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In the beginning was the Word 
And by the mutations came the Gene 

MA. Arbid 
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CHAPTER 1 

INTRODUCTION 

Genetic algorithms (GAS) are numerical optimisation algorithms inspired by 
both natural selection and natural genetics. The method is a general one, 
capable of being applied to an extremely wide range of problems. Unlike some 
approaches, their promise has rarely been over-sold and they are being used to 
help solve practical problems on a daily basis. The algorithms are simple to 
understand and the required computer code easy to write. Although there is a 
growing number of disciples of GAS, the technique has never attracted the 
attention that, for example, artificial neural networks have. Why this should be 
is difficult to say. It is certainly not because of any inherent limits or for lack of 
a powerfid metaphor. What could be more inspiring than generalising the ideas 
of Darwin and others to help solve other real-world problems? The concept that 
evolution, starting from not much more than a chemical "mess", generated the 
(unfortunately vanishing) bio-diversity we see around us today is a powerful, if 
not awe-inspiring, paradigm for solving any complex problem. 

In many ways the thought of extending the concept of natural selection 
and natural genetics to other problems is such an obvious one that one might be 
left wondering why it was not tried earlier. In fact it was. From the very 
beginning, computer scientists have had visions of systems that mimicked one 
or more of the attributes of life. The idea of using a population of solutions to 
solve practical engineering optimisation problems was considered several times 
during the 1950's and 1960's. However, GAS were in essence invented by one 
man-John Holland-in the 1960's. His reasons for developing such 
algorithms went far beyond the type of problem solving with which this text is 
concerned. His 1975 book, Adaptation in Natural and Artwcial Systems 
[H075] (recently re-issued with additions) is particularly worth reading for its 
visionary approach. More recently others, for example De Jong, in a paper 
entitled Genetic Algorithms are NOT Function Optimizers [DE93], have been 
keen to remind us that GAS are potentially far more than just a robust method 
for estimating a series of unknown parameters within a model of a physical 



system. However in the context of this text, it is this robustness across many 
different practical optimisation problems that concerns us most. 

So what is a GA? A typical algorithm might consist of the following: 

1. a number, or population, of guesses of the solution to the problem; 

2. a way of calculating how good or bad the individual solutions within the 
population are; 

3. a method for mixing fragments of the better solutions to form new, on 
average even better solutions; and 

4. a mutation operator to avoid permanent loss of diversity within the 
solutions. 

With typically so few components, it is possible to start to get the idea 
of just how simple it is to produce a GA to solve a specific problem. There are 
no complex mathematics, or torturous, impenetrable algorithms. However, the 
downside of this is that there are few hard and fast rules to what exactly a GA 
is. 

Before proceeding further and discussing the various ways in which 
GAS have been constructed, a sample of the range of the problems to which 
they have been successfully applied will be presented, and an indication given 
of what is meant by the phrase “search and optimisation”. 

1.1 SOME APPLICATIONS OF GENETIC ALGORITHMS 
Why attempt to use a GA rather than a more traditional method? One 

answer to this is simply that GAS have proved themselves capable of solving 
many large complex problems where other methods have experienced 
difficulties. Examples are large-scale combinatorial optimisation problems 
(such as gas pipe layouts) and real-valued parameter estimations (such as image 
registrations) within complex search spaces riddled with many local optima, It 
is this ability to tackle search spaces with many local optima that is one of the 
main reasons for an increasing number of scientists and engineers using such 
algorithms. 

Amongst the many practical problems and areas to which GAS have 
been successfully applied are: 
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image processing [CH97,KA97]; 
prediction of three dimensional protein structures fSC921; 
VLSI (very large scale integration) electronic chip layouts [COH91 ,ES94]; 
laser technology [CA96a,CA96b]; 
medicine [YA98]; 
spacecraft trajectories [RA96]; 
analysis of time series [MA96,ME92,ME92a,PA90]; 
solid-state physics [S~94,WA96]; 
aeronautics [BR89,YA95]; 
liquid crystals [MIK97]; 
robotics [ZA97, p161-2021; 
water networks [HA97,SA97]; 
evolving cellular automaton rules [PA88,MI93,MI94a]; 
the ~ h i t e c t u r a ~  aspects of building design [MIG95,FU93]; 
the automatic evolution of computer s o h a r e  [KO91 ,K092,K094]; 
aesthetics [CO97a]; 
jobshop scheduling [KO95,NA9l,YA95]; 
facial recognition [CA91]; 
training and designing artificial intelligence systems such as artificial neural 
networks [ZA97, p99-117,WH92, ~ 9 0 , ~ 9 4 , C H 9 0 ] ;  and 
control "09 1 ,CH96,C097]. 

1.2 SEARCH SPACES 
In a numerical search or optimisation problem, a list, quite possibly of infinite 
length, of possible solutions is being searched in order to locate the solution 
that best describes the problem at hand. An example might be trying to find the 
best values for a set of adjustable parameters (or variables) that, when included 
in a ~ ~ e ~ t i c a l  model, maximise the lift generated by an aeroplane's wing. If 
there were only two of these adjustable parameters, a and b, one could try a 
large number of combinations, calculate the lift generated by each design and 
produce a surface plot with a, b and l@ plotted on the x-, y- and z-axis 
respectively (Figure 1.0). Such a plot is a representation of the problem's 
search space. For more complex problems, with more than two unknowns, the 
situation becomes harder to visualise. However, the concept of a search space 
is still valid as long as some measure of distance between solutions can be 
defined and each solution can be assigned a measure of success, orjtness, 
within the problem. Better performing, or fitter, solutions will then occupy the 
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peaks within the search space (or fitness landscape [WR31]) and poorer 
solutions the valleys. 

Figure 1.0. A simple search space or “fitness landscape”. The lift generated by the wing is a 
function of the two adjustable parameters a and b. Those combinations which generate more lift 
are assigned a higher fitness. Typically, the desire is to find the combination of the adjustable 
parameters that gives the highest fitness. 

Such spaces or landscapes can be of surprisingly complex topography. 
Even for simple problems, there can be numerous peaks of varying heights, 
separated from each other by valleys on all scales. The highest peak is usually 
referred to as the global m ~ ~ m ~ ~  or global ~p~imum,  the lesser peaks as local 
maxima or local optima. For most search problems, the goal is the accurate 
identification of the global optimum, but this need not be so. In some 
situations, for example real-time control, the identification of any point above a 
certain value of fitness might be acceptable. For other problems, for example, 
in architectural design, the identification of a large number of highly fit, yet 
distant and therefore distinct, solutions (designs) might be required. 

To see why many traditional algorithms can encounter difficulties, 
when searching such spaces for the global optimum, requires an understanding 
of how the features within spaces are formed. Consider the experimental data 
shown in Figure 1.1, where measurements of a dependent variable y have been 
made at various pointsj of the independent variable x. Clearly there is some 
evidence that x and y might be related through: 
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But what values should be given to m and c? If there is reason to believe that 
y = 0 when x = 0 (i.e. the line passes through the origin) then c = 0 and m is the 
only adjustable parameter (or unknown). 

Figure 1 . 1 .  Some simple experimental data possibly related by y = mx + c. 

One way of then finding m is simply to use a ruler and estimate the best line 
through the points by eye. The value of m is then given by the slope of the line. 
However there are more accurate approaches. A common numerical way of 
finding the best estimate of m is by use of a least-squares estimation. In this 
technique the error between that y predicted using (1.1) and that measured 
during the experiment, J , is characterised by the objective function, 0, (in this 
case the least squares cost function) given by, 

where n is the number of data points. Expanding (1.2) gives: 
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Asc=O, 

In essence the method simply calculates the sum of the squares of the 
vertical distances between measured values of y and those predicted by (1.1) 
(see Figure 1.2). Q will be at a minimum when these distances sum to a 
minimum. The value of m which gives this value is then the best estimate of rn. 
This still leaves the problem of finding the lowest value of 9. One way to do 
this (and a quite reasonable approach given such an easy problem with 
relatively few data points) is to use a computer to cakulate Q over a fme grid of 
values of m. Then simply choose the m which generates the lowest value of 4. 
This approach was used together with the data of Figure 1.1 to produce a 
visualisation of the problem’s search space-Figure 1.3. Clearly, the best value 
of m is given by m = m * =: 1. 1, the asterisk indicating the optimal value of the 
parameter. 

12 , 

I0 - 
8-  

A 6 -  

4 -  

2 -  

, 

0 2 4 6 
X 

Figure 1.2. Calculating 9 for two values of m. Clearly m = 0.9 is the better choice as the sum of 
distances will generate a lesser value of Q. 
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m 

Figure 1.3. A simple search space, created from the data of Figure 1.1, Equation (1.3) and a 
large number of guesses of the value of m. This is an example of a minimisation problem, 
where the optimum is located at the lowest point. 

This approach, of estimating an unknown parameter, or parameters, by 
simply solving the problem for a very large number of values of the unknowns 
is called an enumerative search. It is only really usehl if there are relatively 
few unknown parameters and one can estimate L? rapidly. As an example why 
such an approach can quickly run into problems of scale, consider the 
following. A problem in which there are ten unknowns, each of which are 
required to an accuracy of one percent, will require 10010, or 1x1020, 
estimations. If the computer can make 1000 estimations per second, then the 
answer will take over 3x109 years to emerge, Given that ten is not a very large 
number of unknowns, one percent not a very demanding level of accuracy and 
one t h o u s ~ d  evaluations per second more than respectable for ~~y problems, 
clearly there is a need to find a better approach. 

Returning to Figure 1.3, a brief consideration of the shape of the curve 
suggests another approach: guess two possible values of m, labelled ml and m2 
(see Figure 1.4), then if Q(m4 > Sa(ml), make the next guess at some point m3 
where 1113 = m2 + 6, or else head the other way. Given some suitable, dynamic, 
way of adjusting the value of 6, the method will rapidly home in on m*. 
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m 

Figure 1.4. A simple, yet effective, method of locating m*. 6 is reduced as the minimum is 
approached. 

Such an approach is described as a direct search (because it does not 
make use of derivatives or other information). The problem illustrated is one of 
minimisation. If 1lQ were plotted, the problem would have been transformed 
into one of maximisation and the desire would been to locate the top of the hill. 

U n f o ~ ~ a t e l y ,  such methods cannot be universally applied. Given a 
different problem, still with a single adjustable parameter, a, might take the 
form shown in Figure 1.5. 

If either the direct search algorithm outlined above or a simple calculus 
based approach is used, the final estimate of a will depend on where in the 
search space the algorithm was started. Making the initial guess at a = u2, will 
indeed lead to the correct (or global) minimum, a*. However, if a = a] is used 
then only a** will be reached (a local minimum). 
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Figure 1.5. A more complex on~dimensiona1 search space with both a global and a local 
minimum. 

This highlights a serious problem. If the results produced by a search 
algorithm depend on the starting point, then there will be little confidence in 
the answers generated. In the case illustrated, one way around this problem 
would be to start the problem from a series of points and then assume that the 
true global  mi^^ lies at the lowest minimum identified. This is a frequently 
adopted strategy. Unfortunately Figure 1.5 represents a very simple search 
space. In a more complex space (such as Figure 1.6) there may be very many 
local optima and the approach becomes wealistic. 

So, how are complex spaces to be tackled? Many possible approaches 
have been suggested and found favour, such as random searches and simulated 
annealing [DA87]. Some of the most successful and robust have proved to be 
random searches directed by analogies with natural selection and natural 
genetics-genetic algorithms, 
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20 

Figure 1.6. Even in a two-dimensional maximisation problem the search space can be highly 
complex. 

1.3 GENETIC ALGORITHMS 
Rather than starting from a single point (or guess) within the search space, GAS 
are initialised with apopulution of guesses. These are usually random and will 
be spread throughout the search space. A typical algorithm then uses three 
operators, selection, crossover and mutation (chosen in part by analogy with 
the natural world) to direct the population (over a series of time steps or 
generations) towards convergence at the global optimum. 

Typically, these initial guesses are held as binary encodings (or strings) 
of the true variables, although an increasing number of GAS use "real-valued" 
(i.e. base-10) encodings, or encodings that have been chosen to mimic in some 
manner the natural data structure of the problem. This initial population is then 
processed by the three main operators. 

Selection attempts to apply pressure upon the population in a manner 
similar to that of natural selection found in biological systems. Poorer 
performing individuals are weeded out and better performing, or fitter, 
individuals have a greater than average chance of promoting the information 
they contain within the next generation. 
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Crossover allows solutions to exchange information in a way similar to 
that used by a natural organism undergoing sexual reproduction. One method 
(termed single point crossover) is to choose pairs of individuals promoted by 
the selection operator, randomly choose a single locus (point) within the binary 
strings and swap all the information (digits) to the right of this locus between 
the two individuals. 

~ # ~ a ~ o ~  is used to randomly change (flip) the value of single bits 
within individ~l  strings. ~ u ~ t i o n  is typical~y used very sparingly. 

After selection, crossover and mutation have been applied to the initial 
population, a new population will have been formed and the generational 
counter is increased by one. This process of selection, crossover and mutation 
is continued until a fixed number of generations have elapsed or some form of 
convergence criterion has been met. 

On a first encounter it is fw from obvious that this process is ever likely 
to discover the global optimum, let alone form the basis of a general and highly 
effmtive search algorithm. However, the application of the technique to 
numerous problems across a wide diversity of fields has shown that it does 
exactly this. The ultimate proof of the utility of the approach possibly lies with 
the demonstrated success of life on earth. 

1.4 ANEXAMPLE 
There are many things that have to be decided upon before applying a GA to a 
p ~ c ~ ~  problem, including: 

the method of encoding the unknown parameters (as binary strings, base-10 
numbers, etc.); 
how to exchange information contained between the strings or encodings; 
the population size-typical values are in the range 20 to 1000, but can be 
smaller or much larger; 
how to apply the concept of mutation to the representation; and 
the termination criterion. 

Many papers have been written discussing the advantages of one 
encoding over another; or how, for a particular problem, the population size 
might be chosen [GO89b]; about the difference in performance of various 
exchange mechanisms and on whether mutation rates ought to be high or low, 
However, these papers have naturally concerned themselves with computer 
experiments, using a small number of simple test hctions, and it is often not 
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clear how general such results are. In reality the only way to proceed is to look 
at what others with similar problems have tried, then choose an approach that 
both seems sensible for the problem at hand and that you have confidence in 
being able to code up. 

A trivial problem might be to maximise a function,f(x), where 

f ( x )  = x2 ; for integer x and 0 5 x 54095. 

There are of course other ways of finding the answer (x = 4095) to this problem 
than using a GA, but its simplicity makes it ideal as an example. 

Firstly, the exact form of the algorithm must be decided upon. As 
mentioned earlier, GAS can take many forms. This allows a wealth of Ereedom 
in the details of the algorithm. The following (Algorithm 1) represents just one 
possibility. 

Form a population, of eight random binary strings of length twelve (e.g. 

Decode each binary string to an integer x (i.e. OOOOOOOOOIll implies x =  7, 
000000000000 = 0, I I I f  I If I I I l l  = 4095). 
Test these numbers as solutions to the problem Ax) = x2 and assign a fitness to each 
individual equal to the value ofAx) (e.g. the solution x = 7 has a fitness of 72 = 49). 
Select the best half (those with highest fitness) of the population to go forward to the 
next generation. 
Pick pairs of parent strings at random (with each string being selected exactly once) 
from these more successful individuals to undergo single point crossover. Taking each 
pair in turn, choose a random point between the end points of the string, cut the strings 
at this point and exchange the tails, creating pairs of child strings. 
Apply mutation to the children by occasionally (with probability one in six) flipping a 0 
to a I or vice versa. 
Allow these new strings, together with their parents to form the new population, which 
will still contain only eight members. 

101001 ioiaio, ifooffaofioa, ....... 1. 

1 8. 
A l g o r i t ~  1. A very simple genetic a l g o r i t ~ .  

Return to Step 2, and repeat until fie generations have elapsed. 

To further clarify the crossover operator, imagine two strings, 0001 0001 1 I00 
and I1 1001 I01 01 0. Performing crossover between the third and fourth 
characters produces two new strings: 
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parents children 
000/100011100 000001101010 
11 1/00] 101010 11110001 1100 

It is this process of crossover which is responsible for much of the power of 
genetic algorithms. 

Returning to the example, let the initial population be: 

population 
member 

1 
2 
3 
4 
5 
6 
7 
8 

string 

110101100100 
010100010111 
101111101110 
010100001 100 
011101011101 
loIIolooIooI 
101011011010 
010011010101 

X 

3428 
1303 
3054 
1292 
1885 
2889 
2778 
1237 

fitness 

1 175 1 184 
1697809 
9326916 
1669264 
3553225 
8346321 
77 17284 
1530169 

Population members 1, 3, 6 and 7 have the highest fitness. Deleting those four 
with the least fitness provides a temporary reduced population ready to undergo 
crossover: 

temp. pop. string X fitness 
member 

1 110101100100 3428 11751184 
2 IolIlllolIIo 3054 9326916 
3 I01 101001001 2889 8346321 
4 10I0110ll010 2778 7717284 

Pairs of strings are now chosen at random (each exactly once): 1 is 
paired with 2, 3 with 4. Selecting, again at random, a crossover point for each 
pair of strings (marked by a 0, four new children are formed and the new 
population, consisting of parents and offspring only, becomes (note that 
mutation is being ignored at present): 
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popuiation 
member 

I 
2 
3 
4 
5 
6 
7 
8 

string 

11/0101100100 
IO/I I I I I01 110 
101 l ~ ~ ~ o o l o o l  
10l01l/011010 
I I I I I 1  101 I10 
I OOIOI I001 00 
loiioiolloio 
10~01l001001 

X 

3428 
3054 

2778 
4078 
2404 
2906 
276 I 

2889 

fitness 

11751184 
93269 16 
834632 I 
77 17284 

16630084 
5779216 
8444836 
7623121 

The initial population had an average fitness&, of 5065797 and the 
fittest individual had a fitness, f,, of 11751 184. In the second ge~eration, 
these have risen to: faye = 8402107 and fmm = 16630084. The next temporary 
population becomes: 

temp. pop. string X fitness 
member 

1 IIOlO~ 100100 3428 11751 184 
2 10111110I110 3054 93269 16 
3 101~01011010 2906 8444836 
4 IlIlfllOlllO 4078 I6630084 

This temporary population does not contain a I as the last digit in any of the 
strings (whereas the initial population did). This implies that no stsing from this 
moment on can contain such a digit and the maximum value that can evolve 
will be 1 I I I I I I I l l  IO-afIer which point this string will reproduce so as to 
dominate the population. This domination of the population by a single sub- 
optimal string gives a first indication of why mutation might be important. Any 
further populations will only contain the same, identical string. This is because 
the crossover operator can only swap bits between strings, not introduce any 
new information. Mutation can thus be seen in part as an operator charged with 
maintaining the genetic diversity of the population by preserving the diversity 
embodied in the initial generation. (For a discussion of the relative benefits of 
mutation and crossover, see [SP93a].) 

The inclusion of mutation allows the population to leapfrog over this 
sticking point. It is worth reiterating that the initial population did include a 1 
in all positions. Thus the mutation operator is not necessarily inventing new 
information but simply working as an insurance policy against premature loss 
of genetic information. 
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R e ~ g  the algorithm from the Same initial population, but with 
mutation, allows the string Z I Z ZI Z I1 I J I Z to evolve and the global optimum to 
be found. The progress of the algorithm (starting with a different initial 
population), with and without mutation, as a function of generation is shown in 
Figure 1.7, Mutation has been included by visiting every bit in each new child 
string, throwing a random number betwden 0 and f and if this number is less 
than ' / j ~ ,  flipping the value of the bit. 

18000000, 

-fm with mutation 
------f, withmutation 
.......... f,, no mutation 

2000000 - 
0 - '  " I '  I '  ' 1  ' 

0 10 20 30 40 $0 

Generation 

Figure 1.7. The evolution of the population. The fitness of the best performing individual, fnm, 

is seen to improve with generation as is the average fitness of the population, fme. Without 
mutation the lack of a I in all positions limits the final solution. 

Although a genetic algorithm has now been successfully constructed 
and applied to a simple problem, it is obvious that many questions remain. In 
particular, how are problems with rnore than one unknown dealt with, and how 
are problems with real (or complex) valued parameters to be tackled? These 
and other questions are discussed in the next chapter. 

1.5 SUMMARY 

In this chapter genetic algorithms have been introduced as general search 
algorithms based on metaphors with natural selection and natural genetics. The 
central differences between the approach and more traditional algorithms are: 
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the manipulation of a population of solutions in parallel, rather than the 
sequential adjustment of a single solution; the use of encoded representations 
of the solutions, rather than the solutions themselves; and the use of a series of 
stochastic (i.e. random based) operators. 

The approach has been shown to be successful over a growing range of 
difficult problems. Much of this proven utility arises from the way the 
population navigates its way around complex search spaces (or j tness 
landscapes) so as to avoid entrapment by local optima. 

The three central operators behind the method are selection, crossover 
and mutation. Using these operators a very simple GA has been constructed 
(Algorithm 1) and applied to a trivial problem. In the next chapter these 
operators will be combined once more, but in a form capable of tackling more 
difficult problems. 

1.6 EXERCISES 
1. Given a string of length ten, what is the greatest value of an unknown 

Algorithm 1 can search for? 

2. What is the resolution of Algorithm 1 when working with a string length of 
thirty? 

3 .  Given a string length of 20 and a probability of mutation of '/20 per bit, 
what is the probability that a string will emerge from the mutation operator 
unscathed? 

4. Implement Algorithm 1 on a computer and adapt it to find the value of x 
that maximises sin4(x), 0 I x 5 'R to an accuracy of at least one part in a 
million (Use a population size of fifty and a mutation rate of 
l/(twice the string length).) This will require finding a transformation 
between the binary strings and x such that 000 ... 000 implies x = 0 and 
I1 1 ... I I I implies x = 'R. 

5 .  Experiment with your program and the problem of Question 4 by 
estimating the average number of evaluations of sin4(x) required to locate 
the maximum; (a) as a function of the population size, (b) with, and 
without, the use of crossover. (Use a mutation rate of 
l/(twice the string length).) 
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CHAPTER 2 

IMPROVING THE ALGORITHM 

Although the example presented in Chapter 1 was useful, it left many questions 
unanswered. The most pressing of these are: 

0 How will the algorithm perform across a wider range of problems? 
0 How are non-integer unknowns tackled? 
0 How are problems of more than one unknown dealt with? 
0 Are there better ways to define the selection operator that distinguishes 

between good and very good solutions? 

Following the approach taken by Goldberg [GO89], an attempt will be 
made to answer these questions by slowly developing the knowledge required 
to produce a practical genetic algorithm together with the necessary computer 
code. The algorithm and code go by the name Little Genetic Algorithm or LGA. 
Goldberg introduced an algorithm and PASCAL code called the Simple 
Genetic Algorithm, or SGA. LGA shares much in common with SGA, but also 
contains several differences. LGA is also similar to algorithms used by several 
other authors and researchers. 

Before the first of the above questions can be answered, some of the 
terminology used in the chapter needs clarifying, and in particular, its relation 
to terms used in the life sciences. 

2.1 COMPARISON OF BIOLOGICAL AND GA TERMINOLOGY 
Much of the terminology used by the GA community is based, via analogy, on 
that used by biologists. The analogies are somewhat strained, but are still 
useful. The binary (or other) string can be considered to be a chromosome, and 
since only individuals with a single string are considered here, this 
chromosome is also the genotype. The organism, or phenotype, is then the 
result produced by the expression of the genotype within the environment. In 



18 

GAS this will be a particular set of unknown parameters, or an individual 
solution vector. These correspondences are summarked in Table 2.1. 

Locus 
Phenotype 

A particular (bit) position on the string 
Parameter set or solution vector (real- 
valued) 

Table 2.1 Comparison of biological and GA terminology. 

2.2 R O B U S ~ ~ S S  
Although the GA has, not unsurprisingly, proved itself able to find the 
maximum value of J? over a small range of integers, how is it likely to perform 
on a wider range of more realistic problems? This requires a consideration of 
what exactly is meant bype$orm. 

The shortest and most efficient algorithm for generating the answer to a 
particular problem is simply a statement containing the answer to the problem. 
Given that this requires knowing the answer in the first place, the approach has 
little value. More useful are highly efficient methods that are specifically 
tailored to the application at hand, possibly c o n ~ ~ i n g  problem specific 
operators and information. Such methods are likely to be efficient when 
working on the problem for which they were designed, but likely to be far less 
efficient-r even fail-when used on other problems. At the far end of the 
scale are robust techniques of almost universal application. Such techniques 
can, with little adaptation, work on a wide variety of problems but are likely to 
be much less efficient than highly tailored problem-specific algorithms, GAS 
are naturally robust algorithms, that by suitable adjustment of their operators 
and data encoding can also be made highly efficient. Given enough information 
about the search space it will always be possible to construct a search method 
that will o u ~ ~ o r m  a GA. However, obtaining such information is for many 
problems almost as difficult as solving the problem itself. The ‘4app~icability” 
or robustness of the GA is illustrated in Figure 2.1 : although highly problem- 
specific methods can outperform a GA, their domain of applicability is small. 
By suitable small adjustments to a GA, the algorithm can be made more 
efficient whilst still retaining a high degree of robustness. 
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Efficiency 
A 

Spectrum of applicable problems 

Figure 2.1. Comparison of the robustness of GA-based and more traditional methods. The more 
robust the algorithm the greater the range of problems it can be applied to. A tailor-made 
method such as a traditional calculus based algorithm might be highly efficient for some 
problems, but will fail on others. GAS are naturally robust and therefore effective across a wide 
range of problems. 

2.3 NON-INTEGER UNKNOWNS 
In Chapter 1 integer-valued parameters were represented as binary strings. This 
representation must now be adapted to allow for real-valued parameters. This 
requires providing a binary representation of numbers such as 2 . 3 9 ~ 1 0 - ~  or 
-4.91. (Another approach discussed later is the use of a real-valued 
representation within the GAY but this requires the redefinition of several of the 
GA operators.) There are many ways of doing this; however the most common 
is by a linear mapping between the real numbers and a binary representation of 
fixed length. 

To carry out this transformation, the binary string (or genotype) is firstly 
converted to a base-10 integer, z. This integer is then transformed to a real 
number, r, using: 
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The values of m and c depend on the location and width of the search space. 
Expressions for m and c can be derived from the two simultaneous equations: 

and 

r,, = mz,, +c (2.3) 

where rmin, rmm, zmin and z,, represent the minimum and maximum possible 
parameters in real and integer representations respectively. The smallest binary 
number that can be represented is of the form 000 .... 0 which equates to 0 in 
base- 10, so z,,, = 0. Zmm is given by: 

z,, = 2' - 1 (2.4) 

where 1 is the length of the binary string used. 
Subtracting (2.2) from (2.3) gives: 

or 

Applying (2.4) and remembering that Zmin = 0 gives: 

Finally, rearranging (2.2) gives: 

or (as zmin = 0) 



c = r,," . 

~ u ~ t i o n s  (2.1), (2.5) and (2.6) then define the required ~ a n s f o ~ a t i o n :  

(2.7) 

AN EXAMPLE 
Given a problem where the unknown parameter x being sought is known to lie 
between 2.2 and 3.9, the binary string 10101 is mapped to this space as follows: 

x = 101 01 therefore z = 21 . 

Using (2.7): 

A QUESTION OF ACCURACY 
In the example above, 10101 was mapped to a real number between 2.2 and 3. 
The next binary number above lO1Of is 10110 = 22, which, using (2.7) implies 
r = 3.4065. This identifies a problem: it is not possible to specify any number 
between 3.3516 and 3.4065. 

This is a fundamental problem with this type of representation. The 
only way to improve accuracy is either to reduce the size of the search space, or 
to increase the length of the strings used to represent the unknowns. It is 
possible to use different  presentations that remove this problem [MI94]; 
however for most problems this proves unnecessary. By not making the search 
space larger than required and by choosing a suitable string length, the required 
accuracy can usually be maintained. (I = 20 implies an accuracy better than one 
part in a million.) For problems with a large n ~ b e r  of   owns it is 
important to use the smallest possible string length for each parameter. This 
requirement is discussed in more detail in the Chapter 6. 
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COMPLEX NUMBERS 
Problems with complex-valued unknowns can be tackled by treating the real 
and imaginary parts as a pair of separate real parameters. Thus the number of 
unknowns is doubled. 

2.4 MULTIPARAMETER PROBLEMS 
Extending the representation to problems with more than one unknown proves 
to be particularly simple. The A4 unknowns are each represented as sub-strings 
of length 1, These sub-strings are then concatenated (joined together) to form an 
individual population member of length L, where: 

M 

L=Cl,. 
j-l 

For example, given a problem with two unknowns a and b, then if a = 101 10 
and b = 11000 for one guess at the solution, then by concatenation, the 
genotype is a CB b = 1011011000. 

At this point two things should be made clear: firstly, there is no need 
for the sub-strings used to represent a and b to be of the same length; this 
allows varying degrees of accuracy to be assigned to different parameters; this, 
in turn, can greatly speed the search. Secondly, it should be realised that, in 
general, the crossover cut point will not be between parameters but within a 
parameter. On first association with GAS this cutting of parameter strings into 
parts and gluing them back together seems most unlikely to lead to much more 
than a random search. Why such an approach might be effective is the subject 
of Chapter 3. 

2.5 MUTATION 
In the natural world, several processes can cause mutation, the simplest being 
an error during replication. (Rates for bacteria are approximately 2x10e3 per 
genome per generation [FU90, BA96,p19].) With a simple binary 
representation, mutation is particularly easy to implement. With each new 
generation the whole population is swept, with every bit position in every string 
visited and very occasionally a 1 is flipped to a 0 or vice versa. The probability 
of mutation, P, is typically of the order 0,001, i.e. one bit in every thousand 
will be mutated. However, just like everything else about GAS, the correct 
setting for P, will be problem dependent. (Many have used P,,, =: 1/L, others 
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[SC89a] P,,, = l /(NdL ), where N is the population size). It is probably true that 
too low a rate is likely to be less disastrous than too high a rate for most 
problems. 

Many other mutation operators have been suggested, some of which 
will be considered in later chapters. Some authors [e.g. DA911 carry out 
mutation by visiting each bit position, throwing at random a 0 or a 1, and 
replacing the existing bit with this new value. As there is a 50% probability that 
the pre-existing bit and the replacement one are identical, mutation will only 
occur at half the rate suggested by the value of P,,,. It is important to know 
which method is being used when trying to duplicate and extend the work of 
others. 

2.6 SELECTION 
Thus far, the selection operator has been particularly simple: the best 50% are 
selected to reproduce and the rest thrown away. This is a practical method but 
not the most common. One reason for this is that although it allows the best to 
reproduce (and stops the worst); it makes no distinction between “good” and 
“very good”. Also, rather than only allowing poor solutions to go forward to the 
next generation with a much lower probability, it simply annihilates them 
(much reducing the genetic diversity of the population). A more common 
selection operator isptness-proportional, or roulette wheel, selection. With this 
approach the probability of selection is proportional to an individual‘s fitness. 
The analogy with a roulette wheel arises because one can imagine the whole 
population forming a roulette wheel with the size of any individual’s slot 
proportional to its fitness. The wheel is then spun and the figurative “ball” 
thrown in. The probability of the ball coming to rest in any particular slot is 
proportional to the arc of the slot and thus to the fitness of the corresponding 
individual. The approach is illustrated in Figure 2.2 for a population of six 
individuals (a, by c, d, e and f) of fitness 2.7, 4.5, 1.1, 3.2, 1.3 and 7.3 
respectively. 
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L 7.3 -, . .- 

e, 1.3 
b, 4.5 

Figure 2.2. Roulette wheel selection. The greater an individual's fitness the larger its slot and 
the higher its chance of going forward to the next generation. 

Implementing this operator is easier than it might seem. The 
circumference of the wheel is given by the sum of the population's fitness and 
the ball is represented by a random number between 0 and this sum. To 
discover which individuai's slot the ball fell into, the fitness of the population 
members are added together one at a time, but this time stopping when this new 
sum exceeds the random number. At this point the last individual to be added is 
the selected ind~vidual. The algorithm is summarised in below: 

1. 
2. 
3. 

Sum the fitness of all the population members. Call this sum&um. 
Choose a random number, Rs, between 0 andfsum. 
Add together the fitness of the population members (one at a time) 
stopping immediately when the sum is greater than R,. The last individual 
added is the selected individual and a copy is passed to the next 
generation. 

Algorithm 2. Implementing fitness-proportional selection. 

The selection mechanism is applied twice (from Step 2) in order to select a pair 
of individuals to undergo, or not to undergo, crossover. Selection is continued 
until N (the population size, assumed to be even) individuals have been 
selected. 

In this text the type of selection used is indicated by the value of v,, with 
v, = I: indicating fitness-proportional (roulette wheel) selection. 
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2.7 ELITISM 
Fitness-proportional selection does not guarantee the selection of any particular 
individual, including the fittest. Unless the fittest individual is much, much 
fitter than any other it will occasionally not be selected. To not be selected is to 
die. Thus with fitness-proportional selection the best solution to the problem 
discovered so far can be regularly thrown away. Although it appears 
counterproductive, this can be advantageous for some problems because it 
slows the algorithm, allowing it to explore more of the search space before 
convergence. This balance between the exploration of the search space and the 
exploitation of discoveries made within the space is a recurrent theme in GA 
theory. The more exploitation that is made the faster the progress of the 
algorithm, but the greater the possibility of the algorithm failing to finally 
locate the true global optimum. For many applications the search speed can be 
greatly improved by not losing the best, or elite, member between generations. 

Ensuring the propagation of the elite member is termed elitism and 
requires that not only is the elite member selected, but a copy of it does not 
become disrupted by crossover or mutation. 

In this text, the use of elitism is indicated by E (which can only take the 
value 0 or 1); if E = 1 then elitism is being applied, if E = 0 then elitism is not 
applied. 

2.8 CROSSOVER 
The Little Genetic Algorithm uses single point crossover as the recombination 
operator (in the natural world, between one and eight crossover points have 
been reported [GOT89,BA96,p 181). The pairs of individuals selected undergo 
crossover with probability P,. A random number R, is generated in the range 
0-1, and the individuals undergo crossover if and only if R, I P,, otherwise the 
pair proceed without crossover. Typical values of P, are 0.4 to 0.9. (If P, = 0.5 
then half the new population will be formed by selection and crossover, and 
half by selection alone.) 

Without crossover, the average fitness of the population,f,,, will climb 
until it equals the fitness of the fittest member,f,,. After this point it can only 
improve via mutation. Crossover provides a method whereby information for 
differing solutions can be melded to allow the exploration of new parts of the 
search space. 

As described in Chapter 1, single point crossover proceeds by cutting 
the pair of selected strings at a random locus (picked by throwing a random 
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number, RL, between 1 and L - 1) and swapping the tails to create two child 
strings. For example, if RL = 4, then: 

Parents Children 
1010/0010101 
I I I I / l  I I I I I I 

1010/11 I I I I I 
1111/0010101 

The new population now consists of N individuals (the same number as 
the original population) created by selection and crossover. Mutation then 
operates on the whole population except the elite member (if elitism is being 
applied). Once this is done, the old population is replaced by the new one and 
the generational counter, g, incremented by one. 

2.9 INITIALISATION 
Although as discussed in Chapter 1 the initial population is usually chosen at 
random, there are other possibilities. One possibility [BR91] is to carryout a 
series of initialisations for each individual and then pick the highest performing 
values. Alternatively, estimations can be made by other methods in an attempt 
to locate approximate solutions, and the algorithm can be started from such 
points. 

2.10 THE LITTLE GENETIC ALGORITHM 
Having now described how multi-parameter problems with non-integer 
unknowns can be tackled, and defined the mutation, selection, crossover and 
elitism operators, this knowledge can be brought together within a singular 
algorithm (Algorithm 3): 
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I 1. Generate an initial (g = 1) population of random binary strings of length 

zlk , where M is the number of unknowns and 1, the length of binary 

string required by any unknown k. In general lk  f 4; k f j .  
2. Decode each individual, i, within the population to integers Zl,k and then 

to real numbers rl,k, to obtain the unknown parameters. 
3. Test each individual in turn on the problem at hand and convert the 

objective function or performance, Sat, of each individual to a fitnessf;, 
where a better solution implies a higher fitness. 

4. Select, by using fitness proportional selection, pairs of individuals and 
apply with probability P, single point crossover. Repeat until a new 
temporary population of N individuals is formed. 

5. Apply the mutation operator to every individual in the temporary 
population, by stepping bit-wise through each string, occasionally 
flipping a 0 to a 1 or vice versa. The probability of any bit mutating is 
given by P,,, and is typically very small (for example, 0.001). 

6. If elitism is required, and the temporary population does not contain a 
copy of an individual with at least the fitness of the elite member, 
replace (at random) one member of the temporary population with the 
elite member. 

7. Replace the old population by the new temporary generation. 
8. Increment, by 1, the generational counter (i.e. g = g + 1) and repeat from 

Step 2 until G generations have elapsed. 
Jgorithtn 3. The Little Genetic Algorithm. 

M 

k-1 

USING LGA 
For many applications requiring the near optimisation of real or complex 
valued functions, LGA is a suitable algorithm. However, as mentioned several 
times already, the correct choice of algorithm is highlygroblem dependent and 
readers are encouraged to search the literature for successful applications of the 
technique to problems similar to their own. It may also prove worthwhile to 
consider some of the advanced operators discussed in Chapter4. The 
application of GAS to help solve difficult problems has a long history and the 
number of adaptations to the basic technique is growing all the time. An 
algorithm as simple as LGA will not be suitable for all problems by any means. 
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INSTALLING AND R ~ N N ~ N ~  LGADOS 
The disk enclosed with this book contains an implementation (LGADOS) of 
the LGA algorithm (although with 4 = f k ,  for a l l j  and k, i.e. all unknowns are 
represented with identica~ length strings). Both an ~ c o m p i l ~  
(LGADOS.BAS) and a compiled version (LGADOS.EXE) are included. The 
compiled version is designed for use with some of the exercises included at the 
end of chapters. The ~ c o m p i ~ e d  version can be adapted €or use with other 
problems. 

