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ABSTRACT 
The effect of round-off errors on the solution of numerical heat transfer 
is illustrated by a simple example both analytically and numerically. It is 
found that the upper bound of the round-off error under both conditions 
with or without an inner heat source is proportional to the square of grid 
number—n2. Increase in grid number might lead to larger round-off errors. 
The magnitude of relative round-off error is also determined by the specific 
problem. Proper treatment of the computation procedure can reduce the 
round-off error obviously. The precision can be improved with this method 
without occupation of additional computational resources. 
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1. Introduction 

When solving nonlinear partial differential equations (PDEs) of heat transfer and fluid-flow problems 
with a numerical approach, the errors would arise in three different types: round-off errors, iterative 
convergence errors, and truncation errors, respectively [1–3]. 

Truncation error is defined as the difference between PDE and the corresponding finite-difference 
equations (FDEs) [2]. Iteration error is the difference between the exact and iterative solutions of 
discrete equation [4]. There have been numerous works done by investigators on verification [2] and 
reducing these errors. For example, one has to meet the condition of consistency that describes the extent 
to which FDEs approximate the PDEs, then use higher order scheme [3] or refine the grids [4] to reduce 
truncation error. As for the iteration error, it can be reduced by increasing the number of iterations. 
Currently, two widely accepted criteria for interrupting an iterative process have been developed [5]. 

Round-off error is caused by the representation of real numbers by a finite number of significant 
digits in computers [1, 6]. Relative round-off error of addition, subtraction, multiplication, and 
division denoted by op can be expressed as follows [7, 8]: 

flðx1 op x2Þ ¼ ðx1 op x2Þð1þ eÞ e < �o ð1Þ

where fl(x1 op x2) is the result of floating-point calculation. Machine precision ò is the relative 
round-off error which is always bounded by ò ¼ 2� p. The procedure of floating-point arithmetic is 
introduced according to IEEE754 standard [9] in Section 2. 

The research of round-off error can date back to 1940s (Goldstine and Neumann [10] and Turing 
[11]). Later in the 1960s, Moore [12] developed the interval arithmetic to analyze the round-off error 
and Wilkinson [7] discussed the round-off error in the algebra process in detail. Their works are the 
basis of the following investigations on round-off error. 

Recently, there have been numerous works on the upper bound of the round-off error. Some tools 
are developed to calculate the upper bound (Gappa [13], Fluctuat [14], based on interval arithmetic 
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and symbolic Taylor expansion). The analysis of the round-off error was conducted in many fields 
including chemical kinemics [15], molecular dynamics [16], and astronomy [17]. 

To the best knowledge of the authors, the discussions on round-off errors in computational fluid 
dynamics (CFD) and numerical heat transfer (NHT) were mostly limited in that the magnitude of 
round-off error is proportional to the grid number [2] and that the levels of machine precision are 
simply increased to reduce the round-off error [1]. 

Neglecting the iteration error, the error between the exact solution of the PDE and the computer 
solution to the FDEs can be expressed as follows [2, 3]: 

/ði; nÞ � ~/n
i ¼ /ði; nÞ � /n

i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

discretization error

þ /n
i �

~/n
i|fflfflfflffl{zfflfflfflffl}

round - off error

ð2Þ

It is obvious that a contradiction exists between refining the grid to reduce the discretization error 
and reducing the grid number to limit the accumulation of round-off errors since the machine 
precision is always finite. All those previous discussions are mostly qualitative, relatively few investiga-
tions were being performed on quantitative analysis of round-off errors in NHT. This paper uses the 
method of Taylor expansions [18] to identify the effect of round-off errors on a one-dimensional heat 
transfer problem. Besides, other factors including the grid number and Bi number are also analyzed. 

In the following presentation, it is divided into five sections: floating-point arithmetic is intro-
duced in Section 2; Section 3 presents the mathematical model and numerical method of the example; 
in Section 4, the rigorous upper bound of round-off errors is calculated using the method of symbolic 
Taylor expansion [18] and a numerical experiment is performed to examine it; finally, some 
conclusions are made in Section 5. 

2. Floating-point arithmetic 

2.1. Floating-point representation 

This section serves to provide some information of floating-point arithmetic, based on which the 
analysis of the simple example is presented in Section 3. 

