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1 Introduction

A recent paper by Xing and Stern [1] provides additional per-
formance data of interest on Verification of Calculations, but is
misleading in some important respects. Five methods, all starting
from Richardson Extrapolation, are compared: three are based on
variants of my Grid Convergence Index method [2–6], and two
are based on the authors’ work: the earlier “CF method” and the
latest “FS method.”

(1) The method referred to as GCI2 is successful but its source
is cited as a “private communication” from myself (their Ref.
[16]). What they refer to as GCI2 is essentially the GCI method,
as I have described and discussed and evaluated at length, Refs.
[2–6]. This is the method that, as the authors say [1], “is widely
used and recommended by ASME and AIAA” citing [6,7]. I shall
refer to it herein as the “real GCI method” for reasons soon to be
apparent. The equivalence is obscured because the authors [1]
have written their Eq. (12) defining the method using their own ra-
tio term CF, which obscures the simplicity of the original and
makes it appear that the factor of safety varies continuously1 with
observed order of convergence pRE; see Fig. 3 of Ref. [1]. This is
merely an artifact of Eq. (12) in which their factor of safety FS is
defined2 in terms of an error estimate based on observed pRE

rather than on the p actually used. As a result, the “factor of safe-
ty” FS in Ref. [1] is not always the same concept as the “factor of
safety” FS in Refs. [2–6].

This leaves the question of what are the methods called “GCI”
and “GCI1” by the authors. The answer is that I consider these to
be misapplications of the GCI formulas, and therefore misrepre-
sentations of the GCI method.

(2) For specificity, I will change notation and refer to the
method of their Eq. (10) as GCI0, not as “GCI” since I claim it is
not the real GCI method. This Eq. (10) is written in terms of an
error estimate based on the “observed” [2–6] or “estimated” [1]
order of convergence pRE.

However, the authors correctly indicate in the text following
that this is possible only if three grids have been used to calculate
a pRE, in which case the recommended Factor of Safety FS¼ 1.25.

If only two grids have been used, pRE in Eq. (10) is replaced by a
theoretical value pth (e.g., pth¼ 2 for a nominally second-order
method) and a more conservative value FS¼ 3 is recommended
[2–6]. This would indeed agree with my GCI method [2–6] in
good applications. The trouble is that the authors have applied this
regardless of the reasonableness of the estimated pRE. This is con-
trary to the discussions in Ref. [2], which discussions I claim are
part of the real “GCI method” as contrasted with simplistic appli-
cation of the formula.

Exactly what constitutes a reasonable value was not defined in
my work [2–6] and I would not take issue with (say) a 5% differ-
ence between pRE and pth, e.g., using an observed pRE¼ 2.1 for a
nominally second-order method. (Although it should be obvious
that the conservative approach would be to use the minimum of
pRE and pth, I would not claim that this was a misapplication of
the GCI method.) However, the authors [1] have applied the GCI0

formula using observed pRE� theoretical pth, which is imprudent
and not recommended [2–6] no matter what the value of Fs. This
point was conveyed to the authors of Ref. [1] in their Ref. [16],
the private communication from myself. (I am glad to make this
communication, cited here as Ref. [8], available to any interested
party.)

Using the authors’ notation P¼ pRE/pth the authors have
claimed rational estimates of uncertainty from studies with P as
high as 6.01 for the new ship hydrodynamics problem (see Table
7, second line). Since the numerical method used is nominally
second order, this indicates an observed order pRE¼ 12.02, the use
of which would be ridiculous. Another instance is the third row
entry in Table 6 [1] for the grid triplet (4,5,6) showing P¼ 0.08.
These are pretty strong hints that something is wrong. There is no
sense in performing a grid convergence study and then ignoring
the results. No excuses of the computing difficulties in industrial
applications can justify an attempt to obtain a rational estimate of
uncertainty from such meaningless corrupted studies. To so
attempt is to give merit to meritless results. I can only describe
this as a misapplication of the GCI formula, not as a poor result
for the real GCI method.

