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Abstract

Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage
where they can provide substantial insight into engineering processes involving #uid #ows, and can be fruitfully utilized
to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering
demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety
while concurrently decreasing cost. To date, the majority of the e!ort in design optimization of #uid dynamics has relied
on gradient-based search algorithms. Global optimization methods can utilize the information collected from various
sources and by di!erent tools. These methods o!er multi-criterion optimization, handle the existence of multiple design
points and trade-o!s via insight into the entire design space, can easily perform tasks in parallel, and are often e!ective in
"ltering the noise intrinsic to numerical and experimental data. However, a successful application of the global
optimization method needs to address issues related to data requirements with an increase in the number of design
variables, and methods for predicting the model performance. In this article, we review recent progress made in
establishing suitable global optimization techniques employing neural-network- and polynomial-based response surface
methodologies. Issues addressed include techniques for construction of the response surface, design of experiment
techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and
assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynam-
ics, turbulent di!user #ows, gas}gas injectors, and supersonic turbines are employed to help demonstrate the issues
involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design practices
and the need for future research are identi"ed. � 2001 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction and scope

Modern computational and experimental #uid dy-
namics tools have matured to a stage where they can
provide substantial insight into engineering processes
involving #uid #ows. This can help analyze the #uid
physics as well as improve the design of practical devices.
In particular, rapid and continuous development in the
technology of #uid machinery demands that new design
concepts be regularly proposed to meet goals for in-
creased performance, robustness and safety while concur-
rently decreasing cost.
Most aerospace system and component designs are

conducted as open-loop, feed-forward processes. For
example, for rocket engines, currently, one design iter-
ation for a given set of engine balance conditions takes
up to several weeks with the blade geometry design
sub-iteration phase taking several days each. The quest
for an acceptable blade surface velocity distribution is
accomplished with many ad hoc rules in what is essen-
tially a manual trial-and-error process. A systematic ap-
proach capable of identifying optimum design and
comparing possible trade-o!s can signi"cantly improve
the productivity and shorten the design cycle.
Objective and e$cient evaluation of advanced designs

can be facilitated by development and implementation of
systematic optimization methods. To date, the majority
of the e!ort in design optimization of #uid dynamics has
relied on gradient-based search algorithms [1}3]. These
methods work iteratively through a sequence of local
sub-problems, which approximate objective and con-
straint functions for a sub-region of the design space, e.g.,
by linearization using computed sensitivities. Major chal-
lenges for these optimization approaches are the robust
and speedy computation of sensitivity coe$cients [4,5].
Local optimization methods based on derivatives are

also commonly used in engineering system design optim-
ization problems [6]. On the other hand, global optim-

ization techniques also have been commonly used for
engineering design optimization problems especially for
multidisciplinary ones. In its current practice, the global
design optimization method involves three primary steps
(Fig. 1): (a) generation of individual data sets within the
design space; (b) interpolation among these data sets via
some continuous functional representation; and (c) op-
timization of the objective function via a certain search
strategy. Yet despite recent research advances, formal
design optimization has yet to see practical use in real
design scenarios. The reasons are four-fold:

(1) Engineering design, even within a single discipline,
typically involves many parameters (and hence
many degrees of freedom) rather than the handful
demonstrated in most research papers. This renders
unrestricted `brute forcea search schemes too re-
source-intensive.

(2) The objective functions are likely to be multi-modal
or discontinuous over the broad design space, ren-
dering gradient search methods insu$cient by them-
selves. Furthermore, the usual practice to combine
multiple goals into a single quantitative objective
function is too restrictive. Qualitative goals are often
required to correctly characterize a problem (e.g.,
maximizing a turbine blade's aerodynamic e$ciency
with a smooth, monotonic surface velocity distribu-
tion, while spreading heat load as uniformly as pos-
sible). Furthermore, these goals may have arisen
from diverse disciplines and are usually treated se-
quentially by di!erent groups.

(3) It is inadequate to think of the "nal product of
a design process as a mere geometry. A `designa
really encompasses a whole set of operating, manu-
facturing and project level decisions.

(4) As the interaction between numerical simulation
and physical test data becomes stronger, the future
engineering knowledge base is likely to consist of all
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Fig. 1. Schematic of the procedure for global design optimization.

sorts of heterogeneous data sources including test
data, experimental data, past product experiences,
semi-empirical modeling, and high "delity simula-
tions. Some data are anecdotal; others cover only
small `patchesa of the physical domain but are still
useful for `reality checksa. A uni"ed framework
needs to be constructed for representation, captur-
ing and mining of all these data types so the re-
sponse functions can be continuously improved.

With the above observations, global optimization
methods are attractive because they have several advant-
ages when compared to local gradient-based methods [7]:

(1) They do not require calculation of the local sensitiv-
ity of each design variable,

(2) They can utilize the information collected from vari-
ous sources and by di!erent tools,

(3) They o!er multi-criterion optimization,
(4) They can handle the existence of multiple design

points and trade-o!s,

(5) They easily perform tasks in parallel, and
(6) They can often e!ectively "lter the noise intrinsic to

numerical and experimental data.

Among global approximation techniques, the response
surface methodology (RSM) has gained the most attention
since it consists of a simple way of connecting codes from
various disciplines [6]. The RSM is a collection of math-
ematical and statistical tools used in investigative experi-
mentation by scientists and engineers [8]. The RSM
approach replaces the objective and constraint functions
by simple functions, often polynomials, which are "tted
to the carefully selected points. Since RSM can utilize
information collected from various sources and by di!er-
ent tools, it can also o!er multi-criterion optimization,
handle the existence of multiple design selections and
related trade-o!s, and address the noises intrinsic to
numerical and experimental data. A main advantage of
RSM is its robustness and intelligibility. Robustness and
the smoothness of approximations in noisy environments
are achieved by performing extra analyses, compared to
the number of regression coe$cients. This is a distinct
advantage over derivative-based search algorithms,
which may encounter di$culties in the presence of spuri-
ous local optima [9].

1.1. Scope

In this article, we "rst review the basic concepts and
methodologies, then assess the current status, via case
studies, of the global optimization techniques. Particular
attention is paid to two di!erent techniques used to
generate information to construct the response surface
(RS) namely; neural-network (NN)- and polynomial-
based RSM. NNs are models that contain many simple
linear and non-linear elements operating in parallel and
connected in patterns [10]. Polynomial-based RSM
models the system with polynomials of assumed order
and unknown coe$cients. The solution for the set of
coe$cients that best "ts the training data is a linear
least-squares problem, making it trivial compared to the
solution for NN, which often involves a non-linear train-
ing process. In this article, two neural network types,
namely, back-propagation NN (BPNN) and radial basis
NN (RBNN), are investigated.
The BPNN consists of multi-layer networks with dif-

ferentiable activation function. The BPNN is the most
employed NN type in the optimization literature
[10}33].
The RBNN is a more recently developed multi-layer

network, based on a linear regression process, which
makes the mathematics simpler and computational costs
lower [34}36]. The RBNN tends to have many more
neurons than BPNN but can be con"gured faster for the
same training data. The basic reason for this is that
back-propagation neurons can have outputs over a large
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Table 1
Comparison of NN and polynomial-based response surface (RS) techniques

NN-based RSM Polynomial-based
RSM

Comments

Computational e!ort
and cost

Disadvantage Advantage Finding the weights associated with the neurons is a non-linear
regression process for all of the NN types other than RBNN.
Whereas, "nding the polynomial coe$cients requires solution of
a linear set of equations
The cost increases if the regression process is non-linear which
makes NNs other than RBNN more expensive than
polynomials

Noise Disadvantage Advantage Ability of "ltering noise from experimental data is possible with
polynomial-based RSM. However, if the number of neurons
used to design the NN is not the same as the data, then, by
de"nition, "ltering is also possible for NN-based RSM

Handling complex
functions

Advantage Disadvantage NNs are more suitable for multi-dimensional interpolation of
data that lack structure since they are much more #exible in
functional form especially when dealing with design in the
context of unsteady #ows, partial and/or complete data sets

region of the input space, while radial-basis neurons
respond to relatively small regions of the input space.
Thus, larger input spaces require more radial-basis neur-
ons for training. More detailed evaluation of RBNN and
BPNN will be given in the following sections.
Polynomial-based response surfaces and linear regres-

sion techniques were originally developed to "lter noise
from experimental data. Sophisticated statistical tools
are available for these purposes. One class of tools, design
of experiments, is often used to select points for training
that minimize the e!ect of noise on the "tted polynomial.
A second set of tools, analysis of variance, is routinely
used to identify polynomial coe$cients that are not well
characterized by the data, and are therefore overly sensi-
tive to noise. Analysis of variance helps to avoid over"t-
ting of the data, which otherwise would result in the
mapping of the noise. On the other hand, neural net-
works are much more #exible in functional form, which
means that they can be better suited to "t complex
functions that are not easily approximated by poly-
nomials. For example, when the physical system changes
from one regime to another due to the presence of critical
parameters, NN performs better than RSM. This advant-
age is particularly useful when there is very little numer-
ical noise, and it is possible to obtain very accurate
approximations to the underlying function [37]. The
relative strengths and weaknesses of NN- and poly-
nomial-based RSM are summarized in Table 1.
Table 2 summarizes the existing literature evaluating

the relative performance of NN- and polynomial-based
RSM approximation. For example, Carpenter and
Barthelemy [11] used NN- and polynomial-based
approximations to develop RS for several test problems.
It is demonstrated that two methods perform

comparably based on the number of undetermined
parameters. Rai and Madavan [27] investigated the
feasibility of applying neural networks to the design of
turbomachinery airfoils. The NN approach is used for
both function approximation and prediction. It is found
that NNs are quite e$cient in both tasks. An aerodynam-
ic design procedure that employs a strategy called para-
meter-based partitioning incorporating the advantages
of both traditional RSM and NNs to create a
composite response surface is described by Rai and
Madavan [28,29]. It is shown that such method can
handle design problems with higher-dimensional prob-
lems than would be possible using NN alone. Nikolaidis
et al. [25] used NNs and response surface polynomials to
predict the performance characteristics of automotive
joints using geometrical parameters. It is shown that
both methods performed comparably. NN-based aero-
dynamic design procedure is applied to the redesign of
a transonic turbine stage to improve its unsteady aerody-
namic performance by Madavan et al. [22]. It is illus-
trated that using an optimization procedure combining
the advantages of NN- and polynomial-based RSM can
be advantageous. Papila et al. [37] investigated the rela-
tive merits of polynomial-based RSM, RBNN and
BPNN in handling di!erent data characteristics. It is
demonstrated that using RBNN rather than BPNN has
certain advantages as data size increases. Also, it is
shown that RBNN gives more accurate results than
polynomial-basedRSM as the nature of the experimental
data becomes complex. Shyy et al. [38] have employed
neural network techniques and polynomial-based RSM
to obtain improved optimization tools. In Rai and
Madavan [29], a composite NN and polynomial-based
RS methodology is applied for a transonic turbine and it

62 W. Shyy et al. / Progress in Aerospace Sciences 37 (2001) 59}118



Table 2
Literature review on NN and polynomial-based RS techniques comparison

Authors No. of data No. of input No. of output NN-type
(2-layer)

Activation
function

No. of neurons Polynomial
degree

Carpenter and
Barthelemy [11]

36 2 1 BPNN Sigmoid 1, 2, 4 1}4

961 2 1 3, 5, 7 2}5
81 4 1 1, 2, 3 1}2
300 15 1 2, 4, 6, 8, 10 1}2

1}2
Madavan et al. [22] * 13 1 BPNN

(3-layer)
Sigmoid 15 & 7 1}2

Nikolaidis et al. [25] 400 50 1 BPNN Sigmoid � of NN is
insensitive to no.
of neurons

2

Papila et al. [37] 9 2 1 RBNN
& BPNN

Radbas
& Sigmoid

8, 9 4 2}5

15 2 1 12, 15 4 2}5
25 2 1 20, 25 4 2}5
255 2 1 253, 255 * 2}4
765 2 1 765 * *

Rai and Madavan [28] 3 & 5 1 1 BPNN
(3-layer)

Sigmoid 1 & 2 1}2

27 3 1 7 & 3 1}2
* 15 1 * *

Shyy et al. [38] 45 3 2 RBNN Radbas 42 and 45 2}3
Vaidyanathan et al. [39] 45 3 2 RBNN Radbas 42 and 45 2}3

76 6 2

is demonstrated that a systematic application of such
method can enhance the e!ectiveness of the overall op-
timization process. In the study by Vaidyanathan et al.
[39], the application of NN- and polynomial-basedRSM
in preliminary design of two rocket engine components,
gas}gas injector and supersonic turbine, with modest
amounts of data are discussed and it is demonstrated that
NN- and polynomial-based approximations can perform
comparably for modest data sizes.
In this article, we focus on the recent e!orts in develop-

ing and improving appropriate techniques for design
optimization of airfoils and rocket engine components
capable of being used in applications like reusable launch
vehicles. Some of the physical components used as case
studies are low Reynolds number aerodynamics, 2-D
turbulent planar di!user, the injector and the supersonic
turbine for rocket propulsion.
Speci"cally, the following issues are discussed:

(1) The capability of the NN- and polynomial-based
RSM for handling data with variable sizes and
noise.

(2) The selection of NN con"guration that is suitable
for given design problems.

(3) The e!ect of the design parameters on the perfor-
mance of the NN.

(4) The e!ect of distribution of the data over the design
space in the construction of the global model.

(5) The merit of employing a multi-level optimization
strategy to perform the task adaptively and e$ciently.

(6) Possible trade-o!s between capacity design objec-
tives and their impact on design selections.

2. Review of methodologies

In response-surface-based global optimization, there
are several key technical elements:

(1) Response surface with polynomials and statistical
analysis.

(2) NNs with BPNN and RBNN.
(3) Design of experiments with face centered composite

design (FCCD), orthogonal arrays (OA) and D-opti-
mal designs.

(4) Optimization procedure including the multilevel ap-
proach.

In the following, we review these elements in sequence.
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2.1. Response surface method (RSM)

The approach of RSM is to perform a series of experi-
ments, based on numerical analyses or physical experi-
ments, for a prescribed set of design points, and to
construct a global approximation of the measured
quantity over the design space (Fig. 1). The polynomial-
based RSM, used in all the case studies referred to,
construct polynomials of assumed order and unknown
coe$cients based on regression analysis. The number of
coe$cients to be evaluated depends on the order of
polynomial and the number of design parameters in-
volved. For instance, a second-order polynomial ofN de-
sign variables has (N#1)(N#2)/(2!) coe$cients.
A cubic model has (N#1)(N#2)(N#3)/(3!) coe$-
cients. In this article, the polynomial approximations are
constructed by standard least-squares regression using
JMP [40], a statistical analysis software that provides
a variety of statistical analysis functions in an interactive
format.
In the practical application of RSM, it is necessary to

develop an approximate model for the true response
surface. The second-order (quadratic) response surface
model is the most frequently applied one because it is
the most economic non-linear model. Such a model for
response variable y with k regressors can be written as

y"�
�
#

�
�
���

�
�
x
�
#

�
�
���

�
��
x�
�
#

���
�
���

�
�
���

�
��
x
�
x
�
#�. (1)

The above equation can be written in matrix notation as
follows:

y"X�#�, (2)

where y is the (n�1) vector of observations,X the (n�n
�
)

matrix of the levels of the independent variables, � the
(n

�
�1) vector of the regression coe$cients, � the (n�1)

vector of random error, n the number of observations,
and n

�
the number of terms in the model.

The purpose is to "nd the vector of least-squares
estimators, b, that minimizes

¸"

�
�
���

��
�
"���"(y!X�)�(y!X�) (3)

which yields to the least-squares estimator of �

b"(X�X)��X�y. (4)

The global "t and prediction accuracies of the response
surfaces are assessed through statistical measures such as
the t-statistic, or t-ratio, root-mean-square error (rms-
error), variation [41]. The t-statistic is determined by

t"
b
�

se(b
�
)
, (5)

where b
�
is the least-squares estimators of the jth regres-

sion coe$cient and se(b
�
) is the standard error of b

�
and it

is given by

se(b
�
)"�

�
�C

��
, (6)

whereC
��
is the diagonal element of (X�X)�� correspond-

ing to b
�
. Here �

�
is the adjusted rms-error (or rms-error

predictor) incurred while mapping the surface over the
data set. The quality of the "t of the di!erent surfaces can
be evaluated by comparing the adjusted rms-error value
that is de"ned as

�
�
"�

� e�
�

n!n
�

, (7)

where e
�
is the error at ith point of the training data.

The accuracy of the models in representing the design
space is gauged by comparing the values of the objective
function at test design points, di!erent from those used to
generate the "t, with the empirical solution. The predic-
tion rms-error, �, for the test set is given by

�"�
��
�
m
. (8)

In this equation �
�
is the error at the ith test point andm is

the number of test points.
The coe$cient of multiple determination R� measures

the proportion of the variation in the response around
the mean that can be attributed to terms in the model
rather than to random error and it is determined by

R�"
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�

SS
��
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SS
�

SS
��

, (9)

where SS
�

is the sum of squares of the residuals
("��

���
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)�) where yL is the predicted value by the

"tted model. SS
�
is the sum of squares due to regression
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)�) where yN is the overall average of y
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is the total sum of squares about the mean given by
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�
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where yN is the overall average of y
�
.

R�
�
is an R� value adjusted to account for the degrees of

freedom in the model and is given by

R�
�
"1!

SS
�
/(n!p)

SS
��
/(n!1)

"1!�
n!1

n!p�(1!R�). (11)

Since R� increases as terms are added to the model, the
overall assessment of the model may be better judged
from R�

�
.

The polynomial-based response surface techniques are
e!ective in representing the global characteristics of the
design space. It can "lter the noise associated with design
data. Since, the solution for the set of coe$cients that
best "ts the training data is a linear least-squares prob-
lem, it is trivial compared to the solution for the NN
coe$cients, which is often a non-linear least-squares
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Fig. 2. Schematic of a simple neuron model.

Fig. 3. Schematic of a neural network with 2-hidden layers.

problem. The linearity of the polynomial-based RSM
also allows us to use statistical techniques known as
design of experiments (DOE) to "nd e$cient training sets.
On the other hand, depending on the order of poly-
nomial employed and the shape of the actual response
surface, the RSM can introduce a substantial error in
certain region of the design space. An optimization
scheme requiring large amounts of data and a large
evaluation time to generate meaningful results is hardly
useful.