A listing (in BASIC) of the program is given both on the disk and in 
Appendix B. BASIC has been used for several reasons. Firstly, it is one of the 
easiest computer languages to ~ d e r s ~ d  and should cause few problems for 
those with experience in FORTRAN, PASCAL or C. Secondly, it complements 
code written in PASCAL and C published in other introducto~ text books 
([GO891 and [MI941 respectively). The disk also contains translations of the 
code into FORTRAN, PASCAL and C. To ensure maximum compatibili~ with 
the text, these are near direct translations from the BASIC code and therefore 
do not represent the best way of coding a GA in these languages. Those 
preferring to use a more professional FORTRAN GA should visit David 
Carroll's web site (see Appendix A) and ~ u ~ l o a ~  his GA code. 

Updated versions of the programs will be found at 
http://www,ex.ac.uk/cee/ga/ . This site should be visited and any updates 
d~wn~oaded before the programs are used. 

Lastly, most IBM compatible personal computers using ~ i n d o w s  3.x or 
DOS 6.x will have access to QBASIC-the e n v i r o ~ e n ~  used to write LGA- 
thereby allowing a~ te~ t ions  to be made easily and the student exercises 
completed. However, QBASIC does not contain a compiler, and therefore 
LGADOS will run rather slowly on anything but the simplest problem. If you 
wish to adapt the code to use on your own problems you will probably need 
either to purchase a BASIC compiler (shareware ones EW: available), use one of 
the translations on the disk (LGADOS.F, LGADOS.PAS and LOAD0S.C) or 
convert the code to a language for which you already have a compiler. This 
conversion should be relatively easy as no overly special structures or operators 
have been used. 

A word of caution: LGADUS has been written with simplicity rather 
than efficiency in mind and as such does not represent good p r o ~ i n g  
practice. There are much faster ways of performing some of the operations and 
better languages than BASIC in which to write such code. Those without the 
required knowledge may well find it advisable to enlist the help of a more 
experienced programmer to produce more efficient code. Having said this, in 
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the majority of real-world problems to which GAS are applied, the time taken 
for the GA to cycle through a generation of selection, crossover and mutation is 
much less than the time taken to estimate the objective functions, and hence, 
the fitness of the individuals. This is a very different situation to that 
encountered when examining the performance of a GA on established test 
problems. The function estimations in such tests are typically much simpler and 
much quicker to calculate than their real-world counterparts-which might take 
several minutes per estimation. This implies that, in the majority of cases, time 
is better spent producing code that can carry out these function evaluations as 
rapidly as possible, rather than considering how to increase the speed of the 
GA’s operators. BASIC allows-as do many other languages-the inclusion of 
mixed language routines. This means it is easy to add pre-existing routines to 
carry out the function evaluations. 

Another sensible approach to developing applications is to use some of 
the GA code available on the World Wide Web (see Appendix A), or contact a 
researcher who has recently published in a closely related field using GAS and 
enthuse them into helping out. 

LGADOS itself is examined in detail in Chapter 5 ,  a quick glance at 
which shows that the program is quite short, and capable readers are strongly 
encouraged to write their own version, in the language of their choice. This is 
recommended even for those that may end up using someone else’s code to 
solve research problems, as it ensures a full understanding of the processes 
involved. 

To run the compiled version, copy LGADOS.EXE to a new sub- 
directory (folder) on your hard drive and type LGADOS from that directory if 
using DOS, or double-click on LGADOS.EXE from File Manager (or 
Explorer). 

The user is presented with a series of options for N, P,, P m  etc. and 
possible test problems (Figure 2.3). 

Output is via two files: LGADOS.RES and LGADOS.ALL. 
LGADOS.RES lists the generation, g; fitness, fmm, of the highest performing 
individual; the average fitness of the generation, fme; and the unknown 
parameter values, Q, contained in the fittest individual. LGADOS.ALL lists g, 
f, rk and the binary chromosome C for all individuals in all generations, and 
hence can be very large. The files are comma separated and can be loaded into 
most spreadsheets for analysis and data plotting. 
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N, Population S i z e  (muat be oven) = 20 
1, Subetring Longth (all sub-atrings have the 8.m. length) = 10 
G, W a x .  Generation .I 50 
Pc, Crorrover Probability (2-0 and <-l) = 0.65 
Pnr, Mutation Probability ( 2 4  and cl) = 0.001 
e, Blitiam (1-on, O=off) - 0 
am, Scaling Conatant (a value of 0 implies no scaling) m 0 
Problem (l-Fl, 2mF2, 3-83, 4rF4, 5-f^2) - 2 

Figure 2.3. A completed input screen for LGADOSEXE. The meaning of cm will described 
later, but it should be set to zero for now. 

To test LGADOS, and the stochastic nature of GAS, a simple example: 

can now be completed using LGADOS. The following settings should be used: 

N=20 
l =  10 
G = 2 0  
P, = 0.6 
Pm = 0.01 
& = O  
c, = 0 
Problem =fz 

After setting these, press ENTER. LGADOS will display a simple 
listing of the average and best fitness within a single generation, together with 
the best estimate of x. These results are also stored within the file 
LGAD0S.RES. 

When LGA has run through all 20 generations print out LGADOSXES, 
run the program again, and print LGADOSRES. Finally repeat this process 
once more. If you compare the three sets of results they should be substantially 
different. (If not, you were simply fortunate.) The reasons for these differences 
are the stochastic processes embedded within the algorithm, i.e. the use of 
random numbers to pick individuals to mate, crossover sites and mutation 
locations. Therefore no two runs of a GA are ever likely to produce the same 
series of results (unless the random number generator was seeded with the 
same number both times). This is important to remember. If computer 
experiments are being run in an attempt to ascertain the best values of the 
internal GA settings (Pm, Pc etc.) for a particular problem, the results from one 
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GA run should not be relied upon to be meaningfuI. Rapid, or slow, progress of 
the GA could well be simply the result of the particular random numbers 
encountered (Figure 2.4). 

Figure 2.4. Sample results fiom multiple runs of LGADOS on the problem MAX[Ax) = xz]  ; 0 
S x <lo. The MLS show very different characteristics Vw plotted). 

It should be noted that although averaging solution vectors (i.e. 
parameter values) produced by GAS provides a way of monitoring progress and 
producing pedomance measures for the algorithm, there is little point in 
averaging sofution vectors when dealing with real problems once the i n t e d  
GA settings have been established. In fact, not only is averaging solution 
vectors of little benefit, but it can also lead to quite erroneous solutions. Figure 
2.5 shows a hypothetical one-dimensional fitness landscape. If two runs of a 
GA produce the solutions GI and a2 respectively, then the mean of these 
solutions is ~ 3 - a  very poor result. Such a space would be better tackled with a 
long GA run, whilst ensuring the population remained diverse, or by multiple 
runs disregarding all but the best solution. 

In this text, the number of multiple runs made to produce a result is 
denoted by X. 
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8 -  

6 -  

'I. 

4 -  

2 -  

Figure 2.5. A potential pitfall of averaging solution vectors from multiple runs of a GA, 
U ]  = (a1 .t u$2. 

2.1 1 OTHER EVO~UTION~Y ~ P R O A C ~ E S  

Genetic algorithms are not the only evolutionary approach to search and 
optimisation. 

Evolutionary Programming [F066] typically uses a representation 
tailored to the problem (e.g. reals, not binary). All N individuals are selected 
and a representation specific, adaptive mutation operator used to produce N 
offspring. The next generation is then selected from the 2N individuals via a 
fitness-biased selection operator. 

Evolution Strategies originally used N = I together with a mutation and 
selection operator. This has been extended [SC8 1 J to N 1 1, with mutation and 
recombinaiion to create more than N offspring. Selection is then used to return 
the population to N individuals. 

For an overview of such approaches see [BA96, p57-60, BA91 and 
SP931. 
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2.12 SUMMARY 

In this chapter the algorithm has been extended to deal with multi-dimensional 
problems of non-integer unknowns. The selection operator has also been 
improved to allow use to be made of the distinction between “good” and “very 
good”. 

A comparison of biological and GA terminology has been made and the 
robustness of the algorithm qualitatively compared to more traditional methods. 

The problem of limited accuracy caused by discretisation of the search 
space, implied by the use of a fixed binary representation, has been considered 
and seen to cause few difficulties for many problems. 

A simple genetic algorithm, LGA, has been introduced and used to 
solve a trivial problem. This has allowed one of the potential pitfalls caused by 
the stochastic nature of the method to be discussed. 

In the next chapter, some of the reasons why GAS work well across a 
wide range of problems will be further considered. 

2.13 EXERCISES 
1. 

2. 

3. 

4. 

5 .  

6 .  

Within the terminology used in GAS, characterise the difference between 
the genotype and the phenotype. 

Derive (2.7) 

Given I =  4, what is the highest fitness that can be found by a binary 
encoded GA for the problem MAX[sin’’(x)]; 0 I x I 3? 

If N =  6 withfi = 1,fi = 2,f3 = 3,f4 = 4,h = 5 andfa = 6, how many times 
is the individual with f= 4 likely to be picked by fitness proportional 
selection in a single generation? What is the minimum and maximum 
possible number of times the individual withf= 6 might be picked? What 
problem does this indicate could arise in a GA using fitness proportional 
selection? 

Write, in a programming language of your choice, a GA similar to LGA. 

Use LGADOS, or your own code, to study the evolution of a population 

whilst it explores the search space given by f = x s i n 4  ( x i )  ; 0 5 X i  I A , 
2 

1-1 



34 

i = 1,2 . Plot the movements of the population across the search space (as a 
hct ion of g) as a series of (XI, x 2 , f )  surface plots. 
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CHAPTER 3 

Although the roots of evolutionary inspired computing can be traced back to 
the earliest days of computer science, genetic algorithms themselves were 
invented in the 1960's by John Holland. His reasons for studying such systems 
went beyond a desire for a better search and opti~sation algorithm. Such 
methods were (and stilf are) considered helpfirf abstractions for studying 
evolution itself in both natural and artificial settings. His book Adapiafion in 
Natsrral and Ari@cial systems from 1975 (and now updated) was, and still is, 
inspirational. 

With the aid of his students Holland developed the GA m e r  during 
the 1970'9, He also produced a theoretical framework for ~ d e r s ~ d i n g  how 
GAS actually work. Until relatively recently this schema theory formed the 
basis of most theoretical work on the topic. 

Exactly why Genetic Algorithms work is a subject of some controversy, 
with much more work being required before all questions are finally answered. 
However the subject is not without foundations. These fo~dations have 
emerged from two separate directions. One is based on attempts to provide a 
mathematical analysis of the underlying processes, the other on computer 
simulations on hct ions that reflect aspects of some of the problems to which 
GAS have been applied (or ones that GAS might have difficulty with), 

There are some very good reasons why, even as p~ctjtioners rather than 
theorists, it might be beneficial for the subject to have a theoretical fo~dation. 
In particular, a knowledge of the type of problems where GAS might, or might 
not, perform well (or even work) would be extremely useful. Equally useful 
would be guidance on the degree to which such algorithms might outperform 
more traditional methods. 

Much of the work in this area is not suitable for an i n ~ o d u c t o ~  text" 
For an overview the reader should see the series Fo~ndu~io~s of Genetic 
A Z g ~ ~ ~ f ~ ~ s  m91 ,WH93,WH95]. However, a brief consideration of the 
subject is we1 worth the modest ef€ort required. In the following, both a largely 
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theoretical method and a more applied approach will be considered. The 
theoretical work is based on Holland’s original schema theorem, popularised by 
Goldberg [G089]. The applied work is based on the systematic adjustment of 
internal settings when using a GA to tackle a series of test functions. 

Both approaches are required because while most theoretical work on 
GAS has concentrated on binary alphabets (i.e. strings containing only 0’s and 
l’s), fitness-proportional selection and pseudoboolean functions (i.e. functions 
expressed using 0’s and l’s), practitioners have used a vast array of 
representations and selection methods. Results therefore do not necessarily 
translate between these approaches, implying yet more caution when choosing 
settings and deciding between various algorithms etc. 

3.1 HISTOIUCAL TEST F”CTI0NS 

Before looking at schema theory there is a need to look at some of the 
theoretical test functions (or artficial landscapes) used to examine the 
performance of varying GAS. These functions are not only of historical interest. 
They, together with more complex functions, are often suited to the testing of 
user developed codes. 

Although typical test functions are very useful because they allow for 
easy comparisons with other methods, they may have little relevance to real- 
world problems. Thus care must be taken not to jump to conclusions about 
what is best in the way of algorithm or settings. Often such functions have been 
too simple, too regular and of too low a dimension to represent real problems 
(see comments in [DABlb] and EWH95al). Bgck [BA96,p138] suggests sets of 
functions should be used, with the group covering several important features. 
The set should: 

1. consist exclusively of functions that are scalable with respect to their 
dimension M, i.e. the number of unknowns in the problem can be changed 
at will; 

2. include a unimodal fie. single peaked),  continuo^ function for c o m p ~ ~ n  
of convergence velocity (see below); 

3. include a step function with several flat plateaux of different heights in 
order to test the behaviour of the algorithm in case of the absence of any 
local gradient information; and 
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4. cover multimodal (i.e. multi-peaked) functions of differing complexity. 

Although many others had been investigating genetic algorithms for 
some time, De Jong's dissertation (published in 1975) Analysis of the 
Behavlour of a Class of Genetic Adaptive Systems [DE75] has proven to be a 
milestone. One reason for this is the way he carried out his computer 
experiments, carefully adjusting a single GA setting or operator at a time. The 
other is the range of functions (or problems) on which he chose to test the GA. 
These functions, together with additions, are still used today by some to make 
initial estimates of the performance of their own GAS. In fact it is well worth 
coding up a subset of these functions if you are writing your own GA (for 
function optimisation), simply so that you can check that all is proceeding 
according to plan within your program. If you are using a GA you did not write 
then this is still a worthwhile exercise to prove that you have understood the 
instructions. The idea of using test functions to probe the mechanics and 
performance of evolutionary algorithms has continued to the present day. For 
an excellent modem example see Back's recent book [BA96]. 

De Jong's suit of functions ranged from simple unimodal functions of 
few dimensions to highly multimodal functions in many dimensions. Unlike 
most research problems, all of them are very quickly calculated by computer 
and therefore many generations and experiments can be run in a short time. 
Adapted versions of three of the functions (together with some additions) are 
listed in Table 3.1, and two-dimensional versions of several of them presented 
in Figures 3.la to 3.ld. 

MEASURING PERFORMANCE 
De Jong used two measures of the progress of the algorithm: the off-line 
performance and the on-line performance. The off-line performance j& is a 
running average of the fitness of the best individual, f-, in the population: 

The on-line performance,f, is the average of all fitness valuesJ calculated so 
far. It thus includes both good and bad guesses: 
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Function 

3 

f = 4 = 7 9 - c x ;  
1-1 

f =F, =4000-100(x~-x2~+(l-xl) '  

5 

f = & = 26 - C Z N T ( x J )  
]=I 

( s i n , / m ) l  - 0.5 f =F4 ~ 0 . 5 -  
(1 + 0.001(x: + x;y 

f = F6 = A - 2 0 e x p  [ -0.2 p3] - 

- -[; m $0s(2-,i] 530) + 20 

Limits 
- 5 . 1 2 I ~ j I 5 . 1 2  

-2.048 5 xj 5 2.048 

-5.12 <xj 5 5.12 

-100 I X j  5 100 

-20Lxjs30 

Table 3.1. Adapted versions of various test functions: De Jong's (Fl to F3), Davis (F4) 
[DA91,SC89a] and Back (F5 and F6) [BA96]. The function INT(-) returns the nearest integer 
less than or equal to (-). A is chosen to ensure a maximisation problem. Back [BA96] also 
presents an interesting fractal function based on the Weierstrass-Mandelbrot function 
[MA83,FE88]. 
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-100 -so 0 50 100 

*I 

(dl 
Figures 3.1 (a) to (d). Two dimensional versions of the test functions of Table 3.1: selected 
&om [DE75 and G0891, F1 to F,; and a section through the global optimum of (F4) 
[DA91 ,SC89a]. 

De Jong actually used six algorithms or reproductive plans for his GA 
experiments. Here, tests are restricted to testing the effect of mutation rate on 
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the rate of convergence of LGA (studying the effect of I?, P, etc. is one of the 
exercises at the end of the chapter). 

Another useful measure is the convergence velocity [adapted from 
BA96q1511, Y: 

It is important that such performance measures are averaged over if sensible 
results are to be achieved. For complex multimodal functions, multiple runs are 
~ ~ k e ~ y  to find the same finai o p t i m ~  and one way of judging success is to 
plot a histogram of the number of times local optima of similar value were 
found. 

Figures 3.2 and 3.3 show the effect of P, on fma (the maximum fitness 
in any generation) rather than&,, or&@ In general, it is probably better practice 
to plot the number of objective function evaluations on the abscissa rather than 
the generation. This is because in tests where I? varies or where f is not 
calculated for all individuals in each generation, this provides a better 
indication of computational effort. In fact, if P, << 1 and P, = 0 then very few 
new structures are created each generation, and LGA becomes a very wasteful 
algorithm because it re-calculatesf; for all i each generation. 

The plots indicate that the success of different GA settings depends on 
the function. For F1 P m  = 0.3 is better than P m  = 0.003, for F3 the opposite is 
true. Further experimentation (left to the exercises at the end of the chapter) 
shows that similar resuits are obtained for the values of N and Pc. Interestingly, 
the independent estimation of the best value for each setting will not 
necessarily lead to the optimum set. In conclusion, there is no golden set of GA 
parameters; some sets work well with one type of function but less well with 
others. The same is true of the form of the algorithm itself. 
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Figure 3.2. The progress of fm for test function Fl and various settings of P ,  (N= 20, 
P,=0.65,1= 10,k- l ,X=20).  
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Figure 3.3. The progress off- for test function F3 and various settings of P,,, (N=20 ,  
P, = 0.651 = 10, E = 1, B =  20). 
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THE PROBLEM OF CONVERGENCE 
The above experiments indicate that, although LGA was able to find 
approximate optimum values of the test functions quickly, its progress was by 
no means linear. Initial progress is rapid and the value off- soars. However 
this progress is not maintained. One clue to the reason for this behaviour can be 
gleaned if the level of genetic diversity within the population is plotted against 
generation; another from a consideration of the likelihood of progression to the 
next generation under roulette wheel selection. 

THE APPLICATION OF SCALING 
If early during a run one particularly fit individual is produced, fitness 
proportional selection can allow a large number of copies to rapidly flood the 
subsequent generations. Although this will give rapid convergence, the 
convergence could quite possibly be erroneous or only to a local optimum. 
Furthermore, during the later stages of the simulation, when many of the 
individuals will be similar, fitness proportional selection will pick 
approximately equal numbers of individuals from the range of fitnesses present 
in the population. Thus there will be little pressure distinguishing between the 
good and the very good. 

What is needed is a method whereby particularly good individuals can 
be stopped fiom running away with the population in the earlier stages, yet a 
degree of selection pressure maintained in the final stages. This can be 
achieved by various mechanisms; one being the use of linearfitness scaling. 

Linear fitness scaling works by pivoting the fitness of the population 
members about the average population fitness. This allows an approximately 
constant proportion of copies of the best individuals to be selected compared 
with average individuals. Typical values for this constant, cm, are in the range 
1.0 to 2.0. When cm equals 2, then approximately twice the number of best 
individuals will go forward to the next generation than will average individuals. 
To achieve this, the fitness of every population member will have to undergo a 
scaling just before selection. This scaling needs to be dynamic. The fitnesses 
will need to be drawn closer together during the initial stages and pulled further 
apart during the later generations. The required scaling is achieved using the 
linear transformation: 

wherefi is the true fitness of an individual, i, andA the scaled fitness. 
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As already stated, the mean fitness of the population foye is assumed to 
remain unchanged, so: 

An add~tional requirement is that 

Where fiat is the scaled fitness of the best individual. 
This implies that: 

Unfortunately, such a transformation can produce negative scaled fitnesses. 
These can be eliminated in various ways, the simplest (but rather crude) way 
being just setting any that occur to zero. In LGADOS, setting c,,, itself to zero 
stops scaling from being applied. 

Many other scaling procedures are possible and are discussed in the 
literature. An alternative approach is to use a different selection mechanism, as 
considered in Chapter 4. 

Scaling can be important with even simple problems, as the following 
illustrates. LGA can be used to find the value of x which maximises 
F = 1000 + sin(@, 0 5 x I n; but as Figure 3.4 shows, there will be very little 
selection pressure on individuals as they will all have near identical 
performance. This implies that the algorithm will proceed rather slowly. Fitness 
scaling, as described above, could be used to increase the selection probabilities 
of better individuals. However, a simpler approach would be via a simple non- 
dynamic direct fitness function adaptation to ensurefspans a sensible range i.e. 
f= F - 1000. An alternative approach would be to use one of the selection 
mechanisms discussed in the next chapter. 
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Figure 3.4. Increasing the difference between population members via a simple non-dynamic 
direct fitness function adaptation; F = dashed line, F - 1000 = solid line. 

GENETIC DRIFT 
The amount of diversity can be measured in several ways. An easily calculable 
measure is qmm, the genotypic similarity between the string representing the 
fittest individual and all the other members of the population. 

To calculate qmnx the value of each bit in the fittest string is compared 
with the value of the same bit in all the other strings in turn. Any matching bits 
increment qmax by 1. When all the positions have been compared the result is 
normalised by dividing by the total number of bits in the other strings, i.e. the 
product (N-1)L. 

For example, given a population of four chromosomes of length five: 

C ]  I O I l O  
c2 O I l l l  
c3 lo l l0  
c4 l l l l 0  

with CI having the highest fitness, then q- is given by 



46 

0.9 

0.8 

10.7 
c. 

0.6 

0.5 

2+1+3+3+2  11 
(4-1)x5 15 

=-=0.73 . 

- _  
, - _ I  

- 
,' 

- 

- 

- 

- 

Plotting il- for one of the earlier experiments gives Figure 3.5; here 
the population is seen to rapidly lose its diversity if scaling is not used. By 
including linear fitness scaling the diversity is seen to fall less rapidly in the 
first few generations, implying a greater degree of exploration. In later 
generations, qmar continues to rise in an almost linear fashion because of the 
higher selection pressure present (implying a greater degree of exploitation). 

0 10 20 30 40 50 

g 

Figure 3.5. The progress of the similarity measure )~mnr. The use of scaling produces a more 
linear growth in )lam ( f=x ' ,  0 I x  In, N =  20, P, = 0.65, P, = 0.001, 1 = 10, E = 0, c,,, = 0 and 
1.2, J7 = 20). 

3.2 SCHEMA THEORY 
This is an approach introduced by Holland [H075] and popularised by 
Goldberg [G089]. 

A schema (plural schemata) is a fixed template describing a subset of 
strings with similarities at certain defined positions. Thus, strings which 
contain the same schema contain, to some degree, similar information. In 
keeping with the rest of this book, only binary alphabets will be considered, 
allowing templates to be represented by the ternary alphabet { O , l , # } .  Within 
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To calculate qmnx the value of each bit in the fittest string is compared 
with the value of the same bit in all the other strings in turn. Any matching bits 
increment qmax by 1. When all the positions have been compared the result is 
normalised by dividing by the total number of bits in the other strings, i.e. the 
product (N-1)L. 

For example, given a population of four chromosomes of length five: 

C ]  I O I l O  
c2 O I l l l  
c3 lo l l0  
c4 l l l l 0  

with CI having the highest fitness, then q- is given by 
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any string the presence of the meta-symbol # at a position implies that either a 
0 or a I could be present at that position. So for example, 

I01 001 

Ill001 
and 

are both instances of the schema 

I##OOI. 

Conversely, two examples of schemata that are contained within 

01011I 

O I # I l l  

#I01 ##* 

are 

and 

Schemata are a useful conceptual tool for several reasons, one being that they 
are simpIy a n o t a ~ o n ~  ~ n v e ~ e n c e .  Imagine a simple o n ~ d i m e n s ~ o ~ l  
problem: 

MAxlf(x) = x q  ;o 9 x 5 51 1 

Clearly f ( x )  is at a maximum when x is maximum i.e. when x = 511 
(Figure 3.6). 
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Figure 3.6. The one dimensional hctionflx) = xz. 

5 1 1 is 11 1 11 11 1 I in binary. Examples of binary numbers approximately equal 
to 511 are: 

I 1  01 0101 I, 
I I I 1  I01 00, 
110001110and 
I I101 11 01. 

Examples very far from 5 1 1 are: 

00001 1101 , 
000000000, 
000001 01 0 and 
00001 001 0. 

Contrasting these two sets of binary numbers it becomes apparent that the near 
maximum values of x are all instances of 

I I #######. 
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150000 - 
'? 

100000 - 

50000 - 
0 -  

Thus II####### provides a convenient notation for the numerous binary 
strings that represent a near optimal solution to the problem (Figure 3.7). 

:/ I10000000 or 384 
\ 

i 250000 

200000 I I####### 
\ 

4 , , , . , . , . d 
0 100 200 300 400 500 

X 

Figure 3.7. Ax) = x2. The line x = 384 = IlOOOOOOO, indicates the minimum value any string 
containing the schema II####### can have and is therefore the boundary of the schema. Ail 
other instances of this schema lie to the right of this line. 

There are a great number of possible schemata within a single string. 
Given the randomly generated four bit string, 

1011 

the list of all possible schemata is 

101#, 
IO#I ,  
I # l l ,  
#011, 
I O##, 
H I # ,  
1##1, 
#01#, 
#O#I ,  
# # I I ,  



1 ###, 
#O##, 
##i#, 
###I,  
#### and 
1011, 

or 16 entries. 16 = 24; for any real string of length L there are 2L possible 
schemata. For an a r b i ~ ~  string, each bit can take the value f or 0 or #. So 
there are 3 possibilities for each bit, or 3 x 3 ~ 3 ~ 3  possibilities for a string of 
length 4. For a string of length 200 (a number typical of that found in many real 
GA applications) there are therefore 3200 (~3x1095) schemata to be found (c.f. 
1 080, the number of stable particles in the universe). 

In general, for an alphabet of cardinality (or distinct characters) k, there 
are (k + 1)L schemata. For a population of N real strings there are N k ~  possible 
schemata. The actual number of schemata within a population is likely to be 
much less than this for two reasons. Firstly, some schemata can simultaneously 
represent differing strings, for example, given N = 2, L = 3 and the population 
(101, I l l ) ,  a table of possible schemata can easily be formed (Table 3.2). 

c, = 101 
#01 
I # ]  
10# 
##I 
#O# 
I ## 
### 
101 

Table 3.2. Possible schemata for a particular population of 2 strings and L = 3. 

This table contains 16 schemata (8 for each string), but only 8 are unique. For 
other populations this reduction may be less dramatic. If, once more, N =  2 and 
I = 3, a possible population is { 111,000); then there will be only one shared 
schema, namely ### and hence there are 15 unique schemata. Secondly, not all 
the population members themselves are likely to be unique, particularly in an 
algorithm that has cycled through many generations and is near convergence. 
Thus the number of schemata in the population will change as the generations 
go by, but will always be < NkL. 
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Not all schemata are equal. The area of the search space represented by 
a schema and the location of this area depend on the number and location of the 
meta-symbols within the schema. Schema such as I#### and O#### include 
much larger regions of the search space than lol l#  or 0010#. Schemata are 
typically classified by their de$ning length and their order. The order o of a 
schema S is the number of positions within the schema not defined by a meta- 
symbol, i.e. 

o ( S ) = L - m ,  

where m is the number of meta-symbols present within a string of length 1. The 
order is therefore equal to the number of fixed positions within the schema: 

S=#l#O#;o(S)=2 

s= 11001; o(s) = 5 
s = #####; o(S) = 0 

S= llOI#; o(S) = 4 

The defining length d specifies the distance between the first and last 
non meta-symbol characters within the string: 

S= #1#0#; d(S) = 4 - 2  = 2 
S= 1101#; d(S) = 4 - 1 = 3 
S= 11001; d(S) = 5 - 1 = 4 
S =  #####; d(S) = 0 - 0  = 0 

It is worthwhile trying to visualise the different regions that such 
schemata cover. Figures 3.8 to 3.10 show the regions covered by a series of 
schemata for a one-dimensional problem. Most problems tackled using genetic 
algorithms have many more dimensions than this, but such a space makes it 
possible to get a feel for how schemata translate to physical regions within the 
problem space. In particular, low order schemata cover large regions of space 
and high-order schemata much smaller regions. 

The defining length and the order of a schema are not the whole story. 
Two schemata with identical values of o and d can ring-fence very different 
regions of space. Both ##O#O and 1#I## have o = 2 and d = 2 but no overlap 
(Figures 3.9 and 3.10). Despite this, the order and the defining length of a 
schema are very important indicators of usefulness and chance of survival 
within a GA. 
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Figure 3.8. Sketch of ###I# and the simple functionf= x ; 0 5 x 5 3 1, 
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Figure 3.9. Sketch of ##MI0 and the simple h c t i o n f =  x ; 0 5 x 5 31. 
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Figure 3.10. Sketch of l#l## and the simple fimctionf= x ; 0 5 x 5 3 1. 

3.3 SCHEMA PROCESSING 
A lot of rather brutal things can happen to any particular string within a GA. It 
can get fragmented by crossover, attacked by mutation or simply thrown away 
by the selection operator. Despite all this violence, it is reIativeIy easy to 
estimate how the number of instances of a particular schema might change 
during a GA run. This estimation throws light on just why GAS can be so 
successfully employed as optimisation routines, and why they might experience 
d i ~ c ~ ~  solving some types of problems. The result can only be an estimate 
because of the stochastic nature of the algorithm. The calculation proceeds as 
follows: 

If qZ is the number of instances of any particular schema S within the 
population at generation g, such that: 

then it would seem reasonable that if on average @ represents strings of above 
average fitness, then: 
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where the bar over @ indicates an estimate. 
Conversely, schemata that, on average, represent poorly performing 

strings will see their numbers decline. More precisely, if selection is carried out 
on a fitness-p~po~ional basis (e.g. by roulette wheel selection) the probabili~ 
Pi of selection (during a single selection event) for any individual (or string) is 
given by: 

In such a system, schemata will feel this selection pressure via the strings that 
are instances of each schema. If u(S,g) is the average fitness of all instances of 
S then: 

Equation (3.1) is the s c ~ e ~ ~  growth e q u f f ~ ~ o ~  ( i ~ o r i n g  the effects of 
crossover and mutation) and shows that the number of instances of any schema 
S in the next generation depends on the value of u in the current generation. 

Assuming that a particular schema remains constantly above average by 
~fme, (3.1) becomes: 

which is, 

or. 
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This implies that better (worse) performing schemata will receive exponentially 
increasing (decreasing) numbers of trials in the next generation. There are only 
N acts of selection per generation (assuming the whole generation is replaced 
each generation) yet the algorithm manages to simultaneously allocate 
exponentially increasing (decreasing) numbers of trials to a vast number (>> N) 
of schemata, seemingly effortlessly. 

THE EFFECT OF CROSSOVER 
The degree of disruption caused to individual schemata by crossover will 
depend on the schemata involved. The chromosome 

c1= OOOOI I I00 

contains (amongst many) the following two schemata: 

and 

If C1 is selected to mate with another string C2, then if the cut point is between 
the fourth and fifth digits, i.e. 

Cf = 0000/11100 

then SZ will survive in at least one of the children, no matter the form of C2. SI 
however will only survive if C2 also contains identical bit values in the two 
fixed outer positions. For most possible cut points it is clear that S2 will survive 
and SI will not. This is because dI>> d2. More specifically, the probability of a 
schema being destroyed by crossover is less than: 

Therefore, given a crossover probability of Pc, the chance of survival to the 
next generation is greater than or equal to: 



Apptying this reduction to the schema growth equation gives: 

THE EFFECT OF MUTATION 
The probability of a single bit surviving a single mutation is simply: 

1-P,. 

The greater the order of the schema the greater the probabili~ of disruption. 
With o{S) bits defined, the probability of the whole schema surviving will be: 

(1 - P, p@’ 
Applying this in turn to the schema growth equation, and ignoring lesser terms, 
gives: 

&(S, g + 1) = ~ u(syg)  IP(S,g) ( 1 - p, - dm - o(s)Pm) 
s”” (€9 L-1 

Thus m, low-order, above-average schemata are given e x ~ n e n t i ~ l y  
increasing numbers of trials in subsequent generations. Such schemata are 
termed building blocks. The building block hypothesis states that GAS attempt 
to find highly fit sohitions to the problem at hand by the juxtaposition of these 
building bocks [M194, p51] (see [F093] and [AL95] for criticisms). 

Somewhere between 2L and M L  schemata are being processed by the 
GA each generation. Many will be disrupted by mutation and crossover but it is 
possible (using ~ g ~ e n t s  which lie outside the scope of this book) to estimate 
a lower bound on the number that are being processed usefully, i.e. at an 
exponentially increasing rate. The answer is of order N3 (see [BE931 €or a 
recent discussion on this). The ability of the GA to process N3 schemata each 
generation while only processing N structures has been given the name implicit 
parallelism [H075,GR9 1 ,GR89]. 
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DECEPTION 
The above indicates that the algorithm might experience problems where it is 
possible for some building blocks to deceive the GA and thereby to guide it to 
poor solutions, rather than good ones. For example, i f p  occuss at: 

C* = 000000, and 

S l =  OO#### and 
s2 = ####OO 

represent (on average) above average solutions, then convergence would seem 
guaranteed. However, if the c o m b i ~ t ~ o n  of 5'1 and SZ: 

s3 = oo##oo 

is (on average) very poor, then the construction of C* might cause difficulties 
for the algorithm. 

Deception in GAS shares similarities with epistasis in biological 
systems, where the existence of a particular gene affects genes at other loci. 
With sufficient knowledge of the problem at hand it should be possible to 
always construct encodings such that deception is avoided. However, for many 
real-world problems this task might be of similar complexity to that of solving 
the problem itself. (See [GR93] for a discussion). 

3.4 OTHER ~ O ~ ~ C A L  APPROACHES 
Although schema analysis indicates that, via the exponential allocation of trials, 
the GA might form the basis of a highly efficient search algorithm, it leaves 
many questions unanswered. There has been much debate on how relevant the 
approach is for GAS working with real problems [h4I96, p125-1261. Others 
[MI92,F093,MI94b] have concentrated on the role of crossover rather than 
selection. It is interesting to note that although the analysis indicates the use of 
m i n ~  alphabets (i.e. binary) because they offer the greatest number of 
schemata, and the use of fitness proportional selection, those working with 
reai-world problems have found other encodings and selection mechanisms to 
be superior [WH89]. 

For an excellent introduction to some of these, and other, ideas the 
reader is directed to reference [MI96, p125-1521 and the discussions in 
[AN89]. 
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3.5 S-Y 
In this chapter, the idea of using test functions to ensure the correct operation of 
the algorithm has been introduced. Such functions can also be used to study the 
effect of various settings within the GA. The subject of premature convergence 
has been seen to be controllable to some extent by finding the correct balance 
between exploration and exploitation. A useful technique to help with this has 
been found to be the use of scaling. 

Schema theory has been outlined and the schema growth equation 
stated. The relative proportions of the search space covered by schemata of 
various orders and defining lengths has been demonstrated. 

There is much to do in the field of the mathematical foundations of 
GAS. In particular, there is a need to discover how performance can be 
maximised for various problem classes and how deception can be identified 
and avoided. 

In the next chapter combinatorial optimisation will be considered, along 
with the rather strange ideas of niches and species. Multicriteria problems are 
then discussed along with several advanced operators. 

3.6 EXERCISES 
1. Use LGADOS-EXE, or your own GA, to study the effect of N, L, Pc, P,,, 

and E on performance when maximising test functions F I  to F4 of Table 3.1. 
(LGADOS.EXE numbers the functions in the same manner as Table 1 .) 

2. Try and identify a single optimal set of N, Pc, P,,, and E for the test functions 
ofTable3.1. 

3. Add linear fitness scaling and the ability to calculate qmaX to your GA. 

4. Use LGADOS.EXE, or your own GA, to study the effect of c,,, on 
performance and qmax when maximising the test functions of Table 3.1. 

5 .  For f = x2, 0 5 x 5 127, what is the average fitness of 1#######, O###### and 
I 1 #####? 

6. Plot the progression with generation of the number of unique schemata 
within a GA for a simple problem. (A very low choice for L is 
recommended). 
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CHAPTER 4 

ADVANCED OPERATORS 

Although simple genetic algorithms, such as LGA, can be used to solve some 
problems, there are numerous extensions to the algorithm which have been 
developed to help improve performance and extend the range of applicability. 
These include more efficient crossover and selection methods, algorithms that 
deliberately hunt for local optima, combinatorial optimisation techniques, 
techniques to deal with multicriteria problems, and hybrid algorithms which 
combine the speed of traditional search techniques with the robustness of GAS. 

Being an introductory text, many of these extensions can not be given 
full justice and can only be outlined. For additional details, readers are directed 
to other texts, in particular references [MI94, ZA97 and BA961. In addition, 
some of the techniques are described in more detail and then applied to various 
problems in Chapter 6. 

4.1 COMBINATORIAL OPTIMISATION 
Many problems do not require the optimisation of a series of real-valued 
parameters, but the discovery of an ideal ordered list, the classic example being 
the Travelling Salesman Problem (TSP). In the TSP a fictitious salesperson is 
imagined having to find the shortest route, or tour, between a series of cities. 
Typically the rules state that no city is visited more than once. Other examples 
of such combinatorial problems are gas and water pipe placement, structural 
design, job-shop scheduling, and time tabling. 