(3) The second method considered in Ref. [1] is GCI1 based on
Eq. (11). The appearance of the CF term in the equation serves to
exchange the error estimate based on observed pRE to one based
on theoretical pth for the condition P >1, i.e., for pRE> pth. This is
exactly what is recommended above, and is good conservative
practice. However, the Eq. (11) uses Fs¼ 1.25 in either case. This
does not make sense. The GCI1 method as described uses three
grid solutions to evaluate an observed pRE, but if this value is too
large, the method reverts to using exactly the error estimator that
would have been used for only two-grid studies but with the non-
conservative value Fs¼ 1.25 instead of the recommended Fs¼ 3.
Thus, the authors did use the correct factor of safety Fs¼ 3 as rec-
ommended [2�6] for 2 grid studies but they used only Fs¼ 1.25
for 3-grid studies in which the observed order of convergence pRE

was not at least approximately consistent with theory.
The authors then concluded from their tests that “These facts

suggest that the use of the GCI1 method is closer to a 68% than a
95% confidence level.” This is a misleading statement since the
conclusion follows from using Fs¼ 1.25 and applying it to a data-
set from [9] designed with “intentional choice of grid studies with
oscillations in both exponent p and output quantity” [9]3 (Ref. 3).
The point of such studies as Ref. [1] should not be to tune large Fs
until 95% coverage is obtained no matter how bad the data set is. If
such large Fs are required, this should be a flag alerting the investi-
gator that the grids used are inadequate for the problem [3,10,11].

(4) Therefore, the evaluation in Ref. [1] of the real GCI method
(GCI2) is corrupted by confusion with two distorted methods. The
authors’ evaluation also does not agree with my own evaluation
from some of the same data, notably the wide-ranging study of
Cadafalch et al. [12] (Ref. [33] of Ref. [1]) which I presented in
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1In the original GCI method [2], FS does depend on observed pRE implicitly, in
the sense that if pRE is unreasonable one at least reverts to using pth and FS¼ 3 rather
than blindly applying FS¼ 1.25. The preferred approach would be to continue the
grid convergence study with additional grids until reasonable values of pRE were
obtained. These rather obvious points have been made more explicit in Ref. [3]
which was not available to the authors of Ref. [1].

2There is further unfortunate confusion caused by the authors’ choice of a
descriptor for their method and their use of the symbol FS both for their “Factor of
Safety” method and for the factors of safety used in all five methods, including the
“factor of safety used in the Factor of Safety method.” Likewise for their symbol CF,
which denotes both their Correction Factor method and the “correction factor” used
in the Correction Factor method as well as in their defining equations for other
methods (Eqs. (11) and (12)).

3See also Ref. [3], p. 219. The study [9] also did not use Fs¼ 3, but this would
improve the coverage only lightly for this poor data set [10].
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Ref. [4] and to which I had alerted the authors by [8]. Cadafalch
et al. used an original and reasonable variant of the real GCI in
which a mesh-averaged pRE was used for local uncertainty esti-
mates. The literature survey in Ref. [1] omitted my evaluation [4]
which itself covered� 200 cases. As I had pointed out in Ref. [8],
my evaluation of these uncertainty calculations using the GCI
with Fs¼ 1.25 showed 92% coverage overall, less for upwind dif-
ferencing, as expected, and 97.7% for adaptive differencing.
There was one case of 176 that was found worrisome; it had
pRE¼ 1.2 for an expected first-order method.

(5) When the confusion over the identity of the real GCI is
cleared up, the overall evaluation from Ref. [1] of the real GCI
method (GCI2) is excellent. The reporting of the various subsets
of data is too convoluted to repeat here completely (and the pro-
cess is suspect in one aspect — see item (9) below). Briefly, for
the largest subsets the real GCI method (GCI2) produces reliabil-
ity of about 93% (in some subsets, 94% and higher) and the FS
method produces about 96%.

The authors claim that only their latest “FS method provides a
reliability larger than 95%.” The FS method certainly works, but I
consider it virtually meaningless to distinguish between 93% cov-
erage for the real GCI method (GCI2) versus 96% for the FS
method when the target is roughly 95% [2–6]. Note, we are not
talking about the solution itself, or even its error, but about uncer-
tainty. It is well recognized that the target of 95%, while tradi-
tional and useful, is itself somewhat arbitrary. There is an implicit
precision level evidenced by the usual lack of distinction between
95%, or 20:1 odds, or 2-r for a Gaussian distribution [4]4 , and
which are only approximately equivalent; this is true also for ex-
perimental uncertainties. Note also that greater coverage (say
99%) would not necessarily be considered more successful since
the expanded coverage would be considered unnecessarily con-
servative, giving an unrealistically pessimistic estimate of uncer-
tainty. So the real GCI method (GCI2) misses the target of
roughly 95% by �2%, and the FS method misses it by þ1%, for
this dataset. Their large dataset used is a good one5 and is likely
representative of problems of interest, but no one would be sur-
prised if another dataset slightly changed the evaluations.

