plate and around an airfoil are investigated, based on the following working
hypotheses.

(a) Flow conditions are sufficiently far from the thermodynamic critical point that
DG effects, such as dramatic variations of the fluid specific heat and compressibility,
can be neglected; in these conditions, density fluctuations are not as huge as in
near-critical conditions and subsequently the turbulence structure is not affected
significantly.

(b) At least for equilibrium boundary layers, the mean flow behaviour can
be predicted adequately using the compressible Reynolds-averaged Navier–Stokes
equations (RANS) completed by an eddy viscosity turbulence model; similarly, the
turbulent heat transfer can be modelled though a ‘turbulent Fourier law’, as usual
for PFG flows, where the turbulent thermal conductivity is computed in a classical
way by introducing a turbulent Prandtl number, assumed to be roughly constant and
O(1) throughout the flow.

Hypothesis (a) is justified because the flows of interest for this study because
do not evolve in the immediate neighbourhood of the critical point; and in fact,
if inviscid analyses and computations show an uncommmon variation of the fluid
speed of sound (and hence compressibility) with pressure perturbations, nevertheless
the magnitude of these variations is approximately of the order of those occurring
in perfect gases. Moreover, peculiar DG phenomena related to flow heating or
cooling are excluded from consideration, since the airfoil wall is supposed to be
adiabatic. On the contrary, hypothesis (b) should be considered with some caution.
On the one hand, if hypothesis (a) is verified, it seems reasonable to apply to
compressible DG flows turbulence models initially developed for incompressible
flows of perfect gases and then extended in the common practice to compressible
PFG flows; on the other hand, more or less strong pressure gradients and shock
waves characterizing the outer inviscid flow are likely to affect the boundary layer,
which can no longer be considered an ‘equilibrium’ one; this is true for PFG flows as
well as for DG flows. Thus, aerodynamic performance predictions will necessarily be
affected by deficiencies inherent with the chosen turbulence model. Nevertheless, since
investigations are intended to provide trends of behaviour more than accurate values
of the computed aerodynamic coefficients, use of hypothesis (b) represents a means
of obtaining preliminary information about realistic DG flows with a reasonable
computational expense. Specifically, the present results have been obtained using
the simple algebraic model of Baldwin & Lomax (1978), whose deficiencies in non-
equilibrium boundary layer are well known (see for example Wilcox 1998, for a
wider discussion): for example, flow features such as the location of shock waves
and the length of separation bubbles will not be predicted accurately. Nevertheless,
it is expected that the model will be able to predict roughly the main trends and
qualitative features of the flow field.

Before undertaking the study of complex transonic turbulent flows past an airfoil,
turbulent flows over an adiabatic flat plate with zero pressure gradient are considered.
For this kind of (equilibrium) boundary layers, the Baldwin–Lomax turbulence model
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Figure 22. Skin friction distribution at the wall and velocity profiles at Rex = 1.03 × 107 for
turbulent flows over a flat plate with zero pressure gradient (Re/L = 660 000).

is expected to perform fairly well, which allows us to investigate the basic properties of
turbulent DG boundary layers with a higher degree of confidence. Cartesian meshes
with 110 cells in the direction tangent to the plate wall and 80 cells in the normal
one are used for the study. The grid cells are clustered in the streamwise direction to
resolve flow gradients near the leading edge of the plate and normal to the plate to
resolve the boundary layer. A series of grids was generated, having y+ values of 1, 2
and 5 at the first point off the wall. Skin friction distributions on the two grids with
finer spacing close to the wall are almost identical. In the following, we discuss results
obtained on the finest grid. Figure 22(a) shows skin friction distributions for PFG
and DG flows at inlet Mach number equal to 0.2 and 2, respectively. The Reynolds
number for unit plate length is 6.6×105. For a perfect gas, the skin friction coefficient
follows the classical scaling law for turbulent compressible boundary layers, i.e.:

Cf

Cfinc

∝
(

ρw

ρ∞

)1/2

,
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where the subscript inc refers to the skin friction in incompressible flow, and the
subscript w denotes wall quantities. This scaling law can be formulated in terms of the
free-stream Mach number and of the recovery factor r = (Tw −T∞)/(U 2

∞/2 cp) = r(Pr):

Cf

Cfinc

=

(
1 + r

γ − 1

4
M2

∞

)−1

.

