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Discretization error occurs during the approximate numerical solution of differential 
equations. Of the various sources of numerical error, discretization error is generally the 
largest and usually the most difficult to estimate. The goal of this paper is to review the 
different approaches for estimating discretization error and to present a general framework 
for their classification. The first category of discretization error estimator is based on 
estimates of the exact solution to the differential equation which are higher-order accurate 
than the underlying numerical solution(s) and includes approaches such as Richardson 
extrapolation, order refinement, and recovery methods from finite elements. The second 
category of error estimator is based on the residual (i.e., the truncation error) and includes 
discretization error transport equations, finite element residual methods, and adjoint 
method extensions. Special attention is given to Richardson extrapolation which can be 
applied as a post-processing step to the solution from any discretization method (e.g., finite 
different, finite volume, and finite element). Regardless of the approach chosen, the 
discretization error estimates are only reliable when the numerical solution, or solutions, are 
in the asymptotic range, the demonstration of which requires at least three systematically 
refined meshes. For complex scientific computing applications, the asymptotic range is often 
difficult to achieve. In these cases, it is appropriate to treat the numerical error estimates as 
an uncertainty. Issues related to mesh refinement are addressed including systematic 
refinement, the grid refinement factor, fractional refinement, and unidirectional refinement. 
Future challenges in discretization error estimation are also discussed.  

I. Introduction 
 mathematical model is defined here as a system of partial differential or integral equations and associated 
auxiliary equations, along with appropriate initial and boundary conditions, that are used to describe a physical 

system. In scientific computing, one is concerned with finding approximate solutions to this mathematical model, a 
process that involves the discretization of both the mathematical model and the domain. The approximation errors 
associated with this discretization process are called discretization errors, and they occur in every single scientific 
computing simulation. The discretization error can be formally defined as the difference between the exact solution 
to the discrete equations and the exact solution to the mathematical model: 

uuhh
~−=ε  (1) 

In Equation (1), uh represents the solution to the discrete equations on a mesh with a representative cell length of h, 
and u~  is the exact solution to the mathematical model. Discretization error arises out of the interplay between the 
chosen discretization scheme for the mathematical model, the mesh resolution, the mesh quality, and the behavior of 
the solution and its derivatives. Discretization error is the most difficult type of numerical error to estimate reliably 
and is usually the largest of the four numerical error sources. (The three sources are round-off error, iterative 
convergence error, and statistical sampling error.)  

The discretization error has two components: one that is locally-generated and the other that is transported from 
elsewhere in the domain. The transported component is called pollution error by the finite element community 
(Babuska et al., 1997). This can be shown mathematically by examining the error transport equations (see Section 
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II.B.1), which can be used to relate the convergence of the numerical method (i.e., the discretization error) to the 
consistency of the discretization scheme (i.e., the truncation error). The truncation error is the difference between the 
discrete equations and the mathematical model equations. Thus the discretization error is transported in the same 
manner as the underlying solution properties (e.g., it can be convected and diffused) and it is locally generated 
according to the truncation error. 

An example of error transport for the Euler equations is shown below in Figure 1, which gives the error in the 
density for the inviscid, Mach 8 flow over an axisymmetric sphere-cone (Roy, 2003). The flow is from left to right, 
and large discretization errors are generated at the bow shock wave where the shock and the grid lines are 
misaligned. In the subsonic (i.e., elliptic) region of the flow immediately behind the normal shock, these errors are 
convected along the local streamlines. In the supersonic (hyperbolic) regions these errors propagate along 
characteristic Mach lines and reflect off the surface. Additional error is generated at the sphere-cone tangency point, 
which represents a singularity due to the discontinuity in the surface curvature. Errors from this region also 
propagate downstream along the characteristic Mach line. An adaptation process which is driven by the global error 
levels would adapt to the characteristic line emanating from the sphere-cone tangency point, which is not desired. 
An adaptation process driven by the local contribution to the error should adapt to the sphere-cone tangency point, 
thus obviating the need for adaption to the characteristic line that emanates from it.  
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Figure 1. Contours of total estimated discretization error in density for the flow over an inviscid hypersonic sphere cone 

(from Roy, 2003). 

 
Section II of this paper contains an overview and classification of several approaches for estimating the 

discretization error. Many of these approaches have arisen out of the finite element method, which due to its nature 
provides for a rigorous mathematical analysis (Ainsworth and Oden, 2000). Other approaches to discretization error 
estimation seek to find an estimate of the exact solution to the mathematical model which is of a higher formal order 
of accuracy than the underlying discrete solution. Once this higher-order estimate is found, it can be used to estimate 
the discretization error in the solution. While a wide range of approaches are discussed for estimating discretization 
error, particular attention is focused on Richardson extrapolation which relies on discrete solutions on two meshes 
to estimate the discretization error. The reason for this choice is straightforward: Richardson extrapolation is the 
only discretization error estimator that can be applied as a post-processing step to both local solutions and system 
response quantities from any discretization approach (finite difference, finite volume, finite element, etc.). The main 
drawback is the expense of generating, and then computing another discrete solution on, another systematically-
refined mesh. Systematic mesh refinement requires the mesh to be refined both uniformly over the domain and 
consistently with regards to mesh quality and these two conditions are discussed further in Sections II.A.1 and V. 

Regardless of the approach used for estimating the discretization error, the reliability of the resulting error 
estimate requires that the underlying numerical solution (or solutions) be in the asymptotic range (see Section III). 
Achieving this asymptotic range can be surprisingly difficult, and confirming that it has indeed been achieved using 



 
American Institute of Aeronautics and Astronautics 

092407 

 

3 

the observed order of accuracy generally requires at least three discrete solutions. For complex scientific computing 
applications involving coupled, nonlinear, hyperbolic, multidimensional, multiphysics equations, it is unlikely that 
the asymptotic range will be achieved without relying on the solution adaptive procedures (e.g., see Roy, 2009; 
Oberkampf and Roy, 2010). 

