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Politècnica de Catalunya (UPC), Terrassa, Barcelona, Spain

This work addresses the verification of multidimensional and transient numerical solutions

based on Richardson extrapolation techniques. Alternative extrapolation strategies based

on both simultaneous (SCR) and independent (ICR) space-and-time coordinates refine-

ment studies are investigated. Extrapolation strategies studied encompass the generalized

Richardson extrapolation (GRE) based on both the local and the global observed order

of accuracy, and the mixed-order Richardson extrapolation (MORE). Performance of

all verification methods investigated has been tested on a manufactured solution and on

the flows in different piston–cylinder configurations. Results reveal that the global observed

order of accuracy and the postprocessing estimators obtained from ICR studies can provide

useful information on which the most suitable verification methods can be selected.

1. INTRODUCTION

The last decades have seen an important increase in the use of computational
fluid dynamics (CFD) as an everyday tool to obtain solutions to many thermal and
fluid dynamic problems. During this time, as both computers and numerical
algorithms have become more efficient, CFD tools have systematically been
applied to tackle a wider and wider range of problems of increasing complexity.
However, despite the popularisation of these tools, CFD is still far from being a
completely mature technology. The accuracy of the solutions provided by
well-verified CFD codes depends to a great extent on the use of adequate math-
ematical models, computational meshes, and solvers which allow sufficient iterative
convergence of the solutions. As a consequence, the credibility of the solutions pro-
vided by CFD tools and, therefore, its suitability in designing and optimization
tasks, depends greatly on the correct development and use of these tools. This con-
cern with the correct application of the CFD tools, and with the accuracy and the
quantification of the uncertainties of the numerical solutions obtained, is addressed
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by the validation and verification (V&V) discipline. Although initially developed by
the operations research community [1], parallel to the popularization of CFD,
V&V has received increasing attention by the CFD community. The terms verifi-
cation and validation are used in this context to refer to ‘‘solving the equations
right’’ and ‘‘solving the right equations,’’ respectively [2]. Therefore, while vali-
dation is concerned with the modeling uncertainty, i.e., the errors associated with
the mathematical model used in the modelization of the physics involved, verifi-
cation is focused on the numerical uncertainty, i.e., on the errors associated with
the solution of these equations, viz., programming of the code, discretization of
partial differential equations, solution of the discretized equations, and computer
accuracy. Furthermore, verification tasks can be further divided into tasks of
verification of numerical codes and tasks of verification of numerical solutions.
In this context, the studies carried out in this work are focused on the verification
of numerical solutions, that is, in the development and assessment of a reliable
methodology for the quantification in a statistical sense of the numerical uncer-
tainty of computational solutions obtained from well-verified codes.

Although several alternative methods have been investigated for the verifi-
cation of CFD solutions, e.g., methods based on the least-squares extrapolation
[3] or on the error transport equation [4], those based on systematic grid refinement
studies and the Richardson extrapolation techniques have probably been the most
reliable and widely used for such purposes. These methods provide an estimation
of the exact solution of the equations being solved, /E, by extrapolating from the
solutions reported on a set of systematically refined grids, as described in
Section 2.1. As a first approach, the discretization error eD of a given numerical sol-
ution / could be estimated from the extrapolated value of the exact solution, /extr, as
/�/extr. However, a value of eD evaluated directly in this way does not provide, in
general, a good confidence interval for nontrivial and nonlinear problems. Such limi-
tation on the estimation of eD can be acknowledged by applying a safety or correc-
tion factor, obtaining, typically, an error band rather than an estimation of eD itself.
However, the nature of this safety or correction factor differs for different authors.
The verification methodology discussed in this work is based on the approach

NOMENCLATURE

Ci ith-order error term coefficient

eD discretization error

Fs safety factor

GCI grid convergence index

h parameter representative of the grid

spacing

MMS method of manufactured solutions

p observed order of accuracy

(equation(4)); pressure

pr value of p that provides the exact

discretization error (equation (8))

r grid refinement ratio

Rn percentage of Richardson nodes

t time

tf final time instant

vr, vz radial and axial components of velocity

Vp piston velocity

V0 reference velocity

x coordinates vector

eij difference between solutions variables

on grid levels i and j

rp standard deviation of p

/ solution variable

/E exact solution

/extr extrapolated solution
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proposed by Roache [5] and applied by authors in different fields (e.g., [6]). The
underlying idea is the estimation of an error band, the grid convergence index
(GCI), by multiplying the absolute value of the estimate of eD by a safety factor.
The value of this factor is based on cumulative experience, depends exclusively on
the number of solutions available for extrapolation, and aims at a 95% confidence
interval. An alternative approach has been proposed by Stern et al. [7], where
the error interval is calculated via the use of a correction factor that accounts for
differences between the observed order of convergence and either the theoretical
order of accuracy, or the order of convergence observed on solutions for simplified
geometry and conditions.

Despite the effort given to the development of these verification methodolo-
gies, compelled by the urgent need in the CFD community to assess the credibility
of the solutions obtained, and the relative success achieved in certain applications,
at present, verification of CFD solutions is still far from being a completely mature
and consolidated technique. For methods based on Richardson extrapolation tech-
niques, difficulties arise in meeting the hypothesis assumed. Considering an expan-
sion series of /, such as that of Eq. (2), the generalized Richardson extrapolation
(GRE) estimates /E assuming that the leading-order term of this series dominates
the discretization error. The order p of this term must then be either assumed, or
estimated from the observed convergence of /. Consequently, if a wrong value of p
is assumed, or if more than one term of the error series dominate the error, the
GRE will fail to provide accurate estimations of /E. Unfortunately, such asymp-
totic behavior of the solution convergence is seldom reached in practical cases.
Contrarily, additional error terms of different order have been observed to also
have, in general, a noticeable weight in the discretization error, resulting in
mixed-order convergence of /. Furthermore, under such circumstances, if the lead-
ing error terms have different sign, nonmonotonic or oscillatory convergence may
occur. As a result, as discussed in Section 2.1.1, unrealistic estimations of p can be
obtained, which would lead to highly inaccurate estimates of /E. Moreover, in
those cases where the values of / obtained on the grid levels used for extrapolation
do not show monotonic convergence, p, and therefore /E, cannot be estimated.
Nonmonotonic convergence may arise specially in those cases where mixed-order
methods are used in the discretization of the governing partial differential equa-
tions. The use of these methods is indeed a common practice in CFD. Illustrative
examples can be found in the discretization of: (1) different terms of a given equa-
tion, e.g., upwind (UDS) for the convective terms and central difference schemes
(CDS) for the diffusive terms; (2) different coordinate directions, e.g., different
order discretization in time and space coordinates; (3) different equations, e.g.,
first-order discretization of turbulence transport equations and second-order of
the momentum equations; or (4) when hybrid methods, such as the SMART
scheme [8], or flux limiters, are used.

These limitations of the GRE for verification purposes have been addressed in
previous works by various authors. As a result, different strategies to tackle this issue
have been proposed. Celik and Karatekin [9] introduced modifications in the way the
observed order of accuracy, p, is calculated, to deal with oscillatory solution conver-
gence and to prevent negative values of p. Additionally, the values of p used for
extrapolation were limited to a certain range given by the theoretical order of
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accuracy of the discretization scheme. Cadafalch et al. [10] used the GRE in combi-
nation with an averaged value of p, calculated at all the nodes of the domain which
converge monotonically. This value was expected to be contained within the limits of
the theoretical p for the method to be reliable. Additionally, low values of the stan-
dard deviation of p are also required. As an alternatively to the use of the GRE, the
multiexponent, or mixed-order Richardson extrapolation (MORE) [11, 12] can be
used for the estimation of eD, as in the works of Roy [13] and Roy et al. [14] This
technique considers additional error terms, allowing the estimation of /E in nodes
reporting monotonic or oscillatory convergence. A different strategy was developed
by Eça and Hoekstra [15]. These authors estimated the observed p with the
least-squares root technique, and limited the use of the GRE to a given range
of the local observed p. Outside this range, different extrapolation techniques,
encompassing the multiexponent extrapolation, were used.