A great deal of effort has been applied to trying to find efficient 
algorithms for solving such problems and this work has continued with the 
introduction of GAS. The main problem with applying a genetic algorithm, as 
described so far, to such a problem is that crossover and mutation have the 
potential to create unfeasible tours. To see why t h i s  is, consider the TSP 
described by Figure 4.1. Here there are eight cities, labelled a to h, arranged 
randomly on a plane. Table 4.1 lists the relative distances between each city. 
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Figure 4.1. A TSP. What is the shortest tour that connects all eight cities? 

City 
a 
b 

d 
e 
f 
g 
h 

C 

a b C d e f g h 
0 11 21 73 61 57 51 23 
17 0 31 13 72 14 66 40 
27 31  0 48 35 49 65 50 
73 73 48 0 47 82 113 95 
61 72 35 47 0 38 80 78 
57 74 49 82 38 0 48 65 
51 66 65 113 80 48 0 40 
23 40 50 95 78 65 40 0 

Table 4.1. Distances in km between the cities in Figure 4.1. 

One example of a tour might be (Figure 4.2), 

b c d e g  h f a ,  

another (Figure 4.3), 

c b g  f a  d e h. 

If single-point crossover is applied directly to these tours the result, cutting at 
the mid-point, is (Figure 4.4): 

b c d e a d e f  

and (Figure 4.5) 
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Neither of these represents a complete tour. 

Figure 4.2. The tour 6 c d e g hfu. 

Figure 4.3. The tour c b g f u  d e h. 
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Figure 4.4. The partial tour b c d e a d eJ; created by applying single point crossover to the 
tours b c d e g h f a  and c b g f a  d e  h. 

d @  

Figure 4.5. The partial tour c b g f g  hfa, created by applying single point crossover to the 
tours b c d e  g hfa and c b g f a  d e h. 

So, how can a crossover operator be designed that only generates 
complete tours? If the strings used to represent the tours are to remain of fixed 
length, then this also implies that each city can only be visited once. There are 
many ways of constructing such an operator. One would be to apply crossover 
as before, then reject any incomplete tours generated. However, this would 
require rejecting most tours and it is relatively easy to imagine far less wasteful 
algorithms. One possibility is Partially Matched Crossover (PMX) [GO89, 
~166-1791. 
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The TSP representation described above gives the strings a very 
different property to the strings used to respect real-valued optimisation 
problems. The position and value of an element are not unrelated. In fact, 
within the TSP it is only the order which matters. Ideally, the new crossover 
and mutation operators must not only create feasible tours but also be able to 
combine building blocks from parents of above average fitness to produce even 
fitter tours. 

PMX proceeds in a simple manner: parents are selected as before; huo 
crossover sites are chosen at random (defining the marching section) then 
exchange operators are applied to build the two new child strings. 

Returning to the previously defined tours, and selecting two cut points 
at random: 

tour 1 = b c / d  e g / h  f a 
tour 2 = c b / g  f a / d  e h. 

First the whole centre portion or matching section is swapped: 

tour 1' = b c /g f a / h f a 
tour2'= c b / d e g / d e  h. 

Neither of these tours is a feasible tour. In tour 1' there is no d or e and in tour 
2' cities a andfare not visited. As the strings are of fixed length, this means 
that both tours visit some cities more than once. In the case of tour 1' cities a 
and f are visited twice, tour 2' visits d and e twice. By definition, one of these 
repeats is within the matching section and one without. Also by definition, any 
city that is visited twice by one tour must be missing from the other tour. This 
suggests a way forward. Cities that are visited twice in one tour are swapped 
with cities that are visited twice in the other tour. Only one representative (the 
one not in the matching section) of such cities is swapped-othedse the 
process would be circular and unconstructive. So, in this example, a outside the 
matching section of tour 1' swaps with the d of tour 2', and similarly for the 
citiesfand the e. The two tours: 

tour 1'' = b c g  f a  h e d 
tour 2" = c b d e g a fh 

are formed, each of which is complete. 



64 

PMX is relatively easy to implement within LGA by making suitable 
alterations to the crossover operator and setting P, to zero. 

4.2 LOCATING ALTERNATIVE SOLUTIONS USING NICHES AND 
SPECIES 
In most optimisation problems the hunt is for the best possible solution. This 
might be the global optimum if this can be found, or a point in the vicinity of 
the global optimum if the problem is very large and difficult. However some 
problems are characterised by a search for a series of options rather than a 
unique solution vector. Problems in which these options reside at some 
distance from the global optimum are particularly interesting. In such cases 
there is a likelihood that the options are separated by regions which equate to 
much poorer solutions; rather than trying to avoid local optima, the idea is to 
try and hunt them down. Such a fitness landscape is illustrated by the 
multimodal function f l x )  shown in Figure 4.6. Although intuitively there is 
something distinctive about the values of x which equate with peaks infix), 
mathematically none of them gives rise to a fitness greater than many of the 
points near the global optima. This begs the question, why hunt specifically for 
such values of x if any point near the global optimum is likely to generate 
higher fitness anyway? 

10 
X' 

~ , , , . , . , * , , , . , *  ~ , , . , ~ , ,  I #  % ,  
0 2 4 6 8 10 12 14 16 18 20 22 

X 

Figure 4.6. A multimodal hc t ion  with a global optimum at x* and secondary, or local optima, 
at x,, x2 and x3. Any value of x between x = x4 and x = x5 will give rise to a fitness, J greater 
than any of the local optima. So why even attempt to look for such local optima? 
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One reason for attempting such searches can be best explained by an 
example. If the problem characterised by the fitness landscape shown in 
Figure 4.6 was an architectural one, in which x was the angle of a pitched roof 
and f the inverse of the financial cost of the construction, then each local 
optima take on a significant meaning. They represent good, but not ideal, 
financial solutions of radically different form. If cost is the only criterion, then 
angle x* is the only choice; however if any of the solutions X I ,  x2 or x3 are 
deemed to be more in keeping with other, visual, desires then the architect 
might be able to convince the client to invest the small amount of extra capital 
required. Although there are many points close to the global optimum that offer 
better values offthan any of the local optima, their closeness to the global 
optimum may produce little justification for adopting such a design rather than 
the optimum. This is not so for those structures represented by the local optima. 

In essence, the optimiser is being used as a filter, a filter charged with 
the task of finding highly performing, novel solutions to the problem across the 
whole problem space and ignoring, as much as possible, all other points. 

One way of finding such optima is simply by the use of multiple runs. 
Beasley et. al. [BE93a,MI94,p176] indicate that if all optima have equal 
likelihood of being discovered then H should be set by: 

where p is the number of optima. As all optima will not generally be equally 
likely to be discovered, 

Figure4.7 shows a more complex search space. The quest is for a 
technique that can effectively filter out any points that generate a fitness less 
than some minimum &,". Such a filter would, if perfect, generate Figure 4.8, 
which is much easier to interpret than the original function. In the figures 
shown, this filtering is easy to apply by hand because the value off is known at 
every point (x,y) within the problem space. Ordinarily f is likely to be far too 
complex to be estimated at more than a small fraction of the search space. So a 
technique is needed that can hunt for peaks within a complex landscape 
(producing Figure4.9). This is somewhat ironic; up until now the central 
consideration has been the avoidance of local optima, now the desire is to 
actively seek them. 

will typically need to be much greater than this. 
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Figure 4.9. An approximate map. AsffxJlf is likely to be such that e n ~ e ~ t i o n  at a11 possible 
points (xy) is unfeasible, Figure 4.8 is unlikely to be realisable. Hence the requirement is to 
fmd a map giving the approximate locations of local optima. 

In nature the exploration of separate fractions of the search space (or 
niches) by subsets of the population (or species) occurs readily. In applying this 
to the GA, the two most important concepts turn out to be fitness sharing and 
restrictions on who can mate with whom. That mating has to be restricted to 
closely related strings is not altogether surprising, it is after all one of the 
definitions of a species. That sharing the fitness between strings is important is 
more surprising. 

SHARING 
The importance of sharing can be visualised by consideration of the two-armed 
bandit, or fruit machine illustration used in reference EG089, p186-1893. It is 
assumed that a team of players is playing a single machine. The question now 
arises, how many players should be allocated to each arm? If both arms pay out 
similar sums, at similar intervals, then the problem is trivial. However, if one 
( ~ 0 ~ )  arm pays out more than the other (but with identical ~e~uency) ,  
should ail players play this arm, or should some play one arm and some the 
other? If they all play the arm which pays the larger prizes the winnings will be 
greater, but the money will be divided between more players. Whether the team 
should divide itself and allocate differing numbers of players to each arm or not 
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depends on how any winnings are divided, or shared, between the team. If it is 
simply a free-for-all, or the winnings are carved up equally between all team 
members at the end of the evening, then all the players will migrate to 
whichever arm is slowly discovered to be better. However if a rule exists that 
monies should only be divided between players of the same arm, then a 
different behaviour will emerge. Migration will still occur to the better arm but 
after a while those playing the less good arm will learn that, although they win 
less as a group, they gain more individually because there are less members to 
share the winnings between. In short, they will have discovered that it makes 
sense to exploit a niche. 

The ratio of team members playing each arm is easy to calculate. If 
there are 25 members in the team and arm A pays €50 and arm B €40, then if all 
players play on A they will receive €50125 = €2 each on a pay-out. If they play 
B they receive €40125 = €1.60 each; whereas, if a s&& member decided to 
play B they would receive €4011 = €40. This is a very good incentive to desert 
A. A balance will occur once the individual pay-out from each arm is identical. 
This will occur when 

Payout, Payout, 

M A  m5 
-- -- 

where mi is the number of players on armj. In this illustration this will be when 

€50 €40 -=- 
mA m R  

As 

mA + m B  = 25 

substitution gives 

50 40 
25-m,  mg 
-----.=- 

or 

-11.1 m3 =-- 
40x25 
50 + 40 
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and therefore, 

mA = 25 -1 1.1 = 13.9 

With this split between the two arms, the pay-out will be €3.60 each, 
greater than the €2.00 each would receive if they all played A. 

So, the introduction of sharing allows different niches to be exploited to 
the benefit of all. Different sub-populations, or species, exploit these niches, 
with the number of individuals within a niche being proportional in same way 
to the fitness of the niche. If this result could be generalised to other problems a 
powerful optimisation approach will have been developed. Not only would the 
filtering and mapping of the local optima described earlier have been achieved, 
but the number of individuals exploring any single peak would be proportional 
to the height of the peak. This seems a sensible approach as it will ensure the 
global optimum will still receive more attention than a minor local optimum. In 
order to develop these ideas further, the meaning of the term species in this 
context will have to be clarified. 

SPECIES 
In the natural world mating rarely occurs across species boundaries. So far, the 
genetic algorithms considered have had no restrictions on who can mate with 
whom. That there might be advantages, for some problems, in introducing 
restrictions can be understood by considering how a single point crossover 
might proceed in the search space shown in Figure 4.10. 

If this function is mapped to a binary 4-bit string then -1 = 0000 and 
1 = 1111. These values both have maximum fitness v(x) = l), and thus one 
would expect any selection system to frequently pick them to mate. 
Unfortunately, such crossovers will often generate very sub-optimal strings. For 
example the crossover, 

oo/oo 
11/11 

produces 

001 1 

1100 
and 



70 

as children. Neither of these is anything near optimal. In general, in a complex 
landscape, matings between distant, well performing, individuals will 
frequently produce poor offspring. There might therefore be some benefit in 
ensuring that only like mate with like. 

Figure 4.10. The production of sub-optimal solutions from the crossover of highly performing 
strings. 

Goldberg and Richardson [GO871 introduced the idea of using a 
phenotypic-based sharing mechanism to re-allocate fitness within the 
population. The method makes use of a sharing function. This function is used 
to reduce the fitness of individuals who have a large number of close relations 
(phenotypically) within the population. This limits the uncontrolled growth of 
any particular species within the population; it also encourages the exploration 
of the whole of the search space and allows small ~pulations of i ~ d i v i d ~ s  to 
reside in any local optima discovered. The value of the sharing function sI fox 
an individual i depends on a sum of sharing values tg, between the individual 
and all other population members: 
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The value of r& itself depends on the phenotypic distance between the two 
individuals i and j. Several possibilities have been suggested and Figure 4.1 1 
illustrates one possibility. 

I 

Figure 4. I 1. One possible sharing function. The distance du is given by the absolute difference 
between the two phenotypes in this one parameter problem-the maximum difference being 
unity. (After [GO89 and G089aI). 

The method is implemented by t e m p o ~ l y  reducing the fitness of each 
individual temporarily to f skore, given by: 

A successfid application of the technique has been the work of Waiters, 
Savic and Halhal [HA971 who have used sharing with multi-objective 
problems within the water industry (see g6.8). 

As mentioned earlier, if lethals are to be avoided then some form of 
restrictions on mating may be required [H071,DE89]. Alternatively, in a 
similar manner to sharing, Eshelman and Schaffer [ES91,ES9la] bar mating 
between similar individuals in an attempt to encourage diversity. Yet another 
possibility is to only allow fit individuals, in particular the elite member, to be 
picked once by the selection mechanism in order to slow convergence. 
~ ~ f o u ~  in [MA95], compares severaf niching methods. 
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4.3 C O N S T ~ ~ T S  
Constraints can been visualised as giving rise to regions of the search space 
where no natural fitness can be assign. Such regions produce "holes" in the 
fitness landscapes (Figure 4.12). The question then arises of how to steer the 
GA around such holes. Lightly constrained problems pose few difkulties for 
GAS: the chromosome is decoded to a solution vector, which is in turn used 
within the problem to evaluate the objective function and assign a fitness. If 
any constraint is violated the fitness is simply set to zero. 

"." 

Y -1.0 

Figure 4.12. A fitness landscape with three large holes caused by the presence of constraints 
within a two-dimensional problem. 

Although attractive, this approach is unlikely to be successkl for more 
highly constrained problems (see [MI911 for some ideas). In many such 
problems the majority of possible solution vectors will prove to be infeasible. 
Even when this is not so, infeasible solutions may contain much usefbl 
i n fo~a t ion  within their chromosomes. An alternative approach is to apply a 
p e ~ l ~ ~ ~ c t i o ~  [FCI89] to any solution that violates one or more constraints. 
This function simply reduces the fitness of the individ~l ,  with the amount of 
reduction being a function of the violation. 

The form of the penalty function must be chosen with care to maintain 
the correct balance between exploitation and exploration. 
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A W e r  approach is the use of problem dependent crossover and 
mutation operators which do not allow the formation of infeasible solutions, for 
example the crossover operator introduced at the beginning of this chapter 
when discussing c o m b i ~ ~ o ~ a l  optimisation. 

Another approach is illustrated in the work of Walters, Savic and Halhal 
[HA971 where a messy GA [G089a,G091a,G093] is used to build 
increasingly complex solutions from simple solutions that are known to be 
feasible (see $6.8). 

In reference [PE97] Pearce uses a technique based on f i z z y  logic to 
resolve c o n s ~ n t s  within a GA environment and discusses constr~nt 
resolution in general, Powell and Skolnick, in [PO93], and Smith and Tate, in 
[SM93], make general comments on non-linear constraints and penalty 
~ c t i o n s  respectively. Reference [MI95 J discusses the strengths and 
weaknesses of several approaches. 

4.4 MULTICRITEIUA OPTMSATION 
The optimisation problems considered so far have been expressed in a form 
where, ~ ~ o u ~  many parameters might be being optimised in parallel, the 
fitness of any particular solution can be specified by a single number, Not all 
p ~ b ~ e m s  share this a ~ b u t e ,  In some problems the success of a p ~ c u l a r  
solution can be estimated in more than one way. If these estimations cannot be 
combined, then a single measure of the fitness will be unavailable. 

An example might be an attempt to minimise the cost of running a 
chemical plant: some of the possible operational strategies for the plant which 
reduce the financial cost of production might have the side-effect of increasing 
the likelihood of accidents. Clearly these solutions need to be avoided, whilst at 
the same time minimising the production cost in so far as practicable. Most 
importantly, solutions which are simultaneously better at minimising costs and 
reducing accidents need to be identified. The concept of Pareto o ~ t ~ ~ a ~ ~ ~  
[GO891 can be used to identify such solutions. Figure 4.13 shows six possible 
strategies for operation of the fictitious plant. 
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Figure 4.13. Six strategies for the operation of a chemical plant. 

Solution a is optimal in terms of cost; f i n  terms of number of accidents. 
Solutions c and e are termed dominated because other solutions can be 
identified that simultaneously offer both fewer accidents and reduced cost, 
these are the nondominated solutions. 

If estimations are made for a large number of operational strategies then 
the scatter plot of the outer points might take on the form of Figure 4.14. 

The Pareto optimal set is then the set of all nondominated solutions on 
the inner edge of the scatter. Having identified this set (or the equation of the 
curve, or front, joining them) it is up to the management and workforce of the 
plant to settle on a particular strategy, drawn from this set. 

Pareto optimality can be used in at least two ways to drive a rank-based 
selection mechanism within the GA. Nondominated sorting [SR94] identifies 
the Pareto optimal set and assign all members the rank of 1. These individuals 
are then removed from the ranking process. The next optimal front is identified 
and its members given the rank of 2. This process is repeated until all 
individuals have been ranked. BASIC code to carry out this procedure is given 
in Figure 4.15 and the approach is demonstrated in $6.8. An alternative 
approach is the Pareto ranking scheme of reference [FON93] where rank is 
proportional to the number of individuals that dominate the individual in 
question (Figure 4.16). 
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Figure 4.14. Surface formed from all possible strategies for the chemical plant's operation (only 
the outer points are shown). The Pareto optimal set (or tiont) is formed from the nondominated 
solutions. 

FOR i R a n k  = 1 TO N 'Loop over all possible ranks. 

I F  R a n k  ( i  ) = 0 THEN 'Only process unranked individuals. 
FOR i = 1 TO N 'Pickan individual. 

FOR j = 1 TO N 'Loop over all other individ~ls. 
I F  i <> j THEN 'Check fordomination. 

END I F  
IF F l ( i )  < F l ( j )  AND F 2 ( i )  < F2(j) THEN EXIT FOR 

NEXT j 
I F  j = N t 1 THEN R a n k ( i )  = i R a n k  'Anondominatedsolutionh~ 

END IF 'been identified 
NEXT i 

FOR i - 1 TO N 'to zero. 
Wow remove the current nondominated front by setting the fitness of individuals on the front 

I F  R a n k ( i )  = i R a n k  THEN 
F l ( i )  = 0 
F Z ( i )  = 0 

END I F  
NEXT i 

NEXT i R a n k  
Figure 4.15. Nondominated sorting (continues over). 
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FOR i = 1 TO N 'Re-assign fitness basedonrank 

NEXT i 
Figure 4. I5 (continued). BASIC code to cany out nondominated sorting of a population of size 
N. The problem contains two measures of fitness, F1 and F2, which are reduced to a single 
measure F by letting F =l/Rank. 

F ( i )  = 1 / Rank(i) 

6 

5 

4 
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Figure 4.16. Pareto ranking for a problem of two criteria giving rise to two fitness functionsfi 
mdh. 

Both techniques require the use of fitness sharing to ensure that the 
population covers a large enough fraction of the search space [HA97]. (See 
[GR97] for some recent ideas about this). 

4.5 HYBRID ALGORITHMS 
Genetic algorithms are not very good at finding optimal solutions! However 
they are good at navigating around large complex search spaces tracking down 
near-optimal solutions. Given enough time a GA will usually converge on the 
optimum, but in practice this is not likely to be a rapid process. There are many 
other, more efficient, traditional algorithms for climbing the last few steps to 
the global optimum. This implies that a very powerful optimisation technique 
might be to use a GA to locate the hills and a traditional technique to climb 
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them. The final a l g o ~ ~  will depend on the problem at hand and the resources 
available. 

The simplest approach to this hybridisation is to use the real-valued 
solution vector, represented by the fittest individual in the final generation, as 
the starting point of a traditional search. The traditional search algorithm could 
be either a commercial compiled one, such as a NAG routine, or taken Erom a 
text on numerical methods. 

Another, approach is to stay with the string representation used by the 
GA and attempt to mutate the bits in a directly constructive way. One way to 
achieve this is illustrated in the estimation of the ground-state of a spin-glass 
presenbd in $6.4. In this example, local hills are climbed by visiting each bit 
within the string in turn, mu~ting its value and re- valuating the fitness of the 
population member. The mutation is kept if the fitness has improved. Another, 
very simple, possibility is to hill-climb by adding (or subtracting) I to the 
binary representation of the first unknown parameter in the elite string (e.g. 
1101 + I = lllO), re-evaluating the fitness, and keeping the addition 
(subtraction) if it has proved beneficial. This addition (subtraction) is repeated 
until adjusting the first unknown parameter shows no benefits. The other 
parameters are then treated in the same way. 

Working with the GA strings themselves has the advantage that such 
techniques can be applied at any moment during a genetic algorithm's run. 
Moving to a real encoding can make it difficult to return to a binary string 
represented GA, because some parameters may have taken values that can not 
be represented directly by such a string (see Chapter 2). However, such real- 
valued methods are typically highly efficient. One way around this problem is 
not to use a binary string representation within the GA (as discussed in $4.7). 

If the search space is believed to be complex at many scales, 
abandoning the GA in favour of another method too soon can lead to an 
erroneous solution. The liquid crystal problem studied in 56.5 contains just 
such a space. In this work, using the final solution vector as the starting point 
for a more constrained GA-based search was found to be effective. 

Other methods of improving performance and convergence speed make 
use of heuristics. One such example is the use of inter-ci~ distances within a 
TSP (i.e, making it no longer blind). Grefenstette et, al. used this information to 
produce an improved uniform-type crossover operator. Rather than building 
child strings by taking alternating cites from each parent, the child inherits the 
city which is geographically closest to the current city [GR85]. 

Alternatively, the fitness evaluations-which are typically the most 
time consuming element of the algorithm4an initially be done in an 
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approximate manner (see $6.5). For example, in problems which use least- 
squares minimi~tion of experimental data, this can be achieved by initidly 
only presenting the GA with a random, regular or other subset of the data and 
running a fixed number of generations. The initially subset is then enlarged to 
include more of the data and further generations processed [MIK97a]. This 
process is repeated until all the data is Wing considered. 

4.6 ALTERNATIVE SELECTION METHODS 
The selection pressure within the GA is centrai to its performance, and the 
appropriate level is highly problem dependant. If the population is pushed too 
hard, rapid progression will be followed by near stagnation with little 
progression i n f ,  This is unsurprising. With a high selection pressure the 
population will become dominated by one, or at most a few, super-individuals. 
With very little genetic diversity remaining in the population, new areas of the 
problem-space become machable-except via highly unlikely combinations 
of mutations. Another way of visualising the effect of this pressure is by 
considering how directed the mechanism is toward a sub-set of the population 
( ~ i c a l l y  the best). Highly directed m e c ~ s m s  will result in a p a t h ~ ~ ~ n ~ t e d  
search, less directed mechanisms will result in a volume-orientated search. 

The selection pressure can be characterised by the take-over time, r 
[G091]. In essence, this is the number of generations taken for the best 
individu~ in the initial generation to completely dominate the pop~&tion. 
(Mutation and crossover are switched om. The value of f depends not only on 
the selection mechanism, but for some mechanisms, on the function being 
optimised. If fitness proportional selection is used, then for: 

1 
a 

f ( x )  = xa , f = -(Md -1) 

and for 

1 
a f(x)=exp(ax), f=- -MnN 

[GO9l,BA96,pl68], i.e. of the general order MnN. 
Other selection mechanisms are common (see [G091]) and in essence 

they all try to encourage the GA to walk a fine tight-rope between exploitation 
and exploration, whilst minimising sampling errors. Such mechanisms usudily 
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make the assumption that if a individual has a lower fitness, it is less likely to 
be selected. This need not be so, as Kuo and Hwang point out in [KU93]. 

STOCHASTIC SAMPLING ERRORS 
Fitness-proportional selection is a stochastic method. On average, the number 
of trials, q, (in the next generation) an individual, i, is given will be such that if 

then 

r, = 2raw 

where rp" is the number of trials an individual of average fitness would achieve 
(typically 1). This number will not always be achieved. GAS make use of 
numerous calls to random number generators, and given enough calls, some 
surprising patterns can emerge. Table 4.2 and Figure 4.17 show the result of 
using the roulette wheel algorithm in LGADOS for N = 20 and G = 200,000. 
The results are for the elite member which, because of the problem used, has 
j7g) = 5fm(g) for all g, and should thus have on average five trials in the next 
generation. Although five is indeed the most common number of trials 
allocated, many other possibilities also occur. On 621 occasions no trials were 
allocated to this the fittest member. This implies that, unless elitism is in place, 
the best solution would be discarded. Conversely fmar will occasionally almost 
flood the population. Such over or under selection can greatly impair the 
performance of the algorithm, and a number of alternative selection methods 
have been designed to minimise the problem. 
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Number Expected Actual 
of trials frequency frequency 
0 0 62 1 
1 0 4166 
2 0 13318 
3 0 26922 
4 0 38036 
5 200000 40334 
6 0 33714 
7 0 22599 
8 0 12213 

Number Expected Actual 
of trials frequency frequency 
9 0 5286 
10 0 2023 
11 0 587 
12 0 160 
13 0 17 
14 0 2 
15 0 2 
16 0 0 

40000 

30000 

P g 20000 
L* 

10000 

0 
0 i i 3 4 6 i i 9 i o I i i 2 1 ' 3 i i i s  

Allocated samples 

Figure 4.17. The distribution of samples of the elite member found; the expected number 
should always be five in this problem. 

STOCHASTIC SAMPLING 
Stochastic sampling with replacement is another name for roulette wheel 
selection. Each time an individual is selected it is also returned to the pool- 
allowing for multiple selections of the same individual. As discussed above, 
this replacement can result in: 
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(the expected number of trials for individual i) .  Stochastic sampling without 
replacement forces the maximum number of trials an individual can receive to 
equal unity (by not returning selected individuals to the pool). This is a major 
brake on the selection mechanism. However, it does still allow zbesf, the number 
of trials allocated to the fittest individual to equal zero occasionally. 

Remainder stochastic sampling (with and without replacement) 
estimates t;"p(g) then sets: 

where INT(-) returns the integer part of (-). 
In general this will leave some slots in the new population unfilled. 

Stochastic sampling with replacement is then used to fill the remaining 
positions by using the fractional parts. 

to assign roulette wheel slots. 

random number R', between 0 and 1. An individual is selected if: 
The method can also be used without replacement by simply using a 

Stochastic universal sampling [BA87] also uses a roulette wheel but 
with N equal spaced markers. The wheel is spun only once and all individuals 
which fall adjacent to a marker are selected. 

RANKING METHODS 
If the position of an individual within a list ordered by fitness is used to 
calculate t i  then problems of super-fit individuals are avoided. The position of 
the individual within the list is all that matters, not how much fitter than the 
population average it may be. This greatly suppresses problems of premature 
convergence, whilst still providing a suitable level of selection pressure in later 
generations. 
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In its simplest form, the population is ranked and the best 50% of 
individuals selected to go forward to the next generation. Crossover is then 
performed on all selected individuals by choosing random pairs without 
replacement. 

More subtle methods have been presented [BA85]. One possibility is to 
fix r z f  by hand and then apply a linear curve through zz$ that encloses an 
area equal to N. The height of the curve then supplies rFp for each individual 
(Figure 4.18). One problem with this approach is the need to select the value of 
r z  , which will (of course) be problem dependent. Other methods use a non- 
linear curve [MI94]. 

Rank 

Figure 4.18. Linear ranking. 

The take-over time for rank-based selection depends on the details of 
how it is applied, in particular on the value of z z f ,  but r is of the order InN, 
i.e. much lower than with fitness-proportional selection [GO91 ,BA96,pl71]. 

TOURNAMENT SELECTION 
Tournament selection [GO9 1 ,BL95] is both effective and computationally 
eficient. Pairs of individuals are selected at random and a random number, R' 
(in the range 0-1) generated. If R+ > r, 0.5 < r 5 1, then the fitter of the two 
individuals goes forward, if not, the less fit. The value of r also requires setting 
by hand. 
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In other i m p ~ e ~ e n t a t i o ~  q i n d i v i d ~ ~ s  are i ~ t i ~ I y  selected with the 
single best going through to the next generation. Such an approach has: 

This implies that the takeover time will rapidly decrease as q moves away 
from 2 (Le. binary tournaments). 

SIGMA SCALING 
Linear fitness scaling {C~apter3) can be extended by making use of the 
 pop^^^ fitness standard d e ~ a t i o n ~ ~  [MI96], with the expected number of 
trials given by: 

STEAKWSTATE ALGORITHMS 
LOA is a generational algorithm in that at each generation, a new population is 
formed (although some will be direct copies of their parents not disrupted by 
crossovm or mutat~on)~ Steady-state a I ~ ~ ~ ~ s  [SY89,SY9€ ,W~89,DE93a] 
replaw only a few of the ieast fit i n d ~ v i d ~ s  each g e n ~ ~ t ~ o ~  by c ~ s s o v e ~  and 
mut&ioG and thus require few fitness evaluations between generations, The 
fractioa of individuals replaced is called the g ~ ~ ~ ~ ~ ~ o ~  gap fDE75J. Such 
 go^^ have proved highly effective on problems where identical genotypes 
always return the same value offfor all esti~ations (this will not necessarily be 
so with noisy, time varying data) [DA9l], 

4.7 ALTERNATIVE CROSSOVER METHODS 
Single point crossover has been criticised for several reasons [CAW, ES89, 
SCSSa]. Although it can recombine she% low-order, schemata in 
a d ~ ~ g ~ u s  m ~ e ~ ,  it ~ ~ e n t l ~  cannot process all schemata in the stme 
way. For example, given: 

~ ~ O # # # # I  and 
# # # 0 0 # # # , 
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single point crossover cannot form 

01 000##1 

Such positional bias [ES89] implies that schemata with long defining lengths 
suffer biased disruption. 

Crossover of strings that are identical to one side of the cut-point will 
have no effect, as the children will be identical to the parents. The reduced 
surrogate operator [B087] constrains crossover so as to produce new 
individuals whenever possible. This is achieved by limiting cut-points to points 
where bit values differ. 

TWO-POINT CROSSOVER 
In order to reduce positional bias, many researchers use two-point crossover 
where two cut points are selected at random and the portion of chromosome 
between the two cuts swapped. For example: 

00/0100/111 and 
11/101 U O O O  give 

00101 11 11 and 
I1 01 00000. 

Just as with single point crossover, there are many schemata which two-point 
crossover cannot process, and various numbers of cut points have been tried 
[EC89]. 

UNIFORM CROSSOVER 
Uniform Crossover [SY89] takes the idea of multi-point crossover to its limit 
and forces an exchange of bits at every locus. This can be highly disruptive, 
especially in early generations. Parameterised crossover [SP9 11 moderates this 
disruption by applying a probability (typically in the range 0.5-0.8) to the 
exchange of bits between the strings. (For a discussion of multi-point crossover 
see [SP91b]). 

4.8 CONSIDERATIONS OF SPEED 

In most practical applications, the time taken to estimate the objective 
functions, Q, will be greatly in excess of the time taken to cany out any genetic 
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operations. Therefore there is little need to worry about trying to time-optimise 
these operations. One way to ensure minimum run times is to try and speed the 
estimation of Sdxg). Two possibilities are to interpolate from pre-existing 
values, or to use an approximate value of Sat&) for some generations but not 
others. This could be by using the approximation for g < g’ then reverting to the 
true estimation for g 2 g‘. This approach is used in $6.5, when only a sub-set of 
the experimental data is used in early generations. 

An obvious but important possibility is to ensure that Q(g) is not re- 
estimated once it has been found for a particular chromosome. This will require 
maintaining a (possibly ordered) list of all values of Sa calculated during the 
run. Clearly, this list has the potential to become extensive and it might be of 
value to only store it for g - 1 to g - k, where the historic period k used will 
depend on the relative time overhead of examining the list and estimating 
another value of 0. If new estimates are placed at the bottom of the list, it will 
probably prove worthwhile to search the list in reverse order to maximise the 
gain (see 56.6). 

A further possibility is to use a network of computers to carry out 
separate estimates of Q(g) on separate machines. 

In addition to all of these considerations, it is necessary to ensure the 
use of the minimum values of 4 (j = 1.. .M) and to keep the range of values 
each parameter can take as small as possible. Both the range and the string 
length can be functions of generation (see $6.5) but care must be used as this 
effectively removes areas of the search space during certain generations. 
Alternatively a messy-GA [G089a,G091a] can be used to build complex 
solutions from simple building blocks (for example, 56.8). 

4.9 OTHER ENCODINGS 
This text has concentrated on binary encoded GAS. Many authors have pointed 
out that GAS will probably be at their most effective when the encoding is as 
close as possible to the problem space. For many problems in science and 
engineering this implies the use of numbers of base-10 form. Unfortunately, 
using a real-valued encoding poses a large number of questions; in particular, 
what to use as crossover and mutation operators. Several possibilities have 
been promoted and a detailed discussion is to be found in references [MI94], 
[ES93], [JA91] and [WR91]. Reeves in [RE931 makes comments on the 
implications for population sizes of using non-binary alphabets. 

One possibility for crossover (between individuals i and k) is to use 
[MU93,ZA97, p14-161: 
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where R is a random scaling factor (typically in the range -0.25 to 1.25). 
Mutation can be included in several ways, for example: 

r , ( g + I ) = r ; ( g ) + R * ( g ) r , ( g ) ;  R ( g = O ) = R * , R ( g )  3 O a s g 4  G 

Things need not however be made too complex and a binary 
representation will often work extremely well. As Goldberg has pointed out 
[G089,p80], GAS are typically robust with respect to the encoding used. He 
gives two simple coding rules: 

1 .  The Principle of Meaningful Building Blocks: the user should select a 
coding so that short, low-order schemata are relevant to the underlying 
problem and relatively unrelated to schemata over other fixed positions. 

2. The Principle of Minimal Alphabets: the user should select the smallest 
alphabet that permits a natural expression of the problem. 

It is relatively easy to get some idea of why the use of a binary encoding 
is a reasonable choice for many problems. Consider some of the strings that 
might occur when solving f i x )  =x2 , 0 I x  5 15 with either a 4-bit binary 
 presentation or a one-to-one mapping of binary integers to the first 16 letters 
of the alphabet. Table 4.3 shows five possible values of x together with their 
respective binary and non-binary strings. As the list is descended, there is an 
obvious visual connection between the binary strings of fitter individuals made 
possible by their low cardinality (number of distinct characters): they all have 
1 ’ s  toward the left-hand side of the string. In the non-binary case no such 
similarities can exist. As these similarities are at the heart of the search method, 
their number should be maximised. 

Another way to emphasise the difference is to count the number of 
schemata available in the two representations. For cardinality k, this will be 
(k + As the same accuracy is required from both encodings, L = 4 in the 
binary case and 1 in the non-binary case. Therefore, the binary repr~sen~tion 
contains (2 + 1)4 = 81 schemata and the non-binary (16 + 1)’ = 17 schemata (a 
to n plus #), a clear advantage to the binary representation. 
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X f C( binary) C(non-binary) 
1 1 0001 a 
2 4  0010 b 
3 9  001 1 c 

12 144 1100 I 
14 196 I110 m 

Table 4.3. Comparison of binary and non-binary representations. 

LOGARITHMIC REPRESENTATION 
For many scientific and engineering problems, it is only the relative precision 
of the unknowns which is important [ZA97]. In such cases the encoding of the 
logarithm of the unknown may prove more suitable. This will allow a very 
large space to be searched without the need for excessive string lengths, but 
still maintain reasonable accuracy when needed. For example, if an unknown, 
r, may take any value between 1 and 1,000 and the answer is required to 1 part 
in 100, then a simple linear mapping between the problem space and a binary 
representation requires adjacent points to vary by only 1/100 = 0.01, This will 
then allow values of r around 1 to be distinguished to the required accuracy of 
1%. However, the precision around r = 1,000 will still be 0.01, which is 1 part 
in 100,000 or 0.001%. This implies that most of the string is redundant. 

By using a logarithmic mapping the required accuracy can be 
maintained throughout the space with a much shorter string, thereby enhancing 
performance. 

GRAY ENCODING 
It was suggested above that a GA might be at its most successhl when the 
encoding used is as close to the problem space as possible. Thus, a “small” 
change in the phenotype should indicate an equally “small” change in the 
genotype. For a binary encoding this is not so. Given a genotype with I = 6 and 
a phenotype, r with 0 I r I 63 then 

011111 = 31 

will have to undergo changes to all six bits to increase the value of the 
phenotype by one: 

100000 = 32. 
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Binary Gray 
0000 0000 
0001 0001 

0010 0011 
0011 0010 

0101 0111 
0110 0101 
O I I l  0100 

0100 a i io  

Gray binary encoding alleviates this by ensuring that any pair of adjacent points 
in the problem space differ by only a single bit in the representation space. 
(Note, a small change in the genotype can still lead to a very large change in the 
phenotype). For many problems this adjacency property is known to improve 
performance and it would seem sensible to adopt the use of a Gray encoding for 
most problems with integer, real or complex-valued unknowns. 

Table 4.4 list binary and Gray equivalents for 1 = 4. Figure 4.19 presents 
BASIC code for converting Gray to standard binary; reference [ZA97, p96] 
gives pseudo-code for carrying out this ~ a n s f o ~ a t i o n .  

Binary Gray 
1000 I100 
1001 1101 
1010 I l l 1  
1011 I l l 0  
1100 1010 
I101 1011 
1110 1001 
1111 I000 

Bin(1) = Gray(1) 

FOR i = 2 TO L 

Bin(i) = 0 

Bin(i) = 1 

IF Bin(i - 1) = Gray(if THEN 

ELSE 

END IF 
NEXT i 

Figure 4.19. BASIC code to convert Gray to standard binary. The Gray and binary strings, 
Gray and Bin (each of length L) are assumed to be held in arrays where the first element is 
the most significant. 
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4.10 METAGAS 
Much has been made in t h i s  text of the need to choose the internal GA settings 
(Pc, P,, N, etc) with care, and of the fact that their optimum settings are likely 
to be highly problem-dependent (as will be the exact form of the algorithm). 
This leads to the very natural question, why not have these settings selected by 
a separate GA? Furthermore, as fbst +f* the form of the search space is likely 
to change, implying that the ideal internal settings might not be constant in 
time. This leads naturally to the possibility of using a GA to optimise the 
internal settings during the run itself. 