A detailed discussion can be found in Schlichting & Gersten (2003). According to this
law, we expect Cf (M∞ = 2)/Cf (M∞ = 0.2) ≈ 0.74; present PFG computations yield a
ratio of 0.77. For the dense gas, the scaling law breaks down, and the skin friction
distributions at M∞ = 0.2 and M∞ = 2 are almost superposed to each other and to
PFG results at M∞ = 0.2. This is confirmed by profiles of the adimensional velocity
u+ := u/uτ (with u the streamwise velocity component and uτ =

√
τw/ρw) versus the

viscous-layer coordinate y+, shown in figure 22(b). Both skin friction distributions
and velocity profiles at M∞ = 0.2 are in good agreement with experimental data of
Wieghardt & Tillman (1952).

In order to provide theoretical support for the dense gas results, let us consider
the boundary-layer equations in the viscous sublayer close to the wall and in the
overlap layer between the viscous wall layer and the fully turbulent outer flow. In
both sublayers, the inertial and pressure terms as well as the convective change of
the total energy can be neglected, at least for attached boundary layers. We follow
hereinafter a similar reasoning to Schlichting & Gersten (2003, pp. 619–620). In the
viscous layer, turbulent stresses and heat transport become vanishingly small and the
mean velocity and temperature distributions satisfy:

µ
du

dy
= τw, −κ

dT

dy
− u

(
µ

du

dy

)
= qw. (4.3)

Adimensionalizing (4.3) with respect to the reference quantities ρw , τw , µw and Tw ,
yields:

du+

dy+
=

µw

µ
,

dT +

dy+
= −Prw

κw

κ
(Bq + 2Ecτu

+), (4.4)

where T + = T/Tw , and Bq = qw/(ρw uτ cp Tw) is the non-dimensional wall heat flux,
Ecτ = u2

τ /(2cpTw) is a friction Eckert number and Prw is the Prandtl number at the
wall, O(1) both for perfect gases and for dense gases far from the immediate vicinity
of the critical point. For flows of dense gases, characterized by large specific heats,
the friction Eckert number tends to zero. Moreover, Bq =0 for adiabatic walls. As
a consequence, for flows of dense gases, from (4.4b), we find that T + = const across
the viscous sublayer. Therefore, µ and κ are also constant, and integration of the
differential equation for u+ simply gives the universal linear law:

u+ = y+.

In the overlap layer, i.e. the outer part of the wall layer in which the effects of
molecular viscosity and thermal conductivity can already be neglected, the following
relationships hold (see Schlichting & Gersten 2003, p. 620):

τt = τw, qt = qw + uτt , (4.5)

where τt is the turbulent shear stress and qt the turbulent heat flux. These quantities
are currently modelled by introducing an eddy viscosity µt and an eddy thermal
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conductivity κt :

τt = µt

du

dy
, qt = −κt

dT

dy
.

Injecting these expressions into (4.5) and combining them both yields the following
differential equation:

dT

du
= −Prt

qw + uτw

cpτw

, (4.6)

where Prt = cpµt/κt is the turbulent Prandtl number, supposed constant and O(1)
throughout the flow. The preceding equation can also be written in adimensional
form:

dT +

du+
= −Prt (Bq + 2Ecτu

+), (4.7)

which, for adiabatic flows with vanishingly small Eckert number, gives again:

T + ≈ const

across the overlap layer. On the other hand, classical similarity considerations for the
velocity gradient deliver:

du

dy
=

√
τw

ρ

1

k y
=

uτ

k y

√
ρw

ρ
, (4.8)

with k the von Kármán constant. Since for flows with Ecτ → 0, both temperature
and pressure remain constant across the overlap layer, this must also be true for
the density, and the term inside the square root is substantially equal to 1. As a
consequence, integration of (4.8) yields:

u+ =
u

uτ

=
1

k
ln y+ + C2, (4.9)

just as in incompressible flows, and in agreement with the preceding numerical
results. For incompressible boundary layers, experiments deliver k = 0.41 and C2 = 5.
Theoretical curves for the velocity variation inside the viscous and the overlap layers
are reported in figure 22(b) for reference.