The application of any verification method to multidimensional solutions can
be carried out based on two different approaches. On the one hand, the simultaneous
coordinate refinement method (SCR) conducts grid refinement studies by simul-
taneously refining the grid in all coordinate directions using, in general, the same
refinement ratio. On the other hand, the independent coordinate refinement method
(ICR) [5], performs independent grid refinement studies for each independent coor-
dinate direction. As a result, convergence information and values of the GCI are
obtained for each independent coordinate. The overall value of the GCI can then
be calculated from the values obtained for each coordinate. As is demonstrated later
in this article, the information provided by the ICR method has been found to be
useful to obtain accurate values of the GCI in certain cases where the SCR method
failed. Such cases are characterized by the mixed-order discretization in different
coordinate directions, causing the solution to converge nonasymptotically.

In this section, alternative verification strategies based on the Richardson
extrapolation family have been introduced. Such strategies are based on the use of
one, or a combination, of the following approaches to predict the uncertainty asso-
ciated with a given solution: (1) use of the GRE in combination with the local
bounded values of the observed p; (2) use of the GRE based on the global observed
p; (3) use of the MORE. Furthermore, both the SCR and ICR approaches to deal
with multidimensional solutions have been presented. It has also been mentioned
that the verification of numerical solutions is still far from being a completely mature
discipline. In this context, and by analyzing the results obtained in a number of rep-
resentative test cases, this work seeks answers to some of the questions that still
remain open: (1) How do the different methods compare in terms of accuracy and
conservativeness? (2) Does Fs¼ 1.25 provide the required conservativeness for all
the methods tackled in this work? (3) Which limits should be applied to the local
observed p when used with the GRE? (4) Which error terms should be considered
in MORE-based methods? (5) Is the global p an adequate parameter based on which
the limits of the observed local p and the error terms considered in MORE can be
chosen? (6) What are the benefits of the ICR strategy over the SCR? The remainder
of this work is structured as follows. First, in Section 2 the fundamentals of solution
verification methods based on Richardson extrapolation techniques and the GCI are
addressed. A detailed verification procedure based on the different uncertainty
estimation methods is described in Section 3. This is followed by descriptions of test
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cases and discussion of results in Sections 4 and 5, respectively. Final conclusions
and remarks are presented in Section 6.

2. FUNDAMENTALS

This section tackles fundamental topics in the verification of numerical solu-
tions based on systematic grid refinement studies. The issues discussed encompass
extrapolation techniques, error estimation and banding, alternative verification
strategies, and specific aspects of the verification of multidimensional and transient
solutions. The methodology presented is applied on a point-by-point basis.
However, it can also be applied to global parameters, e.g., drag and lift coefficients,
Nusselt numbers, etc.

2.1. Extrapolation Techniques

Let /(x, t) be a numerical solution, obtained at a given point x and instant t,
which is free of both convergence and round-off errors, and which has been obtained
from a verified code. Consider now the following power series representation of the
local solution /(x, t):

/ðx; tÞ ¼ /Eðx; tÞ þ C1ðx; tÞhþ C2ðx; tÞh2 þ C3ðx; tÞh3 þ � � � ð1Þ

where h is a discretization parameter representative of the spatial and temporal grid,
the coefficients C1(x, t), C2(x, t), C3(x, t), . . . are given by continuous functions
dependent on the discretization scheme but not on the discretization grid, and
where /(x, t) tends to the exact solution /E(x, t) as the grid is refined. Assuming
that the solution /(x, t) has been obtained from a pth-order-accurate numerical
scheme, the coefficients C1(x, t), . . . , Cp� 1(x, t) will be zero, and Eq. (1) can then
be rewritten as

/ðx; tÞ ¼ /Eðx; tÞ þ Cpðx; tÞhp þ Cpþ1ðx; tÞhpþ1 þ Cpþ2ðx; tÞhpþ2 þ � � � ð2Þ
The basic idea on which Richardson extrapolation techniques are based is that,

as the grid is refined and h takes smaller values, higher-order terms in Eq. (2) become
smaller and eventually negligible. The generalized Richardson extrapolation (GRE)
constitutes a first approach on which exclusively the pth-order term is considered
for extrapolation. Alternatively, the multiexponent or mixed-order Richardson
extrapolation technique (MORE) constitutes a higher-order approach, as higher-
order terms in Eq. (2) are taken into account.

2.1.1. Generalized Richardson extrapolation (GRE). Assuming that the
pth-order term in the series (2) prevails over the higher-order terms, /(x, t) can be
expressed as

/ðx; tÞ ffi /Eðx; tÞ þ Cpðx; tÞhp ð3Þ
As a first approach, p can be assumed from the theoretical order of accuracy of

the discretization scheme. If so, /E(x, t) can be calculated from a set of two solutions,
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/1(x, t) and /2(x, t), obtained on the grid refinement levels, h1 and h2. However, it is
preferred to estimate the value of p rather than assuming it. This can be done by
using a third numerical solution, /3(x, t), obtained in an additional grid level h3.
Proceeding this way, if a constant grid refinement ratio r¼ h2=h1¼ h3=h2 is assumed,
the values of p(x, t) and /E(x, t) can be obtained from expressions

pðx; tÞ ¼ ln½e32ðx; tÞ=e21ðx; tÞ�
lnðrÞ ð4Þ

/Eðx; tÞ ffi /extrðx; tÞ ¼ /1ðx; tÞ þ
e21ðx; tÞ
1� rpðx;tÞ

ð5Þ

where

e21ðx; tÞ ¼ /2ðx; tÞ � /1ðx; tÞ ð6Þ

e32ðx; tÞ ¼ /3ðx; tÞ � /2ðx; tÞ ð7Þ

According to Eq. (5), the exact solution /E(x, t) is estimated from the extrapolated
value, /extr(x, t). The local order of accuracy p(x, t) calculated from Eq. (4) is
referred to as the observed order of accuracy. It must be noted that if the solution
is converging nonmonotically, the ratio e32(x, t)=e21(x, t) can take negative values,
in which case Eq. (4) would then be undefined. Additionally, nonmonotonic solution
convergence can also lead to Eq. (4) to provide highly unrealistic values of /E(x, t).
Consequently, it is advisable to limit somehow the values of p(x, t) used in Eq. (5) to
values within a certain realistic range. How this range can be selected, and its effects
on the accuracy of the verification method, is addressed in the following sections of
this work. Furthermore, if the ratio e32(x, t)=e21(x, t) is negative, Eq. (4) will provide
nonreal values of p(x, t).

Finally, if /E(x, t) is available by whatever means, as in the manufactured
solution created for test case A of this work (see Section 4.1), the value of p(x, t)
can be easily obtained from Eq. (3) on two different grid levels,

prðx; tÞ ¼ ln½e2ðx; tÞ=e1ðx; tÞ�
lnðrÞ ð8Þ

where e1(x, t) and e2(x, t) are the values of the exact error in grid levels 1 and 2,
respectively,

e1ðx; tÞ ¼ /1ðx; tÞ � /Eðx; tÞ ð9Þ

e2ðx; tÞ ¼ /2ðx; tÞ � /Eðx; tÞ ð10Þ
It must be noted that pr(x, t) is the value of p(x, t) needed for Eq. (5) to provide

/E(x, t), and will be the real order of convergence of the solution only if the error is
truly dominated by one term, as assumed in Eq. (3). Therefore, the higher the devi-
ation of p(x, t) from pr(x, t), the less accurate will be the value of /extr(x, t) obtained
from Eq. (5).

