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This paper explains significant dtflerences in spatial truncation error between formulations of convection 
involving afinite-diflerence approximation of thefirst derivative, on the one hand, and a finite-volume model 
of flux dtgerences across a control volume cell on the other. The dtference between the two formulations 
involves a second-order truncation error term (proportional to the third derivative of the convected variable). 
Hence, for example, a third- (or higher) order jinite-dtflerence approximation for the first-derivative 
convection term is only second-order accurate when written in conservative control volume form as a 
finite-volume formulation, and vice versa. 
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Finite-difference and finite-volume formulations 

Consider the model constant-coefficient one-dimensional 
pure convection equation for a scalar 4 

; + u g = qx, t) (1) 

where S is a known source term, and assume that a 
numerical solution is sought using a discrete grid of 
constant step width h. As usual, let 4i represent the 
numerical approximation of 4 at grid point i. 

A finite-difference formulation of equation (1) attempts 
to simulate 

w -_= --U 
at ( > g + Si(t) 

I 

and, in particular, the spatial first-derivative convec- 
tion term is written in terms of node values of 4. The 
modelled first derivative is then equal to the true first 
derivative at i, plus truncation error terms: 

(iz),.,., = (igi + (TE)FD (3) 

The leading term in (TE),, (i.e., the term involving 
the lowest power of h) is conventionally called the 
“order” of the finite-difference discretization. 
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On the other hand, consider integrating equation (2) 
with respect to x, from -h/2 to + h/2, and dividing by 
h. This gives 

Gi_ 44, - 41) 
at-- h 

+ Si(t) 

where the bars refer to spatial averages, and left and 
right control volume face values are indicated. This is 
the finite-volume formulation of equation (1). In this case, 
one writes 

(4% - 44nodel = (4, - $I) + (TE) 
h h 

FV (5) 

where the right-hand side involves the true face value 
difference. Once again, the leading term in (TE),, is the 
order of the finite-volume discretization. 

It is often assumed (especially in recent CFD literature) 
that, if a finite-difference model is written in flux differ- 
ence form, then (TE)FD is the same as (TE)rv. But, as 
will be shown, except for the leading term in first-order 
formulations, 

@'E)FD + CWFV (6) 

The confusion is apparently based on the fact that the 
finite-difference model of the first derivative can often be 
split into two parts, i.e., 

84 

(-> 

= 4: - 4: 
ax h 

(7) 
model 

where 4:(i) = c#$(i - l), and this is sometimes treated as 
a finite-volume formulation (with the assumption that 
the truncation error is the same). But if equation (7) is 
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to be treated as a finite-volume model, one must re- 
compute the truncation error according to equation (5). 

Face-centered Taylor expansions 

For definiteness, consider the classical second-order 
central finite-difference approximation for the first 
derivative: 

W 

0 

= 4i+l - 4i-1 

~i-~=,,-,~(~)+~~;(~)‘-~~~(~)‘+“’ 

- 

ax model 2h 
(8) (20) 

First, make Taylor expansions about grid point i. For 
Then the individual modelled face values are given by 

example, 

~i+l = pi + ~:h + t~;h2 + b~~h3 + ... 

and 

+* = 4i+l + di 
r 

2 
=~,+l~~~h2+1~(iY)h4+... 

8 ’ 384 ’ 
(21) 

@_l = 4i - &h + i&h2 - &“h3 + ... (10) 
and 

so that 

c&+1 - c#+_~ = 2&h + +&“h3 + &@h5 + ..* (11) 

6* = 4i + 4i-1 
I 

2 
= 4I + f 4; h2 + & @“h4 + . . . 

(22) 
thus giving the well-known result that so that 

+ & &“‘h4 + . . (12) 

w - 4:) = (rb, - 44 + 
h h 

(23) 
\ I 

verifying that this is, indeed, a second-order approx- 
imation to the first derivative. But this model can be But, from Equations (17) and (18), 
rewritten in the form of equation (7) by identifying 

4* = 4i+ 1 + 4i 
$ttc4 +i+lw2+r++i 

(13) r ( 

+ . . . 
h2 > 

(24) 
I 

2 

and and similarly for 4;‘. Then, using equation (9) together 

4: = 4i + 4i-1 
with the following expansions of face values about grid 
point i, 

2 
(14) 