If only a single value of each internal parameter is required, and the GA 
is going to be used repeatedly with near-identical problems, then the approach 
is relatively easy to ~ p l e m e n t  by using a meta-level GA [GRS6,BR91] to 
control and evolve settings within a population of GAS. 

However in difficult problems, or where the GA will only be used a few 
times, the additional computing required probably makes the approach 
unrealistic. The ability to allow the settings to adapt in real-time [DA89,DA91], 
might however allow the design of extremely eMicient algorithms, and is a 
particularly interesting avenue of research. 

4.11 MUTATION 
So far mutation has come in a single guise: the infrequent random flipping of 
bits within the c~omosome. Traditionally, mutation has always been seen as 
very much a secondary mechanism in c o m p ~ s o n  to crossover. However there 
would now appear to be a growing feeling that it may have a more central role 
to play [MU92a,HI95,JO95]. 

The mutation operator as described in Chapter 1 is rather a blunt 
instrument, the main role of which would appear to be ensuring that the 
~ p ~ a ~ ~ o n  maintains both possible bit values (0 and I) at all loci. If mutation is 
to be applied in a more directed manner, i.e. as part of the search process itself, 
then it would seem sensible to make the operator more discriminating. For 
example, with a binary representation (standard or Gray) the magnitude of the 
disruption caused by mutation depends upon where in the chromosome 
mutation occurs. Given a single parameter problem with L = 10, rmf, = 0 and 
r,, = 1023, then a mutation at one end of the chromosome changes Y by *l, 
whereas at the other end r would change by *5  12. 

This analysis indicates that near the end of the run, when hopefully the 
majority of the population is in the vicinity of the global optimum, there might 
be advantages in confining mutation to lower order bits. Conversely, during 



earlier generations mutation of the higher order bits will help in the full 
exploration of the space, whereas mutation of less significant bits will add little 
to this exploration. (See the exercises at the end of this chapter for one 
possibility). 

Other possibilities are to bias mutation towards less fit individuals to 
increase exploration without degrading the performma of fitter individuals 
[DA89], or to make P,,, a function of g with the probability decreasing with 
generation [F089]. 

Altem~tively, mutation can be used in a hill-climbing sense to close in 
on the final solution after g = G. This is achieved by using mutation to slowly 
increase (or decrease) estimates of each unknown within the elite member, 
keeping the change only if it has proved constructive (i.e. increasedf,). 

See [BA93 J and [TA93 J for a discussion on setting optimal mutation 
rates. 

4.12 PARALLEL GENETIC ALGORITHMS 
Apart from the implicit parallelism provided by schemata processing, the 
population-based approach of GAS makes them ideal for implementation on 
parallel, or networked, machines. A l thou~ ,  for many, the reason for using a 
parallet implementation will be a simple increase in speed due to the increase 
in computer power, others use pseudo-parallel approaches that are believed to 
improve performance even when used on sequential machines. 

Global Parallel GAS [G089,HU91,D091] treat the population as a 
single unit and assign different individuals to different processors. In its 
simplest form, the approach uses one machine (or processor) to control 
selection and the genetic operators, and a series of other machines (or 
processors) to cany out objective function evaluation. If the objective function 
evaluation takes a considerable time, a substantial speed-up can be achieved 
given a little additional code and a roomful1 of personal computers. 

~ i ~ a t i o n  or Island GAS [TA87,TA89] attempt to mimic the 
geographical separation of subpopulations witnessed in the natural world. This 
is achieved by allowing separate subpopulations or demes of chromosomes to 
evolve using selection and crossover, but then allowing occasional migration of 
individuals between subpopulations. 

D i ~ s ~ o n ,  neighbourhoud, cellulur, or ~ n e - g r a i ~ e ~  GAS remove the 
subpop~ation barriers used in the migration methodology and replace them 
with the concept of geographical distance. Individuals are then only allowed to 
breed with close neighbours [RO87,MA89,SP9 1 a,DA9 1 a,MA93]. 



91 

Parallel GAS are introduced in greater detail in reference [ZA97, p20- 
301. 

4.13 SUMMARY 
In this chapter several advanced operators have been introduced, including ones 
to tackle selection and crossover in c o m b ~ t o ~ ~ l  and multicritia opt~isation. 
The latter leads naturally to the in~duct ion of the concept of maintaining sub- 
populations of differing species within the algorithm. One possibility for 
dealing with constraints, the penalty function, has been suggested-although in 
practice its use is far from straightforward. 

Alternative representations have been introduced and the 
reco~endat ion that if a b i n ~ - ~ e  rep~sentation is used, then a Gray 
encoding is adopted. The use of a logarithmic representation has also been 
promoted. 

Hybrid algorithms, which combine a GA with a more traditional 
algorithm, have been hinted at as a highly powerful combination for solving 
practical problems. 

Alternative selection, crossover and mutation mechanisms have been 
discussed, in part to alleviate stochastic sampling errors, but also as a way of 
ensuring the correct balance between exploration and exploitation. Meta GAS, 
where the algorithm itself adapts during a run, are one way this balance might 
be naturaily found. 

Finally, parallel a l g o ~ ~  have been m ~ t i o n e ~  as an interesting 
avenue of research. 

4.14 EXERCISES 
1. W u c e  PMX into LGADOS,BAS, or your own GA, and use it to help 

solve the simple TSP detailed in Table 4.1. 

2. By including a subroutine to apply a simple penalty function, solve a lightly 
constrained multi-dimensional problem of your choice. Experiment with 
the strength of the penalty function to see the effect on the efficiency of the 
~ g o r i ~ .  Increase the level and n~~ of ~ n s ~ a i n ~  until most of the 
search space is unfeasibIe. (This should indicate that penalty hct ions are 
possibly inappropriate for such problems.) 
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3. Introduce tournament selection, linear rank selection, two-point crossover 
and ~ i f o ~  crossover into LGADOSBAS, or your own GA, and study 
their effect on test hc t ion  performance. 

4. Design and implement a new mutation operator, P$, which gives a reduced 
probability of mutation of more significant bits during later generations: 
PA = P,E(j,g) ; 1 I j I I& , 1 I k I M . The function B should be linear in j .  

Study the effect of differing functional forms on test function performance. 

5. Convert LGADOS.BAS, or your own GA, to a Gray encoding. (This is 
easier than it might seem and only involves changing how the binary strings 
are converted to integers.) Compare the performance of binary and Gray 
encoding on various test hct ions and various mutation rates. 

6. Allow for a ~ o g a r i t ~ i c  representation within LGADOS.BAS, or your own 
GA. Use the new code to solve MAXV= XI; 0 I x 5 1x106 to 1% across all 
x and compare the performance to a linear representation, 

7. Adapt LGADOSBAS, or your own GA, to stop the evaluation of 
individuals that existed in the previous generation. Plot graphs of fmm 
against number of objective function evaluations for some of the test 
functions of Chapter 3. What effect does this have on the efficiency of the 
algorithm for various settings of Pc and P,? Extend the approach to stop the 
evaluation of i n d i v i d ~ ~  that have occurred in the last ~ - g ~ n ~ a t i o n ~  
(1 I k 5 g>. Use N 2 100 in your experiments. 
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CHAPTER 5 

WRITING A GENETIC ALGORITHM 

Implementing a genetic algorithm on a computer is surprisingly easy. Much of 
this simplicity arises from the lack of sophisticated mathematics within the 
algorithm: there are few operations that would be beyond even the most rusty 
or inexperienced of individuals. 

For most applications, the programming language chosen for the GA 
itself will be of little relevance because the majority of computational time will 
be spent estimating the objective function. Thus it is far more important to 
ensure that that part of the program is optimised in structure and language. As 
most programming environments allow mixed language programs, the GA and 
the objective function routines need not even be in the same language (or even 
d n g  on the same machine). 

Although there are several GA packages available, either commercially 
or for free, I strongly believe in the value of trying to code one’s own simple 
algorithm, at least in the first instance. For experienced programmers this will 
take less than a day. 

The implementation described here is of LGADOS and is designed to 
run under QBASIC on a PC. BASIC has been chosen, in part, because of its 
ease of comprehension by the less experienced (and because it is included on 
most DOS-based systems). Sophisticated data structures have been avoided, 
and although this possibly makes the algorithm slightly less elegant, it should 
allow for easy translation into any other language (translations into PASCAL,, 
FORTRAN and C are already provided on the disk). Those wishing to work in 
PASCAL might like to use code from reference [G089]; those with a 
preference for C could use the code in reference [MI941 (although this is for a 
real-valued, rather than a binary, encoded GA). 

This chapter starts by sketching the form of the program, explaining the 
data structure adopted, listing the main program and then examining each 
operation and its associated subroutine (procedure) in turn. Extracting the 
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results and adapting the program to solve other problems is also discussed. 
Although a rough understanding of the program is advisable, it would be 
possible simply to make suitable adjustments, as detailed below, and run the 
code via QBASIC or a BASIC compiler (QuickBASIC would be ideal) and 
solve other, more complex, problems. 

A complete listing of the program is included on the disk and in 
Appendix B. 

A SKETCH OF THE PROGRAM 

At the heart of the program are two non-overlapping populations of bmary 
encoded strings. One is the current generation, the other a new temporary 
population in the process of being constructed from the current generation by 
selection, crossover and mutation. When the temporary population is complete 
it replaces the current generation and the generational counter is incremented 
by one. This process is sketched in Figure 5.1. 

Generation = 1. 
Create initial population 'Build apopulation ofstrings at random. 
Find unknowns 'De-code the n ~ p o p ~ l a t i o n  to integers then real numbers, 
Find fitness Find thefitness of each member o~~hepopulation. 

FOR Generation = 2 TO maximum number of generations 

FOR NewIndividual = 1 TO PopulationSize STEP 2 'Loopoverthe 
popula#~on choos~ngpairs of mates 

Select a mate 
Select other mate 
Per form crossover 'Pass individuals to the temporary population afer 

performing crossover. 
NEXT NewIndividual 

m t a  te 
Rep face 
Find unknowns 
Find fitness 

NEXT Generation 

Figure 5.1. A sketch (not red code) of tbe program. 

'Mutate the tempora~ popuIation. 
'Replace the oid~#pulat~on c o m ~ ~ e ~ e ~  by the new one. 

'De-code the new popdatation to integers then real numbers. 
'Find the fitness of each member of the population. 

The code fragment: 
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is BASIC’s way of implementing a loop a fixed number of times (in this case 
10). The option “STEP” can be used to increment the counter by more than 
unity each time. A single quote in BASIC indicates that any characters to the 
right are comments. Some of the lines of the program have been split in order 
to fit them on the page; such wrap-arounds are indicated by the symbol B if 
they occur within code but not indicated if they occur within comments. 

The program starts by building a population of random strings (Create 
initial population); these are then each converted to real-valued solution 
vectors (Find unknowns) which are tested on the problem at hand and 
assigned a fitness (Find fitness). This first generation then undergoes 
selection (Select a mate and Select other mate) and crossover (Perform 
crossover) a pair at a time and a new temporary population is constructed. 
The temporary population then undergoes mutation (Mutate) and replaces 
(Replace) the current generation. The new population members are then 
converted to real-valued solution vectors, tested on the problem and assigned a 
fitness. The program is finished when a set number of generations (maximum 
number of generations) have been processed. 

Each of these operations are expanded upon below, but first the form of 
the arrays used to store the population must be described. 

DATA STRUCTURES 
Although the use of user-defined data types (or records) would make for a 
slightly more elegant program, these have been avoided in the interest of 
simplicity and to ensure ease of translation. The population is held in a series 
of arrays with each array representing one aspect of the population. Thus the 
binary strings are held in one array (called Strings) as rows of integers (each 
with the value 0 or 1). These are decoded as though they were true binary 
strings to an array called Integers and then to real-valued solution vectors in 
array unknowns. The fitness of each individual is held in the single column 
array Fitness. 

As an example of the layout of these arrays, consider a population 
consisting of four individuals and a problem cf= x + y) ,  with each unknown 
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being represented by a string of length three and the unknowns being in the 
range 0 to 14: 

Strings: I 1 0 1 1 1 1  
0 0 0 1 1 0  
1 1 0 1 0 0  
0 1 0 0 0 1  

Integers: 

Unknowns: 

Fitness: 

24 [; 
Thus, using the notation of Chapter 2, for i = 1 (the first member), C = 101111, 
z1 = 5,zz = 7, rl = 10, r2 = 14 andf= 24. 

The array NewStrings represents the new, temporary, population. 
Elitestring, EliteIntegers, EliteUnknowns and EliteFitness hold a 
copy of the genotype, integer phenotype, real phenotype and fitness of the elite 
member. 

An array, Range, holds the upper and lower bounds of each unknown. 
For the example above: 
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Range: 

The substring length I; G; P,; P,,, and c,,, are all held as constants (i.e. 
they can not be altered during execution). All the above arrays and the 
constants are “shared”, i.e. they are global variables which all parts of the 
program have automatic access to. 

The program consists of a “main” program and a series of subroutines “called” 
from the main program. The format of the call statement is: 

CALL subroutine name (argl, argl, ....... ) 

Such a statement transfers control to the subroutine and passes the arguments 
argl, arg2 etc to the subroutine. The names of the subroutines hopefully 
indicate their purpose. 

The main program is listed in Figure 5.2. First the constants are 
defined, then the arrays are dimensioned and the bounds of each unknown 
stated. The random number generator is then “randomised” to ensure the 
program uses a different sequence of random numbers each time it is run and 
the files to hold the results opened. An initial population is then created and the 
fitness of the population members found. Subroutine Statistics calculates 
the sum and mean of the fitness and finds which individual has the highest 
fitness. PrintGeneration does just that: it prints the results to the screen and 
to the two result files. Scaling applies linear fitness scaling to each individual. 
Because this scaling is applied after PrintGeneration the results printed 
include the true fitness, not the scaled values. 

After this first generation is complete, generations 2 to G are processed. 
Pairs of mates (or parents) are chosen by fitness proportional selection. A 
random number is then thrown, and if this is number is less than or equal to P, 
crossover is used to build the new strings, otherwise the strings are simply 
cloned. Mutation is then applied and Replace used to overwrite the old 
population with the new. The strings are then decoded to produce the 
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unknowns, the fitness of each solution vector found and the results output. 
Subroutines are included to apply elitism and fitness scaling if required. 

I------ SET ALL THE IMPORTANT FIXED PARAMETERS ------- 

'These should be set by the user. 
CONST Populationsize = 20 'Must be even. 
CONST NumberOfUnknowns = 2 
CONST SubstringLength = 12 'Allsub-strings have the same length. 
CONST TotalStringLength = NumberOfUnknowns * SubstringLength 
CONST MaxGeneration = 20 %. 
CONST CrossOverProbability = . 6  'Pc >=O and < = I .  
CONST MutationProbability = 1 / TotalStringLength 'Pm,>=Oand<I. 
CONST Elitism = "on" "'on" or "of'. 
CONST ScalingConstant = 1.2 'A value of0 implies no scaling. 

'------DECLARE ALL SHARED (I.E. GLOBAL) VARIABLES---------- 

'The arrays that hold the individuals within the current population. 
DIM SHARED Unknowns(PopulationSize, NumberOfUnknowns) AS SINGLE 
DIM SHARED Integers(PopulationSize, NumberOfUnknowns) AS LONG 
DIM SHARED Strings(PopulationSize, TotalStringLength) AS E 

INTEGER 
DIM SHARED Fitness(Popu1ationSize) AS SINGLE 

'The new population. 
DIM SHARED NewStrings(PopulationSize, TotalStringLength) AS 

INTEGER 

'The array that defines the range of the unknowns. 
DIM SHARED Range(2, NumberOfUnknowns) AS SINGLE 

'The best individual in the past generation. Used yelitism is on. 
DIM SHARED EliteString(Tota1StringLength) AS INTEGER 
DIM SHARED EliteIntegers(NumberOfUnknown8) AS LONG 
DIM SHARED EliteFitness AS SINGLE 
DIM SHARED EliteUnknowns(Number0fUnknowns) AS SINGLE 

CLS Clear the screen. 

CALL Def ineRange 'Define the range ofeach unknown. These should also be set by the 
user. 

Figure 5.2. The main program (continued over). 
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Set the random number generator so it produces a diferent set of numbers 
'each time LGADOS is run. 
RANDOMIZE TIMER 

CALL OpenFiles 'Open files used to store results 

' _-_-___ CREATE AN INITIAL POPULATION, GENERATION I ------ 

Generation = 1 

CALL Initialpopulation 'Build apopulation of strings at random. 

CALL FindFitness Find thefitness of each member of thepopulation. 

CALL Statistics(MeanFitnes8, SumFitness, FittestIndividual, B 
Generat ion) 'Find the meanfitness and thefittest individual. 

CALL PrintGeneration(Generation, MeanFitness, s 
Fittest Individual) 'Print generation tofile. 

CALL Scaling(ScalingConstant, FittestIndividual, SumFitness, e 
MeanFitness) llflinearfitness scaling is "on" then scale population prior to selection. 

I----*-- LOOP OVER ALL THE GENERATIONS ------- 

FOR Generation = 2 TO MaaxGeneration 

FOR NewIndividual = 1 TO PopulationSize STEP 2 Zoopoverthe 
population choosingpairs of mates 

CALL Selection (Matel, SumFitness , MeanFitness) 'Choosefirst 

CALL Selection(Mate2, SumFitness, MeanFitneas) 'Choosesecond 
mate. 

mate. 

'Pass individuals to the temporary population either with or without performing 
crossover. 
IF RND c =  CrossOverProbability THEN 'Perform crossover. 

ELSE 'Don't perform crossover. 
CALL CroseOver(Mate1, Mate2, NewIndividual) 

CALL NoCrossover (Matel, Mate2, NewIndividual) 'Don'tperform 
crossover. 

END IF 

Figure 5.2. The main program (&om previous page). 
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NEXT NewIndividual 

CALL Mutate 'Mutate the temporary population. 

CALL Replace 'Replace the oldpopulation completely by the new one. 

CALL FindUnknowns 'De-code the new population to integers then real numbers. 

CALL FindFi tness 'Find thefitness of each member of thepopulation. 

CALL Statistics(MeanFitness, SumFitness, FittestIndividual, 
Generat ion) 'Find the meanfitness and thefittest individual. 

CALL PrintGeneration(Generation, MeanFitness, 
Fittest I ndiv i dua 1 ) 'Print generation to file. 

CALL Scaling(ScalingConstant, FittestIndividual, SumFitness,s 
'If linear fitness scaling is "on" then scale population prior to selection. MeanFi tness ) 

NEXT Generat ion 

CLOSE 'Close allfiles 

Figure 5.2 (conclusion). The main program. 

'Process the next generation. 

GENETIC AND OTHER OPERATORS 

Figure 5.2 is the heart of the program: generations are cycled through while 
crossover and mutation build increasingly good solutions. In some ways the 
other operators are just detail; much can be learned by simply adjusting the 
internal GA settings (Pc, P,, G etc.) and trying the program on various simple 
problems of your own choosing. However, an idea of how the genetic and 
other operators are implemented is probably necessary if the advanced 
techniques described in Chapter 4 are to be added. 

In the following, each operation and its associated subroutine is 
discussed in turn. 

DEFINING THE RANGE OF THE UNKNOWNS 
Different problems will have unknown parameters being hunted between 
different bounds. The range of each unknown is set in Def ineRange using the 
array Range. In Figure 5.3 the bounds of a two-dimensional problem are 
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established; the list can easily be continued for higher dimensional problems 
after NumberOfUnknowns has been adjusted in the main program. 

SUB DefineRange 
'Defines the upper and lower boundr of each unknown. 
'Add other ranges using the same format ifmore than two unknowns in the problem. 

Unknown P 1 'thefirstunknown. 
Range (I, Unknown) = 0 'The lower bound. 
Range ( 2  , unknown) = 1 'The upper bound. 

unknown = 2 'thesecondunknown. 
Range(1, unknown) = -3.14159 
Range(2, unknown) = 3.14159 

'Add other ranges ifmore than two unknowns in your problem. 

END SUB 

Figure 5.3. Defining the range of the problem. 

OPENING THE RESULTS FILES 
Output is via two files: LGADOSRES and LGADOS.ALL (Figure 5.4). 
LGADOS.RES lists the generation, g; fitness, f-, of the highest performing 
individual; the average fitness of the generation, fme; and the unknowns rk 
contained in the fittest individual. LGADOS.ALL lists g, f, rk and the binary 
chromosome C for all individuals in all generations, and hence can be very 
large. The files are comma-separated and can be loaded into most spreadsheets 
for manipulation and plotting. 

The files are overwritten each time the program is run. Therefore it is 
important that the results are copied to files with more unique names at the end 
of a run if data are not to be lost. 

SUB OpenFiles 
'Open resultfiles. See Chapter 2 for a description of their contents. 

OPEN "LQADOS . RES" FOR OUTPUT AS #1 
OPEN "LQAD0S.ALL" FOR OUTPUT AS #2 

END SUB 

Figure 5.4.The opening of the results files. 
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CREATING THE INITIAL POPULATION 
The initial population is created by throwing a random series of 0’s and 1’s 
’(Figure 5.5). RND is a BASIC function which returns a random decimal 
between 0 and 1; if RND > 0.5 then a 1 is placed into the string, otherwise a 0 
is inserted. 

SUB Initialpopulation 
‘Create the initial random population. 

FOR Individual = 1 TO PopulationSize 

FOR Bit = 1 TO TotalStringLength 

Strings(Individua1, Bit) = 1 

Strings(Individua1, Bit) = 0 

IF RND > . S  THEN 

ELSE 

END I F  
NEXT Bit 

NEXT Individual 

CALL FindUnknowns ‘Decode strings to real numbers. 

END SUB 

Figure 5.5.  Creating the initial population. 

SELECTION 
The program uses fitness proportional selection with replacement via a roulette 
wheel analogy. A random number is thrown using the BASIC function RND 
and is multiplied byfwm (Figure 5.6). The wheel is then spun and the individual 
fitnesses added together until the sum is greater than or equal to this product. 
The last individual to be added is then the selected individual. 
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SUB Selection (Mate, SumFitness, MeanFitness) 
'Select a single individual by fltness proportional selection. 

Sum - 0 
Individual = 0 

Roulettewheel = RND * SumFitness 

DO 
Individual = Individual + 1 
Sum - Sum + Fitnees(Individua1) 

LOOP UNTIL Sum >= Roulettewheel OR Individual = PopulationSize 

Mate = Individual 

END SUB 

Figure 5.6. Selection. 

CROSSOVER AND No CROSSOVER 
A random number is used in the main program to decide whether the two mates 
(or parents) are passed to either Crossover or Nocrossover. If the random 
number is less than or equal to P, then crossover is used to build the child 
strings, which are passed to the new temporary population Newstrings 
(Figure 5.7). If not, the children are clones of their respective parents 
(Figure 5.8). 

SUB CroesOver (Matel, Mate2, NewIndividual) 
'Perform single point crossover. 

CrossSite = INT ( (TotalStringLength - 1) * RND + 1) 'Pick the cross-site 
at random. 

FOR Bit = 1 TO Crosssite 'Swap bits to the lej? of the cross-site. 
NewStrings(NewIndividua1, Bit) = Strings(Mate1, Bit) 
NewStrings(NewIndividua1 + 1, Bit) = Strings(Mate2, Bit) 

NEXT Bit 

FOR Bit = CrossSite + 1 TO TotalStringLength 'Swap bits to the right of 

Figure 5.7. Crossover being used to build two new members of the temporary population 
(continued over). 

the cross-site. 
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NewStrings(NewIndividua1, Bit) = Strings(Mate2, Bit) 
NewStrings(NewIndividua1 + 1, Bit) = Strings(Mate1, Bit) 

NEXT Bit 

END SUB 

Figure 5.7 (conclusion). Crossover being used to build two new members of the temporary 
population. 

SUB Nocrossover (Matel, Matel, NewIndividual) 
'Pass the selected strings to the temporary population without applying crossover, 

FOR Bit = 1 TO TotalStringLength 
NewStrings(NewIndividua1, Bit) = Strings(Mate1, Bit) 
NewStrings(NewIndividua1 + 1, Bit) = Strings(Mate2, Bit) 

NEXT Bit 

END SUB 

Figure 5.8. Cloning the parents to build two new strings. 

MUTATION 
Mutation is applied by calling subroutine Mutate (Figure 5.9) to step through 
the whole temporary population, visiting every bit in each string and throwing 
a random number. If this number is less than or equal to P,,, the value of the bit 
is flipped. 

SUB Mutate 
'Visit each bit of each string very occasiona/&flipping a "I"  to a "0" or vice versa. 

FOR Individual = 1 TO Populationsize 
FOR Bit = 1 TO TotalStringLength 

'Throw a random number and see ifit is less than or equal to the mutation probability. 
IF RND c =  MutationProbability THEN 

'Mutate. 
IF NewStrings(Individua1, Bit) = 1 THEN 

Newstrings (Individual, Bit) = 0 
ELSE 

NewStrings(Individua1, Bit) = 1 
END IF 

Figure 5.9. Mutation (continued over). 
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END I F  

NEXT Bit 

NEXT Individual 

END SUB 

Figure 5.9 (conclusion). Mutation. 

REPLACEMENT 
The old population is replaced by the new one by copying NewStrings bit by 
bit into Strings and erasing the contents Of Newstrings (Figure 5.10). 

SUB Replace 
'Replace the oldpopulation with the new one, 

FOR Individual = 1 TO PopulationSize 
FOR Bit = 1 TO TotalStringLength 

NEXT Bit 
Strings(Individua1, Bit) = NewStrings(Individua1, Bit) 

NEXT Individual 

ERASE Newstrings 'Clear the old array of strings. 

END SUB 

Figure 5.10. Replacing the old population with the new one. 

DECODING THE UNKNOWNS 
The binary strings are converted to real-valued parameters for testing in the 
problem by calling FindUnknowns (Figure 5.1 1). This starts by calling 
FindIntegers to convert the strings to base-10 integers (Figure 5.12). These 
integers are then converted to real-valued parameters using the transformation 
of Chapter 2. 
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SUB Findunknowns 
'Decode the strings to real numbers. 

CALL FindIntegers 'First decode the strings to sets of decimal integers. 

'Now convert these integers to reals. 
FOR Individual = 1 TO Populationsize 
FOR Unknown = 1 TO NumberOfUnknowns 
Unknowns ( Individual, Unknown) = Range (1, Unknown) + 

Integers (Individual, Unknown) * (Range ( 2 ,  Unknown) - Range (1, 
Unknown)) / ( 2  A SubstringLength - 1) 
NEXT Unknown 

NEXT Individual 

END SUB 

Figure 5.1 1 .  Findunknowns calls FindIntegers and then converts the integers to reals 
within the bounds (range) of the problem. 

SUB FindIntegers 
'Decode the strings to sets of decimal integers. 

DIM bit AS INTEGER 

FOR Individual = 1 TO Populationsize 
bit = TotalStringLength + 1 
FOR Unknown = NumberOfUnknowns TO 1 STEP -1 
Integers(Individua1, Unknown) = 0 
FOR StringBit = 1 TO SubstringLength 
bit = bit - 1 
IF Strings(Individua1, bit) = 1 THEN 
Integers(Individua1, Unknown) = Integers(Individua1, E 

Unknown) + 2 * (StringBit - 1) 
END IF 

NEXT StringBit 
NEXT Unknown 

NEXT Individual 

END SUB 

Figure 5.12. Converting the strings to base-I0 integers. 
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ASSIGNING THE FITNESS 
The parameters extracted by Findunknowns are tested as solutions to the 
problem at hand in FindFitness. Figure5.13 shows code for the two- 
dimensional maximisation problemf= xz + sin@). The subroutine can be easily 
adapted to solve other problems. It is important to ensure that no negative 
fitnesses are assigned. 

SUB FindFitness 
'The problem at hand is used to assign a positive (or zero) fitness to each individual in turn. 

'The problem is f = x"2 -+ sinb). 
FOR Individual = 1 TO PopulationSize 
Fitness(lndividua1) = Unknowns(Individua1, 1) * 2 + 5 

SIN(Unknowns(Individua1, 2 ) )  
If Fitness(Individua1) c 0 then Fitness(Individua1) = 0 

NEXT Individual 

END SUB 

Figure 5.13. Inserting the unknowns into the problem and assigning a fitness to each member 
of the population in turn. 

LINEAR FITNESS SCALING 
For many problems, using some form of fitness scaling will greatly improve 
performance. Scaling (Figure5.14) applies linear fitness scaling to the 
problem, with the amount of scaling being controlled by Scalingcons tant. 
To switch scaling off, Scalingconstant can be set to zero within the constant 
declaration area of the main program. Scaling is applied just before selection. 
Because the results are output before this, the fitness reported is the true 
fitness, not the scaled fitness. 

SUB Scaling (ScalingConstant, FittestIndividual, SumFitness, 
MeanFitness) 
'Apply Linear Fitness Scaling, ' 
Subject to, 

'and 

%/here c, the scaling constant, is set by the user. 

Figure 5.14. Applying linear fitness scaling to the population prior to selection (continued 
over). 

scaledfitness = a 'fitness -+ b. 

meanscaledfitness = meanfitness 

bestscaledfitness = c * meanfitness, 
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' r t he  scaling constant is set to zero, or all individuals have the samefitness, scaling is not 
applied. 
IF ScalingConstant c >  0 AND Fitness(FittestIndividua1) - I 

MeanFitness > 0 THEN 
'Find a and b. 

a = (Scalingconstant - 1) * MeanFitness / 
(Fitness(FittestIndividua1) - MeanFitness) 

b = (1 - a) * MeanFitness 

'Adjust the fitness of all members of the population. 
SumFitness = 0 
FOR Individual = 1 TO PopulationSize 
Fitness (Individual) = a * Fitness (Individual) + b 
IF Fitness (Individual) c 0 THEN Fitness (Individual) = 0 

'Avoid negative values near the end of a run. 
SumFitness = SumFitness + Fitness (Individual) 'Adjust thesum ofallthe 

Jitnesses. 
NEXT Individual 

'Adjust the mean of all thefitnesses. 
MeanFitness = SumFitness / PopulationSize 

END IF 

END SUB 

Figure 5.14 (conclusion). Applying linear fimess scaling to the population prior to selection. 

ELITISM 
Elitism is applied by checking if the fittest individual has a lower fitness than 
the elite member of the last population; if so, a randomly selected individual is 
replaced by the old elite member (Figure 5.15). 

SUB Elite (SumFitness, FittestIndividual) 
'Applies elitism by replacing a randomly chosen individual by the elite member 
[from the previous population ifthe new mar fitness is less then the previous value. 

IF Fitness(FittestIndividua1) < EliteFitness THEN 

Individual = INT (Popula t ionSi ze * RND + 1) 'Chosen individual to be 
replaced 

Figure 5.15. Elitism (continued over). 



FOR Bit = 1 TO TotalStringLength 
Stxings (Individual, Bit) = Elitestring (Bit) 

NEXT Bit 

Fitness(Individua1) = EliteFitness 

FOR Unknown = 1 TO NumberOfUnknowns 
Int;agers(Individual, Unknown) = EliteIntegers(Unknown) 
Unknowns (Individual, Unknown) = EliteUnknowns (Unknown) 

NEXT Unknown 

FittestIndividual = Individual 

FOR Bit = 1 TO TotalStringLength 

NEXT Bit 
EliteString(Bit) = Strings(FittestIndividua1, Bit) 

EliteFitness - Fitness(FittestIndividua1) 
FOR Unknown = 1 TO NumberOfUnknowns 
EliteIntegers(Unknown) = Integers(FittestIndividua1, Unknown) 
ElitsUnknowns(Unknown) = Unknowns(FittestIndividua1, Unknown) 

NEXT Unknown 

END SUB 

Figure 5.15 (concl~ion). Elitism. 
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STATISTICS 
Subroutine Statistics (Figure 5.16) is used to find fave (MeanFitness),f,,,,, 
(SumFitness) and fm (MaxFitness) . These are required if elitism is being 
used and are also reported by PrintGeneration. The subroutine also calls 
Elite if required. 

SUB Statistics (MeanFitness, SumFitness, FittestIndividual, 3 

'Calculate the sum offitness across the population andfind the best individual. 
'then apply elitism ifrequired 

FittestIndividual = 0 
MaxFitness = 0 

Generation) 

FOR Individual = 1 TO Populationsize 

MaxFitness = Fitness(Individua1) 
FittestIndividual = Individual 

IF Fitness(Individua1) > MaxFitness THEN 

END IF 
NEXT Individual 

IF Elitism = "on" THEN 'Apply elitism. 

END IF 
CALL Elite(SumFitness, FittestIndividual) 

SumFitness = 0 'Sum thefitness. 
FOR Individual = 1 TO PopulationSize 

NEXT Individual 
SumFitness = SumFitness + Fitness(Individua1) 

'Find the average fitness of the population. 
MeanFitness = SumFitness / Populationsize 

END SUB 

Figure 5.16. Findingf,,,A,,, andf,, and calling Elite. 

PRINTING THE RESULTS 
PrintGeneration (Figure 5.17) is used to Output a single generation to the 
screen and to file. The file LGADOS.ALL contains all individuals from all 
generations and hence can be rather large. If the information it contains is not 
required, the corresponding lines should be commented out. BASIC uses a 
semicolon at the end of a PRINT line to stop a carriage return from being 
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automatically included. The files are comma separated to allow easy importing 
of the results into a spreadsheet or plotting package. 

SUB PrintQencration (Generation, MeanFitness, 
FittertIndividual) 
'Print results to the screen and thefiles. 

PRINT Generation; Fitness(FittestIndividua1); MeanFitness; 
'Screen. 

PRINT #1, Generation; I!, I t ;  Fitness (FittestIndividual) ; #I ,  "; 

MeanFitness ; 'File LGAD0S.RES. 

FOR Unknown = 1 TO NumberOfUnknowns 
PRINT Unknowns (FittestIndividual, Unknown) ; 'Screen. 
PRINT #1, n ,  I t ;  Uhknowne (FittestIndividual, Unknown) ; 'File 

LGAD0S.RES 
NEXT Unknown 

PRINT 'Carriage return. 
PRINT #l I 'Carriage return. 

FOR Individual m 1 TO PopulationSize 

PRINT #2, Generation; l a ,  I t ;  Fitness (Individual) ; !I, 'I; 'File 
LGADOSALL 

FOR Unknown - 1 TO NumberOfUnknowns 
NEXT Unknown 
PRINT #2 ,  Unknowns (Individual, Unknown) ; ' I ,  ; 'File LGADOS.ALL 

FOR Bit I 1 TO TotalStringLength 
PRINT #2, RIGHT$ (STR$ (Strings(Individua1, Bit)), 1) ;I 1 ,  ";'File 

LGADOSALL 
NEXT Bit 

PRINT #2, 'carriage return 

NEXT Individual 

END SUB 

Figure 5.17. Printing the results fiom a single generation to the screen and the two output files. 
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RUNNING AND ALTERING THE PROGRAM 

After starting QBASIC, load LGADOS.BAS using the FILE menu and run the 
program using the RUN menu. Then open the two results files and f ~ i ~ ~  
yourself with the contents. To obtain meaningful answers to many questions 
(such as the best value of P,,, for a particular problem) it is imperative that 
multiple runs of the program are used. Because the program always uses the 
same filenames for the results files, all previous results are lost each time a new 
run is embarked upon. it is therefore important to change the name of these 
files at the end of run. (An alternative would be to make the necessary changes 
to the program to allow the user to input their own filenames.) 

It is relatively straightforward to adapt the program to solve other 
problems. This involves three main changes (which should only carried out on 
a copy of the program): 

1. Within the “set constants” area of the main program adjust the values of 
any constants that need changing; 

2. Press F2 to access the subroutine list and edit Def ineRange to reflect both 
the number of unknowns in the problem and their ranges; and 

3. Edit FindFitness to reflect the new problem. 

Adaptations to FindFitness can be made either by inserting the required code 
directly into the program or, if using a compiler, by “chaining” to another 
compiled program (by using the CHAIN statement) and using files (or other 
methods) to transfer the solution vectors and the fitness between the two 
programs. 
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CHAPTER 6 

APPLICATIONS OF GENETIC ALGORITHMS 

A quick search of a publication database shows that the number of GA 
applications is growing on a daily basis (Figure6.0.1). The range of 
applications is truly stunning, including evolving computer programs 
[K092,K094], estimations of protein structure [SC92] and designing water 
networks [HA97]. 

The eight applications given in this book have been chosen for several 
reasons: they are all practical applications in science or engineering; all except 
one uses relatively simple binary-encoded GAS of the type described in the 
earlier chapters; further, they complement rather than echo the applications 
given in other texts (discussed below). Although the requirement that the 
examples use only binary representations and no techniques not covered in the 
earlier parts of the text has somewhat limited the range of applications that 
could be presented, this has been done to forcefully demonstrate that relatively 
simple algorithms can help in solving complex problems. Each application 
attempts to illustrate some of the difficulties in applying GAS to various real- 
world problem domains (Table 6.0.1). They range from the simple estimation 
from experimental data of five real-valued unknowns, to the use of a messy GA 
to solve a complex water network problem. 



114 

I 1 I I 

1990 1992 I994 1996 I 
Year 

‘8 

Figure 6.0.1. The continuing growth in the number of papers using GAS published each yeru 
indicates a burgeoning acceptance of the technique. (Data obtained by searching for the string 
“genetic algorithm” within the scientific publications database at the University of Bath; papers 
within other fields are therefore not included.) 