Nomenclature 

A, B, C, P, Q coefficients in TDMA 
a, b coefficients 
Bi Biot number 
E round-off error 
Er relative round-off error 
e exponent; relative error in basic operations 
F set of floating-point number 
F cross-sectional area, m2 

f arbitrary function 
fl floating point 
h convective heat transfer coefficient, W/m2 

k overall heat transfer coefficients, W/m2/K 
L length of the slab, m 
M1 grid number of the rightmost grid point 
m significant 
op operation 
p precision 
R set of real number 
ro round function 
S inner heat source, W/m3 

s sign 

T temperature, °C 
x arbitrary vector 
x variable; coordinate along the slab, m 
δ maximal absolute error for numbers close 

to zero 
δx distance between grid points, m 
ε relative error in basic operations 
ò machine precision 
λ thermal conductivity, W/m/K 
ϕ solution of the PDE 

Subscripts 
1 left side of the slab 
2 right side of the slab 
E east 
f fluid 
i TDMA calculation step; grid number 
n total grid number 
P current grid point 
up upper bound 
W west   
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As is defined in IEEE754 standard [9], a binary floating-point number has the form: 

ð� 1Þs � 2e �m ð3Þ

where m, e, s are significant, exponent, and sign, respectively. And the standard describes three 
formats: single (32 bits), double (64 bits), and quad (128 bits) (see [9, Section 3] for detail). 

The set of floating-point numbers is denoted as F which is a subset of the real number set R. And 
ro: R → F is a rounding operator which returns the closest floating-point number of a given real 
number [9]. The following formula gives the model of rounding [19]: 

roðxÞ ¼ xð1þ eiÞ þ d ð4Þ

where jeij � �o, |d| � δ and εi � d ¼ 0. The values of ò and δ of different formats are given in 
Table 1. Since δ is negligible compared to ò, the term δ could be neglected in the following 
sections [20]. 

2.2. Floating-point operation 

In the standard, several floating-point arithmetic operations are defined. Suppose an operation 
op: Rn → R and opfl is its corresponding floating-point operation. 

If 

opflðxÞ ¼ roðopðxÞÞ ð5Þ

holds for all x in Rn, then the operation is exactly rounded. According to the IEEE754 standard, the 
following basic operations are exactly rounded: þ, � , �, / [18]. 

Finally the model for floating-point arithmetic of those exactly rounded operations could be 
expressed as follows: 

opflðxÞ ¼ opðxÞð1þ eiÞ ð6Þ

In the following section, the model of the example is presented in detail. 

3. Mathematical model and numerical solution 

3.1. Mathematical model 

Consider the simple problem of an infinite vertical plate with the third kind of boundary conditions at 
two faces, which is one-dimensional and steady-state heat conduction, see Figure 1 [3]: 

1
FðxÞ

d
dx kFðxÞ dT

dx

� �
þ S ¼ 0

hf 1ðTf 1 � Tjx¼0Þ þ k dT
dx jx¼0 ¼ 0

hf 2ðTjx¼L � Tf 2Þ þ k dT
dx jx¼L ¼ 0

8
><

>:
ð7Þ

where hf is convective heat transfer coefficient, λ is thermal conductivity, and L is plate 
thickness. 

Table 1. Value of machine precision. 
Precision (bits) ò δ  

Single (32) 2� 24 2� 150 

Double (64) 2� 53 2� 1075 

Quadruple (128) 2� 113 2� 16495   
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At first, consider the condition in which the inner heat source S ¼ 0. The analytical solution to this 
problem can be written as: 

T ¼
Tf 2 � Tf 1

Lþ 1
hf 1
þ 1

hf 2

� �
k

x þ
Tf 1Lþ k

Tf 1
hf 2
þ

Tf 2
hf 1

� �

Lþ 1
hf 1
þ 1

hf 2

� �
k

ð8Þ

Note that the solution is linear, and this is the main reason that the rather simple problem is served 
as the example—the nonexistence of discretization errors and iteration errors, which means the only 
error existed between the numerical solution and the analytical solution to this problem is round-off 
error. These unique features would provide great convenience to identify the effect of round-off 
errors. 

3.2. Numerical solution 

In this section, the numerical method is introduced to solve this problem. And the basic information 
for round-off error analysis is provided. 