The most common situation in scientific computing is when the discretization error estimate has been computed, 
but the confidence in that estimate is either 1) low because the asymptotic range has not been achieved or 2) 
unknown because three discrete solutions are not available. In these cases, the discretization error is more 
appropriately characterized as an epistemic uncertainty due to the lack of knowledge of the true value of the error. 
Roache’s Grid Convergence Index effectively converts the error estimate from Richardson extrapolation into an 
uncertainty by providing error bands, and is discussed in Section IV. 

Another important topic addressed in this paper is the role of systematic mesh refinement (as defined in 
Oberkampf and Roy, 2010) for Richardson extrapolation-based discretization error estimators and also for assessing 
the general reliability of all discretization error estimators (Section V). The importance of systematic mesh 
refinement over the entire domain is discussed, along with approaches for assessing the systematic nature of the 
refinement. Issues with refinement in space and time, unidirectional refinement, fractional (or non-integer) 
refinement, and recommendations for refinement versus coarsening are also discussed. This paper concludes with a 
discussion of some open issues related to discretization error estimation which have not yet been adequately 
addressed by the research community (Section VI). For more details on methods for estimating discretization error 
in scientific computing, see Oberkampf and Roy (2010). 

II. Approaches for Estimating Discretization Error 
There are a number of approaches available for estimating discretization error. These methods can be broadly 

categorized as a priori methods and a posteriori methods. The a priori methods are those that allow a bound to be 
placed on the discretization error before any numerical solution is even computed. In general, one looks to bound the 
discretization error by an equation of the form  

p
h huC )(≤ε  (2) 

where εh is the discretization error, the function C(u) usually depends on various derivatives of the exact solution, h 
is a measure of the element size (e.g., ∆x), and p is the formal order of accuracy of the method. One approach to 
developing an a priori discretization error estimator is to perform a truncation error analysis for the scheme, relate 
the truncation error to the discretization error (e.g., through a discretization error transport equation), then develop 
some approximate bounds on the solution derivatives that comprise C(u). The main failing of a priori error 
estimators is that C(u) is extremely difficult to bound and even when this is possible for simple problems, the 
resulting error estimate greatly over-estimates the true discretization error. A priori methods are generally only 
useful for assessing the formal order of accuracy of a discretization scheme. Current efforts in estimating the 
discretization error are focused on a posteriori methods. These methods provide an error estimate only after the 
numerical solution has been computed. They use the computed solution to the discrete equations, possibly with 
additional information supplied by the equations, to estimate the error relative to the exact solution to the 
mathematical model.  

The mathematical formalism that underlies the finite element method makes it fertile ground for the rigorous 
estimation of discretization error. Beginning with the pioneering studies of Babuska and Rheinboldt (1978a,b), a 
tremendous amount of work has been done over the last 30 years on a posteriori estimation of discretization error by 
the finite element community (e.g., see Ainsworth and Oden, 2000). The initial developments up to the early-1990s 
were concentrated on linear, elliptic, scalar mathematical models and focused on the h-version of finite elements. 
Early extensions of the a posteriori methods to parabolic and hyperbolic mathematical models were made by 
Eriksson and Johnson (1987) and Johnson and Hansbo (1992), respectively. Up to this point, a posteriori error 
estimation in finite elements was limited to analysis of the energy norm of the discretization error, which for 
Poisson’s equation can be written on element k as:  

2/1

2~












∇−∇= ∫

kV

hkh dVuu


ε  (3) 

where ∇


 is the vector form of the gradient operator.  
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The finite element method produces the numerical solution from the chosen set of basis functions which 
minimizes the energy norm of the discretization error (Szabo and Babuska, 1991). Taken locally, the energy norm 
can provide guidance on where adaptive refinement should occur. Taken globally, the energy norm provides a 
global measure of the overall optimality of the finite element solution. In the early 1990s, important extensions of a 
posteriori error estimators to system response quantities were found that require the solution to an adjoint, or dual, 
problem (e.g., Johnson and Hansbo, 1992). For additional information on a posteriori error estimation in finite 
element methods, see Babuska et al. (1986), Whiteman (1994), Ainsworth and Oden (1997, 2000), and Estep et al. 
(2000). A more introductory discussion of error estimation in finite element analysis is presented by Akin (2005). 

In general, the level of maturity for a posteriori error estimation methods is strongly problem dependent. All of 
the discretization error estimators to be discussed here were originally developed for elliptic problems. As a result, 
they tend to work well for elliptic problems, but are not as well-developed for mathematical models that are 
parabolic or hyperbolic in nature. The level of complexity of the problem is also an important issue. The error 
estimators work well for smooth, linear problems with simple physics and geometries; however, strong 
nonlinearities, discontinuities, singularities, and physical and geometric complexity can significantly reduce the 
reliability and applicability of a posteriori discretization error estimation methods. 

There are two types of discretization error estimators discussed in this section. In the first type, an estimate of the 
exact solution to the mathematical model (or possibly its gradient) is obtained which is of higher formal order of 
accuracy than the underlying solution. This higher-order estimate relies only on information from the discrete 
solution itself, and thus can often be applied in a post-processing manner. For mesh and order refinement methods, 
higher-order estimates can be easily obtained for system response quantities as well. Residual-based methods, by 
contrast, also incorporate information on the specific problem being solved into the error estimate. While their 
implementation in a scientific computing code is generally more difficult and code-intrusive, they have the potential 
to provide more detailed information on the discretization error and its various sources. The extension of residual-
based methods to provide discretization error estimates in system response quantities generally requires the solution 
to an adjoint (or dual) problem. 

A. Higher-Order Estimates 
One approach to error estimation is to compare the discrete solution to a higher-order estimate of the exact 

solution to the mathematical model. While this approach uses only information from the discrete solution itself, in 
some cases, more than one discrete solution is needed, with the additional solutions being obtained either on 
systematically-refined/coarsened meshes or with different formal orders of accuracy.  