I Applicatjon 
6.1 image Registration 

6.2 A Simple Application: Recursive 
Prediction of Natural Light Levels 

Main attributes 
use of a simple GA (LGA); 
at most 25 real-valued unknowns; 
use of an approximate fitness function 
which grows in accuracy with time. 

GA applied in a recursive manner to a 
fitness landscape that is not static, i.e. the 
algorithm is hunting a noisy moving target 
and two identical, but time separated, 
genotypes may not give rise to identical 
values of fitness; 
a simple least-squares problem comparing 
an experimental data set with a simple 
model; 
few unknowns and limited accuracy 
required; and 
(therefore) a short string length. 
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6.4 

6.5 

6.6 

§ Apnlication 
Water Network Design 

Ground-State Energy of the fJ Spin 
Glass 

E s t ~ t i o n  of the Optical Parameters 
of Liquid Crystals 

Design of Energy Efficient Buildings 
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Main attributes 
b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

discrete unknowns; 
Gray coding; 
linear rank selection; 
uniform crossover; 
a penalty function to handle unfeasible 
solutions; and 
the requirement for only a ne~-optimal, 
but robust, solution. 

long genotypes, L 3000; 
large number of Boolean unknowns, M >  
3000; 
inclusion of an additional local search 
heuristic (directed ~utation); and 
direct c o ~ e s ~ n d e n c e  between the 
problem-space and the string 
representation, negating the need to 
encode the unknowns. 

the development of a system to replace a 
previously human-guided searck 
use of a series of sequential adaptstions to 
a simple GA; and 
the inclusion of a traditional search routine 
to create a hybrid algorithm. 

a range of different variable types (binaty, 
integer and real); 
the need for a diverse range of 
approximate solutions together with the 
global optimum; 
the need for h u ~ a n - b ~ e d  final selection; 
and 
the need to avoid re-estimating the fitness 
of any already processed design. 
use of remainder stochastic sampling and 
a generation gap 
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4 Application 
6.7 Human Judgement as the Fitness 

Function 

Main attributes 
a GA being driven by aesthetic judgement, 
rather than a numerical measure of fitness, 
a problem where identical genotypes may 
be given non-identical values of fitness; 
and 
a system where relatively few fitness 
evaluations are possible. 

6.8 Multi-objective Network 
Rehabilitation by Messy GA 

a sparse problem space; 
use of a messy algorithm; 
a multi-objective problem; and 
fitness sharing. 

Table 6.0.1 the various problems detailed in this chapter and their main attributes. 

As with any book, the number of applications is limited by spatial 
constraints. If none of them match your own areas of interest, the following 
introductory texts should be studied for further applications and references. 
Alternatively, an electronic search should be made of a publication database. 

Davis [DA91] 
Parametric design of aircraft 
Routing in communications networks 
Robot trajectories 
Nonlinear systems and models of international security 
Strategy acquisition 
Artificial neural networks 
Mineral separation by air-injected hydrocyclone 
Fault diagnosis 
Conformational analysis of DNA 
Interpretation of sonar signals 
Engineering design 
Travelling salesman problem 
Scheduling 

Goldberg [GO891 
Optimisation of engineering structures 
Iterated prisoner’s dilemma 
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0 Machine learning 

Michalewicz [MI941 
0 The transportation problem 
0 Travelling salesman problem 
0 Graph drawing 
0 Scheduling 
0 Partitioning 
0 Robotic path planning 
0 Machine learning 

Mitchell [MI951 
0 Evolving computer programs in LISP 
0 Cellular automata 
0 Time series analysis 
0 Protein structure 
0 Evolving weights, learning rules and architectures for artificial neural 

networks 
0 Use of GAS in modelling evolution, learning, sexual selection and 

ecosystems. 

Zalzala and Fleming [ZA97] 
0 Control systems 
0 GAS and fuzzy logic 
0 Artificial neural networks 
0 Chaotic system identification 
0 Job shop scheduling 
0 Robotic systems 
0 Aerodynamics 
0 VLSIlayout 

6.1 IMAGE REGISTRATION 
Genetic algorithms have a long history of use in image registration and in 
particular with medical image registration [for example FI841. This is not 
surprising as one can easily imagine that many such problems will contain 
search spaces littered with local minima. Unlike x-rays, modern medical 
imaging techniques also have the distinction of generating three-dimensional 
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visualisations of the human body, greatly increasing the scale of the search 
space. 

The work reported here is taken from work by Coley and Bunting 
[CO94] and Wanschura, Coley, Vennart and Gandy, and attempts to register a 
pair of time-separated magnetic resonance imaging (MRI) data sets. (This time 
separation may be over several months and with the images recorded on 
differing machines.) The technique is useful for monitoring small changes in 
anatomy, such as disease progression with time (e.g. degradation of cartilage in 
arthritic disease), pre/post-surgical studies and signal intensity (e.g. functional 
brain imaging) in otherwise identical images. It provides a simple application 
of a GA to a problem requiring: 

0 the use of a simple GA (LGA); 
0 at most 25 real-valued unknowns; and 
0 (because of the large amount of experimental data) the use of an 

approximate fitness function which grows in accuracy with generation. 

INTRODUCTION 
Even when taken with registration in mind, time separated MRI data sets are 
unlikely to be perfectly registered. Misalignment of the object under 
investigation within the RF coil, small anatomical changes and changes in 
system settings will all affect the registration of the images. This misalignment 
is unlikely to be of concern if the images are presented as planar slices through 
the objects and the time-separated sets are kept distinct. However, if an 
accurate determination of very small changes is required, the images will 
require to be registered before further operations (e.g. subtraction) are 
performed. The approach adopted for identifying changes by registration is 
based simply on a calculation of pixel by pixel intensity difference followed by 
subtraction. 

To obtain the registration the first image must be transformed 
(translated, rotated or deformed) until the best match with the second image is 
found. The similarity of the two images can then be quantified in a cost 
function, Q. By using a numerical optimisation method to find the minimal cost 
(or maximal similarity) a fully automatic procedure to extract the region of 
interest is produced. 

MRI data sets typically contain in excess of 16,000 points per image, 
and the search space for implementing registration is likely to contain a large 
number of local optima which do not give the correct alignment of the images. 
Although the GA has been promoted as an aid to the registration of medical 
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images taken by different techniques (e.g. MRI together with X-ray) 
[FI84,HI94,NI96], little work has been carried out to indicate the accuracy of 
the method when used on typical pairs of time-  pa rated MRI data sets 
[CO94,CO96], In particular, the abilities of the method have not been studied 
for sets misregistered by amounts typical of clinical scans. (The data sets used 
in this study were collected for other general purposes, and not with 
registsation in mind). 

METHOD 
The two image data sets were stored as greyscale (0-255) intensities of 
128 x 128 pixels. Automatic registration of the two images requires (a) a 
~ s f o ~ ~ t i o n  and (b) a measure of s j r n ~ ~ ~ ~ .  The transfo~ation applied is 
given by the following: 

X = a, +a,x+a,y +tgz+a,xy +a,xz +a,yz -!-u+yz, (6.1.1 a) 

5i = a, + agx + q , z  + aI2xy + + a,,yz + qsxyz (6.1.1 b) 

and 

Z=at6 +a17x+a18y+a19z+a20xy +a,,xz+a,zy~+a,,xyz, (6.1 .lc) 

where x, yt  z are the three Cartesian spatial dimensions and the at are the 
adjustable parameters whose values we are trying to estimate (z = E = 0 in the 
2-D w e ,  leaving eight ~ 0 ~ s ~ .  The ~ ~ f o ~ a t ~ o n  can be v ~ s ~ ~ s ~  as a 
rubber cube which allows the image to be translated, re-scaled, sheared or 
rotated. For example, ao, ag and a16 describe the translation of the image in the 
x-, y- and z-directions respectively. 

The measure of fitness, or success of the transformation is based simply 
the ~ i n t - b y - ~ i n t  absolute difference between the two images: 

(6.1.2) 

where m = number of points considered, Ac = colour (or greyscale intensity) 
difference between the same point in the first and the transformed second 
image, and A is a constant to convert the minimisation to a maximisation, 
(More complex measures have been suggested [T077,BR91].) Because the two 
images may well have different overall intensity dis~butions (due to the way 
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the imaging machines were staffed and operated-with the time separation 
possibly being over several m o n ~ s )  an additional ~o~ parameter, ff24, is 
required to equalised the distributions: 

where ciu) and c20) are the individual colours (or greyscale intensi~ies~ of 
pixelj for the two images. (Note, 9 4  is the same for all j.) 

APPROXIMATE FITNESS ESTI~ATION 
To speed calculation, the points j must be kept to a minimum. Initial 

filtering is carried out by excluding all points with near zero intensities. Most 
of these points represent the backgro~d black outside the  anatomic^ structure 
being studied. This typically halves the number of points processed. Pixelsj are 
selected as a random subset of the complete data (this subset must be large 
enough to contain a statistical representation of the image, initially 2-3%), with 
the size of this subset growing as convergence is reached [FI84]. It is this 
statistical approach which is responsible for much of the efficacy of the 
approach. Because of the high levels of noise within the images, much of the 
intensity of a pixel within this subset might simply be stochastic in nature. To 
alleviate this, the intensities of pixels within the images were averaged with the 
surrounding ones. For g = 1, and 2-D images, this smoothing took place over 
25 pixels centred on the pixel in question, the size of the grid reducing to unity 
byg=G. 

LGA was used with N = 50 initial guesses, Pc = 0.8 and Pm = 0.001. 
The registration obtained by the method can be demonstrated by comparing 
slices fiom subtractions of the two sets, with and without a t r ans fo~~ t ion  
being applied. 

In order to test the accuracy of the approach outlined above, the 
technique was initially applied to the problem of registering two time-separated 
images (Figure 6.1.la, average pixel intensity, Z,=49.8, <r = 45.9 and 
Figure 6.1.lb, lm = 53.4, (z = 50.3) of the right-hand index distal- 
interphalangeal (DIP) joint of a healthy volunteer. 

3-D images with 200pm in-plane resolution were collected with 16 
contiguo~s slices of 1 mm thickness. After the initial scan, the frnger was 
removed from the RF coil, then repositioned within the coil ready for the 
second imaging experiment. (This repositioning mechanism has been found to 
be inherently inaccurate, and can often result in m i s a l i ~ e n t  of the joint by 
the order of mm.) A second set of images was taken, and upon completion, the 
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central image slice from each data set was selected, and the GA applied to 
align the two sets. 

Figure 6.1.1. (a) Planar slice through image set 1: distal-interphalangeal joint in sagittal 
section. @)Equivalent planar slice through image set 2. Note, the finger is displaced by 
approximately 2 mm. (The figures are binary versions of the 256 grey-scale intensities used.) 

RESULTS 
The generation, or time, evolution of the fitness is displayed in Figure 6.1.2. 
The solution is seen to have converged after approximately thirty generations. 
This point took approximately 20 s to reach on a personal computer, 
demonstrating the efflciency of the algorithm-which was implemented in 
PASCAL. 
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Figure 6.1.2. The time evolution of the fitness; the highest fitness within any generation is 
shown as a solid line, the mean fitness of the population as a dashed line. 

The degree of misalignment reduction can be viewed by comparing 
subtractions of the data sets with, and without, the transformation. Subtractions 
of correctly registered, identical, sets should result in totally blank images. 
Subtracting the two images given in Figure 6.1.1, without first applying a 
transformation, results in Figure 6.1.3a (Im = 25.4, (T = 30.9). The "ghost" 
image seen is typical of misalignment. The only enhancement to the final 
image is noise reduction by rejection of very low intensity pixels. For 
comparison an image obtained by identical subtraction, but after application of 
the transformation generated by the GA, is given in Figure 6.1.3b (I, = 2.1, (T 

= 11.1). The ability of the GA to accurately align the images is clearly shown 
by there being almost no structures in the image, and no ghost image (also 
implying that there are no anatomical differences between the two data sets); 
what remains is essentially noise. A more quantitative measure of alignment, 
apart from the much reduced values of I,, and (T, is the number of fully 
connected pixels, PJ, which reflects the information content of the image. A 
pixel is fully connected if, and only if, it has a non-zero intensity and its eight 
nearest neighbours also have non-zero intensities. If the two images have been 
successfully aligned to the image resolution (1 pixel, or 200pm) then 
subtraction will give Pf=O. For Figure 6.1.la and 6.1.lb, Pf= 15793 and 
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15723 respectively; for Figure 6.1.3a Pf= 12907, and for Figure 6.1.3b, Pf= 0 
indicating registration. 

The technique is useful for monitoring small changes in anatomy, such 
as disease progression with time (e.g. degradation of cartilage in arthritic 
disease), pre/post-surgical studies and signal intensity (e.g. functional brain 
imaging) in otherwise identical images. 

Figure 6.1.3a: Planar slice after the subtraction of the images without the GA-based 
registration. The ghost image of the joint is due to misalignment of the data sets. Figure 6.1.3b: 
Planar slice through the subtraction of the images after the GA-based registration; almost all 
misalignment has been removed. (Note, these figures are binary versions of the 256 grey-scale 
intensities used.) 

6.2 RJECURSIVE PREDICTION OF NATURAL LIGHT LEVELS 
Controlling artificial lights within buildings to act solely as a supplement to 
available daylighting requires continuous knowledge of natural lighting levels 
within each room. Although this information is readily obtained by 
measurement whilst lights are extinguished, once illuminated the determination 
of the underlying natural light level is not so straightforward. This application 
describes the use of a genetic algorithm as the heart of a self-commissioning, 
adaptive algorithm capable of the real-time prediction of natural light levels at 
chosen points within a room using external measurements of vertical and 
horizontal plane illuminance. Such a system forms the basis of a robust and 
practical lighting controller. 
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This application (based on reference [CO97]) is very simple, requiring only 
the identification of five unknowns-the accuracy of which is not particularly 
important. The GA is applied in a recursive manner: as new sets of data arrive 
the algorithm is re-run, without re-initialisation, for a fixed number of 
generations. The results are compared with those found by a traditional method 
[C094a]. It illustrates the following: 

a binary coded GA applied in a recursive manner to a fitness landscape that 
is not static, i.e. the algorithm is hunting a moving target and two identical, 
but time-separated, genotypes may not give rise to identical values of 
fitness; 
fitness-propo~ional selection; 
single point crossover; 
a simple least-squares problem comparing an experimental data set with a 
simple model; 
a search space known to contain local optima; 
many equally possible, often distant, solutions; 
few generations to convergence; 
few unknowns; 
limited accuracy required; and 
(therefore) a short string length. 

I N T ~ O D U ~ I O N  
This application discusses the employment of a GA to the problem of 
predicting the natural horizontal plane iliuminance (i.e. that falling on a desk or 
worksurface) within a room, ftom measurements of illuminance outside the 
building envelope and at some point distant. Attempts at such predictions have 
been made before [C094a] using a recursive least squares algorithm, allowing 
results for a GA to be contrasted with those of a traditional algorithm. 

Lighting is often the largest single item of energy cost in offices and 
considerable savings can be made [EEOI] implying reductions in both cost and 
resultant emissions of gases implicated in global warming, Savings can be 
effected by a com~ination of higher eaciency lamps, more efficient fittings, 
better controls and increased usage of da~~~gh t ing .  Here the approach is a novel 
lighting controller which enables maximum use to be made of available 
daylight. 

The availability of high levels of natural light within a space is not, of 
itself, sufficient to ensure that less use will be made of artificial lighting. For 
manually controlled systems, studies have shown [HU79] that it is the 
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perceived level of light on initially entering the room which chiefly determines 
whether lights will be illuminated. Once switched on, it is very unlikely that 
they will be switched off-notwithstanding any subsequent increase in natural 
light levels. Automatic photocell-based controllers face a similar difficulty. It is 
straightforward for such systems to prevent the initial use of artificial lights if 
levels of natural light measured at internal sensors are high enough to obviate 
their use. Once illuminated, however, it is more difficult to decide whether the 
underlying level of daylighting is sufficient to enable them to be extinguished. 
There are various solutions to this problem. 

One apparently attractive approach to the problem is to make 
measurements of external lighting levels and to relate these to expected internal 
levels. This is far from easy to accomplish. The relationship between internal 
and external illuminance is time-dependent on an hourly and seasonal scale. 
Thus any attempt to determine a simple ratio which relates the two is unlikely 
to be successful. A better approach would be to relate external horizontal and 
vertical plane illuminance, in a number of directions, to internal horizontal 
plane illuminance [HA88]. The advantage is that vertical plane illuminances 
contain directional, and therefore time, information. A means must still be 
found, however, to determine the ratios which relate the various components of 
vertical plane illuminance to internal conditions. This can be done by 
calculation for each space, but there is a better approach, which also allows 
such ratios to be time-dependent. 

Experience with lumped-parameter thermal models [CR87,CR87a] led 
to the development of a computer routine for the real-time identification of the 
model parameters from the measured building response to energy inputs 
[PE90,PE90a,C092]. There is obvious potential here for application to the 
lighting problem just discussed. Given a simple model relating internal 
horizontal plane illuminance to the separate components of the external 
horizontal and vertical plane illuminance, a similar technique could be used to 
identify the unknown parameters as employed in the thermal case. Such an 
approach was successfully tried [CO94a] by using a recursive least squares 
algorithm. However, although the average error was found to be small, the 
largest errors in prediction (which were possibly systematic) occurred during 
times of high illuminance, just when any practical controller should be 
signalling for the artificial light to be extinguished. It was unclear whether this 
poor performance was due to the model or the algorithm used. It was decided 
to see if better predictions could be made by using a GA, thus hopefully 
lending support to the model. If indeed the GA did perform better, this would 
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probably imply it had successfully navigated around one or more local optima 
to a better solution. 

THE MODEL 
The model chosen to relate the internal horizontal plane illuminance I$, at 
time t, at a given point in any room m in the building, to the five external 
measured vertical and horizontal plane illuminances, 4"", falling on the roof of 
the building, was the simple parameterisation, 

(6.2.1) 

where the bi are the numerical attenuation coefficients which contain 
information on, for example, the a t ten~t ing  power of the windows and the 
reflectivity of internal and external surfaces. 

It is worth noting that the model described here does not need any 
information on the alignment of the external sensors, nor does it require 
knowledge of the orientation of the windows. This will allow any system that is 
developed from this model to be largely self-co~iss ion~ng.  

Equation (6.2.1) is a somewhat arbitrary p a r ~ e t e ~ s a t i o n  of the 
problem. Thus the Hrn will not, in general, form a linearly independent set. 
However this should not be a problem as there is little need to find a unique set 
{b}, but only any set in the parametric space which is capable of representing 
the response of the system. This will only hold true if no attempt is made to 
place a precise, physical meaning on the individu~ elements of { bf  , but instead 
to regard them solely as parameters. It is known [CO94a] that the space 
contains many local optima and that there are many sets {b} able to provide 
solutions of various accuracy. 

PARAMETER EXTRACTION 
For any particular room, (6.2.1) is of the form 

5 

x, = C a j x ,  . 
J'1 

(6.2.2) 

E q ~ t i o n  (6.2.2) is the form needed for the classical linear least-squares 
problem in which a set of unknown parameters { a )  describing an observed 
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system is to be determined from k measurements at different times of a set of 
observables { x }  . 

In the linear least-squares problem it is assumed that the k successive 
measurements of the set x can be represented by 

N 
x,, = Cajx j ,  + E, . 

j -1  
(6.2.3) 

where i = 1,2 ... k; si is an error term, and in this case N =  5.  
Although strictly speaking the €j should be Gaussian and serially 

uncorrelated, least-squares gives reasonable results with most error 
distributions encountered in practice. Specifically, estimates dj of the unknown 
parameters uj are chosen to minimise the function sd, where 

(6.2.4) 

In order to solve (6.2.4) using a GA, the five unknown parameters 
represented by the elements of { Ci } were encoded as binary strings of length 
10. Using the knowledge gained from reference [CO94a] it was decided to 
limit the search range to f100. Thus the search space is discretised to an 
accuracy of better than one part in a thousand. 

SECULAR TRENDS 
In (6.2.4) the sum runs over all values of i ,  i.e. all the collected data. This has 
the advantage of smoothing fluctuations in the data caused by inaccuracies in 
the measurements (caused, for example, by the temporary use of blackouts, or 
wildlife interfering with the external sensor), thereby stabilising the values 
stored in { Ci }, and making the algorithm robust. However, although stability 
against fluctuations in the data is a good thing, there is a desire to track secular 
trends in the response characteristics of the system: for example, the dirtying of 
windows or the construction of a nearby building. This problem can be solved 
by various methods [YO74]: for example, by using an exponentially weighted 
past averaging method to curtail the memory of the estimation procedure in 
least-squares analysis. In systems where the variation of the parameters is 
known apriori, more advanced methods can be used, for example the Kalman 
filter estimator [KA60]. As very little upriori information of the nature of the 
time variation of the parameters has been assumed, a simpler method is 
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adopted. The sum in (6.2.4) is run over a sliding window of fixed width w. 
Thus the arrival of a new data point (the p )  causes the sum to run from k-w to 
k. 

As any trends are presumed to be slow, consecutive predictions of { ir } 
are likely to be similar. Thus it would seem appropriate not to the reset the GA 
to a random initial population upon receipt of a new data point. The initial 
population is simply set to the final population from the last run. 

APPLICATION 
A computer code ILLUMIN was written to apply LGA to the model and 
calculate the five unknown parameters that characterise the response of a room. 

The data analysed here were recorded at the Physics building of the 
University of Exeter during the spring of 1992. Five light-sensitive resistors 
were attached to the top and the four vertical faces of a small plastic cube. This 
sensor array was housed in a glass enclosure and placed on the roof of the 
building. Within a room in the same building a single sensor was set in a 
horizontal orientation to measure the internal light level. The time series of 
measurements from these sensors was monitored constantly and recorded on a 
data logger every ten minutes (Figure 6.2.1). Two consecutive sets were 
collected, one for training of the GA and the other for testing the results. 

0 25 50 75 

Data Points i (recorded at 10 min. intervals) 

Figure 6.2.1. A short fraction of the time series of measurements from the five external sensors 
(nocturnal periods removed), with each line representing a different sensor. 



129 

RESULTS 
Table 6.2.1 shows the parameter values identified by ILLUMM using the first 
seven days‘ data, together with the values found by the recursive method. fr 
was found after 24 g e n e ~ t i o ~  for N =  100, P, = 0.005, P, = 0.6, E = I, fitness- 
p r o ~ ~ o n ~  selection, and w set to the width of the data set. The mini~sation 
of (6.2.4) was recast as a m~imisation of fitness by setting f = A - Q, where 
the constant A is large enough to ensure f is positive. The identified values are 
similar, but not identical, to those produced by the traditional recursive method 
[PLSO]. 

12.156 
0.5328 
22.522 21.9 
22.262 22. 1 
-36.713 -35.8 

Table 6.2.1. Ttte fmal (dimensionless) parameter values found by recursive least squares 
[CO94a] and by the genetic algorithm, for the data of Figure 6.2.1. 

The model represented by (6.2.2) and the fit represented by the 
parameter values given in Table 6.2.1 can be tested by using (6.2.2) to generate 
a time series of internal light levels, and comparing this with the second 
observed series (Figure 6.2.2). The results from the GA show exceptionally 
good agreement and a large improvement (particularly at higher light leveb) 
over those fkom the classical recursive least-squares algorithm. The final 
parameter set is found to predict the internal light level from observed external 
levels to within an RMS error of 3% at an i l ~ ~ i n ~ c e  of 500 lux. This 
improvement implies that the GA has better navigational properties within the 
space. In particular, as both solutions are close, not just in terms of the result 
but the parameter set itself, it would seem that the GA was able to “jump” over 
one or more local optima to find a better solution. However, without an 
enumerative search of the space it is impossible to say if the values found 
represent the true global optimum. 

In practice k extends indefinitely, and thus many totally separated sets 
of width w are collected so that the controller can take account of slow secular 
trends in the parameters (caused, for example, by seasonal transients in the 
reflectivity of the land s ~ o ~ d j n g  the building and changes in tree foliage). 
This adaptive mode is also suitable for sign~ling excursions in the fitted 
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attenuation parameters beyond pre-determined limits (caused, for example by 
the failure of the occupants to open curtains). The method has proved 
successful with w = 600 and the GA being re-run without re-initialisation for a 
further 24 generations for each subsequent set. An alternative approach might 
be to set w = 1 and only allow the algorithm to advance a single generation for 
each new data point. However, because of the possibilities of large errors in 
individual data points, due in this instance to environmental factors, the 
performance of the GA might well be compromised. 

This opens the way to integrating such models with lighting controllers. 
Such a controller would employ this technique to maintain an updated estimate 
of the attenuation factors, { b}, during periods when artificial lights were not in 
use. Once the lights were illuminated, the controller would use the model 
represented by (6.2.1) to predict natural internal light levels from the 
continuing measurements of external light levels f:. If the predicted internal 
illuminance exceeded a predetermined threshold value (set by the occupants), 
the controller could then call for the artificial lights to be extinguished. Such a 
prototype has been used to control the illumination within an office space, 

-2000 " ' " " " " " ~  
0 100 ZOO 300 400 JW 600 700 

Data Points i (recorded at 10 min. intervals) 

Figure 6.2.2. Comparison of measured and predicted light levels (nocturnal periods removed): 
GA solid line, recursive classical dotted line, and measured dashed line. 
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6.3 WATER NETWORK DESIGN 
Such is the scale of infrastructural asset represented by a large water 
distribution network that the use of a sub-optimal design can have considerable 
cost implications. Unfortunately the complexity of such systems is such that 
the identification of the optimal design for a particular network is far from 
easy. By developing a GA-based design tool, GANET [SA97], for water 
distribution network planning and management, Godfrey Walters and Dragan 
Savic are attempting to rapidly identify near-optimal solutions. 

In the work described here [SA97], GANET was applied to both 
illustrative and real water networks. The following features are exhibited: 

0 discrete unknowns; 
0 Graycoding; 
0 linear rank selection; 
0 uniform crossover; 
0 a penalty function to handle unfeasible solutions; and 
0 the requirement for only a near-optimal, but robust, solution. 

The penalty function is particularly interesting because it is generation- 
dependent. 

INTRODUCTION 
The problem of selecting the optimal set of pipe diameters for a network so as 
to minimise cost has been shown to be an NP-hard problemt [YA84]. The 
simulation of the hydraulic behaviour of a single network itself is a difficult 
task, requiring a simultaneous consideration of energy and continuity equations 
and the head-loss function [WO93]. The actual network layout is often 
determined by such factors as the location of roads, leaving only pipe cost to be 
minimised. The solution itself is constrained by requirements of minimum 
flows and pressures at various points on the network. The pipe diameters 
themselves will not in general be continuous variables, but will be defined by 
the range of commercially available sizes. 

The objective function, Q, to be minimised is the cost, c, given by a 
function of pipe diameters 0, and fixed lengths At only: 

' NP hard problems are ones that cannot be solved in polynomial-time. Essentially this means 
that the complexity of the problem grows at a faster than polynomial rate as more unknowns 
are added, making all but the simplest problems impossible to solve. 
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(6.3.1) 

where Np is the total number of pipes in the network. 
Sa requires minimising under several constraints. At each junction node 

the flow into the junction, gin, and the flow out of the junction, QOul, are 
connected through the continuity constraint: 

(6.3.2) 

where Qe describes the demand (or inflow) at the node. For each loop within 
the system energy conservation implies that: 

(6.3.3) 

where Ep is the energy input by a pump and hf is termed the head-loss. In order 
for the network to be usehl a minimum head will be required at each node. 
These  minim^ heads H,”” , at each node j form a set of constraints, H ,  such 
that: 

H, 2 H,”“ ; j =  1 ,..... N, , (6.3.4) 

where N, is the total number of nodes. 
In order to confirm that any network designed by the GA satisfies these 

constraints requires the solution of a hydraulic model of the system. The most 
commonly used formula to describe the relationship between pressure drop, 
flow rate, pipe length and pipe diameter is the empirical Hazen-Williams 
(H-W) relationship [WA84]; in empirical units: 

where v is the flow velocity, Rh is the hydraulic radius, Sf the hydraulic 
gradient, and b a dimensional coefficient. For a pipe of length A and flow Q the 
head loss is given by: 
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where w is another numerical conversion constant. 

PREVIOUS SOLUTION TECHNIQUES 
It has been suggested [YA84] that only explicit enumeration or an implicit 
numeration technique such as dynamic programming can guarantee finding the 
optimal solution. The problem is non-linear due to the energy constraints and 
further ~mplicated by the requirement to use discrete-sized pipe diameters. 
The problem is NP-hard and intractable for even relatively small (Np < 20) 
networks. However, as is typical with many real-world problems, the inability 
to guarantee an optimal solution is not of prime importance. The goal is the 
identification of the lowest-cost system given a realistic amount of time in 
which to do the calculation. Due to engineering and other factors which cannot 
be Wly described in the model, the final solution ~ p l e m e n t ~  might only in 
part be described by the optimum identified by the modelling processes. 
Because of such considerations and the limited amount of time available to find 
a working solution, it is important that the algorithm identifies near-optimal 
solutions rapidly. Even if other methods are able to find better solutions given 
enough time, it is the p e ~ o ~ a n ~  of the method within a time constraint 
which is important. With a network of only 20 pipes and a set of 10 possible 
pipe diameters there are lo2' different possible designs. Clearly only a fraction 
of this search space can be examined by any practicable method. 

Historically, much of the search space has been eliminated either by 
using a simplified approach [GE85,MU92], or by additional human 
i n ~ ~ e n t i o n  [WA85]. Other approaches include attempts to reduce the probIem 
to a sequence of linear subproblems [SH68,FUf90]. This can lead to split pipe 
designs, with one or two pipe segments of differing discrete sizes between 
nodes. In reality, such segments will need to be replaced by a single diameter 
before implementation. 

 onl linear p r o g r ~ i n g  techniques have been applied to the problem 
[EL85,DU90], but have treated pipe diameters as continuous variables and are 
limited to problems of small size. 

Increasingly, evolutionary inspired programming methods have been 
applied to hydraulic networks [G087a,WA93,MU92,WA93a] 

GANET: A GA MODEL FOR LEAST-COST PIPE NETWORK DESIGN 
The use of a GA to solve a network problem can be illustrated by using 
GANET to solve the two-loop network studied initially by Alperovits and 
Shamir [AL77] (Figure 6.3.1). In the following, the GA rather than the water 



134 

Node 

1 (source) 
2 
3 
4 
5 
6 
I 

engineering aspects will be concentrated upon. In particular, consideration will 
focus upon the hunt for a near-optimal solution, the use of Gray coding, the 
form of the unknowns, and the penalty function. 

Demand (m’lh) Ground level (m) Minimum Acceptable Head 
above ground level (m) 

- 1  120.0 2 10.00 30 
100.0 150.00 30 
100 .o 160.00 30 
120.0 155.00 30 
270.0 150.00 30 
330.0 165.00 30 
200.0 160.00 30 

Figure 6.3.1 The two-loop network used as an example (by permission of ASCE [SA97]). 

The network consists of a single source with a 210m head and eight pipes 
arranged in two loops. The pipes are assumed to be lkm long with Hazen- 
Williams coefficients of 130. The demand and head requirements at each node 
are listed in Table 6.3.1. The fourteen commercially available pipe diameters 
and their cost per metre are given in Table 6.3.2. 
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Diameter (In.) 1 Cost 

1 
2 
3 
4 
6 
8 
10 
12 
14 
16 
K3 
20 
22 

(monetary units) 
2 
5 
8 
I 1  
16 
23 
32 
50 
60 
90 
130 
170 
3 00 

Table 6.3.2. Pipe diameter and cost data [SA97]. 

VARIABLE FORM 
The form of the unknowns in this type of problem is such that the mapping 
described in Chapter 2 between integer and reds is not required. Figure 6.3.1 
shows that there are eight decisions (the eight unknown pipe d i a m e ~ ~ ~  to be 
made about the network. Each one of these decision variables can take one of 
the fourteen discrete values listed in Table 6.3.2. The shortest binary string that 
can represent fourteen values is of length four. However 24 = 16 not 14. This 
illustrates ~ d ~ d a n c y  in the coding, with two of the possible strings not 
representing any available pipe diameter. The simplistic way around such 
redundancy is by assigning the two additional string possibilities to other 
(close) pipe diameters. This will mean that in the two cases the same diameter 
is represented by more than a single sub-string, whereas the other twelve 
diameters are represented by unique sub-strings. Such an approach can have 
stochastic implications, although these are unlikely to be major unless the 
approach is taken to extremes. 

GRAY CODING 
The algorithm is based on a Gray binary coding of the decision variables. Such 
a coding represents adjacent integers in such a manner that they differ in only 
one bit position (see Chapter4). Thus similar physical pipe diameters have 
similar string representations. In many problems this adjacency property is 
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more important than one might initially think. For example, if the possible 
pipes in Table 6.3.2 are represented by a four-bit simple binary string, then the 
following ordered list is generated: 

pipe size 4-bit binary pipe diameter (in.) 
representation 
0000 1 
0001 2 
0010 3 
001 I 4 

0101 8 

0110 10 

0100 6 

Moving from a pipe size 3 (4 inches) to size 4 (the next size up) cannot be 
achieved by flipping the value of a single bit, but requires three out of the four 
bits in the string to change their value, whereas in the Gray coding shown 
below, a single bit move gives a single increment in pipe size. 

pipe size 4-bit Gray 

0 0000 
1 0001 
2 0011 
3 0010 

4 OIIO 
5 0111 
6 0101 

representation 
pipe diameter (in.) 

1 
2 

3 
4 

6 
8 
10 

Although by using such a coding, programming the algorithm is made 
slightly more difficult, the performance of the algorithm is likely to be 
improved. In particular, in the later stages of a run where the solution is near 
optimum and mutation is playing an important role, progression will hopefully 
become faster. Another advantage is that a particularly simple bit-based hill- 
climbing routine can be included as a direct search algorithm after the final 
generation has been processed. 

THE PENALTY FUNCTION 
The objective function, 8, is particularly simple, just the sum of the cost of the 
individual pipes. However, each network created must be checked against the 
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minimum head requirements at the various nodes. The network solver used by 
Waiters and Savic is based on the EPANET [ROS93] computer  pro^. This 
uses a gradient method [TO871 for solving (6.3.2) and (6.3.3) 

Unfeasible solutions, i.e. those which fail to meet (6.3.4) are not 
removed from the population. Instead their fitness is degraded. If they are far 
from feasible, they are likely to be viewed as "lethals" by the algorithm and fail 
to reproduce at next generation. Thus (6.3.1) is replaced by, 

where p is a penalty multiplier and the term in braces equals the m ~ i r n ~  
violation of the pressure c o ~ ~ ~ n t .  

The multiplier is chosen to norrnalise nominal values of penalties to the 
same scale as the basic cost of the network. Unfeasible solutions are likely to 
carry more information useful to the GA early on in the search than towards the 
end, when fine adjustments are being made to the optimal solution. In addition, 
in many search spaces there are likely to be more unfeasible solutions during 
the early generations. It would therefore seem sensible to devise a penalty term 
which becomes increasingly severe with generation. One possibility is: 

where K is a constant. When g = G, i.e. the final generation, p should be such 
that no unfeasible solution can be better than any feasible solution in the 
population. 

REPRODUCTION 
In an attempt to avoid premature c ~ n v ~ ~ g e n c e  and the need for fitness scaling, 
rank selection was used with a linear weighting function. 

After experimentation with different operators, uniform crossover was 
adopted. This also allowed (6.3.1)* which describes a minimisation problem, to 
be used directly by simply ranking in reverse order. With P,  = 1.0, P,,, was set 
to 0.03, or approx~ately lIL, and elitism applied. 
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AN ILLUSTRATIVE EXAMPLE 
Although the network shown in Figure 6.3.1 is of modest scale, it still contains 
148, or approximately 1.5x109, possible designs. This has forced all previous 
studies to consider split-pipe solutions. Table 6.3.3 lists some typical results, 
together with results from GANET. As different authors used differing values 
for the head-loss coefficients of the Hazen-Williams formula, the results are 
difficult to compare. Two GA-based solutions are presented covering the full 
range of published values. The results are particularly promising because of the 
use of realistic non-split pipes and because the calculations only took 
approximately ten minutes on a personal computer. 

Figure 6.3.2 shows a typical plot of the cost of the best solution as a 
function of generation. The form is typical: a rapid reduction followed by much 
slower progress until the termination condition (G = 500) was reached. The 
best solution found was identified after approximately 130 generations. A 
population size of 50 was used, implying 250,000 evaluations were performed. 
At most, this represents less than 0.017% of the possible pipe combinations and 
therefore of the search space. 

1 . 1 - 1 ' 1 ' 1 . 1 . 1 . 1  

Figure 6.3.2. Evolution of cost with generation (data from [SA97]). 

The quality of the solutions identified, and therefore the robustness of 
the method, can be gauged by hydraulic simulations of the other results 
presented in Table 6.3.3. These simulations were carried out for both the 
maximum and minimum values of the conversion constant w in the Hazen- 
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Nods 
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4 
5 
6 
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Williams formula used to produce GA results. Table 6.3.3 shows that many of 
the results become unfeasible for at least one of these bounds. This is less so of 
the GA-based calculations. This indicates that the GA has identified robust 
engineering solutions to the problem. 

Alperovits and Goulter Kessler Eiger GA GA 
Shamir et al. and et al. No. 1 No. 2 
[AL771 [GOU86] Shamir [EI94] a)= 10.508 o= 10.903 

53.80 54.15 53.09 53.09 53.09 55.86 
3 1.89 32.78 29.59" 29.81IF 29.97IF 30.30 
44.71 43.91 43.35 43.59 43.18 46.38 
3 1.65 3 1.65 29.38IF 29.90" 33.13 31.61 
30.83 30.83 29.69" 29.46" 30.1 1 30.50 
31.11 31.11 29.59IF 29-34'' 30.13 30.52 

[KF,89] 

REALNETWORKS 
GANET has been applied to the trunk network of both Hanoi [FUJ90] and 
New York [SC69]. The Hanoi network consists of 32 nodes and 34 pipes 
organised in three loops, with approximately 2 . 9 ~ 1 0 ~ ~  possible designs. 