The control volume integration method [3] is applied to discretize the governing equation and 
uniform grid with cell central scheme [21] is used to discretize the computational domain, see 
Figure 2. Discretization equation of boundary is obtained from energy balance for each control 
volume. The FDEs have the form [3]: 

aPTP ¼ aETE þ aWTW þ b ð9Þ

where 

aE ¼
Feke

dxe
; aW ¼

Fwkw

dxw

aP ¼ aE þ aW � SPFPDx

b ¼ SCFPDx

ð10Þ

Figure 2. Discretization of the computational domain.  

Figure 1. Physical model.  
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Tridiagonal matrix algorithm (TDMA) [22] is applied to solve the FDEs. For a system of equations 
that has a tridiagonal form: 

AiTi ¼ BiTiþ1 þ CiTiþ1 þ Di ð11Þ

After forward elimination, Eq. (11) can be written as: 

Ti� 1 ¼ Pi� 1Ti þ Qi� 1 ð12Þ

where 

Pi ¼
Bi

Ai � CiPi� 1
ð13Þ

Qi ¼
Di þ CiQi� 1

Ai � CiPi� 1
ð14Þ

With back-substitution, the temperature on every node could be solved, for example: 

TM1 ¼ QM1 ð15Þ

where M1 is the number of the rightmost point which equals the total grid number, n. 
In this case: 

P1 ¼
2 k

dx

2 k
dxþ hf 1

ð16Þ

P2 ¼
k
dx

3 k
dx � 2P1

k
dx

ð17Þ

Pi ¼
k
dx

2 k
dx � Pi� 1

k
dx

i > 2 and i < M1 � 1 ð18Þ

PM1� 1 ¼
2 k

dx

3 k
dx � PM1� 2

k
dx

ð19Þ

Q1 ¼
hf 1Tf 1

hf 1 þ
2k
dx

ð20Þ

Q2 ¼
2 k

dx

3 k
dx � 2P1

2k
dx

ð21Þ

Qi ¼
k
dx Qi� 1

2 k
dx � Pi� 1

k
dx

i > 2 and i < M1 � 1 ð22Þ

QM1� 1 ¼
k
dx QM1� 2

3 k
dx � PM1� 2

k
dx

ð23Þ

QM1 ¼
hf 2Tf 2 þ 2 k

dx QM1� 1

hf 2 þ 2 k
dx � 2 k

dx PM1� 1
ð24Þ

Tridiagonal matrix algorithm is a direct method for one-dimensional situations, which is widely 
used in a line-by-line form in programs to solve multidimensional CFD and NHT problems (say, 
ADI [3]). Therefore, it is important to analyze the accumulation of round-off errors in TDMA and 
identify its effect on the precision of the numerical solution. Analysis of round-off error would be 
presented in the next section. 
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4. Round-off error analysis 

4.1. Round-off error calculation 

This section will primarily focus on the accumulation of round-off errors in TDMA and neglect the 
errors induced by floating-point representation of domain discretization which is relatively small. 

As mentioned in Section 2, the model for floating-point arithmetic of those basic operations (say, 
addition, subtraction, multiplication, and division) is: 

opflðxÞ ¼ opðxÞð1þ eiÞ ð25Þ

Given a function f: Rk → R, it is calculated by a computer in the form of fl(f): Rk → F, with all of the 
operations in f replaced by the corresponding floating-point ones as well as variables and constants, 
unless they are already floating-point numbers. Substituting Eq. (25) into fl(f) and denote it as f̂ ðx; eÞ. 
The round-off error when computing f can be expressed as [18]: 

Eðf Þ ¼ f̂ ðx; eÞ � f ðxÞ ð26Þ

Applying Taylor expansion, the round-off errors of f(x) for all the principal variables are: 

Eðf Þ ¼
Xk

i¼1

qf̂
qei

�
�
�
�
�
ðx;0Þ

ei þ Oð�o2Þ ð27Þ

Note that jeij � �o is relatively small (Table 1), the term Oð�o2Þ is neglected. Define the upper bound 
of round-off error as: 

Eupðf Þ ¼ �o
Xk

i¼1
j
qf̂
qei

�
�
�
�
�
ðx;0Þ

j ð28Þ

Our goal is to calculate the upper bound for the accumulation of round-off error in the example. 
Now, consider Eq. (13), the error between the true value Pi� 1 and the computed value P̂i� 1 is: 

EðPi� 1Þ ¼ P̂i� 1 � Pi� 1 ð29Þ

And P̂i can be written as: 

P̂i ¼ fl
B̂i

Âi � ĈiP̂i� 1

� �

ð30Þ

Ai, Bi, Ci are coefficients that have been calculated outside of TDMA. In other words, they are 
already floating-point numbers. Since they are calculated differently in different codes, for sake of 
conciseness, here the round-off errors induced during calculating those coefficients outside TDMA 
would be neglected, and they have minor influence on the results. 