VERIFICATION TRANSIENT CFD SOLUTIONS 51

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
o
n
s
o
r
c
i
 
d
e
 
B
i
b
l
i
o
t
e
q
u
e
s
 
U
n
i
v
e
r
s
i
t
a
r
i
e
s
 
d
e
 
C
a
t
a
l
u
n
y
a
]
 
A
t
:
 
1
4
:
4
0
 
2
5
 
J
u
n
e
 
2
0
1
0



2.1.2. Mixed-order Richardson extrapolation (MORE). Extrapolations of
higher order than the GRE can be obtained by considering additional error
terms in Eq. (2) [11, 12]. Let us assume now that the discretization error in Eq. (1)
is dominated by both the first- and second-order error terms:

/ðx; tÞ ffi /Eðx; tÞ þ C1ðx; tÞhþ C2ðx; tÞh2 ð11Þ
Given a set of three numerical solutions obtained on the grid triplet h1¼ h2=

r¼ h3=r
2, /E(x, t) can be estimated as

/Eðx; tÞ ffi /extrðx; tÞ ¼ /1ðx; tÞ þ
e32ðx; tÞ � ðr2 þ r� 1Þe21ðx; tÞ

ðrþ 1Þðr� 1Þ2 ð12Þ

In the particular case of r¼ 2, Eq. (12) reduces to

/Eðx; tÞ ffi /extrðxÞ ¼ /1ðx; tÞ þ
1

3
ðe32 � 5e21Þ ð13Þ

If both second- and third-order error terms are considered to dominate the
discretization error, the following expression can be similarly obtained for the
estimation /E(x, t) in case where r¼ 2:

/Eðx; tÞ ffi /extrðxÞ ¼ /1ðx; tÞ þ
1

21
ðe32 � 11e21Þ ð14Þ

The multiexponent extrapolation technique exposed here is based on con-
sidering for extrapolation exclusively two error terms, the order of which must
be assumed from the discretization scheme if only three grid refinement levels
are considered for extrapolation. If solutions obtained on additional grid levels
are available, alternative and, in general, more accurate techniques can be applied.
Such alternatives are based on either considering additional error terms for extra-
polation, or the estimation of the order of these terms rather than assuming
them. However, with the aim of comparing methods with similar computational
costs, only methods based on the use of three grid refinement levels have been
considered in this work.

2.2. The Grid Convergence Index (GCI)

The extrapolation techniques presented in Sections 2.1.1 and 2.1.2 provide an
estimation of the exact solution, from which the discretization error can easily be
estimated as

eDðx; tÞ � /ðx; tÞ � /extrðx; tÞ ð15Þ
However, for verification purposes, Eq. (15) does not, in general, provide

estimations of eD(x, t) that are sufficiently accurate for nontrivial and nonlinear pro-
blems. The GRE and MORE techniques require that solutions converge asymptoti-
cally toward /E under the hypothesis assumed. Contrarily, it is found in practice that
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reaching the asymptotic range can require the use of excessively dense grids, usually
too expensive from a computational point of view. However, despite the limited
accuracy of the exact solution estimations and, therefore, of the associated discreti-
zation error, this value is still of interest to provide information on the credibility
of numerical solutions. Toward this objective, Roache [5], based on cumulative
experience, multiplied jeD(x, t)j by a safety factor Fs to obtain an error band within
which the exact error was expected to be included with a confidence interval of 95%.
Roache referred to the resulting error band as the grid convergence index, which is
defined as:

GCIðx; tÞ ¼ FsjeDðx; tÞj ¼ Fsj/ðx; tÞ � /extrðx; tÞj ð16Þ
For studies based on the use of only two grid refinement levels, a conservative

value of Fs¼ 3 is recommended. For higher-quality grid convergence studies report-
ing solutions on a minimum of three grids, a value of Fs¼ 1.25 is considered to be
sufficiently conservative. However, it can be questioned at this point whether this
is an adequate value for any verification procedure based on three grid levels, regard-
less of the extrapolation strategy adopted or the discretization schemes used. It is
shown in the results section of this work that the use of Fs¼ 1.25 can lead to either
underpredictions of the error band, or to overly conservative predictions, unless
adequate estimations are made of the values of p, in the GRE, or in the choice of
the error terms, in the MORE.

2.3. Verification Strategies Based on the Richardson Extrapolation
Techniques

It has already been introduced in Section 1 that nonmonotonic or oscillatory
convergence can arise in those cases where mixed-order solution convergence occurs.
In such cases, Eq. (4) can provide highly unrealistic values of p(x, t), which would
lead to inaccurate estimations of the GCI. Furthermore, if e32=e21 is negative,
Eq. (4) is undefined, and p(x, t) cannot be estimated. In order to tackle these issues,
various procedures can be adopted. These procedures can be grouped into three dif-
ferent general strategies. The first strategy uses the GRE and the local observed
order of convergence, which is limited to a certain range of realistic values. However,
as is proved in Section 5, this strategy still leaves open issues such as what should be
the bounds of the range, or what strategy should be adopted when values of p(x, t)
outside this range are obtained. Illustrative examples on how these issues have been
addressed by different authors can be found, for instance, in the work of Celik and
Karatekin [9] and of Eça and Hoekstra [15]. In both works, different procedures
were adopted for cases of mixed first- and second-order discretizations. Celik and
Karatekin studied the turbulent flow past a backward-facing step using nonuniform
grid distribution. The solutions were obtained from a code using a hybrid of the
first-order upwind scheme (UDS) and the second-order central differencing scheme
(CDS). In this work, the authors introduced modifications in the way p(x, t) was
calculated, and limited the minimum and maximum values to the theoretical limits,
i.e., 1< p(x, t)< 2. In order to ensure positive values of p(x, t), and therefore error
convergence toward 0 as the grid is refined, the absolute value was applied on the
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right-hand side of Eq. (4). Also, for nonmonotonic convergence where the error
decreases with alternating sign, the sign of the error on the second grid level was
changed. A different strategy was adopted by Eça and Hoekstra, who studied the
2-D, incompressible, turbulent flow on a flat channel. In this case, the continuity
and the momentum equations were discretized second-order, while turbulent
quantities transport equations were discretized first-order. The observed order of
accuracy was estimated with the least-square root technique. Different extrapolation
techniques, encompassing GRE and MORE, in combination with different values of
Fs, were used depending on the values of the observed order of accuracy.

The second of the strategies mentioned above is based on the GRE in combi-
nation with an averaged value of p, calculated at all the domain nodes which report
monotonic convergence. This idea was introduced by Cadafalch et al. [10], who
considered it plausible to expect an overall order of accuracy p bounded by the order
of accuracy of the schemes used. Under such conditions, the numerical solution con-
verges asymptotically, observing the assumptions of the Richardson extrapolation.
Furthermore, the standard deviation of p(x, t), rp, was also calculated. This value
was taken as a measure of the proximity to the asymptotic range, and therefore of
the credibility of the estimates obtained. The authors reported a wide range of
steady-state test cases, encompassing applications on both laminar and turbulent
flows with different configurations, and in a premixed methane=air laminar flat
flame. Both the UDS and the hybrid SMART schemes were used for discretization.
Roache’s Fs¼ 1.25 was applied in all cases. As a conclusion of this work, the authors
stated that although the procedure proved to be reasonably reliable for all the
studied cases, further research was still required to investigate the reliability of the
procedure in other kind of flows. In this sense, the results reported in Section 5 reveal
limitations of the method in the test cases analysed.