In the case of New York the problem was one of expansion, the goal 
being to identify the most economically effective designs for additions to the 
pre-existing system of tunnels. 

In both cases the use of a GA provided robust solutions in a very 
efficient manner. 

6.4 GROUND-STATE ENERGY OF THE fJ SPIN GLASS 
Spin glasses have been studied for many years by physicists as idealised 
representations of the solid state. Such a representation consists of a large 
number of spin sites residing on an interconnected lattice (see Figure 6.4.1). 
However, interest in such systems goes beyond the world of physics and they 
are currently of great interest across a wide range of fields [BI86]. 
Additionally, computational methods developed to study spin glasses have 
been applied to questions in computer science, neurology and the theory of 



evolution {ST89,FA94,KI87~. A well known example of this is the design of 
artificial neural networks, where the Hopfield net is found to be isomo~hic to 
the Ising spin model [R093]. 

One problem studied within spin glass systems is the d e t e ~ i ~ a t i o n  of 
the ground state energy for a system of infinite size. The value depends on the 
layout of the lattice, its dimension and the configuration of the bonds. 
Wanschura, Migowsky and Coley [WA96] have used a genetic algorithm 
together with a local search heuristic (as suggested by Sutton [SU94]) to 
estimate the ground-state energy of spin glasses of dimension greater than 
three. For a lattice of even modest size the d e t e ~ i ~ t i o n  represents a severe 
compu~tiona~ challenge. The work described here illustrates the following: 

long genotypes, L > 3000; 
* large number of Boolean u~nowns ,  M >  3000; 
* inclusion of an  addition^ local search heuristic (directed m ~ ~ t i o n ~ ,  and 

direct correspondence between the problem-space and the string 
representation, negating the need to encode the unknowns, 

% - @  - @  - @  - %  

@ - - C f 3  - € 3  - @  -63 
I l f l l  
I I I I I  

QD -63 --€3 - @  -63 

@ - @  --@ - - @  - @  
I I I I I  

Figure 6.4. I .  A regular spin glass in a minimum energy state showing spin sites (a = +, 1 or 
“up”, QD = -, 0 or “down”) and bonds ( I and -). 

~ ~ ~ ~ 0 ~ ~ ~ ~ 1 0 ~  
The model used assumes that jntera~tion only takes place between nearest 
neighbours, The number of such neighbours will however depend on the 
di~ension D of the system (D = 2 in Figure 6.4.1). The interaction between 
any two spins i,k, is described by the coupling constant Jrk which represents the 
bond. In general, J,k can take any value; however, here the restriction is that 
J =  Itl. 
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~ e n ~ l y ,  the problem is a simple one: given a particular c o ~ ~ a t i o n  
of bonds, find the configuration of spins that give the lowest energy (defined 
below) to the system. However, unless all the bonds are given the same value 
(for example the Ising model), the problem proves far from trivial. In 
particular, the following provide difficulties: 

1. Frustration: In a typical spin glass system there is usually no spin 
configuration that will simultaneously satisfy all of the bonds: a local 
minimisation of the energy does not necessarily lead to the global 
minimum [TO77,VA77J. 

2. High n o n - l ~ e ~ ~ :  The energy is a highly nonlinear ~ c t i o n  of the spin 
configuration, which results in many local energy minima. 

3. Large Sonfiguration space: A system of dimension D and lattice length h 
has 2L possible configurations and a large number of unknowns to be 
found. 

These factors imply that an analytical solution is almost impossible, although 
mean-field approximations have been proposed. Thus, finding the ground-state 
of a spin glass has become a prime testing ground for numerical optimisation 
methods. Different methods have been proposed and tested (e.g. simulated 
annealing fDA87,R093]). 

METHOD 
The very large number of possible combinations of spin orientations (2'Oo0 for a 
system of dimension 3 and length or side 10) has lent to a certain reluctance 
[ST941 amongst workers in the field to tackle systems of higher dimension 
using traditional search methods. Recently it has been suggested [SU94] that a 
GA might provide a method for estimating the ground-state energy of spin 
glass systems of dimension greater than 3. The scale of the problem, combined 
with the existence of multiple local optima (at all scales), makes higher- 
dime~ional spin glasses ideal subject matter for the testing of the new 
heuristic and co~ectionist search models now being applied within the 
physical sciences. 

The ground state energy is defined as the minimum value of 

1 H = - - G J o S i S j  , 
2 i j  

(6.4.1) 
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for a system of spins Si. The bonds Ji/ are regularly oriented in the Ising model 
and randomly oriented in the Edwards-Anderson model [ED75,SH75]. The 
summation is carried out over nearest neighbour pairs. With randomly oriented 
bonds it is not possible to minimise (6.4.1) at each individual spin site and the 
value of the ground-state energy will depend on the particular bond 
configuration in question. 

For the Ising model the ground-state energy Emin has a known value 
(per spin) for systems of any dimension D, and any linear size (or length) h, 
and is equal to -D (in units of J). For randomly oriented bonds it is believed 
that Emin (for infinite A,) has a value of -1.403 f 0.005 for a 2-dimensional 
lattice [SU94,SA83] and -1.76 for 3-dimensions [SU94,CE93]. 

In the case of a spin glass, the encoding of the unknown parameters (S,) 
into the genotype is particularly natural. Each individual in the population is a 
single complete lattice with I being used to represent an up spin and 0 to 
represent a down spin. The concatenated string is then just an ordered binary 
list. The configuration of the bonds is randomly assigned at initialisation. The 
formation of the next population is simply a matter of cutting pairs of 
genotypes at the same, random, point and swapping the severed halves of the 
lattices (i.e. single point crossover). Mutation is implemented by the occasional 
flipping of digits in the new strings. Selection of individuals to undergo this 
processes is inversely proportional to each individual's value of H, i.e.: 

1 
H 

f =- 

For small lattices (and no mutation operator), convergence can be 
defined as the point where all strings in the population, and therefore all 
lattices, are identical. For large lattices such a strict definition of convergence 
can lead to long run times. In this work convergence is deemed to have 
occurred when at least 40% of the lattices are identical and the best estimation 
of Emin has not changed for 100 generations. It was found that convergence 
could be reached sooner if each spin-site in each new lattice was visited 
"typewriter", fashion with the spin being flipped if this led to a decrease in the 
energy of the local system (this is similar, but not identical, to the method used 
in [SU94]). 

The algorithm was checked by reproducing the most recent estimates 
[SU94] of Emin for the king model and for the two- and three-dimensional 
Edwards-Anderson model cited above. This also allowed appropriate values to 
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be found for the population size, the crossover rate and the mutation rate to 
ensure rapid convergence. A mutation rate of 0.001 was used together with a 
pop~ation size of 800 s ~ ~ ~ e o ~  spin systems, with ? ~ %  of the lattices 
undergoing crossover each generation (i.e. Pc = 0.7). 

The GA was run with dimension two to six with L running between five 
and twenty and periodic boundary conditions (i.e. any side of the lattice in 
Figure 6.4.1 is joined to its opposite). Ten runs of the program, and hence ten 
differeat bond configurations, were tried in all cases except the case of D = 6 
when only five runs were completed. The results are shown in Figure 6.4.2. 
Extrapolation of the results (using linear regression) to infinitely sized systems 
allows the estimations Of Emim (h-m)  given in Table 6.4.1. 

Applying linear regression, once more, to the results given in Table 
6.4.1 allows the decrease (in units of J) in Emin (k+.o) with increasing 
dimension to be estimated 0.312 f 0.01 16 per extra  ensio ion. 

-2.054 10.003 
-2.347 f 0.016 

6 -2.553 I 0.022 
Table 6.4.1. Estimated ground state energies, Emf", for infinite systems of varying dimension. 
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Figure 6.4.2. The calculated ground state energies, together with their standard errors, of the 
different systems (lines estimated by linear regression), from [WA96]. 

6.5 ESTIMATION OF THE OPTICAL PARAMETERS OF LIQUID 
CRYSTALS 
Liquid crystals are finding an increasing number of applications from watches 
to complex displays for portable computers. This utility arises from the ease 
and speed with which the molecules within liquid crystals can be made to 
reorientate themselves. Interestingly, the precise orientation as a function of 
depth is not fully understood for many systems. 

The best methods currently used to study this orientation 
[YA93,YA93a] rely on laborious hand-fitting of experimental data to a model 
of the system. Recent attempts to automate this process using a GA 
[MIK97,MIK97a] have proved highly successful. In order for the approach to 
work, a series of adaptations to the simple GA are required, and the approach 
illustrates much of the wrestling often undergone to produce a successful 
application. In particular, the following are considered: 

the development of a system to replace a previously human-guided search; 
how, starting from a simple problem, a series of sequential adaptations are 
made; 
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the use of iinear fitness scaling, bound reduction, fitness function 
a ~ p ~ t i o n s ,  approximate fitness evaluation and a variable mutation rate; 
and 

0 the inclusion of a traditional search routine to create a hybrid algorithm. 

LIQUID CRYSTALS 
Liquid crystals exist in a series of states of matter somewhere between the 
usual solid and liquid states. They have been investigated since the 1880’s 
when Reinitzer and Lehmann first studied esters (benzoate) of cholesterol. 
Unlike the usual states of matter, they display a series of “mesophases”, each 
of which has distinct structural properties categorised by the degree of 
positional and orientational ordering found within them. It is the existence of 
these mesophases, and the possibiIi~ of making t r ~ ~ t i o n s  between them, that 
have allowed liquid crystals to be deployed in a range of technologies. 

The characteristic feature which links the many thousands of 
substances, both naturally occurring and manmade, that show liquid crystalline 
phases is that the molecules are anisotropic: either elongated, cigar-shaped or 
disk-like. The anisotropy of the molecules is reflected in i n t e ~ o l e c u l ~  forces. 
It is these anisotropic forces which lead to the formation of the numerous 
mesophases. The average direction of the principal molecular axis is given by a 
unit vector, or director. As the temperature of a liquid crystal is reduced 
increasing order is gained. A typical sequence would be: 

isotropic, which has no long range positional or orientational order (i.e. liquid like); 
5- 

nematic, which has no positional order ,but some orientational order; 
5- 

smecfic, which has both positional and orientational order; and 
5- 

rryslal, which has high positional and orientational order. 

Many phases are chiral, i.e. the director precesses as you move through the 
material. 

Not only are such molecules physicaliy anisotropic, they are also 
d i e l ~ ~ c a l l y  and optically anisotropic. As a result, if an electric field is applied 
alignment of the molecules will occur. This potential for alignment is at the 
heart of such materials being usekl in display technologies. The optical 
anisotropy results in differing effective refractive indices for polarisation along, 
and perpendicular to, the molecular axis. 
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Sandwiching the liquid crystal as a thin layer between two glass plates 
that have rubbed polyamide coating their inner surfaces is enough to physically 
align the liquid crystal along the rubbed direction. If the glass plates are first 
coated with a transparent conductor then, once assembled, an electric field can 
be applied to re-orient the liquid crystal. Furthermore, if this cell is placed 
between crossed polarisers the alignment of the liquid crystal will effect the 
transmissions of light through the cell, resulting in a simple display system. 

In a typical, standard, simple twisted nematic cell, about 1 O p m  of liquid 
crystal is placed between the plates, with the alignment layers used to impose a 
90° twist on the director through the cell. Incident light is then naturally guided 
(twisted) as it passes through the cell and is able to exit through the second 
polariser. Applying an electric field (of the order of lo6 Vm-') induces dipoles 
in the liquid crystal molecules which align in the direction of the field, stopping 
the light from emerging from the second polariser. Removing the field returns 
the cell to its original state. 

If a liquid crystal cell of low order is mechanically deformed, 
birefringence colours become visible, but once the deforming force is removed 
the molecules flow back to regain their original structure. However, in highly 
ordered systems in more solid-like mesophases, the structure of the system is 
left permanently deformed, making the device useless as a display. If more 
were known about the details of the exact structure within such cells (with and 
without defects) progress might then be made on better cell designs. Work by 
Mikulin, Coley and Sambles using GAS [MIK97,MIK97a] has been centred on 
detailing this structure. 

THE HALF-LEAKY GUIDED MODE TECHNIQUE 
The principal optical tool for the study of liquid crystals is that of optical 
polarising microscopy. Because this technique integrates the optical response 
through the entire thickness of the cell, only some weighted average of the 
director orientation is obtained. In order to understand the underlying structure 
within the cell, a method that can detect details of the spatial variation of the 
director is required. The development of optical waveguide techniques, in 
particular the use of the Half-Leaky Guided Mode (HLGM) technique by Yang 
and Sambles [YA93,YA93a], provides just such a method. 

A waveguide consists of a sandwich construction, such as a fibre optic, 
where a core of high-index glass is surrounded by glass of lower index. The 
difference in the refractive indices can ensure, under the right circumstances, 
that the light is contained within the waveguide. The light in such a waveguide 
mode follows a zigzag path within the central medium. Many such paths or 
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modes are possible. In many ways these modes are similar to organ-pipe 
standing waves. The lowest energy mode that can be excited is the 
fundamental, which has averaged electric field distribution nodes near the 
waveguide surfaces and a maximum in the centre. Higher energy modes are 
harmonics where progressively more half-wavelengths fit into the waveguide. 
The maxima for each of these harmonics are seen to occur at different positions 
within the waveguide. By building a waveguide consisting of a liquid crystal 
layer, the optical excitation of the guided modes which may propagate in the 
cell may be used to characterise the liquid crystal optical parameters as a 
function of position within the cell. In particular, measuring the angular 
dependence of reflectivities which characterise resonant modes provides data, 
which when compared to a mathematical model of the cell gives the director 
profile through the cell. 

In practice, polarised monochromatic laser light is incident (via a 
prism) upon the cell which sits on a rotating table. A photodiode detector is 
used to detect reflected light, and an oven enclosure is provided to allow the 
study of various mesophases. The incident beam can be either p- or s-polarised 
and the detector is arranged such that only p- or s-polarised light is detected. 
This means that four possible angle-dependent datasets of reflected light can be 
collected: Rpp (p-in, p-out); R,  (s-in, s-out); Rps (p-in, s-out) and R,  (s-in, p- 
out). A typical data set contains measurements made at about 1,000 different 
angles. 

THE SEARCH SPACE 
The mathematical model used of the cell is based on Fresnel’s equations of 
reflection, and views the cell as a series of discrete optical layers. These layers 
correspond either to real physical layers in the non-liquid crystal part of the 
cell, or arbitrary sub-layers of the liquid crystal chosen such that any individual 
layer is optically thin. The number of sub-layers required to accurately 
represent the liquid crystal depends, in part, on the complexity of the liquid 
crystal mesophase in question. As the number of sub-layers grows, the 
numbers of unknown adjustable parameters (used to describe how the 
molecules bend and twist the light) in the model also grows. Attempts to find a 
traditional search method capable of adjusting these parameters, so as to 
minimise the difference between the experimental data and predictions from 
the model have failed because of the complexity of the search space. This has 
meant that such fitting is typically carried out by a human-guided search 
through the space with intermittent use of a gradient-based search algorithm. 
Such a search may take several man-months. 
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The complexity of the search space arises from the large number of 
parameters (typically more than 50) which are being adjusted and the existence 
of a very large number of local optima throughout the space. This results in 
many combinations of parameters leading to similar traces. One way around 
this problem is to attempt to fit more than one dataset, i.e. Rpp and Rss at the 
same time. This removes many of the degenerate solutions because some often 
prove much poorer solutions for the second dataset. Another possibility is to 
change the ~ imutha l  orientation of the cell relative to the pol~sat ion of the 
incident laser beam and collect new data sets. Given enough data it should be 
possible both to navigate through the space more effectively and also locate a 
definite global optimum. However there are problems with such an approach: 
the more data the better the fit, but the bigger the search. This is a general 
problem with many experimental datasets. Collecting more data makes the 
topology of the modelled search space closer to the physical problem space, 
smoothing out many irregularities and, hopefully, allowing the identification of 
a global o p t i m ~ ,  but only at the cost of a much larger problem. 

In the HLGM data, if there are Rpp, R,,, Rps and R.Ip sets at 1000 angles 
and two azimuthal angles, then the computer model will have to make 4 x 1000 
x 2, or 8000 estimations of the reflectivity for a single guess at the ~o~ 
parameters, making it impossible to consider random or enumerative searches 
and difficult for any other method. These problems---of a complex search 
space together with computational time constraints-have meant that it is 
considered impossible to successfully fit such datasets, and thus impossible to 
fully characterise such cells. 

The use of a GA on the problem proved highly effective, but not 
without difficulty. The first GA applied was very simple indeed. A binary 
encoding was used (with 10 bits per ~ o ~ ,  i.e. I ,  = 4, i #j) together with 
rank order selection (with the best 50% of individuals being selected for 
crossover once and only once) and random replacement by children of the 
original population members to create the new generation. Mutation was 
applied, at a rate of 0.001 per bit per generation, across the complete new 
generation, and elitism applied. The fitness measure used to distinguish 
between solutions was based on the sum of squares (SOS) difference between 
the experimental and modelled data: 

where 



1 49 
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where R is one of the ~flectivities Rpp, R,, Rps or Rsp and p is the theoreti~ly 
predicted (i.e, modelled) r e f l e c t i ~ ~ .  The sum is carried out over all data 
points, or angles, 8. The constant A is selected to be equal to or slightly greater 
than any likely value of SOX On the odd occasion when a negative fitness was 
produced, the fitness was set equal to zero. The results proved surprisingly 
good for a first attempt. Typical initial values of SOS of 200 were reduced to 
0.23 within a few hours on a fast personal computer for a nine parameter 
nematic (i.e. relatively simple) cell problem and gave parameter values very 
close to those found by laborious hand-fitting (an approach which might take a 
month for such data if similar bounds were used). 

Initially, attempts to study more complex cells with 27 unknowns 
failed. When presented with both Rpp and RPs data at two azimuthal angles, 
where the m i ~ m ~  value of SOS was known to be approximately lo", only 
SOPS of something less than 10 were achieved. In order to make the approach 
useful for characterising more complex cells, a series of adaptations were made 
to the algorithm. 

REDUCING THE STRING LENGTH 
The fa improvement tried was to assign different binary word lengths to 
different parameters. This very basic adaptation was felt to be sensible because 
different parameters were known to affect the goodness of fit to varying 
degrees. This is probably crucial for a GA to work effectively with a large 
number of ~ o w n s .  A simple GA with a string length of several t h o ~ ~ d  is 
likely to take a very long time to converge within most real search spaces. 

Such an approach rapidly reduced (in c 100 generations) the SOS to 
less than 1. However, progress past this point proved very slow. One reason 
appeared to be that for SOS < 1, many of the strings have bit-patterns very 
close to the pattern they would have at the global minimum. At such a point it 
becomes very difficult for a GA (with large L) to progress by simple crossover 
and mutation to the global optima. In particular, mutation will almost always 
be destructive and the search becomes close to looking for a needle in a 
haystack. Unfortunately switching to a traditional search mechanism at this 
point could still not guarantee locating the global optimum. One approach to 
this problem proved to be the sequential use of the GA within a narrowing 
search space. This ensures an efficient gridding of the search space by the 
binary encoding. A sketch of the method is given in Algorithm 6.5.1. 
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1. Apply GA until the solution no longer improves or for a fixed number of 

2. Reduce the size of the search space and re-initialise the GA 
3, Repeat from I a set number of times, or until convergence is reached. 

generations. 

Algorithm 6.5.1. A GA with bound reduction. Note that such an approach is not suitable for 
most types of search space and care has to be taken not to exclude regions of the search space 
too early. 

Step 2 of A l g o r i t ~  6.5.1, the reduction of the size of the search space, 
could take one of many forms. The simplest would be to reduce the width of 
the space for each unknown by the same fractional amount, giving a new space 
centred upon the current best solution. This could well cause problems. For 
example, if the old space had width w,, for parameterj and the new space is to 
have width w; = wJf2, then if the current best guess of parameter] is closer than 
wJ14 to the upper or lower bound of the original space, then the new space will 
include a fragment outside of the range initially specified as the problem space. 

At best the inclusion of such a fragment is wasteful, at worst it may 
lead to the production of an unfeasible solution. One way around this is not to 
allow any new bound to fall outside the initial search space, and if it attempts 
to do so, to simply give it the value of the initial bound. 

Another question to be answered is the size of the reduction constant n,, 
where: 

The greater the value of PI, the faster, but the less reliable, the convergence. 
One possibility is to make n, dynamic and base its value on the value of a, (or 
some other statistic) estimated from a single run or a series of runs of the GA. 
This could occasionally allow n, < 1 (i.e. an expansion of the space). If all runs 
progress to similar values of a parameter then a greater reduction in the size of 
the search space is possibly justifiable. However, extreme caution is required to 
make sure that at no point is the true global minimum excluded from the search 
(this will not be possible for many search spaces). 

Using such an approach on the HLGM data proved very successful, 
with the SOS rapidly being reduced toward zero (Figure 6.5.1). 
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Figure 6.5.1. Enhancing the GAS performance by repeated bound reduction (data from 
[MIK97a]). 

In essence, such bound reduction is a~empting to make the crossover 
and mutation operators equally effective across all unknowns, regardless of the 
sensitivity of the problem to a particular parameter. Hence for parameters 
which initially have little effect on the fitness, the bounds will remain wide; for 
the more critical ones the bounds will slowly reduce. There are many functions 
for which such an approach is unlikely to be suitable and will flounder. 
However, within spaces characteristic of several physical problems where a 
solution can be incrementally zoomed in upon it may be successful. An 
example of the successful performance of the method on theoretically 
produced HLGM data for a liquid crystal in the nematic phase is shown in 
Figure 6.5.2. 
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Figure 6.5.2. The performance of the sequential GA on the relatively simple problem of 
nematic HLGM data with 27 unknowns: cross = data, line = fit) (data from [MIK97a]). 

APPROXIMATE FITNESS FUNCTION EVALUATION 
As has been suggested before, the time it takes for a GA-based optimisation 
routine to cycle through a generation is likely to be dominated by estimations 
of the fitness function, rather than the genetic operators. In the case of the 
HLGM data this means that the computing time required is proportional to the 
number of data points. However the accuracy of the final answer will, in some 
complex way, be a function of the number of data points. So a conflict exists 
between speed and accuracy. Or, put another way, given a fixed (or reasonable) 
amount of time for the running of the program, how can accuracy be 
maximised? Is it best to estimate the fitness function as accurately as possible 
and reduce the number of generations processed, or would it be better to use an 
approximation to the fitness function (which can be estimated more rapidly) 
and process more generations? The answer to this question is obviously 
problem-dependent. It is also likely to change during the optimisation process 
itself. During the early stages of the search, fitnesses are likely to be low and so 
their accurate estimation is unlikely to be important. However, at later stages 
navigation of the algorithm through the search space is likely to rely on subtle 
differences in the fitness function in different directions of the hyperspace. 
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To try to speed up the search, and thereby ultimately allow for greater 
accuracy, the HLGM data was filtered to only leave P! of the data points. As 
the run progressed the value of D was increased. For the HLGM data the form 
D = D(g) was used; however D = D ( f )  would possibly be more natural. With 
this approach, it was found possible to quarter run times for no loss of 
accuracy. 

USE OF FITNESS SCALING 
As discussed in Chapter 3, GAS can experience problems if the fitness function 
spans too little, or too great, a range within any one generation. In particular, if 
during the early stages of a run a small sub-population (typically of size = 1) 
has individuals with a much greater fitness than the population average then the 
s u b - ~ p ~ a t i o n  can rapidly grow under ~ t n e s s - p r o p o ~ o n ~  selection to 
dominate. This can lead to premature convergence. Conversely, during the later 
stages, a large sub-population (typically of sizemiV) may only contain 
individuals who have fitnesses approximately equal to the population 
maximum. In such a situation, simple fitness-proportional selection can make 
little distinction between sub-population members and the progression of the 
algorithm is much reduced. 

Linear fitness scaling was used on the HLGM problem to control the 
expected number of times above-average population members would undergo 
selection, compared to an individual of average fitness. A range of values for 
the multiplier em was tried and an improvement in convergence noted, Making 
c, dynamic, i.e. c, = c,V) or Cm = c&) was not tried. 

DIRECT FITNESS FUNCTION ADAPTATION 

Unlike many problems where few details of the functional form of the search 
space are known prior to optimisation, partial enumerative searches through 
~ e o ~ t i c ~  data had p r o d u c ~  insights for some cells, In particular, many of the 
unknowns had been found to show sections through the solution vector that 
contained large areas of equal fitness nearf. Such a section suggests the 
substitution: 

f =  f" ; m >  1 ,  

might be of benefit. Such direct scaling can only be applied if some of the 
details offare already known (allowing a sensible choice of m). 
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For the HLGM problem several values of M (m = 6 proving the most 
useful) were tried and again improvement in convergence witnessed across 
many sets of data. (Similar results could have been realised by making suitable 
a d j ~ ~ e n t s  to the selection mechanism itself, because fitness ~ c t i o n  
adaptation and fitness scaling are two sides of the same coin. However, it is 
often more naturally intuitive to adapt the fitness function directly.) 

~ U Z ~ Z ~ G  THE ~OPULATION 
Long periods of only marginal, or no, progress were seen during many funs 
with some cells. An attempt to see if the computer time during such periods 
could be better spent was made by making the substitution 

In essence the population was boiled, whilst main~ining elitism, by 
momentarily (typically for three generations) increasing the mutation rate. It 
was hoped that not only would this encourage diversity within the population, 
but also allow the population to jump over traps in the binary representation 
caused, in part, by not implem~nting a Gray coding. 

In order for such an approach to effect the diversity of the population 
for more than a few generations afier the boiling event, fitness scaling must be 
applied simultaneously. Without such scaling most individuals produced by the 
operation will be lethals (except the elite member) and fail to be selected for 
subsequent gene~tions. This reinforces the idea that additional GA operators 
cannot be used in isolation and without regard to those operators (and their 
settings) already in use by the ~ g o r i t ~ .  

ADDITIONAL DIRECT SEARCH 
In line with the comments made in Chapter 1, many problems are likely to 
benefit from the inclusion of a traditional search algorithm working in 
combination with the GA. In this case this was done by the inclusion of a direct 
search method proposed by Jeeves and Hooke [BU84], a l ~ o u g h  other methods 
could have equally been used. The direct search was applied (to data Erom the 
highly complex smectic C* phase with 55 unknowns) after g = G in an attempt 
to climb the final hill. This was successful, with the improvement in fitness 
being far in excess of that which might have been expected from a similar 
number of add~tional ~ c t i o n  evaluations within the GA. 

The final (and most successful) algorithm used in this work can be 
described by the schematic given in Algorithm6.5.2. The algorithm was 
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arrived at by trial and error based on an extensive knowledge of the macro- 
details of the search space but has little justi~cation other than it works 
extremely well for the problem at hand. If such knowledge had not been 
available, then some of the settings within the algorithm might have been 
discovered by including them in the search space, using the techniques 
described in references [GR86, BR91, DA89 and DA911. 

1. Run GA with G = 30, n = 60, P, = 0.5, P, = 0.0016, linear fitness scaling, 
fitness-proportional selection with elitism, and using the minimum sub- 
string lengths required to maintain accuracy. 

2. Boil population, maintaining the elite member. 
3. Repeat steps 1 and 2 six times. 
4. Reduce the bounds on the parameters to 120% of the spread of values of 

5.  Repeat from 1 five times. 
f- (G = g) obtained from the six GA runs. 

6. Apply direct search. 
Algorithm 6.5.2. The final algorithm used with the HLGM data. 

This algorithm is a long way from LGA and indicates that GAS can 
benefit greatly from adaptations that attempt to include additional knowledge 
about the search space in question. The success of the method can be gleaned 
by the closeness of fit shown in Figure 4.5.3, which shows a fit to the much 
more complex smectic C* phase. Figure 6.5.4 shows the liquid crystal 
molecular orientations discovered by the GA: the molecules are seen to 
gradually twist and tilt through the depth of the crystal. 
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Figure 6.5.3. Fit (line) to experimental smectic C* data (at 21'C) (+) with 55 unknowns (data 
from [MIK98]). 
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Figure 6.5.4. The twisting (e) and tilting ( 0 )  of the molecules through the depth of the crystal 
discovered by the GA (points connected by 8-splines) [MIK98]. 
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6.6 DESIGN OF E ~ R G Y - E ~ c ~ ~  BUDKNGS 
Considerable scope exists for reducing the energy consumption of both new 
and existing buildings. 

Although some reductions in energy use can be achieved by relatively 
simple measures, very high levels of performance require the coherent 
application of measures which together optimise the performance of the 
complete building system. In essence, the designer, who will typically be more 
of an architect than a scientist or engineer, is faced with a multi-component 
optimisation problem. Most designers feel ill-equipped to tackle such a task 
and this is a serious obstacle to them advancing high performance designs. The 
application of computerised optimisation techniques to the design of low 
energy b ~ l d i ~ s  could provide architects with a powerful new design tool. 
With the increasing use of graphical packages during other stages of the design 
progress such an approach could eventually be included within the design 
environment, 

Population-based optimisation appears to be ideally suited to providing 
the type of support and assistance needed. Most traditional optimisation 
t e c ~ q ~ s  tbat might be applied sufier f b m  the drawback that only a single 
result is obtained. Because of the difficulty of including such factors as 
aesthetics in the optimisation process (as discussed in Chapter 4), it is likely 
that any “optimum” result will be found to be unacceptable. 

Given the number of individual attributes that combine to make a single 
 build^^ the number of possible realisations, or designs, is very large. Work by 
Migowsky [MIG95] showed that a GA can be used to allow a rapid and 
efficient searching of this multi-dimensional building space. The method 
produces not only the near-global optimum, but ah0 a set of high quality 
designs. Each has excellent energy performance, but the set is sufficiently 
diverse in physical c h ~ t ~ s t i c s  to allow the designer the opportunity to 
select on the basis of other i m p o ~ t  non-optimised criteria. A GA can thus 
form the basis for a powerful and practical buildingdesign aid. 

The system allows a designer to select from a range of buildings, all of 
which have a predicted energy performance within, say, five percent of the 
achievable minimum, the design which best suits hislher other requirements. 
”his a ~ ~ h  is in line with the established preference of architects to work 
from case study and demonstration material. It relieves the designer of the need 
to work through the consequences of choosing individual features and of 
checking their compatibility with the rest of the building system. The architect 
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is instead offered a selection of optimised, complete, building packages from 
which to make a selection. 

The complete system has a pair of criteria to be satisfied: first a 
numerical measure of fitness which can be used to drive the GA, and second, a 
qualitative assessment of the aesthetics of the design to which it is impossible 
to attach a numerical estimate. Because this second measure is non-numerical, 
Pareto optimisation methods (see 34.4) are not suitable. 

Although the energy model used in this work contains only five true 
unknowns, it is impossible to describe or visualise a building with only these 
parameters. The building must be considered as consisting of a far greater 
number of parameters (>loo) which are far from linearly independent. In 
essence, the GA is being used to throw up ideas, good ideas, because they are 
highly energy efficient, but still only ideas. 

In the work described here, which is taken from developments based on 
reference IMIG951, the approach is applied to the design of a set of school 
classrooms. The work shows an example of a problem with the following 
features : 

a range of different variable types (binary, integer and real); 
the need for a diverse range of approximate solutions together with the 
global optimum; 
the need for human-based final selection; 
a large multimodal space studied by using multiple runs; 
a highly non-linearly independent search space; 
because of the time taken to evaluate a single design, the need to avoid re- 
estimating the fitness of any previously processed design; 
remainder stochastic sampling to help reduce the convergence rate; and 
use of a generation gap. 

INTRODUCTION 
Up to fifty percent of the United Kingdom’s consumption of fossil fuels is 
related to energy use in buildings. The burning of fossil fuels, and the 
associated emission of combustion products, contributes to global warming, 
acid rain and other local pollution. 

The energy performance of a building is determined by its response as a 
complete system to the external environment and the internal environmental 
demands of the occupants. The system response, in turn, depends upon the 
combination of individual attributes that have been assembled to produce the 



building. Thus, for example, a building with large windows, lightweight 
structure, elongated form and a powerful heating plant may be more, or less, 
energy-successful in the role of a primary school than one with a different mix 
of features. Traditio~ly,  a solution is proposed on the basis of experience and 
on the evidence of the ~rformance of other demo~~at ions.  The perfbrmance 
is then checked using predictive models, and the design may be adjusted in the 
light of the results. By this means, an acceptable solution is arrived at-but 
there is no practical way of determining how close to a realistic optimum the 
final design is. 

Unfortunately for the designer, it is not possible a priori to say which 
detailed combination of attributes represents the best solution to a particular 
brief. This situation arises because, although the performance of any particular 
system can be predicted using a suitable mathematical model, the inverse 
probfern of determining the optimum system characteristics from the desired 
performance cannot be solved. Optimisation is therefore a process of trial. 
Given the number of in~vidual physical ~ ~ b u t e s  ~ r n ~ ~ s i n g  a single 
building, the number of possible combinations which results from varying each 
attribute over its range of practical values is enormous. This precludes direct 
modelling of the entire building set and indicates that the multi-dimensional 
building parameter space has to be searched in a more efficient manner. 

The main characteristics of the problem are a large multi-dimensional 
space to be searched, requiring an efficient method to converge within a 
reasonable time; a multimodal space requiring techniques to avoid convergence 
on false minima; a requirement not just to identify a single optimum result, but 
to also map the positions of a range of lowest energy solutions throughout the 
space. 

The method described in reference [MIG95] uses energy predictions for 
individual buildings made using the building thermal simulation EXCALIBUR 
[CR87a, CR87bJ. However, any other proved thermal modelling approach 
(many of which are far more sophisticated) would be suitable. 

THERMAL MODELLING 
The five-parameter computer model of the thermal response of buildings 
developed at Exeter, EXCALIBUR, has been used to aid the design of over 
seventy large buildings, from schools to underground military facilities. The 
success and continuing utility of this model has codirmed the original 
conviction that the essential features of building performance, in terms of 
internal temperature evolution and total energy usage, can be adequately 
represented by a l ~ ~ - p ~ ~ e t e r  dynamic model. This approach results in a 



small portable program capable of running quickly on desktop machines. The 
model is based on a two time-constant analogue circuit with five adjustable 
parameters per heated zone of the building (Figure 6.6.1 ). 

Figure 6.6. I .  The electrical R-C analogue of a single EXCALIBUR mne. 

The characteristic equations are: 

where kt represents a quick response thermal conductance (ventilati~n heat 
loss, window losses etc.) between the inside temperature node T, and the 
outside temperature To; ki is the thermal conductance between Tj and the mid- 
structural temperature T,; ko is the conductance between T, and To; c, is the 
effective thermal capacity of the air; cw the thermal capacity of the structure of 
the building; and q the heat supply (including metabolic, lighting and other 
gains) acting at T,. 

These equations are solved analytically and the model building is time- 
stepped through a complete season of representative weather data, including 
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angle dependent solar intensity. Realistic occupancy and temperature schedules 
can be specified and the user can choose between manual and optimum-start 
plant control. The program can accommodate up to ten thermally linked and 
separately controlled zones. 

The model therefore provides the means whereby reliable predictions of 
seasonai energy use can be made for buildings with any reasonable 
combination of physical attributes. However, such a model suffers from at least 
one major setback: few architects (or building scientists) would be able to 
visualise designs in terms of the model’s parameters, V“& (i.e. cw, k, etc.). The 
designer is using the much larger set of physical attributes, such as 
positions, wall lengths, material types, etc, fiom which the five model 
parameters per zone are estimated. Many combinations of physical attributes 
will give rise to near identical combinations of model parameters. Many 
attributes are highly related-the perimeter and the enclosed volume for 
example). The search space is therefore highly m~timodal and chocablock 
with non-linearly independent variables. The scale of this problem can be 
illustrated by the realisation that the search space may contain in excess of one 
hundred unknowns, yet the model contains only five. 

THE PROBLEM 
The problem at hand is that of finding diverse sets of vectors V‘&’ such that the 
energy use of the building over a year is near minimum. The ideal value, Tjer, 
of the internal temperature, Ti, during occupancy is set by the designer and the 
amount of energy required to maintain this value will depend greatly upon the 
design. The building gains “free” heat &om solar input through windows, 
metabolic gains from the occupants and gains h m  electrical equipment (for 
example the I i ~ t ~ g   system^. If these gains are i n s ~ ~ c i e n t  to provide Tst then 
additional input is provided by the heating system. If Ti > Tsef heat is removed 
by thc cooling system. In a low energy building, the need to provide such 
additional gains must be kept to a minimum. This position is achieved by 
“minimising” losses (ko, k,, kr) and “maximising” the use of free gains. The 
thermal capacitance of the building fabric is then used to try to time-table the 
match between supply and demand. Unfomately, this proves to be a fine 
balancing trick. If solar gains (for example) are truly maximised and losses 
simultaneously truly minimised, the building will fiequently overheat, 
requiring the expenditure of large amounts of cooling energy. 

The loss terms (he, ki, kl) and the thermal storage terms (cw, ca) are 
formed &om a complex ~mbination of the building components. This list of 
components is extensive. A single wall typically contains many layers: external 
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brick, air gap, insulation, inner concrete-block layer, and plaster. Both inner 
and outer walls have to be considered, as do the floors and the roof. 
EXCALIBUR takes a single combination of these components as specified by 
the designer, forms a single set of model parameters (kQ, k,, kr, c,, ca), then 
combines these with an occupancy schedule and cycles the building through a 
year of weather data whilst using the heating and cooling systems to ensure 
Ti = Tser during occupied hours. 

In the work of Migowsky [MIG95], and subsequent extensions, 
EXCALIBUR is combined with a genetic a l g o ~ t ~  to try and generate high- 
quality designs with architectural appeal. 

