
An Introduction
to Genetic Algorithms
for Scientists and Engineers

David A Coley
U n i ~ e ~ i ~ of Exeter

World Scientific
Singapore*NewJersey* London 4fongKong

Published by

World Scientific Publishing Co. Pte. Ltd.
P 0 Box 128, Farrer Road, Singapore 912805
USA office: Suite fB, 1050 Main Street, River Edge, NJ 07661
UK office: 57 Shelton Street, Covent Garden, London WC2H 9%

British Library CataIo~ng-in-Publicatfon Data
A catalogue record for this book is available from the British Library.

AN INTRODUCTION TO GENETIC ALGORITHMS FOR SCIENTISTS
AND ENGINE~RS

Copyright Q 1999 by World Scientific Publishing Co. Pte. Ltd.
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
ekctronic or mechanical, including phofocopying, recording or any information storage an& retrieval
system now known or to be invented, without writfen ~ e ~ i s s i o n ~ o m the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 98 1-02-3602-6

This book is printed on acid-free paper.

Printed in Singapore by Uto-Print

In the beginning was the Word
And by the mutations came the Gene

MA. Arbid

Word
Wore
Gore
Gone
Gene

xv

CONTENTS

Chapter 1 Introduction
1.1
1.2 Search Spaces
1.3 Genetic Algorithms
1.4 An Example
1.5 Summary
1.6 Exercies

Some Applications of Genetic Algorithms

Chapter 2 Improving the Algorithm
2.1
2.2 Robustness
2.3 Non-integer Unknowns
2.4 Multiparameter Problems
2.5 Mutation
2.6 Selection
2.7 Elitism
2.8 Crossover
2.9 Initialisation
2.10 The Little Genetic Algorithm
2.1 1 Other Evolutionary Approaches
2.12 Summary
2.13 Exercises

Comparison of Biological and GA Terminology

Chapter 3 Foundations
3.1 Historical Test Functions
3.2 Schema Theory
3.3 Schema Processing
3.4 Other Theoretical Approaches
3.5 Summary
3.6 Exercises

Chapter 4 Advanced Operators
4.1 Combinatorial Optimisation
4.2
4.3 Constraints
4.4 Multicriteria Optimisation
4.5 Hybrid Algorithms
4.6 Alternative Selection Methods

Locating Alternative Solutions Using Niches and Species

1
2
3

10
11
15
16

17
17
18
19
22
22
23
25
25
26
26
32
33
33

35
36
46
53
57
58
58

59
59
64
72
73
76
78

xvi

4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Alternative Crossover Methods
Considerations of Speed
Other Encodings
Meta GAS
Mutation
Parallel Genetic Algorithms
Summary
Exercises

Chapter 5 Writing a Genetic Algorithm

Chapter 6 Applications of Genetic Algorithms
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Appendix A

Appendix I3

References

Index

Image Registration
Recursive Pre~iction of Natural Light Levels
Water Network Design
Ground-State Energy of the f J Spin Glass
Estimation of the Optical Parameters of Liquid Crystals
Design of Energy-Efficient Buildings
Human Judgement as the Fitness Function
Multi-Obj~tive Network Rehabili~tion by Messy GA

Resources and Paper-Based Resources

Complete Listing of LGADOS.BAS

83
84
85
89
89
90
91
91

93

113
117
123
131
139
144
157
168
176

187

189

205

225

1

CHAPTER 1

INTRODUCTION

Genetic algorithms (GAS) are numerical optimisation algorithms inspired by
both natural selection and natural genetics. The method is a general one,
capable of being applied to an extremely wide range of problems. Unlike some
approaches, their promise has rarely been over-sold and they are being used to
help solve practical problems on a daily basis. The algorithms are simple to
understand and the required computer code easy to write. Although there is a
growing number of disciples of GAS, the technique has never attracted the
attention that, for example, artificial neural networks have. Why this should be
is difficult to say. It is certainly not because of any inherent limits or for lack of
a powerfid metaphor. What could be more inspiring than generalising the ideas
of Darwin and others to help solve other real-world problems? The concept that
evolution, starting from not much more than a chemical "mess", generated the
(unfortunately vanishing) bio-diversity we see around us today is a powerful, if
not awe-inspiring, paradigm for solving any complex problem.

In many ways the thought of extending the concept of natural selection
and natural genetics to other problems is such an obvious one that one might be
left wondering why it was not tried earlier. In fact it was. From the very
beginning, computer scientists have had visions of systems that mimicked one
or more of the attributes of life. The idea of using a population of solutions to
solve practical engineering optimisation problems was considered several times
during the 1950's and 1960's. However, GAS were in essence invented by one
man-John Holland-in the 1960's. His reasons for developing such
algorithms went far beyond the type of problem solving with which this text is
concerned. His 1975 book, Adaptation in Natural and Artwcial Systems
[H075] (recently re-issued with additions) is particularly worth reading for its
visionary approach. More recently others, for example De Jong, in a paper
entitled Genetic Algorithms are NOT Function Optimizers [DE93], have been
keen to remind us that GAS are potentially far more than just a robust method
for estimating a series of unknown parameters within a model of a physical

system. However in the context of this text, it is this robustness across many
different practical optimisation problems that concerns us most.

So what is a GA? A typical algorithm might consist of the following:

1. a number, or population, of guesses of the solution to the problem;

2. a way of calculating how good or bad the individual solutions within the
population are;

3. a method for mixing fragments of the better solutions to form new, on
average even better solutions; and

4. a mutation operator to avoid permanent loss of diversity within the
solutions.

With typically so few components, it is possible to start to get the idea
of just how simple it is to produce a GA to solve a specific problem. There are
no complex mathematics, or torturous, impenetrable algorithms. However, the
downside of this is that there are few hard and fast rules to what exactly a GA
is.

Before proceeding further and discussing the various ways in which
GAS have been constructed, a sample of the range of the problems to which
they have been successfully applied will be presented, and an indication given
of what is meant by the phrase “search and optimisation”.

1.1 SOME APPLICATIONS OF GENETIC ALGORITHMS
Why attempt to use a GA rather than a more traditional method? One

answer to this is simply that GAS have proved themselves capable of solving
many large complex problems where other methods have experienced
difficulties. Examples are large-scale combinatorial optimisation problems
(such as gas pipe layouts) and real-valued parameter estimations (such as image
registrations) within complex search spaces riddled with many local optima, It
is this ability to tackle search spaces with many local optima that is one of the
main reasons for an increasing number of scientists and engineers using such
algorithms.

Amongst the many practical problems and areas to which GAS have
been successfully applied are:

3

image processing [CH97,KA97];
prediction of three dimensional protein structures fSC921;
VLSI (very large scale integration) electronic chip layouts [COH91 ,ES94];
laser technology [CA96a,CA96b];
medicine [YA98];
spacecraft trajectories [RA96];
analysis of time series [MA96,ME92,ME92a,PA90];
solid-state physics [S~94,WA96];
aeronautics [BR89,YA95];
liquid crystals [MIK97];
robotics [ZA97, p161-2021;
water networks [HA97,SA97];
evolving cellular automaton rules [PA88,MI93,MI94a];
the ~ h i t e c t u r a ~ aspects of building design [MIG95,FU93];
the automatic evolution of computer s o h a r e [KO91 ,K092,K094];
aesthetics [CO97a];
jobshop scheduling [KO95,NA9l,YA95];
facial recognition [CA91];
training and designing artificial intelligence systems such as artificial neural
networks [ZA97, p99-117,WH92, ~ 9 0 , ~ 9 4 , C H 9 0] ; and
control "09 1 ,CH96,C097].

1.2 SEARCH SPACES
In a numerical search or optimisation problem, a list, quite possibly of infinite
length, of possible solutions is being searched in order to locate the solution
that best describes the problem at hand. An example might be trying to find the
best values for a set of adjustable parameters (or variables) that, when included
in a ~ ~ e ~ t i c a l model, maximise the lift generated by an aeroplane's wing. If
there were only two of these adjustable parameters, a and b, one could try a
large number of combinations, calculate the lift generated by each design and
produce a surface plot with a, b and l@ plotted on the x-, y- and z-axis
respectively (Figure 1.0). Such a plot is a representation of the problem's
search space. For more complex problems, with more than two unknowns, the
situation becomes harder to visualise. However, the concept of a search space
is still valid as long as some measure of distance between solutions can be
defined and each solution can be assigned a measure of success, orjtness,
within the problem. Better performing, or fitter, solutions will then occupy the

4

peaks within the search space (or fitness landscape [WR31]) and poorer
solutions the valleys.

Figure 1.0. A simple search space or “fitness landscape”. The lift generated by the wing is a
function of the two adjustable parameters a and b. Those combinations which generate more lift
are assigned a higher fitness. Typically, the desire is to find the combination of the adjustable
parameters that gives the highest fitness.

Such spaces or landscapes can be of surprisingly complex topography.
Even for simple problems, there can be numerous peaks of varying heights,
separated from each other by valleys on all scales. The highest peak is usually
referred to as the global m ~ ~ m ~ ~ or global ~p~imum, the lesser peaks as local
maxima or local optima. For most search problems, the goal is the accurate
identification of the global optimum, but this need not be so. In some
situations, for example real-time control, the identification of any point above a
certain value of fitness might be acceptable. For other problems, for example,
in architectural design, the identification of a large number of highly fit, yet
distant and therefore distinct, solutions (designs) might be required.

To see why many traditional algorithms can encounter difficulties,
when searching such spaces for the global optimum, requires an understanding
of how the features within spaces are formed. Consider the experimental data
shown in Figure 1.1, where measurements of a dependent variable y have been
made at various pointsj of the independent variable x. Clearly there is some
evidence that x and y might be related through:

5

1

6 -

s -

4 -

A -

3 -

2 -

I -

y . =m. + c . (1.1) J J

rn

I . 1 1 1 1 1 . I I I

But what values should be given to m and c? If there is reason to believe that
y = 0 when x = 0 (i.e. the line passes through the origin) then c = 0 and m is the
only adjustable parameter (or unknown).

Figure 1 . 1 . Some simple experimental data possibly related by y = mx + c.

One way of then finding m is simply to use a ruler and estimate the best line
through the points by eye. The value of m is then given by the slope of the line.
However there are more accurate approaches. A common numerical way of
finding the best estimate of m is by use of a least-squares estimation. In this
technique the error between that y predicted using (1.1) and that measured
during the experiment, J , is characterised by the objective function, 0, (in this
case the least squares cost function) given by,

where n is the number of data points. Expanding (1.2) gives:

6

Asc=O,

In essence the method simply calculates the sum of the squares of the
vertical distances between measured values of y and those predicted by (1.1)
(see Figure 1.2). Q will be at a minimum when these distances sum to a
minimum. The value of m which gives this value is then the best estimate of rn.
This still leaves the problem of finding the lowest value of 9. One way to do
this (and a quite reasonable approach given such an easy problem with
relatively few data points) is to use a computer to cakulate Q over a fme grid of
values of m. Then simply choose the m which generates the lowest value of 4.
This approach was used together with the data of Figure 1.1 to produce a
visualisation of the problem’s search space-Figure 1.3. Clearly, the best value
of m is given by m = m * =: 1. 1, the asterisk indicating the optimal value of the
parameter.

12 ,

I0 -
8-

A 6 -

4 -

2 -

,

0 2 4 6
X

Figure 1.2. Calculating 9 for two values of m. Clearly m = 0.9 is the better choice as the sum of
distances will generate a lesser value of Q.

7

m

Figure 1.3. A simple search space, created from the data of Figure 1.1, Equation (1.3) and a
large number of guesses of the value of m. This is an example of a minimisation problem,
where the optimum is located at the lowest point.

This approach, of estimating an unknown parameter, or parameters, by
simply solving the problem for a very large number of values of the unknowns
is called an enumerative search. It is only really usehl if there are relatively
few unknown parameters and one can estimate L? rapidly. As an example why
such an approach can quickly run into problems of scale, consider the
following. A problem in which there are ten unknowns, each of which are
required to an accuracy of one percent, will require 10010, or 1x1020,
estimations. If the computer can make 1000 estimations per second, then the
answer will take over 3x109 years to emerge, Given that ten is not a very large
number of unknowns, one percent not a very demanding level of accuracy and
one t h o u s ~ d evaluations per second more than respectable for ~~y problems,
clearly there is a need to find a better approach.

Returning to Figure 1.3, a brief consideration of the shape of the curve
suggests another approach: guess two possible values of m, labelled ml and m2
(see Figure 1.4), then if Q(m4 > Sa(ml), make the next guess at some point m3
where 1113 = m2 + 6, or else head the other way. Given some suitable, dynamic,
way of adjusting the value of 6, the method will rapidly home in on m*.

8

0.0 0 s I .o 1.5 2.0

m

Figure 1.4. A simple, yet effective, method of locating m*. 6 is reduced as the minimum is
approached.

Such an approach is described as a direct search (because it does not
make use of derivatives or other information). The problem illustrated is one of
minimisation. If 1lQ were plotted, the problem would have been transformed
into one of maximisation and the desire would been to locate the top of the hill.

U n f o ~ ~ a t e l y , such methods cannot be universally applied. Given a
different problem, still with a single adjustable parameter, a, might take the
form shown in Figure 1.5.

If either the direct search algorithm outlined above or a simple calculus
based approach is used, the final estimate of a will depend on where in the
search space the algorithm was started. Making the initial guess at a = u2, will
indeed lead to the correct (or global) minimum, a*. However, if a = a] is used
then only a** will be reached (a local minimum).

9

4

3

c
2

I

I 2 3 4 5

a

Figure 1.5. A more complex on~dimensiona1 search space with both a global and a local
minimum.

This highlights a serious problem. If the results produced by a search
algorithm depend on the starting point, then there will be little confidence in
the answers generated. In the case illustrated, one way around this problem
would be to start the problem from a series of points and then assume that the
true global mi^^ lies at the lowest minimum identified. This is a frequently
adopted strategy. Unfortunately Figure 1.5 represents a very simple search
space. In a more complex space (such as Figure 1.6) there may be very many
local optima and the approach becomes wealistic.

So, how are complex spaces to be tackled? Many possible approaches
have been suggested and found favour, such as random searches and simulated
annealing [DA87]. Some of the most successful and robust have proved to be
random searches directed by analogies with natural selection and natural
genetics-genetic algorithms,

10

20

Figure 1.6. Even in a two-dimensional maximisation problem the search space can be highly
complex.

1.3 GENETIC ALGORITHMS
Rather than starting from a single point (or guess) within the search space, GAS
are initialised with apopulution of guesses. These are usually random and will
be spread throughout the search space. A typical algorithm then uses three
operators, selection, crossover and mutation (chosen in part by analogy with
the natural world) to direct the population (over a series of time steps or
generations) towards convergence at the global optimum.

Typically, these initial guesses are held as binary encodings (or strings)
of the true variables, although an increasing number of GAS use "real-valued"
(i.e. base-10) encodings, or encodings that have been chosen to mimic in some
manner the natural data structure of the problem. This initial population is then
processed by the three main operators.

Selection attempts to apply pressure upon the population in a manner
similar to that of natural selection found in biological systems. Poorer
performing individuals are weeded out and better performing, or fitter,
individuals have a greater than average chance of promoting the information
they contain within the next generation.

11

Crossover allows solutions to exchange information in a way similar to
that used by a natural organism undergoing sexual reproduction. One method
(termed single point crossover) is to choose pairs of individuals promoted by
the selection operator, randomly choose a single locus (point) within the binary
strings and swap all the information (digits) to the right of this locus between
the two individuals.

~ # ~ a ~ o ~ is used to randomly change (flip) the value of single bits
within individ~l strings. ~ u ~ t i o n is typical~y used very sparingly.

After selection, crossover and mutation have been applied to the initial
population, a new population will have been formed and the generational
counter is increased by one. This process of selection, crossover and mutation
is continued until a fixed number of generations have elapsed or some form of
convergence criterion has been met.

On a first encounter it is fw from obvious that this process is ever likely
to discover the global optimum, let alone form the basis of a general and highly
effmtive search algorithm. However, the application of the technique to
numerous problems across a wide diversity of fields has shown that it does
exactly this. The ultimate proof of the utility of the approach possibly lies with
the demonstrated success of life on earth.

1.4 ANEXAMPLE
There are many things that have to be decided upon before applying a GA to a
p ~ c ~ ~ problem, including:

the method of encoding the unknown parameters (as binary strings, base-10
numbers, etc.);
how to exchange information contained between the strings or encodings;
the population size-typical values are in the range 20 to 1000, but can be
smaller or much larger;
how to apply the concept of mutation to the representation; and
the termination criterion.

Many papers have been written discussing the advantages of one
encoding over another; or how, for a particular problem, the population size
might be chosen [GO89b]; about the difference in performance of various
exchange mechanisms and on whether mutation rates ought to be high or low,
However, these papers have naturally concerned themselves with computer
experiments, using a small number of simple test hctions, and it is often not

12

clear how general such results are. In reality the only way to proceed is to look
at what others with similar problems have tried, then choose an approach that
both seems sensible for the problem at hand and that you have confidence in
being able to code up.

A trivial problem might be to maximise a function,f(x), where

f (x) = x2 ; for integer x and 0 5 x 54095.

There are of course other ways of finding the answer (x = 4095) to this problem
than using a GA, but its simplicity makes it ideal as an example.

Firstly, the exact form of the algorithm must be decided upon. As
mentioned earlier, GAS can take many forms. This allows a wealth of Ereedom
in the details of the algorithm. The following (Algorithm 1) represents just one
possibility.

Form a population, of eight random binary strings of length twelve (e.g.

Decode each binary string to an integer x (i.e. OOOOOOOOOIll implies x = 7,
000000000000 = 0, I I I f I If I I I l l = 4095).
Test these numbers as solutions to the problem Ax) = x2 and assign a fitness to each
individual equal to the value ofAx) (e.g. the solution x = 7 has a fitness of 72 = 49).
Select the best half (those with highest fitness) of the population to go forward to the
next generation.
Pick pairs of parent strings at random (with each string being selected exactly once)
from these more successful individuals to undergo single point crossover. Taking each
pair in turn, choose a random point between the end points of the string, cut the strings
at this point and exchange the tails, creating pairs of child strings.
Apply mutation to the children by occasionally (with probability one in six) flipping a 0
to a I or vice versa.
Allow these new strings, together with their parents to form the new population, which
will still contain only eight members.

101001 ioiaio, ifooffaofioa, 1.

1 8.
A l g o r i t ~ 1. A very simple genetic a l g o r i t ~ .

Return to Step 2, and repeat until fie generations have elapsed.

To further clarify the crossover operator, imagine two strings, 0001 0001 1 I00
and I1 1001 I01 01 0. Performing crossover between the third and fourth
characters produces two new strings:

13

parents children
000/100011100 000001101010
11 1/00] 101010 11110001 1100

It is this process of crossover which is responsible for much of the power of
genetic algorithms.

Returning to the example, let the initial population be:

population
member

1
2
3
4
5
6
7
8

string

110101100100
010100010111
101111101110
010100001 100
011101011101
loIIolooIooI
101011011010
010011010101

X

3428
1303
3054
1292
1885
2889
2778
1237

fitness

1 175 1 184
1697809
9326916
1669264
3553225
8346321
77 17284
1530169

Population members 1, 3, 6 and 7 have the highest fitness. Deleting those four
with the least fitness provides a temporary reduced population ready to undergo
crossover:

temp. pop. string X fitness
member

1 110101100100 3428 11751184
2 IolIlllolIIo 3054 9326916
3 I01 101001001 2889 8346321
4 10I0110ll010 2778 7717284

Pairs of strings are now chosen at random (each exactly once): 1 is
paired with 2, 3 with 4. Selecting, again at random, a crossover point for each
pair of strings (marked by a 0, four new children are formed and the new
population, consisting of parents and offspring only, becomes (note that
mutation is being ignored at present):

14

popuiation
member

I
2
3
4
5
6
7
8

string

11/0101100100
IO/I I I I I01 110
101 l ~ ~ ~ o o l o o l
10l01l/011010
I I I I I 1 101 I10
I OOIOI I001 00
loiioiolloio
10~01l001001

X

3428
3054

2778
4078
2404
2906
276 I

2889

fitness

11751184
93269 16
834632 I
77 17284

16630084
5779216
8444836
7623121

The initial population had an average fitness&, of 5065797 and the
fittest individual had a fitness, f,, of 11751 184. In the second ge~eration,
these have risen to: faye = 8402107 and fmm = 16630084. The next temporary
population becomes:

temp. pop. string X fitness
member

1 IIOlO~ 100100 3428 11751 184
2 10111110I110 3054 93269 16
3 101~01011010 2906 8444836
4 IlIlfllOlllO 4078 I6630084

This temporary population does not contain a I as the last digit in any of the
strings (whereas the initial population did). This implies that no stsing from this
moment on can contain such a digit and the maximum value that can evolve
will be 1 I I I I I I I l l IO-afIer which point this string will reproduce so as to
dominate the population. This domination of the population by a single sub-
optimal string gives a first indication of why mutation might be important. Any
further populations will only contain the same, identical string. This is because
the crossover operator can only swap bits between strings, not introduce any
new information. Mutation can thus be seen in part as an operator charged with
maintaining the genetic diversity of the population by preserving the diversity
embodied in the initial generation. (For a discussion of the relative benefits of
mutation and crossover, see [SP93a].)

The inclusion of mutation allows the population to leapfrog over this
sticking point. It is worth reiterating that the initial population did include a 1
in all positions. Thus the mutation operator is not necessarily inventing new
information but simply working as an insurance policy against premature loss
of genetic information.

15

R e ~ g the algorithm from the Same initial population, but with
mutation, allows the string Z I Z ZI Z I1 I J I Z to evolve and the global optimum to
be found. The progress of the algorithm (starting with a different initial
population), with and without mutation, as a function of generation is shown in
Figure 1.7, Mutation has been included by visiting every bit in each new child
string, throwing a random number betwden 0 and f and if this number is less
than ' / j ~ , flipping the value of the bit.

18000000,

-fm with mutation
------f, withmutation
.......... f,, no mutation

2000000 -
0 - ' " I ' I ' ' 1 '

0 10 20 30 40 $0

Generation

Figure 1.7. The evolution of the population. The fitness of the best performing individual, fnm,

is seen to improve with generation as is the average fitness of the population, fme. Without
mutation the lack of a I in all positions limits the final solution.

Although a genetic algorithm has now been successfully constructed
and applied to a simple problem, it is obvious that many questions remain. In
particular, how are problems with rnore than one unknown dealt with, and how
are problems with real (or complex) valued parameters to be tackled? These
and other questions are discussed in the next chapter.

1.5 SUMMARY

In this chapter genetic algorithms have been introduced as general search
algorithms based on metaphors with natural selection and natural genetics. The
central differences between the approach and more traditional algorithms are:

16

the manipulation of a population of solutions in parallel, rather than the
sequential adjustment of a single solution; the use of encoded representations
of the solutions, rather than the solutions themselves; and the use of a series of
stochastic (i.e. random based) operators.

The approach has been shown to be successful over a growing range of
difficult problems. Much of this proven utility arises from the way the
population navigates its way around complex search spaces (or j tness
landscapes) so as to avoid entrapment by local optima.

The three central operators behind the method are selection, crossover
and mutation. Using these operators a very simple GA has been constructed
(Algorithm 1) and applied to a trivial problem. In the next chapter these
operators will be combined once more, but in a form capable of tackling more
difficult problems.

1.6 EXERCISES
1. Given a string of length ten, what is the greatest value of an unknown

Algorithm 1 can search for?

2. What is the resolution of Algorithm 1 when working with a string length of
thirty?

3 . Given a string length of 20 and a probability of mutation of '/20 per bit,
what is the probability that a string will emerge from the mutation operator
unscathed?

4. Implement Algorithm 1 on a computer and adapt it to find the value of x
that maximises sin4(x), 0 I x 5 'R to an accuracy of at least one part in a
million (Use a population size of fifty and a mutation rate of
l/(twice the string length).) This will require finding a transformation
between the binary strings and x such that 000 ... 000 implies x = 0 and
I1 1 ... I I I implies x = 'R.

5 . Experiment with your program and the problem of Question 4 by
estimating the average number of evaluations of sin4(x) required to locate
the maximum; (a) as a function of the population size, (b) with, and
without, the use of crossover. (Use a mutation rate of
l/(twice the string length).)

17

CHAPTER 2

IMPROVING THE ALGORITHM

Although the example presented in Chapter 1 was useful, it left many questions
unanswered. The most pressing of these are:

0 How will the algorithm perform across a wider range of problems?
0 How are non-integer unknowns tackled?
0 How are problems of more than one unknown dealt with?
0 Are there better ways to define the selection operator that distinguishes

between good and very good solutions?

Following the approach taken by Goldberg [GO89], an attempt will be
made to answer these questions by slowly developing the knowledge required
to produce a practical genetic algorithm together with the necessary computer
code. The algorithm and code go by the name Little Genetic Algorithm or LGA.
Goldberg introduced an algorithm and PASCAL code called the Simple
Genetic Algorithm, or SGA. LGA shares much in common with SGA, but also
contains several differences. LGA is also similar to algorithms used by several
other authors and researchers.

Before the first of the above questions can be answered, some of the
terminology used in the chapter needs clarifying, and in particular, its relation
to terms used in the life sciences.

2.1 COMPARISON OF BIOLOGICAL AND GA TERMINOLOGY
Much of the terminology used by the GA community is based, via analogy, on
that used by biologists. The analogies are somewhat strained, but are still
useful. The binary (or other) string can be considered to be a chromosome, and
since only individuals with a single string are considered here, this
chromosome is also the genotype. The organism, or phenotype, is then the
result produced by the expression of the genotype within the environment. In

18

GAS this will be a particular set of unknown parameters, or an individual
solution vector. These correspondences are summarked in Table 2.1.

Locus
Phenotype

A particular (bit) position on the string
Parameter set or solution vector (real-
valued)

Table 2.1 Comparison of biological and GA terminology.

2.2 R O B U S ~ ~ S S
Although the GA has, not unsurprisingly, proved itself able to find the
maximum value of J? over a small range of integers, how is it likely to perform
on a wider range of more realistic problems? This requires a consideration of
what exactly is meant bype$orm.

The shortest and most efficient algorithm for generating the answer to a
particular problem is simply a statement containing the answer to the problem.
Given that this requires knowing the answer in the first place, the approach has
little value. More useful are highly efficient methods that are specifically
tailored to the application at hand, possibly c o n ~ ~ i n g problem specific
operators and information. Such methods are likely to be efficient when
working on the problem for which they were designed, but likely to be far less
efficient-r even fail-when used on other problems. At the far end of the
scale are robust techniques of almost universal application. Such techniques
can, with little adaptation, work on a wide variety of problems but are likely to
be much less efficient than highly tailored problem-specific algorithms, GAS
are naturally robust algorithms, that by suitable adjustment of their operators
and data encoding can also be made highly efficient. Given enough information
about the search space it will always be possible to construct a search method
that will o u ~ ~ o r m a GA. However, obtaining such information is for many
problems almost as difficult as solving the problem itself. The ‘4app~icability”
or robustness of the GA is illustrated in Figure 2.1 : although highly problem-
specific methods can outperform a GA, their domain of applicability is small.
By suitable small adjustments to a GA, the algorithm can be made more
efficient whilst still retaining a high degree of robustness.

19

Efficiency
A

Spectrum of applicable problems

Figure 2.1. Comparison of the robustness of GA-based and more traditional methods. The more
robust the algorithm the greater the range of problems it can be applied to. A tailor-made
method such as a traditional calculus based algorithm might be highly efficient for some
problems, but will fail on others. GAS are naturally robust and therefore effective across a wide
range of problems.

2.3 NON-INTEGER UNKNOWNS
In Chapter 1 integer-valued parameters were represented as binary strings. This
representation must now be adapted to allow for real-valued parameters. This
requires providing a binary representation of numbers such as 2 . 3 9 ~ 1 0 - ~ or
-4.91. (Another approach discussed later is the use of a real-valued
representation within the GAY but this requires the redefinition of several of the
GA operators.) There are many ways of doing this; however the most common
is by a linear mapping between the real numbers and a binary representation of
fixed length.

To carry out this transformation, the binary string (or genotype) is firstly
converted to a base-10 integer, z. This integer is then transformed to a real
number, r, using:

20

The values of m and c depend on the location and width of the search space.
Expressions for m and c can be derived from the two simultaneous equations:

and

r,, = mz,, +c (2.3)

where rmin, rmm, zmin and z,, represent the minimum and maximum possible
parameters in real and integer representations respectively. The smallest binary
number that can be represented is of the form 000 0 which equates to 0 in
base- 10, so z,,, = 0. Zmm is given by:

z,, = 2' - 1 (2.4)

where 1 is the length of the binary string used.
Subtracting (2.2) from (2.3) gives:

or

Applying (2.4) and remembering that Zmin = 0 gives:

Finally, rearranging (2.2) gives:

or (as zmin = 0)

c = r,," .

~ u ~ t i o n s (2.1), (2.5) and (2.6) then define the required ~ a n s f o ~ a t i o n :

(2.7)

AN EXAMPLE
Given a problem where the unknown parameter x being sought is known to lie
between 2.2 and 3.9, the binary string 10101 is mapped to this space as follows:

x = 101 01 therefore z = 21 .

Using (2.7):

A QUESTION OF ACCURACY
In the example above, 10101 was mapped to a real number between 2.2 and 3.
The next binary number above lO1Of is 10110 = 22, which, using (2.7) implies
r = 3.4065. This identifies a problem: it is not possible to specify any number
between 3.3516 and 3.4065.

This is a fundamental problem with this type of representation. The
only way to improve accuracy is either to reduce the size of the search space, or
to increase the length of the strings used to represent the unknowns. It is
possible to use different presentations that remove this problem [MI94];
however for most problems this proves unnecessary. By not making the search
space larger than required and by choosing a suitable string length, the required
accuracy can usually be maintained. (I = 20 implies an accuracy better than one
part in a million.) For problems with a large n ~ b e r of owns it is
important to use the smallest possible string length for each parameter. This
requirement is discussed in more detail in the Chapter 6.

22

COMPLEX NUMBERS
Problems with complex-valued unknowns can be tackled by treating the real
and imaginary parts as a pair of separate real parameters. Thus the number of
unknowns is doubled.

2.4 MULTIPARAMETER PROBLEMS
Extending the representation to problems with more than one unknown proves
to be particularly simple. The A4 unknowns are each represented as sub-strings
of length 1, These sub-strings are then concatenated (joined together) to form an
individual population member of length L, where:

M

L=Cl,.
j-l

For example, given a problem with two unknowns a and b, then if a = 101 10
and b = 11000 for one guess at the solution, then by concatenation, the
genotype is a CB b = 1011011000.

At this point two things should be made clear: firstly, there is no need
for the sub-strings used to represent a and b to be of the same length; this
allows varying degrees of accuracy to be assigned to different parameters; this,
in turn, can greatly speed the search. Secondly, it should be realised that, in
general, the crossover cut point will not be between parameters but within a
parameter. On first association with GAS this cutting of parameter strings into
parts and gluing them back together seems most unlikely to lead to much more
than a random search. Why such an approach might be effective is the subject
of Chapter 3.

2.5 MUTATION
In the natural world, several processes can cause mutation, the simplest being
an error during replication. (Rates for bacteria are approximately 2x10e3 per
genome per generation [FU90, BA96,p19].) With a simple binary
representation, mutation is particularly easy to implement. With each new
generation the whole population is swept, with every bit position in every string
visited and very occasionally a 1 is flipped to a 0 or vice versa. The probability
of mutation, P, is typically of the order 0,001, i.e. one bit in every thousand
will be mutated. However, just like everything else about GAS, the correct
setting for P, will be problem dependent. (Many have used P,,, =: 1/L, others

23

[SC89a] P,,, = l /(NdL), where N is the population size). It is probably true that
too low a rate is likely to be less disastrous than too high a rate for most
problems.

Many other mutation operators have been suggested, some of which
will be considered in later chapters. Some authors [e.g. DA911 carry out
mutation by visiting each bit position, throwing at random a 0 or a 1, and
replacing the existing bit with this new value. As there is a 50% probability that
the pre-existing bit and the replacement one are identical, mutation will only
occur at half the rate suggested by the value of P,,,. It is important to know
which method is being used when trying to duplicate and extend the work of
others.

2.6 SELECTION
Thus far, the selection operator has been particularly simple: the best 50% are
selected to reproduce and the rest thrown away. This is a practical method but
not the most common. One reason for this is that although it allows the best to
reproduce (and stops the worst); it makes no distinction between “good” and
“very good”. Also, rather than only allowing poor solutions to go forward to the
next generation with a much lower probability, it simply annihilates them
(much reducing the genetic diversity of the population). A more common
selection operator isptness-proportional, or roulette wheel, selection. With this
approach the probability of selection is proportional to an individual‘s fitness.
The analogy with a roulette wheel arises because one can imagine the whole
population forming a roulette wheel with the size of any individual’s slot
proportional to its fitness. The wheel is then spun and the figurative “ball”
thrown in. The probability of the ball coming to rest in any particular slot is
proportional to the arc of the slot and thus to the fitness of the corresponding
individual. The approach is illustrated in Figure 2.2 for a population of six
individuals (a, by c, d, e and f) of fitness 2.7, 4.5, 1.1, 3.2, 1.3 and 7.3
respectively.

24

L 7.3 -, . .-

e, 1.3
b, 4.5

Figure 2.2. Roulette wheel selection. The greater an individual's fitness the larger its slot and
the higher its chance of going forward to the next generation.

Implementing this operator is easier than it might seem. The
circumference of the wheel is given by the sum of the population's fitness and
the ball is represented by a random number between 0 and this sum. To
discover which individuai's slot the ball fell into, the fitness of the population
members are added together one at a time, but this time stopping when this new
sum exceeds the random number. At this point the last individual to be added is
the selected ind~vidual. The algorithm is summarised in below:

1.
2.
3.

Sum the fitness of all the population members. Call this sum&um.
Choose a random number, Rs, between 0 andfsum.
Add together the fitness of the population members (one at a time)
stopping immediately when the sum is greater than R,. The last individual
added is the selected individual and a copy is passed to the next
generation.

Algorithm 2. Implementing fitness-proportional selection.

The selection mechanism is applied twice (from Step 2) in order to select a pair
of individuals to undergo, or not to undergo, crossover. Selection is continued
until N (the population size, assumed to be even) individuals have been
selected.

In this text the type of selection used is indicated by the value of v,, with
v, = I: indicating fitness-proportional (roulette wheel) selection.

25

2.7 ELITISM
Fitness-proportional selection does not guarantee the selection of any particular
individual, including the fittest. Unless the fittest individual is much, much
fitter than any other it will occasionally not be selected. To not be selected is to
die. Thus with fitness-proportional selection the best solution to the problem
discovered so far can be regularly thrown away. Although it appears
counterproductive, this can be advantageous for some problems because it
slows the algorithm, allowing it to explore more of the search space before
convergence. This balance between the exploration of the search space and the
exploitation of discoveries made within the space is a recurrent theme in GA
theory. The more exploitation that is made the faster the progress of the
algorithm, but the greater the possibility of the algorithm failing to finally
locate the true global optimum. For many applications the search speed can be
greatly improved by not losing the best, or elite, member between generations.

Ensuring the propagation of the elite member is termed elitism and
requires that not only is the elite member selected, but a copy of it does not
become disrupted by crossover or mutation.

In this text, the use of elitism is indicated by E (which can only take the
value 0 or 1); if E = 1 then elitism is being applied, if E = 0 then elitism is not
applied.

2.8 CROSSOVER
The Little Genetic Algorithm uses single point crossover as the recombination
operator (in the natural world, between one and eight crossover points have
been reported [GOT89,BA96,p 181). The pairs of individuals selected undergo
crossover with probability P,. A random number R, is generated in the range
0-1, and the individuals undergo crossover if and only if R, I P,, otherwise the
pair proceed without crossover. Typical values of P, are 0.4 to 0.9. (If P, = 0.5
then half the new population will be formed by selection and crossover, and
half by selection alone.)

Without crossover, the average fitness of the population,f,,, will climb
until it equals the fitness of the fittest member,f,,. After this point it can only
improve via mutation. Crossover provides a method whereby information for
differing solutions can be melded to allow the exploration of new parts of the
search space.

As described in Chapter 1, single point crossover proceeds by cutting
the pair of selected strings at a random locus (picked by throwing a random

26

number, RL, between 1 and L - 1) and swapping the tails to create two child
strings. For example, if RL = 4, then:

Parents Children
1010/0010101
I I I I / l I I I I I I

1010/11 I I I I I
1111/0010101

The new population now consists of N individuals (the same number as
the original population) created by selection and crossover. Mutation then
operates on the whole population except the elite member (if elitism is being
applied). Once this is done, the old population is replaced by the new one and
the generational counter, g, incremented by one.