2.2. Neural networks (NN)

Neural networks are massively parallel computational
systems comprised of simple non-linear processing ele-
ments with adjustable interconnections. Neural networks
simulate human functions such as learning from experi-
ence, generalizing from previous to new data, and ab-
stracting essential characteristics from inputs containing
irrelevant data [10]. The processing ability of the net-
work is stored in the inter-unit connection strengths or
weights obtained by a process of adaptation to, or learn-
ing from, a set of training patterns. Training of a network

requires repeated cycling through the data, each time
adjusting the values of the weights and biases to improve
performance. Each pass through the training data is
called an epoch and the NN learns through the overall
change in weights accumulating over many epochs.
Training continues until the error target is met or until
the maximum number of neurons is reached. In Fig. 2,
a neuron model with multiple inputs and bias is shown.
Accordingly, the input is transmitted through a con-

nection that multiplies it with the weight related to that
connection. The bias is similar to a weight except that it
has a constant input of 1. The e!ect of the product weight
and input and the bias are added at the summing junc-
tion to form the net input for the transfer (or activation)
function. In Fig. 3, a multi-layer network is shown.
A layer of network includes the combination of weights,
the multiplication and summing operations, the biases
and the transfer functions. In a layered neural network,
neurons in every layer are associated with neurons in the
previous layer in such a way that the outputs of an
intermediate layer are the inputs to the following layer.
The layer that produces the network output is called an
output layer. All other layers are known as hidden layers.
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Even though research on neural network started in
early 1940s, NN became quite popular around 1980s
with the introduction of multi-layered NN [42] in a wide
range of disciplines, including engineering. Over the last
decade, NN approach has been used in the aerospace
related industry. Illi et al. [17] examined the application
of NN technology to an automated diagnostic and prog-
nostic system for turbine engine maintenance. Prelimi-
nary results indicated that using NN to maintain diag-
nostics saves time and improves performance. Kangas
et al. [18] used back-propagation NNs (BPNN) to moni-
tor turbine engine performance and diagnose failures in
real time. The application of NN technology appears to
hold great promise for enhancing the e!ectiveness of
army maintenance practices. Huang et al. [16] developed
and evaluated a multi-point inverse airfoil design method
using NNs. It is shown that neural network predictions
are acceptable for lift and moment coe$cient predictions.
Time-dependent models that predict unsteady boundary
layer development, separation, dynamic stall and reat-
tachment are developed by Faller and Schereck [12]
using NNs. It is demonstrated that NNs can be used to
both predict and control unsteady aerodynamics e!ec-
tively. Fan et al. [13] introduced a new approach for
active laminar #ow control that incorporates BPNN into
a smart wall interactive #ow control system. Conver-
gence of the BPNN is investigated with respect to the
complexity of the required function approximation, the
size of the network in relation to the size of optimal
solution and the degree of noise in the training data by
Lawrence et al. [20]. The techniques and principles for
the implementation of neural network simulators are
also presented by Lawrence et al. [21]. Methods for
ensuring the correctness of results avoiding duplication,
automating common tasks, using assertions liberally,
implementing reverse algorithms, employing multiple
algorithms for the same task, and using extensive
visualization are discussed. E$ciency concerns,
including using appropriate granularity object-oriented
programming, and pre-computing information whenever
possible, are also studied. Norgaard et al. [26] used
BPNN for more e!ective aerodynamic designs during
wind tunnel testing. Four di!erent NNs are trained to
predict coe$cients of lift, drag, moment of inertia, and lift
drag ratio (C

	
,C



,C

�
and ¸/D) from angle of attack and

#ap settings. Hybrid neural network optimization
method is successfully applied to produce fast and re-
liable predictions of aerodynamic coe$cients and to "nd
optimal #ap settings, and #ap schedules. Ross et al. [30]
applied BPNN to minimize the amount of data required
to completely de"ne the aerodynamic performance of
a wind tunnel model. It is shown that the trained NN has
a predictive accuracy equal to or better than the accuracy
of the experimental measurements using only 50% of the
data acquired during the wind tunnel test. BPNN is
employed for rapid and e$cient dynamics and control

analysis of #exible systems by Sparks andMaghami [31].
It is demonstrated that NN can give very good approxi-
mations to non-linear dynamic components, and by their
judicious use in simulations, allow the analyst the poten-
tial to speed up the analysis process considerably once
properly trained. The high-lift performance of a multi-
element airfoil is optimized by using neural-net predic-
tions by Greenman [10].
BPNN have been successfully integrated with a gradi-

ent-based optimizer to minimize the amount of data
required to completely de"ne the design space of a three-
element airfoil. It is shown that using NN reduced the
amount of computational time and resources needed in
high-lift rigging optimization. Greenman and Roth [14]
also applied BPNN for high-lift performance of a multi-
element airfoil and it is demonstrated that the trained
NN predicted the aerodynamic coe$cients within an
acceptable accuracy de"ned to be the experimental error.
Stepniewski and Jorgenson [32] used a singular-value
decomposition-based node elimination technique and
enhanced implementation of the Optimal Brain Surgeon
algorithm to choose a proper NN architecture. It is
demonstrated that combining both methods creates
a powerful pruning scheme that can be used for tuning
feed-forward connectionist models. Maghami and
Sparks [23,24] also demonstrated that the methodology
they developed based on statistical sampling theory
guarantees that the trained networks provide a designer-
speci"ed degree of accuracy in mapping the functional
relationship. The BPNN is used to "ll in a design space of
computational data in order to optimize #ap position for
maximum lift for a multi-element airfoil by Greenman
and Roth [15]. A genetic algorithm (GA) and gradient-
based optimizer are used together with NN and it is
found that the demonstrated method has a higher "delity
and a reduction in CPU time when compared to an
optimization procedure that excludes GA. Approxima-
tion abilities of BPNN is addressed by Lavretsky [19].
A novel matrix method for multi-input}multi-outputNN
is introduced and it is shown that by allowing inner layer
connections as well as connections between any layers,
ordered NN has superior interpolation ability when
compared to conventional feed-forwardNN. Stepniewski
et al. [33] presented a new hybrid method that combines
a bootstrap technique and a collection of stochastic op-
timization method such as GA for designing a NN. The
method minimizes generalization error. It is demon-
strated that the solutions produced by this method im-
prove the generalization ability on the average of "ve to
six times when compared to pruned methods.
All of the above-listed references preferred to use

BPNN among the other NN choices [43}45]. This is due
to the fact that BPNN strives to use a smaller number of
neurons when compared to the other NNs. However,
since BPNN is usually slower because at each step the
error is propagated back to all the weights in the system,
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Fig. 4. (a) Back-propagation neural network architecture, (b) back-propagation transfer function, tansig.

other NNs could be more e$cient than BPNN for speci-
"c problems. This article reviews the works focusing on
radial-basis NN (RBNN) and BPNN models developed
by using Matlab [43]. A comparative study for radial-
basis and back-propagation approaches is also included.
Brief summaries of the two approaches are given in the
following sections.

2.2.1. Back-propagation neural networks (BPNN)
Back-propagation neural networks are created by

generalizing the Widrow}Ho! learning rule [43,44] to
multiple-layer networks and non-linear di!erentiable
transfer functions. These networks are multi-layer net-
works with hidden layers of sigmoid transfer function
and a linear output layer. The transfer function in the
hidden layers should be di!erentiable and thus, either
log-sigmoid or tan-sigmoid functions are commonly
used. In this article, a single hidden layer with a tan-
sigmoid transfer function, tansig (Fig. 4), given as tanh(n),
is considered if n is the input. The maximum and min-
imum outputs of the function are 1 and !1, respectively.
The output of the function is given by

a"tansig(w�X#b), (12)

where tansig is the transfer function, w is the weight
vector, X is the input and b is the bias. For BPNN, the

initial weights and biases are randomly generated and
then the optimum weights and biases are evaluated
through an iterative process. The weights and biases are
updated by changing them in the direction of down slope
with respect to the sum-squared error of the network,
which is to be minimized. The sum-squared error is the
sum of the squared error between the network prediction
and the actual values of the output. In BPNN (Fig. 4a)
the weights, w

�
, and biases, b

�
, in the hidden tansig layer

are not "xed, as in the case of RBNN. Hence, the weights
have a non-linear relationship in the expression between
the inputs and the outputs. This results in a non-linear
regression problem, which takes a longer time to solve
than RBNN. Depending upon the initial weights and
biases, the convergence to an optimal network design
may or may not be achieved. Due to the randomness of
the initial guesses, if one desires to mimic the process
exactly for some purpose, it is impossible to re-train the
network with the same accuracy or convergence unless
the process is reinitiated exactly as before. The initial
guess of the weights is a random process in Matlab.
Hence to re-train the network the initial guess has to be
recorded.
The number of neurons in the hidden layer of a back-

propagation network is a design parameter. It should be
large enough to allow the network to map the functional
relationship, but not too large to cause over"tting. As
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a rule of thumb to choose the number of neurons in the
hidden layer, Greenman [10] used 2s#1 where s is the
summation of total number of inputs and total number of
outputs and Carpenter and Barthelemy [11] used m#1
where m is the number of nodes in the output layer. Once
the number of neurons in the hidden layer is decided, the
network design is reduced to adjusting the weighting
coe$cient matrices and the weighting bias vectors. These
parameters for BPNN are usually adjusted using a gradi-
ent method such as the Levenberg}Marquardt technique
[10,26,30,31,33]. In Matlab, BPNN can be trained by
using three di!erent training functions, trainbp, trainbpx
and trainlm. The "rst two are based on the steepest
descent method. Simple back-propagation with trainbp
is usually slow since it requires small learning rates for
stable learning. Trainbpx, applying momentum or adap-
tive learning rate, can be a considerably faster method
than trainbp but trainlm, applying Levenberg}Mar-
quardt optimization, is the most e$cient since it includes
improvement techniques to increase the speed and relia-
bility of simple back-propagation networks. The Leven-
berg}Marquardt update rule is

�="(J�J#�I)��J�e, (13)

where �= is the change in weight, J is the Jacobian
matrix of the derivatives of each error with respect to
each weight, i.e., �e

�
/�w

�
, I is the identity matrix, � is

a scalar and e is the error vector. If the scalar � is large,
the above expression approximates the steepest descent,
while if it is small then the method reduces to the
Gauss}Newton method. The Gauss}Newton method is
faster and more accurate near an error minimum, so the
aim is to shift towards the Gauss}Newton method as
quickly as possible. Therefore, � is decreased after each
successful step and increased only when a step increases
the error. The design parameters for trainlm are the
number of neurons in the hidden layer, S

�
, a user-de"ned

sum square error goal, and the maximum number of
epochs. The training continues until either the error goal
is reached, the minimum error gradient occurs, the max-
imum value of � occurs, or the maximum number of
epochs has been met.

2.2.2. Radial-basis neural networks (RBNN)
Radial-basis neural networks are two-layer networks

with a hidden layer of radial-basis transfer function and
a linear output layer. The main advantage of this ap-
proach is the ability of keeping the mathematics simple
and computational costs low due to linear nature of
RBNN [34]. Outline of supervised learning, main ap-
plication area for RBNNs and the least-squares method
used together with supervised learning with linear mod-
els are explained in detail in [34]. Optimum of the regu-
larization parameter of RBNN is also searched in this
paper. A computational method for re-estimating the

regularization parameter of RBNN, based on generalized
cross-validation, is explained by Orr [35]. The RBNN is
designed in such a way that it can adapt the width of the
basis function, and it is found that it can predict better
than a similar RBNN with the "xed width basis function.
Orr [36] explains improvements made for to forward
selection and ridge regression methods. A methodology
that is a cross between regression trees and RBNN is
described. The size of RBNN is also optimized based on
regularization parameter in [35].
The transfer function for radial-basis neuron is radbas,

which is shown in Fig. 5. radbas, given as e��
�, where n is

the input, has maximum and minimum outputs of 1 and
0, respectively. The output of the function is given by

a"radbas(dist(w,X)�b), (14)

where radbas is the transfer function, dist is the vector
distance between the network's weight matrix, w, and the
input vector, X and b is the bias. Radial-basis transfer
function radbas calculates its output according to
a"e��

�.
In a radial basis network (Fig. 5a) each neuron in the

radbas hidden layer is assigned weights, w
�
which are

equal to the values of one of the training input design
points. Therefore, each neuron acts as a detector for
a di!erent input. The bias for each neuron in that layer,
b
�
is set to 0.8326/sc, where sc is the spread constant,

a value de"ned by the user. The spread constant de"nes
the region of in#uence by each neuron. The training
process is then reduced to the evaluation of the weights,
w
�
, and biases, b

�
, in the output linear layer, which is

a linear regression problem. If the input to a neuron is
identical to the weight vector, the output of that neuron
is 1, since the e!ective input to the transfer function is
zero. When a value of 0.8326 is passed through the
transfer function the output is 0.5. For a vector distance
equal to or less than 0.8326/b, the output is 0.5 or more.
The spread constant de"nes the radius of the design
space over which a neuron has a response of 0.5 or more.
Small values of sc can result in poor response in a domain
not closely located to neuron positions; that is, for inputs
that are far from the training data as compared to the
de"ned radius, the response from the neurons will be
negligible. Large values will result in low sensitivity of
neurons. Since the radius of sensitivity is large, neurons
whose weights are di!erent from the input values by
a large amount will still have high output thereby result-
ing in a #at network. The best value of the spread con-
stant for some test data can be found by comparing � for
networks with di!erent spread constants.
In Matlab, radial-basis networks can be designed

using two di!erent design procedures, solverbe and
solverb. Both procedures require a spread constant, sc, as
a design parameter; i.e., the radius of the basis in the
input space to which each neuron responds. Solverbe
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Fig. 5. (a) Radial basis neural network architecture, (b) radial-basis transfer function, radbas.

designs a network with zero error on the training vectors
by creating as many radial-basis neurons as there are
input vectors. Therefore, solverbe may result in a larger
network than required and may "t the numerical noise.
A more e$cient design in terms of network size is ob-
tained from solverb, which creates one neuron at a time
to minimize the number of neurons required. At each
epoch, neurons are added to the network until it satis"es
a user-speci"ed error goal. The design parameters for
solverb are the spread constant, error goal, and the
maximum number of epochs. The spread constant is the
only network design parameter for solverbe.
Radial-basis networks may require more neurons than

a comparable BPNN. However, RBNN can be designed
in a fraction of the time it takes to train the standard
BPNN due to non-linear regression process of back-
propagation networks. Therefore, RBNN are more e$-
cient to train when a large amount of training data is
available. In [37], an e!ort is made to compare the
accuracy and computing requirements between the
radial-basis and back-propagation approaches with dif-
ferent sizes of training data. Vaidyanathan et al. [39] also
investigated relative performances of RBNN and BPNN
for gas}gas injector and supersonic turbine. As will be

discussed in the following sections, among all the NN
con"gurations, RBNN designed with solverb seems to be
more consistent in performance for di!erent data sets
and RBNN, even when designed e$ciently with solverb,
tend to have many more neurons than a comparable
BPNN with tan-sigmoid or log-sigmoid neurons in the
hidden layer. The basic reason for this is the fact that the
sigmoid neurons can have outputs over a large region of
the input space, while radial-basis neurons only respond
to relatively small regions of the input space. However,
con"guring an RBNN often takes less time than that
required for a BPNN because the training process of
RBNN is linear in nature.

2.3. Design of experiments (DOE)

In RSM, selecting the representation of the design
space is a critical step because it dictates the distribution
of the information available for constructing the response
surface. It is well established that the predictive capabil-
ity of RSM is greatly in#uenced by the distribution of
sampling points in design space [46,47]. In order to select
design points for training that minimizes the e!ect of
noise on the "tted polynomial, design of experiment
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Fig. 6. Face centered composite designs (FCCD) for 3 design
variables; x

�
, x

�
and x

	
.

(DOE) techniques can be applied. There are di!erent
types of design of experiments techniques in the literature
as reported by Haftka et al. [48]. For example, Unal et al.
[47] discussed the D-optimal design for the representa-
tion of the design space for a wing-body con"guration of
a launch vehicle. They showed that D-optimal design
provides an e$cient approach for approximating model
building and multi-disciplinary optimization. Papila and
Haftka [49] also applied face centered composite design
(FCCD) to select the experiment points in the design
space when approximating wing structural weight. Unal
et al. [46,50] studied response surface modeling using
orthogonal arrays (OA) in computer experiments for
reusable launch vehicles and illustrated that using this
technique can minimize design, development, test and
evaluation cost. Unal and Dean [51] studied the robust
design method based on the Taguchi method [52,53] to
determine the optimum con"guration of design para-
meters for performance, quality and cost. They demon-
strated that using such a robust design method for
selection of design points is a systematic and e$cient
approach for determining the optimum con"guration.
Brief summaries of FCCD, OA, and D-Optimal designs
are given below.

2.3.1. Face centered cubic design (FCCD)
Face centered cubic design (FCCD) creates a design

space composed of eight corners of a cube, centers of the
six faces and the center of the cube. Fig. 6 shows FCCD
selections for three design variables. The FCCD yields
(2�#2N#1) points, where N is the number of design
variables. It is more e!ective when the number of design
variables is modest, say, not more than 5 or 6. The FCCD
is used for "tting second-order response surface.

2.3.2. Orthogonal arrays (OA)
An orthogonal array (OA) is a fractional factorial

matrix that assures a balanced comparison of levels
of any factor or interaction of factors. Consider A,
a matrix with elements of a�

�
where j denotes the row

( j"1, 2,2, n

) and i denotes the column (i"1, 2,2, n

�
)

that a�
�

belongs to, supposing that each a�
�
3Q"

�0, 1,2, q!1	. A is called an orthogonal array of
strength t)n

�
if in each n


-row-by-t-column sub-matrix

of all q� possible distinct rows occur 
 times [54]. Such an
array is denoted by OA(n


, n

�
, q, t) by Owen [54].

Since the points are not necessarily at the vertices, the
OA can be more robust than the FCCD in interior design
space and are less likely to fail the analysis tool. Based
on the design of experiment theory, orthogonal arrays
can signi"cantly reduce the number of experimental
con"gurations.

2.3.3. D-optimal design
A D-optimal design minimizes the generalized vari-

ance of the estimates, which is equivalent to maximizing
the determinant of the moment matrix, M [41]

�M�"
�X�X�
n��

, (15)

where n is the number of observations and n
�
is the

number of terms in the model.
The D-optimal design approach makes use of the

knowledge of the properties of polynomial model in
selecting the design points. This criterion tends to em-
phasize the parameters with the highest sensitivity [48].

2.4. Optimization process

2.4.1. Search procedure
The entire optimization process can be divided into

two parts: (1) RS/NN phase for establishing an approxi-
mation, and (2) optimizer phase.
In the "rst phase, polynomials or NN models are

generated with the available training data set. In the
second phase the optimizer uses the RS/NN during the
search for the optimum until the "nal converged solution
is obtained. The initial set of design variables is randomly
selected from within the design space. The #owchart of
the process is shown in Fig. 7.
The optimization problem at hand can be formulated

as min� f (x)	 subject to lb)x)ub, where lb is the lower
boundary vector and ub is the upper boundary vector of
the design variables vector x. If the goal is to maximize
the objective function then f (x) can be written as !g(x),
where g(x) is the objective function. Additional linear or
non-linear constraints can be incorporated if required.
The optimization toolbox in Matlab used here employs
a sequential quadratic-programming algorithm.

2.4.2. Objective function
When attempting to optimize two or more di!erent

objective functions, con#icts between them arise because
of the di!erent relationships they have with the indepen-
dent parameters. An equation expressing the relationship
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Fig. 7. The two phases of the optimization process, where Phase 1 deals with data processing/generating and Phase 2 deals with
optimization.

Fig. 8. Desirability function for various weight factors, s.

between opposing e!ects of performance and weight
can be employed as a criterion to guide the optimization
task. Both NN and polynomial-based RS techniques
can handle such multi-criteria optimization tasks in
a straightforward manner by building a composite
response surface from individual response surfaces. Such
a task would have been impossible without response
surface. This composite response surface is referred to as
the desirability function. The maximization of the
composite function e!ectively provides a compromise
between the individual functions. An average of some
form is normally used to represent the composite func-
tion. A geometric mean is a solution, which gives a com-
posite function of the form

D"�
�

�
���

d
��

�
�
, (16)

where D is the composite objective function, d
�
's are

normalized values of the objective functions and l is
the number of objective functions. Each of the d

�
are

weighted depending upon the importance of the speci"c
objective function. Fig. 8 shows a typical trend for a
desirability function with respect to the weighting factors.
Another way of constructing a composite function is to

use a weighted sum of the objective functions. The com-
posite function can then be expressed as

D"

�
�
���


�
f
�
, (17)

where D is the composite objective function and f
�
's are

the non-normalized objective functions. The 
�
's are

dimensional parameters that control the importance of
each objective function.

3. Description of the case studies

3.1. Gas}gas injector element for rocket propulsion

Development of an optimization scheme for injector
design called methodology for optimizing the design of
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Fig. 9. Schematic of shear co-axial injector element.

injectors (method i) has been reported by Tucker et al.
[55,56].Method i is used to generate appropriate injector
design data and then guide the designer toward an opti-
mum design subject to his speci"ed constraints. As re-
ported, method i uses the polynomial-based RSM to
facilitate the optimization. The RSM approach is to
conduct a series of well-chosen experiments (empirical,
numerical, physical or some combination of the three)
and use the resulting information to construct a global
approximation (response surface) of the measured
quantity (response) over the design space. A standard
constrained optimization algorithm is then used to inter-
rogate the response surface for an optimum design. Neu-
ral network was also used in the design of shear co-axial
injector element by Shyy et al. [38], and Tucker et al.
[55,56] along with the polynomial-based RSM. Three
di!erent injector types are considered, namely, shear
co-axial injector element, an impinging injector element,
and swirl co-axial injector element.