1. Mesh Refinement Methods and Richardson Extrapolation 
Mesh refinement methods are based on the general concept of Richardson extrapolation (Richardson 1911, 

1927). The basic concept behind Richardson extrapolation is as follows. If one knows the formal rate of 
convergence of a discretization method with mesh refinement, and if discrete solutions on two systematically-
refined meshes are available, then one can use this information to obtain an estimate of the exact solution to the 
mathematical model. Depending on the level of confidence one has in this estimate, it can be used to either correct 
the fine mesh solution or to provide a discretization error estimate for it. While Richardson’s original work applied 
the approach locally over the domain to the dependent variables in the mathematical model, it can be readily applied 
to any system response quantity. There is, however, the additional requirement that the numerical approximations 
(integration, differentiation, etc.) used to obtain the system response quantity be at least of the same order of 
accuracy as the underlying discrete solutions.  

Recall the definition of the discretization error given by Equation (1). Consider now a more general local or 
global solution variable f on a mesh with spacing h  

ffhh

~
−=ε  (4) 

where  f h is the exact solution to the discrete equations and f
~

 is the exact solution to the mathematical model. 

Recall that we can expand the numerical solution fh in either a Taylor series about the exact solution 
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or simply a power series in h 
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...
~ 3

3
2

21 ++++= hghghgffh  (6) 

Moving f
~

 to the left-hand side allows us to write the discretization error for a mesh with spacing h as 

...
~ 3

3
2

21 +++=−= hghghgffhhε  (7) 

where the g coefficients can take the form of functions of derivatives of the exact solution to the mathematical 

model f
~

 with respect to either the mesh size h (as shown in Equation (5)) or to the independent variables through 

the relationship with the truncation error (see Section II.B.1). In general, we require numerical methods which are 
higher than first-order accurate, and thus discretization methods are chosen which cancel out selected lower-order 
terms. For example, if a second-order accurate numerical scheme is chosen, then the general discretization error 
expansion becomes: 

...
~ 4

4
3

3
2

2 +++=−= hghghgffhhε  (8) 

Equation (8) forms the basis for generalized Richardson extrapolation which is described next. 
Richardson extrapolation can be generalized to pth-order accurate schemes and for two meshes systematically 

refined by an arbitrary factor. First consider the discretization error expansion for a pth-order scheme:  
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phh hghghgffε  (9) 

Introducing the grid refinement factor as the ratio of the coarse to fine grid spacing we have 

1>=
fine

coarse

h

h
r  (10) 

and the coarse grid spacing can thus be written as hcoarse = r hfine. Choosing  hfine = h, the discretization error equations 
on the two meshes can be written as 
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These equations can be used to eliminate the gp coefficient and solve for f
~

 to give 
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Combining terms of order hp+1 and higher with the exact solution f
~

 gives 
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which is a higher order accurate estimate of the exact solution. Substituting this expression into Equation (12) results 

in the generalized Richardson extrapolation estimate f : 

1−
−

+=
p

rhh
h r

ff
ff  (14) 

As is shown clearly by Equation (13), this estimate of the exact solution is generally a (p+1)-order accurate estimate 
of the exact solution to the mathematical model unless additional error cancellation occurs in the higher-order terms. 

There is often confusion as to the order of accuracy of the Richardson extrapolation estimate. In Richardson’s 
original work (Richardson, 1911), he used this extrapolation procedure to obtain a higher-order accurate solution for 
the stresses in a masonry dam based on two second-order accurate numerical solutions. The original partial 
differential equation was Poisson’s equation and he employed central differences which cancelled out the odd 
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powers in the truncation error. His estimate for the exact solution was thus fourth-order accurate. However, unless 
this type of cancellation occurs, the estimates from generalized Richardson extrapolation are only (p+1)-order 
accurate as is clearly shown in Equation (13).  

Assumptions for Richardson Extrapolation  
There are five basic assumptions required for Richardson extrapolation to provide reliable estimates of the exact 

solution to the mathematical model: 1) that both discrete solutions are in the asymptotic range, 2) that the meshes 
have a uniform (Cartesian) spacing over the domain, 3) that the coarse and fine meshes are related through 
systematic refinement, 4) that the solutions are smooth, and 5) that the other sources of numerical error are small. 
These five assumptions are now discussed in detail. 

Asymptotic Range 
The formal order of accuracy of a discretization scheme is the theoretical rate at which the discretization error is 

reduced as the mesh is refined. Oberkampf and Roy (2010) use a continuous error transport equation to relate the 
formal order of accuracy to the lowest order term in the truncation error. This lowest order term will necessarily 
dominate the higher-order terms in the limit as the mesh spacing parameter h goes to zero. The dependent solution 
variables generally converge at the formal order of accuracy in the asymptotic range, as do any system response 
quantities of interest (unless of course lower-order numerical approximations are used in their evaluation). One 
should keep in mind that this asymptotic requirement applies not just to the fine mesh solution but to the coarse 
mesh solution as well. Procedures for confirming that the asymptotic range has been reached will be given in 
Section III.  

Uniform Mesh Spacing 
The discretization error expansion is in terms of a single mesh spacing parameter h. This parameter is a measure 

of the size of the discretization, and thus has units of length for spatial discretizations and time for temporal 
discretizations. This could be strictly interpreted as allowing only Cartesian meshes with spacing h in each of the 
spatial coordinate directions. While this restriction seemingly prohibits the use of Richardson extrapolation for 
practical scientific computing applications, this is in fact not the case. For non-Cartesian meshes (including 
unstructured grids), local or global transformations are employed. If analytic transformations are used, then the mesh 
quality can affect the formal order of accuracy of the method, thus the use of extrapolation procedures requires 
sufficient mesh regularity (stretching, aspect ratio, skewness, etc.). Discrete transformations are additionally 
required to be the same order of accuracy as the discretization scheme or higher. Thompson et al. (1985) and Mastin 
(1999) note that there may be accuracy advantages to evaluating the discrete transformation metrics with the same 
underlying discretization used for the solution gradients, at least for the case of central differences.  