Problems associated with the nonasymptotic convergence of solutions can be
partly overcome by the mixed-order Richardson extrapolation based on three grid
levels discussed in Section 2.1.2. This technique, which constitutes the third of the
strategies mentioned above, can deal with nonmonotonic solution convergence,
providing estimates of /E(x, t) in all cases. However, the estimates obtained will only
be accurate if the error is truly dominated exclusively by two terms, and the order of
these terms is correctly assumed. This is the critical point when MORE based on
three grid levels is used. It is not always an easy exercise to decide which terms will
dominate the error. Consider, for example, a numerical solution that has been
obtained using a mixed-order discretization method. Let us also assume that a
hybrid method, such as SMART, which is a bounded scheme that can behave
first-, second-, or third-order, has been used in the discretization of the convective
terms [16]. Finally, assume that discretization of the governing equations has been
completed with a combination of methods of different order, e.g., first-order fully
implicit in time, CDS for the diffusive term, etc. This can be indeed a common case,
representative of common computations, where the dominating error terms are not
known beforehand. Rather, the error will be dominated by different terms depending
on the particular cases being studied and the size of the space and time grids being
used. In a case like this, and lacking previous experience from similar cases, it can be
difficult to decide which terms will dominate the error, or whether the convergence of
the solutions can accurately be described with only two error terms.
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A verification procedure encompassing the three verification strategies
above discussed, viz., the GRE based on local bounded p(x, t), the GRE based of
the overall p, and the three-grid-levels MORE, is presented in Section 3. The
performance of these strategies is further analyzed in the results section.

2.4. Multidimensional Solutions

As introduced in Section 1, the verification of multidimensional CFD solutions
can be addressed with both the simultaneous coordinate refinement (SCR) and
the independent coordinate refinement (ICR) methods. Before getting into further
detail about these methods, it must be noted that within the framework of this
work, the time coordinate is considered in just the same way as any of the space
coordinates. This way, the term ‘‘multidimensional’’ comprises both the time and
space coordinates. On the one hand, SCR is the most common approach for the veri-
fication of steady multidimensional solutions. In this approach, the discretization
grid is simultaneously refined in all coordinate directions using in general the
same grid refinement ratio r. This method therefore provides information on the
convergence of the overall error associated with the discretization of all coordinate
directions (space and time).

On the other hand, in the ICR approach, grid refinement studies are conducted
independently on each independent coordinate direction, while the grid on the rest of
coordinates is kept constant. Consequently, as grid refinement studies are conducted
independently, different techniques can be applied for the estimation of the error
associated with the discretization on each direction, i.e., different values of r, differ-
ent extrapolation techniques, or even alternative methods not based on grid refine-
ment studies. Also, as more grid refinement studies are conducted, and therefore
solutions from a larger number of meshes are used, additional information on
the error convergence associated with the discretization of each independent coordi-
nate is provided. As discussed in Section 5, this additional information has proved to
be useful for the verification of certain solutions where the STD method fails to pro-
vide accurate estimators of the discretization error. As a drawback, the larger num-
ber of solutions required can increase the computational cost associated with this
approach. This cost, however, can be reduced if the coarsest grid level is used on
the independent coordinates that are not being refined. The ICR approach can
become particularly adequate for solutions where mixed-order discretization in
different coordinate directions leads to nonmonotonic error convergence. This can
be the case, for instance, for transient solutions where schemes of different order
are used on both the space and the time discretization, e.g., a first-order, fully
implicit time discretization in combination with a second-order space discretization.
Results for similar cases are discussed in Section 5.

Following Roache’s reasoning based on the multidimensional theory [5], the
overall value of the GCI in ICR studies can be evaluated from the estimates of
the discretization error obtained in each direction. Roache suggests the following
expression to calculate the overall GCI:

GCIðx; tÞ ¼ GCIxðx; tÞ þGCIyðx; tÞ þGCIzðx; tÞ þGCItðx; tÞ ð17Þ
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where the subscript x, y, z, or t refers to the values obtained from the corresponding
coordinate refinement study keeping constant the other coordinates.

Aspects related to the accuracy of Eq. (17) will be discussed in Section 5, where
an alternative expression, based on the addition of discretization errors rather than
the GCI, will be proposed and briefly investigated.

In transient cases, if the ICR approach is applied to study independently the
error convergence associated with the space and the time discretizations, Eq. (17)
can be rewritten as:

GCIðx; tÞ ¼ GCIsðx; tÞ þGCItðx; tÞ ¼ FsjeD;sðx; tÞj þ FsjeD;tðx; tÞj ð18Þ

where subscript s refers to values obtained from SCR studies conducted on the space
coordinates while keeping the time grid constant.

3. VERIFICATION PROCEDURE

The procedure presented here has been developed as an extension of the
postprocessing tool for the verification of steady-state solutions reported by
Cadafalch et al. [10]. The tool is based on the GRE and the global observed value
of p, and provides information on both the local and global estimates of the
observed order of accuracy and the GCI. Initially, all solutions are interpolated
onto a common postprocessing mesh. Nodes of this mesh are then classified into
Richardson, oscillatory, and converged nodes, depending on the local observed
convergence behavior. Local estimators of p are then calculated at all the
Richardson nodes, and of the GCI at both Richardson and converged nodes.
This tool, based on SCR studies, can be applied to the verification of transient
solutions by simply considering the time coordinate in the same way as the rest
of the space coordinates. The present procedure includes additional grid extrapol-
ation techniques, namely, the GRE based on the local bounded p, the GRE based
on the global p, and the MORE. Furthermore, the procedure has also been
further extended to ICR studies.

The procedure described below is divided into two parts. Part I applies to
both SCR and ICR studies. For the latter, the procedure must be carried out
for each independent coordinate direction. Information on the convergence asso-
ciated with the discretization of each of these directions is provided. Part II
applies exclusively to ICR studies, and provides the overall values of both the
local and the global GCI.

Part I (For SCR and ICR Studies)

Step 1. Interpolation at the post-processing mesh. All three solutions are
interpolated into the nodes of the grid where the estimators are calculated (the
postprocessing mesh), typically the coarsest grid. Special care is taken to avoid the
introduction of additional uncertainties due to the interpolation process by using
third-order-accurate Lagrangian interpolation.
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Step 2. Classification of the calculation nodes. All the calculation nodes
of the postprocessing mesh are classified into Richardson, converged, or oscillatory
nodes, according to the following definitions,

Richardson node: e�32ðx; tÞ � e�21ðx; tÞ > C0

Converged node: je�32ðx; tÞ � e�21ðx; tÞj � C0

Oscillatory node: e�32ðx; tÞ � e�21ðx; tÞ < �C0

where the superscript � indicates that the solutions have been normalized by means
of the maximum absolute value of /(x, t), and C0 is a positive coefficient approach-
ing 0. As in the work by Cadafalch et al., C0¼ 10�30 is used in this work, where com-
putations have also been performed using double-precision real numbers. It must be
noted that the definition of Richardson nodes in this classification coincides with
that of nodes showing monotonic error convergence, rather than those in which
the asymptotic convergence requirement of the GRE is fulfilled.

Step 3. Calculation of the local observed order of accuracy, p(x,
t). Local values of the observed order of accuracy p(x, t) are calculated on Richard-
son nodes from Eq (4).

Step 4. Calculation of the global observed order of accuracy, p. The glo-
bal observed order of accuracy is evaluated by arithmetic averaging of all values of
the observed p(x, t) at the Richardson nodes. The standard deviation of the local
values from the mean values, rp, is also calculated.

Step 5. Calculation of the local GCI. The values of GCI( x, t) are calculated
for the solution obtained on the fine grid from Eq. (16) using a safety factor
Fs¼ 1.25. Depending on the extrapolation technique adopted for the estimation of
/E(x, t), the following methods have been considered.