2.9 INITIALISATION
Although as discussed in Chapter 1 the initial population is usually chosen at
random, there are other possibilities. One possibility [BR91] is to carryout a
series of initialisations for each individual and then pick the highest performing
values. Alternatively, estimations can be made by other methods in an attempt
to locate approximate solutions, and the algorithm can be started from such
points.

2.10 THE LITTLE GENETIC ALGORITHM
Having now described how multi-parameter problems with non-integer
unknowns can be tackled, and defined the mutation, selection, crossover and
elitism operators, this knowledge can be brought together within a singular
algorithm (Algorithm 3):

27

I 1. Generate an initial (g = 1) population of random binary strings of length

zlk , where M is the number of unknowns and 1, the length of binary

string required by any unknown k. In general lk f 4; k f j .
2. Decode each individual, i, within the population to integers Zl,k and then

to real numbers rl,k, to obtain the unknown parameters.
3. Test each individual in turn on the problem at hand and convert the

objective function or performance, Sat, of each individual to a fitnessf;,
where a better solution implies a higher fitness.

4. Select, by using fitness proportional selection, pairs of individuals and
apply with probability P, single point crossover. Repeat until a new
temporary population of N individuals is formed.

5. Apply the mutation operator to every individual in the temporary
population, by stepping bit-wise through each string, occasionally
flipping a 0 to a 1 or vice versa. The probability of any bit mutating is
given by P,,, and is typically very small (for example, 0.001).

6. If elitism is required, and the temporary population does not contain a
copy of an individual with at least the fitness of the elite member,
replace (at random) one member of the temporary population with the
elite member.

7. Replace the old population by the new temporary generation.
8. Increment, by 1, the generational counter (i.e. g = g + 1) and repeat from

Step 2 until G generations have elapsed.
Jgorithtn 3. The Little Genetic Algorithm.

M

k-1

USING LGA
For many applications requiring the near optimisation of real or complex
valued functions, LGA is a suitable algorithm. However, as mentioned several
times already, the correct choice of algorithm is highlygroblem dependent and
readers are encouraged to search the literature for successful applications of the
technique to problems similar to their own. It may also prove worthwhile to
consider some of the advanced operators discussed in Chapter4. The
application of GAS to help solve difficult problems has a long history and the
number of adaptations to the basic technique is growing all the time. An
algorithm as simple as LGA will not be suitable for all problems by any means.

28

INSTALLING AND R ~ N N ~ N ~ LGADOS
The disk enclosed with this book contains an implementation (LGADOS) of
the LGA algorithm (although with 4 = f k , for a l l j and k, i.e. all unknowns are
represented with identica~ length strings). Both an ~ c o m p i l ~
(LGADOS.BAS) and a compiled version (LGADOS.EXE) are included. The
compiled version is designed for use with some of the exercises included at the
end of chapters. The ~ c o m p i ~ e d version can be adapted €or use with other
problems.

A listing (in BASIC) of the program is given both on the disk and in
Appendix B. BASIC has been used for several reasons. Firstly, it is one of the
easiest computer languages to ~ d e r s ~ d and should cause few problems for
those with experience in FORTRAN, PASCAL or C. Secondly, it complements
code written in PASCAL and C published in other introducto~ text books
([GO891 and [MI941 respectively). The disk also contains translations of the
code into FORTRAN, PASCAL and C. To ensure maximum compatibili~ with
the text, these are near direct translations from the BASIC code and therefore
do not represent the best way of coding a GA in these languages. Those
preferring to use a more professional FORTRAN GA should visit David
Carroll's web site (see Appendix A) and ~ u ~ l o a ~ his GA code.

Updated versions of the programs will be found at
http://www,ex.ac.uk/cee/ga/ . This site should be visited and any updates
d~wn~oaded before the programs are used.

Lastly, most IBM compatible personal computers using ~ i n d o w s 3.x or
DOS 6.x will have access to QBASIC-the e n v i r o ~ e n ~ used to write LGA-
thereby allowing a~ te~ t ions to be made easily and the student exercises
completed. However, QBASIC does not contain a compiler, and therefore
LGADOS will run rather slowly on anything but the simplest problem. If you
wish to adapt the code to use on your own problems you will probably need
either to purchase a BASIC compiler (shareware ones EW: available), use one of
the translations on the disk (LGADOS.F, LGADOS.PAS and LOAD0S.C) or
convert the code to a language for which you already have a compiler. This
conversion should be relatively easy as no overly special structures or operators
have been used.

A word of caution: LGADUS has been written with simplicity rather
than efficiency in mind and as such does not represent good p r o ~ i n g
practice. There are much faster ways of performing some of the operations and
better languages than BASIC in which to write such code. Those without the
required knowledge may well find it advisable to enlist the help of a more
experienced programmer to produce more efficient code. Having said this, in

29

the majority of real-world problems to which GAS are applied, the time taken
for the GA to cycle through a generation of selection, crossover and mutation is
much less than the time taken to estimate the objective functions, and hence,
the fitness of the individuals. This is a very different situation to that
encountered when examining the performance of a GA on established test
problems. The function estimations in such tests are typically much simpler and
much quicker to calculate than their real-world counterparts-which might take
several minutes per estimation. This implies that, in the majority of cases, time
is better spent producing code that can carry out these function evaluations as
rapidly as possible, rather than considering how to increase the speed of the
GA’s operators. BASIC allows-as do many other languages-the inclusion of
mixed language routines. This means it is easy to add pre-existing routines to
carry out the function evaluations.

Another sensible approach to developing applications is to use some of
the GA code available on the World Wide Web (see Appendix A), or contact a
researcher who has recently published in a closely related field using GAS and
enthuse them into helping out.

LGADOS itself is examined in detail in Chapter 5 , a quick glance at
which shows that the program is quite short, and capable readers are strongly
encouraged to write their own version, in the language of their choice. This is
recommended even for those that may end up using someone else’s code to
solve research problems, as it ensures a full understanding of the processes
involved.

To run the compiled version, copy LGADOS.EXE to a new sub-
directory (folder) on your hard drive and type LGADOS from that directory if
using DOS, or double-click on LGADOS.EXE from File Manager (or
Explorer).

The user is presented with a series of options for N, P,, P m etc. and
possible test problems (Figure 2.3).

Output is via two files: LGADOS.RES and LGADOS.ALL.
LGADOS.RES lists the generation, g; fitness, fmm, of the highest performing
individual; the average fitness of the generation, fme; and the unknown
parameter values, Q, contained in the fittest individual. LGADOS.ALL lists g,
f, rk and the binary chromosome C for all individuals in all generations, and
hence can be very large. The files are comma separated and can be loaded into
most spreadsheets for analysis and data plotting.

30

N, Population S i z e (muat be oven) = 20
1, Subetring Longth (all sub-atrings have the 8.m. length) = 10
G, W a x . Generation .I 50
Pc, Crorrover Probability (2-0 and <-l) = 0.65
Pnr, Mutation Probability (2 4 and cl) = 0.001
e, Blitiam (1-on, O=off) - 0
am, Scaling Conatant (a value of 0 implies no scaling) m 0
Problem (l-Fl, 2mF2, 3-83, 4rF4, 5-f^2) - 2

Figure 2.3. A completed input screen for LGADOSEXE. The meaning of cm will described
later, but it should be set to zero for now.

To test LGADOS, and the stochastic nature of GAS, a simple example:

can now be completed using LGADOS. The following settings should be used:

N=20
l = 10
G = 2 0
P, = 0.6
Pm = 0.01
& = O
c, = 0
Problem =fz

After setting these, press ENTER. LGADOS will display a simple
listing of the average and best fitness within a single generation, together with
the best estimate of x. These results are also stored within the file
LGAD0S.RES.

When LGA has run through all 20 generations print out LGADOSXES,
run the program again, and print LGADOSRES. Finally repeat this process
once more. If you compare the three sets of results they should be substantially
different. (If not, you were simply fortunate.) The reasons for these differences
are the stochastic processes embedded within the algorithm, i.e. the use of
random numbers to pick individuals to mate, crossover sites and mutation
locations. Therefore no two runs of a GA are ever likely to produce the same
series of results (unless the random number generator was seeded with the
same number both times). This is important to remember. If computer
experiments are being run in an attempt to ascertain the best values of the
internal GA settings (Pm, Pc etc.) for a particular problem, the results from one

31

GA run should not be relied upon to be meaningfuI. Rapid, or slow, progress of
the GA could well be simply the result of the particular random numbers
encountered (Figure 2.4).

Figure 2.4. Sample results fiom multiple runs of LGADOS on the problem MAX[Ax) = xz] ; 0
S x <lo. The MLS show very different characteristics Vw plotted).

It should be noted that although averaging solution vectors (i.e.
parameter values) produced by GAS provides a way of monitoring progress and
producing pedomance measures for the algorithm, there is little point in
averaging sofution vectors when dealing with real problems once the i n t e d
GA settings have been established. In fact, not only is averaging solution
vectors of little benefit, but it can also lead to quite erroneous solutions. Figure
2.5 shows a hypothetical one-dimensional fitness landscape. If two runs of a
GA produce the solutions GI and a2 respectively, then the mean of these
solutions is ~ 3 - a very poor result. Such a space would be better tackled with a
long GA run, whilst ensuring the population remained diverse, or by multiple
runs disregarding all but the best solution.

In this text, the number of multiple runs made to produce a result is
denoted by X.

32

8 -

6 -

'I.

4 -

2 -

Figure 2.5. A potential pitfall of averaging solution vectors from multiple runs of a GA,
U] = (a1 .t u$2.

2.1 1 OTHER EVO~UTION~Y ~ P R O A C ~ E S

Genetic algorithms are not the only evolutionary approach to search and
optimisation.

Evolutionary Programming [F066] typically uses a representation
tailored to the problem (e.g. reals, not binary). All N individuals are selected
and a representation specific, adaptive mutation operator used to produce N
offspring. The next generation is then selected from the 2N individuals via a
fitness-biased selection operator.

Evolution Strategies originally used N = I together with a mutation and
selection operator. This has been extended [SC8 1 J to N 1 1, with mutation and
recombinaiion to create more than N offspring. Selection is then used to return
the population to N individuals.

For an overview of such approaches see [BA96, p57-60, BA91 and
SP931.

33

2.12 SUMMARY

In this chapter the algorithm has been extended to deal with multi-dimensional
problems of non-integer unknowns. The selection operator has also been
improved to allow use to be made of the distinction between “good” and “very
good”.

A comparison of biological and GA terminology has been made and the
robustness of the algorithm qualitatively compared to more traditional methods.

The problem of limited accuracy caused by discretisation of the search
space, implied by the use of a fixed binary representation, has been considered
and seen to cause few difficulties for many problems.

A simple genetic algorithm, LGA, has been introduced and used to
solve a trivial problem. This has allowed one of the potential pitfalls caused by
the stochastic nature of the method to be discussed.

In the next chapter, some of the reasons why GAS work well across a
wide range of problems will be further considered.

2.13 EXERCISES
1.

2.

3.

4.

5 .

6 .

Within the terminology used in GAS, characterise the difference between
the genotype and the phenotype.

Derive (2.7)

Given I = 4, what is the highest fitness that can be found by a binary
encoded GA for the problem MAX[sin’’(x)]; 0 I x I 3?

If N = 6 withfi = 1,fi = 2,f3 = 3,f4 = 4,h = 5 andfa = 6, how many times
is the individual with f= 4 likely to be picked by fitness proportional
selection in a single generation? What is the minimum and maximum
possible number of times the individual withf= 6 might be picked? What
problem does this indicate could arise in a GA using fitness proportional
selection?

Write, in a programming language of your choice, a GA similar to LGA.

Use LGADOS, or your own code, to study the evolution of a population

whilst it explores the search space given by f = x s i n 4 (x i) ; 0 5 X i I A ,
2

1-1

34

i = 1,2 . Plot the movements of the population across the search space (as a
hct ion of g) as a series of (XI, x 2 , f) surface plots.

35

CHAPTER 3

Although the roots of evolutionary inspired computing can be traced back to
the earliest days of computer science, genetic algorithms themselves were
invented in the 1960's by John Holland. His reasons for studying such systems
went beyond a desire for a better search and opti~sation algorithm. Such
methods were (and stilf are) considered helpfirf abstractions for studying
evolution itself in both natural and artificial settings. His book Adapiafion in
Natsrral and Ari@cial systems from 1975 (and now updated) was, and still is,
inspirational.

With the aid of his students Holland developed the GA m e r during
the 1970'9, He also produced a theoretical framework for ~ d e r s ~ d i n g how
GAS actually work. Until relatively recently this schema theory formed the
basis of most theoretical work on the topic.

Exactly why Genetic Algorithms work is a subject of some controversy,
with much more work being required before all questions are finally answered.
However the subject is not without foundations. These fo~dations have
emerged from two separate directions. One is based on attempts to provide a
mathematical analysis of the underlying processes, the other on computer
simulations on hct ions that reflect aspects of some of the problems to which
GAS have been applied (or ones that GAS might have difficulty with),

There are some very good reasons why, even as p~ctjtioners rather than
theorists, it might be beneficial for the subject to have a theoretical fo~dation.
In particular, a knowledge of the type of problems where GAS might, or might
not, perform well (or even work) would be extremely useful. Equally useful
would be guidance on the degree to which such algorithms might outperform
more traditional methods.

Much of the work in this area is not suitable for an i n ~ o d u c t o ~ text"
For an overview the reader should see the series Fo~ndu~io~s of Genetic
A Z g ~ ~ ~ f ~ ~ s m91 ,WH93,WH95]. However, a brief consideration of the
subject is we1 worth the modest ef€ort required. In the following, both a largely

36

theoretical method and a more applied approach will be considered. The
theoretical work is based on Holland’s original schema theorem, popularised by
Goldberg [G089]. The applied work is based on the systematic adjustment of
internal settings when using a GA to tackle a series of test functions.

Both approaches are required because while most theoretical work on
GAS has concentrated on binary alphabets (i.e. strings containing only 0’s and
l’s), fitness-proportional selection and pseudoboolean functions (i.e. functions
expressed using 0’s and l’s), practitioners have used a vast array of
representations and selection methods. Results therefore do not necessarily
translate between these approaches, implying yet more caution when choosing
settings and deciding between various algorithms etc.

3.1 HISTOIUCAL TEST F”CTI0NS

Before looking at schema theory there is a need to look at some of the
theoretical test functions (or artficial landscapes) used to examine the
performance of varying GAS. These functions are not only of historical interest.
They, together with more complex functions, are often suited to the testing of
user developed codes.

Although typical test functions are very useful because they allow for
easy comparisons with other methods, they may have little relevance to real-
world problems. Thus care must be taken not to jump to conclusions about
what is best in the way of algorithm or settings. Often such functions have been
too simple, too regular and of too low a dimension to represent real problems
(see comments in [DABlb] and EWH95al). Bgck [BA96,p138] suggests sets of
functions should be used, with the group covering several important features.
The set should:

1. consist exclusively of functions that are scalable with respect to their
dimension M, i.e. the number of unknowns in the problem can be changed
at will;

2. include a unimodal fie. single peaked), continuo^ function for c o m p ~ ~ n
of convergence velocity (see below);

3. include a step function with several flat plateaux of different heights in
order to test the behaviour of the algorithm in case of the absence of any
local gradient information; and

37

4. cover multimodal (i.e. multi-peaked) functions of differing complexity.

Although many others had been investigating genetic algorithms for
some time, De Jong's dissertation (published in 1975) Analysis of the
Behavlour of a Class of Genetic Adaptive Systems [DE75] has proven to be a
milestone. One reason for this is the way he carried out his computer
experiments, carefully adjusting a single GA setting or operator at a time. The
other is the range of functions (or problems) on which he chose to test the GA.
These functions, together with additions, are still used today by some to make
initial estimates of the performance of their own GAS. In fact it is well worth
coding up a subset of these functions if you are writing your own GA (for
function optimisation), simply so that you can check that all is proceeding
according to plan within your program. If you are using a GA you did not write
then this is still a worthwhile exercise to prove that you have understood the
instructions. The idea of using test functions to probe the mechanics and
performance of evolutionary algorithms has continued to the present day. For
an excellent modem example see Back's recent book [BA96].

De Jong's suit of functions ranged from simple unimodal functions of
few dimensions to highly multimodal functions in many dimensions. Unlike
most research problems, all of them are very quickly calculated by computer
and therefore many generations and experiments can be run in a short time.
Adapted versions of three of the functions (together with some additions) are
listed in Table 3.1, and two-dimensional versions of several of them presented
in Figures 3.la to 3.ld.

MEASURING PERFORMANCE
De Jong used two measures of the progress of the algorithm: the off-line
performance and the on-line performance. The off-line performance j& is a
running average of the fitness of the best individual, f-, in the population:

The on-line performance,f, is the average of all fitness valuesJ calculated so
far. It thus includes both good and bad guesses:

38

Function

3

f = 4 = 7 9 - c x ;
1-1

f =F, =4000-100(x~-x2~+(l-xl) '

5

f = & = 26 - C Z N T (x J)
]=I

(s i n , / m) l - 0.5 f =F4 ~ 0 . 5 -
(1 + 0.001(x: + x;y

f = F6 = A - 2 0 e x p [-0.2 p3] -

- -[; m $0s(2-,i] 530) + 20

Limits
- 5 . 1 2 I ~ j I 5 . 1 2

-2.048 5 xj 5 2.048

-5.12 <xj 5 5.12

-100 I X j 5 100

-20Lxjs30

Table 3.1. Adapted versions of various test functions: De Jong's (Fl to F3), Davis (F4)
[DA91,SC89a] and Back (F5 and F6) [BA96]. The function INT(-) returns the nearest integer
less than or equal to (-). A is chosen to ensure a maximisation problem. Back [BA96] also
presents an interesting fractal function based on the Weierstrass-Mandelbrot function
[MA83,FE88].

39

2

40

J , . , , , . , . ,
-100 -so 0 50 100

*I

(dl
Figures 3.1 (a) to (d). Two dimensional versions of the test functions of Table 3.1: selected
&om [DE75 and G0891, F1 to F,; and a section through the global optimum of (F4)
[DA91 ,SC89a].

De Jong actually used six algorithms or reproductive plans for his GA
experiments. Here, tests are restricted to testing the effect of mutation rate on

41

the rate of convergence of LGA (studying the effect of I?, P, etc. is one of the
exercises at the end of the chapter).

Another useful measure is the convergence velocity [adapted from
BA96q1511, Y:

It is important that such performance measures are averaged over if sensible
results are to be achieved. For complex multimodal functions, multiple runs are
~ ~ k e ~ y to find the same finai o p t i m ~ and one way of judging success is to
plot a histogram of the number of times local optima of similar value were
found.

Figures 3.2 and 3.3 show the effect of P, on fma (the maximum fitness
in any generation) rather than&,, or&@ In general, it is probably better practice
to plot the number of objective function evaluations on the abscissa rather than
the generation. This is because in tests where I? varies or where f is not
calculated for all individuals in each generation, this provides a better
indication of computational effort. In fact, if P, << 1 and P, = 0 then very few
new structures are created each generation, and LGA becomes a very wasteful
algorithm because it re-calculatesf; for all i each generation.

The plots indicate that the success of different GA settings depends on
the function. For F1 P m = 0.3 is better than P m = 0.003, for F3 the opposite is
true. Further experimentation (left to the exercises at the end of the chapter)
shows that similar resuits are obtained for the values of N and Pc. Interestingly,
the independent estimation of the best value for each setting will not
necessarily lead to the optimum set. In conclusion, there is no golden set of GA
parameters; some sets work well with one type of function but less well with
others. The same is true of the form of the algorithm itself.

42

............................
. . ,

P, = 0.03
Pm = 0.003

J- .'

7 3 1 ' ' ' ' ' ' ' ' ' '
0 3 10 I5 20 25 3

Figure 3.2. The progress of fm for test function Fl and various settings of P , (N= 20,
P,=0.65,1= 10,k- l ,X=20).

25

24

23

I 22 \

21

20

I Q

Pm = 0.03
P,, = 0.003

0 5 10 I5 20 25 30

g

Figure 3.3. The progress off- for test function F3 and various settings of P,,, (N=20 ,
P, = 0.651 = 10, E = 1, B = 20).

43

THE PROBLEM OF CONVERGENCE
The above experiments indicate that, although LGA was able to find
approximate optimum values of the test functions quickly, its progress was by
no means linear. Initial progress is rapid and the value off- soars. However
this progress is not maintained. One clue to the reason for this behaviour can be
gleaned if the level of genetic diversity within the population is plotted against
generation; another from a consideration of the likelihood of progression to the
next generation under roulette wheel selection.

THE APPLICATION OF SCALING
If early during a run one particularly fit individual is produced, fitness
proportional selection can allow a large number of copies to rapidly flood the
subsequent generations. Although this will give rapid convergence, the
convergence could quite possibly be erroneous or only to a local optimum.
Furthermore, during the later stages of the simulation, when many of the
individuals will be similar, fitness proportional selection will pick
approximately equal numbers of individuals from the range of fitnesses present
in the population. Thus there will be little pressure distinguishing between the
good and the very good.

What is needed is a method whereby particularly good individuals can
be stopped fiom running away with the population in the earlier stages, yet a
degree of selection pressure maintained in the final stages. This can be
achieved by various mechanisms; one being the use of linearfitness scaling.

Linear fitness scaling works by pivoting the fitness of the population
members about the average population fitness. This allows an approximately
constant proportion of copies of the best individuals to be selected compared
with average individuals. Typical values for this constant, cm, are in the range
1.0 to 2.0. When cm equals 2, then approximately twice the number of best
individuals will go forward to the next generation than will average individuals.
To achieve this, the fitness of every population member will have to undergo a
scaling just before selection. This scaling needs to be dynamic. The fitnesses
will need to be drawn closer together during the initial stages and pulled further
apart during the later generations. The required scaling is achieved using the
linear transformation:

wherefi is the true fitness of an individual, i, andA the scaled fitness.

44

As already stated, the mean fitness of the population foye is assumed to
remain unchanged, so:

An add~tional requirement is that

Where fiat is the scaled fitness of the best individual.
This implies that:

Unfortunately, such a transformation can produce negative scaled fitnesses.
These can be eliminated in various ways, the simplest (but rather crude) way
being just setting any that occur to zero. In LGADOS, setting c,,, itself to zero
stops scaling from being applied.

Many other scaling procedures are possible and are discussed in the
literature. An alternative approach is to use a different selection mechanism, as
considered in Chapter 4.

Scaling can be important with even simple problems, as the following
illustrates. LGA can be used to find the value of x which maximises
F = 1000 + sin(@, 0 5 x I n; but as Figure 3.4 shows, there will be very little
selection pressure on individuals as they will all have near identical
performance. This implies that the algorithm will proceed rather slowly. Fitness
scaling, as described above, could be used to increase the selection probabilities
of better individuals. However, a simpler approach would be via a simple non-
dynamic direct fitness function adaptation to ensurefspans a sensible range i.e.
f= F - 1000. An alternative approach would be to use one of the selection
mechanisms discussed in the next chapter.

45

0.8 -

I ' l - I . 1 . , . I 0
0.0 0.5 I .O 1.5 2.0 2.5 3.0

X

Figure 3.4. Increasing the difference between population members via a simple non-dynamic
direct fitness function adaptation; F = dashed line, F - 1000 = solid line.

GENETIC DRIFT
The amount of diversity can be measured in several ways. An easily calculable
measure is qmm, the genotypic similarity between the string representing the
fittest individual and all the other members of the population.

To calculate qmnx the value of each bit in the fittest string is compared
with the value of the same bit in all the other strings in turn. Any matching bits
increment qmax by 1. When all the positions have been compared the result is
normalised by dividing by the total number of bits in the other strings, i.e. the
product (N-1)L.

For example, given a population of four chromosomes of length five:

C] I O I l O
c2 O I l l l
c3 lo l l0
c4 l l l l 0

with CI having the highest fitness, then q- is given by

46

0.9

0.8

10.7
c.

0.6

0.5

2+1+3+3+2 11
(4-1)x5 15

=-=0.73 .

- _
, - _ I

-
,'

-

-

-

-

Plotting il- for one of the earlier experiments gives Figure 3.5; here
the population is seen to rapidly lose its diversity if scaling is not used. By
including linear fitness scaling the diversity is seen to fall less rapidly in the
first few generations, implying a greater degree of exploration. In later
generations, qmar continues to rise in an almost linear fashion because of the
higher selection pressure present (implying a greater degree of exploitation).

0 10 20 30 40 50

g

Figure 3.5. The progress of the similarity measure)~mnr. The use of scaling produces a more
linear growth in)lam (f=x ' , 0 I x In, N = 20, P, = 0.65, P, = 0.001, 1 = 10, E = 0, c,,, = 0 and
1.2, J7 = 20).

3.2 SCHEMA THEORY
This is an approach introduced by Holland [H075] and popularised by
Goldberg [G089].

A schema (plural schemata) is a fixed template describing a subset of
strings with similarities at certain defined positions. Thus, strings which
contain the same schema contain, to some degree, similar information. In
keeping with the rest of this book, only binary alphabets will be considered,
allowing templates to be represented by the ternary alphabet { O , l , # } . Within

45

0.8 -

I ' l - I . 1 . , . I 0
0.0 0.5 I .O 1.5 2.0 2.5 3.0

X

Figure 3.4. Increasing the difference between population members via a simple non-dynamic
direct fitness function adaptation; F = dashed line, F - 1000 = solid line.

GENETIC DRIFT
The amount of diversity can be measured in several ways. An easily calculable
measure is qmm, the genotypic similarity between the string representing the
fittest individual and all the other members of the population.

To calculate qmnx the value of each bit in the fittest string is compared
with the value of the same bit in all the other strings in turn. Any matching bits
increment qmax by 1. When all the positions have been compared the result is
normalised by dividing by the total number of bits in the other strings, i.e. the
product (N-1)L.

For example, given a population of four chromosomes of length five:

C] I O I l O
c2 O I l l l
c3 lo l l0
c4 l l l l 0

with CI having the highest fitness, then q- is given by

47

any string the presence of the meta-symbol # at a position implies that either a
0 or a I could be present at that position. So for example,

I01 001

Ill001
and

are both instances of the schema

I##OOI.

Conversely, two examples of schemata that are contained within

01011I

O I # I l l

#I01 ##*

are

and

Schemata are a useful conceptual tool for several reasons, one being that they
are simpIy a n o t a ~ o n ~ ~ n v e ~ e n c e . Imagine a simple o n ~ d i m e n s ~ o ~ l
problem:

MAxlf(x) = x q ;o 9 x 5 51 1

Clearly f (x) is at a maximum when x is maximum i.e. when x = 511
(Figure 3.6).

250000 -

200000 -

I50000 -
'?

100000 -

50000 -

I * , . I . , I

0 100 200 300 400 500

X

Figure 3.6. The one dimensional hctionflx) = xz.

5 1 1 is 11 1 11 11 1 I in binary. Examples of binary numbers approximately equal
to 511 are:

I 1 01 0101 I,
I I I 1 I01 00,
110001110and
I I101 11 01.

Examples very far from 5 1 1 are:

00001 1101 ,
000000000,
000001 01 0 and
00001 001 0.

Contrasting these two sets of binary numbers it becomes apparent that the near
maximum values of x are all instances of

I I #######.

49

150000 -
'?

100000 -

50000 -
0 -

Thus II####### provides a convenient notation for the numerous binary
strings that represent a near optimal solution to the problem (Figure 3.7).

:/ I10000000 or 384
\

i 250000

200000 I I#######
\

4 , , , . , . , . d
0 100 200 300 400 500

X

Figure 3.7. Ax) = x2. The line x = 384 = IlOOOOOOO, indicates the minimum value any string
containing the schema II####### can have and is therefore the boundary of the schema. Ail
other instances of this schema lie to the right of this line.

There are a great number of possible schemata within a single string.
Given the randomly generated four bit string,

1011

the list of all possible schemata is

101#,
IO#I ,
I # l l ,
#011,
I O##,
H I # ,
1##1,
#01#,
#O#I ,
I I ,

1 ###,
#O##,
##i#,
###I,
and
1011,

or 16 entries. 16 = 24; for any real string of length L there are 2L possible
schemata. For an a r b i ~ ~ string, each bit can take the value f or 0 or #. So
there are 3 possibilities for each bit, or 3 x 3 ~ 3 ~ 3 possibilities for a string of
length 4. For a string of length 200 (a number typical of that found in many real
GA applications) there are therefore 3200 (~3x1095) schemata to be found (c.f.
1 080, the number of stable particles in the universe).

In general, for an alphabet of cardinality (or distinct characters) k, there
are (k + 1)L schemata. For a population of N real strings there are N k ~ possible
schemata. The actual number of schemata within a population is likely to be
much less than this for two reasons. Firstly, some schemata can simultaneously
represent differing strings, for example, given N = 2, L = 3 and the population
(101, I l l) , a table of possible schemata can easily be formed (Table 3.2).

c, = 101
#01
I #]
10#
##I
#O#
I ##

101

Table 3.2. Possible schemata for a particular population of 2 strings and L = 3.

This table contains 16 schemata (8 for each string), but only 8 are unique. For
other populations this reduction may be less dramatic. If, once more, N = 2 and
I = 3, a possible population is { 111,000); then there will be only one shared
schema, namely ### and hence there are 15 unique schemata. Secondly, not all
the population members themselves are likely to be unique, particularly in an
algorithm that has cycled through many generations and is near convergence.
Thus the number of schemata in the population will change as the generations
go by, but will always be < NkL.

51

Not all schemata are equal. The area of the search space represented by
a schema and the location of this area depend on the number and location of the
meta-symbols within the schema. Schema such as I#### and O#### include
much larger regions of the search space than lol l# or 0010#. Schemata are
typically classified by their de$ning length and their order. The order o of a
schema S is the number of positions within the schema not defined by a meta-
symbol, i.e.

o (S) = L - m ,

where m is the number of meta-symbols present within a string of length 1. The
order is therefore equal to the number of fixed positions within the schema:

S=#l#O#;o(S)=2

s= 11001; o(s) = 5
s = #####; o(S) = 0

S= llOI#; o(S) = 4

The defining length d specifies the distance between the first and last
non meta-symbol characters within the string:

S= #1#0#; d(S) = 4 - 2 = 2
S= 1101#; d(S) = 4 - 1 = 3
S= 11001; d(S) = 5 - 1 = 4
S = #####; d(S) = 0 - 0 = 0

It is worthwhile trying to visualise the different regions that such
schemata cover. Figures 3.8 to 3.10 show the regions covered by a series of
schemata for a one-dimensional problem. Most problems tackled using genetic
algorithms have many more dimensions than this, but such a space makes it
possible to get a feel for how schemata translate to physical regions within the
problem space. In particular, low order schemata cover large regions of space
and high-order schemata much smaller regions.

The defining length and the order of a schema are not the whole story.
Two schemata with identical values of o and d can ring-fence very different
regions of space. Both ##O#O and 1#I## have o = 2 and d = 2 but no overlap
(Figures 3.9 and 3.10). Despite this, the order and the defining length of a
schema are very important indicators of usefulness and chance of survival
within a GA.

52

32

24

8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
X

Figure 3.8. Sketch of ###I# and the simple functionf= x ; 0 5 x 5 3 1,

X

Figure 3.9. Sketch of ##MI0 and the simple h c t i o n f = x ; 0 5 x 5 31.

53

Figure 3.10. Sketch of l#l## and the simple fimctionf= x ; 0 5 x 5 3 1.

3.3 SCHEMA PROCESSING
A lot of rather brutal things can happen to any particular string within a GA. It
can get fragmented by crossover, attacked by mutation or simply thrown away
by the selection operator. Despite all this violence, it is reIativeIy easy to
estimate how the number of instances of a particular schema might change
during a GA run. This estimation throws light on just why GAS can be so
successfully employed as optimisation routines, and why they might experience
d i ~ c ~ ~ solving some types of problems. The result can only be an estimate
because of the stochastic nature of the algorithm. The calculation proceeds as
follows:

If qZ is the number of instances of any particular schema S within the
population at generation g, such that:

then it would seem reasonable that if on average @ represents strings of above
average fitness, then:

54

where the bar over @ indicates an estimate.
Conversely, schemata that, on average, represent poorly performing

strings will see their numbers decline. More precisely, if selection is carried out
on a fitness-p~po~ional basis (e.g. by roulette wheel selection) the probabili~
Pi of selection (during a single selection event) for any individual (or string) is
given by:

In such a system, schemata will feel this selection pressure via the strings that
are instances of each schema. If u(S,g) is the average fitness of all instances of
S then:

Equation (3.1) is the s c ~ e ~ ~ growth e q u f f ~ ~ o ~ (i ~ o r i n g the effects of
crossover and mutation) and shows that the number of instances of any schema
S in the next generation depends on the value of u in the current generation.

Assuming that a particular schema remains constantly above average by
~fme, (3.1) becomes:

which is,

or.

55

This implies that better (worse) performing schemata will receive exponentially
increasing (decreasing) numbers of trials in the next generation. There are only
N acts of selection per generation (assuming the whole generation is replaced
each generation) yet the algorithm manages to simultaneously allocate
exponentially increasing (decreasing) numbers of trials to a vast number (>> N)
of schemata, seemingly effortlessly.

THE EFFECT OF CROSSOVER
The degree of disruption caused to individual schemata by crossover will
depend on the schemata involved. The chromosome

c1= OOOOI I I00

contains (amongst many) the following two schemata:

and

If C1 is selected to mate with another string C2, then if the cut point is between
the fourth and fifth digits, i.e.

Cf = 0000/11100

then SZ will survive in at least one of the children, no matter the form of C2. SI
however will only survive if C2 also contains identical bit values in the two
fixed outer positions. For most possible cut points it is clear that S2 will survive
and SI will not. This is because dI>> d2. More specifically, the probability of a
schema being destroyed by crossover is less than:

Therefore, given a crossover probability of Pc, the chance of survival to the
next generation is greater than or equal to:

Apptying this reduction to the schema growth equation gives:

THE EFFECT OF MUTATION
The probability of a single bit surviving a single mutation is simply:

1-P,.

The greater the order of the schema the greater the probabili~ of disruption.
With o{S) bits defined, the probability of the whole schema surviving will be:

(1 - P, p@’
Applying this in turn to the schema growth equation, and ignoring lesser terms,
gives:

&(S, g + 1) = ~ u(syg) IP(S,g) (1 - p, - dm - o(s)Pm)
s”” (€9 L-1

Thus m, low-order, above-average schemata are given e x ~ n e n t i ~ l y
increasing numbers of trials in subsequent generations. Such schemata are
termed building blocks. The building block hypothesis states that GAS attempt
to find highly fit sohitions to the problem at hand by the juxtaposition of these
building bocks [M194, p51] (see [F093] and [AL95] for criticisms).

Somewhere between 2L and M L schemata are being processed by the
GA each generation. Many will be disrupted by mutation and crossover but it is
possible (using ~ g ~ e n t s which lie outside the scope of this book) to estimate
a lower bound on the number that are being processed usefully, i.e. at an
exponentially increasing rate. The answer is of order N3 (see [BE931 €or a
recent discussion on this). The ability of the GA to process N3 schemata each
generation while only processing N structures has been given the name implicit
parallelism [H075,GR9 1 ,GR89].

57

DECEPTION
The above indicates that the algorithm might experience problems where it is
possible for some building blocks to deceive the GA and thereby to guide it to
poor solutions, rather than good ones. For example, i f p occuss at:

C* = 000000, and

S l = OO#### and
s2 = ####OO

represent (on average) above average solutions, then convergence would seem
guaranteed. However, if the c o m b i ~ t ~ o n of 5'1 and SZ:

s3 = oo##oo

is (on average) very poor, then the construction of C* might cause difficulties
for the algorithm.

Deception in GAS shares similarities with epistasis in biological
systems, where the existence of a particular gene affects genes at other loci.
With sufficient knowledge of the problem at hand it should be possible to
always construct encodings such that deception is avoided. However, for many
real-world problems this task might be of similar complexity to that of solving
the problem itself. (See [GR93] for a discussion).

3.4 OTHER ~ O ~ ~ C A L APPROACHES
Although schema analysis indicates that, via the exponential allocation of trials,
the GA might form the basis of a highly efficient search algorithm, it leaves
many questions unanswered. There has been much debate on how relevant the
approach is for GAS working with real problems [h4I96, p125-1261. Others
[MI92,F093,MI94b] have concentrated on the role of crossover rather than
selection. It is interesting to note that although the analysis indicates the use of
m i n ~ alphabets (i.e. binary) because they offer the greatest number of
schemata, and the use of fitness proportional selection, those working with
reai-world problems have found other encodings and selection mechanisms to
be superior [WH89].