We now turn to transonic flows over an airfoil at M∞ = 0.85, α =1◦, and Re= 9×106.
A parametric study is performed for a series of operation points lying on isentrope S4
(see figure 4). Solutions are computed using C-grids of 256 × 64 and 256 × 128 cells,
as discussed in § 3. Assuming a (conservative) value of the convergence order equal
to 1.8 for the scheme extended to viscous flows, the computed GCI turns out to be
about 0.5 % on the finer grid (retained for all computations presented hereinafter).

The reference solution for a diatomic perfect gas flowing at the same conditions
is represented in figure 23(a). The flow is characterized by strong shock waves
at both airfoil surfaces, which interact with the turbulent boundary layer. At the
upper surface, an extended post-shock separation bubble appears. The aerodynamic
coefficients are Cd = 5.28 × 10−2 and Cl = −0.012, the negative sign being due to
significant upstream displacement of the upper shock owing to flow separation. Wall
distributions of the pressure coefficient for viscous and inviscid flow are displayed
in figure 23(b). The computed values of the aerodynamic coefficients for PP10 at
various operating conditions are reported in figure 25. If the free-stream state is taken
close enough to the inversion zone, the flow remains subsonic: no shock waves are
formed and flow separation is suppressed. In this regime (subcritical BZT regime),
wave drag disappears and the drag coefficient drops from its PFG value, whereas
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Figure 23. Turbulent flow over the NACA0012 airfoil, M∞ = 0.85, α = 1◦, Re= 9 × 106.
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conditions.

the lift coefficient is considerably higher. For operation points at higher free-stream
Γ , in the regime previously called ‘low-pressure transonic BZT’, a supersonic region
forms. This enhances lift, whereas wave drag remains low with respect to the perfect
gas case. Two mechanisms contribute to this effect: the first is of an inviscid nature,
and is related to shock waves having jump conditions in the neighbourhood of the
transition line, and therefore being less dissipative than normal; on the other hand,
such weak shock waves do not cause flow separation, so that pressure drag is further
reduced. Further increasing the free-stream pressure (high-pressure transonic BZT
regime), shock waves become stronger and the flow finally separates because of
shock/boundary-layer interactions. Accordingly, both the lift coefficient and the lift-
to-drag ratio drop down. Figure 23(c, e, g) shows typical pressure coefficient contours
and flow streamlines in the three regimes; wall distributions of the pressure coefficient
for inviscid and viscous flow are shown in figure 23(d, f, h). Figure 24 compares
skin friction distributions for a perfect gas and for PP10 at different operating
conditions. Extended separated regions characterize the perfect gas flow at both
airfoil surfaces, whereas dense gas flows remain attached insofar as the operating
conditions are sufficiently close to the inversion zone. In the subcritical case, for
flows at high Reynolds number, the pressure distribution remains essentially similar
to the inviscid one, with just some smoothing of the suction peaks at both surfaces
downstream of the leading edge. The lift coefficient is slightly below the inviscid
value, whereas the lift-to-drag ratio now takes, of course, finite, although high values.
In the low-pressure transonic BZT regime, the differences become more significant.
Namely, the suction peak at the airfoil upper surface is dramatically smoothed out
because of viscous effects, and the location of the upper shock wave moves upstream
because of interactions with the boundary layer: nevertheless, the flow remains
attached. Also note that in this regime, the skin friction (see figure 24) significantly
grows with chordwise distance up to x/c ≈ 0.25, owing to the strong favourable
pressure gradient acting on the boundary layer. Finally, in the third regime, strong
shock/boundary-layer interactions lead to flow separation at both airfoil surfaces:
nonetheless, separation is delayed and separated regions are smaller than in perfect
gas flow. In summary, results suggest that DG effects mainly affect the inviscid
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Figure 25. Aerodynamic coefficients versus free-stream fundamental derivative for turbulent
flows at M∞ = 0.85, α = 1◦ and Re= 9 × 106 past a NACA0012.

flow behaviour, whereas the viscous behaviour is influenced indirectly according to
the distributions of the external pressure and Mach number characterizing flows
at different operating conditions. Concerning system efficiency, the use of dense
gases working at proper operating conditions has a definitely beneficial effect, not
only because of significant reductions in wave drag, but also because losses due to
shock/boundary-layer interaction are completely suppressed or strongly attenuated.