3.1.1. Shear co-axial injector element
The initial demonstration of method i by Tucker et al.

[55] focused on a simple optimization of a shear co-axial
injector element (Fig. 9) with gaseous oxygen (GO

�
) and

gaseous hydrogen (GH
�
) propellants. The goal is to

maximize the energy release e$ciency, EREwhile minim-
izing the chamber wall heat #ux, Q. This is achieved by
maximizing a composite objective function given by

D"(d
���

d
�
)�
�, (18)

where the normalized functions are de"ned as in Eqs. (19)
and (20). In the case where a response should be maxi-
mized, such as ERE, the normalized function takes the
form

d
���

"�
ERE!A

B!A �
�

forA)ERE)B, (19)

where B is the target value and A is the lowest acceptable
value. Here, d

���
is set to 1 for any ERE'B and

d
���

"0 for ERE(A. The choice of s is made based on
the subjective importance of this objective in the com-
posite desirability function. In the case where a response
is to be minimized, such as Q, the normalized function
takes the form

d
�

"�
E!Q

E!C�
�

forC)Q)E, (20)

where C is the target value and E is the highest accept-
able value. Here, d

�
is set to 1 for any Q(C and d

�
"0

for Q'E. A, B, C, and E are chosen according to the
designer's priorities or, as in the present article, simply as
the boundary values of the domain of ERE and Q. The
value of t is again chosen to re#ect the importance of the
objectives in the design. In the study carried out, A and
B are equal to 95.0 and 99.9, respectively. The values of
C and E are equal to 0.48 and 1.1, respectively.
The design data was generated using an empirical

design methodology developed by Calhoon et al. [57].
These researchers conducted a large number of cold-#ow
and hot-"re tests over a range of propellant mixture
ratios, propellant velocity ratios and chamber pressure
for shear co-axial, swirl co-axial, impinging, and
premixed elements. The data were correlated directly
with injector/chamber design parameters, which are rec-
ognized from both theoretical and empirical standpoints
as the controlling variables. For the shear co-axial ele-
ment, performance, as measured by energy release e$-
ciency, ERE, is obtained using correlations taking into
account combustor length, ¸

����
(length from injector to

throat) and the propellant velocity ratio, <
�
/<

�
. The

nominal chamber wall heat #ux at a point just down-
stream of the injector, Q

���
, is calculated using a modi-

"ed Bartz equation and is correlated with propellant
mixture ratio, O/F, and propellant velocity ratio, <

�
/<

�
to yield the actual chamber wall heat #ux, Q. The objec-
tive in the initial demonstration of method i was to
maximize injector performance while minimizing cham-
ber wall heat #ux (lower heat #uxes reduce cooling re-
quirements and increase chamber life) and chamber
length (shorter chambers lower engine weight). The data
used to generate the polynomials and train the network
are given in Tables 36}38. The quality of the response
surface and neural networks are evaluated using 20 addi-
tional design points di!erent from those used to generate
the models (Table 39).

3.1.2. Impinging injector element
The empirical design methodology of Calhoon et al.

[57] uses the oxidizer pressure drop, �P
�
, fuel pressure

drop, �P
�
, combustor length, ¸

����
, and the impinge-

ment half-angle,  as independent variables. For this
injector design, the pressure drop range is set to 10}20%
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Fig. 10. Schematic of impingement injector element.

of the chamber pressure due to stability considerations.
The combustor length, de"ned as the distance from the
injector to the end of the barrel portion of the chamber,
ranges between 2 and 8 inches. The impingement half
angle is allowed to vary from 15 to 503. Dependent
variables include ERE (a measure of element perfor-
mance), wall heat #ux,Q

	
, injector heat #ux,Q


��
, relative

combustor weight,=
��
, and relative injector cost, C

��
.

The conditions selected for this example are:

P
�
"1000 psi,

MR"6,

m
��

"0.25 lb
�
/s,

m
��

"0.042 lb
�
s. (21)

The gaseous propellants are injected at a temperature
of 540R. As noted above, the empirical design methodo-
logy used to characterize the ERE and Q

	
was developed

by Calhoon et al. [57]. This methodology uses a quantity
called the normalized injection momentum ratio to cor-
relate the mixing at the di!erent design points for the
triplet element. They de"ne this quantity as

MR
��

"

2.3m
�
u
�

m
�
u
�
sin 

. (22)

The maximum mixing, and thus maximum ERE,
occurs at an MR

��
of 2.0. Since the propellant mass #ow

rates are "xed, only the propellant velocities and the
impingement half-angle in#uence the normalized injec-
tion momentum ratio. The velocities are proportional to
the square root of the respective pressure drops across
the injector, �P

�
and �P

�
. For the #ow conditions and

variable ranges considered in this problem, MR
��
ranges

from 3.2 to 17.8. Accordingly, lowering �P
�
, raising �P

�
,

increasing , or some combination of these actions will
increase ERE. The wall heat #ux is correlated with the
propellant momentum ratio as de"ned by

MR"

m
�
u
�

m
�
u
�

. (23)

For the F}O}F triplet element, i.e. the impingement
injector element, the maximum wall heat #ux occurs at
a momentum ratio of approximately 0.4. High heat #ux is
the result of over-penetration of the fuel jet, which pro-
duces a high O/F in the wall region. For the #ow condi-
tions and variable ranges considered in this e!ort, MR
ranges from 1.06 to 2.11. Hence, increasing the value of
this ratio by either increasing �P

�
or decreasing �P

�
lowers the wall heat #ux.
The heat #ux seen by the injector face, Q


��
, is qualitat-

ively modeled by the impingement height, H

��
��

. Here
the notion is that, as the impingement height decreases,
the combustion occurs closer to the injector face, causing
a proportional increase in Q


��
. Thus, for the purposes of

this exercise, Q

��

is modeled as the reciprocal of the
H


��
��
. Impingement height is a function of  and �P

�
.

Fig. 10 shows that as  is increased,H

��
��

is shortened.
The dependence of H


��
��
on the fuel ori"ce diameter,

d
�
, and thus, �P

�
, results from making the freestream

length of the fuel jet, ¸
��
, a function of d

�
. For each �P

�
,

¸
��
was set to six times d

�
for an impingement half-angle

of 303. So, as d
�
increases (corresponding to decreasing

�P
�
), ¸

��
increases, as does H


��
��
.

The models for=
��

and C
��

are simple but represent
the correct trends. =

��
is a function only of ¸

����
, the

combustor length from injector face to the end of the
chamber barrel section. The dimensions of the rest of the
thrust chamber assembly are "xed. So, as ¸

����
increases,

=
��

increases accordingly. The model for C
��

is based on
the notion that smaller ori"ces are more expensive to
machine. Therefore, C

��
is a function of both propellant

pressure drops. As the �P increases, the propellant velo-
city through the injector increases and the ori"ce area
decreases. So, as either, or both, �P

�
and �P

�
increase,

C
��

increases.
The system variables given above and independent

variables (constrained to the previously noted ranges) are
used to generate the design data for element optimization
studies. Since propellant momentum ratio is an impor-
tant variable in the empirical design methodology,
a matrix of momentum ratios was developed over the
100}200psi propellant pressure drop range. The matrix
of 49 combinations of fuel and oxidizer pressure drops is
shown in Table 40 where momentum ratios range from
1.06 to 2.11. Nine pressure drop combinations, eight
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Fig. 11. Swirl co-axial injector element schematic.

around the border and one in the middle, were selected
for use in populating the design database. These nine
points are highlighted in Table 40 in bold type.
Detailed design results for the case with both �P

�
and

�P
�
at 200 psi are shown in Table 41. Similar data was

generated for the other eight pressure drop combina-
tions. There are 20 combinations of ¸

����
and  for each

�P combination, making a total of 180 design points
selected. Seventeen of these were outside the database
embodied by the empirical designmethodology, resulting
in 163 design points actually being evaluated. The data
trends are as expected. ERE, for a given �P combination,
increases with increasing ¸

����
and . The increased

¸
����

provides more residence time for the propellants to
mix and burn. Increasing  increases the radial compon-
ent of the injected fuel, thus providing better mixing. The
wall heat #ux is constant for a given �P combination.
Impingement height increases with increasing . Relative
combustor cost increases with increasing ¸

����
and

the relative injector cost is constant for a given �P
combination.

3.1.3. Swirl co-axial injector element
The chamber pressure, mixture ratio, and propellant
#ow rates selected for this example are:

P
�
"1000 psi,

MR"6,

m
��

"0.25 lb
�
/s,

m
��

"0.042 lb
�
s. (24)

The gaseous propellants are injected at a temperature
of 540R. Fig. 11 shows that the GO

�
, #owing in the

center post of the element, exits the element with both
radial and axial velocity components. This e!ect is
achieved by introducing the GO

�
tangentially into the

center post through small slots. When the GO
�
, under

hydrostatic head, is forced through the tangential slots,
part of the pressure head is converted into a velocity
head, causing a rotational velocity in the element. For
a speci"ed �P

�
and swirl angle,�, the number and size of

tangential slots, the discharge coe$cient, the GO
�
center

post diameter, d
�
, and the radial and axial GO

�
velocity

components,<
��
and <

��
are calculated. These quantities

are then used to determine the dependent variables for
each design condition.
The element ERE, calculated according to the empiri-

cal design methodology of Calhoon et al. [57], is a func-
tion of all four independent variables noted above. A cold
#ow mixing e$ciency, E

�
,
��
, for �"903, is correlated

by

E
����

"100!5 ln
K

�
¸
����

/d
�

. (25)

The cold #ow mixing length, ¸
����

, is correlated from
a known chamber length, ¸

����
. The GO

�
post diameter,

d
�
, is a function of �P

�
and �. Smaller values of

d
�
correspond to large values of �P

�
and smaller swirl

angles. The empirical swirl factor,K
�
, is a function of the

normalized di!erential injection velocity, (<
�
!<

�
)/<

�
.

K
�
increases with increasing normalized di!erential in-

jection velocity for the range of propellant velocities
considered in this e!ort. For "xed propellant mass #ow
rates, the velocities <

�
and <

�
are functions of their

pressure drops across the injector, �P
�
and �P

�
, respec-

tively. For a given �P
�
, <

�
also depends on the swirl

angle. Lower <
�
's are a product of higher swirl angles.

Cold #ow mixing is thereby enhanced with higher values
of <

�
(i.e. �P

�
) and ¸

����
. Lower values of <

�
(i.e. �P

�
)

and � also tend to enhance cold #ow mixing.
A fractional factor, f

�
, is applied to E

����
to account for

the lower levels of cold #ow mixing found with swirl
angles less than 903. The resultant measure of cold #ow
mixing, E

�
,� , is a product of E����

and f
�
. This factor, for

a given design, is a function of the normalized di!erential
injection velocity and the ratio of radial to axial GO

�
velocity, <

��
/<

��
. Increasing values of both quantities

increase f
�
, with a value of f

�
"1 being found at

<
��
/<

��
"1 (�"903) for all values of (<

�
!<

�
)/<

�
. Lar-

ger values of f
�
increase cold #ow mixing. These values

are found at low �P
�
and high �P

�
and �. There is no

dependency of f
�
on chamber length. These trends are

opposite those noted above. Finally, ERE is proportional
to E

�
,� .

The wall heat #ux curve from the Calhoon et al. [57]
methodology is fairly #at, varying only about 10% from
high to low for the range of pressure drops considered in
this e!ort.Q

	
decreases with increasing<

�
(high �P

�
and

low �) and decreasing <
�
(low �P

�
). That Q

	
would

decrease with increasing <
�
is counter to intuition. It

seems that high values of <
�
, for any �, would result in

higher mixture ratios in the wall region, as is the case for
liquid O

�
. Calhoon et al. [57] do not discuss this e!ect.

The heat #ux seen by the injector, Q

��
, is actually

modeled by the distance from the injector at which
the propellant streams intersect. This axial distance is
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measured at the radial position corresponding to the
center of the co-axial fuel annulus, or gap. It is here that
the streams begin to mix and burn. This measure is
qualitative, but captures the trend for injector design.
The axial distance is a!ected directly by the swirl angle,
and indirectly by the propellant pressure drops. Q


��
de-

creases with decreasing swirl angle, increasing GO
�
pres-

sure drop and decreasing GH
�
pressure drop. Swirl angle

has the largest e!ect, while �P
�
is the least signi"cant

factor.
The relative combustor weight,=

��
, is simply a func-

tion of the combustor length, ¸
����

, the distance from the
injector to the end of the barrel portion of the chamber.
The longer the combustor, the more it weighs.
The relative injector cost, C

��
, is a function of the fuel

gap width and the width of the tangential slots used to
induce the swirl in the GO

�
center post. Larger values of

both variables result in lower machining costs, and thus
lead to lower injector cost. The fuel gap width increases
with increasing �P

�
, and decreasing values of �P

�
and �.

Swirl slot width increases with lower values of �P
�
and

�. Overall, C
��

decreases with increasing �P
�
and de-

creasing �P
�
and �. Fuel pressure drop and swirl angle

are the most signi"cant factors.
A matrix of propellant pressure drop combinations

was developed and nine combinations were selected for
use in populating the design database. There are 20
combinations of ¸

����
and � for each �P combination,

making a total of 180 design points selected.
In the work by Tucker et al. [55,56], method i uses the

response surface method (RSM) to "nd optimal values of
ERE, Q

	
, Q


��
, =

��
and C

��
for acceptable values of

�P
�
, �P

�
, ¸

����
and �. Five full quadratic response

surfaces are constructed by using JMP.
In the current case, it is desirable to maximize ERE

and while simultaneously minimizing Q
	
, Q


��
,=

��
and

C
��
.

3.2. Supersonic turbine for reusable launch vehicles

Supersonic turbines that drive fuel or oxidizer turbo-
pumps in rocket engines are of great interest to the next
generation space propulsion industry, including the reus-
able launch vehicles (RLV). They are complex, high-speed
devices that produce shaft power by ducting the #ow of
hot gasses over specially shaped blades on a wheel. For
rocket engine applications, maximizing the vehicle
payload for a given turbine operating condition is the
ultimate goal. The #ow path should be designed in such
a way that it wastes less energy so that turbine temper-
atures or the mass #ow rate can be reduced, or the
turbine can be made smaller, increasing the e$ciency (or
speci"c impulse) of the rocket engine. Any gain in turbine
e$ciency will be re#ected in reduced propellant
consumption, resulting in an increase in the payload.
However, higher turbine performance usually entails

multistage designs, which are heavier. The design of
a supersonic turbine often involves a considerable num-
ber of design variables with structural and aerodynamic
constraints. With the number of design parameters
involved, the overall procedure of design optimization of
supersonic turbines becomes a challenging task.
Papila et al. [58] have conducted a global optimiza-

tion investigation to perform the preliminary design of
the supersonic turbines, including the selection of the
number of stages and design variables. From one- to two-
to three-stage turbines, the number of design variables
increases substantially. In shape design, from vane to
blade, from stage to stage, and from 2-D to 3-D, not only
does the number of design variables increase, but also the
interactions among design variables become more com-
plicated. Papila et al. [58] intended to investigate
the individual, as well as collective e!ects of design
variables by varying the design scope systematically.
Vaidyanathan et al. [39] have used the data of the
one-stage turbine to conduct a comparative study be-
tween RSM and NN.
For the preliminary design stage, single-, two- and

three-stage turbines are considered. The design variables
can be separated into two categories, one related to
geometry and the other to performance. They are sum-
marized as follows:
(1) Geometric inputs: The geometric inputs are needed

to layout the turbine meridional geometry, e.g., mean
diameter, last rotor annulus area, blade height ratio
between the "rst vane and the last rotor blade (linear
distribution of blade heights is assumed between the "rst
vane and the last rotor blade), vane and blade axial
chords.
(2) Performance inputs: The performance inputs are

needed to calculate the turbine e$ciency, e.g., speed
(RPM), number of stages, blade row reaction, and work
split (if more than 1 stage is investigated).
For single-stage turbine, six design parameters

(Table 3) are selected. These are (1) the mean diameter, (2)
speed (RPM), (3) exit blade annulus area, (4) vane axial
chord, (5) blade axial chord, (6) stage reaction.
For two-stage turbine, there are 11 design parameters

(Table 3), namely, (1) the mean diameter, (2) RPM, (3) exit
blade annulus area, (4) "rst blade height (% of exit blade),
(5) "rst vane axial chord, (6) "rst blade axial chord,
(7) second vane axial chord, (8) second blade axial chord,
(9) "rst stage reaction, (10) second stage reaction, and
(11) "rst stage work fraction. Note that second stage
work fraction is not a design parameter since it can be
calculated by using "rst stage work fractions, i.e.,
w
��

"1!w
��
.

There are 15 (Table 3) design parameters for three-
stage turbine. These are (1) mean diameter, (2) speed
(RPM), (3) exit blade annulus area, (4) "rst blade height
(% of exit blade), (5) "rst vane axial chord, (6) "rst blade
axial chord, (7) second vane axial chord, (8) second blade
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axial chord, (9) third vane axial chord, (10) third blade
axial chord, (11) "rst-stage reaction, (12) second-stage
reaction, (13) third-stage reaction, (14) "rst-stage work
fraction, (15) second-stage work fraction. Note that
third-stage work fraction is not a design parameter since
it can be calculated by using "rst- and second-stage work
fractions, i.e., w

�	
"1!(w

��
#w

��
).

The composite objective function chosen by Papila
et al. [58] for design optimization corresponds to the
payload increment, �pay, versus turbopump e$ciency
and weight. The relation between �pay and these two
parameters can be developed as follows based on mission
pro"le studies, engine balance perturbation and some
detailed turbopump layout and stress information gained
from other proprietary programs:

�pay"c
�
�(�!�

�
)�100!(=!=

�
), (26)

where �
�
is the baseline e$ciency and=

�
is the baseline

weight. The constant c
�
indicates that for every point in

e$ciency gained, the amount of payload capacity of the
RLV is increased c

�
per turbopump. Therefore, �pay

function represents the amount of increase in payload
capacity. The results of both payload increment based
and composite desirability function-based optimization
are illustrated for one-, two-, and three-stage designs. The
results of both payload increment based- and composite
desirability function-based optimization are illustrated
for one-, two-, and three-stage designs in the following
chapters.
Two structural constraints are considered by Papila

et al. [58]. In axial turbines the product of the blade exit
annulus area and the RPM square, i.e., AN� is an indica-
tion of the blade centrifugal stress, which should bound
the speed of the turbine. In addition, the disk stresses are
also a restriction. In the turbomachinery industry, the
maximum stress value due to disk burst is often repre-
sented by a pitchline velocity limit, i.e., <

�
���
. The pitch-

line velocity can be calculated by multiplying RPM and
the mean radius.

3.3. Turbulent planar diwuser

The goal was to accomplish maximum pressure recov-
ery by optimizing the wall contours. The #ow is incom-
pressible and fully turbulent with a Reynolds number of
10�, based on the inlet throat half-width, D. The overall
geometry is de"ned by the ratio of inlet and outlet areas,
and the di!user length-to-height ratio. In this study the
length-to-height ratio is "xed at 3.0, and the area ratio at
2.0. The shape of the di!user wall is designed for opti-
mum performance, with "ve design variables represented
by B-splines. The CFD model is based on the full
Reynolds-averaged Navier}Stokes equations, with the
k}� two-equation turbulence model in closure form. At
the inlet of the #ow domain, a uniform #ow distribution

is speci"ed. Detailed discussion of this study can be found
in [59].

3.3.1. Objective
The dimensionless pressure recovery coe$cient C

�
is

introduced as the objective function to be maximized:

F"C
�
"

�p
1/2�u�


��

. (27)

Here �p is the static pressure di!erence between channel
cross sections up- and downstream of the di!user, respec-
tively, � is the #uid density, and u


��
is the inlet mean

velocity. Inlet and outlet static pressures are averaged,
even though the pressure distribution is nearly uniform
due to well-developed #ow at the considered cross sec-
tions. The CFD model uses a symmetry condition along
the channel center axis, and has a computational mesh
consisting of 120�50 cells including a long outlet section
to establish a fully developed exit pro"le. The overall
geometry of the two-dimensional planar di!user, see
Fig. 12, is de"ned by the ratio of inlet and outlet areas,
AR, and the di!user length/height ratio, ¸"D, where
¸ is the axial length of the di!user. In this study the ratio
of ¸ to D is "xed at 3.0, and the area ratio AR at 2.0.
Expressed in terms of the inlet half-width D, the horizon-
tal position of the inlet is 1D, while the horizontal posi-
tion of the outlet is 10D. The shape of the di!user wall is
designed for optimum performance, and to this end two
separate cases of wall parameterizations were evaluated
by Madsen et al.: (1) a two design variable case, where
a polynomial describes wall shapes, and (2) a "ve design
variable case that uses B-splines. Even though two di!er-
ent curve descriptions are used in the two cases, the most
noteworthy di!erence seen from the point of view of the
RSM lies in the problem size.