Systematic Mesh Refinement 
An often overlooked requirement for the use of Richardson extrapolation is that the two mesh levels be 

systematically refined. Systematic mesh refinement (Oberkampf and Roy, 2010) requires that the mesh refinement 
be both uniform and consistent. Uniform refinement (e.g., Roy, 2005) requires that the mesh be refined by the same 
factor over the entire domain, which precludes the use of local refinement or adaptation during the Richardson 
extrapolation procedure. Consistent refinement (Oberkampf and Roy, 2010) requires that the mesh quality must 
either remain constant or improve with mesh refinement. Examples of mesh quality metrics include cell aspect ratio, 
cell skewness, and cell-to-cell stretching factor. Techniques for evaluating the uniformity and consistency of the 
mesh refinement are given in Section V. For an example of how Richardson extrapolation can fail in the presence of 
nonuniform mesh refinement even in the asymptotic range, see Eca and Hoekstra (2009a). 

Smooth Solutions 
As discussed earlier, the coefficients g in the discretization expansion given by Equation (9) are generally 

functions of the solution derivatives. As such, the Richardson extrapolation procedure will tend to break down in the 
presence of discontinuities in any of the dependent variables or their derivatives. This is further complicated by the 
fact that the observed order of accuracy often reduces to first order or lower in the presence of certain discontinuities 
and singularities, regardless of the formal order of accuracy of the method (Banks et al., 2008). See Section VI.A for 
more details.  

Other Numerical Errors Sources 
Recall that the discretization error is defined as the difference between the exact solution to the discrete 

equations and the exact solution to the mathematical model. The exact solution to the discrete equations is never 
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known due to round-off error, iterative error, and statistical sampling errors (when present). In practice, the available 
numerical solutions are used as surrogates for the exact solution to the discretized equations. If these other numerical 
error sources are too large, then they will adversely impact the Richardson extrapolation procedure since any 
extrapolation procedure will tend to amplify “noise” (Roache, 1998). A good rule of thumb is to ensure that all other 
sources of numerical error are at least two orders of magnitude smaller than the discretization error in the fine grid 
numerical solution (Roy, 2005; Eca and Hoekstra, 2009b).  

Extensions 
This section describes three extensions of Richardson extrapolation when it is applied locally throughout the 

domain. The first addresses a method for obtaining the Richardson extrapolation estimate on all fine grid spatial 
points, while the second extends it to all fine mesh points in space and time. The third approach combines a general 
extrapolation procedure with a discrete residual minimization, and thus could be considered a hybrid 
extrapolation/residual method (see Section II.B). 

Completed Richardson Extrapolation in Space 
If the Richardson extrapolation procedure is to be applied to the solution point-wise in the domain, then it 

requires that one obtain fine mesh solution values at the coarse grid points. For systematic mesh refinement with 
integer values for the refinement factor on structured grids, this is automatically the case. However, applying 
Richardson extrapolation to cases with integer refinement will result in estimates of the exact solution only at the 
coarse grid points. In order to obtain exact solution estimates at the fine grid points, Roache and Knupp (1993) 
developed the completed Richardson extrapolation procedure. Their approach requires interpolation of the fine grid 
correction (rather than the Richardson extrapolation estimate) from the coarse grid to the fine grid. This interpolation 
should be performed with an order of accuracy at least as high as the underlying discretization schemes. When this 
fine grid correction is combined with the discrete solution on the fine grid, an estimate of the exact solution to the 
mathematical model is obtained that has the same order of accuracy as the Richardson extrapolation estimates on the 
coarse grid points. 

Completed Richardson Extrapolation in Space and Time 
Richards (1997) further extended the complete Richardson extrapolation procedure of Roache and Knupp 

(1993). The first modification provides the higher-order estimate of the exact solution to be obtained on all the fine 
grid spatial points for integer refinement factors other than two (three, four, five, etc.). The second, more significant 
modification provides higher-order accurate estimates of the exact solution after a chosen number of coarse grid 
time steps. The approach allows for different formal orders of accuracy is space and time by choosing the temporal 
refinement factor in such a way as to obtain the same order of error reduction found in the spatial discretization. For 
a discretization that is formally pth-order accurate is space and qth-order accurate in time, the temporal refinement 
factor rt should be chosen such that 

( ) qp
xt rr /=  (15) 

where rx is the refinement factor in space. This procedure is analogous to the combined order verification procedure 
discussed in Oberkampf and Roy (2010).  

Least Squares Extrapolation 
Garbey and Shyy (2003) have developed a hybrid extrapolation/residual method for estimating the exact solution 

to the mathematical model. Their approach involves forming a more accurate solution by taking linear combinations 
of discrete solutions on multiple mesh levels using a set of spatially-varying coefficients. Spline interpolation is 
employed to obtain a smooth representation of this solution on a yet finer grid. The coefficients are then determined 
by a least squares minimization of the discrete residual formulated on this finer mesh. Their approach thus requires 
only residual evaluations on this finer mesh, which are expected to be significantly less expensive than computing a 
discrete solution on this mesh. This least squares extrapolated solution is demonstrated to be order (p+1), where p is 
the formal order of accuracy of the method. The higher-order estimate of the exact solution to the mathematical 
model can be used as a local error estimator or to provide solution initialization within a multigrid-type procedure.  

Discretization Error Estimation 
While it may be tempting to use the Richardson extrapolated value as a more accurate solution than the fine grid 

numerical solution, this should only be done when there is a high degree of confidence that the five assumptions 
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underlying Richardson extrapolation have indeed been met. In particular, the observed order of accuracy (which 
requires discrete solutions on three systematically-refined meshes as discussed in Section III.B) must first be shown 
to match the formal order of accuracy of the discretization scheme. In any case, when only two mesh levels are 
available, the asymptotic nature of the solutions cannot be confirmed, thus one is limited to simply using the 
Richardson extrapolated value to estimate the discretization error in the fine grid numerical solution.  