STD (standard) method. The local GCI is calculated at all the Richardson and con-
verged nodes. At the Richardson nodes, GCI(x, t) is evaluated using the
extrapolated value obtained from Eq. (5), assuming p(x, t) to be equal to the
global observed order of accuracy, p, calculated at Step 4. At the converged
nodes, GCI(x, t) is assumed to be 0.

LP methods. This is similar to the STD method, except for the estimation of p(x, t).
This value is now calculated from Eq. (4) if it is contained within a certain
range, pL� p(x, t)� pU. Otherwise, the values of the upper and lower bounds
of this range, pU and pL, are used, depending on whether p(x, t) sits above
or below this range, respectively. Depending on the values of pL and pU, three
different variants are considered, LP12, LP13, and LP23, which are character-
ized by bounds 1.0� p(x, t)� 2.0, 1.0� p(x, t)� 3.0, and 2.0� p(x, t)� 3.0,
respectively.

MO methods. The local GCI is calculated from the mixed-order Richardson extra-
polation (MORE) at all the postprocessing mesh nodes. Two different methods
have been considered. Method MO12 is based on the mixed first- and
second-order extrapolation, and estimates /E(x, t) from Eq. (13). Method
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MO23 is based on the mixed second- and third-order extrapolation, and
estimates /E(x, t) from Eq. (14).

Step 6. Calculation of the global GCI. The global value of the GCI is
estimated by volume-weighted averaging of the local values of the GCI. The global
GCI is calculated from local values at the Richardson and the converged nodes for
the STD and the LP methods. For the MO methods, the global GCI is calculated
from local values at all the postprocessing mesh nodes. The standard deviation of
the GCI can also be calculated.

Part II (Only for ICR Studies)

Step 1. Calculation of the local values of the overall GCI. These values
are calculated from Eq. (17) at all nodes of the postprocessing mesh where the local
GCI values could be estimated according to Step 5 of Part I for all the independent
coordinate directions.

Step 2. Calculation of the global value of the overall GCI. This value is
calculated as

GCI ¼ GCIx þGCIy þGCIz þGCIt ð19Þ

where the terms on the right-hand side of the equation correspond to the global GCI
values (see Step 6 of Part I) obtained in the respective coordinate directions (x, y, z, t).
The idea behind this expression is just the same as in Eq. 17 but applied to the global
values of the GCI rather than to the local ones.

It must be noted that, alternatively, the global value of the overall GCI (Part II,
Step 2) could also have been calculated based on volume averaging of the local
values of the overall GCI. This option, however, has a practical disadvantage. If
GRE is used for extrapolation in different coordinate directions, the number
of nodes where the local GCI can be calculated for each one of the independent
coordinates can be, in practice, quite reduced. As a result, in general, less reliable
global values of the overall GCI can be obtained.

4. TEST CASES

The following test cases have been selected to assess the accuracy and the con-
servativeness of the verification methods discussed in this work. The first case is
based on the method of manufactured solutions (MMS) [17]. This method forces
the governing equations to provide a certain manufactured analytical solution,
regardless of its physical realism, by including the required additional source terms.
The accuracy and the conservativeness of the estimators obtained from the different
verification methods being studied can therefore be assessed by simply comparison
with the values of the exact error. In the second and third cases, the fluid flows
for two different piston–cylinder configurations are studied.

The solutions of all three test cases have been computed using the finite-volume
method based on staggered arrangement of variables. The segregated SIMPLEC [18]
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algorithm has been used to deal with the pressure–velocity coupling. The calculation
domains have been discretized using Cartesian moving grids. The hybrid SMART
scheme is used in the discretization of the convective term, while CDS is used for
the diffusive term, and formally second-order methods are used for the remaining
terms. Both first- (1OT) and second-order (2OT) fully implicit discretizations have
been used for time discretization. Satisfaction of the discrete space conservation
law has been enforced. The sets of grids used in the discretization of each case are
tabulated in Table 1. To avoid confussion, it must be noted that, contrary to criteria
followed in Section 2.1, the grid indices in Table 1 increase as the grid is refined.
A well-verified code, DPC [10], has been used to perform the computation of the
solutions of all three test cases. Let test case A serve as an example of the thorough
verification testing that has been conducted on this code.

4.1. Case A: Manufactured Solution

The MMS is applied to the axisymmetric, incompressible continuity and
momentum equations. The proposed manufactured solution is

vr ¼ V0 sinðrÞ sinðzÞ sinðtÞ ð20Þ

vz ¼ V0
cosðzÞ sinðtÞ½sinðrÞ þ r cosðrÞ�

r
ð21Þ

p ¼ r3 þ z3 ð22Þ

where r and z are the radial and axial components of the position vector, respect-
ively; t is the time; vr and vz are the radial and axial components of the velocity
vector; p is pressure; and V0 is a reference velocity equal to 1. The equations are
solved in the domain D¼ {(r, z) j r2 [p, 2p], z2 [0, 2p]} from the initial instant
t0¼ 0 to the final instant tf¼ 6. The calculation domain is discretized using moving
grids with fixed boundaries. The motion of the mesh is achieved by varying the con-
centration of the nodes toward the boundaries in each direction. The grid concen-
tration is controlled by the hyperbolic tangent concentration function reported by

Table 1. Space and time discretization grids used in the test cases

Cases A and C Case B

Space grid Time grid Space grid Time grid

Level Size Level Size Level Size Level Size

m1 6	 6 t1 60 m1 10	 20 t1 204

m2 12	 12 t2 120 m2 19	 41 t2 408

m3 24	 24 t3 240 m3 38	 82 t3 816

m4 48	 48 t4 480 m4 76	 164 t4 1,632

m5 96	 96 t5 960 m5 152	 328 t5 3,264

m6 192	 192 t6 1920 m6 304	 656 t6 6,528
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Pérez-Segarra et al. [19], using a grid concentration factor c¼ sin(t). A uniform grid
has been used for time discretization. A Reynolds number (Re¼ qV0p=m) of 100p
has been used. Dirichlet boundary conditions are determined from the manufactured
solution. As an illustrative example of the manufactured solution studied, a plot of
the stream traces at the instant t=tf¼ 0.75 is given in Figure 1.

4.2. Case B: Incompressible Flow on a Piston–Cylinder Assembly

The incompressible, laminar, axisymmetric flow on the piston–cylinder
assembly proposed by Durst et al. [20, 21] is analyzed. Figure 2 shows the geometry
of the configuration under study. Flow starts from rest at t¼ 0, and the piston sud-
denly accelerates to its final velocity Vp. The characteristic dimensions of the domain
sketched in Figure 2 are li¼ 100mm, di¼ 19mm, and dp¼ 45mm. The initial piston
clearance is 40mm at t¼ 0, and moves at VP¼ 11.9mm=s during 2.04 s. The
Reynolds number, defined as Re¼ qVPdi=m, is 98. For the inlet boundary condition,
the axial velocity has been assumed to be uniform, and the radial velocity to be zero.
Nonslip boundary condition has been considered in the walls of the channel, the
cylinder, and the piston head. The domain has been divided into the three different
blocks shown in Figure 2 and a uniform grid has been used for the discretization
of each block. Uniform time steps have been employed in time coordinate
discretization.

4.3. Case C: Gas Spring

The two-dimensional, compressible flow in a closed piston–cylinder configur-
ation is studied. Figure 3 sketches the geometry of the calculation domain, where

Figure 1. Case A. Manufactured solution. Stream traces at time instant t=tf¼ 0.75.