3.3.2. Geometric representation
For shape parameterization in more variables, B-

splines were preferred to natural splines (piecewise poly-
nomials), although the latter technique is closer to the
polynomial representation. B-splines excel in the predict-
able way that control points in#uence curve shape, and in
the local control, which prevents small changes in a con-
trol point position from propagating over the entire
curve. Combined with low computational cost, these
advantages have contributed to B-spline curves becom-
ing a standard geometric modeling technique in com-
puter-aided design.
A B-spline is given in a parametric form as p(u):

p(u)"�
x(u)

y(u)�"

�
�
���

P
�
N

���
(u). (28)

A set of blending functionsN
�_�

combines the in#uence of
n#1 control points P

�
, over the range of the parametric

variable u. The blending functions N
�_�

are recursively

W. Shyy et al. / Progress in Aerospace Sciences 37 (2001) 59}118 77



Fig. 12. Two-dimensional symmetric di!user subjected to shape
optimization in terms of pressure recoverymeasured between in-
and outlet.

Fig. 13. NACA 5405 pro"le.

determined polynomials with degree k!1, where the
parameter k dictates the order of continuity of the curve,
and thus how many control points in#uence a curve
segment. In this work k is 8, which corresponds to C�-
continuity. The number of control points is 8 as
well*two endpoints, "ve design variables and one point
used for prescribing the inlet slope.
B-splines have an approximating nature, in that they

do not necessarily pass through control points, except for
"xed curve endpoints. The slope at a curve endpoint is
tangential to a straight line connecting the endpoint and
the "rst control point, and may be prescribed by placing
an additional "xed control point near the endpoint.
Experimental and numerical evidence indicates that

maximum pressure recovery in di!users occurs at the
border of appreciable #ow separation. For this reason,
strongly separated di!user #ows should be avoided,
making it reasonable to restrict the design space to
monotonic wall shapes. While the approximation accu-
racy does of course bene"t from the reasonable design
space approach, it is equally important in the present
example that monotonicity constraints eliminate conver-
gence problems associated with CFD-analysis of odd,
non-monotonic designs.
The parametric form in which B-splines are de"ned

makes it non-trivial to derive monotonicity constraints
analytically, so instead a constraint approximation
GK was set up in the form of a response surface for the
minimum wall slope G. Then, observing the inequality
constraint G*0 implies a positive wall slope and thus
monotonicity throughout. Since B-splines are inexpen-
sive to generate, 9� (59049) B-splines were computed

(requiring only seconds to generate) and used for "tting
a quadratic response surface. The approximation to the
monotonicity constraint precludes some designs that sat-
isfy the exact monotonicity requirement. However, the
e!ect of these inaccuracies on the solution of the opti-
mum design problem is negligible.
The regression analysis, to "nd 21 polynomial coe$-

cients in "ve dimensions, is based on a 35-point
D-optimal design. The surplus of analyses is generally
required for reducing the sensitivity to numerical noise
and to errors due to the simpli"ed representation as
a quadratic polynomial. Again, a pool of candidate
points was created, this time using nine levels for each
variable (values ranging from 0.0 to 1.0), and then check-
ing the monotonicity of the B-splines for each of the
9�"59 049 designs. It should be noted that limiting the
y-coordinate of the control points to a variation in the
range [0 : 0; 1 : 0] is a somewhat arti"cial requirement, as
monotonic shapes exist with coordinates slightly outside
this range. A total of 20 864 points are monotonic in wall
shape. This relatively large percentage of acceptable cases
re#ects the smoother nature of approximating curves.
Had a non-segmented polynomial curve representation
been used, the condition of monotonicity in the control
points would alone have reduced the number of feasible
design points to less than 1% of those inside a "ve
dimensional box. As in the two-design-variable case, the
subset of D-optimal points was found using the JMP.

3.4. Low Reynolds number wing model

3.4.1. Training data
The aerodynamic model, a rectangular wing with

a NACA 5405 airfoil cross-section (Fig. 13) is designed
for low Reynolds number (Re"10�}10�) #ows. Since
airfoil performance decreases at low Reynolds number
#ights, attempts to shrink the overall aircraft size while
trying to keep su$cient lifting areas result in low aspect
ratio wing planforms. As aspect ratio decreases, the per-
centage of the wing area a!ected by the tip vortices
increases, creating a 3-D #ow "eld over most of the "eld.
Therefore, the analysis of such #ows should consider the
e!ects on performance and the e!ects of both the airfoil
geometry (such as maximum camber) and the wing
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Fig. 14. Design space for the shear co-axial injector: (a) ERE (15 original points, 10 test points), (b) Q (9 original points, 4 test points).

geometry (such as aspect ratio). In this study, the aerody-
namic analysis is based on a 3-D potential #ow solver,
PMARC, and a 2-D coupled inviscid-viscous #ow solver,
XFOIL�. The lift coe$cients, C

	
, and drag coe$cients,

C


, for various maximum camber, y

�
, aspect ratios, AR,

and angles-of-attack, , at "xed Reynolds number,
Re"2.0�10�, and thickness ratio, y

�
"5%, are used to

correlate the aerodynamic performance, measured by the
power index, C	
�

	
/C



, which appears explicitly in steady

#ight required-power equation. Aspect ratio and max-
imum camber form the input vector, p andC	
�

	
/C



forms

the target output vector, a, as shown below:

p"�
AR

y
�
�
��R

a"[C	
�
	

/C


]
��R , (29)

where R is the number of input vectors of the training
data.
For the 3-D wing case, the maximum camber varies

between 0.0 and 0.1 and the aspect ratio varies between
one and "ve. Three di!erent training data sets are used
out of the available data as shown in Table 34. Table 35
summarizes the test data sets used for prediction for this
case. A simulation, referred in these tables, consists of two
input variables: AR and y

�
and the output variable:

C	
�
	

/C


.

4. Assessment of data processing and optimization
capabilities

Of all the cases considered in this article, the impinge-
ment injector element, swirl co-axial injector element,
two-stage supersonic turbine and turbulent #ow di!user
help elucidate the e!ectiveness of using polynomial-
based RSM. The shear co-axial injector element, one-
stage turbine and two-dimensional wing model are used
to carry out a comparative study between RSM and NN.

The size of the data sets used in these studies varies from
very modest to large (from 9 to 2235 data points).
In the following, we synthesize the studies of Papila

et al. [37,58], Madsen et al. [59], Shyy et al. [38], Tucker
et al. [55,56] and Vaidyanathan et al. [39]. We "rst
review the data processing capabilities then evaluate the
performance of the optimization techniques. For both
NN and polynomials, one needs to "rst decide the most
appropriate constructions for a given data set. For the
NN, the choices are usually (1) the number of neurons,
and (2) the error goals. Furthermore, the spread constant
(for RBNN) and the number of hidden layers (for BPNN)
can be speci"ed. In this article, the BPNN and RBNN
will be limited to the two-layer form.

4.1. Shear co-axial injector

4.1.1. Polynomial xts
According to the injector model developed by Calhoon

et al. [57], injector performance, as measured by ERE
depends only on the velocity ratio,<

�
/<

�
, and combustion

chamber length, ¸
����

. Examination of the original data
set in Tables 36}39 indicates 15 distinct design points for
ERE. Since chamber wall heat #ux is dependent only on
velocity ratio, <

�
/<

�
, and oxidizer to fuel ratio, O/F, there

are nine distinct design points for Q. The design space for
this e!ort is depicted in Fig. 14. For ERE, the "ve distinct
chamber lengths o!er the potential for a fourth-order
polynomial "t in ¸

����
, while the three di!erent velocity

ratios limit the "t in<
�
/<

�
to second order. Quadratic and

cubic response surfaces for both ERE and Q have been
generated for evaluation. These response surfaces repres-
ent reduced models accomplished by term elimination
from the full surface using t-statistics as described earlier.
The above-noted limitations on the data limit the cubic
surfaces to be third order in ¸

����
only.

Based on the adjusted rms-error, Vaidyanathan et al.
[39] have concluded that the cubic "t is more accurate
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Fig. 15. Comparison of � for di!erent NN designed with solverbe for shear co-axial gas}gas injector: (a) ERE (%) and (b) Q (Btu/in� s).

than the quadratic "t for ERE. The adjusted rms-error
for the quadratic and cubic response surfaces of ERE are
0.211 and 0.083, respectively. The cubic "t, by this
measure, is superior for ERE. However, the error is
almost identical in the case of Q for both the quadratic
(0.039) and cubic (0.040) surfaces, apparently due to the
very small number of points available for the curve "t.
The additional terms in the cubic "t relative to the
quadratic "t do not improve the mapping of the response
surface for Q.

4.1.2. Construction of RBNN
In the case of the injector design there are two objec-

tives, namely ERE and Q. Fig. 15 gives the variation of
� for the network designed with solverbe for these objec-
tive functions. In case of solverb the error goal during
training also de"nes the accuracy of the network. An
objective of "tting a numerical model is to remove the
noise associated with the data. A model, which maps
exactly as solverbe does, will not eliminate the noise,
whereas solverb will. Fig. 15 shows that for low values of
spread constant, the NN has a poor performance. As the
spread constant increases � asymptotically decreases.
However, as demonstrated by Fig. 15a the performance
of the network can deteriorate for higher values of the
spread constant. The region with a large variation in � is
highly unreliable because this indicates a high sensitivity
of the model to a small variation of spread constant and
possibly the test data, in this region. Hence the desirable
spread constant is selected from the region where the
performance of the network is relatively consistent.
Fig. 16 gives the variation of � for the network de-

signed with solverb for the objective functions of ERE
and Q. It also shows the in#uence of error goal on the
network. Generally if a network maps the training data
accurately it can be expected to perform e$ciently with
the test data. However, accurately mapping noisy data
may result in poor prediction capabilities for the net-
work. The variation in the performance is not signi"cant

except for the ERE and Q network (Fig. 16), where the
poor performance of the network at high values of spread
constant improves for a larger error goal. This may
indicate the presence of noise in the data for ERE, which
solverb is able to eliminate with an appropriate error
goal. Fig. 17 shows variations in number of epochs and
� with the variation of error goal for a given spread
constant when RBNN is designed with solverb. The
number of neurons in the network is one more than the
number of epochs. One expects that as the error goal
increases the number of epochs becomes smaller and the
network performs less accurately as in Figs. 17a and b.
When choosing an appropriate network the above-

mentioned features must be considered. The performance
of the constructed NN is best judged by comparing the
prediction error as given in Eq. (8) for di!erent networks.
Using solverbe, networks are designed with varying
spread constants and the one that yields the smallest
error is selected. When solverb is used, networks are
designed for di!erent spread constants and error goals.
The network that gives the smallest error for the test data
is used. The details of the networks selected are discussed
in later sections.

4.1.3. Evaluation of polynomial and NN for data
processing
The polynomial- and NN-based RSM are constructed

using the training data. The test data is then employed to
select the best polynomial or NN. Speci"cally in poly-
nomial-based RSM, the di!erence between the poly-
nomial and the training data, as given by �

�
, is normally

used to judge the performance of the "t. The additional
use of the test data helps to evaluate the performance of
di!erent polynomials over design points not used during
the training phase. This gives a complementary insight
into the quality of the polynomial model over the design
space. For example, Tables 4 and 5 compare the perfor-
mance of di!erent polynomials used to represent the two
objective functions of the injector case, ERE and Q, for
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Fig. 16. Comparison of � for di!erent NN designed with solverb for shear co-axial gas}gas injector: (a) ERE (%) and (b) Q (Btu/in� s).

the shear co-axial injector. Starting with all the possible
cubic terms in the model, revised models are generated by
removing and adding terms. Similar kind of analysis is
also done for the turbine case. The best polynomial
is selected based on a combined evaluation between
�
�
and �.
For the NN, the test data helps evaluate the accuracy

of networks with varying neurons in BPNN and varying
spread constant in RBNN. Thus the test data are part of
the evaluation process to help select the "nal NN. Based
on the RSM or NN model, a search for optimum design
is carried out using a standard, gradient-based optimiza-
tion algorithm over the response surfaces represented by
the polynomials and trained neural networks.
A reduced quadratic and an incomplete cubic response

surfaces are used for the two objective functions. The "rst
model in Table 4 and the sixth model in Table 5 are the

selected cubic models for ERE and Q, respectively. There
is no noticeable improvement amongst the remaining
cubic models for ERE. For Q, the selected model is the
best in terms of �

�
although there are other models with

identical values of �.
The radial basis networks designed with solverbe are

the largest with 15 neurons in the hidden layer for ERE
network and nine neurons for the Q network. Solverb
designs a network for ERE with 14 neurons in the hidden
layer and a network for Q with eight neurons. Compared
to RBNN, BPNN has fewer neurons, the number of
neurons in the hidden layer are eight and four for the
ERE and Q networks, respectively. Details of the net-
works used are listed in Table 6. The spread constant
used for RBNN and the error goal of the training data is
also given in this table. The spread constant values are
selected from the region where the performance of the
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Fig. 17. Comparison of error goal versus number of epochs and � for networks trained with solverb for shear co-axial gas}gas injector:
(a) ERE (%), (b) Q (Btu/in� s).

Table 4
Di!erent cubic polynomials for ERE (dependent variables: <

�
/<

�
and ¸

����
, 15 training points, 10 test points)

Model � Coe$cient"0 Terms removed Terms included �
�
(%) � (%)

1 <
�
/<	

�
0.09 0.21

2 <
�
/<	

�
<

�
/<�

�
¸
����

0.08 0.21
3 <

�
/<�

�
¸
����

,<
�
/<	

�
0.08 0.21

4 <
�
/<�

�
¸
����

,<
�
/<	

�
¸�
����

0.09 0.21
5 <

�
/<�

�
¸
����

,<
�
/<	

�
¸�
����

,<
�
/<�

�
¸�

����
0.09 0.21

6 <
�
/<�

�
¸
����

,<
�
/<	

�
¸�
����

,<
�
/<�

�
¸�

����
,<

�
/<

�
¸
����

0.10 0.21
T

network is consistent with the variation of spread con-
stant (Figs. 15 and 16). The error goal, in the case of
solverb, is selected based on the network with the best
performance for the ideal spread constant (Fig. 17).
The error in predicting the values of the objective

function by di!erent schemes is given in Table 7. Several
observations can be readily made:

(1) Both NNs perform better than the RSM for this
data set.

(2) Both solverbe and solverb are of comparable perfor-
mance.

(3) The BPNN helps generate smaller networks and
hence performs at par in comparison to RBNN.

(4) The cubic polynomial is more accurate than the
quadratic one.

The various models generated are compared with test
data shown in Figs. 18 and 19. The curves representing
the NN predictions are closer to the data obtained
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Table 5
Di!erent cubic polynomials for Q (dependent variables: O/F and <

�
/<

�
, 9 training points, 4 test points)

Model � Coe$cient"0 Terms removed Terms included �
�
(%) � (%)

1 <
�
/<	

�
,O/F	 5.58 2.23

2 O/F	 <
�
/<�

�
5.58 2.09

3 <
�
/<�

�
,O/F	 5.58 2.09

4 <
�
/<	

�
,O/F	 5.58 2.23

5 <
�
/<	

�
,O/F	,<

�
/<�

�
3.96 2.09

6 <
�
/<	

�
,O/F	,<

�
/<�

�
<

�
/<�

�
,O/F� 5.58 2.09

Table 6
Neural network architectures used to design the model for shear co-axial injector element �sc"spread constant	

Scheme � of layers � of neurons in
the hidden layer

� of neurons in
the output layer

Error goal aimed for during training

ERE Q ERE Q ERE Q

RBNN (Solverbe) 2 15 9 1 1 0.0 �sc"3.25) 0.0 �sc"1.20	
RBNN (Solverb) 2 14 8 1 1 0.001 �sc"1.05	 0.001 �sc"1.05	
BPNN 2 8 4 1 1 0.01 0.01

Table 7
rms-error in predicting the values of the objective function by
various schemes for the shear co-axial injector element

Scheme � for ERE (%) � for Q (%)

RBNN (Solverbe) 0.20 1.40
RBNN (Solverb) 0.13 1.53
BPNN 0.18 0.83
Partial cubic RS 0.21 2.23
Quadratic RS 0.28 3.49

from the injector model than the RS thereby demon-
strating that NN models are able to predict better than
the RS. The BPNN performs as well as RBNN but tends
to be #at. Due to its lower order, the quadratic poly-
nomial is #at. The cubic polynomial is able to perform
better than quadratic.

4.1.4. Polynomial-based RSM for design optimization
This case study is used to perform a complete com-

parative study between polynomial and NN-based RSM.
The comparison is carried out in three ways. Firstly, the
predictive capabilities of the di!erent models are com-
pared. Secondly, NN is used to increase the population of
the design space, which is then used for mapping by
polynomial-based RSM. Thirdly, polynomials and NN
are used individually to represent the design space and
help in the optimization of the design.

An optimization was done for three di!erent ranges of
the independent variables using the quadratic "t. The
three cases analyzed di!er only in the constraints imple-
mented on the design parameters. The constraints are

Case 1: 4)O/F)6, 4)V
�
/V

�
)6, ¸

����
)7.

Case 2: 4)O/F)6, 5)V
�
/V

�
)7, ¸

����
)7.

Case 3: 4)O/F)6, 6)V
�
/V

�
)8, ¸

����
)7.

The optimization is repeated using the cubic "ts. The
combinations of weighting factors for ERE, s, and for Q,
t, are selected as (1, 10), (1, 1) and (10, 1) for these three
cases. The optimum has been evaluated and tabulated for
each case, as detailed in Tables 8}10. In this e!ort,
injector element optimizationmeans maximizing the per-
formance, while minimizing heat #ux and chamber
length. The optimum value for <

�
/<

�
obtained on the

cubic response surface is quite di!erent than that found
on the quadratic surface for some cases (these particular
cases are noted in bold in Tables 8}10). Also, for selected
cases where there are discrepancies between the quad-
ratic and cubic results, the exact values from the injector
model have been included in parentheses in the tables for
comparison. In these cases, the cubic "t more closely
matches the exact data than does the quadratic "t.
Sample results for ERE plotted in Fig. 20a clearly show
the data is better "t by the cubic surface for the case
shown. Fig. 20b shows that the response surface pre-
dicted by cubic "t for Q has a noticeable dip that is
completely missed by the quadratic "t. This discrepancy
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Fig. 18. Predictive capabilities of various models for ERE of the shear co-axial injector: (a) polynomial, (b) NN.

Fig. 19. Predictive capabilities of various models for Q of the shear co-axial injector: (a) polynomial, (b) NN.

Table 8
Optimum values obtained with cubic and quadratic for case 1 (constraints: 4)O/F)6, 4)<

�
/<

�
)6, and ¸

����
)7) �values in the

parenthesis are the exact response of the injector model	

Cubic Quadratic

=
���

(s) =
�
(t) O/F <

�
/<

�
¸
����

ERE Q O/F <
�
/<

�
¸
����

ERE Q

1 10 6.0 5.41 7.0 99.02 0.664 6.0 6.00 7.0 99.17 0.669
(99.00) (0.654) (99.20) (0.642)

1 1 6.0 6.00 7.0 99.15 0.669 6.0 6.00 7.0 99.17 0.669
10 1 6.0 6.00 7.0 99.15 0.669 6.0 6.00 7.0 99.17 0.669

results in the optimum for the cubic "t being consider-
ably lower than that for the quadratic surface. The pre-
diction from cubic "t agrees well with the exact data,
which also has a dip for this speci"c case.
The injector model was also used to produce addi-

tional design points to assess the capability of the di!er-

ent response surfaces to match the exact data. In
Figs. 21a and 22a, the actual data obtained from the
injector model for all the design points has been shown.
The cubic and quadratic response surfaces obtained
based on the original data are also shown. The rms-error
for predicting the new ERE data is 0.270 and 0.205 for the
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Table 9
Optimum values obtained with cubic and quadratic for case 2 (constraints: 4)O/F)6, 5)<

�
/<

�
)7, and ¸

����
)7) �values in the

parenthesis are the exact response of the injector model	

Cubic Quadratic

=
���

(s) =
�
(t) O/F <

�
/<

�
¸
����

ERE Q O/F <
�
/<

�
¸
����

ERE Q

1 10 6.0 5.41 7.0 99.02 0.664 6.0 6.52 7.0 99.31 0.684
(99.00) (0.654) (99.10) (0.716)

1 1 6.0 6.34 7.0 99.21 0.674 6.0 7.00 7.0 99.42 0.702
(99.20) (0.691) (99.30) (0.728)

10 1 6.0 7.00 7.0 99.32 0.690 6.0 7.00 7.0 99.42 0.702

Table 10
Optimum values obtained with cubic and quadratic for case 3 (constraints: 4)O/F)6, 6)<

�
/<

�
)8, and ¸

����
)7)

Cubic Quadratic

=
���

(s) =
�
(t) O/F <

�
/<

�
¸
����

ERE Q O/F <
�
/<

�
¸
����

ERE Q

1 10 6.0 6.00 7.0 99.15 0.669 6.0 6.52 7.0 99.31 0.684
1 1 6.0 6.34 7.0 99.21 0.674 6.0 8.00 7.0 99.67 0.753
10 1 6.0 8.00 7.0 99.42 0.728 6.0 8.00 7.0 99.67 0.753

Fig. 20. Comparison between cubic and quadratic response surface for case 3 of: (a) ERE, (b) Q for the shear co-axial injector (NN and
injector model data are the same points in the graph. Quadratic and cubic are predicted by polynomial-based RSM).

quadratic and cubic surfaces, respectively. For Q, it is
0.025 and 0.016 for the quadratic and cubic surfaces,
respectively. Again, the performance of the cubic surface
is superior to that of the quadratic surface.