For an excellent introduction to some of these, and other, ideas the
reader is directed to reference [MI96, p125-1521 and the discussions in
[AN89].

58

3.5 S-Y
In this chapter, the idea of using test functions to ensure the correct operation of
the algorithm has been introduced. Such functions can also be used to study the
effect of various settings within the GA. The subject of premature convergence
has been seen to be controllable to some extent by finding the correct balance
between exploration and exploitation. A useful technique to help with this has
been found to be the use of scaling.

Schema theory has been outlined and the schema growth equation
stated. The relative proportions of the search space covered by schemata of
various orders and defining lengths has been demonstrated.

There is much to do in the field of the mathematical foundations of
GAS. In particular, there is a need to discover how performance can be
maximised for various problem classes and how deception can be identified
and avoided.

In the next chapter combinatorial optimisation will be considered, along
with the rather strange ideas of niches and species. Multicriteria problems are
then discussed along with several advanced operators.

3.6 EXERCISES
1. Use LGADOS-EXE, or your own GA, to study the effect of N, L, Pc, P,,,

and E on performance when maximising test functions F I to F4 of Table 3.1.
(LGADOS.EXE numbers the functions in the same manner as Table 1 .)

2. Try and identify a single optimal set of N, Pc, P,,, and E for the test functions
ofTable3.1.

3. Add linear fitness scaling and the ability to calculate qmaX to your GA.

4. Use LGADOS.EXE, or your own GA, to study the effect of c,,, on
performance and qmax when maximising the test functions of Table 3.1.

5 . For f = x2, 0 5 x 5 127, what is the average fitness of 1#######, O###### and
I 1 #####?

6. Plot the progression with generation of the number of unique schemata
within a GA for a simple problem. (A very low choice for L is
recommended).

59

CHAPTER 4

ADVANCED OPERATORS

Although simple genetic algorithms, such as LGA, can be used to solve some
problems, there are numerous extensions to the algorithm which have been
developed to help improve performance and extend the range of applicability.
These include more efficient crossover and selection methods, algorithms that
deliberately hunt for local optima, combinatorial optimisation techniques,
techniques to deal with multicriteria problems, and hybrid algorithms which
combine the speed of traditional search techniques with the robustness of GAS.

Being an introductory text, many of these extensions can not be given
full justice and can only be outlined. For additional details, readers are directed
to other texts, in particular references [MI94, ZA97 and BA961. In addition,
some of the techniques are described in more detail and then applied to various
problems in Chapter 6.

4.1 COMBINATORIAL OPTIMISATION
Many problems do not require the optimisation of a series of real-valued
parameters, but the discovery of an ideal ordered list, the classic example being
the Travelling Salesman Problem (TSP). In the TSP a fictitious salesperson is
imagined having to find the shortest route, or tour, between a series of cities.
Typically the rules state that no city is visited more than once. Other examples
of such combinatorial problems are gas and water pipe placement, structural
design, job-shop scheduling, and time tabling.

A great deal of effort has been applied to trying to find efficient
algorithms for solving such problems and this work has continued with the
introduction of GAS. The main problem with applying a genetic algorithm, as
described so far, to such a problem is that crossover and mutation have the
potential to create unfeasible tours. To see why t h i s is, consider the TSP
described by Figure 4.1. Here there are eight cities, labelled a to h, arranged
randomly on a plane. Table 4.1 lists the relative distances between each city.

60

‘ 0

O b

d @

Figure 4.1. A TSP. What is the shortest tour that connects all eight cities?

City
a
b

d
e
f
g
h

C

a b C d e f g h
0 11 21 73 61 57 51 23
17 0 31 13 72 14 66 40
27 31 0 48 35 49 65 50
73 73 48 0 47 82 113 95
61 72 35 47 0 38 80 78
57 74 49 82 38 0 48 65
51 66 65 113 80 48 0 40
23 40 50 95 78 65 40 0

Table 4.1. Distances in km between the cities in Figure 4.1.

One example of a tour might be (Figure 4.2),

b c d e g h f a ,

another (Figure 4.3),

c b g f a d e h.

If single-point crossover is applied directly to these tours the result, cutting at
the mid-point, is (Figure 4.4):

b c d e a d e f

and (Figure 4.5)

61

Neither of these represents a complete tour.

Figure 4.2. The tour 6 c d e g hfu.

Figure 4.3. The tour c b g f u d e h.

62

h.

b

d

Figure 4.4. The partial tour b c d e a d eJ; created by applying single point crossover to the
tours b c d e g h f a and c b g f a d e h.

d @

Figure 4.5. The partial tour c b g f g hfa, created by applying single point crossover to the
tours b c d e g hfa and c b g f a d e h.

So, how can a crossover operator be designed that only generates
complete tours? If the strings used to represent the tours are to remain of fixed
length, then this also implies that each city can only be visited once. There are
many ways of constructing such an operator. One would be to apply crossover
as before, then reject any incomplete tours generated. However, this would
require rejecting most tours and it is relatively easy to imagine far less wasteful
algorithms. One possibility is Partially Matched Crossover (PMX) [GO89,
~166-1791.

63

The TSP representation described above gives the strings a very
different property to the strings used to respect real-valued optimisation
problems. The position and value of an element are not unrelated. In fact,
within the TSP it is only the order which matters. Ideally, the new crossover
and mutation operators must not only create feasible tours but also be able to
combine building blocks from parents of above average fitness to produce even
fitter tours.

PMX proceeds in a simple manner: parents are selected as before; huo
crossover sites are chosen at random (defining the marching section) then
exchange operators are applied to build the two new child strings.

Returning to the previously defined tours, and selecting two cut points
at random:

tour 1 = b c / d e g / h f a
tour 2 = c b / g f a / d e h.

First the whole centre portion or matching section is swapped:

tour 1' = b c /g f a / h f a
tour2'= c b / d e g / d e h.

Neither of these tours is a feasible tour. In tour 1' there is no d or e and in tour
2' cities a andfare not visited. As the strings are of fixed length, this means
that both tours visit some cities more than once. In the case of tour 1' cities a
and f are visited twice, tour 2' visits d and e twice. By definition, one of these
repeats is within the matching section and one without. Also by definition, any
city that is visited twice by one tour must be missing from the other tour. This
suggests a way forward. Cities that are visited twice in one tour are swapped
with cities that are visited twice in the other tour. Only one representative (the
one not in the matching section) of such cities is swapped-othedse the
process would be circular and unconstructive. So, in this example, a outside the
matching section of tour 1' swaps with the d of tour 2', and similarly for the
citiesfand the e. The two tours:

tour 1'' = b c g f a h e d
tour 2" = c b d e g a fh

are formed, each of which is complete.

64

PMX is relatively easy to implement within LGA by making suitable
alterations to the crossover operator and setting P, to zero.

4.2 LOCATING ALTERNATIVE SOLUTIONS USING NICHES AND
SPECIES
In most optimisation problems the hunt is for the best possible solution. This
might be the global optimum if this can be found, or a point in the vicinity of
the global optimum if the problem is very large and difficult. However some
problems are characterised by a search for a series of options rather than a
unique solution vector. Problems in which these options reside at some
distance from the global optimum are particularly interesting. In such cases
there is a likelihood that the options are separated by regions which equate to
much poorer solutions; rather than trying to avoid local optima, the idea is to
try and hunt them down. Such a fitness landscape is illustrated by the
multimodal function f l x) shown in Figure 4.6. Although intuitively there is
something distinctive about the values of x which equate with peaks infix),
mathematically none of them gives rise to a fitness greater than many of the
points near the global optima. This begs the question, why hunt specifically for
such values of x if any point near the global optimum is likely to generate
higher fitness anyway?

10
X'

~ , , , . , . , * , , , . , * ~ , , . , ~ , , I # % ,
0 2 4 6 8 10 12 14 16 18 20 22

X

Figure 4.6. A multimodal hc t ion with a global optimum at x* and secondary, or local optima,
at x,, x2 and x3. Any value of x between x = x4 and x = x5 will give rise to a fitness, J greater
than any of the local optima. So why even attempt to look for such local optima?

65

One reason for attempting such searches can be best explained by an
example. If the problem characterised by the fitness landscape shown in
Figure 4.6 was an architectural one, in which x was the angle of a pitched roof
and f the inverse of the financial cost of the construction, then each local
optima take on a significant meaning. They represent good, but not ideal,
financial solutions of radically different form. If cost is the only criterion, then
angle x* is the only choice; however if any of the solutions X I , x2 or x3 are
deemed to be more in keeping with other, visual, desires then the architect
might be able to convince the client to invest the small amount of extra capital
required. Although there are many points close to the global optimum that offer
better values offthan any of the local optima, their closeness to the global
optimum may produce little justification for adopting such a design rather than
the optimum. This is not so for those structures represented by the local optima.

In essence, the optimiser is being used as a filter, a filter charged with
the task of finding highly performing, novel solutions to the problem across the
whole problem space and ignoring, as much as possible, all other points.

One way of finding such optima is simply by the use of multiple runs.
Beasley et. al. [BE93a,MI94,p176] indicate that if all optima have equal
likelihood of being discovered then H should be set by:

where p is the number of optima. As all optima will not generally be equally
likely to be discovered,

Figure4.7 shows a more complex search space. The quest is for a
technique that can effectively filter out any points that generate a fitness less
than some minimum &,". Such a filter would, if perfect, generate Figure 4.8,
which is much easier to interpret than the original function. In the figures
shown, this filtering is easy to apply by hand because the value off is known at
every point (x,y) within the problem space. Ordinarily f is likely to be far too
complex to be estimated at more than a small fraction of the search space. So a
technique is needed that can hunt for peaks within a complex landscape
(producing Figure4.9). This is somewhat ironic; up until now the central
consideration has been the avoidance of local optima, now the desire is to
actively seek them.

will typically need to be much greater than this.

67

L ,
I I I
s 10 15

Figure 4.9. An approximate map. AsffxJlf is likely to be such that e n ~ e ~ t i o n at a11 possible
points (xy) is unfeasible, Figure 4.8 is unlikely to be realisable. Hence the requirement is to
fmd a map giving the approximate locations of local optima.

In nature the exploration of separate fractions of the search space (or
niches) by subsets of the population (or species) occurs readily. In applying this
to the GA, the two most important concepts turn out to be fitness sharing and
restrictions on who can mate with whom. That mating has to be restricted to
closely related strings is not altogether surprising, it is after all one of the
definitions of a species. That sharing the fitness between strings is important is
more surprising.

SHARING
The importance of sharing can be visualised by consideration of the two-armed
bandit, or fruit machine illustration used in reference EG089, p186-1893. It is
assumed that a team of players is playing a single machine. The question now
arises, how many players should be allocated to each arm? If both arms pay out
similar sums, at similar intervals, then the problem is trivial. However, if one
(~ 0 ~) arm pays out more than the other (but with identical ~e~uency) ,
should ail players play this arm, or should some play one arm and some the
other? If they all play the arm which pays the larger prizes the winnings will be
greater, but the money will be divided between more players. Whether the team
should divide itself and allocate differing numbers of players to each arm or not

68

depends on how any winnings are divided, or shared, between the team. If it is
simply a free-for-all, or the winnings are carved up equally between all team
members at the end of the evening, then all the players will migrate to
whichever arm is slowly discovered to be better. However if a rule exists that
monies should only be divided between players of the same arm, then a
different behaviour will emerge. Migration will still occur to the better arm but
after a while those playing the less good arm will learn that, although they win
less as a group, they gain more individually because there are less members to
share the winnings between. In short, they will have discovered that it makes
sense to exploit a niche.

The ratio of team members playing each arm is easy to calculate. If
there are 25 members in the team and arm A pays €50 and arm B €40, then if all
players play on A they will receive €50125 = €2 each on a pay-out. If they play
B they receive €40125 = €1.60 each; whereas, if a s&& member decided to
play B they would receive €4011 = €40. This is a very good incentive to desert
A. A balance will occur once the individual pay-out from each arm is identical.
This will occur when

Payout, Payout,

M A m5
-- --

where mi is the number of players on armj. In this illustration this will be when

€50 €40 -=-
mA m R

As

mA + m B = 25

substitution gives

50 40
25-m, mg
-----.=-

or

-11.1 m3 =--
40x25
50 + 40

69

and therefore,

mA = 25 -1 1.1 = 13.9

With this split between the two arms, the pay-out will be €3.60 each,
greater than the €2.00 each would receive if they all played A.

So, the introduction of sharing allows different niches to be exploited to
the benefit of all. Different sub-populations, or species, exploit these niches,
with the number of individuals within a niche being proportional in same way
to the fitness of the niche. If this result could be generalised to other problems a
powerful optimisation approach will have been developed. Not only would the
filtering and mapping of the local optima described earlier have been achieved,
but the number of individuals exploring any single peak would be proportional
to the height of the peak. This seems a sensible approach as it will ensure the
global optimum will still receive more attention than a minor local optimum. In
order to develop these ideas further, the meaning of the term species in this
context will have to be clarified.

SPECIES
In the natural world mating rarely occurs across species boundaries. So far, the
genetic algorithms considered have had no restrictions on who can mate with
whom. That there might be advantages, for some problems, in introducing
restrictions can be understood by considering how a single point crossover
might proceed in the search space shown in Figure 4.10.

If this function is mapped to a binary 4-bit string then -1 = 0000 and
1 = 1111. These values both have maximum fitness v(x) = l), and thus one
would expect any selection system to frequently pick them to mate.
Unfortunately, such crossovers will often generate very sub-optimal strings. For
example the crossover,

oo/oo
11/11

produces

001 1

1100
and

70

as children. Neither of these is anything near optimal. In general, in a complex
landscape, matings between distant, well performing, individuals will
frequently produce poor offspring. There might therefore be some benefit in
ensuring that only like mate with like.

Figure 4.10. The production of sub-optimal solutions from the crossover of highly performing
strings.

Goldberg and Richardson [GO871 introduced the idea of using a
phenotypic-based sharing mechanism to re-allocate fitness within the
population. The method makes use of a sharing function. This function is used
to reduce the fitness of individuals who have a large number of close relations
(phenotypically) within the population. This limits the uncontrolled growth of
any particular species within the population; it also encourages the exploration
of the whole of the search space and allows small ~pulations of i ~ d i v i d ~ s to
reside in any local optima discovered. The value of the sharing function sI fox
an individual i depends on a sum of sharing values tg, between the individual
and all other population members:

71

The value of r& itself depends on the phenotypic distance between the two
individuals i and j. Several possibilities have been suggested and Figure 4.1 1
illustrates one possibility.

I

Figure 4. I 1. One possible sharing function. The distance du is given by the absolute difference
between the two phenotypes in this one parameter problem-the maximum difference being
unity. (After [GO89 and G089aI).

The method is implemented by t e m p o ~ l y reducing the fitness of each
individual temporarily to f skore, given by:

A successfid application of the technique has been the work of Waiters,
Savic and Halhal [HA971 who have used sharing with multi-objective
problems within the water industry (see g6.8).

As mentioned earlier, if lethals are to be avoided then some form of
restrictions on mating may be required [H071,DE89]. Alternatively, in a
similar manner to sharing, Eshelman and Schaffer [ES91,ES9la] bar mating
between similar individuals in an attempt to encourage diversity. Yet another
possibility is to only allow fit individuals, in particular the elite member, to be
picked once by the selection mechanism in order to slow convergence.
~ ~ f o u ~ in [MA95], compares severaf niching methods.

72

4.3 C O N S T ~ ~ T S
Constraints can been visualised as giving rise to regions of the search space
where no natural fitness can be assign. Such regions produce "holes" in the
fitness landscapes (Figure 4.12). The question then arises of how to steer the
GA around such holes. Lightly constrained problems pose few difkulties for
GAS: the chromosome is decoded to a solution vector, which is in turn used
within the problem to evaluate the objective function and assign a fitness. If
any constraint is violated the fitness is simply set to zero.

"."

Y -1.0

Figure 4.12. A fitness landscape with three large holes caused by the presence of constraints
within a two-dimensional problem.

Although attractive, this approach is unlikely to be successkl for more
highly constrained problems (see [MI911 for some ideas). In many such
problems the majority of possible solution vectors will prove to be infeasible.
Even when this is not so, infeasible solutions may contain much usefbl
i n fo~a t ion within their chromosomes. An alternative approach is to apply a
p e ~ l ~ ~ ~ c t i o ~ [FCI89] to any solution that violates one or more constraints.
This function simply reduces the fitness of the individ~l , with the amount of
reduction being a function of the violation.

The form of the penalty function must be chosen with care to maintain
the correct balance between exploitation and exploration.

73

A W e r approach is the use of problem dependent crossover and
mutation operators which do not allow the formation of infeasible solutions, for
example the crossover operator introduced at the beginning of this chapter
when discussing c o m b i ~ ~ o ~ a l optimisation.

Another approach is illustrated in the work of Walters, Savic and Halhal
[HA971 where a messy GA [G089a,G091a,G093] is used to build
increasingly complex solutions from simple solutions that are known to be
feasible (see $6.8).

In reference [PE97] Pearce uses a technique based on f i z z y logic to
resolve c o n s ~ n t s within a GA environment and discusses constr~nt
resolution in general, Powell and Skolnick, in [PO93], and Smith and Tate, in
[SM93], make general comments on non-linear constraints and penalty
~ c t i o n s respectively. Reference [MI95 J discusses the strengths and
weaknesses of several approaches.

4.4 MULTICRITEIUA OPTMSATION
The optimisation problems considered so far have been expressed in a form
where, ~ ~ o u ~ many parameters might be being optimised in parallel, the
fitness of any particular solution can be specified by a single number, Not all
p ~ b ~ e m s share this a ~ b u t e , In some problems the success of a p ~ c u l a r
solution can be estimated in more than one way. If these estimations cannot be
combined, then a single measure of the fitness will be unavailable.

An example might be an attempt to minimise the cost of running a
chemical plant: some of the possible operational strategies for the plant which
reduce the financial cost of production might have the side-effect of increasing
the likelihood of accidents. Clearly these solutions need to be avoided, whilst at
the same time minimising the production cost in so far as practicable. Most
importantly, solutions which are simultaneously better at minimising costs and
reducing accidents need to be identified. The concept of Pareto o ~ t ~ ~ a ~ ~ ~
[GO891 can be used to identify such solutions. Figure 4.13 shows six possible
strategies for operation of the fictitious plant.

74

4

2
8
I 2 -
‘T

0

0

C

r

b

d

i

I I I
0 2 4 6

Figure 4.13. Six strategies for the operation of a chemical plant.

Solution a is optimal in terms of cost; f i n terms of number of accidents.
Solutions c and e are termed dominated because other solutions can be
identified that simultaneously offer both fewer accidents and reduced cost,
these are the nondominated solutions.

If estimations are made for a large number of operational strategies then
the scatter plot of the outer points might take on the form of Figure 4.14.

The Pareto optimal set is then the set of all nondominated solutions on
the inner edge of the scatter. Having identified this set (or the equation of the
curve, or front, joining them) it is up to the management and workforce of the
plant to settle on a particular strategy, drawn from this set.

Pareto optimality can be used in at least two ways to drive a rank-based
selection mechanism within the GA. Nondominated sorting [SR94] identifies
the Pareto optimal set and assign all members the rank of 1. These individuals
are then removed from the ranking process. The next optimal front is identified
and its members given the rank of 2. This process is repeated until all
individuals have been ranked. BASIC code to carry out this procedure is given
in Figure 4.15 and the approach is demonstrated in $6.8. An alternative
approach is the Pareto ranking scheme of reference [FON93] where rank is
proportional to the number of individuals that dominate the individual in
question (Figure 4.16).

75

20

I

0 5 10

cosr

I5

Figure 4.14. Surface formed from all possible strategies for the chemical plant's operation (only
the outer points are shown). The Pareto optimal set (or tiont) is formed from the nondominated
solutions.

FOR i R a n k = 1 TO N 'Loop over all possible ranks.

I F R a n k (i) = 0 THEN 'Only process unranked individuals.
FOR i = 1 TO N 'Pickan individual.

FOR j = 1 TO N 'Loop over all other individ~ls.
I F i <> j THEN 'Check fordomination.

END I F
IF F l (i) < F l (j) AND F 2 (i) < F2(j) THEN EXIT FOR

NEXT j
I F j = N t 1 THEN R a n k (i) = i R a n k 'Anondominatedsolutionh~

END IF 'been identified
NEXT i

FOR i - 1 TO N 'to zero.
Wow remove the current nondominated front by setting the fitness of individuals on the front

I F R a n k (i) = i R a n k THEN
F l (i) = 0
F Z (i) = 0

END I F
NEXT i

NEXT i R a n k
Figure 4.15. Nondominated sorting (continues over).

76

FOR i = 1 TO N 'Re-assign fitness basedonrank

NEXT i
Figure 4. I5 (continued). BASIC code to cany out nondominated sorting of a population of size
N. The problem contains two measures of fitness, F1 and F2, which are reduced to a single
measure F by letting F =l/Rank.

F (i) = 1 / Rank(i)

6

5

4

5
3

2

1

1 2 3 4 5

rank 4

1" 7

Figure 4.16. Pareto ranking for a problem of two criteria giving rise to two fitness functionsfi
mdh.

Both techniques require the use of fitness sharing to ensure that the
population covers a large enough fraction of the search space [HA97]. (See
[GR97] for some recent ideas about this).

4.5 HYBRID ALGORITHMS
Genetic algorithms are not very good at finding optimal solutions! However
they are good at navigating around large complex search spaces tracking down
near-optimal solutions. Given enough time a GA will usually converge on the
optimum, but in practice this is not likely to be a rapid process. There are many
other, more efficient, traditional algorithms for climbing the last few steps to
the global optimum. This implies that a very powerful optimisation technique
might be to use a GA to locate the hills and a traditional technique to climb

77

them. The final a l g o ~ ~ will depend on the problem at hand and the resources
available.

The simplest approach to this hybridisation is to use the real-valued
solution vector, represented by the fittest individual in the final generation, as
the starting point of a traditional search. The traditional search algorithm could
be either a commercial compiled one, such as a NAG routine, or taken Erom a
text on numerical methods.

Another, approach is to stay with the string representation used by the
GA and attempt to mutate the bits in a directly constructive way. One way to
achieve this is illustrated in the estimation of the ground-state of a spin-glass
presenbd in $6.4. In this example, local hills are climbed by visiting each bit
within the string in turn, mu~ting its value and re- valuating the fitness of the
population member. The mutation is kept if the fitness has improved. Another,
very simple, possibility is to hill-climb by adding (or subtracting) I to the
binary representation of the first unknown parameter in the elite string (e.g.
1101 + I = lllO), re-evaluating the fitness, and keeping the addition
(subtraction) if it has proved beneficial. This addition (subtraction) is repeated
until adjusting the first unknown parameter shows no benefits. The other
parameters are then treated in the same way.

Working with the GA strings themselves has the advantage that such
techniques can be applied at any moment during a genetic algorithm's run.
Moving to a real encoding can make it difficult to return to a binary string
represented GA, because some parameters may have taken values that can not
be represented directly by such a string (see Chapter 2). However, such real-
valued methods are typically highly efficient. One way around this problem is
not to use a binary string representation within the GA (as discussed in $4.7).

If the search space is believed to be complex at many scales,
abandoning the GA in favour of another method too soon can lead to an
erroneous solution. The liquid crystal problem studied in 56.5 contains just
such a space. In this work, using the final solution vector as the starting point
for a more constrained GA-based search was found to be effective.

Other methods of improving performance and convergence speed make
use of heuristics. One such example is the use of inter-ci~ distances within a
TSP (i.e, making it no longer blind). Grefenstette et, al. used this information to
produce an improved uniform-type crossover operator. Rather than building
child strings by taking alternating cites from each parent, the child inherits the
city which is geographically closest to the current city [GR85].

Alternatively, the fitness evaluations-which are typically the most
time consuming element of the algorithm4an initially be done in an

78

approximate manner (see $6.5). For example, in problems which use least-
squares minimi~tion of experimental data, this can be achieved by initidly
only presenting the GA with a random, regular or other subset of the data and
running a fixed number of generations. The initially subset is then enlarged to
include more of the data and further generations processed [MIK97a]. This
process is repeated until all the data is Wing considered.

4.6 ALTERNATIVE SELECTION METHODS
The selection pressure within the GA is centrai to its performance, and the
appropriate level is highly problem dependant. If the population is pushed too
hard, rapid progression will be followed by near stagnation with little
progression i n f , This is unsurprising. With a high selection pressure the
population will become dominated by one, or at most a few, super-individuals.
With very little genetic diversity remaining in the population, new areas of the
problem-space become machable-except via highly unlikely combinations
of mutations. Another way of visualising the effect of this pressure is by
considering how directed the mechanism is toward a sub-set of the population
(~ i c a l l y the best). Highly directed m e c ~ s m s will result in a p a t h ~ ~ ~ n ~ t e d
search, less directed mechanisms will result in a volume-orientated search.

The selection pressure can be characterised by the take-over time, r
[G091]. In essence, this is the number of generations taken for the best
individu~ in the initial generation to completely dominate the pop~&tion.
(Mutation and crossover are switched om. The value of f depends not only on
the selection mechanism, but for some mechanisms, on the function being
optimised. If fitness proportional selection is used, then for:

1
a

f (x) = xa , f = -(Md -1)

and for

1
a f(x)=exp(ax), f=- -MnN

[GO9l,BA96,pl68], i.e. of the general order MnN.
Other selection mechanisms are common (see [G091]) and in essence

they all try to encourage the GA to walk a fine tight-rope between exploitation
and exploration, whilst minimising sampling errors. Such mechanisms usudily

79

make the assumption that if a individual has a lower fitness, it is less likely to
be selected. This need not be so, as Kuo and Hwang point out in [KU93].

STOCHASTIC SAMPLING ERRORS
Fitness-proportional selection is a stochastic method. On average, the number
of trials, q, (in the next generation) an individual, i, is given will be such that if

then

r, = 2raw

where rp" is the number of trials an individual of average fitness would achieve
(typically 1). This number will not always be achieved. GAS make use of
numerous calls to random number generators, and given enough calls, some
surprising patterns can emerge. Table 4.2 and Figure 4.17 show the result of
using the roulette wheel algorithm in LGADOS for N = 20 and G = 200,000.
The results are for the elite member which, because of the problem used, has
j7g) = 5fm(g) for all g, and should thus have on average five trials in the next
generation. Although five is indeed the most common number of trials
allocated, many other possibilities also occur. On 621 occasions no trials were
allocated to this the fittest member. This implies that, unless elitism is in place,
the best solution would be discarded. Conversely fmar will occasionally almost
flood the population. Such over or under selection can greatly impair the
performance of the algorithm, and a number of alternative selection methods
have been designed to minimise the problem.

80

Number Expected Actual
of trials frequency frequency
0 0 62 1
1 0 4166
2 0 13318
3 0 26922
4 0 38036
5 200000 40334
6 0 33714
7 0 22599
8 0 12213

Number Expected Actual
of trials frequency frequency
9 0 5286
10 0 2023
11 0 587
12 0 160
13 0 17
14 0 2
15 0 2
16 0 0

40000

30000

P g 20000
L*

10000

0
0 i i 3 4 6 i i 9 i o I i i 2 1 ' 3 i i i s

Allocated samples

Figure 4.17. The distribution of samples of the elite member found; the expected number
should always be five in this problem.

STOCHASTIC SAMPLING
Stochastic sampling with replacement is another name for roulette wheel
selection. Each time an individual is selected it is also returned to the pool-
allowing for multiple selections of the same individual. As discussed above,
this replacement can result in:

81

(the expected number of trials for individual i) . Stochastic sampling without
replacement forces the maximum number of trials an individual can receive to
equal unity (by not returning selected individuals to the pool). This is a major
brake on the selection mechanism. However, it does still allow zbesf, the number
of trials allocated to the fittest individual to equal zero occasionally.

Remainder stochastic sampling (with and without replacement)
estimates t;"p(g) then sets:

where INT(-) returns the integer part of (-).
In general this will leave some slots in the new population unfilled.

Stochastic sampling with replacement is then used to fill the remaining
positions by using the fractional parts.

to assign roulette wheel slots.

random number R', between 0 and 1. An individual is selected if:
The method can also be used without replacement by simply using a

Stochastic universal sampling [BA87] also uses a roulette wheel but
with N equal spaced markers. The wheel is spun only once and all individuals
which fall adjacent to a marker are selected.

RANKING METHODS
If the position of an individual within a list ordered by fitness is used to
calculate t i then problems of super-fit individuals are avoided. The position of
the individual within the list is all that matters, not how much fitter than the
population average it may be. This greatly suppresses problems of premature
convergence, whilst still providing a suitable level of selection pressure in later
generations.

82

In its simplest form, the population is ranked and the best 50% of
individuals selected to go forward to the next generation. Crossover is then
performed on all selected individuals by choosing random pairs without
replacement.

More subtle methods have been presented [BA85]. One possibility is to
fix r z f by hand and then apply a linear curve through zz$ that encloses an
area equal to N. The height of the curve then supplies rFp for each individual
(Figure 4.18). One problem with this approach is the need to select the value of
r z , which will (of course) be problem dependent. Other methods use a non-
linear curve [MI94].

Rank

Figure 4.18. Linear ranking.

The take-over time for rank-based selection depends on the details of
how it is applied, in particular on the value of z z f , but r is of the order InN,
i.e. much lower than with fitness-proportional selection [GO91 ,BA96,pl71].

TOURNAMENT SELECTION
Tournament selection [GO9 1 ,BL95] is both effective and computationally
eficient. Pairs of individuals are selected at random and a random number, R'
(in the range 0-1) generated. If R+ > r, 0.5 < r 5 1, then the fitter of the two
individuals goes forward, if not, the less fit. The value of r also requires setting
by hand.

83

In other i m p ~ e ~ e n t a t i o ~ q i n d i v i d ~ ~ s are i ~ t i ~ I y selected with the
single best going through to the next generation. Such an approach has:

This implies that the takeover time will rapidly decrease as q moves away
from 2 (Le. binary tournaments).

SIGMA SCALING
Linear fitness scaling {C~apter3) can be extended by making use of the
 pop^^^ fitness standard d e ~ a t i o n ~ ~ [MI96], with the expected number of
trials given by:

STEAKWSTATE ALGORITHMS
LOA is a generational algorithm in that at each generation, a new population is
formed (although some will be direct copies of their parents not disrupted by
crossovm or mutat~on)~ Steady-state a I ~ ~ ~ ~ s [SY89,SY9€ ,W~89,DE93a]
replaw only a few of the ieast fit i n d ~ v i d ~ s each g e n ~ ~ t ~ o ~ by c ~ s s o v e ~ and
mut&ioG and thus require few fitness evaluations between generations, The
fractioa of individuals replaced is called the g ~ ~ ~ ~ ~ ~ o ~ gap fDE75J. Such
 go^^ have proved highly effective on problems where identical genotypes
always return the same value offfor all esti~ations (this will not necessarily be
so with noisy, time varying data) [DA9l],

4.7 ALTERNATIVE CROSSOVER METHODS
Single point crossover has been criticised for several reasons [CAW, ES89,
SCSSa]. Although it can recombine she% low-order, schemata in
a d ~ ~ g ~ u s m ~ e ~ , it ~ ~ e n t l ~ cannot process all schemata in the stme
way. For example, given:

~ ~ O # # # # I and
0 0 # # # ,

84

single point crossover cannot form

01 000##1

Such positional bias [ES89] implies that schemata with long defining lengths
suffer biased disruption.

Crossover of strings that are identical to one side of the cut-point will
have no effect, as the children will be identical to the parents. The reduced
surrogate operator [B087] constrains crossover so as to produce new
individuals whenever possible. This is achieved by limiting cut-points to points
where bit values differ.

TWO-POINT CROSSOVER
In order to reduce positional bias, many researchers use two-point crossover
where two cut points are selected at random and the portion of chromosome
between the two cuts swapped. For example:

00/0100/111 and
11/101 U O O O give

00101 11 11 and
I1 01 00000.

Just as with single point crossover, there are many schemata which two-point
crossover cannot process, and various numbers of cut points have been tried
[EC89].

UNIFORM CROSSOVER
Uniform Crossover [SY89] takes the idea of multi-point crossover to its limit
and forces an exchange of bits at every locus. This can be highly disruptive,
especially in early generations. Parameterised crossover [SP9 11 moderates this
disruption by applying a probability (typically in the range 0.5-0.8) to the
exchange of bits between the strings. (For a discussion of multi-point crossover
see [SP91b]).

4.8 CONSIDERATIONS OF SPEED

In most practical applications, the time taken to estimate the objective
functions, Q, will be greatly in excess of the time taken to cany out any genetic

85

operations. Therefore there is little need to worry about trying to time-optimise
these operations. One way to ensure minimum run times is to try and speed the
estimation of Sdxg). Two possibilities are to interpolate from pre-existing
values, or to use an approximate value of Sat&) for some generations but not
others. This could be by using the approximation for g < g’ then reverting to the
true estimation for g 2 g‘. This approach is used in $6.5, when only a sub-set of
the experimental data is used in early generations.

An obvious but important possibility is to ensure that Q(g) is not re-
estimated once it has been found for a particular chromosome. This will require
maintaining a (possibly ordered) list of all values of Sa calculated during the
run. Clearly, this list has the potential to become extensive and it might be of
value to only store it for g - 1 to g - k, where the historic period k used will
depend on the relative time overhead of examining the list and estimating
another value of 0. If new estimates are placed at the bottom of the list, it will
probably prove worthwhile to search the list in reverse order to maximise the
gain (see 56.6).

A further possibility is to use a network of computers to carry out
separate estimates of Q(g) on separate machines.

In addition to all of these considerations, it is necessary to ensure the
use of the minimum values of 4 (j = 1.. .M) and to keep the range of values
each parameter can take as small as possible. Both the range and the string
length can be functions of generation (see $6.5) but care must be used as this
effectively removes areas of the search space during certain generations.
Alternatively a messy-GA [G089a,G091a] can be used to build complex
solutions from simple building blocks (for example, 56.8).

4.9 OTHER ENCODINGS
This text has concentrated on binary encoded GAS. Many authors have pointed
out that GAS will probably be at their most effective when the encoding is as
close as possible to the problem space. For many problems in science and
engineering this implies the use of numbers of base-10 form. Unfortunately,
using a real-valued encoding poses a large number of questions; in particular,
what to use as crossover and mutation operators. Several possibilities have
been promoted and a detailed discussion is to be found in references [MI94],
[ES93], [JA91] and [WR91]. Reeves in [RE931 makes comments on the
implications for population sizes of using non-binary alphabets.

One possibility for crossover (between individuals i and k) is to use
[MU93,ZA97, p14-161:

86

where R is a random scaling factor (typically in the range -0.25 to 1.25).
Mutation can be included in several ways, for example:

r , (g + I) = r ; (g) + R * (g) r , (g) ; R (g = O) = R * , R (g) 3 O a s g 4 G

Things need not however be made too complex and a binary
representation will often work extremely well. As Goldberg has pointed out
[G089,p80], GAS are typically robust with respect to the encoding used. He
gives two simple coding rules:

1 . The Principle of Meaningful Building Blocks: the user should select a
coding so that short, low-order schemata are relevant to the underlying
problem and relatively unrelated to schemata over other fixed positions.

2. The Principle of Minimal Alphabets: the user should select the smallest
alphabet that permits a natural expression of the problem.

It is relatively easy to get some idea of why the use of a binary encoding
is a reasonable choice for many problems. Consider some of the strings that
might occur when solving f i x) =x2 , 0 I x 5 15 with either a 4-bit binary
 presentation or a one-to-one mapping of binary integers to the first 16 letters
of the alphabet. Table 4.3 shows five possible values of x together with their
respective binary and non-binary strings. As the list is descended, there is an
obvious visual connection between the binary strings of fitter individuals made
possible by their low cardinality (number of distinct characters): they all have
1 ’ s toward the left-hand side of the string. In the non-binary case no such
similarities can exist. As these similarities are at the heart of the search method,
their number should be maximised.

Another way to emphasise the difference is to count the number of
schemata available in the two representations. For cardinality k, this will be
(k + As the same accuracy is required from both encodings, L = 4 in the
binary case and 1 in the non-binary case. Therefore, the binary repr~sen~tion
contains (2 + 1)4 = 81 schemata and the non-binary (16 + 1)’ = 17 schemata (a
to n plus #), a clear advantage to the binary representation.

87

X f C(binary) C(non-binary)
1 1 0001 a
2 4 0010 b
3 9 001 1 c

12 144 1100 I
14 196 I110 m

Table 4.3. Comparison of binary and non-binary representations.