60 C. OROZCO ET AL.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
o
n
s
o
r
c
i
 
d
e
 
B
i
b
l
i
o
t
e
q
u
e
s
 
U
n
i
v
e
r
s
i
t
a
r
i
e
s
 
d
e
 
C
a
t
a
l
u
n
y
a
]
 
A
t
:
 
1
4
:
4
0
 
2
5
 
J
u
n
e
 
2
0
1
0



the piston diameter and stroke are dp¼ 50.80mm and L¼ 76.2mm, respectively.
The piston moves at 10 rev=min, following a sinusoidal law, with a compression
ratio rP¼ 2. One cycle of the movement of the piston is studied. Perfect gas

Figure 3. Case C. Gas spring.

Figure 2. Case B. Incompressible flow on a piston–cylinder assembly.
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assumption is made, with eRR ¼ 2;077:0 J=kgK and cp¼ 5,192.50 J=kgK. Transport
thermodynamic properties are m¼ 1.99	 10�5 kg=ms and k¼ 0.152W=mK. Flow
starts from rest conditions at 294K and 101,325 Pa. Pressure, dissipation energy,
and conduction heat terms have been evaluated in the thermal energy equation.
A constant temperature of 294K has been set at all walls of the domain, where
nonslip boundary condition has been applied. Uniform time and space grids have
been used.

5. RESULTS

This section tackles the assessment of the different verification methods
considered in the procedure described in Section 3. All the methods investigated
are summarized in Table 2, together with the nomenclature used in this section
to refer to each method. In order to minimize the effects of the solution
interpolation in Step 1 of the verification procedure, the coarsest grid of each
triplet has been used as postprocessing mesh. The values of the percentage of
Richardson nodes (Rn), the global observed p, and the standard deviation (rp)
of the local observed p(x, t) have been tabulated for each grid triplet studied.
Normalized values of the discretization error and the grid convergence index,
e�D and GCI�, are provided as percentage of the reference values described in
each test case. In ICR studies, the STD method has been used on both the space
(HREF) and time (TREF) grid refinement studies. In these studies, the finest
grid level of each grid triplet is used in the independent coordinate; e.g., on
the sixth grid level (m6t6), the m6t4, m6t5, m6t6 triplet is used in TREF studies,
and the m4t6, m5t6, m6t6 triplet in HREF studies. Finally, in the tables of results
provided, the grid index refers to the mesh levels of the coordinate being refined.
That is, grid indices 4=5=6, in SCR studies, refer to grids levels m4t4, m5t5, and
m6t6, while, in ICR studies, these refer to m4t6, m5t6, m6t6 for HREF studies,
and to m6t4, m6t5, m6t6 for TREF studies.

Table 2. Acronyms corresponding to the different verification methods

Description Acronym

Simultaneous space-and-time-coordinates refinement studies (SCR)

GRE based on the global p (standard method) STD

GRE based on the local p (LP methods)

1� p� 2 PL12

1� p� 3 PL13

2� p� 3 PL23

Mixed-order Richardson extrapolation (MORE method)

First- and second-order MO12

Second- and third-order MO23

Independent coordinate refinement studies (ICR)

HREF and TREF studies based on STD method ICR-STD

HREF and TREF refer to grid refinement in space and time coordinates, respectively.
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5.1. Case A

Information on the global postprocessing estimators is given in Table 3 and in
Figures 4–6, for both 1OT and 2OT discretization methods. The reported values of
the GCI� and e�D have been normalized using the velocity V0 as reference value.
Results show that high values of Rn have been obtained in all the tested cases, where
values equal to or higher than 90% are reported on the finest grid level. These values
are particularly high for TREF studies, where Rn reaches 100% of the calculation
nodes. Under these conditions the global estimators p, rp, and the GCI� are con-
sidered to be representative of the global convergence of the solutions under analysis.

The results corresponding to the 1OT scheme clearly depict the conditions
under which oscillatory convergence caused by mixed-order discretization on
different coordinate directions can arise. On the one hand, different-order error
convergence is observed from HREF and TREF studies, while HREF suggests a
second-order trend, specially for vz, TREF reports p¼ 1.0 and fairly low values
of rp for both components of the velocity. On the other hand, although not
provided, the GCI values provided by HREF and TREF studies suggest that
the overall error is dominated by both the space and time discretizations. Under
such conditions of mixed-order convergence, SCR studies reveal a high dependence
of p on the grid refinement level, showing neither a clear first- nor second-order
trend. Additionally, the differences between the values of p and pr reported for
1OT in Table 3 advance the possibility of methods based on GRE being poorly
accurate, therefore increasing the risk of underestimating the GCI.

Under such circumstances, despite the high number of Richardson nodes and
that values of p within the expected limits have been obtained, the STD method fails

Table 3. Case A: Manufactured solution, Richardson nodes, global p, and rp

1OT 2OT

Radial velocity Axial velocity Radial velocity Axial velocity

Grid triplet Rn (%) p=pr rp Rn (%) p=pr rp Rn (%) p=pr rp Rn (%) p=pr rp

SCR 1=2=3 81 1.7=1.6 1.3 84 1.3=1.5 1.5 79 1.7=1.8 1.5 83 1.4 =2.0 1.5

2=3=4 83 1.7=1.5 1.6 90 1.8=1.3 1.2 82 1.9=2.2 1.7 89 2.0=2.0 1.2

3=4=5 85 1.9=1.2 1.4 91 1.6=1.1 1.1 87 2.3=2.2 1.4 93 2.0=2.0 1.0

4=5=6 90 1.4=1.1 1.2 93 1.4=1.1 1.0 93 2.2=2.1 1.0 96 2.0=2.0 0.7

HREF 1=2=3 79 1.8=— 1.5 83 1.5=— 1.4 78 1.8=— 1.6 83 1.4=— 1.4

2=3=4 82 2.0=— 1.7 88 2.0=— 1.2 82 1.9=— 1.7 88 2.0=— 1.2

3=4=5 87 2.3=— 1.4 92 2.0=— 1.0 87 2.3=— 1.4 92 2.0=— 1.0

4=5=6 93 2.2=— 1.0 96 2.0=— 0.7 93 2.2=— 1.0 96 2.0=— 0.7

TREF 1=2=3 98 1.0=— 0.5 96 1.0=— 0.5 97 2.0=— 0.7 96 2.0=— 0.7

2=3=4 99 1.0=— 0.4 99 1.0=— 0.4 98 2.0=— 0.5 98 2.0=— 0.5

3=4=5 99 1.0=— 0.3 99 1.0=— 0.3 98 2.0=— 0.3 99 2.0=— 0.3

4=5=6 100 1.0=— 0.2 100 1.0=— 0.2 100 2.0=— 0.2 100 2.0=— 0.2

For SCR studies, global values of pr are also provided. 1OT and 2OT refer to first- and second-order

time discretization respectively. For grid triplets nomenclature, refer to introduction to Section 4. Values

of p and pr are calculated based on the use of the extrapolated and the exact solutions, respectively (Section

2.1.1).
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to provide conservative estimates of the GCI�. Figure 4 shows that the GCI� under-
estimates the exact discretization error in five of the eight plotted values, including
the four values obtained on the two finest grid levels. The highest underconservative
deviation of the estimated eD from the exact value has been obtained for vr on grid
level m5t5, where a discrepancy of approximately 50% is observed. Contrarily, meth-
ods LP12, LP13, and MO12 report conservative estimates of the GCI� in all solu-
tions, noticeably overpredicting the discretization error in the coarsest grid level,
and becoming more accurate as the grid is refined. Among these methods, MO12
also provides conservative estimates of e�D. Consequently, a value of Fs¼ 1.0 leads
to more accurate results, without the loss of the required conservativeness. The
two remaining SCR methods, LP23 and MO23, show a trend toward underconser-
vative and fairly inaccurate results as the grid is refined. In fact, this is a predictable
behavior, as first-order terms gain weight as the grid is refined, while MO23 simply
neglects these terms, and LP23 assumes at least second-order convergence. Method
MO23, however, still reports conservative and reasonably accurate estimates in the

Figure 4. Case A. Manufactured solution. First-order in time discretization (1OT). Estimates of the GCI�

and comparison with the exact discretizaton error (e�D).
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coarsest grid level, where the weight of the first-order terms is lower, and method
MO12 substantially overpredicts the error.