4.1.5. Radial basis neural networks (RBNN)
Radial basis neural networks are trained by both

solverbe and solverb for each injector design response,
ERE and Q, using the original data set of 45 design
points. Solverbe trained the network for ERE with an

error to the order of 10��	. The network trained by
solverbe for Q has an error on the order of 10���. Both
networks represent the respective design spaces essential-
ly exactly. Solverb, with an error goal of 0.001, trained
networks for both responses to represent the original
data set adequately. Since the size of the data set con-
sidered for training the network is fairly modest, the
number of neurons generated by solverbe is also small.
Solverb would have been suited better for a larger data
set where a reduction in the number of neurons might
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Fig. 21. Assessment of predictive capabilities of: (a) polynomial based method, (b) RBNN for ERE of the shear co-axial injector (15
training/mapping points 10 test points).

Fig. 22. Assessment of predictive capabilities of: (a) polynomial based methods and (b) RBNN for Q (9 training/mapping points, 4 test
points) for shear co-axial injector design.

have appreciably reduced the computation time. The
networks trained using solverbe have been used for this
study. The ability of the RBNN to "t the design data and
to generate additional data for constructing a more accu-
rate response surface is discussed in the following sec-
tions.
(i) Comparison between Solverbe and Solverb: Since Sol-

verbe trains with the same number of neurons (45 in this
case) as data points, as noted above, it "ts the training
data set with negligible error. However, it can also create
erratic behavior since it makes no attempt to "lter noise
generated by excess neurons in the network. Solverb, on
the other hand, tends to reduce the potential for noise
by controlling the number of neurons in the network.
Table 11 shows that in the present e!ort, for the spread
constant value of 1.00, Solverb performs slightly better
than Solverbe based on the nominal error measure.
However, when judged by the level of errors associated,

both RBNNs are satisfactory from a practical stand-
point. As expected, Solverb uses fewer neurons than
Solverbe; in this case three less. It should be noted that, as
investigated in detail by Papila et al. [37], indicates the
relative performance between Solverb and Solverbe is
case dependent.
(ii) Comparison of RBNN predictions with polynomial-

based RSM: Figs. 21b and 22b show that the RBNN
trained by Solverbe is able to more accurately generate
additional design data than either quadratic or cubic
polynomial (shown for comparison in Figs. 21a and 22a).
In Fig. 21a, the ERE surface trained with the original
data set is shown. The 10 extra design points calculated
with the injector model for <

�
/<

�
of 5.00 and 7.00 are

shown. The ability of the RBNN to accurately generate
new design data can be seen by comparing the "t for ERE
in Fig. 21b to that for the polynomials in Fig. 21a. The
RBNN trains the network with more #exibility and
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Table 11
The rms-error in the prediction of ERE and Q for di!erent values of spread constant. The error goal used for Solverb is 0.001

Sc Solverbe rms-error
(ERE)

Solverbe rms-error
(Q)

Solverb rms-error
(ERE)

Solverb rms-error
(Q)

Solverb
No. of neurons

0.50 1.493 0.179 1.733 0.287 44
0.75 0.745 0.135 0.675 0.135 44
1.00 0.152 0.022 0.153 0.017 42
1.05 0.190 0.011 0.128 0.012 44
1.25 0.316 0.010 0.267 0.022 44
1.50 0.336 0.022 0.309 0.030 44
1.75 0.369 0.022 0.310 0.021 44
2.00 0.308 0.016 0.296 0.019 41
2.25 0.279 0.020 1.846 0.045 43
2.50 0.325 0.017 0.744 0.025 43

learns the data trend, whereas polynomials provide only
an approximate "t on the given data. Regarding the
rms-error, �, for ERE, it is 0.152 for RBNN predictions as
compared to the values of 0.270 and 0.205 for quadratic
and cubic surfaces, respectively. The four extra design
points generated for Q, also at <

�
/<

�
of 5.00 and 7.00 are

shown compared to the polynomial in Fig. 22a and
RBNN in Fig. 22b. The rms-error in the case of Q is 0.022
for RBNN as compared to 0.025 and 0.016 for quadratic
and cubic surfaces, respectively. Here the performance
of the RBNN is better than the quadratic but slightly
poorer than the cubic "t. Examination of Table 11 indi-
cates it may be possible that using Solverb with a spread
constant of 1.05 could further reduce the rms-error for Q.
However, the errors for Q are low enough that further
reduction may not be practical.

4.1.6. RBNN-enhanced polynomial-based response
surface
Additional design points generated by the RBNN are

added to the original data set to form the enhanced data
set. This enhanced data set is used for further analysis to
evaluate the performance of the RSM with the larger
number of design points. The enhanced data set for ERE
has 15 points from the injector model and 10 from the
RBNN, for a total of 25 points. The enhanced data set for
Q has 9 points from the injector model and 4 from the
RBNN, for a total of 13 points. The entire optimization
analysis was redone with the enhanced data set. On this
enhanced data set, the full quadratic response surface
seems already appropriately constructed and invoking
the statistical analysis generates no reduced model. With
the added data in the enhanced data set, it is now pos-
sible to obtain a "t for ERE that is fourth order in <

�
/<

�
and fourth order in ¸

����
. Q can now be "t with a cubic

in <
�
/<

�
and a quadratic in O/F. This is now possible

since a combination of 3 di!erent values of O/F, 5 di!er-
ent values of <

�
/<

�
and 5 di!erent values of ¸

����
are

available.

(i) Comparison of xts with the original response surfaces:
Comparison of the enhanced response surfaces with the
original response surfaces indicates that the extra data
produced with the RBNN generally improves the quality
of the curve "t. The adjusted rms-error for ERE on the
original set is 0.211 and 0.083 for quadratic and cubic "ts,
respectively. On the enhanced data set, it is 0.179 and
0.100 for the quadratic and cubic "ts, respectively. The
slight increase in the error in the case of the cubic "t may
be due to noise related to the over-sensitivity of the
polynomial. However, this phenomenon may re#ect the
fact that the level of the rms-error is low enough in either
case so that no further improvement is accomplished.
The adjusted rms-error for Q with the original set is 0.039
and 0.040 for the quadratic and cubic "ts, respectively.
On the enhanced set it was 0.027 and 0.026 for the
quadratic and cubic, respectively. With the exception of
the cubic "t for ERE, the "ts from the enhanced surface
are improved over those from the original surface. Also,
when optimum design points are examined, there is less
di!erence between the quadratic and cubic "ts on the
enhanced surfaces than there is on the original surfaces.
(ii) Comparison of optimal design points: The analysis

for the three cases of optimization over the same three
ranges of independent variables has been re-done. The
results of the optimization on surfaces generated from the
enhanced data set are tabulated in Tables 12}14. The
predicted optimal design points using cubic and quad-
ratic "ts are generally close to each other. They are closer
to each other on the enhanced data set than on the
surfaces generated using the original data set. One case
where the cubic and quadratic optimum points are some-
what di!erent is analyzed further. The results shown in
Fig. 23 con"rm the optimum value of velocity ratio on
the quadratic "t to be lower than the cubic "t in this case.
Given the weightings of 1.0 for ERE and 10.0 for Q, the
optimizer has selected the minimum of Q for both "ts.
Since the curves exhibit di!erent minimum points, the
weightings force the selection of di!erent optimum
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Table 12
Optimum values obtained with cubic and quadratic for case 1 (enhanced data set) (constraints: 4)O/F)6, 4)<

�
/<

�
)6, and

¸
����

)7) �cf. with Table 8	

Cubic Quadratic

=
���

(s) =
�
(t) O/F <

�
/<

�
¸
����

ERE Q O/F <
�
/<

�
¸
����

ERE Q

1 10 6.0 5.54 7.0 99.02 0.654 6.0 5.01 7.0 98.96 0.644
(98.90) (0.658) (98.70) (0.664)

1 1 6.0 6.00 7.0 99.12 0.658 6.0 6.00 7.0 99.25 0.658
10 1 6.0 6.00 7.0 99.12 0.658 6.0 6.00 7.0 99.25 0.658

Table 13
Optimum values obtained with cubic and quadratic for case 2 (enhanced data set) (constraints: 4)O/F)6, 5)<

�
/<

�
)7, and

¸
����

)7) �cf. with Table 9	

Cubic Quadratic

=
���

(s) =
�
(t) O/F <

�
/<

�
¸
����

ERE Q O/F <
�
/<

�
¸
����

ERE Q

1 10 6.0 5.54 7.0 99.02 0.654 6.0 5.01 7.0 98.96 0.644
(98.90) (0.658) (98.70) (0.664)

1 1 6.0 6.33 7.0 99.18 0.663 6.0 6.04 7.0 99.26 0.659
(99.10) (0.666) (99.20) (0.642)

10 1 6.0 7.00 7.0 99.30 0.681 6.0 7.00 7.0 99.46 0.693

Table 14
Optimum values obtained with cubic and quadratic for case 3 (enhanced data set). (constraints: 4)O/F)6, 6)<

�
/<

�
)8, and

¸
����

)7) �cf. with Table 10	

Cubic Quadratic

=
���

(s) =
�
(t) O/F <

�
/<

�
¸
����

ERE Q O/F <
�
/<

�
¸
����

ERE Q

1 10 6.0 6.00 7.0 99.12 0.658 6.0 6.00 7.0 99.25 0.658
1 1 6.0 6.33 7.0 99.19 0.663 6.0 6.04 7.0 99.26 0.659
10 1 6.0 8.00 7.0 99.42 0.725 6.0 7.95 7.0 99.57 0.746

points. As already discussed, for the polynomial "ts on
the RBNN-enhanced data sets, the errors of both quad-
ratic and cubic polynomials are more comparable than in
the original analysis. At the upper limit of the design
space for combustor length, the ERE curves tend to
#atten out. This causes some di$culty in locating the
optimum and may cause more noticeable di!erences
between the di!erent polynomials. However, di!erent
optimal designs selected by di!erent polynomials under
such a circumstance are not signi"cant since these yield
very similar injector performance.
The optimum solution obtained from various schemes

is shown in Table 15 and Figs. 24 and 25. The aim is to
maximize ERE and minimize Q. The trend of the objec-
tive functions in the design space is monotonic, hence

every model is able to select identical optimum design for
the given constraints. The #atness of the quadratic poly-
nomial results in less accurate values of the objective
function for the optimum design. However, the cubic
polynomial, while more #exible than quadratic, is not
consistently better in predicting the optimal design point.
For example, a <

�
/<

�
constraint of 4, the quadratic

polynomial is more accurate but for higher values of
<

�
/<

�
the cubic polynomial is more accurate. In contrast,

the NN models are able to perform consistently well.
Since the optimum design happens to be the same as one
of the training points, solverbe is able to predict the
values of the objective function accurately. Solverb per-
forms equally well, illustrating the capability of perfor-
mance with fewer neurons. Performance of BPNN is not
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Fig. 23. Assessment of performance of cubic and quadratic response surfaces for case 1 of: (a) ERE for the shear co-axial injector (25
training/mapping points), (b) Q (13 training/mapping points) �Enhanced set includes Injector model data and RBNN predicted data.
Quadratic and cubic are predicted by polynomial-based RSM	.

Table 15
Optimal solutions for "xed values of <

�
/<

�
and given range of O/F and ¸

����
obtained with NN and polynomial-based RSM schemes

for the shear co-axial injector element (constraints: 4)O/F)8, 4)¸
����

)7) (error given in parenthesis for each prediction is in %)

<
�
/<

�
Scheme O/F ¸

����
(in) ERE (%) Q (Btu/in�-s)

4 RBNN (Solverbe) 8.0 7.0 98.60 (0.00) 0.588 (0.00)
RBNN (Solverb) 8.0 7.0 98.60 (0.00) 0.588 (0.00)
BPNN 8.0 6.9 98.64 (0.14) 0.578 (1.70)
Partial cubic RS 8.0 7.0 98.61 (0.01) 0.595 (1.19)
Quadratic RS 8.0 7.0 98.67 (0.07) 0.591 (0.51)
Model 8.0 7.0 98.60 0.588
Model 8.0 6.9 98.50 0.588

6 RBNN (Solverbe) 8.0 7.0 99.20 (0.00) 0.512 (0.00)
RBNN (Solverb) 8.0 7.0 99.20 (0.00) 0.512 (0.00)
BPNN 8.0 7.0 99.18 (0.02) 0.513 (0.20)
Partial cubic RS 8.0 7.0 99.15 (0.05) 0.499 (2.54)
Quadratic RS 8.0 7.0 99.17 (0.03) 0.531 (3.71)
Model 8.0 7.0 99.20 0.512

8 RBNN (Solverbe) 8.0 7.0 99.40 (0.00) 0.493 (0.00)
RBNN (Solverb) 8.0 7.0 99.40 (0.00) 0.493 (0.00)
BPNN 8.0 7.0 99.41 (0.01) 0.500 (1.42)
Partial cubic RS 8.0 7.0 99.42 (0.02) 0.500 (1.42)
Quadratic RS 8.0 7.0 99.67 (0.27) 0.471 (4.46)
Model 8.0 7.0 99.40 0.493

as satisfactory as suggested in Table 7. For lower con-
straints of <

�
/<

�
, it performs poorly but for higher values

of <
�
/<

�
it is good. This may be due to the selection of

fewer neurons in the hidden layers of the networks. Over-
all, it is still better than the polynomial-based RSM and
demonstrates the #exibility of NN over polynomials.
As stated by Papila et al. [37], when it comes to

choosing between NN and polynomials, polynomials are

easy to compute. The number of coe$cients might be
numerous but the linearity of the system expedites the
process of coe$cient evaluations. This is also the reason
RBNN train fast. On the other hand, the weights of
BPNN are evaluated through a nonlinear optimization,
which slows the training process. Of all the NN presented
here, the one designed with the help of solverbe is the
fastest to train since the values of the weights are set to
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Fig. 24. Performance of various models for ERE of the shear co-axial injector: (a) RSs, (b) NNs.

Fig. 25. Performance of various models for Q of the shear co-axial injector: (a) RSs, (b) NNs.

values of the input dependent variables. Solverb trains
with the addition of one neuron at a time with weights
similar to the input and hence is slower.

4.2. Impinging injector element

4.2.1. Polynomial xts
In [55], method i uses the polynomial based RSM to
"nd optimal values of ERE, Q

	
, Q


��
, =

��
and C

��
for

acceptable values of �P
�
, �P

�
, ¸

����
and . The ap-

proach of RSM is to perform a series of experiments, or
numerical analyses, for a prescribed set of design points,
and to construct a response surface of the measured
quantity over the design space. In the present context, the
"ve responses of interest are ERE, Q

	
, Q


��
, =

��
and

C
��
. The design space consists of the set of relevant

design variables �P
�
, �P

�
, ¸

����
and .

(i) Individual polynomial models: When JMP is used to
analyze the 163 design points, "ve individual full re-

sponse surfaces for the variables in the design space are
approximated by quadratic polynomials that contain 15
terms each. Using the t-statistics approach noted above
and detailed in [55], unnecessary terms in each equation
can be eliminated to give the reduced quadratic surfaces.
The reduced response surfaces indicates that the equa-
tions re#ect the functionality used to construct the mod-
els for the dependent variables.
(ii) Joint response surfaces: In the current article, it is

desirable to maximize ERE and while simultaneously
minimizing Q

	
, Q


��
,=

��
and C

��
. Therefore, composite

response surface for the present case is given by

D"(d
���

d
�	
d
�
��
d
���

d
���

)�
�. (30)

4.2.2. Optimization results and discussion
Three sets of results are presented below to demon-

strate the capability of method i for the current injector
design. These three examples illustrate the e!ect of each

90 W. Shyy et al. / Progress in Aerospace Sciences 37 (2001) 59}118



Table 16
E!ect of each variable on the optimization of impingement co-axial element*optimal designs for original constraints and equal weights

Independent variable Constraints Results Case 1 Results Case 2 Results Case 3 Results Case 4

�P
�

100}200 183 183 179 100
�P

�
100}200 100 132 149 100

¸
����

2}8 8.0 8.0 6.6 6.5
 15}50 33.1 18.9 22.3 24.0

Dependent variable Desirability limits ERE & Q
	

ERE, Q
	
,

H

��
��

ERE, Q
	
,

H

��
��

, =
��

ERE, Q
	
,

H

��
��

, =
��
, C

��
ERE 95.0}99.9 99.9 98.3 98.0 98.0
Q

	
0.7}1.3 0.74 0.76 0.79 0.86

H

��
��

0.2}1.0 * 0.75 0.61 0.63
=

�l
0.9}1.2 * * 1.1 1.1

C
��

0.7}1.1 * * * 0.93

variable on the optimum design, the trade-o!s between
life and performance issues, and the e!ect on the design of
extracting the last increment of performance.
(i) Ewect of each variable on the design using original

constraints and equal weights: The results in this section
were obtained by building the joint response surface with
the addition of one dependent variable at a time. The
results are shown in Table 16. Since current non-opti-
mizer-based design methods yield high-performing
injector elements, simply maximizing the ERE is not
a challenge. Accordingly, the initial results (Case 1) are
obtained with a joint ERE and Q

	
response surface. The

results in Case 2 have the impingement height added,
Case 3 adds the relative chamber weight and the relative
cost is added in Case 4. All results are obtained using the
original independent variable constraints and all depen-
dent variables have equal weights of one. The results for
Case 1 show that ERE is at its maximum and Q

	
is very

near its minimum desirability limit. Minimizing Q
	
re-

quires a small �P
�
relative to �P

�
as evidenced by the

values of 100 and 183 psi, respectively. Maximum ERE
values are found at the longest chamber length,
¸
����

"8 inc. Even with the relatively high value of
183 psi for �P

�
and low value of �P

�
of 100 psi, ERE is

maximized to 99.9% with an impingement half-angle of
33.13.
Addition of the impingement height to Case 2 to model

the injector face heat #ux, Q

��
, forces  lower to increase

H

��
��

and decrease Q

��
. This decrease in the radial

component of the fuel momentum has an adverse a!ect
on ERE. This e!ect is mitigated to a degree by increasing
the �P

�
from 32 to 132 psi. ERE is still reduced by 1.6%.

Also, the increase in �P
�
causes increased penetration of

the fuel jet, which results in a slightly higher Q
	
.

Case 3 adds the relative combustor weight to the list of
dependent variables modeled. Since=

��
is only a func-

tion of ¸
����

, minimizing =
��

shortens the combustor

length from 8 to 6.6 in. The shorter ¸
����

tends to lower
ERE. This e!ect is o!set to a large degree by increases in
�P

�
and , both of which increase the radial component

of the fuel momentum. The increase in �P
�
also causes

a slight increase in Q
	
. The increase in  causes a signi"-

cant decrease inH

��
��

, which increases the injector face
heat #ux. Finally, the relative cost of the injector is added
in Case 5. Since C

��
is only a function of propellant

pressure drops, both �P
�
and �P

�
are driven to their

respective minimum values. This and a slight increase in
 allow ERE to be maintained at 98%, even with a slight
decrease in ¸

����
. The largest e!ect of this fairly dramatic

decrease in propellant pressure drops is on Q
	
. Even

though the values for �P
�
and �P

�
fell, �P

�
increased

relative to �P
�
causing Q

	
to increase by almost 9%.