(6) In this regard, the 93% (and higher) coverage by the real
GCI method (GCI2) represents a confirmation of the method (with
a tolerance of �2%) but the results for the authors’ FS method
cannot strictly be considered a confirmation because their exercise
is actually a calibration. (Here I distinguish confirmation versus
calibration of an uncertainty estimator, analogous to the widely
accepted distinction between validation and calibration of a
model to experimental data [2,3,5].) In this study [1], the three
free parameters (see Eq. (15)) of their FS method were tuned with
the objective of attaining 95% coverage, so their claim of
achieving> 95% coverage is somewhat circular. One would
expect the tuned parameters to hold generally for other datasets,
but strictly speaking their FS method could not be considered con-
firmed until it is applied successfully to another dataset not used

in the calibration. By contrast, the real GCI method (GCI2), by
now applied to probably O(1000) cases by many independent
modelers, has been stable for over 12 years.6 It has one parameter
Fs that takes on two possible values, depending on the thorough-
ness and results of the grid convergence study. Fs¼ 1.25 works
well for thorough, well-behaved studies (meaning a minimum of
three grids to allow calculation of observed pRE, and pRE in
adequate agreement with theory and/or adequately stable over
multiple grid triplets, which evaluation is, of course, a judgment
call). Presumably, if one tuned it to Fs¼ 1.27, or something
equally pointless, the real GCI method also could achieve 96%
coverage for the subject dataset, accomplished using only one
tuned parameter instead of three as in the latest FS method.

(7) The latest FS method is an improvement over the authors’
previous CF method, in all its versions.7 Whether or not the per-
formance is worth the additional tuned empirical parameters
(three instead of one) is a matter of opinion. However, it is also
true that the authors own results, when examined closely, provide
cautionary evidence. In an earlier version of the method [17] (their
Ref. [18]) there were problems with performance on the finer
grids. (This was communicated to the authors in Ref. [8], their
Ref. [16]; see also Ref. [3], p. 229.) The latest version [1] is
improved in this regard but is still problematical in the same way,
as discussed next.

Less obvious than the previously noted results for values of
P¼ 6.01 and 0.08, but more problematical, is the result for the FS
method on the ship hydrodynamics problem. (The finest grid
admirably uses 8.1� 106 points.) Uncertainty estimates for well
behaved problems should decrease monotonically as the grid is
refined. The uncertainty estimates in Table 6 for the FS method
for the three finest grid triplets are 7.62, 8.30, and 5.22, which are
not monotonically decreasing. Again, something is wrong. All
four other methods show monotonic convergence8, e.g., the real
GCI method (denoted GCI2 in the table) gives 4.98, 4.21, 2.10.

In Ref. [17], the authors had noted that the (then new version of
the) CF method was “unfortunately invalid” for the finest grid tri-
plet. The authors claimed this was “caused by the contamination
of the iterative error on the fine grid.” This is possible, but (a) we
do not know how the iterative error was estimated, (b) Eça and
Hoekstra [20]9 have shown that common methods of estimating
iteration error are grossly underpredictive, (c) most importantly,
Why is this not a problem for the other methods? They all use the
same data (i.e., results from the same computations). At the least,
we must conclude that the new FS method is more sensitive to
noise than the others. Eça [11] notes that the explanation is sim-
ple: the FS method determines the factor of safety from pRE so it
is directly affected by the noise in the data. It is intuitively appeal-
ing to algorithmically adjust Fs on the basis of “distance from the
asymptotic range” as calculated by some measure, but any such
uncertainty estimator will be prone to erratic nonmonotone behav-
ior in the same “industrial applications” which motivate its use.
As Eça [11] notes, the noisy behavior is not necessarily due to dis-
tance from the asymptotic range but can be caused by other fac-
tors: lack of iterative convergence, accumulated computer round-
off errors, use of block-generated grids or other grid generation
methods that compromise strict geometric similarity in a grid
sequence, switches embedded in turbulence models, etc. [2,3].

(8) The statement in Ref. [1] that my previous studies did not
use statistical techniques apparently refers to my choice to not use
the Students t-test or other small sample correction to estimate sta-
tistical confidence. Instead, I had just reported straightforward
“coverage” or counting of O(500) cases (incrementally accumu-
lated over years) for which the GCI was conservative or not,

4Note that no distribution of any kind has been assumed in the development or
testing in Ref. [1] nor in any of the other work cited herein.

5I applaud the authors examination on a large number of cases, but note that some
of these are old studies, not dependable, with wildly varying results that are perhaps
better discarded. On the other hand, the discard of outliers (4 discarded outliers in
Sample 21, Table 5 of Ref. [1]) based on Peirce’s criterion may be acceptable but is
debatable without a justification based on quality of the studies. See discussion in
Ref. [3], Sec. 5.16.