Then 

P̂i ¼
Bi

½Ai � CiðPi� 1 þ EðPi� 1ÞÞð1þ e1Þ�ð1þ e2Þ
ð1þ e3Þ ð31Þ

Substitute Eq. (31) into Eq. (26), applying Taylor expansion and neglecting higher order terms, we 
get the recurrence relation of the error sequence: 

EðPiÞ ¼ ð1þ e1 þ e2 þ e3ÞP2
i EðPi� 1Þ þ P2

i Pi� 1e1 � Pie2 þ Pie3 ð32Þ

26 S.-C. MOU ET AL. 



Since εi ≪ 1, neglecting εi in the coefficient of E(Pi � 1), we have: 

EðPiÞj j � P2
i EðPi� 1Þj j þ P2

i Pi� 1e1 � Pie2 þ Pie3
�
�

�
� � P2

i EðPi� 1Þj j þ ð2Pi þ P2
i Pi� 1Þ�o ð33Þ

Thus, the recurrence relation of the upper bound error sequence can be written as: 

EupðPiÞ ¼ ð2Pi þ P2
i Pi� 1Þ�oþ P2

i EsupðPi� 1Þ ð34Þ

From Eq. (18), the equation of Pi could be written as: 

Pi ¼
1

2 � Pi� 1
ð35Þ

The general term can be calculated as follows by Fix-point method, where P2 is the first term given 
by Eq. (17): 

Pi ¼
1

2 � Pi� 1
¼ 1þ

1
1

P2� 1 � ði � 2Þ
ð36Þ

PM1� 1 ¼
1

1þ 1
2

1
n

Bi1
þ n� 2:5

� 1 �
1
2

1
n

Bi1
þ n � 2:5

ð37Þ

where Bi is Biot number. It is obvious that Pi < 1 and Pi is monotonically increasing with respect 
to i. 

Substituting Eq. (36) into Eq. (34), we can calculate the general term of the upper bound: 

EupðPiÞ � i�o 1 << i < M1 � 1 ð38Þ

Substituting Eq. (38) into Eq. (19) and applying Taylor expansion again, we have: 

EupðPM1� 1Þ ¼
1
2

n�o ð39Þ

Similarly, the upper bound of round-off error when computing Qi can also be calculated, and with 
some reasonable approximation, the final bound is: 

EupðQM1� 1Þ ¼
1
2

Tf 1n�o ð40Þ

And in the process of calculating EsupðQM1� 1Þ, to make sure that the accumulation of round-off 
errors to be convergent, grid number n has to satisfy the following inequality (see Appendix A for 
detail): 

n <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bi1

Bi1 þ 1
1

2�o

r

ð41Þ

Finally substitute Eqs. (39) and (40) into Eq. (24) and use Eq. (28) again. We get the expression 
of the maximum relative error Er max for QM1 (since TM1 ¼ QM1 , it is also the relative error Er max 
for TM1 ): 

Er max ¼
EupðTM1Þ

TM1

¼
1

Tf 2
Tf 1

Bi2 þ 1
þ

1
Bi2 þ

Bi1
Bi1þ1

0

@

1

An2�o ð42Þ

Bi1 ¼
hf 1L
k
; Bi2 ¼

hf 2L
k

, respectively. 
So far, the expression of the maximum relative round-off error Er max between the numerical 

solution and the exact solution has been derived. 
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4.2. Effect of the round-off error and numerical experiment 

In this section, discussions on the maximum relative round-off error expression are given combining 
with a numerical experiment. Based on those discussions, a method on reducing the error without 
occupying additional computational resource is put forward. 

Define the relative error Er between numerical solution flðTM1Þ and exact solution TM1 as: 

Er ¼
jflðTM1Þ � TM1 j

TM1

ð43Þ

The experiment is performed on the relative round-off error Er. Since the upper bound of Er 
cannot always be reached in computing, the correspondence between Er and Ermax has to be 
demonstrated: 
1. Let Bi1 ¼ Bi2 ¼ Bi, vary the value of Bi from 0.005 to 5 [Figure 3(a)], the magnitude of 

relative round-off error decreases as Bi increases, which agrees well with our theoretical 
model. 