In other words, the modelled left and right face values 
are taken to be just the arithmetic means of the node 
values on adjacent sides of the individual faces. Note, as 
required by conservation, that and 

4:(i) = @(i - 1) (15) 

Now the model can be considered as a finite-volume 
formulation simply by writing 

~,*_~: (4i+ll”i>_(+i+:i-I) 

= 
h h 

= (” - “) + (TE) 
I. FV 

the difference of face second derivatives appearing in 
equation (23) can be written as 

v = 4:” + +4 4p)h2 + & #,y)h4 + . . . (27) 

(16) giving 
n 

In order to assess the truncation error, expand the node 
values about individual control volume face locations: 

h h 

+ ! &“hZ + L @)h4 + . . . 
8 ’ 128 ’ 

(28) 
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Thus, by comparing equations (12) and (28) one sees 
that 

(TE)rn = &“h2 + &c#$)h4 + ... 

whereas 

(29) 

(TE),, = $&“h2 + &@h4 + ... (30) 

This, of course, is a significant difference, even though 
both formulations are second-order accurate. Note that 
the difference in the truncation errors is 

(TE)rn - (TE),, = +&“h’ + &i+#$)h4 + . .. (31) 

and a result similar to this will be found in general 
to be true for any convection formula that can be 
simultaneously viewed either as a finite-difference for- 
mula for (I&?J/I~x)~ or a finite-volume formula for 
(4, - 4,)/h. In fact, referring to equations (25) and (26) 
continued through fifth-order, one finds that, irrespective 
of the numerical scheme, 

(32) 

which explains the difference between equations (29) 
and (30). 

Other common discretizations 

In addition to the second-order central-difference for- 
mulation considered above, it is convenient to summa- 
rize a number of other discretizations commonly used in 
convective modelling. 

First-order upwinding 

For u > 0, the convective term in equation (2) is 
written 

-p) = _qi -p> (33) 

From equation (lo), viewed as a finite-difference formula- 
tion, this gives 

(4i - 4i- 1) = 
h 

(34) 

which, as expected, is first-order accurate. Viewed as 
a finite-volume model, for u > 0, the face values are 
written (with upwind bias) as 

WG-nodel = q+=q$r_&: +... 0 
and 

(35) 

And this gives 

(4, - 4Jmodel = (4, - 41) 
h h 

h + 

But, from equations (17x20) 

l _&“hz+... 

and 

l _ 24 &“h, + . . . 

so that 

4: - 4; (4i+ 1 - 24i + 4i- 1) 
h h2 

1 (4:” - 67 h2 + . 

24 h 

and the second central-difference can be written 

(4i+ 1 - 24i + 4i- 1) = h2 0’ I + 1 12 (ph2 ’ + . . . 

(37) 

(38) 

(39) 

(40) 

(41) 

as is well known. This means that equation (37) becomes 

(4, - anodel = (4, - 41) 1 
h h -Fh+... 

(42) 

so that the leading truncation error is the same as 
that of the finite-difference formula, equation (34). This, 
of course, is to be expected from equation (32). 

Second-order upwinding 

For u > 0, if one interpolates a fully upwind-biased 
parabola through i, (i - l), and (i - 2), the corresponding 
first derivative at i is 

a$ 

(-) 

= (34i - 44i-l + 4i-2) 

ax 2h 
(43) 

model 

- ; &“h2 + a 4jiY)h3 + . . . (44) 
I 

But the right-hand side of equation (43) can also be 
written in finite-volume form as 

(34i-f4i-l)-(t4i-l -+4i-2)= (+r-@I) 

h h 

- ; &“h2 _ $ &iv’h3 + . . . (45) 

which again conforms with equation (32). Note that, 
in this case, face values are obtained by linear extrapola- 
tion from upwind nodes. 