Impingement height and relative combustor weight are
essentially unchanged.
Although several of the variables included in this exer-

cise are qualitative, an important conclusion can still be
drawn. The sequential addition of dependent variables to
an existing design results in changes to both the indepen-
dent and dependent variables in the existing design. The
direction and magnitude of these changes depends on the
sensitivity of the variables, but the changes may well
be signi"cant. The design in Case 4 is quite di!erent that
the one in Case 1. Consideration of a larger design space
results in a di!erent design * the sooner the additional
variables are considered, the more robust the "nal design
will be.
(ii) Emphasis on life and performance issues using orig-

inal constraints and unequal weights: The purpose of this
section is to illustrate the e!ect of emphasizing certain
design criterion on the optimization process. Method i
allows this emphasis via the weights applied to the
desirability functions in the joint response surface. The
results shown in Table 17 facilitate the illustration.
Case 1 (baseline) results are repeated from Case 4 in this
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Table 17
E!ect of emphasizing & life & performance issues on the optimization of impingement co-axial injector element*optimal designs for
original constraints and modi"ed weights

Independent
variable

Constraints Results Case 1 Constraints Results Case 2 Constraints Results Case 3

�P
�

100}200 100 100}200 158 100}200 100
�P

�
100}200 100 100}200 100 100}200 137

¸
����

2}8 6.5 2}8 7.7 2}8 5.2
 15}50 24.0 15}50 15.0 15}50 36.0

Dependent
variable

Baseline variable
weight

Life variable
weight

Thrust/weight
variable weight

ERE 1 98.0 1 96.7 5 99.1
Q

	
1 0.86 5 0.75 1 0.95

H

��
��

1 0.63 5 0.94 1 0.32
=

��
1 1.10 1 1.14 5 1.05

C
��

1 0.93 1 0.97 1 0.95

table where the entire design space is considered with the
original constraints and equal weights for the dependent
variables. The results in Case 2 column are obtained by
emphasizing the minimization of the wall and injector
face heat #uxes. Desirability functions for both of these
variables are given a weight of "ve. Since lower heat
#uxes tend to increase component life, weighting these
two variables is equivalent to emphasizing a life-
type issue in the design. As expected,  is decreased to
increase H


��
��
, thus decreasing Q


��
. Since the fuel

pressure drop is already at the minimum, the oxidizer
pressure drop is increased by 58% to decrease Q

	
. Both

of these changes tend to decrease ERE. While ERE does
decrease, the e!ect is somewhat mitigated by an increase
in ¸

����
. The increases in ¸

����
and �P

�
cause increases

in =
��

and C
��
, respectively. The emphasis on life

extracts the expected penalty on performance. Addition-
ally, for the current model, there are also weight and cost
penalties.
The results for Case 3 are obtained by emphasizing

maximization of ERE and minimization of =
��

with
desirability weightings of "ve. Increased weighting for
these two variables is equivalent to emphasizing a thrust
to weight goal for the injector/chamber. The relative
chamber length is shortened to lower=

��
. ERE is maxi-

mized by increasing the radial momentum of the fuel jet.
Both �P

�
and  are increased to accomplish ERE maxi-

mization. As noted earlier, increasing �P
�
and  lead to

increased wall and injector heat #uxes, respectively.
Table 17 indicates that to be the case here. For this case,
emphasis on thrust and weight tend to have an adverse
a!ect on both Q

	
and Q


��
. Relative cost, for the current

model, is not signi"cantly a!ected.
(iii) Extraction of last performance and weight increments

(modixed constraints and unequal weights): Here, the high
marginal cost of realizing the last increment of thrust to

weight is shown. This section illustrates the capability to
modify the constraints on the independent variables and
use unequal weights on the dependent variables at the
same time. The results for Case 3 in Table 17 are carried
over to Case 1 in Table 18 as the baseline for this
example. Here the original constraints are used but in-
creased weights have been applied to emphasize ERE
and =

��
. Cases 2 and 3 modify the constraints on the

propellant pressure drops, raising the minimum pressure
drop from 100 to 150psi. For Case 2, both �P

�
and �P

�
are now at the minimum level for the modi"ed con-
straints. ¸

����
is increased slightly to maintain ERE. The

decrease of �P
�
relative to �P

�
causes a decrease in Q

	
.

The slightly higher-pressure drops also cause C
��

to
increase somewhat. Other variables are not changed
appreciably.
For Case 3, ERE and=

��
are further emphasized by

increasing their desirability weights to 10 while decreas-
ing the other weights to 0.1. ¸

����
is shortened to re-

spond to the increased emphasis on weight minimization.
Maintaining the high level of ERE requires large in-
creases in �P

�
and  to increase the radial component of

the fuel jet momentum. The increase in �P
�
causes over-

penetration of the fuel jet, which results in an increase in
wall heat #ux. The large increase in  yields the expected
decrease inH


��
��
, which increases the injector face heat

#ux. The additional emphasis on ERE and C
��

yields
essentially no increase in ERE in this range of �P,
although a small weight savings is seen. These marginal
improvements are o!set by fairly large increases in
C

��
and Q


��
.

4.3. Swirl co-axial injector element

Two sets of results are presented below to demonstrate
the capability and #exibility of method i for the current
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Table 18
E!ects of realizing the last increments of performance & weight on the optimization of impingement co-axial injector element
*optimum designs for modi"ed constraints and unequal weights

Independent
variable

Original
constraints

Results Case 1 Modi"ed �P
constraints

Results Case 2 Modi"ed �P
constraints

Results Case 3

�P
�

100}200 100 150}200 150 150}200 150
�P

�
100}200 137 150}200 150 150}200 200

¸
����

2}8 5.2 2}8 5.4 2}8 4.4
 15}50 36.0 15}50 35.6 15}50 44.8

Dependent
variable

Variable weight
(5 : 1)

Variable weight (5 : 1) Variable weight
(100 : 1)

ERE 5 99.1 5 99.0 10 99.1
Q

	
1 0.95 1 0.84 0.1 0.95

H

��
��

1 0.32 1 0.31 0.1 0.21
=

��
5 1.05 5 1.05 10 1.01

C
��

1 0.95 1 1.00 0.1 1.07

Table 19
E!ect of each variable on the optimization of swirl co-axial injector element*optimal designs for original constraints and equal weights

Independent
variable

Constraints Results Case 1 Results Case 2 Results Case 3 Results Case 4 Results Case 5

�P
�

100}200 200 200 200 200 104
�P

�
20}200 41 41 42 47 20

¸
����

2}8 7.2 7.2 7.6 3.2 3.4
� 30}90 81 81 37 47 44

Dependent
variable

Desirability
limits

ERE ERE & Q
	

ERE, Q
	
, Q


��
ERE, Q

	
, Q


��
,

=
��

ERE, Q
	
, Q


��
,

=
��
, C

��
ERE 92.3}99.0 98.5 98.5 97.2 96.0 95.7
Q

	
0.596}0.647 0.596 0.596 0.596 0.596 0.596

Q

��

6.95}36.59 26.8 26.8 9.1 12.0 10.5
=

��
0.900}1.154 1.13 1.13 1.14 0.97 0.98

C
��

0.73}1.42 0.98 0.98 0.81 0.84 0.76

injector design. These examples illustrate the e!ect of
each variable on the optimum design and the trade-o!s
between life and performance issues.

4.3.1. Ewect of each variable on element design
The results in this section were obtained by building

the joint response surface with the addition of one depen-
dent variable at a time. The results are shown in Table 19.
Case 1 seeks the maximum performance without regard
to the e!ect on the other dependent variables. ERE is
a fairly strong function of ¸

����
*longer chamber lengths

allow more residence time for the propellant to mix and
burn. The e!ect of � on ERE is strongest at low values of
�. ERE increases with increasing � until about �"803
and then fall o! slightly due to the competing in#uences
noted earlier. These competing in#uences also cause the

e!ect of both pressure drops on ERE to be somewhat #at,
although since �P

�
a!ects more variables, its in#uence is

slightly stronger. Maximum performance is found at high
values of �P

�
, �, and ¸

����
and at low values of �P

�
.

This trend is consistent with other works for similar
injector elements. The predicted optimal value of 98.5 is
indeed the highest predicted by this model.
The objective of Case 2 is to simultaneously maximize

ERE and minimize Q
	
. Table 19 shows that the exact

same design point was chosen as for Case 1. Usually, the
design, which yields the maximum ERE, also produces
a high wall heat #ux. That is not the case here; this issue
has already been noted. The minimumQ

	
is found in the

region of high �P
�
and low �P

�
. In this area, Q

	
is

almost independent of �. Hence, the minimum Q
	
can

still be found for a high value of � required to maximize
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Table 20
E!ect of emphasizing life and performance issues on the optimization of swirl co-axial injector element

Independent
variable

Constraints Results baseline Constraints Results Case 1 Constraints Results Case 2

�P
�

100}200 104 100}200 200 100}200 200
�P

�
20}200 20 20}200 32 20}200 44

¸
����

2}8 3.4 2}8 3.6 2}8 2.9
� 30}90 44.0 30}90 30.0 30}90 72.0

Dependent
variable

Baseline variable
weight

Life variable
weight

Thrust/weight
variable weight

ERE 1 95.7 1 95.3 10 96.7
Q

	
1 0.596 5 0.596 1 0.596

Q

��

1 10.5 10 6.9 1 22.6
=

��
1 0.98 1 0.99 2 0.96

C
��

1 0.76 1 0.79 1 0.94

ERE. It should be noted that in the low �P
�
, high �P

�
region, Q

	
is a function of �. Here, as � is increased,

Q
	

increases since the larger swirl angle forces d
�
to

increase and thus decrease <
�
. In the Calhoon et al. [57]

model, this reduction in GO
�

momentum causes an
increase in Q

	
.

The requirement to minimize Q

��

is added in Case 3.
In order to minimize Q


��
, the swirl angle is decreased

from 81 to 373, thus reducing the injector face heat #ux
by approximately a factor of 3. This decrease in � also
lowers ERE which forces use of a longer chamber to
o!set some of the loss. Still, ERE is reduced by over one
percent.
Case 4 considers the desire to minimize the chamber

weight,=
��
, in addition to maximizing ERE and minim-

izing Q
	
and Q


��
. Since=

��
depends only on ¸

����
, the

chamber length is shortened by over half. The weight is
reduced, but so is ERE. To mitigate the adverse e!ect on
ERE, � is increased by almost 103, simultaneously in-
creasing Q


��
. ERE drops again by over a percent, while

Q
	
remains constant.

Finally, minimizing the injector cost, C
��
, is added in

Case 5. Decreasing each pressure drop approximately
a factor of 2 lowers the relative injector cost. Decreasing
�P

�
results in a larger fuel gap and decreasing �P

�
allows

for a larger swirl slot. These factors combine to lower the
cost by almost 10%.
Although several of the variables included in this exer-

cise are qualitative, an important conclusion can still be
drawn. The sequential addition of dependent variables to
an existing design results in changes to independent and
dependent variables in the existing design. The direction
and magnitude of these changes depends on the sensitiv-
ity of the variables, but the changes may well be signi"-
cant. The design in Case 5 is quite di!erent than the one
in Case 1. Consideration of a larger design space may

result in a signi"cantly di!erent design*the sooner the
additional variables are considered, the more robust the
"nal design.

4.3.2. Emphasis on life and performance issues
Method i allows this emphasis via the weights applied

to the desirability functions in the joint response surface.
The set of results shown in Table 20 facilitate the illustra-
tion. The baseline results Table 20 (repeated from Case 5
in Table 19) consider the entire design space using the
original constraints and equal weights for the dependent
variables. The results are obtained by emphasizing the
minimization of the wall and injector face heat #uxes for
Case 1. Desirability functions for both of these variables
are given increased weights (5 and 10, respectively). Since
lower heat #uxes tend to increase component life, weight-
ing these two variables is equivalent to emphasizing
a life-type issue in the design. Since Q

	
is already at its

minimum value, it remains "xed. As expected, � is de-
creased, which decreases the value of Q


��
by almost 35%.

The lower value of � also produces a lower ERE. Both
propellant pressure drops and the combustor length are
increased to mitigate the drop in ERE. The increases in
¸
����

and �P
�
cause increases in =

��
and C

��
, respec-

tively. The emphasis on life extracts the expected penalty
on performance. Additionally, for the current model,
there are also slight weight and cost penalties.
The results for Case 2 are obtained by emphasizing

maximization of ERE and minimization of =
��

with
desirability weightings of 10 and 5, respectively. In-
creased weighting for these two variables is equivalent to
emphasizing a thrust to weight goal for the injec-
tor/chamber. The relative chamber length is shortened to
slightly lower=

��
. ERE is maximized by increasing the

GO
�

swirl angle by a factor of almost 2.5 and also
increasing �P

�
by over 35%. The value of ERE increases
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Fig. 26. Performance and weight trends for swirl and impinging
elements.

Fig. 27. Heat #ux and cost trends for swirl and impinging
elements.

by over 1%. As noted earlier, increasing � leads to
increased injector heat #ux. For this case, emphasis on
thrust and weight tends to have an adverse a!ect on Q


��
.

Relative cost, for the current model, is also increased
signi"cantly. Performance and weight trends for the swirl
and impinging injector elements are shown in Fig. 26.
Fig. 27 shows the heat #ux and cost trends for the swirl
and impinging injector elements.

4.4. Supersonic turbine for reusable launch vehicles

4.4.1. Polynomial-based RSM results for one-, two-
and three-stage turbines
There are 28-unknown coe$cients required for con-

structing the second-order response surface for the
single-stage case, 78 for the two-stage and 136 for the
three-stage case. Di!erent starting points are tried to
avoid local maximum and the optimum values of �,
= and �pay with the corresponding design parameters
are determined. The results shown are comparable with
the corresponding Meanline runs with the highest error
of 5% for �pay for single-stage turbine. The percentage
error is increased to 13.5% for �pay for two-stage tur-
bine and to 14.6% for the three-stage turbine for �pay
indicating that the accuracies of the response surfaces
constructed are poor for the two- and three-stage.
Papila et al. [58] have reduced the size of the para-

meter space by 80% in each coordinates, based on the
optimal design selected in the original design space, to
improve the accuracy of the response surfaces for these
cases. The intention is to improve the "delity of the
response surface. With these re"ned designed spaces,
substantial improvement of the response surface "t accu-
racy is observed for both cases by Papila et al. [58].
Based on the results obtained, the following observa-

tions can be made:
(1) To ascertain required predictive capability of the

RSM, a two-level domain re"nement strategy has been
adopted by Papila et al. [58]. The accuracy of the pre-
dicted optimal design points based on this approach is
shown to be satisfactory.
(2) According to the results obtained for �pay-based

optimization, the two-stage turbine gives the best �pay
result.
(3) As the number of stages increases, it is observed

that e$ciency improves while the weight increases, also.
However, the improvement in e$ciency cannot compen-
sate for the penalty from higher weight.
(4) As shown in Fig. 28, the mean diameter, speed, and

the exit blade area exhibit distinct trends. Speci"cally, the
diameter decreases, speed increases, and annulus area
decreases with increasing number of stages. It is interest-
ing to observe that none of these design parameters are
toward the limiting values, indicating that the optimal
designs result from compromises between competing
parametric trends. For such cases, a formal optimizer such
as the present response surface method is very useful.
Table 21 gives a summary of the optimization results

for one-, two- and three-stage turbines for �pay-based
optimization.

4.4.2. Higher-order polynomials and NN-based RSM
for single-stage turbine
The generation of polynomial-basedRS model and the

training of the NN are done with 76 design points of the
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Fig. 28. E!ect of the number of turbine stage on optimum design parameters;D, RPM, andA
���

and optimum output parameters; �,=,
and �pay calculated for �pay-based optimization (all geometric design variables and output parameters are normalized by the baseline
values).

Table 21
Optimization summary for one-, two- and three-stage turbine with response surface in original design space (all output parameters are
normalized by the baseline values)

Original design space Re"ned design space

�
���

=
���

�pay
���

�
���

=
���

�pay
���

1-stage 0.77 0.73 !0.21 0.77 0.73 !0.21
�pay 2-stage 1.10 1.05 0.11 1.13 1.04 0.15

3-stage 1.24 1.62 0.14 1.20 1.54 0.11

single-stage turbine. The analysis was initially done with-
out the constraints and then with the constraints on
(AN)� and <

�
���
.

A quadratic polynomial model was initially generated.
Then, cubic terms were included. Cubic terms that are
products of three di!erent variables were included
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Table 22
Values of �

�
and � for di!erent response surfaces of � and = for the supersonic turbine

Scheme �
�
for � (%) � for � (%) �

�
for = (%) � for = (%)

Quadratic RS 2.51 0.90 0.82 1.27
Reduced cubic RS 1.95 1.03 0.40 1.22

Fig. 29. Comparison of � for di!erent NN designed with solverbe for single-stage supersonic turbine: (a) � (%) and (b) =(lb).

because of the amount of data available and the number
of levels being three. The trend of the design data also
suggests the presence of some of these terms. Therefore,
the initial cubic equation has 45 terms. Reduced third-
order polynomial model for � and=were selected based
on the relative performances of di!erent polynomials
obtained by removing terms from the initial cubic equa-
tion based on t-statistics. The cubic equation was selected
based on the evaluated value of �

�
and �. Table 22

suggests that the reduced cubic polynomial is better than
the quadratic polynomial since �

�
is better for the former.

The values of � is comparable.
When constructing the NN-based response surface,

the design parameters of the NN should be selected
carefully since the selection of the design parameters
determines the learning characteristics of the NN. For
the single-stage supersonic turbine case, the variation of
� with respect to the only design parameter of solverbe
network, spread constant, is plotted in Fig. 29 for both
objective functions of � and=. Fig. 30 shows that for low
values of spread constant, the NN has a poor perfor-
mance. As the spread constant increases � asymptotically
decreases. Therefore, the appropriate spread constant is
selected from the region where the performance of the
network is relatively consistent. Fig. 31 shows the in#u-
ence of error goal on the network performance. Unlike
the case of injector (Fig. 17), a more stringent error goal
for the training data does not necessarily result in better
predictive capability against the test data for the single-
stage turbine.
The networks designed with solverb have 37 and 75

neurons for � and =, respectively, in the hidden layer,

while those designed with solverbe have 76 neurons each.
The BPNN uses signi"cantly less number of neurons by
generating networks with "ve and 60 neurons for � and
=, respectively, in a single hidden layer. The NN archi-
tectures chosen are listed in Table 23.
The accuracy of the various models is tested with the

18 additional available data and the error is shown in
Table 24. Solverbe yields a relatively poor prediction for
�, which might be due to over "tting, but performs well
for =. Solverb is most consistent among all methods
evaluated.
The optimum solutions subjected to the constraints of

(AN)� limited to less than 1.132 (normalizedwith baseline
value) and <

�
���
is limited to less than 1.148 (normalized

with baseline value), are presented in Table 25. Since
(AN)� is proportional to the product of square of RPM
and A

���
, and <

�
���
is proportional to D times RPM, no

NN or polynomial-based RSM is generated for them. By
comparing the predicted optimal design by the various
methods, one observes that solverbe and BPNN yield
noticeably larger error in � and=, respectively. Solverb
and the response surface are more consistent with both
� and=. Judged by the error in predicting �pay, it seems
that the polynomial-based RSM is most accurate. How-
ever, since the real goal is to maximize �pay, it is impor-
tant to note that the actual value of �pay for the optimal
design chosen by the RSM is the worst.
From a design perspective, it is interesting to under-

stand the impact of the constraints from A
���

and
<

�
���
on the optimal turbine parameters. Such an assess-

ment is o!ered in Figs. 32 and 33. As D, RPM and
A

���
decrease, �, =, <

�
���
, AN� and �pay decrease.
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Fig. 30. Comparison of � for di!erent NN designed with solverb for single-stage supersonic turbine: (a) � (%) and (b) =(lb).

C
�
and C

�
are almost constant over the design space and

they do not have any noticeable e!ect on the objective
functions and constraints. In the case of C

�
, the BPNN

shows a small perturbation for the analysis with the
constraint. This might be due to the mapping of some
noise by BPNN. Otherwise it is una!ected by the inclu-
sion of the constraints. The optimum stage reaction, sr, is
zero implying that the optimum design should be that of
an impulse turbine.

4.4.3. Orthogonal arrays for two-stage turbine
Although the majority of the work is based on the face

centered composite design approach (FCCD), ortho-
gonal arrays (OA) are constructed by Papila et al. [58] to
investigate the e$ciency of orthogonal array designs in
representing the design space for two-stage turbine. A set

of 249 design points is selected using orthogonal arrays.
Table 26 shows the comparison of the quality of the
second-order response surfaces generated for �, = and
�pay by using 1990-data generated by face centered
composite design and 249-data selected by orthogonal
array method.
The above table illustrates that the "delity of the

response surface generated for design space of 249 data,
based on orthogonal arrays, are comparable with that of
1990 data based on the face centered criterion. The re-
sponse surface models are also assessed by using 78-test
data to determine the predictive accuracy of these
models. Table 27 presents that the testing adjusted rms-
errors of response surfaces generated are 1.65% for � and
0.96% for= using 249-data, and 1.67% for � and 1.21%
for = using 1990-data.
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Fig. 31. Comparison of error goal versus number of epochs and � for networks trained with solverb for single-stage supersonic turbine:
(a) � (%) and (b)=(lb).