Figure 3. Relative round-off error versus grid number when Bi1 ¼ Bi2 ¼ Bi. (a) Bi varies from 0.005 to 5. (b) Bi keeps unchanged 
while varying other parameters.  
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2. Keeping the value of Bi unchanged by varying the geometry parameter L and the convective 
heat transfer coefficient hf at the same time. According to the model, the magnitude of relative 
round-off error should remain the same [Figure 3(b)]. 

So far, it has been demonstrated that Ermax can be a valid representation of the actual round-off 
error Er. Thus, all the following discussions are based on the expression of Ermax. 
1. The maximum relative round-off error is proportional to the machine precision— e, thus using 

high level of machine precision is a way to reduce the round-off error, which agrees well with the 
result of numerical experiment (Table 2) as well as the arguments in [1, 2]. However, huge 
amount of the computational resource would be required. 

2. It should be noted that the magnitude of both the maximum round-off error and the maximum 
relative round-off error is proportional to the square of grid number—n2, which is much larger 
than the proposed number n [2, Chapter 3]. Thus the magnitude of the round-off error can 
increase very fast when using more grids to reduce the discretization error, especially when n 
or the number of iteration steps is relatively large. 

3. Normally, in a given number of grids, increasing of machine precision would reduce the effect 
of round-off error. However, it will use more of the computing resources. Considering the con-
tradictions between computational resources and machine precision, discretization error and 
round-off error, to reduce the round-off error without the occupation of more computational 
resources or the increase in discretization error, the specific problem has to be conscientiously 
considered. Here, the influence of Bi number is identified and a method to improve the precision 
is put forward: 

Note that the influence of Bi1 and Bi2 on the value of the relative round-off error is different 
[Eq. (42)]. It is found that the precision of computation result changes by varying the Bi 
number: The convective heat transfer coefficient is relatively large on one side but rather small 
on the other side (It is common in engineering applications, for example, the forced convection 
heat transfer between air and water). The different arrangement of the computation may have 
a significant effect on the precision of numerical results. Take an instance, when keeping 
hf1 ¼ 20 W/m2 unchanged (L ¼ 0.01 m, λ ¼ 1 W/m, Bi1 ¼ 0.2) while varying hf2 from 20 W/m2 

to 20, 000 W/m2 ðL ¼ 0:01 m; k ¼ 1 W=m; Bi2 ¼ 0:2 � 200Þ the magnitude of relative 
error reduced significantly with the increase in hf2 [Figure 4(a)]. However, when keeping 
hf2 ¼ 20 W/m2 unchanged ðL ¼ 0:01 m; k ¼ 1 W=m; Bi2 ¼ 0:2Þ while varying hf1 from 
20 W/m2 to 20, 000 W/m2 ðL ¼ 0:01 m; k ¼ 1 W=m; Bi1 ¼ 0:2 � 200Þ, it has little influence 
on the magnitude of the relative error [Figure 4(b)]. This can be explained by Eq. (42): the influ-
ence of Bi1 is limited in the term Bi1

Bi1þ1, its value is less than 1 no matter how large Bi1 is. 
However, if Bi2 is chosen as the larger one, the magnitude of relative error can be reduced 
significantly (when the convective heat transfer coefficients at the two faces are 20 W/m2 and 
2, 000 W/m2, respectively, if hf1 is chosen to be 2, 000 W/m2 and hf2 to be 20 W/m2, the relative 
round-off error can be 16 times larger than the other arrangement that hf1 ¼ 20 W/m2 and 
hf2 ¼ 2, 000 W/m2). It indicated that proper choice of Bi at two surfaces can have a significant 
effect on the precision of the numerical solution. With proper treatment of the computation 
procedure, the round-off error can be reduced significantly while keeping the same machine 
precision level. In this case, change the position of Bi1 and Bi2, make the larger Bi as Bi2 can 
systematically minimize the round-off errors without occupying additional computational 
resources. 

Table 2. Solution to the example: TM1 (parameters: L ¼ 0.01 m, Tf1 ¼ 100°C, Tf1 ¼ 20°C, hf1 ¼ 2000 W/m2, hf2 ¼ 20 W/m2). 