Third-order upwinding 

This time, for u > 0, interpolate a (partially upwinded) 
cubic through (i + l), i, (i - l), and (i - 2). The corre- 
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for face values, obtained by interpolating a parabola 
through the two nearest node values together with that 
of the next adjacent upwind node. In summary, the l/8 
factor on the second-difference terms is appropriate for 
a finite-volume formulation, whereas the l/6 factor corre- 
sponds to the finite-difference model of the derivative. In 
practice, the difference between using l/8 and l/6 (in a 
finite-volume formulation) is observed to be quite small. 
Note that second-order upwinding can also be written 
in a similar form, using a factor of l/2 on the second- 
difference terms. In this case, however, results are sig- 
nificantly less accurate. 

sponding first derivative at i is then 

= (4i+l - 4i-1) 

model 2h 

(4 i+l - 34i + 34i-l - 4i-2) - 

6h 

~4~) 

Written in this form, one can see that the third differ- 
ence will cancel the leading truncation error in equation 
(12), giving 

~~)~~d~,=(~)i+~~ii.)h3-:O$).)h4+... 

(47) Higher-order formulations 

which is indeed a third-order accurate representation The simplest way to construct higher-order formulas 
of the first derivative at i. On the other hand, equation is to start with a known formula and add higher-order 
(46) can be rewritten in finite-volume form by identifying difference terms to cancel the leading truncation error. 
face values (for u > 0) as For example, if one were trying to construct a fourth- 

and 

(hhodel = 

order accurate approximation to the first derivative at i, 

- 24i + $i- 1) 
the appropriate formula would cancel the &” term in 
equation (12) without introducing an h3 term. This can 

(48) be done by using the average third difference centered at 
node i given by 

(4i + 4i-1) l 
(h)model = 2 - 6 (4i - 24i - 1 + 4i- 2) (I491 

But this gives 

(4, - hhodel = (6, - 41) 1 

- 24 41”h2 h h 

+CC4i+2 - 34i+l + 34i - 4i-1) 

+ (4i+l - 34i + 34i- 1 - 4i-211 
=f(4i+2 -24i+I + 24i-I - 4i-2) 

so that 

w 

C-J 

= ((Pi+ 1 - 4i-1) 
ax model 2h 

(54) 

+ ; (ph3 + . . . (50) _ (4i+2 - 24i+l + 24i-l - 4i-2) 

12h 

which of course is only a second-order accurate approx- 
imation. 

To achieve a third-order accurate finite-volume 
representation, one needs to annihilate the leading 
truncation error in equation (28). This is achieved by 
writing (for u > 0) 

(4i+ 1 + 4i) l 
(hhnodel = 2 -,(4i+I - 24i + 4i-1) 

(55) 

On the other hand, the appropriate fourth-order finite- 
volume formulation would use the aoerage second differ- 
ence centered at a face. For example, 

t[(4i+2 - 24i+l + +i) + (4itl - 24i + 4i-111 

= PC4i+2 - 4i+l - 4i + 4i-1) (56) 

so that the appropriate face value is 

and 

(51) (4i+l +$i)_(4i+2_4i+l_4i+ 
(hhnodel = 2 

4i-1) 
16 

giving 

(4i + (bi-1) l 
(hhnodel = 2 - 8 (4i - 24i- I + O-2) (52) 

_ & @“h4 + . . . (53) 

which is seen to be third-order accurate. Equations 
(51) and (52) represent the well-known QUICK formulas 

Once again, one sees that equation (55) could be 
rewritten in finite-volume form using 

(57) 

($i+l + ~i)_(~i+2-4i+l-4i+~i-l) 

with a similar formula for c#+ (reducing all indexes by 

(hhodel = 2 

1). 

12 
(58) 

with a similar formula for the left face. But this would 
result in a finite-volume formulation that is only second- 
order accurate, as predicted by equation (32). 
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Conclusion the result is 

Equation (32) shows that there is a significant difference 
between the first derivative at a node and the face value 
difference (divided by h) across a control volume cell. If 
a convection scheme is constructed on the basis of 
modelling (&$/ax), with truncation error (TE)rn, and 
then rewritten in conservative finite-volume form, the 
truncation error must be recomputed according to equa- 
tion (5), using Taylor expansions about face values. The 
difference in accuracy shows up in steady-state calcula- 
tions, where &pi/at = &$+/at = 0. Interestingly enough, if 
one writes, in the vicinity of grid point i, 

$ .= 4. + &$;/i2 + r_$!iV)h4 + . . . I I 1920 I (61) 

This, for example, explains the difference between the 
l/8 factor in the third-order steady-state QUICK scheme 
and the l/6 factor in the third-order time-accurate QUICK- 

EST scheme, which was pointed out 15 years ago.’ 
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and then computes the control volume cell average 
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