Table 23
Neural network architectures used to design the models for � and= of the supersonic turbine (sc"spread constant)

Scheme � of layers � of neurons in the
hidden layer

� of neurons in the
output layer

Error goal aimed for during
training

� = � = � =

RBNN (Solverbe) 2 76 76 1 1 0.0 �sc"9.50	 0.0
�sc"9.45	

RBNN (Solverb) 2 37 75 1 1 0.001 �sc"6.50	 0.001
�sc"8.35	

BPNN 2 5 60 1 1 0.001 0.001

Table 24
rms-error in predicting the values of � and = by various
schemes for the supersonic turbine

Scheme � for � (%) � for = (%)

RBNN (Solverbe) 1.25 1.10
RBNN (Solverb) 0.29 1.10
BPNN 0.78 2.56
Reduced cubic RS 1.03 1.22

When these results are compared with the results of
1990-data and it is observed that the optimum �,= and
�pay are largely consistent. However, it is also observed
from Fig. 34 which shows the comparison of the design
variables for optimization based on (�pay), some of the
design variables are di!erent even though optimum �,
= and �pay are consistent. This shows that there are
multiple points in the design space, which yield compara-
ble performance. Nevertheless, it remains true that the
two-stage turbine is most suitable from a payload point
of view.
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Table 25
Optimal solutions with constraints on <

�
���
and (AN)� for a supersonic turbine (error given in parenthesis for each prediction is

in %) (<
�
���

"1.148 and (AN)�"1.132 in all the cases) (all the variables are normalized by their respective baseline values)

Scheme D (in) RPM A
���

(in�) C
�
(in) C

�
(in) sr (%) � = (lb) �pay (lb)

RBNN
(Solverbe)

0.972 1.181 0.811 1.443 0.836 0.0 0.810 0.636 !0.139
(5.80) (0.74) (29.80)

Meanline 0.972 1.181 0.811 1.443 0.836 0.0 0.766 0.641 !0.197
RBNN
(Solverb)

0.999 1.149 0.857 1.483 0.792 0.0 0.785 0.653 !0.177
(1.75) (0.17) (9.16)

Meanline 0.999 1.149 0.857 1.483 0.792 0.0 0.772 0.654 !0.194
BPNN 1.024 1.121 0.901 1.168 1.143 0.0 0.793 0.608 !0.153

(2.49) (8.63) (21.49)

Meanline 1.024 1.121 0.901 1.168 1.143 0.0 0.772 0.666 !0.195
Reduced
cubic RS

0.903 1.272 0.700 1.706 0.871 0.0 0.758 0.591 !0.194
(1.50) (2.10) (8.40)

Meanline 0.903 1.272 0.700 1.706 0.871 0.0 0.746 0.604 !0.211

4.4.4. NN-based RSM for two-stage turbine
In order to "nd the optimum RBNN design for the

design of the two-stage turbine design, the e!ect of the
spread constant (sc) on the network training error is
determined. Figs. 35 and 36 show the variation of sol-
verbe network error, �, with respect to spread constant
for the NN designed for FCCD and OA data. The opti-
mum spread constant is determined as 3.2 for 1990-
training data (FCCD) from Fig. 35 and 4.3 for 249-data
(OA) from Fig. 36. In spite of the fact that the spread
constants are larger than 3, the training rms-errors (�

�
)

are less than 0.1% for all networks designed for re"ned
space with 249-data as shown in Fig. 37. Based on this
observation, sc"4.3 value is used for these cases for
consistency.
After constructing the NN-based response surface, the

NN model is tested by using 78-test data selected along
the main diagonal of the design space to determine the
predictive accuracy of these models. Table 28 presents
the prediction rms-errors (�) of second-order polynomial
response surfaces, which are 1.65% for � and 0.96% for
= using 249-data, and 1.67% for � and 1.21% for= us-
ing 1990-data. Table 28 also presents that the prediction
rms-errors of response surfaces generated by solverbe
RBNN are 1.36% for � and 1.30% for=, and 2.26% for
� and 1.56% for = using 249-data.
Fig. 38 summarizes "tting/training and testing results

of the RBNN and polynomial-based �pay approxima-
tions for the two-stage turbine. The e$ciency of the
multi-level RSM approach can be observed by compar-

ing the original and re"ned design space plots. From
these plots, it is also possible to observe that more accu-
rate training is possible with RBNN but testing or pre-
diction accuracies of the RBNN and polynomial-based
approximations are quite comparable.

4.5. Turbulent planar diwuser

4.5.1. Polynomial xts
Based on the D-optimal set of 35 design points se-

lected, the 21 regressors of a full quadratic polynomial
were "tted resulting in a moderate R�

�
-value of 0.810.

A backward elimination of regressor terms subsequently
led to the removal of "ve terms and an increase of R�

�
to

0.848. The lower values of R�
�
, in comparison to the

two-design-variable case, re#ect the increased di$culties
in obtaining a good "t when moving to higher-dimen-
sional response surfaces. Data on the backward elimina-
tion steps are given in Table 29, which apart from R� and
R�

�
holds the minimum t-statistic and the number of

uncertain terms with �t
�
�(2.0 remaining in the model.

From the t-statistics information, it appears that the
backward elimination improved the accuracy of remain-
ing terms.
The next step performed was to investigate whether the

35 applied observations included outliers. A common
(but not necessarily true) assumption, which enables the
statistical treatment of observations, is that errors are
independently and identically distributed according to
a normal distribution with mean zero and variance.
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Fig. 32. E!ect due to presence (case 1) or lack of constraints (case 2) on design variables: (a) optimum diameter, D (in), (b) optimum
RPM, (c) optimum annulus area, A

���
(in�), (d) optimum vane axial chord, C

�
(in), (e) optimum blade axial chord, C

�
(in), (f) optimum

stage reaction, sr (%).

Thus, the distribution of response surface errors was
plotted and compared to a normal distribution, with
which it is expected to correspond well. From the histo-
gram plot of the error distribution, see Fig. 39, it did not
seem that there are any outliers. Four arbitrary points
away from sampling points were picked to test the pre-
diction accuracy of the polynomial-based RSM. Table 30
compares CFD-results and polynomial approximations
with and without backward elimination of terms.
Again, the predictions of the response surface appear

reliable, except at the last control point. This point is,

however, in the non-monotonic region, so that the ap-
proximation relies on an extrapolation, which was never
intended. The reduced approximation model comes
closer to the CFD-results for two out of the three mean-
ingful test points.

4.5.2. Numerical noise
While noisy data from laboratory experiments is a gen-

erally accepted fact, the presence of noise in numerical
simulations seems much less recognized. Due to the com-
plex numerical modeling techniques of CFD, the exact
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Fig. 33. E!ect due to presence (case 1) or lack of constraints (case 2) on objective functions: (a) optimum e$ciency, �, (b) optimum
weight,= (lb), (c) optimum pitch speed, <

�
���
(in/s), (d) optimum (A

���
�RPM), (AN)� (in��rpm�), (e) optimum incremental payload,

�pay (lb).

origins of noisy responses may be di$cult to pinpoint,
but factors such as turbulence models, incomplete con-
vergence, and the discretization itself are certainly in#u-
ential. Here, the presence of numerical noise has been
investigated. The problem of non-smooth or noisy objec-

tive functions has previously been addressed by Giunta
et al. [60], who found RS approximations-based optim-
ization to perform very robustly under such circumstan-
ces, especially when point selection is based on design of
experiment techniques, such as D-optimal designs.
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Table 26
The quality of the second-order response surface obtained for �,
= and �pay of two-stage turbine for 1990-data (face centered
criterion) and 249-data (orthogonal arrays) (Mean values of �,
= and �pay are normalized by the baseline values)

� = �pay

R� 0.995 0.996 0.995
R�

�
0.994 0.996 0.995

1990-data rms-error 1.31% 2.56% 9.58%
Mean 0.78 0.86 !0.24

R� 0.995 0.998 0.994
R�

�
0.992 0.997 0.992

249-data rms-error 2.128% 0.826% 20.68%
Mean 0.89 0.92 !0.11

Table 27
Testing of the second-order response surface obtained for � and
= of two-stage turbine for 1990 data (FCCD criterion) and
249-data (OA) with 78-test data

� of design
points

� of test data � for � (%) � for= (%)

249 78 1.65 0.96
1990 78 1.67 1.21

Fig. 34. Comparison of the design variables for optimization based on payload increment (�pay) using 1990-data (FCCD) and 249-data
(OA) for both original design space and re"ned design space (DV�1: D, DV�2: RPM, DV�3: A

���
, DV�4: h

�
, DV�5: c

��
, DV�6: c

��
,

DV�7: c
��
, DV�8: c

��
,DV�9: sr

�
,DV�10: sr

�
, and DV�11:w

��
). Both designs are satisfactory, demonstrating that there exist multiple

optimum designs.

Limitations of the software used were felt during the
application of a wall-shape parameterization in the
investigation of noise. A B-spline curve with two free
control points was used. Again, it was observed that the

objective function oscillated due to numerical noise, but
the amplitude was small. To make the noise more appar-
ent, it was therefore necessary to re"ne the subdivision of
the discretized line and reduce its length to 20% of the
initial, so that the line spans from (0.3,0.6) to (0.302,0.602).
This yielded the noisy response patterns shown in Fig. 40.
The two topmost curves in this "gure were determined
using a relatively tight convergence criterion, and two
di!erent convection schemes*a standard "rst-order up-
wind di!erencing scheme (UDS) and a second-order up-
wind di!erencing scheme (SUDS). The use of di!erent
di!erencing schemes was carried out to estimate whether
numerical di!usion does signi"cantly dampen the gen-
eration of noise. As discussed in [59], two di!erent CFD
codes were adopted, and one seems less forgiving, in the
sense that it predicts a stronger tendency for #ow separ-
ation. This could possibly be explained by factors such as
numerical di!usion, boundary treatments, and mo-
mentum interpolation methods adopted in the two codes.
As expected, switching to a more dissipative di!erenc-

ing scheme (lower order accuracy) yields a smoother
response. To further illustrate this issue, one more design
line curve is shown in Fig. 40, which arose from using
a relatively loose, yet still reasonable, convergence cri-
terion (using SUDS). The applied convergence criterion
considers summed and normalized (by inlet #ux) resid-
uals over the entire mesh, with termination of computa-
tions once the maximum is below a certain small value �.
The loose convergence criterion in Fig. 40 was �"10�	,
whereas the tight tolerance was �"10��. For compari-
son, a convergence limit of �"10�� was applied in the
CFD analyses used for response surface modeling. The
overall conclusion is that the presence of some numerical
noise in CFD-results is practically inevitable, although
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Fig. 35. E!ect of spread constant (sc) on training rms-error (�
�
) of (a) � and (b)= for preliminary design of two-stage turbine for original

design space using 249-training data for solverbe RBNN.

Fig. 36. E!ect of spread constant (sc) on training rms-error (�
�
) of (a) � and (b)= for preliminary design of two-stage turbine for original

design space using 249-training data (OA) for solverbe original RBNN.

Fig. 37. E!ect of spread constant (sc) on training rms-error (�
�
) of for preliminary design of two-stage turbine for re"ned design space

using 249-training data (OA) for solverbe, RBNN.
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Table 28
Testing the RBNN and second-order polynomial response surface obtained for � and= for preliminary design of two-stage turbine
(original design space)

Number of
training data

Number of test
data

sc � for � (%)
using RBNN
(Solverbe)

� for � (%)
using
polynomial-based

� for W (%)
using RBNN
(Solverbe)

� for W (%)
using
polynomial-based

249 78 4.3 1.365 1.648 1.305 0.959
1990 78 3.2 2.263 1.672 1.557 1.214

its magnitude depends on choice of code and modeling
techniques. Here, a technique such as polynomial-based
RSM can be e!ective in smoothing out the undesirable
#uctuations.

4.5.3. Optimum diwuser designs
In the optimum design using B-spline parameteriz-

ation, both the monotonicity constraint and four out of
"ve side constraints are active. As already mentioned, the
response surface constructed to guarantee wall mono-
tonicity becomes too restrictive. To compensate for this,
a one-dimensional search in the direction of the steepest
gradient was conducted starting at the optimum design
point estimated by RSM:

y"yH#�F. (31)

This search is terminated as soon as designs turn
non-monotonic, yielding a new optimum point at the
edge of the true feasible domain and an increase in the
optimum pressure recovery coe$cient from 0.7208 to
0.7235. Fig. 41 compares the optimum wall contours
determined by RSM using B-splines and polynomial
shapes. The optimum B-spline shape compares well to
the optimum polynomial one, so it is not surprising that
there is no signi"cant gain compared to this case. The
largest di!erences in shape are found in the later part of
the expansion, where the shape has less impact on the
overall performance, as separation is small in either case.
Thus, the close resemblance of optimum inlet shapes is
reassuring in terms of the credibility of the optimization
algorithm. A CFD-analysis of the "ve-design-variable
optimum design yields a pressure recovery coe$cient of
0.7193, a little below the predicted value, as in the two-
design-variable case. The improvement from the two
design variable case (0.7185}0.7193) indicates that there
is not much potential for further gains. Furthermore, for
comparison, Fig. 41 also contains the corresponding wall
contour determined using search optimization tech-
niques. The optimum wall shape found by search optim-
ization can be described as truly bell-shaped, without
a `plateaua similar to the one found in the results of
RSM-optimization. There appears to be a distinct di!er-
ence in optimum shapes from the two di!erent optimiza-

tion approaches, which must be ascribed to the combina-
tion of optimization accentuating modeling di!erences
and a relatively small scatter in di!user performances.
Fig. 42 highlights the use of a response surface approx-

imation for the optimum shape of a two-dimensional
di!user. As illustrated, within the "delity of the analysis
tool, there are often multiple design points that meet the
design objectives. It is interesting to note that di!erent
di!user shapes are found to yield essentially the same
performance. The response surface model is ideally suit-
able for such situations.

4.6. Low Reynolds number wing model

4.6.1. Polynomial xts
For the 3-D wing case, the response is the #ight power

index, C	
�
	

/C


, and the design space consists of design

variables maximum camber, y
�
, and wing aspect ratio,

AR. Quadratic, cubic and quartic order polynomials are
tested for the best approximations for data sets contain-
ing 9, 15 and 25 simulated data points (see Table 34). The
predicted rms-errors are calculated for each of the model
and are shown in Table 31. As shown in this table,
Model 4 gives the smallest predicted rms-error for the
cases involving 9 and 15 simulated data points, whereas,
Model 12 allows the smallest predicted rms-error for the
case involving 25 simulated data points.

4.6.2. Comparison of radial-basis and back-propagation
networks
The predictive accuracy of neural networks depends

not only on the training data but also on the parameters
used to de"ne the network. The best values for these
parameters cannot be determined by using only training
data, because typically one can obtain very small errors
for the training data with a wide range of these para-
meters. However, the performance of NN can be exam-
ined using test data.
For the radial-basis network, one important issue is to

investigate the magnitude of error in the test data to help
to select the spread constant. For the back-propagation
network, where cost of computation is an issue, the e!ect
of number of neurons on the cost and accuracy should be
checked. It was noticed that for the back-propagation
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Fig. 38. Comparison of NN and polynomial-based representations for two-stage supersonic turbine. Plotted are the original and
predicted values of �pay. A perfect "t will result in a 453 line. The training and testing data are selected based on the orthogonal arrays
with the D-optimal criterion. There are 11 design variables, 249 training data (OA), and 78 testing data in both original and re"ned
design spaces (the values for �pay are normalized by the baseline value).
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Table 29
Backward elimination procedure for polynomial-based RSM in "ve variables

Terms Min �t
�
� No. �t

�
�(2.0 R� R�

�
Comments

21 0.05 15 0.922 0.811
20 0.23 14 0.922 0.823 Removed y�

	
19 0.45 12 0.922 0.834 Removed y�

�
18 0.53 9 0.921 0.841 Removed y

�
y
�

17 0.97 8 0.919 0.848 Removed y
�
y
�

*16 1.22 6 0.915 0.848 Removed y�
�

15 1.57 5 0.909 0.844 Removed y
�
y
	

Fig. 39. Distribution of response surface errors at sampling
points and the corresponding normal distribution curve (same
mean and variance).

Table 30
Comparison between CFD-solutions and polynomial-based RSM-predictions

>
�

>
�

>
	

>
�

>
�

F FK (full) FK (reduced)

0.5 0.5 0.5 0.5 0.5 0.7171 0.7148 0.7126
1.0 0.5 0.0 0.5 1.0 0.7174 0.7210 0.7174
0.25 0.75 0.25 0.75 0.25 0.7148 0.7185 0.7162
0.0 0.5 1.0 0.5 0.0 0.6943 0.7333 0.7283

Fig. 40. NormalizedC
�
-values along a straight line in the design

space. The results are for two di!erent di!erencing schemes and
two di!erent residual levels used as convergence criterion.
(UDS: upwind di!erencing scheme and SUDS: second-order
upwind di!erencing scheme.)

network, using four neurons gave a good compromise of
accuracy and cost. For the radial-basis network, it was
found that the error and the number of iteration required
for convergence are extremely sensitive to the value of
spread constant. After extensive experimentation, the
spread constant was chosen as 1.175.
For the 3-D wing case, both radial-basis NN and

back-propagation networks are applied. In order to be
able to make comparisons between these networks, the
training time histories are summarized in Tables 32 and
33. These tables show that both are e$cient in the train-
ing of 9-, 15- and 25-simulation training data sets. How-
ever, as the data size increases, the back-propagation
network exhibits a growth rate in terms of the number of
epochs, indicating that it is more CPU time intensive for

larger data sizes. As far as accuracy is concerned, both
networks perform well exhibiting improved predictive
capabilities as the number of training points increases
from 9- to 25-simulation for y

�
interpolations (Fig. 43).

For this case, both methods reproduced the original
9-simulation accurately but both failed to predict accu-
rately the interpolation points at y

�
"0.0125, 0.025,

0.075 and 0.0875 with the rms-error of the test data of
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Fig. 41. Comparison of optimum wall shapes using polynomial and B-spline representations, respectively.

Fig. 42. Contour plot of response surface for di!user design.
Solid circle indicates the optimal region. The hatched part of the
feasible space comprises designs with performance within 1% of
the optimal. Corresponding shapes are indicated to the right.
The results indicate that multiple design points meet the goal.

1.68 for back-propagation network and 1.04 for radial-
basis network (Fig. 43a). Fig. 43b shows that adding
6 new points at AR"2 and 4 at y

�
"0, 0.05 and 0.1

(15-simulation training data set) does not signi"cantly
improve the 6 interpolated values (rms-error values of
1.369 for back-propagation network and 1.029 for
radial-basis network). However, with the addition of 10
new points at y

�
"0.025 and 0.075 at AR"1, 2, 3, 4 and

5 (25-simulation training data set) both the back-propa-
gation network and the radial-basis network can accu-
rately capture the overall behavior of the aerodynamic
data as shown in Fig. 43c. The rms-error now is 0.141 for
back-propagation network and 0.106 for radial-basis net-
work. For AR interpolations, the back-propagation net-
work resulted in lower rms-error values when compared

to the rms-error values of radial-basis networks (Fig. 44).
For the 9-point simulation training data, the rms-error of
radial-basis network (rms-error"11.12) is quite high
when compared to the rms-error of back-propagation
(rms-error"1.172) (Fig. 44a). For this case, adding 6 new
points at AR"2 and 4 at y

�
"0, 0.05 and 0.1 signi"-

cantly improves the rms-error value for radial-basis
(rms-error"0.87) as shown in Fig. 44b. With the addi-
tion of 10 new points to 15-simulation data at y

�
"0.025

and 0.075 at AR"1, 2, 3, 4 and 5, the rms-error de-
creases further to 0.7 for radial-basis networks, and 0.026
for back-propagation (Fig. 44c). The results indicate that
the back-propagation network is quite accurate for small
to modest number of data for the cases investigated and
it is also more consistent than that of the radial-basis
network. However, as indicated in Tables 32 and 33. In
terms of computing time or epochs, back-propagation
network scales unfavorably with respect to the number of
data used. In other words, the back-propagation network
is competitive for modest data size while the radial-basis
network is more e!ective for larger data size. More in-
formation will be presented when the 2-D airfoil case that
involves substantially larger data size is discussed.