Substituting the estimated exact solution from the generalized Richardson extrapolation expression (Equation 
(14)) into the definition of the discretization error on the fine mesh (Equation (4)) gives the estimated discretization 
error for the fine mesh (with spacing h) 

                            








−
−

+−=−=
1p
rhh

hhhh
r

ff
ffffε   

or simply 

1−
−

−=
p

rhh
h

r

ffε
.
 (16) 

While this does provide for a consistent discretization error estimate as the mesh is systematically refined, there is 
no guarantee that the estimate will be reliable for any given fine mesh (h) and coarse mesh (rh) discrete solutions. 
Therefore, if only two discrete solutions are available then this error estimate should be converted into an 
uncertainty as discussed in Section IV.  

An example of using the Richardson extrapolation procedure as an error estimator was presented by Roy and 
Blottner (2003). They examined the hypersonic, transitional flow over a sharp cone. The system response quantity 
was the heat flux distribution along the surface. The surface heat flux is shown versus the axial coordinate in Figure 
2a for three systematically-refined mesh levels: fine (160×160 cells), medium (80×80 cells), and coarse (40×40 
cells). Also shown are Richardson extrapolation results found from the fine and medium mesh solutions. The sharp 
rise in heat flux at x = 0.5 m is due to the specification of the location for transition from laminar to turbulent flow. 
In Figure 2b, the Richardson extrapolation results are used to estimate the discretization error in each of the 
numerical solutions. Neglecting the immediate vicinity of the transition location, the maximum estimated 
discretization errors are approximately 8%, 2%, and 0.5% for the coarse, medium, and fine meshes, respectively. 
The solutions thus appear to be converging as h → 0. Furthermore, these estimated errors display the expected hp 
reduction for these formally second-order accurate computations. In the turbulent region, the maximum errors are 
also converging at the expected rate giving error estimates of approximately 4%, 1% and 0.25%. More rigorous 
methods for assessing the reliability of discretization error estimates are addressed in Section III. 
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Figure 2. a) Surface heat flux and b) relative discretization error for the transitional flow over a sharp cone (Roy and 
Blottner, 2003). 
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Advantages and Disadvantages of Richardson Extrapolation 
The primary advantage that Richardson extrapolation holds over other discretization error estimation methods is 

that it can be used as a post-processing technique applied to any discretization scheme (finite difference, finite 
volume, finite element, etc.). In addition, it gives estimates in the total error, which includes both locally generated 
errors and those transported from other regions of the domain. Finally, it can be used for any quantity of interest be 
it a local solution quantity or a derived system response quantity (assuming that any numerical approximations have 
been made with sufficient accuracy).  

There are, however, some disadvantages to using discretization error estimators based on Richardson 
extrapolation. First and foremost, they rely on having multiple numerical solutions in the asymptotic grid 
convergence range. This can place significant additional burdens on the grid generation process, which is already a 
bottleneck in many scientific computing applications. Furthermore, these additional solutions can be extremely 
expensive to compute. Consider the case where one starts with a 3D mesh consisting of 1 million elements. 
Performing mesh refinement with a refinement factor of two thus requires a solution on a mesh with 8 million 
elements. When one also accounts for the additional time steps or iterations required for this finer mesh, the solution 
cost easily increases by an order of magnitude with each refinement (note that integer refinement is generally not 
required, see Section V.C).  

The underlying theory of Richardson extrapolation requires smooth solutions, thus reducing the effectiveness of 
these error estimators for problems with discontinuities or singularities. In addition, the extrapolation procedure 
tends to amplify other sources of error such as round-off and iterative convergence error (Roache, 1998). Finally, the 
extrapolated quantities will not satisfy the same governing and auxiliary equations as either the numerical solutions 
or the exact solution. For example, if an equation of state is used to relate the density, pressure, and temperature in a 
gas, there is no guarantee that extrapolated values for density, pressure, and temperature will also satisfy this 
equation. 

2. Order Refinement Methods 
Order refinement methods are those which employ two or more discretizations on the same mesh but with 

differing formal orders of accuracy. The results from the two numerical solutions are then combined to produce a 
discretization error estimate. An early example of order refinement methods for error estimation is the Runge–
Kutta–Fehlberg method (Fehlberg, 1969) for adaptive step size control in the solution of ordinary differential 
equations. This approach combines a basic 4th-order Runge-Kutta integration of the differential equations with an 
inexpensive 5th-order estimate of the error. Order refinement can be difficult to implement in finite different and 
finite volume discretizations due to difficulties formulating higher-order accurate gradients and boundary conditions. 
Order refinement methods have been implemented within the context of finite elements under the name hierarchical 
bases (e.g., see Bank, 1996). 

3. Finite Element Recovery Methods 
Recovery methods for estimating the discretization error were developed by the finite element community (e.g., 

Zienkiewicz and Zhu, 1987). For the standard h-version of finite elements with linear basis functions the solution is 
piece-wise linear; therefore, the gradients are only piece-wise constant and are discontinuous across the element 
faces. The finite element analyst is often more interested in gradient quantities such as stresses rather than the 
solution itself, so most finite element codes provide for post-processing of these discontinuous gradients into piece-
wise linear gradients using existing finite element infrastructure. In some cases (see the discussion of 
superconvergence below), this reconstructed gradient is of a higher order of accuracy than the gradient found in the 
underlying finite element solution. Recall the definition of the energy norm of the discretization error given in 
Equation (3). If the true gradient from the mathematical model is available, then this important error measure can be 
computed exactly. For the case where a reconstructed gradient is higher-order accurate than the finite element 
gradient, then it can be used to approximate the true gradient in the energy norm. In addition to providing estimates 
of the discretization error in the solution gradients, due to their local nature, recovery methods are also often used as 
indicators of where solution refinement is needed in adaptive solutions.  

In order to justify the use of the recovered gradient in the energy norm, it must in fact be higher-order accurate 
than the gradient from the finite element solution. This so-called superconvergence property can occur when certain 
regularity conditions on the mesh and the solution are met (Wahlbin, 1995) and results in gradients that are up to one 
order higher in accuracy than the underlying finite element gradients. For linear finite elements, the 
superconvergence points occur at the element centroids, whereas for quadratic finite elements, the location of the 
superconvergence points depends on the element topology. If the reconstructed gradient is superconvergent, and if 
certain consistency conditions are met by the gradient reconstruction operator itself, then error estimators based on 
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this recovered gradient can be shown to be asymptotically exact (Ainsworth and Oden, 2000). While the 
superconvergence property appears to be a difficult one to attain for complex scientific computing applications, the 
discretization error estimates from some recovery methods tend to be “astonishingly good” for reasons that are not 
well-understood (Ainsworth and Oden, 2000). 