6The real GCI method (GCI2) was published in mature detail in Ref. [2] in 1998.
The earlier publications of 1993-1994 [13,14] already considered a likely range of
less conservative Fs but recommended Fs¼ 3 pending further extensive studies.
“But much experimentation would be required over an ensemble of problems to
determine a near-optimum value and to establish the correspondence with statistical
measures such as the 2-r band.” [15] When those initial studies were completed in
1998, the result was Fs¼ 1.25 for well-behaved problems, as described in Ref. [2].
The method has been stable since, through a wide range of new applications [3]. The
important new development has been the extension by Eça and Hoekstra to a Least-
Squares GCI (beginning with [16] in 2000 and continuing through the decade)
suitable for cases of noisy data; see Ref. [3], Sec. 5.11 for additional references and
some details.

7See Ref. [3], p. 228 for a spotty history of the confusion of variations in the
earlier versions and descriptors.

8It is not indicated why the results for the CF method reported in Ref. [1] are
different and improved from the results of the CF method in Ref. [17]. See also the
critiques in Refs. [18,19].

9See also Ref. [3], Sec. 5.10.10.3 for additional references and some details.
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compared to the actual error. The evaluation of statistical confi-
dence level is based on a conceptual model in which the examined
data set of an individual study is taken to represent the entire pop-
ulation which is inaccessible. If this data set is small, then small
sample correction techniques (like Students t-test) are applicable.
The simpler approach just claims (say) “89.2% coverage” for an
individual study (perhaps small, or not) with the idea that the
results of many studies will eventually be aggregated (probably
informally, as I did). If small sample corrections for “confidence
interval” are made to each study, later aggregation is confused
because the small sample corrections are nonlinear and nondistrib-
utive. See Ref. [3], p. 229.

The real GCI (GCI2) is indeed widely used and recommended,
as noted by Ref. [1]. It is impossible to keep track of its many
applications. It is surely well over 500, as we claimed in [5], and
more likely of O(1000). In Ref. [3], Sections 6.23.3–4 there is a
list of 14 types of problems solved by Dr. C. J. Freitas and his
group at the Southwest Research Institute. They have applied the
real GCI to many realistic problems with far from ideal conver-
gence behaviors with good results. These include confined detona-
tions, vortex cavitation, blast-structure interactions, fluidized
beds, shock propagation, structural failure, and turbulent multi-
phase flows, which problems were solved using FVM, FDM,
FEM, ALE, and Riemann solvers. “In all applications the GCI
provided a very good estimate of uncertainty [21].”

(9) Although the results in Ref. [1] are consistent with previ-
ous studies, their methodology appears to be flawed in one as-
pect. The authors’ define the so-called “actual factor of safety”
FSA,i for each case i (each grid triplet) and use average values
(averaged over a study) to discriminate performance. The five
uncertainty estimators considered are all in the form Uest¼Fs �
jEestj where Eest is some estimate of the discretization error.
FSA,i was obtained formally by replacing Eest,i by the actual error
Ei for each i case and inverting the algebra to solve for
FSA,i¼ (Uest,i/|Ei|). But there is no “actual factor of safety” other
than the value used. The ratio (Eest,i/Ei) has been properly inter-
preted in Ref. [1] and elsewhere as an “effectivity index” and the
“actual factor of safety” is similar to an effectivity index but
applied to an uncertainty estimate rather than an error estimate.
Values (Ei/Eest,i)� 1 or FSA,i� 1 would indicate excessive con-
servatism for a single case. But this would say little or nothing
about % coverage attained for an ensemble of cases, which is the
agreed-upon target or principal performance metric. Of two
uncertainty estimators with the same acceptable coverage, the
one with the smaller average or maximum effectivity index
would be preferred, but it would not make sense to actually use
this “actual factor of safety” in any estimator of uncertainty for a
new calculation.

Suspicion of the concept arises when we note that if one case
happens to produce the correct solution, the result is an “actual
factor of safety” FSA,i¼1, which is difficult to interpret and
suggests something is wrong. Indeed, Fig. 4 of Ref. [1] shows
three methods producing maximum values� 30 and two (includ-
ing the latest FS method) going off-scale on log plots with
FSA,i� 60.

A single value of FSA,i< 1 indicates that the actual single
error is outside the uncertainty band, which should happen� 1 in
20 times. As the measure of coverage or reliability (Eq. (19) of
Ref. [1]) this test is correct. A single value of FSA,i� 1 would
indicate large conservatism for that single case, which, combined
with experience and intuition, may suggest an evaluation of ex-
cessive conservatism for the method.10 However, comparing |Ei|
to Uest,i in whatever formulation cannot be used to faithfully
indicate conservatism; it cannot be relied upon as a substitute for
examining a large number of cases. Nor can the “average actual
FSA,i” of a large study, as used in Ref. [1]. That this can be mis-

leading even for benign data is shown by the following synthetic
example.