LOGARITHMIC REPRESENTATION
For many scientific and engineering problems, it is only the relative precision
of the unknowns which is important [ZA97]. In such cases the encoding of the
logarithm of the unknown may prove more suitable. This will allow a very
large space to be searched without the need for excessive string lengths, but
still maintain reasonable accuracy when needed. For example, if an unknown,
r, may take any value between 1 and 1,000 and the answer is required to 1 part
in 100, then a simple linear mapping between the problem space and a binary
representation requires adjacent points to vary by only 1/100 = 0.01, This will
then allow values of r around 1 to be distinguished to the required accuracy of
1%. However, the precision around r = 1,000 will still be 0.01, which is 1 part
in 100,000 or 0.001%. This implies that most of the string is redundant.

By using a logarithmic mapping the required accuracy can be
maintained throughout the space with a much shorter string, thereby enhancing
performance.

GRAY ENCODING
It was suggested above that a GA might be at its most successhl when the
encoding used is as close to the problem space as possible. Thus, a “small”
change in the phenotype should indicate an equally “small” change in the
genotype. For a binary encoding this is not so. Given a genotype with I = 6 and
a phenotype, r with 0 I r I 63 then

011111 = 31

will have to undergo changes to all six bits to increase the value of the
phenotype by one:

100000 = 32.

88

Binary Gray
0000 0000
0001 0001

0010 0011
0011 0010

0101 0111
0110 0101
O I I l 0100

0100 a i io

Gray binary encoding alleviates this by ensuring that any pair of adjacent points
in the problem space differ by only a single bit in the representation space.
(Note, a small change in the genotype can still lead to a very large change in the
phenotype). For many problems this adjacency property is known to improve
performance and it would seem sensible to adopt the use of a Gray encoding for
most problems with integer, real or complex-valued unknowns.

Table 4.4 list binary and Gray equivalents for 1 = 4. Figure 4.19 presents
BASIC code for converting Gray to standard binary; reference [ZA97, p96]
gives pseudo-code for carrying out this ~ a n s f o ~ a t i o n .

Binary Gray
1000 I100
1001 1101
1010 I l l 1
1011 I l l 0
1100 1010
I101 1011
1110 1001
1111 I000

Bin(1) = Gray(1)

FOR i = 2 TO L

Bin(i) = 0

Bin(i) = 1

IF Bin(i - 1) = Gray(if THEN

ELSE

END IF
NEXT i

Figure 4.19. BASIC code to convert Gray to standard binary. The Gray and binary strings,
Gray and Bin (each of length L) are assumed to be held in arrays where the first element is
the most significant.

89

4.10 METAGAS
Much has been made in t h i s text of the need to choose the internal GA settings
(Pc, P,, N, etc) with care, and of the fact that their optimum settings are likely
to be highly problem-dependent (as will be the exact form of the algorithm).
This leads to the very natural question, why not have these settings selected by
a separate GA? Furthermore, as fbst +f* the form of the search space is likely
to change, implying that the ideal internal settings might not be constant in
time. This leads naturally to the possibility of using a GA to optimise the
internal settings during the run itself.

If only a single value of each internal parameter is required, and the GA
is going to be used repeatedly with near-identical problems, then the approach
is relatively easy to ~ p l e m e n t by using a meta-level GA [GRS6,BR91] to
control and evolve settings within a population of GAS.

However in difficult problems, or where the GA will only be used a few
times, the additional computing required probably makes the approach
unrealistic. The ability to allow the settings to adapt in real-time [DA89,DA91],
might however allow the design of extremely eMicient algorithms, and is a
particularly interesting avenue of research.

4.11 MUTATION
So far mutation has come in a single guise: the infrequent random flipping of
bits within the c~omosome. Traditionally, mutation has always been seen as
very much a secondary mechanism in c o m p ~ s o n to crossover. However there
would now appear to be a growing feeling that it may have a more central role
to play [MU92a,HI95,JO95].

The mutation operator as described in Chapter 1 is rather a blunt
instrument, the main role of which would appear to be ensuring that the
~ p ~ a ~ ~ o n maintains both possible bit values (0 and I) at all loci. If mutation is
to be applied in a more directed manner, i.e. as part of the search process itself,
then it would seem sensible to make the operator more discriminating. For
example, with a binary representation (standard or Gray) the magnitude of the
disruption caused by mutation depends upon where in the chromosome
mutation occurs. Given a single parameter problem with L = 10, rmf, = 0 and
r,, = 1023, then a mutation at one end of the chromosome changes Y by *l,
whereas at the other end r would change by *5 12.

This analysis indicates that near the end of the run, when hopefully the
majority of the population is in the vicinity of the global optimum, there might
be advantages in confining mutation to lower order bits. Conversely, during

earlier generations mutation of the higher order bits will help in the full
exploration of the space, whereas mutation of less significant bits will add little
to this exploration. (See the exercises at the end of this chapter for one
possibility).

Other possibilities are to bias mutation towards less fit individuals to
increase exploration without degrading the performma of fitter individuals
[DA89], or to make P,,, a function of g with the probability decreasing with
generation [F089].

Altem~tively, mutation can be used in a hill-climbing sense to close in
on the final solution after g = G. This is achieved by using mutation to slowly
increase (or decrease) estimates of each unknown within the elite member,
keeping the change only if it has proved constructive (i.e. increasedf,).

See [BA93 J and [TA93 J for a discussion on setting optimal mutation
rates.

4.12 PARALLEL GENETIC ALGORITHMS
Apart from the implicit parallelism provided by schemata processing, the
population-based approach of GAS makes them ideal for implementation on
parallel, or networked, machines. A l thou~ , for many, the reason for using a
parallet implementation will be a simple increase in speed due to the increase
in computer power, others use pseudo-parallel approaches that are believed to
improve performance even when used on sequential machines.

Global Parallel GAS [G089,HU91,D091] treat the population as a
single unit and assign different individuals to different processors. In its
simplest form, the approach uses one machine (or processor) to control
selection and the genetic operators, and a series of other machines (or
processors) to cany out objective function evaluation. If the objective function
evaluation takes a considerable time, a substantial speed-up can be achieved
given a little additional code and a roomful1 of personal computers.

~ i ~ a t i o n or Island GAS [TA87,TA89] attempt to mimic the
geographical separation of subpopulations witnessed in the natural world. This
is achieved by allowing separate subpopulations or demes of chromosomes to
evolve using selection and crossover, but then allowing occasional migration of
individuals between subpopulations.

D i ~ s ~ o n , neighbourhoud, cellulur, or ~ n e - g r a i ~ e ~ GAS remove the
subpop~ation barriers used in the migration methodology and replace them
with the concept of geographical distance. Individuals are then only allowed to
breed with close neighbours [RO87,MA89,SP9 1 a,DA9 1 a,MA93].

91

Parallel GAS are introduced in greater detail in reference [ZA97, p20-
301.

4.13 SUMMARY
In this chapter several advanced operators have been introduced, including ones
to tackle selection and crossover in c o m b ~ t o ~ ~ l and multicritia opt~isation.
The latter leads naturally to the in~duct ion of the concept of maintaining sub-
populations of differing species within the algorithm. One possibility for
dealing with constraints, the penalty function, has been suggested-although in
practice its use is far from straightforward.

Alternative representations have been introduced and the
reco~endat ion that if a b i n ~ - ~ e rep~sentation is used, then a Gray
encoding is adopted. The use of a logarithmic representation has also been
promoted.

Hybrid algorithms, which combine a GA with a more traditional
algorithm, have been hinted at as a highly powerful combination for solving
practical problems.

Alternative selection, crossover and mutation mechanisms have been
discussed, in part to alleviate stochastic sampling errors, but also as a way of
ensuring the correct balance between exploration and exploitation. Meta GAS,
where the algorithm itself adapts during a run, are one way this balance might
be naturaily found.

Finally, parallel a l g o ~ ~ have been m ~ t i o n e ~ as an interesting
avenue of research.

4.14 EXERCISES
1. W u c e PMX into LGADOS,BAS, or your own GA, and use it to help

solve the simple TSP detailed in Table 4.1.

2. By including a subroutine to apply a simple penalty function, solve a lightly
constrained multi-dimensional problem of your choice. Experiment with
the strength of the penalty function to see the effect on the efficiency of the
~ g o r i ~ . Increase the level and n~~ of ~ n s ~ a i n ~ until most of the
search space is unfeasibIe. (This should indicate that penalty hct ions are
possibly inappropriate for such problems.)

92

3. Introduce tournament selection, linear rank selection, two-point crossover
and ~ i f o ~ crossover into LGADOSBAS, or your own GA, and study
their effect on test hc t ion performance.

4. Design and implement a new mutation operator, P$, which gives a reduced
probability of mutation of more significant bits during later generations:
PA = P,E(j,g) ; 1 I j I I& , 1 I k I M . The function B should be linear in j .

Study the effect of differing functional forms on test function performance.

5. Convert LGADOS.BAS, or your own GA, to a Gray encoding. (This is
easier than it might seem and only involves changing how the binary strings
are converted to integers.) Compare the performance of binary and Gray
encoding on various test hct ions and various mutation rates.

6. Allow for a ~ o g a r i t ~ i c representation within LGADOS.BAS, or your own
GA. Use the new code to solve MAXV= XI; 0 I x 5 1x106 to 1% across all
x and compare the performance to a linear representation,

7. Adapt LGADOSBAS, or your own GA, to stop the evaluation of
individuals that existed in the previous generation. Plot graphs of fmm
against number of objective function evaluations for some of the test
functions of Chapter 3. What effect does this have on the efficiency of the
algorithm for various settings of Pc and P,? Extend the approach to stop the
evaluation of i n d i v i d ~ ~ that have occurred in the last ~ - g ~ n ~ a t i o n ~
(1 I k 5 g>. Use N 2 100 in your experiments.

93

CHAPTER 5

WRITING A GENETIC ALGORITHM

Implementing a genetic algorithm on a computer is surprisingly easy. Much of
this simplicity arises from the lack of sophisticated mathematics within the
algorithm: there are few operations that would be beyond even the most rusty
or inexperienced of individuals.

For most applications, the programming language chosen for the GA
itself will be of little relevance because the majority of computational time will
be spent estimating the objective function. Thus it is far more important to
ensure that that part of the program is optimised in structure and language. As
most programming environments allow mixed language programs, the GA and
the objective function routines need not even be in the same language (or even
d n g on the same machine).

Although there are several GA packages available, either commercially
or for free, I strongly believe in the value of trying to code one’s own simple
algorithm, at least in the first instance. For experienced programmers this will
take less than a day.

The implementation described here is of LGADOS and is designed to
run under QBASIC on a PC. BASIC has been chosen, in part, because of its
ease of comprehension by the less experienced (and because it is included on
most DOS-based systems). Sophisticated data structures have been avoided,
and although this possibly makes the algorithm slightly less elegant, it should
allow for easy translation into any other language (translations into PASCAL,,
FORTRAN and C are already provided on the disk). Those wishing to work in
PASCAL might like to use code from reference [G089]; those with a
preference for C could use the code in reference [MI941 (although this is for a
real-valued, rather than a binary, encoded GA).

This chapter starts by sketching the form of the program, explaining the
data structure adopted, listing the main program and then examining each
operation and its associated subroutine (procedure) in turn. Extracting the

94

results and adapting the program to solve other problems is also discussed.
Although a rough understanding of the program is advisable, it would be
possible simply to make suitable adjustments, as detailed below, and run the
code via QBASIC or a BASIC compiler (QuickBASIC would be ideal) and
solve other, more complex, problems.

A complete listing of the program is included on the disk and in
Appendix B.

A SKETCH OF THE PROGRAM

At the heart of the program are two non-overlapping populations of bmary
encoded strings. One is the current generation, the other a new temporary
population in the process of being constructed from the current generation by
selection, crossover and mutation. When the temporary population is complete
it replaces the current generation and the generational counter is incremented
by one. This process is sketched in Figure 5.1.

Generation = 1.
Create initial population 'Build apopulation ofstrings at random.
Find unknowns 'De-code the n ~ p o p ~ l a t i o n to integers then real numbers,
Find fitness Find thefitness of each member o~~hepopulation.

FOR Generation = 2 TO maximum number of generations

FOR NewIndividual = 1 TO PopulationSize STEP 2 'Loopoverthe
popula#~on choos~ngpairs of mates

Select a mate
Select other mate
Per form crossover 'Pass individuals to the temporary population afer

performing crossover.
NEXT NewIndividual

m t a te
Rep face
Find unknowns
Find fitness

NEXT Generation

Figure 5.1. A sketch (not red code) of tbe program.

'Mutate the tempora~ popuIation.
'Replace the oid~#pulat~on c o m ~ ~ e ~ e ~ by the new one.

'De-code the new popdatation to integers then real numbers.
'Find the fitness of each member of the population.

The code fragment:

95

is BASIC’s way of implementing a loop a fixed number of times (in this case
10). The option “STEP” can be used to increment the counter by more than
unity each time. A single quote in BASIC indicates that any characters to the
right are comments. Some of the lines of the program have been split in order
to fit them on the page; such wrap-arounds are indicated by the symbol B if
they occur within code but not indicated if they occur within comments.

The program starts by building a population of random strings (Create
initial population); these are then each converted to real-valued solution
vectors (Find unknowns) which are tested on the problem at hand and
assigned a fitness (Find fitness). This first generation then undergoes
selection (Select a mate and Select other mate) and crossover (Perform
crossover) a pair at a time and a new temporary population is constructed.
The temporary population then undergoes mutation (Mutate) and replaces
(Replace) the current generation. The new population members are then
converted to real-valued solution vectors, tested on the problem and assigned a
fitness. The program is finished when a set number of generations (maximum
number of generations) have been processed.

Each of these operations are expanded upon below, but first the form of
the arrays used to store the population must be described.

DATA STRUCTURES
Although the use of user-defined data types (or records) would make for a
slightly more elegant program, these have been avoided in the interest of
simplicity and to ensure ease of translation. The population is held in a series
of arrays with each array representing one aspect of the population. Thus the
binary strings are held in one array (called Strings) as rows of integers (each
with the value 0 or 1). These are decoded as though they were true binary
strings to an array called Integers and then to real-valued solution vectors in
array unknowns. The fitness of each individual is held in the single column
array Fitness.

As an example of the layout of these arrays, consider a population
consisting of four individuals and a problem cf= x + y) , with each unknown

96

being represented by a string of length three and the unknowns being in the
range 0 to 14:

Strings: I 1 0 1 1 1 1
0 0 0 1 1 0
1 1 0 1 0 0
0 1 0 0 0 1

Integers:

Unknowns:

Fitness:

24 [;
Thus, using the notation of Chapter 2, for i = 1 (the first member), C = 101111,
z1 = 5,zz = 7, rl = 10, r2 = 14 andf= 24.

The array NewStrings represents the new, temporary, population.
Elitestring, EliteIntegers, EliteUnknowns and EliteFitness hold a
copy of the genotype, integer phenotype, real phenotype and fitness of the elite
member.

An array, Range, holds the upper and lower bounds of each unknown.
For the example above:

97

Range:

The substring length I; G; P,; P,,, and c,,, are all held as constants (i.e.
they can not be altered during execution). All the above arrays and the
constants are “shared”, i.e. they are global variables which all parts of the
program have automatic access to.

The program consists of a “main” program and a series of subroutines “called”
from the main program. The format of the call statement is:

CALL subroutine name (argl, argl,)

Such a statement transfers control to the subroutine and passes the arguments
argl, arg2 etc to the subroutine. The names of the subroutines hopefully
indicate their purpose.

The main program is listed in Figure 5.2. First the constants are
defined, then the arrays are dimensioned and the bounds of each unknown
stated. The random number generator is then “randomised” to ensure the
program uses a different sequence of random numbers each time it is run and
the files to hold the results opened. An initial population is then created and the
fitness of the population members found. Subroutine Statistics calculates
the sum and mean of the fitness and finds which individual has the highest
fitness. PrintGeneration does just that: it prints the results to the screen and
to the two result files. Scaling applies linear fitness scaling to each individual.
Because this scaling is applied after PrintGeneration the results printed
include the true fitness, not the scaled values.

After this first generation is complete, generations 2 to G are processed.
Pairs of mates (or parents) are chosen by fitness proportional selection. A
random number is then thrown, and if this is number is less than or equal to P,
crossover is used to build the new strings, otherwise the strings are simply
cloned. Mutation is then applied and Replace used to overwrite the old
population with the new. The strings are then decoded to produce the

98

unknowns, the fitness of each solution vector found and the results output.
Subroutines are included to apply elitism and fitness scaling if required.

I------ SET ALL THE IMPORTANT FIXED PARAMETERS -------

'These should be set by the user.
CONST Populationsize = 20 'Must be even.
CONST NumberOfUnknowns = 2
CONST SubstringLength = 12 'Allsub-strings have the same length.
CONST TotalStringLength = NumberOfUnknowns * SubstringLength
CONST MaxGeneration = 20 %.
CONST CrossOverProbability = . 6 'Pc >=O and < = I .
CONST MutationProbability = 1 / TotalStringLength 'Pm,>=Oand<I.
CONST Elitism = "on" "'on" or "of'.
CONST ScalingConstant = 1.2 'A value of0 implies no scaling.

'------DECLARE ALL SHARED (I.E. GLOBAL) VARIABLES----------

'The arrays that hold the individuals within the current population.
DIM SHARED Unknowns(PopulationSize, NumberOfUnknowns) AS SINGLE
DIM SHARED Integers(PopulationSize, NumberOfUnknowns) AS LONG
DIM SHARED Strings(PopulationSize, TotalStringLength) AS E

INTEGER
DIM SHARED Fitness(Popu1ationSize) AS SINGLE

'The new population.
DIM SHARED NewStrings(PopulationSize, TotalStringLength) AS

INTEGER

'The array that defines the range of the unknowns.
DIM SHARED Range(2, NumberOfUnknowns) AS SINGLE

'The best individual in the past generation. Used yelitism is on.
DIM SHARED EliteString(Tota1StringLength) AS INTEGER
DIM SHARED EliteIntegers(NumberOfUnknown8) AS LONG
DIM SHARED EliteFitness AS SINGLE
DIM SHARED EliteUnknowns(Number0fUnknowns) AS SINGLE

CLS Clear the screen.

CALL Def ineRange 'Define the range ofeach unknown. These should also be set by the
user.

Figure 5.2. The main program (continued over).

99

Set the random number generator so it produces a diferent set of numbers
'each time LGADOS is run.
RANDOMIZE TIMER

CALL OpenFiles 'Open files used to store results

' _-_-___ CREATE AN INITIAL POPULATION, GENERATION I ------

Generation = 1

CALL Initialpopulation 'Build apopulation of strings at random.

CALL FindFitness Find thefitness of each member of thepopulation.

CALL Statistics(MeanFitnes8, SumFitness, FittestIndividual, B
Generat ion) 'Find the meanfitness and thefittest individual.

CALL PrintGeneration(Generation, MeanFitness, s
Fittest Individual) 'Print generation tofile.

CALL Scaling(ScalingConstant, FittestIndividual, SumFitness, e
MeanFitness) llflinearfitness scaling is "on" then scale population prior to selection.

I----*-- LOOP OVER ALL THE GENERATIONS -------

FOR Generation = 2 TO MaaxGeneration

FOR NewIndividual = 1 TO PopulationSize STEP 2 Zoopoverthe
population choosingpairs of mates

CALL Selection (Matel, SumFitness , MeanFitness) 'Choosefirst

CALL Selection(Mate2, SumFitness, MeanFitneas) 'Choosesecond
mate.

mate.

'Pass individuals to the temporary population either with or without performing
crossover.
IF RND c = CrossOverProbability THEN 'Perform crossover.

ELSE 'Don't perform crossover.
CALL CroseOver(Mate1, Mate2, NewIndividual)

CALL NoCrossover (Matel, Mate2, NewIndividual) 'Don'tperform
crossover.

END IF

Figure 5.2. The main program (&om previous page).

100

NEXT NewIndividual

CALL Mutate 'Mutate the temporary population.

CALL Replace 'Replace the oldpopulation completely by the new one.

CALL FindUnknowns 'De-code the new population to integers then real numbers.

CALL FindFi tness 'Find thefitness of each member of thepopulation.

CALL Statistics(MeanFitness, SumFitness, FittestIndividual,
Generat ion) 'Find the meanfitness and thefittest individual.

CALL PrintGeneration(Generation, MeanFitness,
Fittest I ndiv i dua 1) 'Print generation to file.

CALL Scaling(ScalingConstant, FittestIndividual, SumFitness,s
'If linear fitness scaling is "on" then scale population prior to selection. MeanFi tness)

NEXT Generat ion

CLOSE 'Close allfiles

Figure 5.2 (conclusion). The main program.

'Process the next generation.

GENETIC AND OTHER OPERATORS

Figure 5.2 is the heart of the program: generations are cycled through while
crossover and mutation build increasingly good solutions. In some ways the
other operators are just detail; much can be learned by simply adjusting the
internal GA settings (Pc, P,, G etc.) and trying the program on various simple
problems of your own choosing. However, an idea of how the genetic and
other operators are implemented is probably necessary if the advanced
techniques described in Chapter 4 are to be added.

In the following, each operation and its associated subroutine is
discussed in turn.

DEFINING THE RANGE OF THE UNKNOWNS
Different problems will have unknown parameters being hunted between
different bounds. The range of each unknown is set in Def ineRange using the
array Range. In Figure 5.3 the bounds of a two-dimensional problem are

101

established; the list can easily be continued for higher dimensional problems
after NumberOfUnknowns has been adjusted in the main program.

SUB DefineRange
'Defines the upper and lower boundr of each unknown.
'Add other ranges using the same format ifmore than two unknowns in the problem.

Unknown P 1 'thefirstunknown.
Range (I, Unknown) = 0 'The lower bound.
Range (2 , unknown) = 1 'The upper bound.

unknown = 2 'thesecondunknown.
Range(1, unknown) = -3.14159
Range(2, unknown) = 3.14159

'Add other ranges ifmore than two unknowns in your problem.

END SUB

Figure 5.3. Defining the range of the problem.

OPENING THE RESULTS FILES
Output is via two files: LGADOSRES and LGADOS.ALL (Figure 5.4).
LGADOS.RES lists the generation, g; fitness, f-, of the highest performing
individual; the average fitness of the generation, fme; and the unknowns rk
contained in the fittest individual. LGADOS.ALL lists g, f, rk and the binary
chromosome C for all individuals in all generations, and hence can be very
large. The files are comma-separated and can be loaded into most spreadsheets
for manipulation and plotting.

The files are overwritten each time the program is run. Therefore it is
important that the results are copied to files with more unique names at the end
of a run if data are not to be lost.

SUB OpenFiles
'Open resultfiles. See Chapter 2 for a description of their contents.

OPEN "LQADOS . RES" FOR OUTPUT AS #1
OPEN "LQAD0S.ALL" FOR OUTPUT AS #2

END SUB

Figure 5.4.The opening of the results files.

1 02

CREATING THE INITIAL POPULATION
The initial population is created by throwing a random series of 0’s and 1’s
’(Figure 5.5). RND is a BASIC function which returns a random decimal
between 0 and 1; if RND > 0.5 then a 1 is placed into the string, otherwise a 0
is inserted.

SUB Initialpopulation
‘Create the initial random population.

FOR Individual = 1 TO PopulationSize

FOR Bit = 1 TO TotalStringLength

Strings(Individua1, Bit) = 1

Strings(Individua1, Bit) = 0

IF RND > . S THEN

ELSE

END I F
NEXT Bit

NEXT Individual

CALL FindUnknowns ‘Decode strings to real numbers.

END SUB

Figure 5.5. Creating the initial population.

SELECTION
The program uses fitness proportional selection with replacement via a roulette
wheel analogy. A random number is thrown using the BASIC function RND
and is multiplied byfwm (Figure 5.6). The wheel is then spun and the individual
fitnesses added together until the sum is greater than or equal to this product.
The last individual to be added is then the selected individual.

1 03

SUB Selection (Mate, SumFitness, MeanFitness)
'Select a single individual by fltness proportional selection.

Sum - 0
Individual = 0

Roulettewheel = RND * SumFitness

DO
Individual = Individual + 1
Sum - Sum + Fitnees(Individua1)

LOOP UNTIL Sum >= Roulettewheel OR Individual = PopulationSize

Mate = Individual

END SUB

Figure 5.6. Selection.

CROSSOVER AND No CROSSOVER
A random number is used in the main program to decide whether the two mates
(or parents) are passed to either Crossover or Nocrossover. If the random
number is less than or equal to P, then crossover is used to build the child
strings, which are passed to the new temporary population Newstrings
(Figure 5.7). If not, the children are clones of their respective parents
(Figure 5.8).

SUB CroesOver (Matel, Mate2, NewIndividual)
'Perform single point crossover.

CrossSite = INT ((TotalStringLength - 1) * RND + 1) 'Pick the cross-site
at random.

FOR Bit = 1 TO Crosssite 'Swap bits to the lej? of the cross-site.
NewStrings(NewIndividua1, Bit) = Strings(Mate1, Bit)
NewStrings(NewIndividua1 + 1, Bit) = Strings(Mate2, Bit)

NEXT Bit

FOR Bit = CrossSite + 1 TO TotalStringLength 'Swap bits to the right of

Figure 5.7. Crossover being used to build two new members of the temporary population
(continued over).

the cross-site.

104

NewStrings(NewIndividua1, Bit) = Strings(Mate2, Bit)
NewStrings(NewIndividua1 + 1, Bit) = Strings(Mate1, Bit)

NEXT Bit

END SUB

Figure 5.7 (conclusion). Crossover being used to build two new members of the temporary
population.

SUB Nocrossover (Matel, Matel, NewIndividual)
'Pass the selected strings to the temporary population without applying crossover,

FOR Bit = 1 TO TotalStringLength
NewStrings(NewIndividua1, Bit) = Strings(Mate1, Bit)
NewStrings(NewIndividua1 + 1, Bit) = Strings(Mate2, Bit)

NEXT Bit

END SUB

Figure 5.8. Cloning the parents to build two new strings.

MUTATION
Mutation is applied by calling subroutine Mutate (Figure 5.9) to step through
the whole temporary population, visiting every bit in each string and throwing
a random number. If this number is less than or equal to P,,, the value of the bit
is flipped.

SUB Mutate
'Visit each bit of each string very occasiona/&flipping a "I" to a "0" or vice versa.

FOR Individual = 1 TO Populationsize
FOR Bit = 1 TO TotalStringLength

'Throw a random number and see ifit is less than or equal to the mutation probability.
IF RND c = MutationProbability THEN

'Mutate.
IF NewStrings(Individua1, Bit) = 1 THEN

Newstrings (Individual, Bit) = 0
ELSE

NewStrings(Individua1, Bit) = 1
END IF

Figure 5.9. Mutation (continued over).

105

END I F

NEXT Bit

NEXT Individual

END SUB

Figure 5.9 (conclusion). Mutation.

REPLACEMENT
The old population is replaced by the new one by copying NewStrings bit by
bit into Strings and erasing the contents Of Newstrings (Figure 5.10).

SUB Replace
'Replace the oldpopulation with the new one,

FOR Individual = 1 TO PopulationSize
FOR Bit = 1 TO TotalStringLength

NEXT Bit
Strings(Individua1, Bit) = NewStrings(Individua1, Bit)

NEXT Individual

ERASE Newstrings 'Clear the old array of strings.

END SUB

Figure 5.10. Replacing the old population with the new one.

DECODING THE UNKNOWNS
The binary strings are converted to real-valued parameters for testing in the
problem by calling FindUnknowns (Figure 5.1 1). This starts by calling
FindIntegers to convert the strings to base-10 integers (Figure 5.12). These
integers are then converted to real-valued parameters using the transformation
of Chapter 2.

106

SUB Findunknowns
'Decode the strings to real numbers.

CALL FindIntegers 'First decode the strings to sets of decimal integers.

'Now convert these integers to reals.
FOR Individual = 1 TO Populationsize
FOR Unknown = 1 TO NumberOfUnknowns
Unknowns (Individual, Unknown) = Range (1, Unknown) +

Integers (Individual, Unknown) * (Range (2 , Unknown) - Range (1,
Unknown)) / (2 A SubstringLength - 1)
NEXT Unknown

NEXT Individual

END SUB

Figure 5.1 1 . Findunknowns calls FindIntegers and then converts the integers to reals
within the bounds (range) of the problem.

SUB FindIntegers
'Decode the strings to sets of decimal integers.

DIM bit AS INTEGER

FOR Individual = 1 TO Populationsize
bit = TotalStringLength + 1
FOR Unknown = NumberOfUnknowns TO 1 STEP -1
Integers(Individua1, Unknown) = 0
FOR StringBit = 1 TO SubstringLength
bit = bit - 1
IF Strings(Individua1, bit) = 1 THEN
Integers(Individua1, Unknown) = Integers(Individua1, E

Unknown) + 2 * (StringBit - 1)
END IF

NEXT StringBit
NEXT Unknown

NEXT Individual

END SUB

Figure 5.12. Converting the strings to base-I0 integers.

107

ASSIGNING THE FITNESS
The parameters extracted by Findunknowns are tested as solutions to the
problem at hand in FindFitness. Figure5.13 shows code for the two-
dimensional maximisation problemf= xz + sin@). The subroutine can be easily
adapted to solve other problems. It is important to ensure that no negative
fitnesses are assigned.

SUB FindFitness
'The problem at hand is used to assign a positive (or zero) fitness to each individual in turn.

'The problem is f = x"2 -+ sinb).
FOR Individual = 1 TO PopulationSize
Fitness(lndividua1) = Unknowns(Individua1, 1) * 2 + 5

SIN(Unknowns(Individua1, 2))
If Fitness(Individua1) c 0 then Fitness(Individua1) = 0

NEXT Individual

END SUB

Figure 5.13. Inserting the unknowns into the problem and assigning a fitness to each member
of the population in turn.

LINEAR FITNESS SCALING
For many problems, using some form of fitness scaling will greatly improve
performance. Scaling (Figure5.14) applies linear fitness scaling to the
problem, with the amount of scaling being controlled by Scalingcons tant.
To switch scaling off, Scalingconstant can be set to zero within the constant
declaration area of the main program. Scaling is applied just before selection.
Because the results are output before this, the fitness reported is the true
fitness, not the scaled fitness.

SUB Scaling (ScalingConstant, FittestIndividual, SumFitness,
MeanFitness)
'Apply Linear Fitness Scaling, '
Subject to,

'and

%/here c, the scaling constant, is set by the user.

Figure 5.14. Applying linear fitness scaling to the population prior to selection (continued
over).

scaledfitness = a 'fitness -+ b.

meanscaledfitness = meanfitness

bestscaledfitness = c * meanfitness,

1 08

' r t he scaling constant is set to zero, or all individuals have the samefitness, scaling is not
applied.
IF ScalingConstant c > 0 AND Fitness(FittestIndividua1) - I

MeanFitness > 0 THEN
'Find a and b.

a = (Scalingconstant - 1) * MeanFitness /
(Fitness(FittestIndividua1) - MeanFitness)

b = (1 - a) * MeanFitness

'Adjust the fitness of all members of the population.
SumFitness = 0
FOR Individual = 1 TO PopulationSize
Fitness (Individual) = a * Fitness (Individual) + b
IF Fitness (Individual) c 0 THEN Fitness (Individual) = 0

'Avoid negative values near the end of a run.
SumFitness = SumFitness + Fitness (Individual) 'Adjust thesum ofallthe

Jitnesses.
NEXT Individual

'Adjust the mean of all thefitnesses.
MeanFitness = SumFitness / PopulationSize

END IF

END SUB

Figure 5.14 (conclusion). Applying linear fimess scaling to the population prior to selection.

ELITISM
Elitism is applied by checking if the fittest individual has a lower fitness than
the elite member of the last population; if so, a randomly selected individual is
replaced by the old elite member (Figure 5.15).

SUB Elite (SumFitness, FittestIndividual)
'Applies elitism by replacing a randomly chosen individual by the elite member
[from the previous population ifthe new mar fitness is less then the previous value.

IF Fitness(FittestIndividua1) < EliteFitness THEN

Individual = INT (Popula t ionSi ze * RND + 1) 'Chosen individual to be
replaced

Figure 5.15. Elitism (continued over).

FOR Bit = 1 TO TotalStringLength
Stxings (Individual, Bit) = Elitestring (Bit)

NEXT Bit

Fitness(Individua1) = EliteFitness

FOR Unknown = 1 TO NumberOfUnknowns
Int;agers(Individual, Unknown) = EliteIntegers(Unknown)
Unknowns (Individual, Unknown) = EliteUnknowns (Unknown)

NEXT Unknown

FittestIndividual = Individual

FOR Bit = 1 TO TotalStringLength

NEXT Bit
EliteString(Bit) = Strings(FittestIndividua1, Bit)

EliteFitness - Fitness(FittestIndividua1)
FOR Unknown = 1 TO NumberOfUnknowns
EliteIntegers(Unknown) = Integers(FittestIndividua1, Unknown)
ElitsUnknowns(Unknown) = Unknowns(FittestIndividua1, Unknown)

NEXT Unknown

END SUB

Figure 5.15 (concl~ion). Elitism.

110

STATISTICS
Subroutine Statistics (Figure 5.16) is used to find fave (MeanFitness),f,,,,,
(SumFitness) and fm (MaxFitness) . These are required if elitism is being
used and are also reported by PrintGeneration. The subroutine also calls
Elite if required.

SUB Statistics (MeanFitness, SumFitness, FittestIndividual, 3

'Calculate the sum offitness across the population andfind the best individual.
'then apply elitism ifrequired

FittestIndividual = 0
MaxFitness = 0

Generation)

FOR Individual = 1 TO Populationsize

MaxFitness = Fitness(Individua1)
FittestIndividual = Individual

IF Fitness(Individua1) > MaxFitness THEN

END IF
NEXT Individual

IF Elitism = "on" THEN 'Apply elitism.

END IF
CALL Elite(SumFitness, FittestIndividual)

SumFitness = 0 'Sum thefitness.
FOR Individual = 1 TO PopulationSize

NEXT Individual
SumFitness = SumFitness + Fitness(Individua1)

'Find the average fitness of the population.
MeanFitness = SumFitness / Populationsize

END SUB

Figure 5.16. Findingf,,,A,,, andf,, and calling Elite.

PRINTING THE RESULTS
PrintGeneration (Figure 5.17) is used to Output a single generation to the
screen and to file. The file LGADOS.ALL contains all individuals from all
generations and hence can be rather large. If the information it contains is not
required, the corresponding lines should be commented out. BASIC uses a
semicolon at the end of a PRINT line to stop a carriage return from being

111

automatically included. The files are comma separated to allow easy importing
of the results into a spreadsheet or plotting package.

SUB PrintQencration (Generation, MeanFitness,
FittertIndividual)
'Print results to the screen and thefiles.

PRINT Generation; Fitness(FittestIndividua1); MeanFitness;
'Screen.

PRINT #1, Generation; I!, I t ; Fitness (FittestIndividual) ; #I , ";

MeanFitness ; 'File LGAD0S.RES.

FOR Unknown = 1 TO NumberOfUnknowns
PRINT Unknowns (FittestIndividual, Unknown) ; 'Screen.
PRINT #1, n , I t ; Uhknowne (FittestIndividual, Unknown) ; 'File

LGAD0S.RES
NEXT Unknown

PRINT 'Carriage return.
PRINT #l I 'Carriage return.

FOR Individual m 1 TO PopulationSize

PRINT #2, Generation; l a , I t ; Fitness (Individual) ; !I, 'I; 'File
LGADOSALL

FOR Unknown - 1 TO NumberOfUnknowns
NEXT Unknown
PRINT #2 , Unknowns (Individual, Unknown) ; ' I , ; 'File LGADOS.ALL

FOR Bit I 1 TO TotalStringLength
PRINT #2, RIGHT$ (STR$ (Strings(Individua1, Bit)), 1) ;I 1 , ";'File

LGADOSALL
NEXT Bit

PRINT #2, 'carriage return

NEXT Individual

END SUB

Figure 5.17. Printing the results fiom a single generation to the screen and the two output files.

112

RUNNING AND ALTERING THE PROGRAM

After starting QBASIC, load LGADOS.BAS using the FILE menu and run the
program using the RUN menu. Then open the two results files and f ~ i ~ ~
yourself with the contents. To obtain meaningful answers to many questions
(such as the best value of P,,, for a particular problem) it is imperative that
multiple runs of the program are used. Because the program always uses the
same filenames for the results files, all previous results are lost each time a new
run is embarked upon. it is therefore important to change the name of these
files at the end of run. (An alternative would be to make the necessary changes
to the program to allow the user to input their own filenames.)

It is relatively straightforward to adapt the program to solve other
problems. This involves three main changes (which should only carried out on
a copy of the program):

1. Within the “set constants” area of the main program adjust the values of
any constants that need changing;

2. Press F2 to access the subroutine list and edit Def ineRange to reflect both
the number of unknowns in the problem and their ranges; and

3. Edit FindFitness to reflect the new problem.

Adaptations to FindFitness can be made either by inserting the required code
directly into the program or, if using a compiler, by “chaining” to another
compiled program (by using the CHAIN statement) and using files (or other
methods) to transfer the solution vectors and the fitness between the two
programs.