Recovery methods have been shown to be most effective when the reconstruction step employs solution 
gradients rather than solution values. The superconvergent patch recovery (SPR) method (Zienkiewicz and Zhu, 
1992) is the most widely-used recovery method in finite element analysis. Assuming the underlying finite element 
method is of order p, the SPR approach is based on a local least squares fitting of the solution gradient values at the 
superconvergence points using polynomials of degree p. The SPR recovery method was found to perform extremely 
well in an extensive comparison of a posteriori finite element error estimators (Babuska et al., 1994). A more recent 
approach called polynomial preserving recovery (PPR) was proposed by Zhang and Naga (2005). In their approach, 
they use polynomials of degree p + 1 to fit the solution values at the superconvergence points, then take derivatives 
of this fit to recover the gradient. Both the SPR and PPR gradient reconstruction methods can be used to obtain error 
estimates in the global energy norm and in the local solution gradients. 

B. Residual-Based Methods 
Residual-based methods use the discrete solution along with additional information from the problem being 

solved such as the mathematical model, the discrete equations, or the sources of discretization error. Examples of 
residual-based methods are error transport equations (both continuous and discrete) and finite element residual 
methods. As is shown in the next section, all of these residual-based methods are related through the truncation 
error. The truncation error can be approximated either by inserting the exact solution to the mathematical model (or 
an approximation thereof) into the discrete equation or by inserting the discrete solution into the continuous 
mathematical model. The former is the discrete residual which is used in most discrete discretization error transport 
equations. The latter is simply the definition of the finite element residual. The use of adjoint methods to extend 
discretization error estimation methods to provide error estimates in system response quantities is also discussed 

1. Discretization Error Transport Equations 
Discretization error is transported through the domain in a similar fashion as the solution in the underlying 

mathematical model (Ferziger and Peric, 2002). For example, if a mathematical model governs the convection and 
diffusion of a scalar variable, then a discrete solution to the mathematical model will contain discretization error that 
is also convected and diffused. Babuska and Rheinboldt (1978a) appear to be the first to develop such a 
discretization error transport equation within the context of the finite element method. However, rather than solve 
this transport equation directly for the discretization error, the typical approach used in finite elements is to use this 
equation to either indirectly bound the error (explicit residual methods) or approximate its solution (implicit residual 
methods). The solution of error transport equations with finite volume schemes can be found in Zhang et al. (2000) 
and Shih and Williams (2009).  

Continuous Discretization Error Transport Equation 
The following development is applicable to any discretization approach and is based on the generalized 

truncation error expression developed in Roy (2009). Consider a (possibly nonlinear) governing equation operator 
from the mathematical model L(⋅) and a discrete equation operator Lh(⋅). These continuous and discrete operators are 

solved exactly by u~  (the exact solution to the mathematical model) and uh (the exact solution to the discrete 
equations), respectively. Thus we can write: 

0)~( =uL  (17) 

and 

0)( =hh uL  (18) 

Furthermore, the partial differential equation and the discretized equation are related through the generalized 
truncation error expression (Roy, 2009) as 

)()()( uTEuLuL hh +=  (19) 
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which assumes some suitable mapping of the operators onto either a continuous or discrete space. Substituting uh 
into Equation (19) and then subtracting Equation (17) gives: 

0)()~()( =+− hhh uTEuLuL
.
 (20) 

If the equations are linear, or if they are linearized, then we have )~()~()( uuLuLuL hh −=− . With the definition 

of the discretization error 

uuhh
~−=ε  (21) 

we can thus rewrite Equation (20) as 

)()( hhh uTEL −=ε
.
 (22) 

Equation (22) is the (continuous) mathematical model that governs the transport of the discretization error εh 
through the domain. Furthermore, the truncation error acting upon the discrete solution serves as a source term 
which governs the local generation or removal of discretization error due to the local discretization parameters (∆x, 
∆y, etc.). Equation (22) is called the continuous discretization error transport equation. This equation can be solved 
for the discretization error in the solution variables assuming that the truncation error is known or can be estimated.  

Discrete Discretization Error Transport Equation 
A discrete version of the discretization error transport equation can be derived as follows. First the exact solution 

to the mathematical model u~  is substituted into Equation (19) and then Equation (18) is subtracted to get:  

0)~()~()( =+− uTEuLuL hhhh .
 (23) 

If the equations are again linear (or linearized), then this equation can be rewritten as 

)~()( uTEL hhh −=ε
.
 (24) 

Equation (24) is the discrete equation that governs the transport of the discretization error εh through the domain and 
is therefore called the discrete discretization error transport equation. This equation can be solved for the 
discretization error if the truncation error and the exact solution to the original partial differential equation (or an 
approximation of it) are known. 

Approximating the Truncation Error 
While the development of error transport equations is relatively straightforward, questions remain as to the 

treatment of the truncation error which acts as the source term. The truncation error can be difficult to derive for 
complex, nonlinear numerical flux schemes such as those used for the solution to the compressible Euler equations 
in fluid dynamics. However, if the truncation error can be reliably approximated, then this approximation can be 
used as the source term for the error transport equation.  

Here we present three approaches for approximating the truncation error, with the first two approaches beginning 
with the generalized truncation error expression given by Equation (19) (Roy, 2009). In the first approach, the exact 

solution to the mathematical model u~  is inserted into Equation (19). Since this exact solution will exactly solve the 

mathematical model, the term 0)~( =uL , thus allowing the truncation error to be approximated as: 

)~()~( uLuTE hh =
.
 (25) 

Since this exact solution is generally not known, it could be approximated by plugging an estimate of the exact 
solution, for example from Richardson extrapolation or any other local error estimator, into the discrete operator: 
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)()( REhREh uLuTE ≈ .  