Exact solution 

Numerical solution  

M1 ¼ 3 M1 ¼ 10 M1 ¼ 20 M1 ¼ 40 M1 ¼ 80  
99.21182 Single (32 bit)  99.21181  99.21188  99.20975  99.22114  99.18736 

Double (64 bit)  99.21181  99.21190  99.21159  99.21210  99.21248   
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4.3. Effect of the source term 

The calculation is quite similar as discussed before. The expression of the maximum relative error 
Ermax is derived when S ¼ Sc, where Sc is the intensity of constant inner heat resource: 

E ¼
ScL2

12kTf 1
þ 1

Tf 2
Tf 1

Bi2 þ
ScL2

2kTf 1
þ 1
þ

1
Bi2 þ

Bi1
Bi1þ1

0

@

1

An2�o ð44Þ

It is found that the magnitude of relative round-off error is still proportional to the square of grid 
number. Bi2 also has great effect on the magnitude of error, since the second term in square is 
the same as before. While, if the magnitude of inner heat source is moderate, it has less a significant 
influence on the round-off error because Sc is both included in numerator and denominator. 

5. Conclusion 

In this paper, the effect of round-off errors on NHT is identified by a simple heat conduction 
example, where iterative and truncation errors do not exist, and increase in grid number might result 

Figure 4. Relative round-off error versus grid number when Bi1 ≠ Bi2. (a) Bi2 varies from 0.2 to 200 while Bi1 ¼ 0.2. (b) Bi1 varies 
from 0.2 to 200 while Bi2 ¼ 0.2.  
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in greater error. The method of computing the upper bound of round-off error is introduced. During 
the process of computing the error, a recommended constraint of grid number is given. Finally, 
combining with the numerical experiment, the expression of relative round-off error is analyzed in 
detail, based on which a method on reducing the error without occupying additional computational 
resource is put forward. The following conclusion can be drawn. 
1. The upper bound of the round-off error is proportional to ò, where ò is machine precision, the 

error could be reduced by improving the level of machine precision. 
2. As can be seen from the expression with or without inner heat source, the magnitude of 

accumulated relative round-off errors is proportional to the square of the grid number n2, much 
larger than the proposed number n [2]. 

3. As mentioned before, former researchers suggested to refine the grid to reduce the discretization 
error, but no criteria of the upper limit of the grid number have been put forward so far. To make 
sure the convergence of the round-off error, a constraint of the grid number n to be chosen in the 
example is recommended. 

4. The effect of round-off errors on the numerical solution is not simply determined by the machine 
precision and grid number. However it is also related to the specific problem and dominated by 
the nondimensional parameters, such as Bi number in this example. With proper choice of Bi at 
two surfaces, the round-off error can be reduced significantly without occupying additional 
computational resources. 

5. Since TDMA have been widely used in NHT and CFD programs, when the calculation is not 
convergent and the number of computer bits are limited, increasing of grid number might lead 
to larger round-off errors. Consideration of the effect of round-off error is highly recommended. 

Acknowledgment  

This work has been financially supported by the National Key Research and Development Program — China 
(2016YFB0601201).  

References  

[1] K. H. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume 
Method, chap. 7, Pearson Education, London, UK, 2007.  

[2] J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, 2nd ed., 
chap. 3, Taylor & Francis, Washington, DC, 1997.  

[3] W. Q. Tao, Numerical Heat Transfer, 2nd ed., chap. 3, Xi’an Jiaotong University Press, Xi’an, China, 2001.  
[4] C. H. Marchi and A. F. C. Silva, Unidimensional Numerical Solution Error Estimation for Convergent Apparent 

Order, Numer. Heat Transfer B Fund., vol. 42, no. 2, pp. 167–188, 2002.  
[5] M. A. Martins and C. H. Marchi, Estimate of Iteration Errors in Computational Fluid Dynamics, Numer. Heat 

Transfer B Fund., vol. 53, no. 3, pp. 234–245, 2008.  
[6] D. Goldberg, What Every Computer Scientist Should Know About Floating-point Arithmetic, ACM Comput. Surv. 

(CSUR), vol. 23, no. 1, pp. 5–48, 1991.  
[7] J. H. Wilkinson, Rounding Error in Algebraic Process, Prentice-Hall, Englewood Cliffs, NJ, 1963.  
[8] N. J. Higham, Accuracy and Stability of Numerical Algorithms, J. Am. Stat. Assoc., vol. 16, no. 94, pp. 285–289, 

2002.  
[9] D. Zuras, et al. IEEE Standard for Floating-point Arithmetic, vol. 754, pp. 1–70, IEEE Std, 2008. 