113

CHAPTER 6

APPLICATIONS OF GENETIC ALGORITHMS

A quick search of a publication database shows that the number of GA
applications is growing on a daily basis (Figure6.0.1). The range of
applications is truly stunning, including evolving computer programs
[K092,K094], estimations of protein structure [SC92] and designing water
networks [HA97].

The eight applications given in this book have been chosen for several
reasons: they are all practical applications in science or engineering; all except
one uses relatively simple binary-encoded GAS of the type described in the
earlier chapters; further, they complement rather than echo the applications
given in other texts (discussed below). Although the requirement that the
examples use only binary representations and no techniques not covered in the
earlier parts of the text has somewhat limited the range of applications that
could be presented, this has been done to forcefully demonstrate that relatively
simple algorithms can help in solving complex problems. Each application
attempts to illustrate some of the difficulties in applying GAS to various real-
world problem domains (Table 6.0.1). They range from the simple estimation
from experimental data of five real-valued unknowns, to the use of a messy GA
to solve a complex water network problem.

114

I 1 I I

1990 1992 I994 1996 I
Year

‘8

Figure 6.0.1. The continuing growth in the number of papers using GAS published each yeru
indicates a burgeoning acceptance of the technique. (Data obtained by searching for the string
“genetic algorithm” within the scientific publications database at the University of Bath; papers
within other fields are therefore not included.)

I Applicatjon
6.1 image Registration

6.2 A Simple Application: Recursive
Prediction of Natural Light Levels

Main attributes
use of a simple GA (LGA);
at most 25 real-valued unknowns;
use of an approximate fitness function
which grows in accuracy with time.

GA applied in a recursive manner to a
fitness landscape that is not static, i.e. the
algorithm is hunting a noisy moving target
and two identical, but time separated,
genotypes may not give rise to identical
values of fitness;
a simple least-squares problem comparing
an experimental data set with a simple
model;
few unknowns and limited accuracy
required; and
(therefore) a short string length.

6.3

6.4

6.5

6.6

§ Apnlication
Water Network Design

Ground-State Energy of the fJ Spin
Glass

E s t ~ t i o n of the Optical Parameters
of Liquid Crystals

Design of Energy Efficient Buildings

115

Main attributes
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

discrete unknowns;
Gray coding;
linear rank selection;
uniform crossover;
a penalty function to handle unfeasible
solutions; and
the requirement for only a ne~-optimal,
but robust, solution.

long genotypes, L 3000;
large number of Boolean unknowns, M >
3000;
inclusion of an additional local search
heuristic (directed ~utation); and
direct c o ~ e s ~ n d e n c e between the
problem-space and the string
representation, negating the need to
encode the unknowns.

the development of a system to replace a
previously human-guided searck
use of a series of sequential adaptstions to
a simple GA; and
the inclusion of a traditional search routine
to create a hybrid algorithm.

a range of different variable types (binaty,
integer and real);
the need for a diverse range of
approximate solutions together with the
global optimum;
the need for h u ~ a n - b ~ e d final selection;
and
the need to avoid re-estimating the fitness
of any already processed design.
use of remainder stochastic sampling and
a generation gap

116

4 Application
6.7 Human Judgement as the Fitness

Function

Main attributes
a GA being driven by aesthetic judgement,
rather than a numerical measure of fitness,
a problem where identical genotypes may
be given non-identical values of fitness;
and
a system where relatively few fitness
evaluations are possible.

6.8 Multi-objective Network
Rehabilitation by Messy GA

a sparse problem space;
use of a messy algorithm;
a multi-objective problem; and
fitness sharing.

Table 6.0.1 the various problems detailed in this chapter and their main attributes.

As with any book, the number of applications is limited by spatial
constraints. If none of them match your own areas of interest, the following
introductory texts should be studied for further applications and references.
Alternatively, an electronic search should be made of a publication database.

Davis [DA91]
Parametric design of aircraft
Routing in communications networks
Robot trajectories
Nonlinear systems and models of international security
Strategy acquisition
Artificial neural networks
Mineral separation by air-injected hydrocyclone
Fault diagnosis
Conformational analysis of DNA
Interpretation of sonar signals
Engineering design
Travelling salesman problem
Scheduling

Goldberg [GO891
Optimisation of engineering structures
Iterated prisoner’s dilemma

117

0 Machine learning

Michalewicz [MI941
0 The transportation problem
0 Travelling salesman problem
0 Graph drawing
0 Scheduling
0 Partitioning
0 Robotic path planning
0 Machine learning

Mitchell [MI951
0 Evolving computer programs in LISP
0 Cellular automata
0 Time series analysis
0 Protein structure
0 Evolving weights, learning rules and architectures for artificial neural

networks
0 Use of GAS in modelling evolution, learning, sexual selection and

ecosystems.

Zalzala and Fleming [ZA97]
0 Control systems
0 GAS and fuzzy logic
0 Artificial neural networks
0 Chaotic system identification
0 Job shop scheduling
0 Robotic systems
0 Aerodynamics
0 VLSIlayout

6.1 IMAGE REGISTRATION
Genetic algorithms have a long history of use in image registration and in
particular with medical image registration [for example FI841. This is not
surprising as one can easily imagine that many such problems will contain
search spaces littered with local minima. Unlike x-rays, modern medical
imaging techniques also have the distinction of generating three-dimensional

118

visualisations of the human body, greatly increasing the scale of the search
space.

The work reported here is taken from work by Coley and Bunting
[CO94] and Wanschura, Coley, Vennart and Gandy, and attempts to register a
pair of time-separated magnetic resonance imaging (MRI) data sets. (This time
separation may be over several months and with the images recorded on
differing machines.) The technique is useful for monitoring small changes in
anatomy, such as disease progression with time (e.g. degradation of cartilage in
arthritic disease), pre/post-surgical studies and signal intensity (e.g. functional
brain imaging) in otherwise identical images. It provides a simple application
of a GA to a problem requiring:

0 the use of a simple GA (LGA);
0 at most 25 real-valued unknowns; and
0 (because of the large amount of experimental data) the use of an

approximate fitness function which grows in accuracy with generation.

INTRODUCTION
Even when taken with registration in mind, time separated MRI data sets are
unlikely to be perfectly registered. Misalignment of the object under
investigation within the RF coil, small anatomical changes and changes in
system settings will all affect the registration of the images. This misalignment
is unlikely to be of concern if the images are presented as planar slices through
the objects and the time-separated sets are kept distinct. However, if an
accurate determination of very small changes is required, the images will
require to be registered before further operations (e.g. subtraction) are
performed. The approach adopted for identifying changes by registration is
based simply on a calculation of pixel by pixel intensity difference followed by
subtraction.

To obtain the registration the first image must be transformed
(translated, rotated or deformed) until the best match with the second image is
found. The similarity of the two images can then be quantified in a cost
function, Q. By using a numerical optimisation method to find the minimal cost
(or maximal similarity) a fully automatic procedure to extract the region of
interest is produced.

MRI data sets typically contain in excess of 16,000 points per image,
and the search space for implementing registration is likely to contain a large
number of local optima which do not give the correct alignment of the images.
Although the GA has been promoted as an aid to the registration of medical

119

images taken by different techniques (e.g. MRI together with X-ray)
[FI84,HI94,NI96], little work has been carried out to indicate the accuracy of
the method when used on typical pairs of time- pa rated MRI data sets
[CO94,CO96], In particular, the abilities of the method have not been studied
for sets misregistered by amounts typical of clinical scans. (The data sets used
in this study were collected for other general purposes, and not with
registsation in mind).

METHOD
The two image data sets were stored as greyscale (0-255) intensities of
128 x 128 pixels. Automatic registration of the two images requires (a) a
~ s f o ~ ~ t i o n and (b) a measure of s j r n ~ ~ ~ ~ . The transfo~ation applied is
given by the following:

X = a, +a,x+a,y +tgz+a,xy +a,xz +a,yz -!-u+yz, (6.1.1 a)

5i = a, + agx + q , z + aI2xy + + a,,yz + qsxyz (6.1.1 b)

and

Z=at6 +a17x+a18y+a19z+a20xy +a,,xz+a,zy~+a,,xyz, (6.1 .lc)

where x, yt z are the three Cartesian spatial dimensions and the at are the
adjustable parameters whose values we are trying to estimate (z = E = 0 in the
2-D w e , leaving eight ~ 0 ~ s ~ . The ~ ~ f o ~ a t ~ o n can be v ~ s ~ ~ s ~ as a
rubber cube which allows the image to be translated, re-scaled, sheared or
rotated. For example, ao, ag and a16 describe the translation of the image in the
x-, y- and z-directions respectively.

The measure of fitness, or success of the transformation is based simply
the ~ i n t - b y - ~ i n t absolute difference between the two images:

(6.1.2)

where m = number of points considered, Ac = colour (or greyscale intensity)
difference between the same point in the first and the transformed second
image, and A is a constant to convert the minimisation to a maximisation,
(More complex measures have been suggested [T077,BR91].) Because the two
images may well have different overall intensity dis~butions (due to the way

1 20

the imaging machines were staffed and operated-with the time separation
possibly being over several m o n ~ s) an additional ~o~ parameter, ff24, is
required to equalised the distributions:

where ciu) and c20) are the individual colours (or greyscale intensi~ies~ of
pixelj for the two images. (Note, 9 4 is the same for all j.)

APPROXIMATE FITNESS ESTI~ATION
To speed calculation, the points j must be kept to a minimum. Initial

filtering is carried out by excluding all points with near zero intensities. Most
of these points represent the backgro~d black outside the anatomic^ structure
being studied. This typically halves the number of points processed. Pixelsj are
selected as a random subset of the complete data (this subset must be large
enough to contain a statistical representation of the image, initially 2-3%), with
the size of this subset growing as convergence is reached [FI84]. It is this
statistical approach which is responsible for much of the efficacy of the
approach. Because of the high levels of noise within the images, much of the
intensity of a pixel within this subset might simply be stochastic in nature. To
alleviate this, the intensities of pixels within the images were averaged with the
surrounding ones. For g = 1, and 2-D images, this smoothing took place over
25 pixels centred on the pixel in question, the size of the grid reducing to unity
byg=G.

LGA was used with N = 50 initial guesses, Pc = 0.8 and Pm = 0.001.
The registration obtained by the method can be demonstrated by comparing
slices fiom subtractions of the two sets, with and without a t r ans fo~~ t ion
being applied.

In order to test the accuracy of the approach outlined above, the
technique was initially applied to the problem of registering two time-separated
images (Figure 6.1.la, average pixel intensity, Z,=49.8, <r = 45.9 and
Figure 6.1.lb, lm = 53.4, (z = 50.3) of the right-hand index distal-
interphalangeal (DIP) joint of a healthy volunteer.

3-D images with 200pm in-plane resolution were collected with 16
contiguo~s slices of 1 mm thickness. After the initial scan, the frnger was
removed from the RF coil, then repositioned within the coil ready for the
second imaging experiment. (This repositioning mechanism has been found to
be inherently inaccurate, and can often result in m i s a l i ~ e n t of the joint by
the order of mm.) A second set of images was taken, and upon completion, the

121

central image slice from each data set was selected, and the GA applied to
align the two sets.

Figure 6.1.1. (a) Planar slice through image set 1: distal-interphalangeal joint in sagittal
section. @)Equivalent planar slice through image set 2. Note, the finger is displaced by
approximately 2 mm. (The figures are binary versions of the 256 grey-scale intensities used.)

RESULTS
The generation, or time, evolution of the fitness is displayed in Figure 6.1.2.
The solution is seen to have converged after approximately thirty generations.
This point took approximately 20 s to reach on a personal computer,
demonstrating the efflciency of the algorithm-which was implemented in
PASCAL.

122

0.575

0.920

0.915

'I
0.910

0.903

0 . 9 0 '

- .., - - - -

-

-

- ;

- ;

' ' 1 " " " ' 1 "

Figure 6.1.2. The time evolution of the fitness; the highest fitness within any generation is
shown as a solid line, the mean fitness of the population as a dashed line.

The degree of misalignment reduction can be viewed by comparing
subtractions of the data sets with, and without, the transformation. Subtractions
of correctly registered, identical, sets should result in totally blank images.
Subtracting the two images given in Figure 6.1.1, without first applying a
transformation, results in Figure 6.1.3a (Im = 25.4, (T = 30.9). The "ghost"
image seen is typical of misalignment. The only enhancement to the final
image is noise reduction by rejection of very low intensity pixels. For
comparison an image obtained by identical subtraction, but after application of
the transformation generated by the GA, is given in Figure 6.1.3b (I, = 2.1, (T

= 11.1). The ability of the GA to accurately align the images is clearly shown
by there being almost no structures in the image, and no ghost image (also
implying that there are no anatomical differences between the two data sets);
what remains is essentially noise. A more quantitative measure of alignment,
apart from the much reduced values of I,, and (T, is the number of fully
connected pixels, PJ, which reflects the information content of the image. A
pixel is fully connected if, and only if, it has a non-zero intensity and its eight
nearest neighbours also have non-zero intensities. If the two images have been
successfully aligned to the image resolution (1 pixel, or 200pm) then
subtraction will give Pf=O. For Figure 6.1.la and 6.1.lb, Pf= 15793 and

123

15723 respectively; for Figure 6.1.3a Pf= 12907, and for Figure 6.1.3b, Pf= 0
indicating registration.

The technique is useful for monitoring small changes in anatomy, such
as disease progression with time (e.g. degradation of cartilage in arthritic
disease), pre/post-surgical studies and signal intensity (e.g. functional brain
imaging) in otherwise identical images.

Figure 6.1.3a: Planar slice after the subtraction of the images without the GA-based
registration. The ghost image of the joint is due to misalignment of the data sets. Figure 6.1.3b:
Planar slice through the subtraction of the images after the GA-based registration; almost all
misalignment has been removed. (Note, these figures are binary versions of the 256 grey-scale
intensities used.)

6.2 RJECURSIVE PREDICTION OF NATURAL LIGHT LEVELS
Controlling artificial lights within buildings to act solely as a supplement to
available daylighting requires continuous knowledge of natural lighting levels
within each room. Although this information is readily obtained by
measurement whilst lights are extinguished, once illuminated the determination
of the underlying natural light level is not so straightforward. This application
describes the use of a genetic algorithm as the heart of a self-commissioning,
adaptive algorithm capable of the real-time prediction of natural light levels at
chosen points within a room using external measurements of vertical and
horizontal plane illuminance. Such a system forms the basis of a robust and
practical lighting controller.

1 24

This application (based on reference [CO97]) is very simple, requiring only
the identification of five unknowns-the accuracy of which is not particularly
important. The GA is applied in a recursive manner: as new sets of data arrive
the algorithm is re-run, without re-initialisation, for a fixed number of
generations. The results are compared with those found by a traditional method
[C094a]. It illustrates the following:

a binary coded GA applied in a recursive manner to a fitness landscape that
is not static, i.e. the algorithm is hunting a moving target and two identical,
but time-separated, genotypes may not give rise to identical values of
fitness;
fitness-propo~ional selection;
single point crossover;
a simple least-squares problem comparing an experimental data set with a
simple model;
a search space known to contain local optima;
many equally possible, often distant, solutions;
few generations to convergence;
few unknowns;
limited accuracy required; and
(therefore) a short string length.

I N T ~ O D U ~ I O N
This application discusses the employment of a GA to the problem of
predicting the natural horizontal plane iliuminance (i.e. that falling on a desk or
worksurface) within a room, ftom measurements of illuminance outside the
building envelope and at some point distant. Attempts at such predictions have
been made before [C094a] using a recursive least squares algorithm, allowing
results for a GA to be contrasted with those of a traditional algorithm.

Lighting is often the largest single item of energy cost in offices and
considerable savings can be made [EEOI] implying reductions in both cost and
resultant emissions of gases implicated in global warming, Savings can be
effected by a com~ination of higher eaciency lamps, more efficient fittings,
better controls and increased usage of da~~~gh t ing . Here the approach is a novel
lighting controller which enables maximum use to be made of available
daylight.

The availability of high levels of natural light within a space is not, of
itself, sufficient to ensure that less use will be made of artificial lighting. For
manually controlled systems, studies have shown [HU79] that it is the

125

perceived level of light on initially entering the room which chiefly determines
whether lights will be illuminated. Once switched on, it is very unlikely that
they will be switched off-notwithstanding any subsequent increase in natural
light levels. Automatic photocell-based controllers face a similar difficulty. It is
straightforward for such systems to prevent the initial use of artificial lights if
levels of natural light measured at internal sensors are high enough to obviate
their use. Once illuminated, however, it is more difficult to decide whether the
underlying level of daylighting is sufficient to enable them to be extinguished.
There are various solutions to this problem.

One apparently attractive approach to the problem is to make
measurements of external lighting levels and to relate these to expected internal
levels. This is far from easy to accomplish. The relationship between internal
and external illuminance is time-dependent on an hourly and seasonal scale.
Thus any attempt to determine a simple ratio which relates the two is unlikely
to be successful. A better approach would be to relate external horizontal and
vertical plane illuminance, in a number of directions, to internal horizontal
plane illuminance [HA88]. The advantage is that vertical plane illuminances
contain directional, and therefore time, information. A means must still be
found, however, to determine the ratios which relate the various components of
vertical plane illuminance to internal conditions. This can be done by
calculation for each space, but there is a better approach, which also allows
such ratios to be time-dependent.

Experience with lumped-parameter thermal models [CR87,CR87a] led
to the development of a computer routine for the real-time identification of the
model parameters from the measured building response to energy inputs
[PE90,PE90a,C092]. There is obvious potential here for application to the
lighting problem just discussed. Given a simple model relating internal
horizontal plane illuminance to the separate components of the external
horizontal and vertical plane illuminance, a similar technique could be used to
identify the unknown parameters as employed in the thermal case. Such an
approach was successfully tried [CO94a] by using a recursive least squares
algorithm. However, although the average error was found to be small, the
largest errors in prediction (which were possibly systematic) occurred during
times of high illuminance, just when any practical controller should be
signalling for the artificial light to be extinguished. It was unclear whether this
poor performance was due to the model or the algorithm used. It was decided
to see if better predictions could be made by using a GA, thus hopefully
lending support to the model. If indeed the GA did perform better, this would

1 26

probably imply it had successfully navigated around one or more local optima
to a better solution.

THE MODEL
The model chosen to relate the internal horizontal plane illuminance I$, at
time t, at a given point in any room m in the building, to the five external
measured vertical and horizontal plane illuminances, 4"", falling on the roof of
the building, was the simple parameterisation,

(6.2.1)

where the bi are the numerical attenuation coefficients which contain
information on, for example, the a t ten~t ing power of the windows and the
reflectivity of internal and external surfaces.

It is worth noting that the model described here does not need any
information on the alignment of the external sensors, nor does it require
knowledge of the orientation of the windows. This will allow any system that is
developed from this model to be largely self-co~iss ion~ng.

Equation (6.2.1) is a somewhat arbitrary p a r ~ e t e ~ s a t i o n of the
problem. Thus the Hrn will not, in general, form a linearly independent set.
However this should not be a problem as there is little need to find a unique set
{b}, but only any set in the parametric space which is capable of representing
the response of the system. This will only hold true if no attempt is made to
place a precise, physical meaning on the individu~ elements of { bf , but instead
to regard them solely as parameters. It is known [CO94a] that the space
contains many local optima and that there are many sets {b} able to provide
solutions of various accuracy.

PARAMETER EXTRACTION
For any particular room, (6.2.1) is of the form

5

x, = C a j x , .
J'1

(6.2.2)

E q ~ t i o n (6.2.2) is the form needed for the classical linear least-squares
problem in which a set of unknown parameters { a) describing an observed

1 27

system is to be determined from k measurements at different times of a set of
observables { x } .

In the linear least-squares problem it is assumed that the k successive
measurements of the set x can be represented by

N
x,, = Cajx j , + E, .

j -1
(6.2.3)

where i = 1,2 ... k; si is an error term, and in this case N = 5.
Although strictly speaking the €j should be Gaussian and serially

uncorrelated, least-squares gives reasonable results with most error
distributions encountered in practice. Specifically, estimates dj of the unknown
parameters uj are chosen to minimise the function sd, where

(6.2.4)

In order to solve (6.2.4) using a GA, the five unknown parameters
represented by the elements of { Ci } were encoded as binary strings of length
10. Using the knowledge gained from reference [CO94a] it was decided to
limit the search range to f100. Thus the search space is discretised to an
accuracy of better than one part in a thousand.

SECULAR TRENDS
In (6.2.4) the sum runs over all values of i , i.e. all the collected data. This has
the advantage of smoothing fluctuations in the data caused by inaccuracies in
the measurements (caused, for example, by the temporary use of blackouts, or
wildlife interfering with the external sensor), thereby stabilising the values
stored in { Ci }, and making the algorithm robust. However, although stability
against fluctuations in the data is a good thing, there is a desire to track secular
trends in the response characteristics of the system: for example, the dirtying of
windows or the construction of a nearby building. This problem can be solved
by various methods [YO74]: for example, by using an exponentially weighted
past averaging method to curtail the memory of the estimation procedure in
least-squares analysis. In systems where the variation of the parameters is
known apriori, more advanced methods can be used, for example the Kalman
filter estimator [KA60]. As very little upriori information of the nature of the
time variation of the parameters has been assumed, a simpler method is

128

adopted. The sum in (6.2.4) is run over a sliding window of fixed width w.
Thus the arrival of a new data point (the p) causes the sum to run from k-w to
k.

As any trends are presumed to be slow, consecutive predictions of { ir }
are likely to be similar. Thus it would seem appropriate not to the reset the GA
to a random initial population upon receipt of a new data point. The initial
population is simply set to the final population from the last run.

APPLICATION
A computer code ILLUMIN was written to apply LGA to the model and
calculate the five unknown parameters that characterise the response of a room.

The data analysed here were recorded at the Physics building of the
University of Exeter during the spring of 1992. Five light-sensitive resistors
were attached to the top and the four vertical faces of a small plastic cube. This
sensor array was housed in a glass enclosure and placed on the roof of the
building. Within a room in the same building a single sensor was set in a
horizontal orientation to measure the internal light level. The time series of
measurements from these sensors was monitored constantly and recorded on a
data logger every ten minutes (Figure 6.2.1). Two consecutive sets were
collected, one for training of the GA and the other for testing the results.

0 25 50 75

Data Points i (recorded at 10 min. intervals)

Figure 6.2.1. A short fraction of the time series of measurements from the five external sensors
(nocturnal periods removed), with each line representing a different sensor.

129

RESULTS
Table 6.2.1 shows the parameter values identified by ILLUMM using the first
seven days‘ data, together with the values found by the recursive method. fr
was found after 24 g e n e ~ t i o ~ for N = 100, P, = 0.005, P, = 0.6, E = I, fitness-
p r o ~ ~ o n ~ selection, and w set to the width of the data set. The mini~sation
of (6.2.4) was recast as a m~imisation of fitness by setting f = A - Q, where
the constant A is large enough to ensure f is positive. The identified values are
similar, but not identical, to those produced by the traditional recursive method
[PLSO].

12.156
0.5328
22.522 21.9
22.262 22. 1
-36.713 -35.8

Table 6.2.1. Ttte fmal (dimensionless) parameter values found by recursive least squares
[CO94a] and by the genetic algorithm, for the data of Figure 6.2.1.

The model represented by (6.2.2) and the fit represented by the
parameter values given in Table 6.2.1 can be tested by using (6.2.2) to generate
a time series of internal light levels, and comparing this with the second
observed series (Figure 6.2.2). The results from the GA show exceptionally
good agreement and a large improvement (particularly at higher light leveb)
over those fkom the classical recursive least-squares algorithm. The final
parameter set is found to predict the internal light level from observed external
levels to within an RMS error of 3% at an i l ~ ~ i n ~ c e of 500 lux. This
improvement implies that the GA has better navigational properties within the
space. In particular, as both solutions are close, not just in terms of the result
but the parameter set itself, it would seem that the GA was able to “jump” over
one or more local optima to find a better solution. However, without an
enumerative search of the space it is impossible to say if the values found
represent the true global optimum.

In practice k extends indefinitely, and thus many totally separated sets
of width w are collected so that the controller can take account of slow secular
trends in the parameters (caused, for example, by seasonal transients in the
reflectivity of the land s ~ o ~ d j n g the building and changes in tree foliage).
This adaptive mode is also suitable for sign~ling excursions in the fitted

130

attenuation parameters beyond pre-determined limits (caused, for example by
the failure of the occupants to open curtains). The method has proved
successful with w = 600 and the GA being re-run without re-initialisation for a
further 24 generations for each subsequent set. An alternative approach might
be to set w = 1 and only allow the algorithm to advance a single generation for
each new data point. However, because of the possibilities of large errors in
individual data points, due in this instance to environmental factors, the
performance of the GA might well be compromised.

This opens the way to integrating such models with lighting controllers.
Such a controller would employ this technique to maintain an updated estimate
of the attenuation factors, { b}, during periods when artificial lights were not in
use. Once the lights were illuminated, the controller would use the model
represented by (6.2.1) to predict natural internal light levels from the
continuing measurements of external light levels f:. If the predicted internal
illuminance exceeded a predetermined threshold value (set by the occupants),
the controller could then call for the artificial lights to be extinguished. Such a
prototype has been used to control the illumination within an office space,

-2000 " ' " " " " " ~
0 100 ZOO 300 400 JW 600 700

Data Points i (recorded at 10 min. intervals)

Figure 6.2.2. Comparison of measured and predicted light levels (nocturnal periods removed):
GA solid line, recursive classical dotted line, and measured dashed line.

131

6.3 WATER NETWORK DESIGN
Such is the scale of infrastructural asset represented by a large water
distribution network that the use of a sub-optimal design can have considerable
cost implications. Unfortunately the complexity of such systems is such that
the identification of the optimal design for a particular network is far from
easy. By developing a GA-based design tool, GANET [SA97], for water
distribution network planning and management, Godfrey Walters and Dragan
Savic are attempting to rapidly identify near-optimal solutions.

In the work described here [SA97], GANET was applied to both
illustrative and real water networks. The following features are exhibited:

0 discrete unknowns;
0 Graycoding;
0 linear rank selection;
0 uniform crossover;
0 a penalty function to handle unfeasible solutions; and
0 the requirement for only a near-optimal, but robust, solution.

The penalty function is particularly interesting because it is generation-
dependent.

INTRODUCTION
The problem of selecting the optimal set of pipe diameters for a network so as
to minimise cost has been shown to be an NP-hard problemt [YA84]. The
simulation of the hydraulic behaviour of a single network itself is a difficult
task, requiring a simultaneous consideration of energy and continuity equations
and the head-loss function [WO93]. The actual network layout is often
determined by such factors as the location of roads, leaving only pipe cost to be
minimised. The solution itself is constrained by requirements of minimum
flows and pressures at various points on the network. The pipe diameters
themselves will not in general be continuous variables, but will be defined by
the range of commercially available sizes.

The objective function, Q, to be minimised is the cost, c, given by a
function of pipe diameters 0, and fixed lengths At only:

' NP hard problems are ones that cannot be solved in polynomial-time. Essentially this means
that the complexity of the problem grows at a faster than polynomial rate as more unknowns
are added, making all but the simplest problems impossible to solve.

132

(6.3.1)

where Np is the total number of pipes in the network.
Sa requires minimising under several constraints. At each junction node

the flow into the junction, gin, and the flow out of the junction, QOul, are
connected through the continuity constraint:

(6.3.2)

where Qe describes the demand (or inflow) at the node. For each loop within
the system energy conservation implies that:

(6.3.3)

where Ep is the energy input by a pump and hf is termed the head-loss. In order
for the network to be usehl a minimum head will be required at each node.
These minim^ heads H,”” , at each node j form a set of constraints, H , such
that:

H, 2 H,”“ ; j = 1 ,..... N, , (6.3.4)

where N, is the total number of nodes.
In order to confirm that any network designed by the GA satisfies these

constraints requires the solution of a hydraulic model of the system. The most
commonly used formula to describe the relationship between pressure drop,
flow rate, pipe length and pipe diameter is the empirical Hazen-Williams
(H-W) relationship [WA84]; in empirical units:

where v is the flow velocity, Rh is the hydraulic radius, Sf the hydraulic
gradient, and b a dimensional coefficient. For a pipe of length A and flow Q the
head loss is given by:

133

where w is another numerical conversion constant.

PREVIOUS SOLUTION TECHNIQUES
It has been suggested [YA84] that only explicit enumeration or an implicit
numeration technique such as dynamic programming can guarantee finding the
optimal solution. The problem is non-linear due to the energy constraints and
further ~mplicated by the requirement to use discrete-sized pipe diameters.
The problem is NP-hard and intractable for even relatively small (Np < 20)
networks. However, as is typical with many real-world problems, the inability
to guarantee an optimal solution is not of prime importance. The goal is the
identification of the lowest-cost system given a realistic amount of time in
which to do the calculation. Due to engineering and other factors which cannot
be Wly described in the model, the final solution ~ p l e m e n t ~ might only in
part be described by the optimum identified by the modelling processes.
Because of such considerations and the limited amount of time available to find
a working solution, it is important that the algorithm identifies near-optimal
solutions rapidly. Even if other methods are able to find better solutions given
enough time, it is the p e ~ o ~ a n ~ of the method within a time constraint
which is important. With a network of only 20 pipes and a set of 10 possible
pipe diameters there are lo2' different possible designs. Clearly only a fraction
of this search space can be examined by any practicable method.

Historically, much of the search space has been eliminated either by
using a simplified approach [GE85,MU92], or by additional human
i n ~ ~ e n t i o n [WA85]. Other approaches include attempts to reduce the probIem
to a sequence of linear subproblems [SH68,FUf90]. This can lead to split pipe
designs, with one or two pipe segments of differing discrete sizes between
nodes. In reality, such segments will need to be replaced by a single diameter
before implementation.

 onl linear p r o g r ~ i n g techniques have been applied to the problem
[EL85,DU90], but have treated pipe diameters as continuous variables and are
limited to problems of small size.

Increasingly, evolutionary inspired programming methods have been
applied to hydraulic networks [G087a,WA93,MU92,WA93a]

GANET: A GA MODEL FOR LEAST-COST PIPE NETWORK DESIGN
The use of a GA to solve a network problem can be illustrated by using
GANET to solve the two-loop network studied initially by Alperovits and
Shamir [AL77] (Figure 6.3.1). In the following, the GA rather than the water

134

Node

1 (source)
2
3
4
5
6
I

engineering aspects will be concentrated upon. In particular, consideration will
focus upon the hunt for a near-optimal solution, the use of Gray coding, the
form of the unknowns, and the penalty function.

Demand (m’lh) Ground level (m) Minimum Acceptable Head
above ground level (m)

- 1 120.0 2 10.00 30
100.0 150.00 30
100 .o 160.00 30
120.0 155.00 30
270.0 150.00 30
330.0 165.00 30
200.0 160.00 30

Figure 6.3.1 The two-loop network used as an example (by permission of ASCE [SA97]).

The network consists of a single source with a 210m head and eight pipes
arranged in two loops. The pipes are assumed to be lkm long with Hazen-
Williams coefficients of 130. The demand and head requirements at each node
are listed in Table 6.3.1. The fourteen commercially available pipe diameters
and their cost per metre are given in Table 6.3.2.

135

Diameter (In.) 1 Cost

1
2
3
4
6
8
10
12
14
16
K3
20
22

(monetary units)
2
5
8
I 1
16
23
32
50
60
90
130
170
3 00

Table 6.3.2. Pipe diameter and cost data [SA97].

VARIABLE FORM
The form of the unknowns in this type of problem is such that the mapping
described in Chapter 2 between integer and reds is not required. Figure 6.3.1
shows that there are eight decisions (the eight unknown pipe d i a m e ~ ~ ~ to be
made about the network. Each one of these decision variables can take one of
the fourteen discrete values listed in Table 6.3.2. The shortest binary string that
can represent fourteen values is of length four. However 24 = 16 not 14. This
illustrates ~ d ~ d a n c y in the coding, with two of the possible strings not
representing any available pipe diameter. The simplistic way around such
redundancy is by assigning the two additional string possibilities to other
(close) pipe diameters. This will mean that in the two cases the same diameter
is represented by more than a single sub-string, whereas the other twelve
diameters are represented by unique sub-strings. Such an approach can have
stochastic implications, although these are unlikely to be major unless the
approach is taken to extremes.

GRAY CODING
The algorithm is based on a Gray binary coding of the decision variables. Such
a coding represents adjacent integers in such a manner that they differ in only
one bit position (see Chapter4). Thus similar physical pipe diameters have
similar string representations. In many problems this adjacency property is

136

more important than one might initially think. For example, if the possible
pipes in Table 6.3.2 are represented by a four-bit simple binary string, then the
following ordered list is generated:

pipe size 4-bit binary pipe diameter (in.)
representation
0000 1
0001 2
0010 3
001 I 4

0101 8

0110 10

0100 6

Moving from a pipe size 3 (4 inches) to size 4 (the next size up) cannot be
achieved by flipping the value of a single bit, but requires three out of the four
bits in the string to change their value, whereas in the Gray coding shown
below, a single bit move gives a single increment in pipe size.

pipe size 4-bit Gray

0 0000
1 0001
2 0011
3 0010

4 OIIO
5 0111
6 0101

representation
pipe diameter (in.)

1
2

3
4

6
8
10

Although by using such a coding, programming the algorithm is made
slightly more difficult, the performance of the algorithm is likely to be
improved. In particular, in the later stages of a run where the solution is near
optimum and mutation is playing an important role, progression will hopefully
become faster. Another advantage is that a particularly simple bit-based hill-
climbing routine can be included as a direct search algorithm after the final
generation has been processed.

THE PENALTY FUNCTION
The objective function, 8, is particularly simple, just the sum of the cost of the
individual pipes. However, each network created must be checked against the

1 37

minimum head requirements at the various nodes. The network solver used by
Waiters and Savic is based on the EPANET [ROS93] computer pro^. This
uses a gradient method [TO871 for solving (6.3.2) and (6.3.3)

Unfeasible solutions, i.e. those which fail to meet (6.3.4) are not
removed from the population. Instead their fitness is degraded. If they are far
from feasible, they are likely to be viewed as "lethals" by the algorithm and fail
to reproduce at next generation. Thus (6.3.1) is replaced by,

where p is a penalty multiplier and the term in braces equals the m ~ i r n ~
violation of the pressure c o ~ ~ ~ n t .

The multiplier is chosen to norrnalise nominal values of penalties to the
same scale as the basic cost of the network. Unfeasible solutions are likely to
carry more information useful to the GA early on in the search than towards the
end, when fine adjustments are being made to the optimal solution. In addition,
in many search spaces there are likely to be more unfeasible solutions during
the early generations. It would therefore seem sensible to devise a penalty term
which becomes increasingly severe with generation. One possibility is:

where K is a constant. When g = G, i.e. the final generation, p should be such
that no unfeasible solution can be better than any feasible solution in the
population.

REPRODUCTION
In an attempt to avoid premature c ~ n v ~ ~ g e n c e and the need for fitness scaling,
rank selection was used with a linear weighting function.

After experimentation with different operators, uniform crossover was
adopted. This also allowed (6.3.1)* which describes a minimisation problem, to
be used directly by simply ranking in reverse order. With P, = 1.0, P,,, was set
to 0.03, or approx~ately lIL, and elitism applied.

138

p 900-
'I
g, 800- -
9 I 700-
s

4
1 600:

'I 5 0 0 -
s'

400 -

AN ILLUSTRATIVE EXAMPLE
Although the network shown in Figure 6.3.1 is of modest scale, it still contains
148, or approximately 1.5x109, possible designs. This has forced all previous
studies to consider split-pipe solutions. Table 6.3.3 lists some typical results,
together with results from GANET. As different authors used differing values
for the head-loss coefficients of the Hazen-Williams formula, the results are
difficult to compare. Two GA-based solutions are presented covering the full
range of published values. The results are particularly promising because of the
use of realistic non-split pipes and because the calculations only took
approximately ten minutes on a personal computer.

Figure 6.3.2 shows a typical plot of the cost of the best solution as a
function of generation. The form is typical: a rapid reduction followed by much
slower progress until the termination condition (G = 500) was reached. The
best solution found was identified after approximately 130 generations. A
population size of 50 was used, implying 250,000 evaluations were performed.
At most, this represents less than 0.017% of the possible pipe combinations and
therefore of the search space.

1 . 1 - 1 ' 1 ' 1 . 1 . 1 . 1

Figure 6.3.2. Evolution of cost with generation (data from [SA97]).