Alternatively, the solution from a fine grid solution uh could be inserted into the discrete operator for a coarse grid 
Lrh(⋅): 

                       
)(

1
)(

1
)~(

1
)~( hrhphrhprhph uL

r
uTE

r
uTE

r
uTE =≈= .  

Note that the subscript rh denotes the discrete operator on a grid that is a factor of r coarser in each direction than 
the fine grid. For example, r = 2 when the coarse mesh is formed by eliminating every other point in each direction 
of a structured mesh. This approach was used by Shih and Qin (2007) to estimate the truncation error for use with a 
discrete discretization error transport equation.  

A second approach for estimating the truncation error is to insert the exact solution to the discrete equations uh 
into Equation (19). Since this solution exactly solves the discrete equations 0)( =hh uL , we have: 

)()( hhh uLuTE −=
.
 (26) 

If a continuous representation of the solution is available then this evaluation is straightforward. In fact, the right-
hand side of Equation (26) is the definition of the finite element residual that is given in the next section. For other 
numerical methods (e.g., finite difference and finite volume), a continuous projection of the numerical solution must 
be made in order to estimate the truncation error. For example, Sonar (1993) formed this residual by projecting a 
finite volume solution onto a finite element subspace with piece-wise linear shape functions.  

A third approach that is popular for hyperbolic problems (e.g., compressible flows) is based on the fact that 
central-type differencing schemes often require additional numerical (artificial) dissipation to maintain stability and 
to prevent numerical oscillations. This numerical dissipation can either be explicitly added to a central differencing 
scheme (e.g., see Jameson et al., 1981) or incorporated as part of an upwind differencing scheme. In fact, it can be 
shown that any upwind scheme can be written as a central scheme plus a numerical dissipation term (e.g., Hirsch, 
1990). These two approaches can thus be viewed in the context of central schemes with the numerical dissipation 
contributions serving as the leading terms in the truncation error. While this approach may only be a loose 
approximation of the true truncation error, it merits discussion due to the fact that it can be readily computed with 
little additional effort. 

System Response Quantities 
A drawback to the error transport equation approach is that it provides for discretization error estimates in the 

local solution variables, but not in system response quantities. While adjoint methods can be used to provide error 
estimates in the system response quantities (see Section II.B.3), Cavallo and Sinha (2007) have developed a simpler 
approach which uses an analogy with experimental uncertainty propagation to relate the local solution errors to the 
error in the system response quantity. However, their approach appears to provide extremely conservative error 
bounds for integrated quantities since it does not allow for the cancellation of competing errors. A less conservative 
approach would be to use the local error estimates to correct the local quantities, then compute the integrated 
quantity with these corrected values. This “corrected” integrated quantity could then be used to provide the desired 
discretization error estimate (Oberkampf and Roy, 2010). 

2. Finite Element Residual Methods 
In a broad mathematical sense, a residual refers to what is left over when an approximate solution is inserted into 

an equation. For linear systems, iterative convergence is often assessed in terms of the iterative residuals which are 
found by substituting an approximate iterative solution into the discrete equations. Consider now the general 

mathematical operator 0)~( =uL  which is solved exactly by u~ . Because the finite element method provides for a 

continuous representation of the numerical solution uh, it is natural to define the finite element residual in a 
continuous sense over the domain as 

)()( hh uLu =ℜ
.
 (27) 
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In a manner analogous to the development of the previous section, a continuous discretization error transport 
equation can be derived within the finite element framework (Babuska and Rheinboldt, 1978a). This so-called 
residual equation has three different types of terms: 1) interior residuals that determine how well the finite element 
solution satisfies the mathematical model in the domain, 2) terms associated with any discretized boundary 
conditions on the domain boundary (e.g., Neumann boundary conditions), and 3) interelement residuals which are 
functions of the discontinuities in normal fluxes across element-element boundaries (Ainsworth and Oden, 2000). It 
is the treatment of these three terms that differentiates between explicit and implicit residual methods.  

Explicit Residual Methods 
Explicit residual methods are those which employ information available from the finite element solution along 

with the finite element residuals to directly compute the error estimate. First developed by Babuska and Rheinboldt 
(1978b), explicit residual methods lump all three types of residual terms under a single, unknown constant. The 
analysis requires the use of the triangle inequality, which does not allow for cancellation between the different 
residual types. Due both to the use of the triangle inequality and the methods for estimating the unknown constant, 
explicit residual methods are conservative estimates of the discretization error. They provide an element-wise 
estimate of the local contribution to the bound for the global energy norm of the error, but not a local estimate of the 
true error, which would include both local and transported components. Since explicit residual methods deal only 
with local contributions to the error, they can also be used for solution adaptation procedures. Stewart and Hughes 
(1998) have provided a tutorial on explicit residual methods and their relationship to a priori error estimation. 

Implicit Residual Methods 
Implicit residual methods avoid the approximations required in explicit residual methods by seeking solutions to 

the residual equation which governs the transport and generation of the discretization error. In order to achieve non-
trivial solutions to the global residual equation, the mesh would either have to be refined or the order of the finite 
element basis functions increased. Both of these approaches would be significantly more expensive than obtaining 
the original finite element solution and therefore are not considered practical. Instead, the global residual equation is 
decomposed into a series of uncoupled, local boundary value problems which will approximate the global equation. 
These local problems can be solved over a single element using the element residual method (Demkowicz, 1984; 
Bank and Weiser, 1985) or over a small patch of elements using the subdomain residual method (Babuska and 
Rheinboldt, 1978a,b). The solution to the local boundary value problems provides the local discretization error 
estimate, while the global error estimate is simply summed over the domain. By directly treating all three types of 
terms that show up in the residual equation, implicit residual methods retain more of the structure of the residual 
equation than do the explicit methods, and thus should in theory provide tighter error bounds.   