The results reported from the ICR-STD method display a similar trend to
that of the MO12 method. Both methods provide conservative estimates of the
GCI�, overly conservative on the coarsest grids and fairly accurate on the finest
levels. The conservative behavior of the ICR-STD method can be attributed to
the way that Eq. (18) sums the space and time discretization errors to evaluate
the overall GCI. This point is further illustrated in Figure 5. This figure displays
different profiles of local values of eD and the GCI obtained for vz at time instant
t=tf¼ 0.75 and section z=2p¼ 0.42. Here, to obtain continuous profiles of these
estimators, the MO23 and MO12 methods have been respectively applied on the
space and time directions. It can be observed that HREF and TREF studies have
provided in this case estimates of the local eD of different sign on most points of
the section. In such cases, the errors associated with the discretization on both
coordinates partly cancels. However, this effect is not reproduced by Roache’s
equation (18), as the absolute-value operator is independently applied to eD,s(x, t)
and eD,t(x, t). Consequently, Eq. (18) tends to provide conservative estimates of the
GCI, as can be observed in the plot. Alternatively to the use of Eq. (18), the GCI
could be evaluated from

GCIðx; tÞ ¼ FsjeD;sðx; tÞ þ eD;tðx; tÞj ð23Þ

which allows errors cancellation by applying instead the absolute-value operator to
the sum of errors. The results obtained from this expression are also plotted in

Figure 5. Case A. Manufactured solution. First-order in time discretization (1OT). Grid level 5. Local

value of e�D and GCI� corresponding to the axial velocity component at time instant t=tf¼ 0.75 and section

z=2p¼ 0.42. Legend: (eD-HREF-MO23, eD-TREF-MO12) eD values from HREF based on MO23, and

from TREF studies based on MO12; (GCI-ICR-MO, GCI-ICR2-MO) GCI values from Eqs. (18) and

(23), respectively.
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Figure 5. It can be observed that Eq. (23) leads to substantially more accurate and
still conservative enough results. Nevertheless, it must be borne in mind that,
although this expression achieves greater accuracy in the estimation of the GCI,
it also leads to less conservative results, increasing the risk of underconservative
estimates of the GCI. At this point, a deeper investigation into the performance
of Eq. (23) for verification purposes, and on the adequate value of Fs, is required.
However, this task falls outside the scope of this study, and is left for future work.

The results obtained using the 2OT scheme differ substantially from those
described above for 1OT. In this case, the postprocessing estimators reported in
Table 3 show that the values of p reported from SCR studies display a second-order
trend, suggesting vz convergence closer to the asymptotic range. In addition, the ICR
results suggest that the overall error is dominated mainly by the space discretization.
Very similar values of Rn, p, and rp have therefore been reported from both the SCR
and HREF studies. Under these circumstances, the performance of the different
methods is substantially different. Figure 6 shows that while, in general, methods

Figure 6. Case A. Manufactured solution. Second-order in time discretization (2OT). Estimates of the

GCI� and comparison with exact the estimators of the discretization error (e�D).
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STD, MO23, and LP23 reported underconservative and inaccurate results for 1OT,
these methods provide conservative estimates of the GCI� in all grid levels, and fairly
accurate estimates on the finest one, for 2OT. Among these methods, MO23 also
provided conservative estimates of the discretization error. Therefore, Fs¼ 1 leads
to a narrower error band, which still contains the exact value of e�D. The ICR-STD
method provided similar results to the STD method, as the error is dominated
mostly by the space discretization. Contrarily, the LP12, LP13, and MO12, methods
though always on the conservative side, reported less accurate estimates of e�D. These
estimates are particularly inaccurate for vr, as solutions seem to be converging
farther from the asymptotic range. Contrarily, vz seems to approach the
second-order asymptotic convergence range as the grid is refined. Under these con-
ditions, estimates from all methods also become more accurate on the finest grids,
therefore reducing the discrepancies among them. A maximum discrepancy of 17%
is observed in the finest grid level, where the lowest value of rp of all cases is also
reported.

These results highlight that the formal order of accuracy of the discretization
method is not sufficient information to select the most adequate limits of p to be used
in the LP methods, or error terms to be considered in the MO methods. Additional
information on how the solution is converging on the grid sizes being used is
therefore also required. Such information can be provided by the global observed
p. However, the limitations of this estimator must be borne in mind in cases
of mixed-order convergence. Such limitations can be partially overcome by the
information obtained from HREF and TREF studies in those cases where the
mixed-order convergence is due to the different-order convergence of the space
and time discretization errors.

5.2. Case B

The postprocessing estimators of the observed order of accuracy obtained from
SCR studies for both 1OT and 2OT schemes are reported in Table 4. The piston
velocity VP has been used for normalization of the grid convergence index GCI�.
Values of Rn higher than 70% have been obtained in all cases, and higher than
80% on the finest grid levels. Values of p reported from SCR studies show nona-
symptotic error convergence in both the 1OT and the 2OT cases. ICR studies reveal

Table 4. Case B: incompressible flow on a piston–cylinder assembly, Richardson nodes, global p, and rp

obtained from SCR studies

1OT 2OT

Radial velocity Axial velocity Radial velocity Axial velocity

Grid triplet Rn (%) p rp Rn (%) p rp Rn (%) p rp Rn (%) p rp

1=2=3 72 1.0 1.7 80 1.2 1.5 72 1.0 1.8 79 1.2 1.6

2=3=4 74 1.6 1.7 71 1.9 1.6 72 1.7 1.9 70 2.1 1.7

3=4=5 84 1.3 1.4 87 1.6 1.4 82 1.5 1.6 84 1.7 1.5

4=5=6 86 1.6 1.3 83 1.6 1.3 82 1.7 1.5 80 1.7 1.4
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that such behavior is at least partially caused by the space discretization, which also
converges nonasymptotically and has a similar or greater weight than the time dis-
cretization in all the solutions. Additionally, these results reported high values of
rp for all cases. Under such conditions of nonasymptotic error convergence, large
discrepancies are observed among the estimates provided by the different methods.

In the 1OT case, ICR studies suggest that the total discretization error tends
to be controlled by both the space and time discretizations as the grid is refined,
with TREF studies showing first-order convergence with low values of rp. It there-
fore seems reasonable to exclude methods MO23 and LP23 as adequate estimators
of the GCI, as first-order error terms are known to have a significant weight in the
total discretization error. As illustrated for vz in Figure 7, results have shown that
MO12 reports again the most conservative behavior among all methods. STD, on
the other hand, provided less conservative estimates of the GCI� in all grid levels
but the coarsest one. As shown in Figure 7, the maximum discrepancy between the
two methods is reported for vz on grid level m4t4, where the GCI� provided by
MO12 almost doubles the value provided by STD. These results, in line with those
reported for Case A with 1OT, highlight the risk of STD underpredicting the GCI
even in cases with a high number of Richardson nodes and where the observed
p lies within the expected limits. Method LP12 reported very similar results to
LP13, providing estimates of the GCI up 44% higher than STD. Finally, ICR-STD
behaved very similar to the STD method on the coarsest grid levels, tending to
provide more conservative estimates of the GCI as the grid is refined and, as
suggested by ICR studies, both the space and time discretizations have a similar
weight on the overall error. A maximum difference with the STD method of about
a 33% is observed for vz on the finest grid level.