4.6.3. Comparison of radial-basis neural network
and polynomial-based techniques
For the 3-D wing model, the outputs of the solverb

radial-basis NN, along with the results of the poly-
nomial-based technique, are compared for di!erent size
of the data. It must be noted that the network parameters
used to obtain radial-basis network results are sc"1.175
and error goal"10��. Fig. 45 illustrates the comparison
between the NN and polynomial-based outputs based on
the 9-simulation training data set. For this case, both
methods reproduced the original 9-simulation accurately
but both failed to predict accurately the interpolation
points at y

�
"0.025 and 0.075 with rms-errors at the test

data of 1.04 for both the NN and polynomial-based
methods. Furthermore, it is seen that the error estimate
of 1.116 of Table 31 is a gross underestimate. Note that
by the time there are 25 data points, Table 31 predicts an
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Table 31
Predicted rms-error, �, for di!erent polynomial models for 3-D wing model: 9-, 15-, and 25-simulation data sets (the shaded models
indicate the best "t)

Model no. Model � for 9 data � for 15 data � for 25 data

1 c
�
AR�#c

�
AR#c

	
ARy

�
#c

�
y
�
#c

�
y�
�
#c

�
0.8047 0.5172 0.7800

2 c
�
AR�#c

�
AR#c

	
ARy

�
#c

�
y
�
#c

�
y�
�
#c

�
#c

�
AR	 0.8047 0.5475 0.8007

3 c
�
AR�#c

�
AR#c

	
ARy

�
#c

�
y
�
#c

�
y�
�
#c

�
#c

�
y	
�

0.8047 0.5172 0.5524
4 c

�
AR�#c

�
AR#c

	
ARy

�
#c

�
y
�
#c

�
y�
�
#c

�
#c

�
ARy�

�
0.1162 0.0738 0.6590

5 c
�
AR�#c

�
AR#c

	
ARy

�
#c

�
y
�
#c

�
y�
�
#c

�
#c

�
y	
�
#c

�
ARy�

�
* * 0.3207

6 c
�
AR�#c

�
AR#c

	
ARy

�
#c

�
y
�
#c

�
y�
�
#c

�
#c

�
y	
�

#c
�
ARy�

�
#c

�
y
�
AR�

* * 0.3262

7 c
�
AR�#c

�
AR#c

	
ARy

�
#c

�
y
�
#c

�
y�
�
#c

�
#c

�
y	
�

#c
�
ARy�

�
#c

�
AR	

* * 0.6961

8 c
�
AR�#c

�
AR#c

	
ARy

�
#c

�
y
�
#c

�
y�
�
#c

�
#c

�
y	
�

#c
�
ARy�

�
#c

�
y
�
AR�#c

��
AR	

* * 0.3350

9 c
�
AR#c

�
ARy

�
#c

	
y
�
#c

�
y�
�
#c

�
#c

�
y	
�
#c

�
ARy�

�
* * 0.4248

10 c
�
AR#c

�
ARy

�
#c

	
y
�
#c

�
y�
�
#c

�
#c

�
AR�y

�
* * 0.8044

11 c
�
AR�#c

�
AR#c

	
ARy

�
#c

�
y
�
#c

�
y�
�
#c

�
#c

�
y	
�

#c
�
Ary�

�
#c

�
y�
�

* * 0.2383

12 c
�
AR�#c

�
AR#c

	
ARy

�
#c

�
y
�
#c

�
y�
�
#c

�
#c

�
y	
�

#c
�
Ary�

�
#c

�
y�
�
#c

��
ARy	

�

* * 0.1073

Table 32
Training history of radial-basis networks with Solverb for 3-D wing model

NN No. � of simulations � of neurons � of epochs Steady-state error Spread constant Error goal

1 9 8 7 10��� 1.175 10��

2 15 12 11 10�� 1.175 10��

3 25 20 19 10�	 1.175 10��

Table 33
Training history of back-propagation networks with Trainlm for 3-D wing model

NN No. � of simulations � of neurons � of epochs Steady-state error Error goal

1 9 4 23 4.5�10�� 10��

2 15 4 12 8.5�10�	 10��

3 25 4 105 9.96�10�	 10��

error of 0.659. The reason for this problem is that rms-
error estimates are not reliable when the number of
coe$cients is close to the number of points (7 versus 9 for
this case). In addition, these estimates assume random
noise and that underlying function is quadratic. Fig. 45b
shows that adding 6 new points AR"2 and 4 at
y
�
"0, 0.05 and 0.1 does not help noticeably to improve

the 6 interpolated values (rms-error values of 1.029 for
both). However, with the addition of 10 new points at
y
�
"0.025 and 0.0075 at AR"1, 2, 3, 4 and 5 (25-simula-

tion training data set) both the NN and polynomial-

based techniques accurately capture the overall behavior
of the aerodynamic data as shown in Fig. 45c. The
generalization of the NN with 25-simulation is further
assessed by comparing additional interpolated values at
di!erent y

�
and AR at y

�
"0.0125 and 0.0875 at

AR"1, 2 ,3, 4 and 5. The rms-errors now are 0.142 for
the polynomial and 0.221 for the NN, which are more in
the line with the prediction in Table 31.
These comparisons illustrate that both neural network

and conventional polynomial "tting methods do a good
job as the number of points is increased.

W. Shyy et al. / Progress in Aerospace Sciences 37 (2001) 59}118 109



Fig. 43. Comparison of radial basis network with back-propagation network results for 3-D wing model (for y
�
interpolation) (design

parameters: sc"1.175, error goal"0.1 for radial-basis, and �of neurons"4, error goal"0.01 for back-propagation).

5. Conclusion and future directions

Recent experiences in utilizing a global optimization
methodology, based on polynomial and neural network
techniques, for aerodynamics and rocket propulsion
components are summarized. Global optimization
methods can utilize the information collected from vari-
ous sources and by di!erent tools. These methods o!er
multi-criterion optimization, handle the existence of mul-
tiple design points and trade-o!s via insight into the
entire design space, can easily perform tasks in parallel,
and are often e!ective in "ltering the noise intrinsic to
numerical and experimental data. Another advantage is
that these methods do not need to calculate the sensitiv-
ity of each design variable locally. The global optimiza-
tion method can be particularly e!ective with either
a polynomial-based response surface or a neural network
when information from di!erent computational, experi-

mental and analytical sources needs to be assembled. In
this article, we present recent experiences in utilizing the
global optimization methodology for tasks related to the
preliminary design of a supersonic turbine, multi-cri-
terion design of three di!erent types of injector element
(shear co-axial, impinging, and swirl co-axial), perfor-
mance of a low Reynolds number wing, and shape optim-
ization of a turbulent #ow di!user. A successful optimal
design technique often needs to address the issues related
to the selection of appropriate training data for con-
structing the global model, employment of the statistical
and testing tools to identify appropriate global models,
existence of multiple design selections and related trade-
o!s, and consideration of noises intrinsic to numerical
and experimental data. These issues are discussed. It is
seen that the global optimization method can naturally
take the con"dence level of the data into account, o!ers
a number of designs with comparable performance, and
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Fig. 44. Comparison of radial basis network with back-propagation network results for 3-D wing model (for AR interpolation) (design
parameters: sc"1.175, error goal"0.1 for radial-basis, and � of neurons"4, error goal"0.01 for back-propagation).

allows designers to make a more informed decision. We
have reviewed direct evidences that demonstrate that
appropriate selection of design points can signi"cantly
reduce the number of data required for constructing the
global model. In particular, while the FCCD approach
can be e!ective with modest number of design variables,
OA with D-optimal selection criterion seems to be e!ec-
tive when the number of design variables becomes higher.
Regarding the relative merits between polynomials and
neural networks, based on the results reviewed, we can
make the following summary:
(1) Higher-order polynomials usually perform

better than lower-order polynomials as they have more
#exibility. However, exceptions have been noticed
which demands that appropriate statistical measures be
taken to determine the best terms to include in an
expression.

(2) Both NN and polynomial-based RSM can perform
comparably for modest data sizes.
(3) Among all the NN con"gurations, RBNN designed

with solverb seems to be more consistent in performance.
(4) Radial basis networks, even when designed e$-

ciently with solverb, tend to have many more neurons
than a comparable back-propagation with tan- or log-
sigmoid neurons in the hidden layer. The basic reason for
this is the fact that the sigmoid neurons can have outputs
over a large region of the input space, while radial basis
neurons only respond to relatively small regions of the
input space. Thus, larger input spaces require more radial
basis neurons for training.
(5) Con"guring a radial basis network often takes

less time than that for a back-propagation network
because the training process for the former is linear
in nature.
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Fig. 45. Comparison of radial basis NN results with polynomials for 3-D wing model (design parameters: sc"1.175, error goal"0.1
for radial-basis networks).

(6) While the transfer function employed by any neu-
ral network is non-linear in general, the RBNN, with the
combined feature of #exibility and linear regression is
more accurate than BPNN, which requires solution of
non-linear systems.
(7) The comparisons demonstrate that for this case

there are no signi"cant di!erences between the NN- and
polynomial-based RSM. The results of polynomial-
based methods, though, suggest that when the error is
mostly due to modeling rather than noise, the error
estimates of the polynomial-based technique can be
substantially o!.
(8) The NN technique has shown the potential of
"tting the data much better than the polynomial-based
technique. However, this was achieved by using the test
data to select the parameters like spread constant of the
NN which appear to greatly a!ect the predictive accu-

racy. That is, it was not possible to use only the training
data to select the best set of parameters. This indicates
that because the NNs do not provide the statistical
information given by polynomial-based methods, using
both test data and training data is very important in
designing the network.
(9) With the large number of points, and the high-

order polynomial, the statistical predictions of the poly-
nomial-based results matched very well the error at the
test data.
(10) The neural networks, when trained appropriately,

can be used to generate additional data to enhance the
data set for constructing polynomials. Such a combined
approach has been demonstrated in [38] for injector
design.
(11) The criteria for selecting the database exhibit sig-

ni"cant impact on the e$ciency and e!ectiveness of the
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construction of the response surface. For example, e!ec-
tiveness of using OA to select the database is demon-
strated by Papila et al. [58].
(12) A multi-level approach can be applied to identify

the optimal design points with substantially higher
accuracy.
There are a number of outstanding issues that need to

be addressed. In the following, we list several topics that
we consider important for future research.
(1) Is it possible to develop a comprehensive technique

by combining NN and polynomial-based RS techniques to
help reduce the required data size for optimization?
Speci"cally, the work done by Rai and Madavan

[27}29], Madavan et al. [22], and Shyy et al. [38] sug-
gests that NN can be e!ectively used to supplement the
existing training data to help to generate a more accurate
polynomial. The RBNN may lack satisfactory "ltering
properties in some cases [37,39]. However, once trained,
RBNN can generate additional design data to feed the
polynomial-based RSM. Polynomials possess the intrin-
sic "ltering capability. The evaluation of the nature of the
#uctuations from the data generated by RBNN, and the
investigation into whether polynomials can use the
data e!ectively, is planned. These features have been
addressed in this article.
(2) What are the keys to develop a more robust and
yexible NN conxguration?
This has been a topic of research for a long period of

time. In this article, a review is presented to address the
issues related to the training characteristics of the di!er-
ent networks used. There are other important issues,
which needs to be addressed in future research. For

example, the possibility of using a more versatile RBNN
in terms of a variable design parameter, unlike the cur-
rent situation where the variable has the same value
throughout the domain, should be addressed. Objective
means to determine the NNs performance via statistical
tools, especially for RBNN since it employs a linear
model to determine the weight associated with each neur-
on needs to be investigated.
(3) What is the scaling rule between the number of neur-

ons, and computing time, versus number of input/output
variables and the size of the design data?
There are several rules of thumb for BPNN in the

literature (e.g., [10,11,61]) but little information exists for
RBNN.
(4) How can one address the need for generating training

and testing data most economically and ewectively?
The e!ect of the selection of the design points on

accuracy, scaling and performance of polynomial-based
RSM has been addressed. The same has yet to be done
for NN.
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Appendix A. Training data

The results of training data are given in Tables 34}41.
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Table 34
Training data sets for 3-D wing model

Training data set � 1
(9-simulation)

Training data set � 2
(15-simulation)

Training data set
� 3 (25-simulation)

AR y
�

C	
�
	

/C



AR y
�

C	
�
	

/C



AR y
�

C	
�
	

/C



1 0 2.0011 1 0 2.0011 1 0.0 2.0011
1 0.05 4.1224 1 0.05 4.1224 1 0.025 4
1 0.1 3.6865 1 0.1 3.6866 1 0.05 4.1224
3 0 5.6398 2 0 4.03 1 0.075 3.99
3 0.05 9.6873 2 0.05 7.12 1 0.1 3.6866
3 0.1 8.6806 2 0.1 6.34 2 0.0 4.03
5 0 7.9413 3 0 5.6398 2 0.025 7.07

5 0.05 14.0942 3 0.05 9.6873 2 0.05 7.12
5 0.1 12.8951 3 0.1 8.6806 2 0.075 6.89

4 0 6.92 2 0.1 6.34
4 0.05 11.99 3 0.0 5.6398
4 0.1 10.87 3 0.025 9.64
5 0 7.9414 3 0.05 9.6873
5 0.05 14.0942 3 0.075 9.39
5 0.1 12.8951 3 0.1 8.6806

4 0.0 6.92
4 0.025 11.86
4 0.05 11.99
4 0.075 11.66
4 0.1 10.87
5 0.0 7.9414
5 0.025 13.83
5 0.05 14.0942
5 0.075 13.73
5 0.1 12.8951

Table 35
Test data sets for 3-D wing model based on AR and y

�

Test set�1 for y
�

Test set�2 for y
�

Test set�3 for y
�

Test set�1 for AR Test set�2 for AR

AR y
�

AR y
�

AR y
�

AR y
�

AR y
�

1 0.025 1 0.025 1 0.0125 2 0 2.5 0
1 0.075 1 0.075 1 0.0875 2 0.025 2.5 0.025
3 0.025 2 0.025 2 0.0125 2 0.05 2.5 0.05
3 0.075 2 0.075 2 0.0875 2 0.075 2.5 0.075
5 0.025 3 0.025 3 0.0125 2 0.1 2.5 0.1
5 0.075 3 0.075 3 0.0875 4 0 4.5 0

4 0.025 4 0.0125 4 0.025 4.5 0.025
4 0.075 4 0.0875 4 0.05 4.5 0.05
5 0.025 5 0.0125 4 0.075 4.5 0.075
5 0.075 5 0.0875 4 0.1 4.5 0.1
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Table 36
Performance and heat #ux responses for O/F"4 for the
shear co-axial injector element (Tables 36}38 together
contain 45 data points used as the training set)

O/F <
�
/<

�
¸
����

(in) ERE (%) Q (Btu/in� s)

4.0 4.0 4.0 92.9 0.753
4.0 4.0 5.0 96.0 0.753
4.0 4.0 6.0 97.6 0.753
4.0 4.0 7.0 98.6 0.753
4.0 4.0 8.0 99.0 0.753
4.0 6.0 4.0 95.0 0.928
4.0 6.0 5.0 97.1 0.928
4.0 6.0 6.0 98.5 0.928
4.0 6.0 7.0 99.2 0.928
4.0 6.0 8.0 99.4 0.928
4.0 8.0 4.0 96.6 1.10
4.0 8.0 5.0 98.2 1.10
4.0 8.0 6.0 99.1 1.10
4.0 8.0 7.0 99.4 1.10
4.0 8.0 8.0 99.6 1.10

Table 37
Performance and heat #ux responses for O/F"6 for the
shear co-axial injector element

O/F <
�
/<

�
¸
����

(in) ERE (%) Q (Btu/in� s)

6.0 4.0 4.0 92.9 0.691
6.0 4.0 5.0 96.0 0.691
6.0 4.0 6.0 97.6 0.691
6.0 4.0 7.0 98.6 0.691
6.0 4.0 8.0 99.0 0.691
6.0 6.0 4.0 95.0 0.642
6.0 6.0 5.0 97.1 0.642
6.0 6.0 6.0 98.5 0.642
6.0 6.0 7.0 99.2 0.642
6.0 6.0 8.0 99.4 0.642
6.0 8.0 4.0 96.6 0.741
6.0 8.0 5.0 98.2 0.741
6.0 8.0 6.0 99.1 0.741
6.0 8.0 7.0 99.4 0.741
6.0 8.0 8.0 99.6 0.741

Table 38
Performance and heat #ux responses for O/F"8 for the
shear co-axial injector element

O/F <
�
/<

�
¸
����

(in) ERE (%) Q (Btu/in� s)

8.0 4.0 4.0 92.9 0.588
8.0 4.0 5.0 96.0 0.588
8.0 4.0 6.0 97.6 0.588
8.0 4.0 7.0 98.6 0.588
8.0 4.0 8.0 99.0 0.588
8.0 6.0 4.0 95.0 0.512
8.0 6.0 5.0 97.1 0.512
8.0 6.0 6.0 98.5 0.512
8.0 6.0 7.0 99.2 0.512
8.0 6.0 8.0 99.4 0.512
8.0 8.0 4.0 96.6 0.493
8.0 8.0 5.0 98.2 0.493
8.0 8.0 6.0 99.1 0.493
8.0 8.0 7.0 99.4 0.493
8.0 8.0 8.0 99.6 0.493

Table 39
Data used to test the polynomials and NN for the shear
co-axial injector element (the table contains 20 data
points used as the testing set)

O/F <
�
/<

�
¸
����

(in) ERE (%) Q (Btu/in� s)

4.0 5.0 4.0 94.4 0.812
4.0 5.0 5.0 96.9 0.812
4.0 5.0 6.0 98.1 0.812
4.0 5.0 7.0 99.1 0.812
4.0 5.0 8.0 99.4 0.812
4.0 7.0 4.0 96.0 1.014
4.0 7.0 5.0 97.9 1.014
4.0 7.0 6.0 98.8 1.014
4.0 7.0 7.0 99.4 1.014
4.0 7.0 8.0 99.6 1.014
6.0 5.0 4.0 94.4 0.642
6.0 5.0 5.0 96.9 0.642
6.0 5.0 6.0 98.1 0.642
6.0 5.0 7.0 99.1 0.642
6.0 5.0 8.0 99.4 0.642
6.0 7.0 4.0 96.0 0.691
6.0 7.0 5.0 97.9 0.691
6.0 7.0 6.0 98.8 0.691
6.0 7.0 7.0 99.4 0.691
6.0 7.0 8.0 99.6 0.691
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Table 40
Propellant momentum ratio as a function of propellant pressure drops: shear co-axial injector element

�P
�

�Pf 200 180 160 150 140 120 100

200 1.49 1.42 1.33 1.30 1.25 1.16 1.06
180 1.57 1.50 1.41 1.37 1.32 1.22 1.11
160 1.67 1.59 1.50 1.45 1.40 1.30 1.18
150 1.73 1.64 1.54 1.49 1.44 1.34 1.22
140 1.79 1.70 1.60 1.55 1.50 1.39 1.27
120 1.93 1.83 1.72 1.67 1.61 1.50 1.37
100 2.11 2.00 1.89 1.83 1.77 1.64 1.49

Table 41
Design data for a shear co-axial injector element with �P

�
and �P

�
"200psi

�P
�
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�

¸
����
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H

��
��

=
��

C
��

200 200 2 15 NA 0.85 0.84 0.923 1.083
200 200 2 20 85 0.85 0.62 0.923 1.083
200 200 2 30 92.8 0.85 0.39 0.923 1.083
200 200 2 45 95.4 0.85 0.23 0.923 1.083
200 200 2 50 95.8 0.85 0.19 0.923 1.083

200 200 4 15 91 0.85 0.84 1 1.083
200 200 4 20 95.2 0.85 0.62 1 1.083
200 200 4 30 96.8 0.85 0.39 1 1.083
200 200 4 45 98.1 0.85 0.23 1 1.083
200 200 4 50 98.4 0.85 0.19 1 1.083

200 200 6 15 95.6 0.85 0.84 1.077 1.083
200 200 6 20 97.8 0.85 0.62 1.077 1.083
200 200 6 30 98.5 0.85 0.39 1.077 1.083
200 200 6 45 99.2 0.85 0.23 1.077 1.083
200 200 6 50 99.4 0.85 0.19 1.077 1.083

200 200 8 15 98.3 0.85 0.84 1.154 1.083
200 200 8 20 99.1 0.85 0.62 1.154 1.083
200 200 8 30 99.4 0.85 0.39 1.154 1.083
200 200 8 45 99.6 0.85 0.23 1.154 1.083
200 200 8 50 99.7 0.85 0.19 1.154 1.083
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