The quality of the solutions identified, and therefore the robustness of
the method, can be gauged by hydraulic simulations of the other results
presented in Table 6.3.3. These simulations were carried out for both the
maximum and minimum values of the conversion constant w in the Hazen-

139

Nods
i

2
3
4
5
6
7

Williams formula used to produce GA results. Table 6.3.3 shows that many of
the results become unfeasible for at least one of these bounds. This is less so of
the GA-based calculations. This indicates that the GA has identified robust
engineering solutions to the problem.

Alperovits and Goulter Kessler Eiger GA GA
Shamir et al. and et al. No. 1 No. 2
[AL771 [GOU86] Shamir [EI94] a)= 10.508 o= 10.903

53.80 54.15 53.09 53.09 53.09 55.86
3 1.89 32.78 29.59" 29.81IF 29.97IF 30.30
44.71 43.91 43.35 43.59 43.18 46.38
3 1.65 3 1.65 29.38IF 29.90" 33.13 31.61
30.83 30.83 29.69" 29.46" 30.1 1 30.50
31.11 31.11 29.59IF 29-34'' 30.13 30.52

[KF,89]

REALNETWORKS
GANET has been applied to the trunk network of both Hanoi [FUJ90] and
New York [SC69]. The Hanoi network consists of 32 nodes and 34 pipes
organised in three loops, with approximately 2 . 9 ~ 1 0 ~ ~ possible designs.

In the case of New York the problem was one of expansion, the goal
being to identify the most economically effective designs for additions to the
pre-existing system of tunnels.

In both cases the use of a GA provided robust solutions in a very
efficient manner.

6.4 GROUND-STATE ENERGY OF THE fJ SPIN GLASS
Spin glasses have been studied for many years by physicists as idealised
representations of the solid state. Such a representation consists of a large
number of spin sites residing on an interconnected lattice (see Figure 6.4.1).
However, interest in such systems goes beyond the world of physics and they
are currently of great interest across a wide range of fields [BI86].
Additionally, computational methods developed to study spin glasses have
been applied to questions in computer science, neurology and the theory of

evolution {ST89,FA94,KI87~. A well known example of this is the design of
artificial neural networks, where the Hopfield net is found to be isomo~hic to
the Ising spin model [R093].

One problem studied within spin glass systems is the d e t e ~ i ~ a t i o n of
the ground state energy for a system of infinite size. The value depends on the
layout of the lattice, its dimension and the configuration of the bonds.
Wanschura, Migowsky and Coley [WA96] have used a genetic algorithm
together with a local search heuristic (as suggested by Sutton [SU94]) to
estimate the ground-state energy of spin glasses of dimension greater than
three. For a lattice of even modest size the d e t e ~ i ~ t i o n represents a severe
compu~tiona~ challenge. The work described here illustrates the following:

long genotypes, L > 3000;
* large number of Boolean u~nowns , M > 3000;
* inclusion of an addition^ local search heuristic (directed m ~ ~ t i o n ~ , and

direct correspondence between the problem-space and the string
representation, negating the need to encode the unknowns,

% - @ - @ - @ - %

@ - - C f 3 - € 3 - @ -63
I l f l l
I I I I I

QD -63 --€3 - @ -63

@ - @ --@ - - @ - @
I I I I I

Figure 6.4. I . A regular spin glass in a minimum energy state showing spin sites (a = +, 1 or
“up”, QD = -, 0 or “down”) and bonds (I and -).

~ ~ ~ ~ 0 ~ ~ ~ ~ 1 0 ~
The model used assumes that jntera~tion only takes place between nearest
neighbours, The number of such neighbours will however depend on the
di~ension D of the system (D = 2 in Figure 6.4.1). The interaction between
any two spins i,k, is described by the coupling constant Jrk which represents the
bond. In general, J,k can take any value; however, here the restriction is that
J = Itl.

141

~ e n ~ l y , the problem is a simple one: given a particular c o ~ ~ a t i o n
of bonds, find the configuration of spins that give the lowest energy (defined
below) to the system. However, unless all the bonds are given the same value
(for example the Ising model), the problem proves far from trivial. In
particular, the following provide difficulties:

1. Frustration: In a typical spin glass system there is usually no spin
configuration that will simultaneously satisfy all of the bonds: a local
minimisation of the energy does not necessarily lead to the global
minimum [TO77,VA77J.

2. High n o n - l ~ e ~ ~ : The energy is a highly nonlinear ~ c t i o n of the spin
configuration, which results in many local energy minima.

3. Large Sonfiguration space: A system of dimension D and lattice length h
has 2L possible configurations and a large number of unknowns to be
found.

These factors imply that an analytical solution is almost impossible, although
mean-field approximations have been proposed. Thus, finding the ground-state
of a spin glass has become a prime testing ground for numerical optimisation
methods. Different methods have been proposed and tested (e.g. simulated
annealing fDA87,R093]).

METHOD
The very large number of possible combinations of spin orientations (2'Oo0 for a
system of dimension 3 and length or side 10) has lent to a certain reluctance
[ST941 amongst workers in the field to tackle systems of higher dimension
using traditional search methods. Recently it has been suggested [SU94] that a
GA might provide a method for estimating the ground-state energy of spin
glass systems of dimension greater than 3. The scale of the problem, combined
with the existence of multiple local optima (at all scales), makes higher-
dime~ional spin glasses ideal subject matter for the testing of the new
heuristic and co~ectionist search models now being applied within the
physical sciences.

The ground state energy is defined as the minimum value of

1 H = - - G J o S i S j ,
2 i j

(6.4.1)

1 42

for a system of spins Si. The bonds Ji/ are regularly oriented in the Ising model
and randomly oriented in the Edwards-Anderson model [ED75,SH75]. The
summation is carried out over nearest neighbour pairs. With randomly oriented
bonds it is not possible to minimise (6.4.1) at each individual spin site and the
value of the ground-state energy will depend on the particular bond
configuration in question.

For the Ising model the ground-state energy Emin has a known value
(per spin) for systems of any dimension D, and any linear size (or length) h,
and is equal to -D (in units of J). For randomly oriented bonds it is believed
that Emin (for infinite A,) has a value of -1.403 f 0.005 for a 2-dimensional
lattice [SU94,SA83] and -1.76 for 3-dimensions [SU94,CE93].

In the case of a spin glass, the encoding of the unknown parameters (S,)
into the genotype is particularly natural. Each individual in the population is a
single complete lattice with I being used to represent an up spin and 0 to
represent a down spin. The concatenated string is then just an ordered binary
list. The configuration of the bonds is randomly assigned at initialisation. The
formation of the next population is simply a matter of cutting pairs of
genotypes at the same, random, point and swapping the severed halves of the
lattices (i.e. single point crossover). Mutation is implemented by the occasional
flipping of digits in the new strings. Selection of individuals to undergo this
processes is inversely proportional to each individual's value of H, i.e.:

1
H

f =-

For small lattices (and no mutation operator), convergence can be
defined as the point where all strings in the population, and therefore all
lattices, are identical. For large lattices such a strict definition of convergence
can lead to long run times. In this work convergence is deemed to have
occurred when at least 40% of the lattices are identical and the best estimation
of Emin has not changed for 100 generations. It was found that convergence
could be reached sooner if each spin-site in each new lattice was visited
"typewriter", fashion with the spin being flipped if this led to a decrease in the
energy of the local system (this is similar, but not identical, to the method used
in [SU94]).

The algorithm was checked by reproducing the most recent estimates
[SU94] of Emin for the king model and for the two- and three-dimensional
Edwards-Anderson model cited above. This also allowed appropriate values to

143

be found for the population size, the crossover rate and the mutation rate to
ensure rapid convergence. A mutation rate of 0.001 was used together with a
pop~ation size of 800 s ~ ~ ~ e o ~ spin systems, with ? ~ % of the lattices
undergoing crossover each generation (i.e. Pc = 0.7).

The GA was run with dimension two to six with L running between five
and twenty and periodic boundary conditions (i.e. any side of the lattice in
Figure 6.4.1 is joined to its opposite). Ten runs of the program, and hence ten
differeat bond configurations, were tried in all cases except the case of D = 6
when only five runs were completed. The results are shown in Figure 6.4.2.
Extrapolation of the results (using linear regression) to infinitely sized systems
allows the estimations Of Emim (h-m) given in Table 6.4.1.

Applying linear regression, once more, to the results given in Table
6.4.1 allows the decrease (in units of J) in Emin (k+.o) with increasing
dimension to be estimated 0.312 f 0.01 16 per extra ensio ion.

-2.054 10.003
-2.347 f 0.016

6 -2.553 I 0.022
Table 6.4.1. Estimated ground state energies, Emf", for infinite systems of varying dimension.

144

0.05 0.10 0.15 0.20 0.25 0.30 0.35

1/L (Vsystem length)

Figure 6.4.2. The calculated ground state energies, together with their standard errors, of the
different systems (lines estimated by linear regression), from [WA96].

6.5 ESTIMATION OF THE OPTICAL PARAMETERS OF LIQUID
CRYSTALS
Liquid crystals are finding an increasing number of applications from watches
to complex displays for portable computers. This utility arises from the ease
and speed with which the molecules within liquid crystals can be made to
reorientate themselves. Interestingly, the precise orientation as a function of
depth is not fully understood for many systems.

The best methods currently used to study this orientation
[YA93,YA93a] rely on laborious hand-fitting of experimental data to a model
of the system. Recent attempts to automate this process using a GA
[MIK97,MIK97a] have proved highly successful. In order for the approach to
work, a series of adaptations to the simple GA are required, and the approach
illustrates much of the wrestling often undergone to produce a successful
application. In particular, the following are considered:

the development of a system to replace a previously human-guided search;
how, starting from a simple problem, a series of sequential adaptations are
made;

145

the use of iinear fitness scaling, bound reduction, fitness function
a ~ p ~ t i o n s , approximate fitness evaluation and a variable mutation rate;
and

0 the inclusion of a traditional search routine to create a hybrid algorithm.

LIQUID CRYSTALS
Liquid crystals exist in a series of states of matter somewhere between the
usual solid and liquid states. They have been investigated since the 1880’s
when Reinitzer and Lehmann first studied esters (benzoate) of cholesterol.
Unlike the usual states of matter, they display a series of “mesophases”, each
of which has distinct structural properties categorised by the degree of
positional and orientational ordering found within them. It is the existence of
these mesophases, and the possibiIi~ of making t r ~ ~ t i o n s between them, that
have allowed liquid crystals to be deployed in a range of technologies.

The characteristic feature which links the many thousands of
substances, both naturally occurring and manmade, that show liquid crystalline
phases is that the molecules are anisotropic: either elongated, cigar-shaped or
disk-like. The anisotropy of the molecules is reflected in i n t e ~ o l e c u l ~ forces.
It is these anisotropic forces which lead to the formation of the numerous
mesophases. The average direction of the principal molecular axis is given by a
unit vector, or director. As the temperature of a liquid crystal is reduced
increasing order is gained. A typical sequence would be:

isotropic, which has no long range positional or orientational order (i.e. liquid like);
5-

nematic, which has no positional order ,but some orientational order;
5-

smecfic, which has both positional and orientational order; and
5-

rryslal, which has high positional and orientational order.

Many phases are chiral, i.e. the director precesses as you move through the
material.

Not only are such molecules physicaliy anisotropic, they are also
d i e l ~ ~ c a l l y and optically anisotropic. As a result, if an electric field is applied
alignment of the molecules will occur. This potential for alignment is at the
heart of such materials being usekl in display technologies. The optical
anisotropy results in differing effective refractive indices for polarisation along,
and perpendicular to, the molecular axis.

146

Sandwiching the liquid crystal as a thin layer between two glass plates
that have rubbed polyamide coating their inner surfaces is enough to physically
align the liquid crystal along the rubbed direction. If the glass plates are first
coated with a transparent conductor then, once assembled, an electric field can
be applied to re-orient the liquid crystal. Furthermore, if this cell is placed
between crossed polarisers the alignment of the liquid crystal will effect the
transmissions of light through the cell, resulting in a simple display system.

In a typical, standard, simple twisted nematic cell, about 1 O p m of liquid
crystal is placed between the plates, with the alignment layers used to impose a
90° twist on the director through the cell. Incident light is then naturally guided
(twisted) as it passes through the cell and is able to exit through the second
polariser. Applying an electric field (of the order of lo6 Vm-') induces dipoles
in the liquid crystal molecules which align in the direction of the field, stopping
the light from emerging from the second polariser. Removing the field returns
the cell to its original state.

If a liquid crystal cell of low order is mechanically deformed,
birefringence colours become visible, but once the deforming force is removed
the molecules flow back to regain their original structure. However, in highly
ordered systems in more solid-like mesophases, the structure of the system is
left permanently deformed, making the device useless as a display. If more
were known about the details of the exact structure within such cells (with and
without defects) progress might then be made on better cell designs. Work by
Mikulin, Coley and Sambles using GAS [MIK97,MIK97a] has been centred on
detailing this structure.

THE HALF-LEAKY GUIDED MODE TECHNIQUE
The principal optical tool for the study of liquid crystals is that of optical
polarising microscopy. Because this technique integrates the optical response
through the entire thickness of the cell, only some weighted average of the
director orientation is obtained. In order to understand the underlying structure
within the cell, a method that can detect details of the spatial variation of the
director is required. The development of optical waveguide techniques, in
particular the use of the Half-Leaky Guided Mode (HLGM) technique by Yang
and Sambles [YA93,YA93a], provides just such a method.

A waveguide consists of a sandwich construction, such as a fibre optic,
where a core of high-index glass is surrounded by glass of lower index. The
difference in the refractive indices can ensure, under the right circumstances,
that the light is contained within the waveguide. The light in such a waveguide
mode follows a zigzag path within the central medium. Many such paths or

147

modes are possible. In many ways these modes are similar to organ-pipe
standing waves. The lowest energy mode that can be excited is the
fundamental, which has averaged electric field distribution nodes near the
waveguide surfaces and a maximum in the centre. Higher energy modes are
harmonics where progressively more half-wavelengths fit into the waveguide.
The maxima for each of these harmonics are seen to occur at different positions
within the waveguide. By building a waveguide consisting of a liquid crystal
layer, the optical excitation of the guided modes which may propagate in the
cell may be used to characterise the liquid crystal optical parameters as a
function of position within the cell. In particular, measuring the angular
dependence of reflectivities which characterise resonant modes provides data,
which when compared to a mathematical model of the cell gives the director
profile through the cell.

In practice, polarised monochromatic laser light is incident (via a
prism) upon the cell which sits on a rotating table. A photodiode detector is
used to detect reflected light, and an oven enclosure is provided to allow the
study of various mesophases. The incident beam can be either p- or s-polarised
and the detector is arranged such that only p- or s-polarised light is detected.
This means that four possible angle-dependent datasets of reflected light can be
collected: Rpp (p-in, p-out); R, (s-in, s-out); Rps (p-in, s-out) and R, (s-in, p-
out). A typical data set contains measurements made at about 1,000 different
angles.

THE SEARCH SPACE
The mathematical model used of the cell is based on Fresnel’s equations of
reflection, and views the cell as a series of discrete optical layers. These layers
correspond either to real physical layers in the non-liquid crystal part of the
cell, or arbitrary sub-layers of the liquid crystal chosen such that any individual
layer is optically thin. The number of sub-layers required to accurately
represent the liquid crystal depends, in part, on the complexity of the liquid
crystal mesophase in question. As the number of sub-layers grows, the
numbers of unknown adjustable parameters (used to describe how the
molecules bend and twist the light) in the model also grows. Attempts to find a
traditional search method capable of adjusting these parameters, so as to
minimise the difference between the experimental data and predictions from
the model have failed because of the complexity of the search space. This has
meant that such fitting is typically carried out by a human-guided search
through the space with intermittent use of a gradient-based search algorithm.
Such a search may take several man-months.

148

The complexity of the search space arises from the large number of
parameters (typically more than 50) which are being adjusted and the existence
of a very large number of local optima throughout the space. This results in
many combinations of parameters leading to similar traces. One way around
this problem is to attempt to fit more than one dataset, i.e. Rpp and Rss at the
same time. This removes many of the degenerate solutions because some often
prove much poorer solutions for the second dataset. Another possibility is to
change the ~ imutha l orientation of the cell relative to the pol~sat ion of the
incident laser beam and collect new data sets. Given enough data it should be
possible both to navigate through the space more effectively and also locate a
definite global optimum. However there are problems with such an approach:
the more data the better the fit, but the bigger the search. This is a general
problem with many experimental datasets. Collecting more data makes the
topology of the modelled search space closer to the physical problem space,
smoothing out many irregularities and, hopefully, allowing the identification of
a global o p t i m ~ , but only at the cost of a much larger problem.

In the HLGM data, if there are Rpp, R,,, Rps and R.Ip sets at 1000 angles
and two azimuthal angles, then the computer model will have to make 4 x 1000
x 2, or 8000 estimations of the reflectivity for a single guess at the ~o~
parameters, making it impossible to consider random or enumerative searches
and difficult for any other method. These problems---of a complex search
space together with computational time constraints-have meant that it is
considered impossible to successfully fit such datasets, and thus impossible to
fully characterise such cells.

The use of a GA on the problem proved highly effective, but not
without difficulty. The first GA applied was very simple indeed. A binary
encoding was used (with 10 bits per ~ o ~ , i.e. I , = 4, i #j) together with
rank order selection (with the best 50% of individuals being selected for
crossover once and only once) and random replacement by children of the
original population members to create the new generation. Mutation was
applied, at a rate of 0.001 per bit per generation, across the complete new
generation, and elitism applied. The fitness measure used to distinguish
between solutions was based on the sum of squares (SOS) difference between
the experimental and modelled data:

where

1 49

i-I

where R is one of the ~flectivities Rpp, R,, Rps or Rsp and p is the theoreti~ly
predicted (i.e, modelled) r e f l e c t i ~ ~ . The sum is carried out over all data
points, or angles, 8. The constant A is selected to be equal to or slightly greater
than any likely value of SOX On the odd occasion when a negative fitness was
produced, the fitness was set equal to zero. The results proved surprisingly
good for a first attempt. Typical initial values of SOS of 200 were reduced to
0.23 within a few hours on a fast personal computer for a nine parameter
nematic (i.e. relatively simple) cell problem and gave parameter values very
close to those found by laborious hand-fitting (an approach which might take a
month for such data if similar bounds were used).

Initially, attempts to study more complex cells with 27 unknowns
failed. When presented with both Rpp and RPs data at two azimuthal angles,
where the m i ~ m ~ value of SOS was known to be approximately lo", only
SOPS of something less than 10 were achieved. In order to make the approach
useful for characterising more complex cells, a series of adaptations were made
to the algorithm.

REDUCING THE STRING LENGTH
The fa improvement tried was to assign different binary word lengths to
different parameters. This very basic adaptation was felt to be sensible because
different parameters were known to affect the goodness of fit to varying
degrees. This is probably crucial for a GA to work effectively with a large
number of ~ o w n s . A simple GA with a string length of several t h o ~ ~ d is
likely to take a very long time to converge within most real search spaces.

Such an approach rapidly reduced (in c 100 generations) the SOS to
less than 1. However, progress past this point proved very slow. One reason
appeared to be that for SOS < 1, many of the strings have bit-patterns very
close to the pattern they would have at the global minimum. At such a point it
becomes very difficult for a GA (with large L) to progress by simple crossover
and mutation to the global optima. In particular, mutation will almost always
be destructive and the search becomes close to looking for a needle in a
haystack. Unfortunately switching to a traditional search mechanism at this
point could still not guarantee locating the global optimum. One approach to
this problem proved to be the sequential use of the GA within a narrowing
search space. This ensures an efficient gridding of the search space by the
binary encoding. A sketch of the method is given in Algorithm 6.5.1.

150

1. Apply GA until the solution no longer improves or for a fixed number of

2. Reduce the size of the search space and re-initialise the GA
3, Repeat from I a set number of times, or until convergence is reached.

generations.

Algorithm 6.5.1. A GA with bound reduction. Note that such an approach is not suitable for
most types of search space and care has to be taken not to exclude regions of the search space
too early.

Step 2 of A l g o r i t ~ 6.5.1, the reduction of the size of the search space,
could take one of many forms. The simplest would be to reduce the width of
the space for each unknown by the same fractional amount, giving a new space
centred upon the current best solution. This could well cause problems. For
example, if the old space had width w,, for parameterj and the new space is to
have width w; = wJf2, then if the current best guess of parameter] is closer than
wJ14 to the upper or lower bound of the original space, then the new space will
include a fragment outside of the range initially specified as the problem space.

At best the inclusion of such a fragment is wasteful, at worst it may
lead to the production of an unfeasible solution. One way around this is not to
allow any new bound to fall outside the initial search space, and if it attempts
to do so, to simply give it the value of the initial bound.

Another question to be answered is the size of the reduction constant n,,
where:

The greater the value of PI, the faster, but the less reliable, the convergence.
One possibility is to make n, dynamic and base its value on the value of a, (or
some other statistic) estimated from a single run or a series of runs of the GA.
This could occasionally allow n, < 1 (i.e. an expansion of the space). If all runs
progress to similar values of a parameter then a greater reduction in the size of
the search space is possibly justifiable. However, extreme caution is required to
make sure that at no point is the true global minimum excluded from the search
(this will not be possible for many search spaces).

Using such an approach on the HLGM data proved very successful,
with the SOS rapidly being reduced toward zero (Figure 6.5.1).

151

Figure 6.5.1. Enhancing the GAS performance by repeated bound reduction (data from
[MIK97a]).

In essence, such bound reduction is a~empting to make the crossover
and mutation operators equally effective across all unknowns, regardless of the
sensitivity of the problem to a particular parameter. Hence for parameters
which initially have little effect on the fitness, the bounds will remain wide; for
the more critical ones the bounds will slowly reduce. There are many functions
for which such an approach is unlikely to be suitable and will flounder.
However, within spaces characteristic of several physical problems where a
solution can be incrementally zoomed in upon it may be successful. An
example of the successful performance of the method on theoretically
produced HLGM data for a liquid crystal in the nematic phase is shown in
Figure 6.5.2.

1 52

7
10-

0 8 -

Q o 6 -

$ 0 4 :

0 2 -

0 0 -

-

, . , , , . ~. , , , , , . , .
0 5 - 5 4 16 5% 60 61 64 66 68

Figure 6.5.2. The performance of the sequential GA on the relatively simple problem of
nematic HLGM data with 27 unknowns: cross = data, line = fit) (data from [MIK97a]).

APPROXIMATE FITNESS FUNCTION EVALUATION
As has been suggested before, the time it takes for a GA-based optimisation
routine to cycle through a generation is likely to be dominated by estimations
of the fitness function, rather than the genetic operators. In the case of the
HLGM data this means that the computing time required is proportional to the
number of data points. However the accuracy of the final answer will, in some
complex way, be a function of the number of data points. So a conflict exists
between speed and accuracy. Or, put another way, given a fixed (or reasonable)
amount of time for the running of the program, how can accuracy be
maximised? Is it best to estimate the fitness function as accurately as possible
and reduce the number of generations processed, or would it be better to use an
approximation to the fitness function (which can be estimated more rapidly)
and process more generations? The answer to this question is obviously
problem-dependent. It is also likely to change during the optimisation process
itself. During the early stages of the search, fitnesses are likely to be low and so
their accurate estimation is unlikely to be important. However, at later stages
navigation of the algorithm through the search space is likely to rely on subtle
differences in the fitness function in different directions of the hyperspace.

153

To try to speed up the search, and thereby ultimately allow for greater
accuracy, the HLGM data was filtered to only leave P! of the data points. As
the run progressed the value of D was increased. For the HLGM data the form
D = D(g) was used; however D = D (f) would possibly be more natural. With
this approach, it was found possible to quarter run times for no loss of
accuracy.

USE OF FITNESS SCALING
As discussed in Chapter 3, GAS can experience problems if the fitness function
spans too little, or too great, a range within any one generation. In particular, if
during the early stages of a run a small sub-population (typically of size = 1)
has individuals with a much greater fitness than the population average then the
s u b - ~ p ~ a t i o n can rapidly grow under ~ t n e s s - p r o p o ~ o n ~ selection to
dominate. This can lead to premature convergence. Conversely, during the later
stages, a large sub-population (typically of sizemiV) may only contain
individuals who have fitnesses approximately equal to the population
maximum. In such a situation, simple fitness-proportional selection can make
little distinction between sub-population members and the progression of the
algorithm is much reduced.

Linear fitness scaling was used on the HLGM problem to control the
expected number of times above-average population members would undergo
selection, compared to an individual of average fitness. A range of values for
the multiplier em was tried and an improvement in convergence noted, Making
c, dynamic, i.e. c, = c,V) or Cm = c&) was not tried.

DIRECT FITNESS FUNCTION ADAPTATION

Unlike many problems where few details of the functional form of the search
space are known prior to optimisation, partial enumerative searches through
~ e o ~ t i c ~ data had p r o d u c ~ insights for some cells, In particular, many of the
unknowns had been found to show sections through the solution vector that
contained large areas of equal fitness nearf. Such a section suggests the
substitution:

f = f" ; m > 1 ,

might be of benefit. Such direct scaling can only be applied if some of the
details offare already known (allowing a sensible choice of m).

154

For the HLGM problem several values of M (m = 6 proving the most
useful) were tried and again improvement in convergence witnessed across
many sets of data. (Similar results could have been realised by making suitable
a d j ~ ~ e n t s to the selection mechanism itself, because fitness ~ c t i o n
adaptation and fitness scaling are two sides of the same coin. However, it is
often more naturally intuitive to adapt the fitness function directly.)

~ U Z ~ Z ~ G THE ~OPULATION
Long periods of only marginal, or no, progress were seen during many funs
with some cells. An attempt to see if the computer time during such periods
could be better spent was made by making the substitution

In essence the population was boiled, whilst main~ining elitism, by
momentarily (typically for three generations) increasing the mutation rate. It
was hoped that not only would this encourage diversity within the population,
but also allow the population to jump over traps in the binary representation
caused, in part, by not implem~nting a Gray coding.

In order for such an approach to effect the diversity of the population
for more than a few generations afier the boiling event, fitness scaling must be
applied simultaneously. Without such scaling most individuals produced by the
operation will be lethals (except the elite member) and fail to be selected for
subsequent gene~tions. This reinforces the idea that additional GA operators
cannot be used in isolation and without regard to those operators (and their
settings) already in use by the ~ g o r i t ~ .

ADDITIONAL DIRECT SEARCH
In line with the comments made in Chapter 1, many problems are likely to
benefit from the inclusion of a traditional search algorithm working in
combination with the GA. In this case this was done by the inclusion of a direct
search method proposed by Jeeves and Hooke [BU84], a l ~ o u g h other methods
could have equally been used. The direct search was applied (to data Erom the
highly complex smectic C* phase with 55 unknowns) after g = G in an attempt
to climb the final hill. This was successful, with the improvement in fitness
being far in excess of that which might have been expected from a similar
number of add~tional ~ c t i o n evaluations within the GA.

The final (and most successful) algorithm used in this work can be
described by the schematic given in Algorithm6.5.2. The algorithm was

155

arrived at by trial and error based on an extensive knowledge of the macro-
details of the search space but has little justi~cation other than it works
extremely well for the problem at hand. If such knowledge had not been
available, then some of the settings within the algorithm might have been
discovered by including them in the search space, using the techniques
described in references [GR86, BR91, DA89 and DA911.

1. Run GA with G = 30, n = 60, P, = 0.5, P, = 0.0016, linear fitness scaling,
fitness-proportional selection with elitism, and using the minimum sub-
string lengths required to maintain accuracy.

2. Boil population, maintaining the elite member.
3. Repeat steps 1 and 2 six times.
4. Reduce the bounds on the parameters to 120% of the spread of values of

5. Repeat from 1 five times.
f- (G = g) obtained from the six GA runs.

6. Apply direct search.
Algorithm 6.5.2. The final algorithm used with the HLGM data.

This algorithm is a long way from LGA and indicates that GAS can
benefit greatly from adaptations that attempt to include additional knowledge
about the search space in question. The success of the method can be gleaned
by the closeness of fit shown in Figure 4.5.3, which shows a fit to the much
more complex smectic C* phase. Figure 6.5.4 shows the liquid crystal
molecular orientations discovered by the GA: the molecules are seen to
gradually twist and tilt through the depth of the crystal.

156

Figure 6.5.3. Fit (line) to experimental smectic C* data (at 21'C) (+) with 55 unknowns (data
from [MIK98]).

94 16

92 -

8 6 , 7 , . , . , . , . , . 6
0.0 0.5 1 .o I S 2.0 2.5 3.0

Depth (run)

Figure 6.5.4. The twisting (e) and tilting (0) of the molecules through the depth of the crystal
discovered by the GA (points connected by 8-splines) [MIK98].

157

6.6 DESIGN OF E ~ R G Y - E ~ c ~ ~ BUDKNGS
Considerable scope exists for reducing the energy consumption of both new
and existing buildings.

Although some reductions in energy use can be achieved by relatively
simple measures, very high levels of performance require the coherent
application of measures which together optimise the performance of the
complete building system. In essence, the designer, who will typically be more
of an architect than a scientist or engineer, is faced with a multi-component
optimisation problem. Most designers feel ill-equipped to tackle such a task
and this is a serious obstacle to them advancing high performance designs. The
application of computerised optimisation techniques to the design of low
energy b ~ l d i ~ s could provide architects with a powerful new design tool.
With the increasing use of graphical packages during other stages of the design
progress such an approach could eventually be included within the design
environment,

Population-based optimisation appears to be ideally suited to providing
the type of support and assistance needed. Most traditional optimisation
t e c ~ q ~ s tbat might be applied sufier f b m the drawback that only a single
result is obtained. Because of the difficulty of including such factors as
aesthetics in the optimisation process (as discussed in Chapter 4), it is likely
that any “optimum” result will be found to be unacceptable.

Given the number of individual attributes that combine to make a single
 build^^ the number of possible realisations, or designs, is very large. Work by
Migowsky [MIG95] showed that a GA can be used to allow a rapid and
efficient searching of this multi-dimensional building space. The method
produces not only the near-global optimum, but ah0 a set of high quality
designs. Each has excellent energy performance, but the set is sufficiently
diverse in physical c h ~ t ~ s t i c s to allow the designer the opportunity to
select on the basis of other i m p o ~ t non-optimised criteria. A GA can thus
form the basis for a powerful and practical buildingdesign aid.

The system allows a designer to select from a range of buildings, all of
which have a predicted energy performance within, say, five percent of the
achievable minimum, the design which best suits hislher other requirements.
”his a ~ ~ h is in line with the established preference of architects to work
from case study and demonstration material. It relieves the designer of the need
to work through the consequences of choosing individual features and of
checking their compatibility with the rest of the building system. The architect

158

is instead offered a selection of optimised, complete, building packages from
which to make a selection.

The complete system has a pair of criteria to be satisfied: first a
numerical measure of fitness which can be used to drive the GA, and second, a
qualitative assessment of the aesthetics of the design to which it is impossible
to attach a numerical estimate. Because this second measure is non-numerical,
Pareto optimisation methods (see 34.4) are not suitable.

Although the energy model used in this work contains only five true
unknowns, it is impossible to describe or visualise a building with only these
parameters. The building must be considered as consisting of a far greater
number of parameters (>loo) which are far from linearly independent. In
essence, the GA is being used to throw up ideas, good ideas, because they are
highly energy efficient, but still only ideas.

In the work described here, which is taken from developments based on
reference IMIG951, the approach is applied to the design of a set of school
classrooms. The work shows an example of a problem with the following
features :

a range of different variable types (binary, integer and real);
the need for a diverse range of approximate solutions together with the
global optimum;
the need for human-based final selection;
a large multimodal space studied by using multiple runs;
a highly non-linearly independent search space;
because of the time taken to evaluate a single design, the need to avoid re-
estimating the fitness of any previously processed design;
remainder stochastic sampling to help reduce the convergence rate; and
use of a generation gap.

INTRODUCTION
Up to fifty percent of the United Kingdom’s consumption of fossil fuels is
related to energy use in buildings. The burning of fossil fuels, and the
associated emission of combustion products, contributes to global warming,
acid rain and other local pollution.

The energy performance of a building is determined by its response as a
complete system to the external environment and the internal environmental
demands of the occupants. The system response, in turn, depends upon the
combination of individual attributes that have been assembled to produce the

building. Thus, for example, a building with large windows, lightweight
structure, elongated form and a powerful heating plant may be more, or less,
energy-successful in the role of a primary school than one with a different mix
of features. Traditio~ly, a solution is proposed on the basis of experience and
on the evidence of the ~rformance of other demo~~at ions. The perfbrmance
is then checked using predictive models, and the design may be adjusted in the
light of the results. By this means, an acceptable solution is arrived at-but
there is no practical way of determining how close to a realistic optimum the
final design is.

Unfortunately for the designer, it is not possible a priori to say which
detailed combination of attributes represents the best solution to a particular
brief. This situation arises because, although the performance of any particular
system can be predicted using a suitable mathematical model, the inverse
probfern of determining the optimum system characteristics from the desired
performance cannot be solved. Optimisation is therefore a process of trial.
Given the number of in~vidual physical ~ ~ b u t e s ~ r n ~ ~ s i n g a single
building, the number of possible combinations which results from varying each
attribute over its range of practical values is enormous. This precludes direct
modelling of the entire building set and indicates that the multi-dimensional
building parameter space has to be searched in a more efficient manner.

The main characteristics of the problem are a large multi-dimensional
space to be searched, requiring an efficient method to converge within a
reasonable time; a multimodal space requiring techniques to avoid convergence
on false minima; a requirement not just to identify a single optimum result, but
to also map the positions of a range of lowest energy solutions throughout the
space.

The method described in reference [MIG95] uses energy predictions for
individual buildings made using the building thermal simulation EXCALIBUR
[CR87a, CR87bJ. However, any other proved thermal modelling approach
(many of which are far more sophisticated) would be suitable.

THERMAL MODELLING
The five-parameter computer model of the thermal response of buildings
developed at Exeter, EXCALIBUR, has been used to aid the design of over
seventy large buildings, from schools to underground military facilities. The
success and continuing utility of this model has codirmed the original
conviction that the essential features of building performance, in terms of
internal temperature evolution and total energy usage, can be adequately
represented by a l ~ ~ - p ~ ~ e t e r dynamic model. This approach results in a

small portable program capable of running quickly on desktop machines. The
model is based on a two time-constant analogue circuit with five adjustable
parameters per heated zone of the building (Figure 6.6.1).

Figure 6.6. I . The electrical R-C analogue of a single EXCALIBUR mne.

The characteristic equations are:

where kt represents a quick response thermal conductance (ventilati~n heat
loss, window losses etc.) between the inside temperature node T, and the
outside temperature To; ki is the thermal conductance between Tj and the mid-
structural temperature T,; ko is the conductance between T, and To; c, is the
effective thermal capacity of the air; cw the thermal capacity of the structure of
the building; and q the heat supply (including metabolic, lighting and other
gains) acting at T,.

These equations are solved analytically and the model building is time-
stepped through a complete season of representative weather data, including

161

angle dependent solar intensity. Realistic occupancy and temperature schedules
can be specified and the user can choose between manual and optimum-start
plant control. The program can accommodate up to ten thermally linked and
separately controlled zones.

The model therefore provides the means whereby reliable predictions of
seasonai energy use can be made for buildings with any reasonable
combination of physical attributes. However, such a model suffers from at least
one major setback: few architects (or building scientists) would be able to
visualise designs in terms of the model’s parameters, V“& (i.e. cw, k, etc.). The
designer is using the much larger set of physical attributes, such as
positions, wall lengths, material types, etc, fiom which the five model
parameters per zone are estimated. Many combinations of physical attributes
will give rise to near identical combinations of model parameters. Many
attributes are highly related-the perimeter and the enclosed volume for
example). The search space is therefore highly m~timodal and chocablock
with non-linearly independent variables. The scale of this problem can be
illustrated by the realisation that the search space may contain in excess of one
hundred unknowns, yet the model contains only five.

THE PROBLEM
The problem at hand is that of finding diverse sets of vectors V‘&’ such that the
energy use of the building over a year is near minimum. The ideal value, Tjer,
of the internal temperature, Ti, during occupancy is set by the designer and the
amount of energy required to maintain this value will depend greatly upon the
design. The building gains “free” heat &om solar input through windows,
metabolic gains from the occupants and gains h m electrical equipment (for
example the I i ~ t ~ g system^. If these gains are i n s ~ ~ c i e n t to provide Tst then
additional input is provided by the heating system. If Ti > Tsef heat is removed
by thc cooling system. In a low energy building, the need to provide such
additional gains must be kept to a minimum. This position is achieved by
“minimising” losses (ko, k,, kr) and “maximising” the use of free gains. The
thermal capacitance of the building fabric is then used to try to time-table the
match between supply and demand. Unfomately, this proves to be a fine
balancing trick. If solar gains (for example) are truly maximised and losses
simultaneously truly minimised, the building will fiequently overheat,
requiring the expenditure of large amounts of cooling energy.