Consider a data set of 20 cases with the fine-grid solution vari-
ables of interest normalized to S1¼ 1. For convenience, say all
normalized uncertainty estimates are Uest¼ 0.1, i.e., an estimated
10% “error band.” (This might have been estimated by the real
GCI method for well behaved cases using Fs¼ 1.25 from an
error estimate of 0.08.) Suppose the true values for the first 19 of
20 cases are given by Ti¼ 1þ i/200 or Ti¼ 1.005, 1.01, 1.015, …
1.095. Suppose T(20)¼ 1.11 so this case is not likely to be dis-
carded as an outlier. It is seen that the GCI uncertainty estimate
performs exactly as intended for this synthetic case, with the
interval [S1 6 Uest]¼ [0.9, 1.1] capturing the first 19 of 20 cases
for 95% coverage. However, the “actual FSA,i” ranges from 0.91
to 20, and the “average actual FSA”¼ 3.59, which would seem to
suggest that the original method using Fs¼ 1.25 is much more
conservative than intended. It is not; it had performed perfectly
for this example.11 The actual errors are not weirdly distributed;
they range from 0.005 to 0.11 with an average error of 0.053,
not out of line with the 95% uncertainty estimate of 0.1. If one
thinks that the ratio of the original Fs to the “average actual
FSA” can be used to tune the Fs, one is in for a disappointment.
The new Fs would be 1.25/3.59¼ 0.348, giving new Uest

¼ 0.028, producing coverage for the first 5/20 cases or just 25%
coverage.

These benign synthetic examples demonstrate that the concept
used in Ref. [1] of relying on the so-called “average actual factor
of safety” as an indicator of quality is misguided.

(11) Finally, some of the confusion of the authors [1] in not
identifying the GCI2 method as the real (original) GCI method
[2–6] is understandable due to the fact that application of the
method involves a judgment call as to what constitutes a rea-
sonable value of observed pRE. This makes it difficult for the
authors to compare performance of different methods without
being subject to unfair criticism. The judgment calls implicit in
the earlier presentation of the GCI method in Ref. [2] have
been made more explicit in Ref. [3] (which of course was not
available to the authors of Ref. [1]) but the method is still not
free of judgment calls. It would be preferable if all methods
were defined in a recipelike fashion with no room for judgment
calls. However, there are other judgment issues possible in a
grid convergence study, e.g., how many grid triplets are
adequate to claim that pRE is reasonably constant, whether or
not to use a least-squares evaluation, which detailed least-
squares version to use, etc. I do not expect that such judgment
calls will be eliminated for poorly behaved convergence
studies.

In their new V&V book, Oberkampf and Roy ([22], p. 326)
have proposed a procedure that standardizes the judgment call at
least for the question of what constitutes acceptable pRE. Their
procedure accepts 10% agreement between pRE and pth, using
p¼ pth and Fs¼ 1.25 in the GCI formula. For disagreement
>10%, the procedure uses Fs¼ 3 and limits the p used in the
GCI formula to p¼min{max(0.5, pRE), pth}. I consider this a rea-
sonable recipe, although of course other cut-offs could be justi-
fied as well. The limits on 10% agreement and the lower limit on
p¼ 0.5 (provided that pth> 0.5) are obviously judgment calls but
are reasonable and unambiguous, and therefore repeatable in a
comparative study such as Ref. [1]. A more conservative (per-
haps overly conservative) procedure would not set a lower limit
on p other than p> 0 (allowing for difficult problems such as sin-
gularities as in Ref. [3], Sec. 5.10.4.1) and would use
p¼min(pRE, pth) when these agree within 10% instead of pth.

10See discussion in Ref. [3], Sec. 5.15 on “Evaluation of Uncertainty Estimators
from Small Sample Studies.”

11Other synthetic examples can be constructed to demonstrate that the concept of
“average actual factor of safety” can mislead in the other direction, suggesting
adequate conservatism when in fact the method is behaving terribly. Consider true
values Ti¼ 1.1þ a and a� 1 for i¼ 1 to 19, and T20¼ 1.05, which is not an outlier.
Then “average actual FSA” � 21/20¼ 1.05, falsely indicating mild conservatism
when in fact the method has missed 19 of 20 cases, giving 5% coverage rather than
the intended 95%.
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These two prescriptive procedures would be additional candi-
dates for evaluation by the authors of Ref. [1] using their exten-
sive dataset.
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