The population, P, is manipulated as follows: 

1. create initial, random, population of attributes P( yphys) ; i = 1.. .N; 
2. reduce physical attributes to model parameters y@ys -+ F”’& ; i = 1.. .N; 
3. calculate annual energy use of heating and cooling systems, Ei ; i = 1.. .N; 
4. use GA to create new designs PhYs by recombination and mutation using 

f= A - E (where A is a positive valued constant) as the selection factor; 
5.  repeat from 2 until termination criterion is met; and then 
6. filter designs considering architect~al appeal. 

It should be noted that human judgement is only applied after g= G, 
not, as in the example presented in $6.7, where such judgements are the driving 
force behind the GA’s selection mechanism. 

The success of the GA phase can be gauged from Figure 6.6.2. Here, a 
small extension to a primary school is being designed. The annual energy use 
of the building rapidly falls with generation, and the final design is seen to be 
far better than is typical for such structures. 

REPRESENTATION 
Each VhYs is represented as a binary string. As some parameters are reds (e.g. 
“ ~ u i ~ ~ i n g  p e ~ ~ e ~ e r ” ) ,  some are integers and others are ~ o o ~ e ~  fe.g. “double 
or single glazing”), the substring length I for each parameter varies greatly. 
This implies that the mutation and crossover operators interact with some 
parameters more frequently than others. If I is chosen to truthfully reflect the 
required accuracy of each parameter, this probably presents no problem 
because the degree of int~raction is then propo~ional to the required accuracy. 
However if each I is not selected with care, then the algorithm will spend a 
considerable time processing irrelevant information. For example, if the wall 
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thickness is only specified to the nearest cm, then there is little need to specify 
the building perimeter to the nearest mm. In reality, the correct set of sub-string 
lengths can only be identified given enough experience of the likely impact of 
each unknown on E, and knowledge of the commercially available sizes of 
constructional components. 

POPULATION DIVERSITY 
As the desire is to find an extensive range of possible designs, not just the 
optimum, population diversity must be maintained throughout the run. The 
algorithm used is a simple GA and therefore does not include niche and 
speciation methods; thus the selection and mutation operators must be relied 
upon to perform this role. 

Selection is via remainder stochastic sampling (which places a limit on 
the number of times any individual can be selected) with a generation gap (see 
Chapter 4). Mutation is applied only to the children, which replace at random 
individuals in the original population. This approach is found to simultaneously 
maintain diversity and remove low quality designs rapidly. A population size 
of 50 and a generation gap of 0.8 are used. 

AVOIDING DUPLICATE FITNESS EVALUATION 
The evaluation of E, for all i is time consuming, especially on the type of 
machine to which a building designer might be expected to have access. Thus it 
is crucial that designs are not re-evaluated. This is simple to achieve: a list of 
all unique designs, together with their respective value of E, is kept and new 
designs checked against this list. If a match is found then the corresponding 
value of E is simply assigned to the new individual. 

This list-keeping process, or something similar, is probably worth 
including in many scientific or engineering-based applications of GAS. Only 
for the simplest of problems (typical of those used as test functions) is it likely 
that searching the list will take longer than a single fitness evaluation. By 
searching the list in reverse order (assuming new designs are placed in at the 
bottom) and not searching for any member which has not undergone crossover 
or mutation (because its fitness will not have changed), efficiency can be 
further improved. For long lists, it may prove desirable to only keep and search 
designs from relatively recent generations. 

Although a reasonable level of genetic diversity is maintained during 
early stages of the run, Figure 6.6.2 shows that this diversity is not maintained 
throughout the run. Here the number of matches that were found between the 
current population and the ordered list is being plotted. (The algorithm never 
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truly converges, which would be indicated by fifty (i.e. N) matches in any 
generation, because of the relatively high levels of mutation used.) It is thus 
clear that if this work is to be continued, additional measures will have to be 
taken to increase the degree of exploration in the  go^^ during these later 
stages-possibly by never allowing two individuals within the current 
generation to be identical. 
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Figure 6.6.2. The number of matches (out of fifty) found between the current population and 
the ordered list of designs. Convergence {s~gnation) is avoided by the use of relatively high 
mutation rates. 

THE ADDITION OF ARCHITECTURAL APPEAL 
The problem presented is a multicriteria one, requiring, at least, the 
mi~misation of energy use and the m~imisation of architectural appeal, No 
attempt has been made to include this appeal in the selection algorithm, and it 
is not clear-even using Pareto optimality-how this could be achieved 
without greatly reducing the number of processed designs. 

As an alternative to even a~empting this, ~igowsky uses a filtered 
stacked histogram to present the best designs. The list of all designs 
(Figure 6.6.3) is initially filtered to remove all with a value of E more than v% 
greater than the best. (Typically v = 5 to lo%.) By using S>> 1 the regions 
around many local optima are included in this set (see $4.2). A stacked 
histogram of these unique designs is then presented on Screen for the designer 
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to study (see Figure 6.6.4 for a fragment). A select few of these designs can 
then be worked up to sketches (Figure 6.6.5). 

The two designs shown in Figure 6.6.5 have relatively similar annual 
energy usage, but are of very different design. One uses high levels of 
insulation to reduce losses, the other maximises solar gains. Interestingly, 
combining these two design philosophies within a single building does not 
produce a high performing structure because it would overheat on sunny days 
(and thus have reduced fitness). The method is highly successful, not only as a 
method of obtaining high performing designs, but equally importantly, 
catalysing the design process by showing that similar environmental 
performance can be achieved in a wide variety of ways. 

400000- 

c 

i- :- 
ZOOOOO- 

IMXHW) - 
1 I I I 

0 SO0 loo0 IS00 
Position in list 

Figure 6.6.3. Results of designing a small low-energy extension to a primary school. The 
annual energy use of the designs is seen to reduce as the generations pass. The typical UK 
average enorgy use for such a building is shown for comparison [EE94]. 
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20 40 Design no. 60 80 

Figure 6.6.4. A fragment of the stacked histogram (taken from the data of Figure 6.6.3). The 
filtered designs are presented as a series of histograms, one histogram per building attribute. 
Individual designs can be identified by vertically connecting the histograms. The complete 
histogram contains many more attributes and all the designs in the filtered set. 
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(b) 
Figure 6.6.5. A pair of designs sketched from the later generations of a run [from MIG951. The 
two designs have relatively similar annual energy usage, but are of very different design. (a) 
achieves high performance by minimising losses, (b) by maximising solar gains, 
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6.7 HUMAN JUDGEMENT AS THE FITNESS FUNCTION 

Successful product design not only requires finding good engineering solutions 
to the problem at hand, but often also finding aesthetically pleasing solutions to 
customers' desires. The aesthetics of the solution can be extremely important 
regardless of the size, or cost, of the product-from children's toys to office 
blocks. 

Aesthetic search spaces are typically large, complex and frequently 
shaped by individual, age, gender and cultural considerations [CR84,C092b, 
SH831. Often the designers' preferences will be very different from those for 
whom products are being designed. The work described here (taken from 
[C097a]) represents one attempt to see how successfully a genetic algorithm 
could be in providing the designer with additional information. In particular, 
the question of whether a GA, when applied to objects encoded in a 
particularly simple manner (and driven by decisions made by a subject on the 
aesthetics of a potential product), would converge at a useful rate and in the 
direction of improving subject preference is addressed. Because of the many 
random processes operating within the algorithm, combined with the limited 
number of evaluations a human operator can be asked to perform, such an 
algorithm might well perform badly. 

The problem demonstrates: 

0 a GA being driven by human judgement; 
0 a problem where identical genotypes may be given non-identical values of 

fitness; and 
0 a system where relatively few fitness evaluations are feasible. 

COMPUTER AIDED DESIGN 
Computer aided design is becoming more common. The design environment is 
typically able to present the designer with a realistic view of the item and allow 
numerical analysis to be carried out to check the technical feasibility and cost 
of the design. The design environment may also allow optimisation 
calculations to be carried out. The optimisation itself will typically be for 
maximum reliability or minimum cost [AR89]. 

Any aesthetic optimisation routine within such an environment would 
have to contain a description of the aesthetic ideals of the target audience. This 
information is often gleaned from the preferences of a market-researched 
subgroup of this audience. A frequently-employed technique is to show a 
number of potential designs to a series of subjects and assess the impact of the 
designs upon the subjects. If these designs are actual mock-ups they will be 
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very limited in number and there is the danger that one is only ascertaining the 
subjects' views of what the design team considers worthwhile; thus the subject, 
and hence the potential customer, is not being truly involved in the design 
process. 

Computer aided design offers a way out of this trap. The computer can 
offer an almost unlimited number of designs to the subject as visualisations on 
the computer's screen. Such a design system can refuse to allow designs that 
are unsafe, unfeasible or too costly to implement within the production 
environment. However, the question remains of how the design tool and the 
subject should guide each other through what may be a large search space. 

THE GA DESIGN STRATEGY 
Several authors have attempted to use a GA with subjective evaluation, 
including work on dam design [FU93], facial recognition [CA91] and colour 
preference [HE94]. Coley and Winters [CO97a] decided to estimate the 
efficacy of the GA for searching an aesthetic, but realistic, commercial product 
space. 

It was decided to choose a realistic product in which the aesthetic 
aspects of the design would be considered paramount, and one with few 
engineering constraints. The chosen product was a lm square wall-hanging 
containing simple geometric designs. Shapes were ascribed one of 16 basic 
colours. Only isosceles triangles, rectangles, ellipses and straight lines were 
considered for these basic shapes. A maximum of 20 shapes (or objects) were 
present in any one design. The designs were processed by the GA as 
concatenated binary strings representing the positions of comers, lengths and 
the colours of the separate objects. Although simple, the designs were realistic 
and could be considered reminiscent of some of the designs contained within 
paintings by Carla Prina, Josef Albers, Piet Mondrian and Jean Gorin [SE62]. 

The optimisation process was very simple: 

1. 

2. 
3. 

4. 

the computer generated an initial random population of 32 designs 
together with their string representations; 
the subject viewed each design and scored each one for appeal; 
the GA was used to produce new novel designs by crossover and 
mutation of the strings; and 
the process was repeated from step 2 for a total of twenty generations. 

Figures 6.7.l(a) to 6.7.l(f) (and the jacket cover) show a series of typical 
designs. 
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Figure 6.7.I(a-f). Black and white renditions of a selection of designs from the study [by 
permission ftom CO97al. 

The images were produced by decoding a binary string, U, of length 
940 bits, consisting of a series of 20 binary substrings, ui, representing each 
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object within the image. Each object itself is defined by eight parameters, pii, 
which describe the type of object, its position and its colour: 

U=u,@u,$u ,@ ............ @ u20 

and 

(The operator @ implies concatenation.) The precise meaning of the parameters 
depend on the object in question, as described in Tables 6.7.1 and 6.7.2. For 
example, the substring 

UI = OIOlOI 001001 I0001 11 I10000101 101 I0001 01 101000011 

= 01 @ 01010010 @ 01100011 @ 11100001 @ 01101100 @ 01011010 
@ 0001 @ 1. 

Therefore (using Tables 6.7.1 and 6.7.2): 

Thus the computer draws a visible rectangle with the above attributes as the 
first object (uI). Nineteen further objects (242 ..... 2420) are then overlaid to 
complete the image. 

The GA used was Goldberg's SGA [GO891 coded in C. Although the 
binary search space consists of 2940 (= 2 ~ 1 0 ' ~ )  possibilities, not all of these are 
distinguishable, either because of large opaque objects covering other objects 
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Object 
line 
rectangle 
ellipse 
triangle 

coded to the left of them on the string, or because not all combina~ions decode 
differently (Table 6.7.2). 

PI Pt P3 P4 Ps P6 P7 Pa 
objecttype XI YI ~2 ~2 width colour visible 
objecttype XI yI x2 yz fill colour visible 
objecttype XI yI r2 r2 fill colour visible 
objecttype XI YI x2 height fill colour visible 

Term 
visible 
colour 
width 
fill 

height 
-%Y1 

Xl* Y2 
rl+ ri 

type 

Mkantna Integer Rmge Coding Bflr 
whether the object is to be drawn 0 or 1 draw if I 1 
colour of the object 0 to 15 4 
thickness of a straight line 0-255 INT(widW20) 8 
whether a rectangle or ellipse is 0-255 opaque if > 128 8 
opaque 
height of triangle 0-255 screen co-ordinates 8 
position of the bottom left comer 0-255 screen co-ordinates 8 
or centre of ellipse 
position of the top right corner 0-255 screen co-ordinates 8 
length of major and minor axes of 0-255 screen co-ordinates 8 
ellipse 
whether line, rectangle, elfipse or 0-3 *tine, I=rectangle, 2 
triangle 2=ellipse, 3=triangIe 

Table 6.7.2. Parameter encodings used in Table 6.7.1. Triangles always have a base parallel to 
the bottom of the screen. Screen co-ordinates run from 0 to 255 in both x- and y-directions. If 
x2 <XI, or& < y ~ ,  then the terms left and right, or top and bottom, reverse [CO97a]. 

Fitness-proportional selection was used together with single point 
crossover and mutation to create new novel images. The GA is, in essence, 
providing a mechanism for the melding of i ~ o ~ a t i o n  within the images, 
biased by the selection procedure toward those that receive higher scores. 
However, being a stochastic algorithm, there is no guarantee that this 
information will be preserved in the next generation. Mutation, for example, 
could force radical changes to an image. 
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SUBJECT TESTING 
The design strategy was tested on 51  individuals (all undergraduates from 
various University departments). The subjects were asked to score the designs 
with a number between 0 and 9, the higher numbers being awarded to the 
most-liked designs. The fitness function (or selection pressure) applied within 
the GA was simply the score divided by 10. A crossover probability of 0.6 was 
used with a mutation probability of 0.06. These parameters were chosen to 
speed the search and were estimated by trial and error using additional small 
groups of other subjects. Each subject viewed 20 generations of 36 images, or 
720 images in total. In total the test group viewed 36,720 images. 

Figure 6.7.2 shows the score of the most-liked design (different for 
each subject) as a function of generation, averaged over all subjects. The 
subjects are seen to score later generations of designs higher than earlier ones. 
This indicates the GA is moving towards higher scoring areas of the search 
space at an observable rate. The linear overall form of the curve also indicates 
that the strategy is managing to avoid becoming lost in local minima-possibly 
not surprising, as so few generations are processed. 

7.5 , 

% 7.0 . 

c ! 6.5 1 
2 

6.0 . 
j 

5.5 I I I I I 

0 5 10 I 5  20 

Generation 

7.5 - 

% 7.0 - 

c ! 6.5 1 
2 

6.0 - 

5.5 I I I I I 

0 5 10 I 5  20 

Generation 

Figure 6.7.2. Score of the best design as a function of generation averaged over all subjects 
[CO97a]. 

As the scoring scale used was not absolute, it was possible that subjects 
were simply ranking the later images better, regardless of content. It was also 
possible, in fact likely, that they were not always consistent in their scoring. 



175 

16 

14 

I2 

10 

8 -  

6 -  

4 -  

2 ,  

Some might have been scoring against some ideal design, other simply scoring 
against the other images they had recently seen on the screen. An attempt was 
made to partially circumvent these problems by making use of a simple rank- 
ordering method. At the end of the test, the subjects were shown a smaller 
version of their most-liked design fiom each generation (simultaneously and 
randomly ordered on a single screen) and asked to rank-order them. 
Figure 6.7.3 shows the correlation of generation and rank-order averaged over 
all the subjects. This clearly shows that the images created later are preferred. 

- 
- 

- 
- 

I I I I I 

lsrt liked 

i! 

mort liked 

Figure 6.7.3. Final rank as a function of generation averaged over all subjects [C097a]. 

One advantage of the GA is that the string representations lead 
themselves naturally to a (simplistic) defrnition of similarity and convergence. 
By carrying out bit-wise comparisons of the strings, across all subjects, an 
approximate numeric estimate of the similarity of the pictures can be made. 
Without a string representation, this would have to be performed on a 
qualitative visual basis by the researcher and is thus likely to be researcher- 
dependent. 

The results indicate that a GA-based search can be efficient in 
searching for subjects' preferences of a real aesthetic product. The value placed 
on designs is found to rise at a usefbl rate with generation, and convergence is 
seen within the bit patterns used to represent the product. However, it is not yet 
clear how successful such an approach might be with other, more complex, 
objects. 
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6.8 MULTI-OFUECTIVE NETWORK REHABILITATION BY MESSY GA 
The refurbishment of ageing water systems requires decisions to be made as to 
how best to spend a limited budget in order to maximise the level of 
improvement. The pre-existing network is likely to be large, complex and 
costly, implying that any reasonable budget will only be able to make 
alterations to a small number of system components. This in turn implies that 
most technically feasible adjustments will not be financially feasible. Thus the 
population of truly feasible solutions is likely to be small in comparison to the 
size of the search space. Such a search space, with most of the space counting 
as unfeasible, creates problems for any optimisation routine, including a 
genetic algorithm. 

Godfrey Walters and Dragan Savic, working together with D. Halhal 
and D. Ouazar, have formulated a structured messy genetic algorithm (SMGA) 
which is p~icularly effective in avoiding unfeasible parts of such a space. The 
task examined is c~mplicated by being a mu~ti-objecti~e opti~isation prob~em 
requiring two factors to be simul~eously, but independently, optimised. 

In the work described here, which is taken from [HA97], an SMGA is 
applied to both an illustrative network and a real network of 167 pipes. The 
work shows an example of a GA and a problem with the following features: 

0 a sparse problem space; 
0 use of a messy algorithm [Go89a]; 
0 a multi-objective problem; and 
0 fitness sharing. 

INTRODU~TION 
Ageing water networks can suffer problems of water loss and reduced carrying 
capacity. Alongside this can run increasing consumer demand. This 
combination may lead to consumer discontent. However, due to budgetary and 
other constraints, replacement of the complete network will be unfeasible, 
unnecessary and possibly undesirable for other reasons. It is likely that funds 
will only be available to replace, rehabilitate, duplicate or repair a small 
number of the system components-pumps, pipes, tanks, etc.-at any one 
time. Hence a decision problem arises of trying to maximise the benefits of 
changes whilst remaining within a budgetary constraint. The optirnisation 
problem itself is one of choosing a small number of possible designs from a 
much larger set of tec~icaIly feasible ones. 

Given a commercial operation, competition for h d s  means that 
designs which do not necessarily maximise benefits, but manage substantial 
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improvements, may need to be considered. This implies a multiobjective 
problem, where a single fitness h c t i o n  cannot be formed. In this instance, the 
cost of the design must be minimised, while simultaneously the benefit of the 
design must be maximised. If an exact financial value could be placed upon all 
benefits then the problem could be collapsed to a single fitness function. 
However, as discussed in Chapter 4, this is often not possible. 

There have been several attempts at applying algorithmic methods to 
network rehabilitation problems [W087,KI94a,MU94]. Of particular relevance 
is the work of Murphy and Simpson [MU921 who used a genetic algorithm to 
find the optimal solution for a particular network. These attempts have all been 
based on small networks with the single objective of minimising cost subject to 
performance constraints, such as minimum pressure for consumers. The 
problem to be studied here is one of maximising benefit subject to limits on 
funding. 

THE PROBLEM 
Given a particular, pre-existing, network the desire is to invest some or all of a 
limited budget in order to enhance the performance of the network. In the 
model considered, performance may be enhanced by: 

1. 

2. 

3. 
4. 

increasing the hydraulic capacity of the network by cleaning, relining, 
duplicating or replacing existing pipes; 
increasing the physical integrity of the network by replacing structurally 
weak pipes; 
increasing system flexibility by adding additional pipe links; and 
improving water quality by removing or relining old pipes. 

The problem can be stated as: 

maximise Benefit(i) 

minimise Cost(i)l 

Cost I Budget 

and 

subject to 

where i represents a particular solution. 
In order to allow the GA to be able to preferentially select one solution 

over another, Benefit must be able to assume a numerical value. This is done by 
forming a weighted sum based on the four factors hydraulic capacity, integrity, 
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flexibility and quality described above. Thus the Benefit of solution i is defined 
as: 

Bene$t(i) = whBh(i) + wpBp(i)  + w, B, ( i )  + w,,Bq((i) , (6.8.1) 

where Bh, Bp, BA and By describe the hydraulic, physical, flexibility and quality 
benefits respectively and Wh, wp, WJ and wg their respective weights (which are 
user defined). 

Each of the four benefits are defined as follows (for more details see 
[HA97]): 

0 The hydraulic benefit, Bh, is defined as the reduction of the level of 
deficiency (caused by pressure shortfalls) allowed by adoption of a 
particular strategy. (The nodal pressures are estimated by use of the steady- 
state hydraulic network solver EPANET [ROS93].) 
Improvements to the structural condition of the network pipes reduce future 
repair costs, the sum of which gives Bp. 
The laying of duplicate pipes in parallel with pre-existing ones increases 
the flexibility of the system, with benefit Bj, proportional to the number of 
pipes replaced. 
A pipe with a low Hazen-Williams (HW) factor is probably suffering from 
corrosion, tuberculation or scaling-all of which can help the development 
of micro-organisms or lead to discoloured water. The replacement of such 
pipes can therefore lead to a water quality benefit, By, proportional to the 
length of replaced pipe. 

0 

0 

0 

THE STRUCTURED MESSY GENETIC ALGORITHM (SMGA) APPROACH 
Messy GAS are an attempt to allow for the progressive growth in the 
complexity of a solution by allowing the chromosome to increase in length 
with time. This is achieved by repetitive application of a GA and the 
concatenation of strings representing partial solutions. In this respect the 
method imitates long-term evolution of single-cell organisms to complex life- 
forms such as ourselves. It is an extremely interesting approach and allows 
more traditional GAS to be seen as simple adapting algorithms that in essence 
fine tune the fitness of pre-existing species. With a messy GA these species 
have first to be built before they are adapted to their environment. The SMGA 
introduced by Halhal, Walters, Ouazar and Savic [HA971 proceeds as follows: 
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SteD 1 Enumerate single-variable decisions on the network-for 
example, “replace pipe 89”. The point to note is that only a single decision is 
being made. This implies that a great number (if not all) of such decisions are 
feasible, in that their cost will be less than the budget. This is one of the 
strengths of the approach for the type of problem considered here: right fiom 
the start feasible solutions are processed. In a sparse search space, with few 
feasible solutions, this would not be so for a more typical GA. 

Because population members need to describe not only the value of a 
variable but also which variable is being described, a coding scheme is 
required such that an element both identifies the design variable and its value. 
This first stage is then the enumeration of all possible single elements. 

Ster, 2 Filter the population to remove less well performing individuals. The 
remaining individuals are retained to provide subsequent populations with high 
performing elemental building blocks. 

SteD 3 Increase the complexity of population members by adding a single 
elemental building block to each member (concatenation). 

Step4 Use this population as the initial population of a GA and run the 
algorithm until a termination criterion is met. 

SteD5 Repeat from step 3, unless either the strings have reached a 
predetermined length, or no improvement to the solution is seen for a set 
number of successive concatenation steps. 

As a string within the SMGA generally only contains a small number of 
possible decision variables, its length is typically much less than that required 
to contain all decision variables. This is despite the need to hold information 
about the variable values as well as a tag to identify which variables are being 
described. Not only does this improve the use of computer memory, but more 
importantly, it partially circumvents the slow progress made by standard GAS 
containing very long strings. 

If typically only p network arcs (pipes) can be considered out of a total 
of q arcs because of budgetary constraints, then if each fragment can take n 
alternative solutions, the search space contains: 

(6.8.2) 
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solutions [HA97]; whereas it contains 

np (6.8.3) 

solutions for a standard GA. If q = 60, p = 6, and n = 4, then (6.8.2) implies 
2 . 7 ~ 1 0 ' ~  possibilities, a seemingly large space, until it is realised that (6.8.3) 
implies 1 . ~ x I O ~ ~  possibilities. 

USING THE SMGA FOR MULTIOBJECTIVE OPTIMISATION 
Given more than one objective, it is impossible to form a simple fitness 
function of the type used in earlier examples. One way around this would be to 
use the second objective as a constraint-for example, by hunting for solutions 
which provide a set minimum benefit. Another possibility would be to factor 
benefits into the cost objective, by assigning benefit a financial cost. Neither of 
these approaches is entirely satisfactory. 

True multi-objective optimisation treats each objective separately. This 
implies that each solution is not a single point in the fitness landscape, but a 
vector with one dimension for each objective. The Pareto optimal set of such 
vectors are those solutions which are undominated by any other solutions (see 
Chapter4). For such solutions it is impossible to improve one objective 
without simultaneously making one or more of the other objectives worse. 

It is relatively easy to use the idea of a Pareto optimal set to drive 
selection within a GA. Typically, this is achieved by finding all current 
members of the Pareto optimal set within the population, assigning them the 
highest rank and removing them from the population-thus creating a new 
Pareto optimal set (or fionr) which is assigned the next highest rank. This 
process is repeated until all members of the population are ranked. Rank-order 
selection is then used (together with crossover and mutation) to build the next 
generation. Although simple in outline, caution is required to avoid 
convergence to a single solution. 

As stressed by Halhal et al. [HA97], the SMGA is naturally suited to 
multiobjective problems because it ensures a good spread of different solutions 
across the range of feasible costs. A standard GA is unlikely to do this because, 
within a sparse solution space, many (if not most) of the members of early 
generations will represent unfeasible solutions. 

For the water rehabilitation problem, the fitness f; of each individual i 
was assigned through: 
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1 A = - .  

FITNESS SHARING 
In order to preserve a reasone de spread of solutions along each Pareto optimr 
front Hdh& et al. [HA971 included fitness sharing [GOS7,GO89,~E89] (see 
Chapter4) in the algorithm. This reduces the level of competition between 
similarly ranked, but distant, population members. Niche formation and 
speciation are achieved by dividing the budget into a series of intervals or 
classes. Each individual is assigned to the particular interval that includes the 
cost of the particular solution. 

A class is deemedJirll if it contains Nin individuals, where n is the 
number of classes. The shared of individual i is given by 

where N&) is the number of individuals in classj. The value of n is, itself, a 
function of generation. 

SMGA PARAMETERS 
An integer coding is used. As discussed above, both the decision and the 
decision variable must be held in the string. This is achieved by using a 
substring to represent all the decision variables (the arc numbers) and a second 
substring to hold the decisions (what is done to each arc). For example, a 
possible string might be: 

amsubsfring 

2 1 5 3 6  1 8 2 4 2  
- - 

decision-subs fring 

During the concatenation phase (step 3, above) a single digit (decision) 
is added to each substring in the population. Highly performing digits from the 
initid population are used unless this causes a duplicate, in which case a 
r ~ d o ~  digit is used. The strings (now of identical length) then undergo 
processing via a conventional GA. 
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N is set to 40, with n (g = 0) set to 5 .  Two-point crossover is applied 
separately to each substring, with child arc-substring being checked to ensure 
no arcs are duplicated. Any duplications are again replaced by arcs chosen at 
random. 

APPLICATIONS 
The SMGA was applied to the network depicted in Figure 6.8.1. The network 
consists of 15 pipes, nine nodes and seven loops. There are eight possible 
decisions for each pipe: “leave as is”; “clean and line”; “duplicate” (with one 
of four set diameters); “renew with same diameter”; or “renew with next 
largest diameter”. The available fund is assumed to be 2,000,000. 

6 

1 
node 

Figure 6.8.1. The test network (node numbers shown in italics, pipes in roman) [HA97]. 

The algorithm was applied with and without fitness sharing for a total 
of 5,000 objective function evaluations, three times. Fitness sharing was found 
to produce a slightly more even spread of solutions across the range of possible 
costs. The performance of SMGA (with sharing) was compared with an 
integer-coded standard GA (with sharing) where the string length equalled the 
number of arcs (pipes) in the network and the integer value in each string 
position defined the action to be taken for the corresponding arc. The best 
solutions discovered in each generation with costs less than 1.1 times the 
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1400 - 
1200 - 
1000 - 
800 - 

budget arc shown in Figure6.8.2. SMGA produced a slightly better set of 
nondominated solutions. Table 6.8.1 lists a selection of the nondominated 
solutions (see 54.4) identified by SMGA showing which arcs (pipes) should be 
replaced and which left. 

o+ “1 0 : o  
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0-  

-200 
5 
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I . , . , .  

Figure 6.8.2. Best solutions f?om each generation; + SMGA, 0 standard-GA [HA97]. 

Arc 

80 
150 
80 
80 
80 
80 
80 
80 
80 
80 
80 
80 

Cost 

1940000 
1911000 
1780000 
1755000 
1585000 
1435000 
138oooO 
1367500 
1255000 
116OOOO 
93oooo 
750000 

Arc Arc 

80 150 
80 150 
80 150 
80 150 
80 80 
80 150 
80 150 
80 100 
80 80 
80 150 
80 150 
80 80 

1 2 3  
Benefit I Min. 

1428.96 
1417.67 
1414.81 
1388.83 
1369.52 
1311.64 
1305.26 
1260.33 
1125.96 
1030.88 
848.15 

Pressure & 
10.28 
5.85 
3.82 
1.00 

-2.47 
-7.06 

-15.00 
-27.38 
-13.54 
-30.02 
-60.56 

L 
L 
L 

L 

Arc 
15 

40@ 
200p 

L 
200p 

L 
L 

3OOp 
L 
L 

3OOp 
200p 

- 

2aop 

Table 6.8.1. Nondominated solutions for the test network, including new pipe diameters (p add 
parallel pipe of diameter shown, L leave) [HA97]. 
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As a second, and more realistic, example Halhal et. al. applied the 
SMGA to the network shown in Figure6.8.3 and really demonstrated the 
advantages of the method. This is the water distribution of a real town of 
50,000 inhabitants in Morocco. It contains 167 pipes and 115 nodes. The total 
number of possible solutions (assuming an unlimited string length is 
6.55~10'~' .  Restricting the string length to a more realistic 40 digits still 
implies 8 . 6 7 ~ 1 0 ~ ~  possible solutions. Halhal et. al. suggest a complete 
enumeration would take 2 . 7 5 ~ 1 0 ~ ~  centuries of CPU time at 1,000 objective 
function evaluations per second. 

Figure 6.8.3. The real network (by permission of ASCE [HA97]). 

The benefits of the SMGA over a standard GA of fixed string length 
were gauged by carrying out three independent runs of each. 25,000 objective 
function evaluations were allowed in each case. The standard GA (Goldberg's 
SGA [G089]) failed to converge to a design with costs less than the budget. 
Even the use of a high penalty function, in order to reduce the chance of high- 
cost solutions being reproduced, was only a partial improvement. It still took 
7,000 objective function evaluations for the standard GA to converge to a 
feasible solution. Furthermore, subpopulations in only four out of eight cost 
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classes were formed. In contrast, the SMGA formed subpopulations in all cost 
classes fiom the b e g i ~ n g  (Figure 6.8.4). 
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Figure 6.8.4. Best solutions of each generation for the SMGA (+) and a standard GA (0) (data 
&om [HA971). 
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APPENDIX A. ELECTRONIC- AND PAPER-BASED 
RESOURCES 

The are many electronic- and paper-based resources available about GAS. The 
internet is also an ideal way of finding those that have tried to solve similar 
problems, or used similar methods. 

ELECTRONIC-BASED RESOURCES 

The following two world-wide web sites contain a multitude of information, 
software and pointers to other GA sites: 

http://alife.santafe.edu 

http://www,aic.nrl.navy.mil/galist 

A FORTRAN GA code is available from David Carroll’s web site: 

http://www .staff.uiuc.edd-carroll/ga.html 

PAPER-BASED RESOURCES 

Apart from the text books mentioned at the beginning of Chapter 6, there are 
several other general references which contain a high density of information: in 
particular, the series Foundations of Genetic Algorithms and the Proceedings 
of the International Conference on Genetic Algorithms: 

Grefenstette, J. J, (Ed.), Proceedings of an International Conference on Genetic 
Algorithms and their Applications, Morgan Kaufmann, 1985. 

Grefenstette, J.J, (Ed.), Genetic Algorithms and their Applications: 
Proceedings of the Second International Conference on Genetic Algorithms, 
Erlbaum, 1987. 

Schaffer, J.D., (Ed.), Proceedings of the Third International Conference on 
Genetic Algorithms, Morgan Kaufmann, 1989. 
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Belew, R.K. and Booker, L.B., (Eds.), Proceedings of the Fourth International 
Conference on Genetic Algorithms, Morgan Kaufmann, 1991. 

Forrest, S., (Ed.), Proceedings of the F@h Internat~onal Conference on Genetic 
Algorithms, Morgan Kaufmann, 1993. 

Eshelman, L. J., (Ed,), Proceedings of the Sixth International Conference on 
Genetic Algorithms, Morgan Kaufmann, 1995. 

Back, T,, (Ed,), Proceedings of the Seventh International Conference on 
Genetic Algorithms, Morgan Kaufmann, 1997. 

Rawlins, G., (Ed.), Foundations of Genetic Algorithms, Morgan Kaufinann, 
1991. 

Whitley, D., (Ed.), Foundations of Genetic Algorifhms 2, Morgan Kauhann, 
1993. 

Whitley, D. and Vose, M. (Eds.), ~oundations of Genetic Algorithms 3, 
Morgan K a u f m ~ ,  1995. 

Belew, R.K. and Vose, M. (Eds.), Foundations of Genetic Algorithms 4, 
Morgan Kaufmann, 1997. 



205 

REFERENCES 
AL77 

At95 

AN89 

AR89 

BAS5 

BA9 1 

BA93 

BA96 

BE93 

BE93a 

Alperovits, E and Shamir, U, Design of optimal water d i s ~ ~ ~ u t i o n  systems, Water 
Resour. Res. 13(6), p885-900, 1977. 

Altenberg, L., The schema theorem and Price's theorem, Whitley, L.D. and Vose, 
M., (Eds.), Foundatom of Genetic Algorjthms 3, Morgan Kaufmann, 1993. 

Antonisse, J., A new interpretation of schema notation that overturns the binary 
encoding constraint, in Schaffer, J.D., (Ed.), Proceedings of the 3d International 
Conference on Genetic Algorithms, Morgan Kaufmann, p86-9 1, 1989. 

Arora, J.S., Introduction to Optimum Designs, McGraw-Hill, 1989. 

Baker, J.E., Adaptive selection methods for genetic a l g o ~ ~ ~ s ,   proceeding^ of an 
~nternational conference on Genetic Alg5rithms and their Appl icat~o~,  p 10 1-1 I 1, 
1985. 

Baker, J. E., Reducing bias and inefficiency in the selection algorithm, in Genetic 
Algorithms and their Applications: Proceedings of the Second International 
Conference on Genetic Algorithms, 1987. 

Back, T., Hofbeister, F. and Schwefell, H., A survey of evolution strategies, in 
Belew, R.K. and Booker, L.B., (Eds), Proceedings of fhe 4" International 
Conference on Genetic Algorithms, Morgan Kaufmann, p2-9,1991. 

Back, T., Optimal mu~tion rates in genetic search, in Genetic AJgorifhms: 
Proceedings of fhe 5Ih ~n~ernaf~onal Conzrence, Forrest, S., (Ed.), p2-8, Morgan 
Kaufmann, 1993. 

Bbck, T., Evolutionary Algorithms in Theory and Practice, Oxford University 
Press, New York, 1996. 

Bertoni, A. and Dorigo, M., Implicit parallelism in genetic algorithms, Artificial 
Intelligence, 61(2), p307-3 14, 1993. 

Beasley, D., Bull. D.R. and Martin, R.R., A sequentiai niche technique for 



206 

B186 

BL95 

9087 

BR89 

BR9 I 

BU84 

CA89 

CA9 1 

CA96a 

CA96b 

multimodal hc t ion  optimization, Evolutionary Computation, 1(2), p101-125, 
1993. 

Binder, K. and Young, A.R., Rev. Mod Phys. 58, p801, 1986. 

Blickle, T. and Thiele, L., A mathematical analysis of tournament selection, in 
Eshelman, L. J., Proceedings of the dh International Conference on Genetic 
Algorithms, p506-5 1 1, 1995. 

Booker, L., Improving search in genetic algorithms, in [DA87], p61-73, 1987. 

Bramlette, M.F. and Cusic, R., A comparative evaluation of search methods 
applied to the parametric design of aircraft, Schaffer, J.D., (Ed.), Proceedings of 
ihe 3"' ~niernational Conference on Genetic ~lgorifhms, M o r ~  K a u ~ a n n ,  1989. 

Bramlette, M.F., Initialization, mutation and selection methods in genetic 
algorithms for function optimisation, in Belew, R.K. and Booker, L.B., ( a s ) ,  
Proceedings of the 4" International Conference on Genetic Algorithms, Morgan 
Kaufmann, 199 1. 

Bunday, B.D., Basic Optimisa#ion Methoak, Edward Arnold, London, 1984. 

Caruana, R.A., Eshelman, L.J. and Schaffer, J.D., Representation and hidden bias 
11: estimating defining length bias in genetic search via shuMe crossover, in 
Proceedings of the I I" i~erna~ionaI Joint Confirence on ~ r t ~ c ~ a i  rn~eIl~gence, 
Morgan Kaufmann, San Mateo, p750-755,1989. 

Caldwell, C. and Johnston, V.S., Tracking a Criminal Suspect Through "Face- 
Space" with a Genetic Algorithm, in Belew, R.K. and Booker, L.B., (Eds), 
Proceedings of the 6-k ZnternationaZ Confirence on Genetic Aigor~fh~s ,  Morgan 
K a u ~ a ~ ,  p4 16-42 1,199 1. 

Carroll, D.L., Chemical Laser Modeling with Genetic Algorithms, AIAA Journal,. 
34(2), pp. 338-346, February 1996. 

Carroll, D.L., Genetic A l g o r i ~ s  and Optimizing Chemical Oxygen-Iod~e 
Lasers, Developments in Theoretical and A ~ p ~ ~ e d  Mechanics, Vol. XVKII, eds. 
Wilson, H.B., Batra, R.C., Bert, C.W., Davis, A.M.J., Schapery, R.A., Stewart, 
D.S. and Swinson, F.F., School of Engineering, The University of Alabama, , 



207 

pp.411-424, 1996. 