The loss terms (he, ki, kl) and the thermal storage terms (cw, ca) are
formed &om a complex ~mbination of the building components. This list of
components is extensive. A single wall typically contains many layers: external

1 62

brick, air gap, insulation, inner concrete-block layer, and plaster. Both inner
and outer walls have to be considered, as do the floors and the roof.
EXCALIBUR takes a single combination of these components as specified by
the designer, forms a single set of model parameters (kQ, k,, kr, c,, ca), then
combines these with an occupancy schedule and cycles the building through a
year of weather data whilst using the heating and cooling systems to ensure
Ti = Tser during occupied hours.

In the work of Migowsky [MIG95], and subsequent extensions,
EXCALIBUR is combined with a genetic a l g o ~ t ~ to try and generate high-
quality designs with architectural appeal.

The population, P, is manipulated as follows:

1. create initial, random, population of attributes P(yphys) ; i = 1.. .N;
2. reduce physical attributes to model parameters y@ys -+ F”’& ; i = 1.. .N;
3. calculate annual energy use of heating and cooling systems, Ei ; i = 1.. .N;
4. use GA to create new designs PhYs by recombination and mutation using

f= A - E (where A is a positive valued constant) as the selection factor;
5. repeat from 2 until termination criterion is met; and then
6. filter designs considering architect~al appeal.

It should be noted that human judgement is only applied after g= G,
not, as in the example presented in $6.7, where such judgements are the driving
force behind the GA’s selection mechanism.

The success of the GA phase can be gauged from Figure 6.6.2. Here, a
small extension to a primary school is being designed. The annual energy use
of the building rapidly falls with generation, and the final design is seen to be
far better than is typical for such structures.

REPRESENTATION
Each VhYs is represented as a binary string. As some parameters are reds (e.g.
“ ~ u i ~ ~ i n g p e ~ ~ e ~ e r ”) , some are integers and others are ~ o o ~ e ~ fe.g. “double
or single glazing”), the substring length I for each parameter varies greatly.
This implies that the mutation and crossover operators interact with some
parameters more frequently than others. If I is chosen to truthfully reflect the
required accuracy of each parameter, this probably presents no problem
because the degree of int~raction is then propo~ional to the required accuracy.
However if each I is not selected with care, then the algorithm will spend a
considerable time processing irrelevant information. For example, if the wall

163

thickness is only specified to the nearest cm, then there is little need to specify
the building perimeter to the nearest mm. In reality, the correct set of sub-string
lengths can only be identified given enough experience of the likely impact of
each unknown on E, and knowledge of the commercially available sizes of
constructional components.

POPULATION DIVERSITY
As the desire is to find an extensive range of possible designs, not just the
optimum, population diversity must be maintained throughout the run. The
algorithm used is a simple GA and therefore does not include niche and
speciation methods; thus the selection and mutation operators must be relied
upon to perform this role.

Selection is via remainder stochastic sampling (which places a limit on
the number of times any individual can be selected) with a generation gap (see
Chapter 4). Mutation is applied only to the children, which replace at random
individuals in the original population. This approach is found to simultaneously
maintain diversity and remove low quality designs rapidly. A population size
of 50 and a generation gap of 0.8 are used.

AVOIDING DUPLICATE FITNESS EVALUATION
The evaluation of E, for all i is time consuming, especially on the type of
machine to which a building designer might be expected to have access. Thus it
is crucial that designs are not re-evaluated. This is simple to achieve: a list of
all unique designs, together with their respective value of E, is kept and new
designs checked against this list. If a match is found then the corresponding
value of E is simply assigned to the new individual.

This list-keeping process, or something similar, is probably worth
including in many scientific or engineering-based applications of GAS. Only
for the simplest of problems (typical of those used as test functions) is it likely
that searching the list will take longer than a single fitness evaluation. By
searching the list in reverse order (assuming new designs are placed in at the
bottom) and not searching for any member which has not undergone crossover
or mutation (because its fitness will not have changed), efficiency can be
further improved. For long lists, it may prove desirable to only keep and search
designs from relatively recent generations.

Although a reasonable level of genetic diversity is maintained during
early stages of the run, Figure 6.6.2 shows that this diversity is not maintained
throughout the run. Here the number of matches that were found between the
current population and the ordered list is being plotted. (The algorithm never

164

truly converges, which would be indicated by fifty (i.e. N) matches in any
generation, because of the relatively high levels of mutation used.) It is thus
clear that if this work is to be continued, additional measures will have to be
taken to increase the degree of exploration in the go^^ during these later
stages-possibly by never allowing two individuals within the current
generation to be identical.

40 -I

t t f t
0 so 100 150 200

8

Figure 6.6.2. The number of matches (out of fifty) found between the current population and
the ordered list of designs. Convergence {s~gnation) is avoided by the use of relatively high
mutation rates.

THE ADDITION OF ARCHITECTURAL APPEAL
The problem presented is a multicriteria one, requiring, at least, the
mi~misation of energy use and the m~imisation of architectural appeal, No
attempt has been made to include this appeal in the selection algorithm, and it
is not clear-even using Pareto optimality-how this could be achieved
without greatly reducing the number of processed designs.

As an alternative to even a~empting this, ~igowsky uses a filtered
stacked histogram to present the best designs. The list of all designs
(Figure 6.6.3) is initially filtered to remove all with a value of E more than v%
greater than the best. (Typically v = 5 to lo%.) By using S>> 1 the regions
around many local optima are included in this set (see $4.2). A stacked
histogram of these unique designs is then presented on Screen for the designer

165

to study (see Figure 6.6.4 for a fragment). A select few of these designs can
then be worked up to sketches (Figure 6.6.5).

The two designs shown in Figure 6.6.5 have relatively similar annual
energy usage, but are of very different design. One uses high levels of
insulation to reduce losses, the other maximises solar gains. Interestingly,
combining these two design philosophies within a single building does not
produce a high performing structure because it would overheat on sunny days
(and thus have reduced fitness). The method is highly successful, not only as a
method of obtaining high performing designs, but equally importantly,
catalysing the design process by showing that similar environmental
performance can be achieved in a wide variety of ways.

400000-

c

i- :-
ZOOOOO-

IMXHW) -
1 I I I

0 SO0 loo0 IS00
Position in list

Figure 6.6.3. Results of designing a small low-energy extension to a primary school. The
annual energy use of the designs is seen to reduce as the generations pass. The typical UK
average enorgy use for such a building is shown for comparison [EE94].

166

20 40 Design no. 60 80

Figure 6.6.4. A fragment of the stacked histogram (taken from the data of Figure 6.6.3). The
filtered designs are presented as a series of histograms, one histogram per building attribute.
Individual designs can be identified by vertically connecting the histograms. The complete
histogram contains many more attributes and all the designs in the filtered set.

1 67

(b)
Figure 6.6.5. A pair of designs sketched from the later generations of a run [from MIG951. The
two designs have relatively similar annual energy usage, but are of very different design. (a)
achieves high performance by minimising losses, (b) by maximising solar gains,

168

6.7 HUMAN JUDGEMENT AS THE FITNESS FUNCTION

Successful product design not only requires finding good engineering solutions
to the problem at hand, but often also finding aesthetically pleasing solutions to
customers' desires. The aesthetics of the solution can be extremely important
regardless of the size, or cost, of the product-from children's toys to office
blocks.

Aesthetic search spaces are typically large, complex and frequently
shaped by individual, age, gender and cultural considerations [CR84,C092b,
SH831. Often the designers' preferences will be very different from those for
whom products are being designed. The work described here (taken from
[C097a]) represents one attempt to see how successfully a genetic algorithm
could be in providing the designer with additional information. In particular,
the question of whether a GA, when applied to objects encoded in a
particularly simple manner (and driven by decisions made by a subject on the
aesthetics of a potential product), would converge at a useful rate and in the
direction of improving subject preference is addressed. Because of the many
random processes operating within the algorithm, combined with the limited
number of evaluations a human operator can be asked to perform, such an
algorithm might well perform badly.

The problem demonstrates:

0 a GA being driven by human judgement;
0 a problem where identical genotypes may be given non-identical values of

fitness; and
0 a system where relatively few fitness evaluations are feasible.

COMPUTER AIDED DESIGN
Computer aided design is becoming more common. The design environment is
typically able to present the designer with a realistic view of the item and allow
numerical analysis to be carried out to check the technical feasibility and cost
of the design. The design environment may also allow optimisation
calculations to be carried out. The optimisation itself will typically be for
maximum reliability or minimum cost [AR89].

Any aesthetic optimisation routine within such an environment would
have to contain a description of the aesthetic ideals of the target audience. This
information is often gleaned from the preferences of a market-researched
subgroup of this audience. A frequently-employed technique is to show a
number of potential designs to a series of subjects and assess the impact of the
designs upon the subjects. If these designs are actual mock-ups they will be

169

very limited in number and there is the danger that one is only ascertaining the
subjects' views of what the design team considers worthwhile; thus the subject,
and hence the potential customer, is not being truly involved in the design
process.

Computer aided design offers a way out of this trap. The computer can
offer an almost unlimited number of designs to the subject as visualisations on
the computer's screen. Such a design system can refuse to allow designs that
are unsafe, unfeasible or too costly to implement within the production
environment. However, the question remains of how the design tool and the
subject should guide each other through what may be a large search space.

THE GA DESIGN STRATEGY
Several authors have attempted to use a GA with subjective evaluation,
including work on dam design [FU93], facial recognition [CA91] and colour
preference [HE94]. Coley and Winters [CO97a] decided to estimate the
efficacy of the GA for searching an aesthetic, but realistic, commercial product
space.

It was decided to choose a realistic product in which the aesthetic
aspects of the design would be considered paramount, and one with few
engineering constraints. The chosen product was a lm square wall-hanging
containing simple geometric designs. Shapes were ascribed one of 16 basic
colours. Only isosceles triangles, rectangles, ellipses and straight lines were
considered for these basic shapes. A maximum of 20 shapes (or objects) were
present in any one design. The designs were processed by the GA as
concatenated binary strings representing the positions of comers, lengths and
the colours of the separate objects. Although simple, the designs were realistic
and could be considered reminiscent of some of the designs contained within
paintings by Carla Prina, Josef Albers, Piet Mondrian and Jean Gorin [SE62].

The optimisation process was very simple:

1.

2.
3.

4.

the computer generated an initial random population of 32 designs
together with their string representations;
the subject viewed each design and scored each one for appeal;
the GA was used to produce new novel designs by crossover and
mutation of the strings; and
the process was repeated from step 2 for a total of twenty generations.

Figures 6.7.l(a) to 6.7.l(f) (and the jacket cover) show a series of typical
designs.

170

171

Figure 6.7.I(a-f). Black and white renditions of a selection of designs from the study [by
permission ftom CO97al.

The images were produced by decoding a binary string, U, of length
940 bits, consisting of a series of 20 binary substrings, ui, representing each

172

object within the image. Each object itself is defined by eight parameters, pii,
which describe the type of object, its position and its colour:

U=u,@u,$u ,@ @ u20

and

(The operator @ implies concatenation.) The precise meaning of the parameters
depend on the object in question, as described in Tables 6.7.1 and 6.7.2. For
example, the substring

UI = OIOlOI 001001 I0001 11 I10000101 101 I0001 01 101000011

= 01 @ 01010010 @ 01100011 @ 11100001 @ 01101100 @ 01011010
@ 0001 @ 1.

Therefore (using Tables 6.7.1 and 6.7.2):

Thus the computer draws a visible rectangle with the above attributes as the
first object (uI). Nineteen further objects (242 2420) are then overlaid to
complete the image.

The GA used was Goldberg's SGA [GO891 coded in C. Although the
binary search space consists of 2940 (= 2 ~ 1 0 ' ~) possibilities, not all of these are
distinguishable, either because of large opaque objects covering other objects

173

Object
line
rectangle
ellipse
triangle

coded to the left of them on the string, or because not all combina~ions decode
differently (Table 6.7.2).

PI Pt P3 P4 Ps P6 P7 Pa
objecttype XI YI ~2 ~2 width colour visible
objecttype XI yI x2 yz fill colour visible
objecttype XI yI r2 r2 fill colour visible
objecttype XI YI x2 height fill colour visible

Term
visible
colour
width
fill

height
-%Y1

Xl* Y2
rl+ ri

type

Mkantna Integer Rmge Coding Bflr
whether the object is to be drawn 0 or 1 draw if I 1
colour of the object 0 to 15 4
thickness of a straight line 0-255 INT(widW20) 8
whether a rectangle or ellipse is 0-255 opaque if > 128 8
opaque
height of triangle 0-255 screen co-ordinates 8
position of the bottom left comer 0-255 screen co-ordinates 8
or centre of ellipse
position of the top right corner 0-255 screen co-ordinates 8
length of major and minor axes of 0-255 screen co-ordinates 8
ellipse
whether line, rectangle, elfipse or 0-3 *tine, I=rectangle, 2
triangle 2=ellipse, 3=triangIe

Table 6.7.2. Parameter encodings used in Table 6.7.1. Triangles always have a base parallel to
the bottom of the screen. Screen co-ordinates run from 0 to 255 in both x- and y-directions. If
x2 <XI, or& < y ~ , then the terms left and right, or top and bottom, reverse [CO97a].

Fitness-proportional selection was used together with single point
crossover and mutation to create new novel images. The GA is, in essence,
providing a mechanism for the melding of i ~ o ~ a t i o n within the images,
biased by the selection procedure toward those that receive higher scores.
However, being a stochastic algorithm, there is no guarantee that this
information will be preserved in the next generation. Mutation, for example,
could force radical changes to an image.

174

SUBJECT TESTING
The design strategy was tested on 51 individuals (all undergraduates from
various University departments). The subjects were asked to score the designs
with a number between 0 and 9, the higher numbers being awarded to the
most-liked designs. The fitness function (or selection pressure) applied within
the GA was simply the score divided by 10. A crossover probability of 0.6 was
used with a mutation probability of 0.06. These parameters were chosen to
speed the search and were estimated by trial and error using additional small
groups of other subjects. Each subject viewed 20 generations of 36 images, or
720 images in total. In total the test group viewed 36,720 images.

Figure 6.7.2 shows the score of the most-liked design (different for
each subject) as a function of generation, averaged over all subjects. The
subjects are seen to score later generations of designs higher than earlier ones.
This indicates the GA is moving towards higher scoring areas of the search
space at an observable rate. The linear overall form of the curve also indicates
that the strategy is managing to avoid becoming lost in local minima-possibly
not surprising, as so few generations are processed.

7.5 ,

% 7.0 .

c ! 6.5 1
2

6.0 .
j

5.5 I I I I I

0 5 10 I 5 20

Generation

7.5 -

% 7.0 -

c ! 6.5 1
2

6.0 -

5.5 I I I I I

0 5 10 I 5 20

Generation

Figure 6.7.2. Score of the best design as a function of generation averaged over all subjects
[CO97a].

As the scoring scale used was not absolute, it was possible that subjects
were simply ranking the later images better, regardless of content. It was also
possible, in fact likely, that they were not always consistent in their scoring.

175

16

14

I2

10

8 -

6 -

4 -

2 ,

Some might have been scoring against some ideal design, other simply scoring
against the other images they had recently seen on the screen. An attempt was
made to partially circumvent these problems by making use of a simple rank-
ordering method. At the end of the test, the subjects were shown a smaller
version of their most-liked design fiom each generation (simultaneously and
randomly ordered on a single screen) and asked to rank-order them.
Figure 6.7.3 shows the correlation of generation and rank-order averaged over
all the subjects. This clearly shows that the images created later are preferred.

-
-

-
-

I I I I I

lsrt liked

i!

mort liked

Figure 6.7.3. Final rank as a function of generation averaged over all subjects [C097a].

One advantage of the GA is that the string representations lead
themselves naturally to a (simplistic) defrnition of similarity and convergence.
By carrying out bit-wise comparisons of the strings, across all subjects, an
approximate numeric estimate of the similarity of the pictures can be made.
Without a string representation, this would have to be performed on a
qualitative visual basis by the researcher and is thus likely to be researcher-
dependent.

The results indicate that a GA-based search can be efficient in
searching for subjects' preferences of a real aesthetic product. The value placed
on designs is found to rise at a usefbl rate with generation, and convergence is
seen within the bit patterns used to represent the product. However, it is not yet
clear how successful such an approach might be with other, more complex,
objects.

176

6.8 MULTI-OFUECTIVE NETWORK REHABILITATION BY MESSY GA
The refurbishment of ageing water systems requires decisions to be made as to
how best to spend a limited budget in order to maximise the level of
improvement. The pre-existing network is likely to be large, complex and
costly, implying that any reasonable budget will only be able to make
alterations to a small number of system components. This in turn implies that
most technically feasible adjustments will not be financially feasible. Thus the
population of truly feasible solutions is likely to be small in comparison to the
size of the search space. Such a search space, with most of the space counting
as unfeasible, creates problems for any optimisation routine, including a
genetic algorithm.

Godfrey Walters and Dragan Savic, working together with D. Halhal
and D. Ouazar, have formulated a structured messy genetic algorithm (SMGA)
which is p~icularly effective in avoiding unfeasible parts of such a space. The
task examined is c~mplicated by being a mu~ti-objecti~e opti~isation prob~em
requiring two factors to be simul~eously, but independently, optimised.

In the work described here, which is taken from [HA97], an SMGA is
applied to both an illustrative network and a real network of 167 pipes. The
work shows an example of a GA and a problem with the following features:

0 a sparse problem space;
0 use of a messy algorithm [Go89a];
0 a multi-objective problem; and
0 fitness sharing.

INTRODU~TION
Ageing water networks can suffer problems of water loss and reduced carrying
capacity. Alongside this can run increasing consumer demand. This
combination may lead to consumer discontent. However, due to budgetary and
other constraints, replacement of the complete network will be unfeasible,
unnecessary and possibly undesirable for other reasons. It is likely that funds
will only be available to replace, rehabilitate, duplicate or repair a small
number of the system components-pumps, pipes, tanks, etc.-at any one
time. Hence a decision problem arises of trying to maximise the benefits of
changes whilst remaining within a budgetary constraint. The optirnisation
problem itself is one of choosing a small number of possible designs from a
much larger set of tec~icaIly feasible ones.

Given a commercial operation, competition for h d s means that
designs which do not necessarily maximise benefits, but manage substantial

177

improvements, may need to be considered. This implies a multiobjective
problem, where a single fitness h c t i o n cannot be formed. In this instance, the
cost of the design must be minimised, while simultaneously the benefit of the
design must be maximised. If an exact financial value could be placed upon all
benefits then the problem could be collapsed to a single fitness function.
However, as discussed in Chapter 4, this is often not possible.

There have been several attempts at applying algorithmic methods to
network rehabilitation problems [W087,KI94a,MU94]. Of particular relevance
is the work of Murphy and Simpson [MU921 who used a genetic algorithm to
find the optimal solution for a particular network. These attempts have all been
based on small networks with the single objective of minimising cost subject to
performance constraints, such as minimum pressure for consumers. The
problem to be studied here is one of maximising benefit subject to limits on
funding.

THE PROBLEM
Given a particular, pre-existing, network the desire is to invest some or all of a
limited budget in order to enhance the performance of the network. In the
model considered, performance may be enhanced by:

1.

2.

3.
4.

increasing the hydraulic capacity of the network by cleaning, relining,
duplicating or replacing existing pipes;
increasing the physical integrity of the network by replacing structurally
weak pipes;
increasing system flexibility by adding additional pipe links; and
improving water quality by removing or relining old pipes.

The problem can be stated as:

maximise Benefit(i)

minimise Cost(i)l

Cost I Budget

and

subject to

where i represents a particular solution.
In order to allow the GA to be able to preferentially select one solution

over another, Benefit must be able to assume a numerical value. This is done by
forming a weighted sum based on the four factors hydraulic capacity, integrity,

178

flexibility and quality described above. Thus the Benefit of solution i is defined
as:

Bene$t(i) = whBh(i) + wpBp(i) + w, B, (i) + w,,Bq((i) , (6.8.1)

where Bh, Bp, BA and By describe the hydraulic, physical, flexibility and quality
benefits respectively and Wh, wp, WJ and wg their respective weights (which are
user defined).

Each of the four benefits are defined as follows (for more details see
[HA97]):

0 The hydraulic benefit, Bh, is defined as the reduction of the level of
deficiency (caused by pressure shortfalls) allowed by adoption of a
particular strategy. (The nodal pressures are estimated by use of the steady-
state hydraulic network solver EPANET [ROS93].)
Improvements to the structural condition of the network pipes reduce future
repair costs, the sum of which gives Bp.
The laying of duplicate pipes in parallel with pre-existing ones increases
the flexibility of the system, with benefit Bj, proportional to the number of
pipes replaced.
A pipe with a low Hazen-Williams (HW) factor is probably suffering from
corrosion, tuberculation or scaling-all of which can help the development
of micro-organisms or lead to discoloured water. The replacement of such
pipes can therefore lead to a water quality benefit, By, proportional to the
length of replaced pipe.

0

0

0

THE STRUCTURED MESSY GENETIC ALGORITHM (SMGA) APPROACH
Messy GAS are an attempt to allow for the progressive growth in the
complexity of a solution by allowing the chromosome to increase in length
with time. This is achieved by repetitive application of a GA and the
concatenation of strings representing partial solutions. In this respect the
method imitates long-term evolution of single-cell organisms to complex life-
forms such as ourselves. It is an extremely interesting approach and allows
more traditional GAS to be seen as simple adapting algorithms that in essence
fine tune the fitness of pre-existing species. With a messy GA these species
have first to be built before they are adapted to their environment. The SMGA
introduced by Halhal, Walters, Ouazar and Savic [HA971 proceeds as follows:

179

SteD 1 Enumerate single-variable decisions on the network-for
example, “replace pipe 89”. The point to note is that only a single decision is
being made. This implies that a great number (if not all) of such decisions are
feasible, in that their cost will be less than the budget. This is one of the
strengths of the approach for the type of problem considered here: right fiom
the start feasible solutions are processed. In a sparse search space, with few
feasible solutions, this would not be so for a more typical GA.

Because population members need to describe not only the value of a
variable but also which variable is being described, a coding scheme is
required such that an element both identifies the design variable and its value.
This first stage is then the enumeration of all possible single elements.

Ster, 2 Filter the population to remove less well performing individuals. The
remaining individuals are retained to provide subsequent populations with high
performing elemental building blocks.

SteD 3 Increase the complexity of population members by adding a single
elemental building block to each member (concatenation).

Step4 Use this population as the initial population of a GA and run the
algorithm until a termination criterion is met.

SteD5 Repeat from step 3, unless either the strings have reached a
predetermined length, or no improvement to the solution is seen for a set
number of successive concatenation steps.

As a string within the SMGA generally only contains a small number of
possible decision variables, its length is typically much less than that required
to contain all decision variables. This is despite the need to hold information
about the variable values as well as a tag to identify which variables are being
described. Not only does this improve the use of computer memory, but more
importantly, it partially circumvents the slow progress made by standard GAS
containing very long strings.

If typically only p network arcs (pipes) can be considered out of a total
of q arcs because of budgetary constraints, then if each fragment can take n
alternative solutions, the search space contains:

(6.8.2)

180

solutions [HA97]; whereas it contains

np (6.8.3)

solutions for a standard GA. If q = 60, p = 6, and n = 4, then (6.8.2) implies
2 . 7 ~ 1 0 ' ~ possibilities, a seemingly large space, until it is realised that (6.8.3)
implies 1 . ~ x I O ~ ~ possibilities.

USING THE SMGA FOR MULTIOBJECTIVE OPTIMISATION
Given more than one objective, it is impossible to form a simple fitness
function of the type used in earlier examples. One way around this would be to
use the second objective as a constraint-for example, by hunting for solutions
which provide a set minimum benefit. Another possibility would be to factor
benefits into the cost objective, by assigning benefit a financial cost. Neither of
these approaches is entirely satisfactory.

True multi-objective optimisation treats each objective separately. This
implies that each solution is not a single point in the fitness landscape, but a
vector with one dimension for each objective. The Pareto optimal set of such
vectors are those solutions which are undominated by any other solutions (see
Chapter4). For such solutions it is impossible to improve one objective
without simultaneously making one or more of the other objectives worse.

It is relatively easy to use the idea of a Pareto optimal set to drive
selection within a GA. Typically, this is achieved by finding all current
members of the Pareto optimal set within the population, assigning them the
highest rank and removing them from the population-thus creating a new
Pareto optimal set (or fionr) which is assigned the next highest rank. This
process is repeated until all members of the population are ranked. Rank-order
selection is then used (together with crossover and mutation) to build the next
generation. Although simple in outline, caution is required to avoid
convergence to a single solution.

As stressed by Halhal et al. [HA97], the SMGA is naturally suited to
multiobjective problems because it ensures a good spread of different solutions
across the range of feasible costs. A standard GA is unlikely to do this because,
within a sparse solution space, many (if not most) of the members of early
generations will represent unfeasible solutions.

For the water rehabilitation problem, the fitness f; of each individual i
was assigned through:

181

1 A = - .

FITNESS SHARING
In order to preserve a reasone de spread of solutions along each Pareto optimr
front Hdh& et al. [HA971 included fitness sharing [GOS7,GO89,~E89] (see
Chapter4) in the algorithm. This reduces the level of competition between
similarly ranked, but distant, population members. Niche formation and
speciation are achieved by dividing the budget into a series of intervals or
classes. Each individual is assigned to the particular interval that includes the
cost of the particular solution.

A class is deemedJirll if it contains Nin individuals, where n is the
number of classes. The shared of individual i is given by

where N&) is the number of individuals in classj. The value of n is, itself, a
function of generation.

SMGA PARAMETERS
An integer coding is used. As discussed above, both the decision and the
decision variable must be held in the string. This is achieved by using a
substring to represent all the decision variables (the arc numbers) and a second
substring to hold the decisions (what is done to each arc). For example, a
possible string might be:

amsubsfring

2 1 5 3 6 1 8 2 4 2
- -

decision-subs fring

During the concatenation phase (step 3, above) a single digit (decision)
is added to each substring in the population. Highly performing digits from the
initid population are used unless this causes a duplicate, in which case a
r ~ d o ~ digit is used. The strings (now of identical length) then undergo
processing via a conventional GA.

182

N is set to 40, with n (g = 0) set to 5 . Two-point crossover is applied
separately to each substring, with child arc-substring being checked to ensure
no arcs are duplicated. Any duplications are again replaced by arcs chosen at
random.

APPLICATIONS
The SMGA was applied to the network depicted in Figure 6.8.1. The network
consists of 15 pipes, nine nodes and seven loops. There are eight possible
decisions for each pipe: “leave as is”; “clean and line”; “duplicate” (with one
of four set diameters); “renew with same diameter”; or “renew with next
largest diameter”. The available fund is assumed to be 2,000,000.

6

1
node

Figure 6.8.1. The test network (node numbers shown in italics, pipes in roman) [HA97].

The algorithm was applied with and without fitness sharing for a total
of 5,000 objective function evaluations, three times. Fitness sharing was found
to produce a slightly more even spread of solutions across the range of possible
costs. The performance of SMGA (with sharing) was compared with an
integer-coded standard GA (with sharing) where the string length equalled the
number of arcs (pipes) in the network and the integer value in each string
position defined the action to be taken for the corresponding arc. The best
solutions discovered in each generation with costs less than 1.1 times the

183

1400 -
1200 -
1000 -
800 -

budget arc shown in Figure6.8.2. SMGA produced a slightly better set of
nondominated solutions. Table 6.8.1 lists a selection of the nondominated
solutions (see 54.4) identified by SMGA showing which arcs (pipes) should be
replaced and which left.

o+ “1 0 : o

0

400 -
200 -

0-

-200
5

+

0 0

0

f Fund - 2 million !

I . , . , .

Figure 6.8.2. Best solutions f?om each generation; + SMGA, 0 standard-GA [HA97].

Arc

80
150
80
80
80
80
80
80
80
80
80
80

Cost

1940000
1911000
1780000
1755000
1585000
1435000
138oooO
1367500
1255000
116OOOO
93oooo
750000

Arc Arc

80 150
80 150
80 150
80 150
80 80
80 150
80 150
80 100
80 80
80 150
80 150
80 80

1 2 3
Benefit I Min.

1428.96
1417.67
1414.81
1388.83
1369.52
1311.64
1305.26
1260.33
1125.96
1030.88
848.15

Pressure &
10.28
5.85
3.82
1.00

-2.47
-7.06

-15.00
-27.38
-13.54
-30.02
-60.56

L
L
L

L

Arc
15

40@
200p

L
200p

L
L

3OOp
L
L

3OOp
200p

-

2aop

Table 6.8.1. Nondominated solutions for the test network, including new pipe diameters (p add
parallel pipe of diameter shown, L leave) [HA97].

184

As a second, and more realistic, example Halhal et. al. applied the
SMGA to the network shown in Figure6.8.3 and really demonstrated the
advantages of the method. This is the water distribution of a real town of
50,000 inhabitants in Morocco. It contains 167 pipes and 115 nodes. The total
number of possible solutions (assuming an unlimited string length is
6.55~10'~' . Restricting the string length to a more realistic 40 digits still
implies 8 . 6 7 ~ 1 0 ~ ~ possible solutions. Halhal et. al. suggest a complete
enumeration would take 2 . 7 5 ~ 1 0 ~ ~ centuries of CPU time at 1,000 objective
function evaluations per second.

Figure 6.8.3. The real network (by permission of ASCE [HA97]).

The benefits of the SMGA over a standard GA of fixed string length
were gauged by carrying out three independent runs of each. 25,000 objective
function evaluations were allowed in each case. The standard GA (Goldberg's
SGA [G089]) failed to converge to a design with costs less than the budget.
Even the use of a high penalty function, in order to reduce the chance of high-
cost solutions being reproduced, was only a partial improvement. It still took
7,000 objective function evaluations for the standard GA to converge to a
feasible solution. Furthermore, subpopulations in only four out of eight cost

185

classes were formed. In contrast, the SMGA formed subpopulations in all cost
classes fiom the b e g i ~ n g (Figure 6.8.4).

240 -
220 -
200 -
180-

++ 4 o j

+:+ ++++ 9,
+ B

+ +
I

+ +

I40 -
120-

Cost (millions)

+ + +
+

Figure 6.8.4. Best solutions of each generation for the SMGA (+) and a standard GA (0) (data
&om [HA971).

J

loo-

80 -
++ + Fund = 2.5 million ’

\I

187

APPENDIX A. ELECTRONIC- AND PAPER-BASED
RESOURCES

The are many electronic- and paper-based resources available about GAS. The
internet is also an ideal way of finding those that have tried to solve similar
problems, or used similar methods.

ELECTRONIC-BASED RESOURCES

The following two world-wide web sites contain a multitude of information,
software and pointers to other GA sites:

http://alife.santafe.edu

http://www,aic.nrl.navy.mil/galist

A FORTRAN GA code is available from David Carroll’s web site:

http://www .staff.uiuc.edd-carroll/ga.html

PAPER-BASED RESOURCES

Apart from the text books mentioned at the beginning of Chapter 6, there are
several other general references which contain a high density of information: in
particular, the series Foundations of Genetic Algorithms and the Proceedings
of the International Conference on Genetic Algorithms:

Grefenstette, J. J, (Ed.), Proceedings of an International Conference on Genetic
Algorithms and their Applications, Morgan Kaufmann, 1985.

Grefenstette, J.J, (Ed.), Genetic Algorithms and their Applications:
Proceedings of the Second International Conference on Genetic Algorithms,
Erlbaum, 1987.

Schaffer, J.D., (Ed.), Proceedings of the Third International Conference on
Genetic Algorithms, Morgan Kaufmann, 1989.

188

Belew, R.K. and Booker, L.B., (Eds.), Proceedings of the Fourth International
Conference on Genetic Algorithms, Morgan Kaufmann, 1991.

Forrest, S., (Ed.), Proceedings of the F@h Internat~onal Conference on Genetic
Algorithms, Morgan Kaufmann, 1993.

Eshelman, L. J., (Ed,), Proceedings of the Sixth International Conference on
Genetic Algorithms, Morgan Kaufmann, 1995.

Back, T,, (Ed,), Proceedings of the Seventh International Conference on
Genetic Algorithms, Morgan Kaufmann, 1997.

Rawlins, G., (Ed.), Foundations of Genetic Algorithms, Morgan Kaufinann,
1991.

Whitley, D., (Ed.), Foundations of Genetic Algorifhms 2, Morgan Kauhann,
1993.

Whitley, D. and Vose, M. (Eds.), ~oundations of Genetic Algorithms 3,
Morgan K a u f m ~ , 1995.

Belew, R.K. and Vose, M. (Eds.), Foundations of Genetic Algorithms 4,
Morgan Kaufmann, 1997.

205

REFERENCES
AL77

At95

AN89

AR89

BAS5

BA9 1

BA93

BA96

BE93

BE93a

Alperovits, E and Shamir, U, Design of optimal water d i s ~ ~ ~ u t i o n systems, Water
Resour. Res. 13(6), p885-900, 1977.

Altenberg, L., The schema theorem and Price's theorem, Whitley, L.D. and Vose,
M., (Eds.), Foundatom of Genetic Algorjthms 3, Morgan Kaufmann, 1993.

Antonisse, J., A new interpretation of schema notation that overturns the binary
encoding constraint, in Schaffer, J.D., (Ed.), Proceedings of the 3d International
Conference on Genetic Algorithms, Morgan Kaufmann, p86-9 1, 1989.

Arora, J.S., Introduction to Optimum Designs, McGraw-Hill, 1989.

Baker, J.E., Adaptive selection methods for genetic a l g o ~ ~ ~ s , proceeding^ of an
~nternational conference on Genetic Alg5rithms and their Appl icat~o~, p 10 1-1 I 1,
1985.

Baker, J. E., Reducing bias and inefficiency in the selection algorithm, in Genetic
Algorithms and their Applications: Proceedings of the Second International
Conference on Genetic Algorithms, 1987.

Back, T., Hofbeister, F. and Schwefell, H., A survey of evolution strategies, in
Belew, R.K. and Booker, L.B., (Eds), Proceedings of fhe 4" International
Conference on Genetic Algorithms, Morgan Kaufmann, p2-9,1991.

Back, T., Optimal mu~tion rates in genetic search, in Genetic AJgorifhms:
Proceedings of fhe 5Ih ~n~ernaf~onal Conzrence, Forrest, S., (Ed.), p2-8, Morgan
Kaufmann, 1993.

Bbck, T., Evolutionary Algorithms in Theory and Practice, Oxford University
Press, New York, 1996.

Bertoni, A. and Dorigo, M., Implicit parallelism in genetic algorithms, Artificial
Intelligence, 61(2), p307-3 14, 1993.

Beasley, D., Bull. D.R. and Martin, R.R., A sequentiai niche technique for

206

B186

BL95

9087

BR89

BR9 I

BU84

CA89

CA9 1

CA96a

CA96b

multimodal hc t ion optimization, Evolutionary Computation, 1(2), p101-125,
1993.

Binder, K. and Young, A.R., Rev. Mod Phys. 58, p801, 1986.

Blickle, T. and Thiele, L., A mathematical analysis of tournament selection, in
Eshelman, L. J., Proceedings of the dh International Conference on Genetic
Algorithms, p506-5 1 1, 1995.

Booker, L., Improving search in genetic algorithms, in [DA87], p61-73, 1987.

Bramlette, M.F. and Cusic, R., A comparative evaluation of search methods
applied to the parametric design of aircraft, Schaffer, J.D., (Ed.), Proceedings of
ihe 3"' ~niernational Conference on Genetic ~lgorifhms, M o r ~ K a u ~ a n n , 1989.

Bramlette, M.F., Initialization, mutation and selection methods in genetic
algorithms for function optimisation, in Belew, R.K. and Booker, L.B., (a s) ,
Proceedings of the 4" International Conference on Genetic Algorithms, Morgan
Kaufmann, 199 1.

Bunday, B.D., Basic Optimisa#ion Methoak, Edward Arnold, London, 1984.

Caruana, R.A., Eshelman, L.J. and Schaffer, J.D., Representation and hidden bias
11: estimating defining length bias in genetic search via shuMe crossover, in
Proceedings of the I I" i~erna~ionaI Joint Confirence on ~ r t ~ c ~ a i rn~eIl~gence,
Morgan Kaufmann, San Mateo, p750-755,1989.

Caldwell, C. and Johnston, V.S., Tracking a Criminal Suspect Through "Face-
Space" with a Genetic Algorithm, in Belew, R.K. and Booker, L.B., (Eds),
Proceedings of the 6-k ZnternationaZ Confirence on Genetic Aigor~fh~s , Morgan
K a u ~ a ~ , p4 16-42 1,199 1.