[10] H. H. Goldstine and J. V. Neumann, Numerical Inverting of Matrices of High Order, Bull. Am. Math. Soc., vol. 53, 
no. 11, pp. 1021–1099, 1947. 

[11] A. M. Turing, Rounding-off Errors in Matrix Processes, Quart. J. Mech. Appl. Math., vol. 1, no. 1, pp. 287–308, 
1948. 

[12] R. E. Moore, Interval Analysis, vol. 4, chap. 1, Prentice-Hall, Englewood Cliffs, NJ, 1966. 
[13] M. Daumas and G. Melquiond, Certification of Bounds on Expressions Involving Rounded Operators, ACM 

Trans. Math. Software, vol. 37, no. 1, pp. 495–507, 2007. 
[14] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. V’Edrine. Towards an Industrial Use of FLUCTUAT 

on Safety-critical Avionics Software, Formal Methods for Industrial Critical Systems, International Workshop, 
FMICS, Eindhoven, The Netherlands, November, vol. 5825, pp. 53–69, 2009. 

NUMERICAL HEAT TRANSFER, PART B 31 



[15] A. Lukassen and M. Kiehl, Reduction of Round-off Errors in Chemical Kinetics, Combust. Theor. Model., vol. 21, 
pp. 183–204, 2016. 

[16] M. Taufer, O. Padron, P. Saponaro, and S. Patel. Improving Numerical Reproducibility and Stability in Large-scale 
Numerical Simulations on GPUs, Parallel & Distributed Processing (IPDPS), IEEE International Symposium on 
Parallel and Distributed Processing, pp. 1–9, Atlanta, GA, 2010. 

[17] T. Quinn and S. Tremaine, Roundoff Error in Long-term Planetary Orbit Integrations, Astronom. J., vol. 99, 
pp. 1016–1023, 1990. 

[18] A. Solovyev, C. Jacobsen, Z. Rakamarić, et al. Rigorous Estimation of Floating-point Round-off errors with 
Symbolic Taylor Expansions, International Symposium on Formal Methods, vol. 9109, pp. 532–550, 2015. 

[19] F. Goualard, How Do You Compute the Midpoint of an Interval?, ACM Trans. Math. Software (TOMS), vol. 40, 
no. 2, pp. 11, 2014. 

[20] A. Rocca, V. Magron, and T. Dang, Certified Roundoff Error Bounds Using Bernstein Expansions and Sparse 
Krivine-Stengle Representations, arXiv preprint arXiv:1610.07038, 2016. 

[21] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, chap. 3, CRC Press, 1980. 
[22] A. Khalid and S. Antonin, Petroleum Reservoir Simulation, Chapman & Hall, London, UK, 1979. 

Appendix A 

Recall the process of calculating E(Pi), we have: 

bQi ¼
½Di þ CiQi� 1ð1þ e4Þ�ð1þ e5Þ

½Ai � CiðPi� 1 þ EðPi� 1ÞÞð1þ e1Þ�ð1þ e2Þ
ð1þ e6Þ ð45Þ

Substitute into Eq. (26), applying Taylor expansion, and neglecting higher order terms, we get the 
recurrence relation of the error sequence: 

EðQiÞ ¼ ð1þ NÞð1þ e4ÞPiEðQi� 1Þ þ NQi þ ð1þ NÞe4PiQi� 1 ð46Þ

where 

N ¼ e5 þ e6 �
Ai

Ci
Pie2 þ PiPi� 1ðe1 þ e2Þ þ Pið1þ e1 þ e2 þ e5 þ e6ÞEðPi� 1Þ ð47Þ

For the convergence of the error, the absolute value of the coefficient must satisfy: 

ð1þ NÞð1þ e4ÞPi < 1 ð48Þ

When i� 1, the value of Pi ! 1. Since EðPi� 1Þ � ie, the value of N is determined by the term: 

Pið1þ e1 þ e2 þ e5 þ e6ÞEðPi� 1Þ � iPie ð49Þ

Combining the expression of Pi [Eq. (36)] we have: 

i <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bi1

Bi1 þ 1
1

2�o

r

ð50Þ
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