In the 2OT case, ICR studies reveal that the total discretization error is
basically controlled by the space discretization. Consequently, methods MO23 and

Figure 7. Case B. Incompressible flow on a piston–cylinder assembly. First-order in time discretization

(1OT). Axial velocity component. Estimation of the GCI�.
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LP23 cannot be excluded as adequate techniques for the estimation of the GCI, since
no clear evidence of first-order terms controlling the discretization error exists.
Although not shown, similar to the 1OT case, method MO12 provided the most
conservative estimates of the GCI in all grid levels except for vz on the coarsest grid.
This method provided estimates of the error ranging from 165% to 265% higher than
LP23, which provided less conservative values of the GCI in all grid levels.

5.3. Case C

The estimators of the observed order of accuracy obtained from SCR studies
are reported in Table 5. The GCI values of both velocity and temperature presented
in Figures 8 and 9 have been normalized in terms of the maximum piston velocity
and the initial gas temperature, respectively. SCR studies report high values of Rn,
especially for the finest grid levels, where Rn> 90% is observed. HREF studies sug-
gest, on the one hand, space discretization tending toward second-order convergence
for both velocity components, and second-order convergence for the temperature.
On the other hand, TREF studies shows a clear first- and second-order convergence
for schemes 1OT and 2OT, respectively. In all cases, TREF studies reported very low
values of rp.

For the 1OT scheme, ICR studies reveal discretization error being controlled
by both the space and time discretizations for both velocity components, with time
discretization tending to dominate the error on the finest mesh levels for vz. Conse-
quently, as first-order terms from the time discretization cannot be neglected, meth-
ods LP23 and MO23 have not been considered. In line with the results obtained
previously in cases of mixed-order convergence, although not shown, the results
obtained for vr from the remaining methods reveal noticeable discrepancies between
the GCI values provided by MO12 and the other methods. The maximum discrep-
ancy is observed between methods MO12 and both STD and ICR on grid level
m5t5, where MO12 provides a value of the GCI about 95% higher. In the case of
vr, as shown in Figure 8, these discrepancies become substantially smaller on the fin-
est grid levels, as the time discretization tends to dominate the overall discretization
error. Additionally, lower values of rp have also been reported. For this variable,

Table 5. Case C: Gas spring, Richardson nodes, global p, and rp obtained from SCR studies

Radial velocity Axial velocity Temperature

Grid triplet Rn (%) p rp Rn (%) p rp Rn (%) p rp

1OT

1=2=3 69 1.3 1.7 85 1.0 1.4 84 1.5 1.4

2=3=4 80 1.2 1.4 90 1.0 1.1 92 1.4 1.2

3=4=5 90 1.5 1.2 95 1.1 0.8 95 1.2 1.0

4=5=6 93 1.5 1.1 96 1.1 0.7 96 1.1 0.9

2OT

1=2=3 69 1.5 1.6 83 1.7 1.8 79 2.2 1.6

2=3=4 82 1.5 1.4 89 1.8 1.3 92 2.1 1.3

3=4=5 94 1.9 1.0 94 1.9 0.8 96 2.1 0.9

4=5=6 96 2.0 0.8 97 1.9 0.7 98 2.1 0.6
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MO12 predicts a value of the GCI 25% higher than ICR-STD in the finest grid level,
which shows less conservative behavior on all grid levels, and, contrary to what was
observed in previous cases, provides results less conservative than the STD method.

Although results for the 2OT scheme are not provided, ICR studies have
shown that the overall error is clearly controlled by the space discretization for both
velocity components, with HREF studies suggesting values of the GCI� 50 to 400
times higher than TREF. Despite the observed second-order trend for both vari-
ables, the high discrepancies reported among all methods also suggest mixed-order

Figure 9. Case C. Gas spring. Temperature. Second-order in time discretization (2OT). Estimation of the

GCI�.

Figure 8. Case C. Gas spring. Axial velocity. First-order in time discretization (1OT). Estimation of the

GCI�.
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convergence of the space discretization. Under these conditions, the most conserva-
tive results are, in general, provided by MO12, which reports values more than 200%
higher than those obtained from LP23, which provides less conservative estimations
of the GCI in all grid levels.

Finally, ICR studies conducted for temperature suggest error tending to be
controlled by the time discretization for 1OT and the space discretization for
2OT. In both cases, estimations of the GCI� obtained from both HREF and
TREF studies, although not provided, suggested that the errors associated with
the dominating discretizations are about 20 times higher on the finest grid level.
As in previous cases, methods LP23 and MO23 have been ruled out for the
1OT. Results revealed that although noticeable discrepancies are observed on the
coarsest grid levels, all methods tend to provide similar results as the grid is
refined. This behavior has been illustrated in Figure 9 for the 2OT scheme. These
results suggest that the error approaches the asymptotic range of convergence on
the finest grid level and, consequently, the accuracy of all methods also increases
with grid refinement.

6. CONCLUSIONS

This work has addressed the verification of multidimensional and transient
numerical solutions based on grid refinement studies and the Richardson extrapol-
ation techniques. Different verification methods based on alternative extrapolation
strategies, and on both the simultaneous and the independent refinement of coordi-
nates, have been investigated. Extrapolation strategies studied encompass the gener-
alized Richardson extrapolation (GRE) based on both the local and the global
observed order of convergence, and the mixed-order Richardson extrapolation
(MORE). Discussion has been included of the performance of each method for
the verification of a manufactured solution (MMS), and both incompressible and
compressible flows on different piston–cylinder configurations.

The results reveal that none of the studied methods performed equally satis-
factorily in all tested cases. The MMS case showed that while method STD pro-
vided conservative estimates of the GCI in all grid levels and fairly accurate
ones on the finest one for method 2OT, it failed to provide conservative estimates
of the GCI in five of eight values assessed for the 1OT case, despite the high
percentage of Richardson nodes and that values of p within the expected limits
were obtained.

In general, MO12 showed the most conservative behavior of all the methods
investigated in all tested cases. This method always provided conservative predic-
tions of the discretization error in Case A, where the exact error was available by
means of a manufactured solution. Therefore, a value of Fs¼ 1.0 would have led
in this case to more accurate results, without the loss of the required conservativeness
of the method. Lacking the exact solution for Cases B and C, it cannot be confirmed
whether this statement also holds for these cases. However, the more conservative
estimates of the GCI provided by method MO12, when compared with the results
obtained from other methods, seem to suggest that MO12 might require values of
Fs less conservative than those required by other methods. This point, however,
requires further evidence and will be the subject of future work.
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It has also been highlighted that the formal order of accuracy of the discretiza-
tion method is not sufficient information to select the most adequate limits of p to be
used in the LP methods, or the error terms to be considered in the MO methods.
Additional information on how the solution is converging is therefore also required.
Such information can in some cases be provided by the global observed p. However,
the limitations of this estimator in cases of mixed-order convergence must be borne
in mind. These limitations can be partially overcome by the information obtained
from ICR studies in cases of mixed-order convergence originated by the
different-order discretization of the space and time coordinates. An alternative
expression to that proposed by Roache for the estimation of the overall value of
the GCI in ICR studies has also been briefly discussed and assessed. Despite the
satisfactory results presented, a deeper investigation into its performance for
verification purposes and into the adequate value of Fs is required.

Finally, different cases have been identified where the estimated value of the
global p systematically suggests second-order convergence in consecutive grid levels,
which might be interpreted as convergence approaching the second-order asymptotic
limit. However, the high discrepancies obtained in some cases among solutions
provided from different methods, e.g., MO12 and MO23, suggest that solution might
be actually converging far from second-order asymptotic range. The correct use of p
as a representative indicator of the real solution convergence on which the most
adequate verification techniques can be selected, and its dependence on the observed
value of rp, therefore needs to be investigated further.
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