Carroll, D.L., Chemical Laser Modeling with Genetic Algorithms, AIAA Journal,.
34(2), pp. 338-346, February 1996.

Carroll, D.L., Genetic A l g o r i ~ s and Optimizing Chemical Oxygen-Iod~e
Lasers, Developments in Theoretical and A ~ p ~ ~ e d Mechanics, Vol. XVKII, eds.
Wilson, H.B., Batra, R.C., Bert, C.W., Davis, A.M.J., Schapery, R.A., Stewart,
D.S. and Swinson, F.F., School of Engineering, The University of Alabama, ,

207

pp.411-424, 1996.

CE93

CH90

CH96

CH97

C092

C092a

C092b

C094

C094a

C096

C097

Celik, T., Hausmann U.H.E. and Berg B., Computer Simulation Studies in
Condensed Matter VI, Landau, D.P., Mon, K.K., and Schuttler, H.B., (Eds.),
Springer Verlag, Heidelberg, p173, 1993.

Chalmers, D.J., The evolution of learning: an experiment in genetic
connectionism, in Touretzky, D.S., Elman, J.L., Sejnowski, T.J. and Hinton, G.E.,
(Eds.), Proceedings of the 1990 Connectionist Models Summer School, Morgan
Kaufmann, 1990.

Chipperfield, A. and Fleming, P., Genetic algorithms in control systems
engineering, J. of Computers and Control, 24(I), 1996.

Chen, Y.W., Nakao, Z., Arakaki, K., Tamura, S., Blind deconvolution based on
genetic algorithms, IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E80A(12), p2603-2607, 1997.

Coley, D.A. and Penman, J.M., Second order system identification in the thermal
response of a working school: Paper 11. Building and Environment 27(3) 269-277,
1992.

Collins, R.J. and Jefferson, D.R., The evolution of sexual selection and female
choice, Varela, F. J., Bourgine, P., (Eds.), Toward a Practice of Autonomous
Systems: Proceedings of the First European Conference on Artificial Lfe, MIT
Press, 1992.

Cooper, D.E. (Ed.), A Companion to Aesthetics, Blackwell, 1992.

Coley, D.A. and Bunting, U., The identification of complex objects from NMR
Images by Genetic Algorithm, IEE Digest 193 p91-96, 1994.

Coley, D.A. and Crabb, J.A.. Computerised Control of artificial light for maximum
use of daylight, Lighting Res. Technol. 26 (4) p189-194, 1994.

Coley, D.A., Genetic Algorithms, C0ntemporar)i Physics, 37(2) p145-154, 1996.

Coley, D.A. and Crabb, J.A., An artificial intelligence approach to the prediction
of natural lighting levels, Building and Environment, 32(4), p81-85, 1997.

208

C097a

COH9 1

CR84

CR87

CR87a

DA87

DA89

DA9 1

DA9 1 a

DA9 1 b

Coley, D.A. and Winters, D., Search Eflcaq in Aesrhetic Product Spaces,
Complexity, 3(2), p23-27, 1997.

Cohoon, J.P., Hegde, S.U., Martin, W.N. and Richards, D.S., Distributed genetic
algorithms for the floorplan design problem, IEEE Trans., CAD, 10(4), p483-492,
1991.

Crozier, R.W. and Chapman, A.J. (Eds.), Cognitive Processes in the Perception of
Art, North-Holland, 1984.

Crabb, J.A., Murdoch, N. and Penman, J.M., Validation study of EXCALIBUR, a
simpli~ed thermal response model, Bujfding Services Research and TechnorogY 8
p13-19, 1987.

Crabb, J.A., Murdoch, N. and Penman, J.M., Building energy assessment by
simplified dynamic simulation model, presented at the European Conference on
Architecture, Munich, April 1987.

Davis, L. (Ed.), Genetic algorithms and simulated annealing, Pitman, London,
1987.

Davis, L., Adapting operator p~babilities in genetic algorithms, in Schaffer, J.D.,
(Ed.), P~oceedjngs of the 3& in~erna~ion~l Conference on Genetic Algorithms,
Morgan Kautinann, p6 1-69, 1989.

Davis, L., (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New
York, 1991.

Davidor, Y., A naturally occurring niche and species phenomenon: the model and
first results, in Belew, R.K. and Booker, L.B., (Eds), Proceedings of the #Ih

international Conference on Genetic Algorithms, Morgan Kaufmann, p257-263,
1991.

Davis, L., Bit-climbing, represen~ational bias and test suit design, in Belew, R.K.
and Booker, L.B., (Eds), Proceedings of the 6 Internationai Conference on
Genetic Algorithms, Morgan Kaufmann, pl8-23, 1991.

DE75 De Jong, K.A., Analysis of the behaviour of a class of genetic adaptive systems,

209

DE89

DE89a

DE93

DE93a

DO9 1

DU90

ED75

EE9 I

EE94

EI94

EL85

Doctoral dissertation, University of Michigan, Dissertation Abstracts International
36(10), Si40B, university Micro~Ims No. 76-9381), 1975.

Deb, K., Genetic A ~ g o ~ i f h ~ s in m ~ l t j - m o ~ ~ ~ n c ~ i o n # ~ ~ ~ r n ~ a f ~ o n , Masters thesis,
The Centre for Genetic Algorithms Report No. 89002, University of Alabama,
1989.

Deb, K., and Goldberg, D.E., An investigation of niche and species formation in
genetic function optimisation, in Schaffer, J.D., (Ed.), Proceedings of the 3&
Z n f e r n a ~ i ~ a ~ Con~erence on Genetic A~gor~ghms, Morgan Kaufma~, 1989.

De Jong, K, A., Genetic algorithms are NOT function optimisers, In Whitley, L.D.,
(Ed.), Fou~at~onr ofGenetic Algorithms 2, Morgan Kaufinann, 1993.

De Jong, K, A. and Sarma, J., ene era ti on gaps revisited, ~ i t l e y , L.D., {Ed.),
Foundationr ofGenetic Algorithms 2, Morgan Kaufmann, 1993.

Dodd, N., M a c ~ ~ a n e , D., and Marland, C., Optimisation of artificia1 neural
network structure using genetic techniques imp~eme~ed on multiple transputers,
Transparing '91, Vol. 2,IOS Press, p687-700, 1991

Duan, N., Mays, L.W. and Lansey, K.E., Optimal reliability-based design of
pumping and distribution systems, J. My&. Engrg., ASCE, IlqZ), 249-268,1990.

Edwards, S.F. and Anderson, P. W., J. Phys. F, 5,965,1975.

Energy EBciency in Oflccas: A Technical Guide for Owners and Single Tenants,
Energy Consumption Guide 19. UK Energy Efficiency Office, 1991.

&rduct/on to Energy Eflciency in Schools, Department of the Environment
Energy Emciency Office, 1994.

Eiger, G,, Shamir, U. and Ben-Tal, A,, Optimal design of water distribution
networks, Water Resow. Reg., 30(9), p2637-2646,1994.

EI-Bahrawy, A. and Smith, A.A., Application of MINOS to water collection and
dis~ibution networks, Civ. Engrg Sys., 2(1), ~3849,1985.

ES89 Eshelman, L.J., Caruana, R.A. and Schaffer, J.D., Biases in the crossover

210

landscape, in [SC89, p10-19], 1989.

ES91

ES9 1 a

ES93

ES94

FA94

FE88

F184

F066

F089

F093

FON93

Eshelman, L.J., The CHC adaptive search algorithm: how to have safe search
when engaging in non-traditional genetic recombination, Rawlins, G., (Ed.),
Foundations of Genetic Algorithms, Morgan Kaufmann, 1991,

Eshelman, L.J. and Schaffer, J.D., Preventing premature convergence in genetic
algorithms by preventing incest, in Belew, R.K. and Booker, L.B., (Eds),
Proceedings of the 4" International Conference on Genetic Algorithms, Morgan
Kaufmann, 199 1.

Eshelman, L.J. and Schaffer, J.D., Real-coded algorithms and interval-schemata,
Whitley, D. (Ed.), Foundations of Genetic Algorithms 2, Morgan Kaufmann, 1993.

Esbensen, H. and Mazumder, P., SAGA: a unification of the genetic algorithm
with simulated annealing and its application to macro-cell placement, Proceedings
of the 7 I h Int. Conj on VLSI design, p2 1 1-2 14, 1994.

Fausett, L., Fundamenfals of neural nehvorks, Prentice-Hall International, 1994.

Feder, J.. Fractals, Plenum Press, New York, 1988.

Fitzpatrick J.M., Grefenstette J.J. and Van Gucht D. Image registration by genetic
search, Proceedings of IEEE Southeast Conference p460-464, 1984.

Fogel, L.J., Owens, A.J. and Walsh, M.J., Artificial intelligence through simulated
evolution, Wiley, New York, 1966.

Fogarty, T.C., Varying the probability of mutation in the genetic algorithm, in
Schaffer, J.D., (Ed.), Proceedings of the 3" International Conference on Genetic
Algorifhms, Morgan Kaufmann, plO4-109, 1989.

Forrest, S. and Mitchell, M., relative building block fitness and the building block
hypothesis, In Whitley, L. D., (Ed.), Foundations of Genetic Algorithms 2, Morgan
Kaufmann, 1993.

Fonseca, C.M. and Fleming, P.J., Genetic algorithms for multiobjective
optimisation: formulation, discussion and generalisation, in Genetic Algorithms:
Proceedings of the 5" International Conference, Forrest, S . , (Ed.), p416-423,

21 1

Morgan Kaufmann, 1993.

FU90

FU93

FUR0

GE85

GO87

G087a

GO89

G089a

G089b

GO9 1

GO9 1 a

Futuyma, D.J., fivolutionsbiologie, Birkhtiuser Verlag, Basel, 1990.

Furuta, H. et. al., Application of the genetic algorithm to aesthetic design of dam
structures, Proceedings Neural Networks and Combinatorial Optimization in Civil
and Strucrural Engineering Conference, Edinburgh (1993), published by Civil
Comp Ltd, p101-109, 1993.

Fujiwara, 0. and Khang, D.B., A two-phase decomposition method for optimal
design of looped water distribution networks, Water Resour. Res., 26(4), p539-
549,1990.

Gessler, J., Pipe network optimization by enumeration, Proc. Spec. Con$ on

Comp. Applications/Water Resour., ASCE, New York, p572-58 1, 1985.

Goldberg, D.E., and Richardson, J., Genetic algorithms with sharing for
multimodal function optimisation, Genetic algorithms and their applications:
Proceedings of the r"' International Conference on Genetic Algorithms, p41-49,
1987.

Goldberg, D.E. and Kuo, C.H., Genetic algorithms in pipeline optimization, J.
Comp. in Civ. Engrg., 1(2), p128-141, 1987.

Goldberg, D.A., Genetic Algorithms in Search, Optimisation and Machine
Learning, Addison-Wesley, 1989.

Goldberg, D.E., Korb, B., and Deb, K., Messy genetic algorithms: Motivation,
analysis, and first results. Complex Systems, 3(4), p493-530, 1989.

Goldberg, D.E., Sizing populations for serial and parallel genetic algorithms, in
Schaffer, J.D., (Ed.), Proceedings of the 3" International Confrence on Genetic
Algorithms, Morgan Kaufmann, p70-79, 1989.

Goldberg, D.E. and Deb, K., A comparative analysis of selection schemes used in
genetic algorithms, Rawlins, G., (Ed.), Foundations of Genetic Algorithms,
Morgan Kaufmann, p69-93, 1991.

Goldberg, D.E. and Deb, K. and Bradley, K., Don't worry, be messy, in Belew,

212

GO93

GOT89

GOU86

GR85

GR86

GR89

GR91

GR93a

GR97

HA88

R.K. and Booker, L.B., (Eds), Proceedings of the 4" International Conference on

Genetic Algorithms, Morgan Kauhann, p25-30, 1991.

Goldberg, D.E., Deb, K., Kargupta, H. and Harik, G., Rapid, accurate optimization
of difficult problems using fast messy genetic algorithms, in Genetic Algorithms:
Procee~ings of the Sfh lnternaiiona~ Conference, Forrest, S., (Ed.), p56-64,
Morgan Kaufinann, 1993.

Gottschalk, W., Allgemeine Genetik, Georg Thieme Verlag, Stuttgart, 3"' edition,
1989.

Goulter, I.C., Lussier, B.M. and Morgan, D.R., Implications of head loss path
choice in the optimisation of water distribution networks, Water Resour. Rex,
22(5), ~819-822, 1986.

Grefenstette, J.J., Gopal, R., Rosmaita, B.J., and Van Gucht, D., Genetic
algorithms for the travelling salesman problem, Proceedings of an Infern~~iona~
Conference on Genetic Algorithms and Their Applications, p160-168, 1985.

Grefenstette, J.J., Optimization of control parameters for genetic algorithms, IEEE
Transactions on Systems, Man and Cybernetics 16(I), p122-128, 1986.

Grefenstette, J.J. and Baker, J.E., How genetic algorithms work: a critical look at
implicit parallelism, in Schaffer, J.D., (Ed.), Proceedings ofthe 3" International
Conference on Genetic A ~ g o ~ i t ~ m s , Morgan Kaufina~, p20-27, 1989.

Grefenstette, J.J., Conditions for Implicit Parallelism, Rawlins, G., (Ed.),
Founda~ions of Genetic Algorithms, Morgan Kaufmann, 199 1.

Grefenstette, J.J., Deception considered harmful, Rawlins, G., (Ed.), Whitley, D.
(Ed.), Foundations of Genetic Algorithms 2, Morgan Kaufmann, 1993.

Greenwood, G.W., Hu, X. and ~'Ambrosio, J.G., Fitness ~ c t i o n ~ for multiple
objective optimization problems: combining preferences with Pareto rankings,
Belew, R.K. and Vose, M., (Eds.), Foundations of Genetic Algorithms 4, Morgan
Kauhann, 1997.

Haves, P. and Littlefair, P.J., Daylighting in dynamic thermal modelling programs:
case study, ~uildjng Services Research and Technology, 9(4) 183-1 88, f 988.

213

HA97

HE94

HI94

HI95

HI96

H07 1

H075

HU79

HU9 1

JA9 1

Halhal, D., Walters, G.A., Ouazar, D. and Savic, D.A., Water network
rehabilitation with structured messy genetic algorithm, J. of Water Resources
Planning and Management, ASCE, 123(3), p137-146,1997.

Herdy, M. and Patone, G., Evolution Strategy in Action, Presented at Int.
Conference on Evolutionary Computation, PPSN 111, Jerusalem, 1994.

Hill, D.L.G., Studholme, C. and Hawkes, D.J., Voxel similarity measures for
automated image registration. Proceedings Visualisation in Biomedical
Computing, Bellingham, W.A., SPIE Press, p205-216, 1994.

Hinterding, R., Gielewski, H. and Peachey, T.C., The nature of mutation in genetic
algorithms, in Eshelman, L.J., Proceedings of the dh International Conference on

Genetic Algorithms, p65-72, 1995.

Hill D.L.G., Studholme C. and Hawkes D.J., Voxel similarity measures for
automated image registration. Automated 3-D registration of MR and CT images
ofthe head, Medical Image Analysis, 1, p163-175,1996.

Hollstien, R.B., Artificial genetic adaptation in computer control systems,
Doctoral dissertation, University of Michigan, Dissertation Abstracts International,
32(3), 1510B, (University Microfilms No. 71-23,773), 1971.

Holland J.H., 1975, Adaptation in Natural and Artficial Systems, University of
Michigan Press, Ann Arbor, 1975.

Hunt, D.R.G., The use of artificial lighting in relation to daylight levels and
occupancy, Building and Environment, 14 p2 1-33, 1979.

Huang, R. and Fogarty, T.C., Adaptive classification and control-rule optimisation
via a learning algorithm for controlling a dynamic system, Proc 3dh Conf: on

Decision and Control, p867-868, 199 1.

Janikow, C. and Michalewicz, Z., An experimental comparison of binary and
floating point representations in genetic algorithms, in Belew, R.K. and Booker,
L.B., (Eds), Proceedings of the 4" International Conference on Genetic
Algorithms, Morgan Kaufmann, p3 1-36, 199 1.

214

J095

KA60

KA97

KE89

K187

KI90

K194

KI94a

KO9 1

KO92

KO94

KO95

Jones, T., Crossover, macromutation and population-based search, in Eshelman,
L.J., Proceedings of rhe dh Interna~ional Conirence on Genetic Aigori th~, p73-
80, 1995.

Kalman, R.E. Trans A S ~ ~ 3 ~ i c Eng. 82(D) p35, 1960.

Kawaguchi, T., Baba, T., Nagata, R., 3-D object recognition using a genetic
algorithm-based search scheme, IEICE transactions on information and sysiems,
E80D(1 I), ~1064-1073, 1997.

Kessler, A. and Shamir, U., Analysis of the linear programming gradient method
for optimal design of water supply networks, Water Resour. Res., 25(7), p1469-
1480,1989.

Kinzel, W., Spin glasses and memory, Physica Scripta 35, p398-401, 1987.

Kitano, H., Designing neural networks using genetic algorithms with graph
generation system, Compiex @stems 4, p461-476,1990.

Kitano, H., Neurogenetic learning: an integrated method of designing and training
neural networks using genetic algorithms, Physica D 75, p225-238, 1994.

Kim, H.J. and Mays, L.W. Optimal rehabilitation model for water distribution
systems, Journal of Water Resources ~ i ~ ~ i n g and manage men^, ASCE, 120(5),
674-692, 1994.

Koza, J.R., Evolving a computer program to generate random numbers using the
genetic programming paradigm, in Belew, R.K. and Booker, L.B., (Eds),
Proceedings of the 4" Internatio~af Confrence on Genetic Algorithms, Morgan
Kaufmann, p37-44, 1991.

Koza, J.R., Genetic Pr~gramming: on the Programming of Computers by Means
ofNaturaI Selection, MIT Press, 1992.

KO=, J.R., Genetic P r o ~ a ~ m i n g if: Automatic Biscovery of Retisable Programs,
MIT Press. 1994.

Kobayashi, S., Ono, 1. and Yamamura, M., An efficient genetic algorithm for job
shop scheduling problems, in Eshelman, L.J., Proceedings ofthe dh International

21 5

Conference on Genetic Algorithms, p506-5 1 1, 1995.

KU93

MA83

MA89

MA93

MA95

MA96

ME92

ME92a

MI9 1

MI92

Kuo, T. and Hwang, S., A genetic algorithm with disruption selection, in Genetic
Algorithms: Proceedings of the 5" International Confirence, Forrest, S., (Ed.),
p65-69, Morgan Kaufmann, 1993.

Mandelbrot, B.B., 7'heJi.actal geometry ofnature, Freeman, New York, 1983.

Manderick, B. and Spiessens, P., Fine-grained parallel genetic algorithms, in
$chaffer, J.D., (Ed.), Proceedings ofthe 3& International Conference on Genetic
Algorithms, Morgan Kaufmann, p428-433, 1989.

Maruyama, T., Huose, T. and Konagaya, A., A fine-grained parallel genetic
algorithm for distributed parallel systems, in Forrest, S., Proceedings of the 5"
International Conference on Genetic Algorithms, pl84-190, 1993.

Mahfoud, S.W., A comparison of parallel and sequential niching methods, in
Eshelman, L.J., Proceedings of the 6" International Conference on Genetic
Algorithms, p 136- 143,1995.

Mahfoud, S.W. and Mani, G., Financial forecasting using genetic algorithms,
Applied Artijicial Intelligence, 10, p543-565, 1996.

Meyer, T.P., Long-Range Predictability of High-Dimensional Chaotic Dynamics,
PhD thesis, University of Illinois at Urbana-Champaign, 1992.

Meyer, T.P. and Packard, N.H., Local forecasting of high-dimensional chaotic
dynamics, in Casdagli, M. and Eubank, S., (Eds.), Nonlinear Modeling and
Forecasting, Addison-Wesley, 1992.

Michalewicz, 2. and Janikow, C, Handling constraints in genetic algorithms, in
Belew, R.K. and Booker, L.B., (Eds), Proceedings of the 4Ih International
Conference on Genetic Algorithms, Morgan Kaufmann, p 1 5 1 - 1 57, 199 1.

Mitchell, M., Forrest, S. and Holland, J.H., The royal road for genetic algorithms:
fitness landscapes and GA performance, in Varela, F.J. and Bourgine, P., (Eds.),
Toward a Practice of Autonomous Systems: Proceedings of the First European
Conference on Artlfrcial Life, MIT Press, 1992.

216

MI93

MI94

MI94a

MI95

MI96

MIC9S

MI695

MK97

MIK97a

MIK98

MU92

Mitchell, M. Hraber, P.T. and C ~ t c h ~ e l d , J.P., R ~ j s ~ ~ j n g the edge of chaos:
Evolving cel iuh automata toperform computatjo~ 7, p89-130, 1993.

Michalewicz, Z., Genetic Algorithms f Data Structures = Evolution Programs,
Z& edition, Springer-Ver~ag, Heidelber~} 1994.

Mitchell, M., C ~ ~ c ~ ~ ~ I d , J.P. and Hraber, P.T., Evolving cellular automata to
perform computations: mechanisms and impediments, Physica D(75), p361-391,
1994.

M i ~ c ~ ~ l ~ , M,, ~ o ~ ~ ~ d , JH., and Forrest, S., When will a genetic al~orithm
o u ~ e r f o ~ hill ~limbing? Cowan, J.D., Tesauro, G. and Alspeetor, (Eds.),
Advances in Neural lnfor~ation Processing syslenw. 6, Morgan Kaufinann, 1994.

Mitchell, M., Genetic Algorithms: An Overview, Complexity 1(1), p31-39,1995.

Mjtchell, M., An ~n~roductjon to Genetic A ~ g o r i ~ ~ s , M1T Press, C ~ b ~ d g e ,
Massachusetts. 1996.

Michalewicz, Z., Genetic algorithms, numerical optimization and constraints, in
Eshelman, L.J., Proceedings of the 6'h lnternatjonal Contrence on Genetic
~ ~ g ~ r i t h ~ s , p506-5 11, 1995.

M i ~ o w s ~ , S., ~~?~rnjsat ion of the energy c ~ u m p i i o n of a building trsing a
genetic algorifhm, University of Exeter, thesis, 1995.

M i ~ u ~ ~ ~ , D.J., Coley, D.A., and S a ~ b ~ ~ ~ , J.R., F i ~ ~ ~ ~ r e ~ ~ t i v i t y data from ~ ~ u i d
crystal cells using genetic a lgor~th~s, 22(3), p301-307, 1997.

Mikulin, D.J., Using genetic algorithms to fit HLGM data, PhD thesis, University
of Exeter, 1997.

~ ~ u l i n , D.J., Coley, D.A., and Samb~es, J.R., Detajiing smectic SSFLC director
profiles by h a l f - l e ~ guided mode t ~ ~ i ~ u e and genetic a ~ g o r i ~ , L i ~ u j ~
Crystals, to be ~ u b ~ ~ s h e d , 1998.

Murphy, L.J. and Simpson, A.R., Genetic Algorithms in Pipe Newark
~ptimisation, Researc~ Report No R93, D e ~ m e n t of Civil and ~ n v ~ o ~ e n t a ~
Engineering, U n i v ~ ~ i ~ of Adelaide, Aus~alia, 1992.

217

MU92a

Mu93

Mu94

NA9 1

NO9 1

PA88

PA90

PE90

PE90a

PE97

PLSO

Mtlhlenbein, H., How do genetic algorithms really work? 1. Mutation and hill-
climbing, in Mhner, R, and Manderick, (Eds.), Parallel Problem Solvingfrorn
Nature 2, North-Holland, 1992.

MUhlenbein, H. and Schlierkamp-Voosen, D., Predictive models for the breeder
genetic algorithm, Evolutionary Computation, 1(l), p25-49, 1993.

Murphy, L.J., Dandy, G.C. and Simpson, A.R. Optimum design and operation of
pumped water distribution system, Proceedings Con$ on Hydraulics in Civil
Engineering, Institution of Engineers, Brisbane, Australia, 1994.

Nakano, R. and Yamada, T., Conventional genetic algorithm for job shop
problems, in Belew, R.K. and Booker, L.B., (Eds), Proceedings of the 4Ih

International Conference on Genetic Algorithms, Morgan Kaufmann, p414-419,
1991.

Nordvik, J, and Renders, J.. Genetic algorithms and their potential for use in
process control: a case study, in Belew, R.K. and Booker, L.B., (Eds), Proceedings
of the 4" International Conference on Genetic Algorithms, Morgan Kauhann,
p480-486, 1991.

Packard, N.H., Adaptation toward the edge of chaos, in Kelso, J.A.S., Mandell,
A.J. and Shlesinger, (Eds.), Dynamic Patterns in Complex Systems, World
Scientific, 1988.

Packard, N. H., A genetic learning algorithm for the analysis of complex data,
Complex Systems 4(5), ~543412,1990

Penman, J.M., Second order system identification in the thermal response of a
working school: Paper I. Building and Environment 25(2), p105-110, 1990.

Penman, J.M. and Coley D.A., Real time thermal modelling and the control of
buildings. Proceedings Congress International de Domotique, Rennes 27-29m June
1990.

Pearce, R., Constraint resolution in genetic algorithms, in [ZA97], p79-98, 1997.

Plackett, R.L., Biometrika, 37, pp149, 1950.

218

PO93

RA9 1

RA96

RE93

RI89

R087

R093

ROS93

SA83

SA97

SC69

Powell, D. and Skolnick, M.M, Using genetic algorithms in engineering design
optimization with non-linear constraints. in Genetic Algorithms: Proceedings of
the 5" ~nternational Con&rence, Forrest, S., (Ed.), p424-430, Morgan K a u ~ ~ n ,
1993.

Rawlins, G., (Ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, 1991.

Rauwolf, G., and Coverstone-Carroll, V., Low-thrust orbit transfers generated by a
genetic algorithm, Journal o ~ S p a c e c r ~ t and Rockets, 33(6), p859-862, 1996.

Reeves, C.R., Using genetic algorithms with small populations, in Genetic
Algorithms: Proceedings of the 5Ih International Conference, Forrest, S. , (Ed.),
p92-99, Morgan Kaufmann, 1993.

Richardson, J.T., Palmer, M.R., Liepins, G. and Hilliard, M., Some guidelines for
genetic algorithms with penalty functions, in Schaffer, J.D., (Ed.), Proceedings of
the 3& International Conference on Genetic Algorithms, Morgan Kaufmann, p19 1-
197,1989.

Robertson, G., Parallel imple~en~t ion of genetic algorithms in a classifier system,
in Genetic Aigorithms and Simulated Annealing, p129- 140, Davis, L., (Ed.),
Pitman, London, 1987.

Rojas, R., Theorie der Neuronalen, Springer, 1993.

Rossman, L.A., EPANET users manual, US. Envir. Protection Agency,
Cincinnati, Ohio, 1993.

Saul, L., and Karder M., Pbs. Rev. E48, R3221, 1983.

Savic, D.A. and Walters, W.A., Genetic a I g ~ i ~ m s for least-cost design of water
distribution networks, J of Wafer Resources Planning and Management, ASCE,
123(2), p67-7 1, 1997.

Schaake, J. and Lai, D., Linear programming and dynamic programming
applications to water dis~ibution network design, Rep. J J6, Dept. of Civ. Engrg.,
M a s s ~ ~ u s e ~ Inst. of Technof., Cambridge, Mass., 1969.

219

SC81

SC89

SC89a

SC92

SE62

SH68

SH75

SH83

SM93

SP9 1

SP9 1 a

SP9lb

Schwefel, H., Numerical optimisation of computer models, Wiley, New York,
1981.

Schaf€er, J.D., (ed.), Proceedings of the l l m International Joint Conference on
Artificial Intelligence, Morgan Kaufmann, San Mateo, p750-755, 1989.

Schaffer, J.D., Caruana, R.A., Eshelman, L.J. and Das, R., A study of control
parameters affecting online performance of genetic algorithms for function
optimisation, in [SC89, p51-601, 1989.

Schulze-Kremer, S., Genetic algorithms for protein tertiary structure prediction, in
Mtlnner, R, and Manderick, B., (Eds.), Parallel Problem SolvingQom Nature 2,
North-Holland, 1992.

Seuphor. M., Abstract Painting, Prentice-Hall International, London, 1962.

Shamir, U. and Howard, C.D.D., Water distribution systems analysis, J. Hydr. Div.
ASCE, 94(1). p219-234,1968.

Sherrington, D. and Kirkpatrick, S. Phys. Rev. Lett. 35, ~1792, 1975.

Sharpe, R. A,, Contemporary Aesthetics, Harvester Press, 1983.

Smith, A.E. and Tate, D.M., Genetic optimization using a penalty hc t ion , in
Genetic Algorithms: Proceedings of the 5" International Conference, Forrest, S. ,
(Ed.), p499-503, Morgan Kaufmann, 1993.

Spears, W.M., and De Jong, K.A, On the virtues of piirameterised uniform
crossover, in Belew, R.K. and Booker, L.B., (Eds), Proceedings of the 41h

International Conference on Genetic Algorithms, Morgan Kaufmann, 199 1.

Spiessens, P. and Manderick, B., A massively parallel genetic algorithm:
implementation and first analysis, in Belew, R.K. and Booker, L.B., (Eds),
Proceedings of the 4" International Conference on Genetic Algorithms, Morgan
Kaufmann, p279-286,199 1.

Spears, W.M., and De Jong, K.A, An analysis of multi-point crossover, Rawlins,
G., (Ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, 1991.

220

SP93

SP93a

SR94

ST89

ST94

su94

SY89

SY91

TA87

TA89

TA93

TO77

Spears, W.M., De Jong, K.A., Back, T., Fogel, D.B. and de Garis, H., An overview
of evolutionary computation and machine learning: ECML-93 European
conference on machine learning, Lecture Notes in Art8ciaI ~ n t e l l i ~ e n ~ e , 667,
p442-459, 1993.

Spears, W.M., Crossover or mutation?, Whitley, L.D., (Ed.), Foundations of
genetic Algorithms 2 , Morgan Kaufmann, 1993.

Srinivas, N. and Deb, K., Multiobjective optimisation using nondomina~d sorting
in genetic algorithms, Evolutionary Computation, Vol. 2, 1994.

Stein, D., Spinglaser, Spektrum, der Wissenschaft - Chaos und Fractale, Spekrrum,
p146-152, 1989.

Stevens, M., Cleary, M. and Stauffer, D., Physica A 208(1), 1994.

Sutton, P., Hunter, D .L. and Jan, N., Am. J Phys, 4, p1281, 1994.

Syswerda, G., Uniform crossover in genetic algorithms, in Schaffer, J.D., (Ed.),
Proceed~ng~ 0s the 3& ~n~ernational Con~rence on Genetic A l g o ~ ~ t ~ s , Morgan
Kaufmann, p2-9, 1989.

Syswerda, G., A study of reproduction in generational and steady-state genetic
algorithms, Rawlins, G., (Ed.), Foundations of Genetic Algorithms, Morgan
Kaufmann, 199 1,

Tanse, R., Parallel genetic algorithm for a hypercube, Proceedings of the 2"d
International Conference on Genetic Algorithms, p177-183, 1987.

Tanse, R., Distributed genetic algorithms, in Schaffer, J.D., (Ed.), Proceedings of
the 3"' ~nternationa~ Conjkrence on Genetic ~lgorithms, Morgan K a u ~ ~ n , p434-
439,1989.

Tate, D.M. and Smith, A.E., Expected allele coverage and the role of mutation in
genetic algorithms, in Genetic Algorithms: Proceedings of the 5" Internafional
Conference, Forrest, S., (Ed.), p3 1-37, Morgan K a u ~ ~ , 1993.

Toulouse, G., Commun. Phys., June 1977.

221

TO87

VA77

WA84

WA85

WA93

WA93a

WA%

WH89

wH92

wH93

wH95

Todini, E. and Pilati, S., A gradient method for the analysis of pipe networks,
Proc. Inr. C o ~ on Comp. Applications f i r Water Supply and Distribution,
Leicester Polytechnic, Leicester, U.K., 1987.

Vannimenus, J. and Toulouse, G., Theory of the hstration effect I1 - Ising spin on
a square lattice, J Phys. C10, p537-542, 1977.

Waiski, T.M., Adysis of water distr~bution systems, Van Nostrand Reinhold Co.,
Inc., New York, 1984.

Walski, T.M., State-of-the-art pipe network optimi~tion, Proc. Spec. Con$ on

Comp. A p p i i c a ~ i o ~ a ~ e r Resour., ASCE, New York, p559-568, 1985.

Walters, G.A. and Cembrowicz, R.G., Optimal design of water distribution
networks, Cabrem, E. and Martinez, F., (Eds.), Water supply system, state ofthe
art andfitwe trend, Computational Mechanics Publications, p91-117, 1993.

Walters, G.A. and Lohbeck, T., Optimal layout of tree networks using genetic
~ o r i ~ s , Engrg. ~ p t i m ~ ~ i o n , 22(1), p27-48, 1993.

Wanschura, T., Coley, D.A. and Migowsky, S., Ground-state energy of the t l sp in
glass with dimension greater than three, Solid State ~ o m m u n i c ~ i o ~ ~ 99(4), p247-
248.1996.

Whitley, D., the GENITOR algorithm and selection pressure: why rank-based
atlocation of reproductive trials is best, in Schaffer, J.D., (ed.), Proceedjngs ofthe
I I* international Joint Conference on Artificial intelligence, Morgan Kaufmann,
San Mateo, 1989.

Whitley, L. D. and Schaffer, J. D., (Eds.), C ~ A N N - ~ 2 : i~ernat io~al ~ o r ~ h o p
on Combinations of Genetic Algorithms and Neural Networks, IEEE Computer
Society Press, 1992.

Whitley, L.D. (Ed.), ~ o u n d a t ~ o ~ of Genetic A i g ~ i ~ ~ s 2, Morgan Kaufmann,
1993.

~ i t l e y , L.D. and Vose, M,, Fds.), F o ~ d a ~ ~ o ~ of Genetic Algo~ithms 3, Morgan
Kaufmann. 1993.

222

WH95a

W087

W093

wR31

WR91

YA84

YA93

YA93a

YA95

YA95a

YA98

YO74

Whitley, D., Mathias, K., Rana, S . and Dzubera, Building better test functions, in
Eshelman, L.J., Proceedings of the 6'' International Conference on Genetic
Algorithms, p239-246, 1995.

Woodbum, J., Lansey, K. and Mays, L.W. Model for the Optimal Rehabilitation
and Replacement of Water Distribution System Components. Proceedings Nut.
Con$ Hydraulic Eng., ASCE, 606-6 1 1, 1987.

Wood, D.J. and Funk, J.E., Hydraulic analysis of water distribution systems, in
Water supply systems, state of the art and future trendr, E. Cabrera and F.
Martinez, Eds., Computational Mechanics Publications, p41-85, 1993.

Wright, S., Evolution in Mendelian populations, Genetics, 16, p97-159, 1931.

Wright, A.H., Genetic algorithms for real parameter optimization, Rawlins, G.,
(Ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, p205-218, 1991.

Yates, D.F., Templeman, A.B., and Boffey, T.B., The computational complexity
of the problem of determining least capital cost designs for water supply networks,
Engrg, Optimization, 7(2), p142-155, 1984.

Yang, F. and Sambles J.R., J. Opt. SOC. Am. B, 10, p858, 1993.

Yang, F. and Sambles J.R., Liq. Cryst., 13(1), 1993.

Yamada, T. and Nakano, R., A genetic algorithm with multi-step crossover for
job-shop scheduling problems, Proceedings of First IEWIEEE International
Conference on Genetic Algorithms in Engineering %stems: Innovations and
Applications, GALESIA '95, p 146- 1 5 1, 1 995.

Yamamoto, K. and Inoue, O., Applications of genetic algorithms to aerodynamic
shape optimisation, AIAA paper 85-1650-CP, 12' AIAA Computational Fluid
Dynamics Conf., CP956, San Diego, CA, June 1995, p43-5 I .

Yang, G., Reinstein, L.E., Pai, S., Xu, Z., Carroll, D.L., A new genetic algorithm
technique in optimization of prostate implants, accepted for publication in the
Medical Physics Journal, 1998.

Young P., Recursive approaches to time series analysis. J. Inst. Mathematics and

223

ZA97 Zalzala, A.M.S. and Fleming, P.J., Genetic Algorithms in Engineering @stems,
IEE, London, 1997.

	An Introduction to Genetic Algorithms for Scientists and Engineers
	cover
	1
	2
	3
	4
	5

	CH1
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	CH2
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34

	CH3
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58

	CH4
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92

	CH5
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112

	CH6
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185

	187
	188

	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223