Inviscid and viscous aerodynamics of dense gases 215

5. Conclusions
In the present work, a careful numerical investigation of a number of inviscid,

viscous laminar and viscous turbulent flows of a dense gas over an airfoil at transonic
speeds has been undertaken. The numerical results provide a complete picture of
the complex aerodynamics of an airfoil immersed in a dense gas stream. Inviscid
mechanisms include non-monotonic variation of the Mach number with density,
leading to increases in the critical Mach number and in a delay of the transonic
drag rise, and the appearance of weak non-classical waves with jump conditions in
the vicinity of the transition line, which may lead to significant improvements in
the airfoil aerodynamic performance over a classical working fluid. For flows with
high-subsonic free-stream, analyses of the variation of aerodynamic coefficients with
free-stream thermodynamic conditions allow us to identify three flow regimes in the
range of thermodynamic conditions swept in the present calculations, representative
of the operating range of an organic Rankine cycle turbine. While the drag always
increases with free-stream pressure and fundamental derivative Γ , the lift coefficient
displays an optimum in the second regime, referred to as a low-pressure transonic
BZT regime in the present study, and then drops dramatically. The lift-to-drag ratio is
poor for high Γ∞ flows, but tends to infinity as the free-stream value of Γ approaches
unity from the high-pressure side of the inversion zone. The best compromise solution
between high lift and low drag is obtained in the second regime, for Γ∞ approximately
in the range 1–1.3: in these conditions, higher lift and significantly reduced wave drag
compared to perfect gas results is observed.

For sonic and (all the more so) low supersonic conditions, efficiency gains over
classical working fluids are less impressive with respect to the previous case. However,
for all inviscid computations performed in this study, the best trade-off between high
lift and aerodynamic efficiency is obtained for operation points relatively far from
the inversion zone, that is, for flows with Γ∞ of the order of unity. Such results are
important for practical applications; in particular, it seems possible to overcome one
of the major difficulties for the development of BZT organic Rankine cycles, namely,
the necessity of operating the turbine inside the inversion zone. Present results indicate
that, in practice, significant performance enhancement can be achieved by operating
the system within the thermodynamic region where Γ < 1. In order to obtain the
maximum benefit from the use of BZT working fluids, it is nevertheless important
to operate the system at transonic speeds, since the aerodynamic performance drops
quickly as the free-stream Mach number increases.

Numerical studies of the aerodynamic behaviour of viscous dense gas flows past an
airfoil have also been provided for the first time, to our knowledge. For laminar flows,
dense gas effects in the outer inviscid flow region delay boundary-layer separation.
Moreover, at sufficiently large Mach numbers, further benefits derive from reduced
friction heating in flows of gases with large specific heats, such as BZT gases.
Theoretical as well as numerical results for an adiabatic flat plate presented here
for the first time show that reduced sensitivity to friction heating also characterizes
turbulent boundary-layer flows of dense gases.

Beneficial effects deriving from the use of a dense working fluid are also observed
when the aerodynamic performance of viscous turbulent airfoil flows at large Reynolds
number and transonic speeds is considered. The non-classical variation of the Mach
number with density favourably affects the boundary-layer development, contributes
to reducing friction drag and to avoiding boundary-layer separation. Specifically,
post-shock separations due to shock/boundary-layer interaction are suppressed or
greatly reduced, which ensures satisfactory lift and aerodynamic efficiency at flow
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conditions where the aerodynamic performance of perfect gas flows suffers from huge
post-shock separation.

As a final consideration, note that present results have been obtained for a specific
airfoil shape, and that efficiency gains are only due to the peculiar properties of the
working fluid; the use of modern multi-point optimization techniques could allow the
selection of airfoil shapes with even higher aerodynamic performances over a larger
operation range. For example, the study presented in Congedo, Corre & Cinnella
(2007) shows that shape optimization allows simultaneous increase the lift in the
subcritical BZT regime and minimization of the drag for a given level of lift in the
supercritical regimes, futher delaying the transonic drag rise and enlarging the system
operation range.
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