CE93 

CH90 

CH96 

CH97 

C092 

C092a 

C092b 

C094 

C094a 

C096 

C097 

Celik, T., Hausmann U.H.E. and Berg B., Computer Simulation Studies in 
Condensed Matter VI, Landau, D.P., Mon, K.K., and Schuttler, H.B., (Eds.), 
Springer Verlag, Heidelberg, p173, 1993. 

Chalmers, D.J., The evolution of learning: an experiment in genetic 
connectionism, in Touretzky, D.S., Elman, J.L., Sejnowski, T.J. and Hinton, G.E., 
(Eds.), Proceedings of the 1990 Connectionist Models Summer School, Morgan 
Kaufmann, 1990. 

Chipperfield, A. and Fleming, P., Genetic algorithms in control systems 
engineering, J.  of Computers and Control, 24( I), 1996. 

Chen, Y.W., Nakao, Z., Arakaki, K., Tamura, S., Blind deconvolution based on 
genetic algorithms, IEICE Transactions on Fundamentals of Electronics, 
Communications and Computer Sciences, E80A( 12), p2603-2607, 1997. 

Coley, D.A. and Penman, J.M., Second order system identification in the thermal 
response of a working school: Paper 11. Building and Environment 27(3) 269-277, 
1992. 

Collins, R.J. and Jefferson, D.R., The evolution of sexual selection and female 
choice, Varela, F. J., Bourgine, P., (Eds.), Toward a Practice of Autonomous 
Systems: Proceedings of the First European Conference on Artificial Lfe, MIT 
Press, 1992. 

Cooper, D.E. (Ed.), A Companion to Aesthetics, Blackwell, 1992. 

Coley, D.A. and Bunting, U., The identification of complex objects from NMR 
Images by Genetic Algorithm, IEE Digest 193 p91-96, 1994. 

Coley, D.A. and Crabb, J.A.. Computerised Control of artificial light for maximum 
use of daylight, Lighting Res. Technol. 26 (4) p189-194, 1994. 

Coley, D.A., Genetic Algorithms, C0ntemporar)i Physics, 37(2) p145-154, 1996. 

Coley, D.A. and Crabb, J.A., An artificial intelligence approach to the prediction 
of natural lighting levels, Building and Environment, 32(4), p81-85, 1997. 



208 

C097a 

COH9 1 

CR84 

CR87 

CR87a 

DA87 

DA89 

DA9 1 

DA9 1 a 

DA9 1 b 

Coley, D.A. and Winters, D., Search Eflcaq in Aesrhetic Product Spaces, 
Complexity, 3(2), p23-27, 1997. 

Cohoon, J.P., Hegde, S.U., Martin, W.N. and Richards, D.S., Distributed genetic 
algorithms for the floorplan design problem, IEEE Trans., CAD, 10(4), p483-492, 
1991. 

Crozier, R.W. and Chapman, A.J. (Eds.), Cognitive Processes in the Perception of 
Art, North-Holland, 1984. 

Crabb, J.A., Murdoch, N. and Penman, J.M., Validation study of EXCALIBUR, a 
simpli~ed thermal response model, Bujfding Services Research and TechnorogY 8 
p13-19, 1987. 

Crabb, J.A., Murdoch, N. and Penman, J.M., Building energy assessment by 
simplified dynamic simulation model, presented at the European Conference on 
Architecture, Munich, April 1987. 

Davis, L. (Ed.), Genetic algorithms and simulated annealing, Pitman, London, 
1987. 

Davis, L., Adapting operator p~babilities in genetic algorithms, in Schaffer, J.D., 
(Ed.), P~oceedjngs of the 3& in~erna~ion~l Conference on Genetic Algorithms, 
Morgan Kautinann, p6 1-69, 1989. 

Davis, L., (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New 
York, 1991. 

Davidor, Y., A naturally occurring niche and species phenomenon: the model and 
first results, in Belew, R.K. and Booker, L.B., (Eds), Proceedings of the #Ih 

international Conference on Genetic Algorithms, Morgan Kaufmann, p257-263, 
1991. 

Davis, L., Bit-climbing, represen~ational bias and test suit design, in Belew, R.K. 
and Booker, L.B., (Eds), Proceedings of the 6 Internationai Conference on 
Genetic Algorithms, Morgan Kaufmann, pl8-23, 1991. 

DE75 De Jong, K.A., Analysis of the behaviour of a class of genetic adaptive systems, 



209 

DE89 

DE89a 

DE93 

DE93a 

DO9 1 

DU90 

ED75 

EE9 I 

EE94 

EI94 

EL85 

Doctoral dissertation, University of Michigan, Dissertation Abstracts International 
36(10), Si40B,  university Micro~Ims No. 76-9381), 1975. 

Deb, K., Genetic A ~ g o ~ i f h ~ s  in m ~ l t j - m o ~ ~ ~ n c ~ i o n  # ~ ~ ~ r n ~ a f ~ o n ,  Masters thesis, 
The Centre for Genetic Algorithms Report No. 89002, University of Alabama, 
1989. 

Deb, K., and Goldberg, D.E., An investigation of niche and species formation in 
genetic function optimisation, in Schaffer, J.D., (Ed.), Proceedings of the 3& 
Z n f e r n a ~ i ~ a ~  Con~erence on Genetic A~gor~ghms, Morgan Kaufma~, 1989. 

De Jong, K, A., Genetic algorithms are NOT function optimisers, In Whitley, L.D., 
(Ed.), Fou~at~onr ofGenetic Algorithms 2, Morgan Kaufinann, 1993. 

De Jong, K, A. and Sarma, J.,  ene era ti on gaps revisited, ~ i t l e y ,  L.D., {Ed.), 
Foundationr ofGenetic Algorithms 2,  Morgan Kaufmann, 1993. 

Dodd, N., M a c ~ ~ a n e ,  D., and Marland, C., Optimisation of artificia1 neural 
network structure using genetic techniques imp~eme~ed on multiple transputers, 
Transparing '91, Vol. 2,IOS Press, p687-700, 1991 

Duan, N., Mays, L.W. and Lansey, K.E., Optimal reliability-based design of 
pumping and distribution systems, J. My&. Engrg., ASCE, IlqZ), 249-268,1990. 

Edwards, S.F. and Anderson, P. W., J. Phys. F, 5,965,1975. 

Energy EBciency in Oflccas: A Technical Guide for Owners and Single Tenants, 
Energy Consumption Guide 19. UK Energy Efficiency Office, 1991. 

&rduct/on to Energy Eflciency in Schools, Department of the Environment 
Energy Emciency Office, 1994. 

Eiger, G,, Shamir, U. and Ben-Tal, A,, Optimal design of water distribution 
networks, Water Resow. Reg., 30(9), p2637-2646,1994. 

EI-Bahrawy, A. and Smith, A.A., Application of MINOS to water collection and 
dis~ibution networks, Civ. Engrg Sys., 2(1), ~3849,1985. 

ES89 Eshelman, L.J., Caruana, R.A. and Schaffer, J.D., Biases in the crossover 



210 

landscape, in [SC89, p10-19], 1989. 

ES91 

ES9 1 a 

ES93 

ES94 

FA94 

FE88 

F184 

F066 

F089 

F093 

FON93 

Eshelman, L.J., The CHC adaptive search algorithm: how to have safe search 
when engaging in non-traditional genetic recombination, Rawlins, G., (Ed.), 
Foundations of Genetic Algorithms, Morgan Kaufmann, 1991, 

Eshelman, L.J. and Schaffer, J.D., Preventing premature convergence in genetic 
algorithms by preventing incest, in Belew, R.K. and Booker, L.B., (Eds), 
Proceedings of the 4" International Conference on Genetic Algorithms, Morgan 
Kaufmann, 199 1. 

Eshelman, L.J. and Schaffer, J.D., Real-coded algorithms and interval-schemata, 
Whitley, D. (Ed.), Foundations of Genetic Algorithms 2, Morgan Kaufmann, 1993. 

Esbensen, H. and Mazumder, P., SAGA: a unification of the genetic algorithm 
with simulated annealing and its application to macro-cell placement, Proceedings 
of the 7 I h  Int. Conj on VLSI design, p2 1 1-2 14, 1994. 

Fausett, L., Fundamenfals of neural nehvorks, Prentice-Hall International, 1994. 

Feder, J.. Fractals, Plenum Press, New York, 1988. 

Fitzpatrick J.M., Grefenstette J.J. and Van Gucht D. Image registration by genetic 
search, Proceedings of IEEE Southeast Conference p460-464, 1984. 

Fogel, L.J., Owens, A.J. and Walsh, M.J., Artificial intelligence through simulated 
evolution, Wiley, New York, 1966. 

Fogarty, T.C., Varying the probability of mutation in the genetic algorithm, in 
Schaffer, J.D., (Ed.), Proceedings of the 3" International Conference on Genetic 
Algorifhms, Morgan Kaufmann, plO4-109, 1989. 

Forrest, S. and Mitchell, M., relative building block fitness and the building block 
hypothesis, In Whitley, L. D., (Ed.), Foundations of Genetic Algorithms 2, Morgan 
Kaufmann, 1993. 

Fonseca, C.M. and Fleming, P.J., Genetic algorithms for multiobjective 
optimisation: formulation, discussion and generalisation, in Genetic Algorithms: 
Proceedings of the 5" International Conference, Forrest, S . ,  (Ed.), p416-423, 



21 1 

Morgan Kaufmann, 1993. 

FU90 

FU93 

FUR0 

GE85 

GO87 

G087a 

GO89 

G089a 

G089b 

GO9 1 

GO9 1 a 

Futuyma, D.J., fivolutionsbiologie, Birkhtiuser Verlag, Basel, 1990. 

Furuta, H. et. al., Application of the genetic algorithm to aesthetic design of dam 
structures, Proceedings Neural Networks and Combinatorial Optimization in Civil 
and Strucrural Engineering Conference, Edinburgh (1993), published by Civil 
Comp Ltd, p101-109, 1993. 

Fujiwara, 0. and Khang, D.B., A two-phase decomposition method for optimal 
design of looped water distribution networks, Water Resour. Res., 26(4), p539- 
549,1990. 

Gessler, J., Pipe network optimization by enumeration, Proc. Spec. Con$ on 

Comp. Applications/Water Resour., ASCE, New York, p572-58 1, 1985. 

Goldberg, D.E., and Richardson, J., Genetic algorithms with sharing for 
multimodal function optimisation, Genetic algorithms and their applications: 
Proceedings of the r"' International Conference on Genetic Algorithms, p41-49, 
1987. 

Goldberg, D.E. and Kuo, C.H., Genetic algorithms in pipeline optimization, J. 
Comp. in Civ. Engrg., 1(2), p128-141, 1987. 

Goldberg, D.A., Genetic Algorithms in Search, Optimisation and Machine 
Learning, Addison-Wesley, 1989. 

Goldberg, D.E., Korb, B., and Deb, K., Messy genetic algorithms: Motivation, 
analysis, and first results. Complex Systems, 3(4), p493-530, 1989. 

Goldberg, D.E., Sizing populations for serial and parallel genetic algorithms, in 
Schaffer, J.D., (Ed.), Proceedings of the 3" International Confrence on Genetic 
Algorithms, Morgan Kaufmann, p70-79, 1989. 

Goldberg, D.E. and Deb, K., A comparative analysis of selection schemes used in 
genetic algorithms, Rawlins, G., (Ed.), Foundations of Genetic Algorithms, 
Morgan Kaufmann, p69-93, 1991. 

Goldberg, D.E. and Deb, K. and Bradley, K., Don't worry, be messy, in Belew, 



212 

GO93 

GOT89 

GOU86 

GR85 

GR86 

GR89 

GR91 

GR93a 

GR97 

HA88 

R.K. and Booker, L.B., (Eds), Proceedings of the 4" International Conference on 

Genetic Algorithms, Morgan Kauhann, p25-30, 1991. 

Goldberg, D.E., Deb, K., Kargupta, H. and Harik, G., Rapid, accurate optimization 
of difficult problems using fast messy genetic algorithms, in Genetic Algorithms: 
Procee~ings of the Sfh lnternaiiona~ Conference, Forrest, S.,  (Ed.), p56-64, 
Morgan Kaufinann, 1993. 

Gottschalk, W., Allgemeine Genetik, Georg Thieme Verlag, Stuttgart, 3"' edition, 
1989. 

Goulter, I.C., Lussier, B.M. and Morgan, D.R., Implications of head loss path 
choice in the optimisation of water distribution networks, Water Resour. Rex, 
22(5), ~819-822, 1986. 

Grefenstette, J.J., Gopal, R., Rosmaita, B.J., and Van Gucht, D., Genetic 
algorithms for the travelling salesman problem, Proceedings of an Infern~~iona~ 
Conference on Genetic Algorithms and Their Applications, p160-168, 1985. 

Grefenstette, J.J., Optimization of control parameters for genetic algorithms, IEEE 
Transactions on Systems, Man and Cybernetics 16( I), p122-128, 1986. 

Grefenstette, J.J. and Baker, J.E., How genetic algorithms work: a critical look at 
implicit parallelism, in Schaffer, J.D., (Ed.), Proceedings ofthe 3" International 
Conference on Genetic A ~ g o ~ i t ~ m s ,  Morgan Kaufina~,  p20-27, 1989. 

Grefenstette, J.J., Conditions for Implicit Parallelism, Rawlins, G., (Ed.), 
Founda~ions of Genetic Algorithms, Morgan Kaufmann, 199 1. 

Grefenstette, J.J., Deception considered harmful, Rawlins, G., (Ed.), Whitley, D. 
(Ed.), Foundations of Genetic Algorithms 2, Morgan Kaufmann, 1993. 

Greenwood, G.W., Hu, X. and ~'Ambrosio, J.G., Fitness ~ c t i o n ~  for multiple 
objective optimization problems: combining preferences with Pareto rankings, 
Belew, R.K. and Vose, M., (Eds.), Foundations of Genetic Algorithms 4,  Morgan 
Kauhann, 1997. 

Haves, P. and Littlefair, P.J., Daylighting in dynamic thermal modelling programs: 
case study, ~uildjng Services Research and Technology, 9(4) 183-1 88, f 988. 



213 

HA97 

HE94 

HI94 

HI95 

HI96 

H07 1 

H075 

HU79 

HU9 1 

JA9 1 

Halhal, D., Walters, G.A., Ouazar, D. and Savic, D.A., Water network 
rehabilitation with structured messy genetic algorithm, J.  of Water Resources 
Planning and Management, ASCE, 123(3), p137-146,1997. 

Herdy, M. and Patone, G., Evolution Strategy in Action, Presented at Int. 
Conference on Evolutionary Computation, PPSN 111, Jerusalem, 1994. 

Hill, D.L.G., Studholme, C. and Hawkes, D.J., Voxel similarity measures for 
automated image registration. Proceedings Visualisation in Biomedical 
Computing, Bellingham, W.A., SPIE Press, p205-216, 1994. 

Hinterding, R., Gielewski, H. and Peachey, T.C., The nature of mutation in genetic 
algorithms, in Eshelman, L.J., Proceedings of the dh International Conference on 

Genetic Algorithms, p65-72, 1995. 

Hill D.L.G., Studholme C. and Hawkes D.J., Voxel similarity measures for 
automated image registration. Automated 3-D registration of MR and CT images 
ofthe head, Medical Image Analysis, 1, p163-175,1996. 

Hollstien, R.B., Artificial genetic adaptation in computer control systems, 
Doctoral dissertation, University of Michigan, Dissertation Abstracts International, 
32(3), 1510B, (University Microfilms No. 71-23,773), 1971. 

Holland J.H., 1975, Adaptation in Natural and Artficial Systems, University of 
Michigan Press, Ann Arbor, 1975. 

Hunt, D.R.G., The use of artificial lighting in relation to daylight levels and 
occupancy, Building and Environment, 14 p2 1-33, 1979. 

Huang, R. and Fogarty, T.C., Adaptive classification and control-rule optimisation 
via a learning algorithm for controlling a dynamic system, Proc 3dh Conf: on 

Decision and Control, p867-868, 199 1. 

Janikow, C. and Michalewicz, Z., An experimental comparison of binary and 
floating point representations in genetic algorithms, in Belew, R.K. and Booker, 
L.B., (Eds), Proceedings of the 4" International Conference on Genetic 
Algorithms, Morgan Kaufmann, p3 1-36, 199 1. 



214 

J095 

KA60 

KA97 

KE89 

K187 

KI90 

K194 

KI94a 

KO9 1 

KO92 

KO94 

KO95 

Jones, T., Crossover, macromutation and population-based search, in Eshelman, 
L.J., Proceedings of rhe dh Interna~ional Conirence on Genetic Aigori th~,  p73- 
80, 1995. 

Kalman, R.E. Trans A S ~ ~ 3 ~ i c  Eng. 82(D) p35, 1960. 

Kawaguchi, T., Baba, T., Nagata, R., 3-D object recognition using a genetic 
algorithm-based search scheme, IEICE transactions on information and sysiems, 
E80D(1 I), ~1064-1073, 1997. 

Kessler, A. and Shamir, U., Analysis of the linear programming gradient method 
for optimal design of water supply networks, Water Resour. Res., 25(7), p1469- 
1480,1989. 

Kinzel, W., Spin glasses and memory, Physica Scripta 35, p398-401, 1987. 

Kitano, H., Designing neural networks using genetic algorithms with graph 
generation system, Compiex @stems 4, p461-476,1990. 

Kitano, H., Neurogenetic learning: an integrated method of designing and training 
neural networks using genetic algorithms, Physica D 75, p225-238, 1994. 

Kim, H.J. and Mays, L.W. Optimal rehabilitation model for water distribution 
systems, Journal of Water Resources ~ i ~ ~ i n g  and manage men^, ASCE, 120(5), 
674-692, 1994. 

Koza, J.R., Evolving a computer program to generate random numbers using the 
genetic programming paradigm, in Belew, R.K. and Booker, L.B., (Eds), 
Proceedings of the 4" Internatio~af Confrence on Genetic Algorithms, Morgan 
Kaufmann, p37-44, 1991. 

Koza, J.R., Genetic Pr~gramming: on the Programming of Computers by Means 
ofNaturaI Selection, MIT Press, 1992. 

KO=, J.R., Genetic P r o ~ a ~ m i n g  if: Automatic Biscovery of Retisable Programs, 
MIT Press. 1994. 

Kobayashi, S., Ono, 1. and Yamamura, M., An efficient genetic algorithm for job 
shop scheduling problems, in Eshelman, L.J., Proceedings ofthe dh International 



21 5 

Conference on Genetic Algorithms, p506-5 1 1, 1995. 

KU93 

MA83 

MA89 

MA93 

MA95 

MA96 

ME92 

ME92a 

MI9 1 

MI92 

Kuo, T. and Hwang, S., A genetic algorithm with disruption selection, in Genetic 
Algorithms: Proceedings of the 5" International Confirence, Forrest, S., (Ed.), 
p65-69, Morgan Kaufmann, 1993. 

Mandelbrot, B.B., 7'heJi.actal geometry ofnature, Freeman, New York, 1983. 

Manderick, B. and Spiessens, P., Fine-grained parallel genetic algorithms, in 
$chaffer, J.D., (Ed.), Proceedings ofthe 3& International Conference on Genetic 
Algorithms, Morgan Kaufmann, p428-433, 1989. 

Maruyama, T., Huose, T. and Konagaya, A., A fine-grained parallel genetic 
algorithm for distributed parallel systems, in Forrest, S., Proceedings of the 5" 
International Conference on Genetic Algorithms, pl84-190, 1993. 

Mahfoud, S.W., A comparison of parallel and sequential niching methods, in 
Eshelman, L.J., Proceedings of the 6" International Conference on Genetic 
Algorithms, p 136- 143,1995. 

Mahfoud, S.W. and Mani, G., Financial forecasting using genetic algorithms, 
Applied Artijicial Intelligence, 10, p543-565, 1996. 

Meyer, T.P., Long-Range Predictability of High-Dimensional Chaotic Dynamics, 
PhD thesis, University of Illinois at Urbana-Champaign, 1992. 

Meyer, T.P. and Packard, N.H., Local forecasting of high-dimensional chaotic 
dynamics, in Casdagli, M. and Eubank, S., (Eds.), Nonlinear Modeling and 
Forecasting, Addison-Wesley, 1992. 

Michalewicz, 2. and Janikow, C, Handling constraints in genetic algorithms, in 
Belew, R.K. and Booker, L.B., (Eds), Proceedings of the 4Ih International 
Conference on Genetic Algorithms, Morgan Kaufmann, p 1 5 1 - 1 57, 199 1. 

Mitchell, M., Forrest, S. and Holland, J.H., The royal road for genetic algorithms: 
fitness landscapes and GA performance, in Varela, F.J. and Bourgine, P., (Eds.), 
Toward a Practice of Autonomous Systems: Proceedings of the First European 
Conference on Artlfrcial Life, MIT Press, 1992. 



216 

MI93 

MI94 

MI94a 

MI95 

MI96 

MIC9S 

MI695 

MK97 

MIK97a 

MIK98 

MU92 

Mitchell, M. Hraber, P.T. and C ~ t c h ~ e l d ,  J.P., R ~ j s ~ ~ j n g  the edge of chaos: 
Evolving cel iuh automata toperform computatjo~ 7, p89-130, 1993. 

Michalewicz, Z., Genetic Algorithms f Data Structures = Evolution Programs, 
Z& edition, Springer-Ver~ag, Heidelber~} 1994. 

Mitchell, M., C ~ ~ c ~ ~ ~ I d ,  J.P. and Hraber, P.T., Evolving cellular automata to 
perform computations: mechanisms and impediments, Physica D(75), p361-391, 
1994. 

M i ~ c ~ ~ l ~ ,  M,, ~ o ~ ~ ~ d ,  JH., and Forrest, S.,  When will a genetic al~orithm 
o u ~ e r f o ~  hill ~limbing? Cowan, J.D., Tesauro, G. and Alspeetor, (Eds.), 
Advances in Neural lnfor~ation Processing syslenw. 6, Morgan Kaufinann, 1994. 

Mitchell, M., Genetic Algorithms: An Overview, Complexity 1(1), p31-39,1995. 

Mjtchell, M., An ~n~roductjon to Genetic A ~ g o r i ~ ~ s ,  M1T Press, C ~ b ~ d g e ,  
Massachusetts. 1996. 

Michalewicz, Z., Genetic algorithms, numerical optimization and constraints, in 
Eshelman, L.J., Proceedings of the 6'h lnternatjonal Contrence on Genetic 
~ ~ g ~ r i t h ~ s ,  p506-5 11, 1995. 

M i ~ o w s ~ ,  S., ~~?~rnjsat ion of the energy c ~ u m p i i o n  of a building trsing a 
genetic algorifhm, University of Exeter, thesis, 1995. 

M i ~ u ~ ~ ~ ,  D.J., Coley, D.A., and S a ~ b ~ ~ ~ ,  J.R., F i ~ ~ ~ ~  r e ~ ~ t i v i t y  data from ~ ~ u i d  
crystal cells using genetic a lgor~th~s,  22(3), p301-307, 1997. 

Mikulin, D.J., Using genetic algorithms to fit HLGM data, PhD thesis, University 
of Exeter, 1997. 

~ ~ u l i n ,  D.J., Coley, D.A., and Samb~es, J.R., Detajiing smectic SSFLC director 
profiles by h a l f - l e ~  guided mode t ~ ~ i ~ u e  and genetic a ~ g o r i ~ ,  L i ~ u j ~  
Crystals, to be ~ u b ~ ~ s h e d ,  1998. 

Murphy, L.J. and Simpson, A.R., Genetic Algorithms in Pipe Newark 
~ptimisation, Researc~ Report No R93, D e ~ m e n t  of Civil and ~ n v ~ o ~ e n t a ~  
Engineering, U n i v ~ ~ i ~  of Adelaide, Aus~alia, 1992. 



217 

MU92a 

Mu93 

Mu94 

NA9 1 

NO9 1 

PA88 

PA90 

PE90 

PE90a 

PE97 

PLSO 

Mtlhlenbein, H., How do genetic algorithms really work? 1. Mutation and hill- 
climbing, in Mhner, R, and Manderick, (Eds.), Parallel Problem Solvingfrorn 
Nature 2,  North-Holland, 1992. 

MUhlenbein, H. and Schlierkamp-Voosen, D., Predictive models for the breeder 
genetic algorithm, Evolutionary Computation, 1( l), p25-49, 1993. 

Murphy, L.J., Dandy, G.C. and Simpson, A.R. Optimum design and operation of 
pumped water distribution system, Proceedings Con$ on Hydraulics in Civil 
Engineering, Institution of Engineers, Brisbane, Australia, 1994. 

Nakano, R. and Yamada, T., Conventional genetic algorithm for job shop 
problems, in Belew, R.K. and Booker, L.B., (Eds), Proceedings of the 4Ih 

International Conference on Genetic Algorithms, Morgan Kaufmann, p414-419, 
1991. 

Nordvik, J, and Renders, J.. Genetic algorithms and their potential for use in 
process control: a case study, in Belew, R.K. and Booker, L.B., (Eds), Proceedings 
of the 4" International Conference on Genetic Algorithms, Morgan Kauhann, 
p480-486, 1991. 

Packard, N.H., Adaptation toward the edge of chaos, in Kelso, J.A.S., Mandell, 
A.J. and Shlesinger, (Eds.), Dynamic Patterns in Complex Systems, World 
Scientific, 1988. 

Packard, N. H., A genetic learning algorithm for the analysis of complex data, 
Complex Systems 4(5), ~543412,1990 

Penman, J.M., Second order system identification in the thermal response of a 
working school: Paper I. Building and Environment 25(2), p105-110, 1990. 

Penman, J.M. and Coley D.A., Real time thermal modelling and the control of 
buildings. Proceedings Congress International de Domotique, Rennes 27-29m June 
1990. 

Pearce, R., Constraint resolution in genetic algorithms, in [ZA97], p79-98, 1997. 

Plackett, R.L., Biometrika, 37, pp149, 1950. 



218 

PO93 

RA9 1 

RA96 

RE93 

RI89 

R087 

R093 

ROS93 

SA83 

SA97 

SC69 

Powell, D. and Skolnick, M.M, Using genetic algorithms in engineering design 
optimization with non-linear constraints. in Genetic Algorithms: Proceedings of 
the 5" ~nternational Con&rence, Forrest, S., (Ed.), p424-430, Morgan K a u ~ ~ n ,  
1993. 

Rawlins, G., (Ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, 1991. 

Rauwolf, G., and Coverstone-Carroll, V., Low-thrust orbit transfers generated by a 
genetic algorithm, Journal o ~ S p a c e c r ~ t  and Rockets, 33(6), p859-862, 1996. 

Reeves, C.R., Using genetic algorithms with small populations, in Genetic 
Algorithms: Proceedings of the 5Ih International Conference, Forrest, S. ,  (Ed.), 
p92-99, Morgan Kaufmann, 1993. 

Richardson, J.T., Palmer, M.R., Liepins, G. and Hilliard, M., Some guidelines for 
genetic algorithms with penalty functions, in Schaffer, J.D., (Ed.), Proceedings of 
the 3& International Conference on Genetic Algorithms, Morgan Kaufmann, p19 1- 
197,1989. 

Robertson, G., Parallel imple~en~t ion  of genetic algorithms in a classifier system, 
in Genetic Aigorithms and Simulated Annealing, p129- 140, Davis, L., (Ed.), 
Pitman, London, 1987. 

Rojas, R., Theorie der Neuronalen, Springer, 1993. 

Rossman, L.A., EPANET users manual, US. Envir. Protection Agency, 
Cincinnati, Ohio, 1993. 

Saul, L., and Karder M., Pbs.  Rev. E48, R3221, 1983. 

Savic, D.A. and Walters, W.A., Genetic a I g ~ i ~ m s  for least-cost design of water 
distribution networks, J of Wafer Resources Planning and Management, ASCE, 
123(2), p67-7 1, 1997. 

Schaake, J. and Lai, D., Linear programming and dynamic programming 
applications to water dis~ibution network design, Rep. J J6, Dept. of Civ. Engrg., 
M a s s ~ ~ u s e ~  Inst. of Technof., Cambridge, Mass., 1969. 



219 

SC81 

SC89 

SC89a 

SC92 

SE62 

SH68 

SH75 

SH83 

SM93 

SP9 1 

SP9 1 a 

SP9lb 

Schwefel, H., Numerical optimisation of computer models, Wiley, New York, 
1981. 

Schaf€er, J.D., (ed.), Proceedings of the l l m  International Joint Conference on 
Artificial Intelligence, Morgan Kaufmann, San Mateo, p750-755, 1989. 

Schaffer, J.D., Caruana, R.A., Eshelman, L.J. and Das, R., A study of control 
parameters affecting online performance of genetic algorithms for function 
optimisation, in [SC89, p51-601, 1989. 

Schulze-Kremer, S., Genetic algorithms for protein tertiary structure prediction, in 
Mtlnner, R, and Manderick, B., (Eds.), Parallel Problem SolvingQom Nature 2, 
North-Holland, 1992. 

Seuphor. M., Abstract Painting, Prentice-Hall International, London, 1962. 

Shamir, U. and Howard, C.D.D., Water distribution systems analysis, J. Hydr. Div. 
ASCE, 94(1). p219-234,1968. 

Sherrington, D. and Kirkpatrick, S. Phys. Rev. Lett. 35, ~1792,  1975. 

Sharpe, R. A,, Contemporary Aesthetics, Harvester Press, 1983. 

Smith, A.E. and Tate, D.M., Genetic optimization using a penalty hc t ion ,  in 
Genetic Algorithms: Proceedings of the 5" International Conference, Forrest, S. ,  
(Ed.), p499-503, Morgan Kaufmann, 1993. 

Spears, W.M., and De Jong, K.A, On the virtues of piirameterised uniform 
crossover, in Belew, R.K. and Booker, L.B., (Eds), Proceedings of the 41h 

International Conference on Genetic Algorithms, Morgan Kaufmann, 199 1. 

Spiessens, P. and Manderick, B., A massively parallel genetic algorithm: 
implementation and first analysis, in Belew, R.K. and Booker, L.B., (Eds), 
Proceedings of the 4" International Conference on Genetic Algorithms, Morgan 
Kaufmann, p279-286,199 1. 

Spears, W.M., and De Jong, K.A, An analysis of multi-point crossover, Rawlins, 
G., (Ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, 1991. 



220 

SP93 

SP93a 

SR94 

ST89 

ST94 

su94 

SY89 

SY91 

TA87 

TA89 

TA93 

TO77 

Spears, W.M., De Jong, K.A., Back, T., Fogel, D.B. and de Garis, H., An overview 
of evolutionary computation and machine learning: ECML-93 European 
conference on machine learning, Lecture Notes in Art8ciaI ~ n t e l l i ~ e n ~ e ,  667, 
p442-459, 1993. 

Spears, W.M., Crossover or mutation?, Whitley, L.D., (Ed.), Foundations of 
genetic Algorithms 2 ,  Morgan Kaufmann, 1993. 

Srinivas, N. and Deb, K., Multiobjective optimisation using nondomina~d sorting 
in genetic algorithms, Evolutionary Computation, Vol. 2,  1994. 

Stein, D., Spinglaser, Spektrum, der Wissenschaft - Chaos und Fractale, Spekrrum, 
p146-152, 1989. 

Stevens, M., Cleary, M. and Stauffer, D., Physica A 208(1), 1994. 

Sutton, P., Hunter, D .L. and Jan, N., Am. J Phys, 4, p1281, 1994. 

Syswerda, G., Uniform crossover in genetic algorithms, in Schaffer, J.D., (Ed.), 
Proceed~ng~ 0s the 3& ~n~ernational Con~rence on Genetic A l g o ~ ~ t ~ s ,  Morgan 
Kaufmann, p2-9, 1989. 

Syswerda, G., A study of reproduction in generational and steady-state genetic 
algorithms, Rawlins, G., (Ed.), Foundations of Genetic Algorithms, Morgan 
Kaufmann, 199 1, 

Tanse, R., Parallel genetic algorithm for a hypercube, Proceedings of the 2"d 
International Conference on Genetic Algorithms, p177-183, 1987. 

Tanse, R., Distributed genetic algorithms, in Schaffer, J.D., (Ed.), Proceedings of 
the 3"' ~nternationa~ Conjkrence on Genetic ~lgorithms, Morgan K a u ~ ~ n ,  p434- 
439,1989. 

Tate, D.M. and Smith, A.E., Expected allele coverage and the role of mutation in 
genetic algorithms, in Genetic Algorithms: Proceedings of the 5" Internafional 
Conference, Forrest, S.,  (Ed.), p3 1-37, Morgan K a u ~ ~ ,  1993. 

Toulouse, G., Commun. Phys., June 1977. 



221 

TO87 

VA77 

WA84 

WA85 

WA93 

WA93a 

WA% 

WH89 

wH92 

wH93 

wH95 

Todini, E. and Pilati, S., A gradient method for the analysis of pipe networks, 
Proc. Inr. C o ~  on Comp. Applications f i r  Water Supply and Distribution, 
Leicester Polytechnic, Leicester, U.K., 1987. 

Vannimenus, J. and Toulouse, G., Theory of the hstration effect I1 - Ising spin on 
a square lattice, J Phys. C10, p537-542, 1977. 

Waiski, T.M., Adysis of water distr~bution systems, Van Nostrand Reinhold Co., 
Inc., New York, 1984. 

Walski, T.M., State-of-the-art pipe network optimi~tion, Proc. Spec. Con$ on 

Comp. A p p i i c a ~ i o ~ a ~ e r  Resour., ASCE, New York, p559-568, 1985. 

Walters, G.A. and Cembrowicz, R.G., Optimal design of water distribution 
networks, Cabrem, E. and Martinez, F., (Eds.), Water supply system, state ofthe 
art andfitwe trend, Computational Mechanics Publications, p91-117, 1993. 

Walters, G.A. and Lohbeck, T., Optimal layout of tree networks using genetic 
~ o r i ~ s ,  Engrg. ~ p t i m ~ ~ i o n ,  22(1), p27-48, 1993. 

Wanschura, T., Coley, D.A. and Migowsky, S., Ground-state energy of the t l sp in  
glass with dimension greater than three, Solid State ~ o m m u n i c ~ i o ~ ~  99(4), p247- 
248.1996. 

Whitley, D., the GENITOR algorithm and selection pressure: why rank-based 
atlocation of reproductive trials is best, in Schaffer, J.D., (ed.), Proceedjngs ofthe 
I I* international Joint Conference on Artificial intelligence, Morgan Kaufmann, 
San Mateo, 1989. 

Whitley, L. D. and Schaffer, J. D., (Eds.), C ~ A N N - ~ 2 :  i~ernat io~al  ~ o r ~ h o p  
on Combinations of Genetic Algorithms and Neural Networks, IEEE Computer 
Society Press, 1992. 

Whitley, L.D. (Ed.), ~ o u n d a t ~ o ~  of Genetic A i g ~ i ~ ~ s  2, Morgan Kaufmann, 
1993. 

~ i t l e y ,  L.D. and Vose, M,, Fds.), F o ~ d a ~ ~ o ~  of Genetic Algo~ithms 3, Morgan 
Kaufmann. 1993. 



222 

WH95a 

W087 

W093 

wR31 

WR91 

YA84 

YA93 

YA93a 

YA95 

YA95a 

YA98 

YO74 

Whitley, D., Mathias, K., Rana, S .  and Dzubera, Building better test functions, in 
Eshelman, L.J., Proceedings of the 6'' International Conference on Genetic 
Algorithms, p239-246, 1995. 

Woodbum, J., Lansey, K. and Mays, L.W. Model for the Optimal Rehabilitation 
and Replacement of Water Distribution System Components. Proceedings Nut. 
Con$ Hydraulic Eng., ASCE, 606-6 1 1, 1987. 

Wood, D.J. and Funk, J.E., Hydraulic analysis of water distribution systems, in 
Water supply systems, state of the art and future trendr, E. Cabrera and F. 
Martinez, Eds., Computational Mechanics Publications, p41-85, 1993. 

Wright, S., Evolution in Mendelian populations, Genetics, 16, p97-159, 1931. 

Wright, A.H., Genetic algorithms for real parameter optimization, Rawlins, G., 
(Ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, p205-218, 1991. 

Yates, D.F., Templeman, A.B., and Boffey, T.B., The computational complexity 
of the problem of determining least capital cost designs for water supply networks, 
Engrg, Optimization, 7(2), p142-155, 1984. 

Yang, F. and Sambles J.R., J. Opt. SOC. Am. B, 10, p858, 1993. 

Yang, F. and Sambles J.R., Liq. Cryst., 13(1), 1993. 

Yamada, T. and Nakano, R., A genetic algorithm with multi-step crossover for 
job-shop scheduling problems, Proceedings of First IEWIEEE International 
Conference on Genetic Algorithms in Engineering %stems: Innovations and 
Applications, GALESIA '95, p 146- 1 5 1, 1 995. 

Yamamoto, K. and Inoue, O., Applications of genetic algorithms to aerodynamic 
shape optimisation, AIAA paper 85-1650-CP, 12' AIAA Computational Fluid 
Dynamics Conf., CP956, San Diego, CA, June 1995, p43-5 I .  

Yang, G., Reinstein, L.E., Pai, S., Xu, Z., Carroll, D.L., A new genetic algorithm 
technique in optimization of prostate implants, accepted for publication in the 
Medical Physics Journal, 1998. 

Young P., Recursive approaches to time series analysis. J. Inst. Mathematics and 



223 

ZA97 Zalzala, A.M.S. and Fleming, P.J., Genetic Algorithms in Engineering @stems, 
IEE, London, 1997. 


	An Introduction to Genetic Algorithms for Scientists and Engineers
	cover
	1
	2
	3
	4
	5

	CH1
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	CH2
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34

	CH3
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58

	CH4
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92

	CH5
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112

	CH6
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185

	187
	188

	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223