3. Adjoint Methods for System Response Quantities 
Both error transport equations and finite element residual methods give localized estimates of the discretization 

error, which can then be combined through an appropriate norm to provide quantitative measures of the overall 
“goodness” of the discrete solutions. However, the scientific computing practitioner is often instead interested in 
system response quantities that can be post-processed from the solution. These system response quantities can take 
the form of integrated quantities (e.g., net flux through or force acting on a boundary), local solution quantities (e.g., 
maximum stress or maximum temperature), or even an average of the solution over some region. 

Adjoint methods in scientific computing were initially used for design optimization problems (e.g., Jameson, 
1988). In the optimization setting, the adjoint (or dual) problem can be solved for sensitivities of a solution 
functional (e.g., a system response quantity) that one wishes to optimize relative to some chosen design parameters. 
The strength of the adjoint method is that it is efficient even when a large number of design parameters are involved. 
In the context of optimization in scientific computing, adjoint methods can be thought of as constrained optimization 
problems where a chosen solution functional is to be optimized subject to the constraint that the solution must also 
satisfy the mathematical model (or possibly the discrete equations).  

Adjoint methods can also be used for estimating the discretization error in a system response quantity in 
scientific computing applications. Consider a scalar solution functional fh(uh) evaluated on mesh h. An 
approximation of the discretization error in this functional is given by  

)~()( ufuf hhhh −=ε
.
 (28) 

Performing a Taylor series expansion of )~(ufh  about the discrete solution gives 
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( )h
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h
hhh uu

u
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ufuf

h

−
∂
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+≅ ~)()~(  (29) 

where higher order terms have been neglected. Next, an expansion of the discrete operator Lh(⋅) is performed at u~  
about uh:  

( )h
u

h
hhh uu

u

L
uLuL

h

−
∂
∂

+≅ ~)()~(  (30) 

where )~(uLh  is the discrete residual, an approximation of the truncation error from Equation (25), and 

hu

h

u

L

∂
∂

 is 

the Jacobian which linearizes the discrete equations with respect to the solution. This Jacobian may already be 
computed since it can also be used to formulate implicit solutions to the discrete equations and for design 
optimization. Since Lh(uh) = 0, Equation (30) can be rearranged to obtain: 
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Substituting this equation into Equation (29) gives 
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or 

)~()()~( uLufuf h
T

hhh Ψ+≅  (33) 

where Ψ T is the row vector of discrete adjoint sensitivities. The adjoint sensitivities are found by solving  
1−
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which can be put into the standard linear equation form by transposing both sides of Equation (34) 
T

u
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. (35) 

The adjoint solution provides the linearized sensitivities of the solution functional fh to perturbations in the 
discrete operator Lh(⋅). As such, the adjoint solution vector components are often referred to as the adjoint 
sensitivities. Equation (33) shows that the adjoint solution provides the sensitivity of the discretization error in the 
solution functional f(⋅) to the local sources of discretization error (i.e., the truncation error) in the domain. This 
observation can be used as the basis for providing solution adaptation targeted for solution functionals. Because the 
discrete operator Lh(⋅) is used above, this approach is called the discrete adjoint method. A similar analysis using 
expansions of the continuous mathematical operator L(⋅) and functional f(⋅) can be performed to obtain discretization 
error estimates using the continuous adjoint method. Both continuous and discrete adjoint methods also require 
appropriate formulations of initial and boundary conditions. 

Adjoint Methods in the Finite Element Method 
While the use of explicit and implicit residual methods for finite elements has reached a certain level of maturity 

for elliptic problems (Ainsworth and Oden, 2000), the drawback to these methods is that they only provide error 
estimates in the energy norm of the discretization error. While the energy norm is a natural quantity by which to 
judge the overall goodness of a finite element solution, in many cases scientific computing is used to make an 
engineering decision with regards to a specific system response quantity (called “quantities of interest” by the finite 
element community). Extension of both the explicit and implicit residual methods to provide error estimates in a 
system response quantity generally requires the solution to the adjoint system (i.e., the dual problem).  
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In one approach (Ainsworth and Oden, 2000), the discretization error in system response quantity is bounded by 
the product of the energy norm of the adjoint solution and the energy norm of the error in the original solution. 
Assuming the solutions are asymptotic, the use of the Cauchy-Schwarz inequality produces a conservative bound. In 
this case, the discretization error in the system response quantity will be reduced at twice the rate of the solution 
error. In another approach (Estep et al., 2000), the error estimate in the system response quantity is found as an inner 
product between the adjoint solution and the residual. This approach results in a more accurate (i.e., less 
conservative) error estimate at the expense of losing the rigorous error bound. For more information on error 
estimation using adjoint methods in finite elements, see Johnson and Hansbo (1992), Paraschivoiu et al. (1997), 
Rannacher and Suttmeier (1997), Estep et al. (2000), and Cheng and Paraschivoiu (2004).  

Adjoint Methods in the Finite Volume Method 
Pierce and Giles (2000) have proposed a continuous adjoint approach that focuses on system response quantities 

(e.g., lift and drag in external aerodynamics) and is not tied to a specific discretization scheme. They use the adjoint 
solution to relate the residual error in the mathematical model to the resulting error in the integral quantity of 
interest. Their approach also includes a defect correct step that increases the order of accuracy of the integral 
quantity. For example, if the original solution and the adjoint solution are both second-order accurate, then the 
integral quantity will have an order of accuracy equal to the product of the orders of the original and adjoint 
solutions, or fourth order. Their approach effectively extends the superconvergence property of finite elements to 
other discretization schemes, and can also be used to further increase the order of accuracy of the integral quantities 
for the finite element method. 

Venditti and Darmofal (2000) have extended the adjoint approach of Pierce and Giles (2000) to allow for the 
estimation of local mesh size contributions to the integral quantity of interest. Their approach is similar to that 
described above, but expands the functional and discrete operator on a fine grid solution uh about a coarse grid 
solution urh. The solution is not required on the fine grid, only residual evaluations. Their approach is thus a discrete 
adjoint method rather than continuous adjoint. In addition, their focus is on developing techniques for driving a 
mesh adaptation process. Their initial formulation was applied to 1D inviscid flow problems, but they have also 
extended their approach to 2D inviscid and viscous flows (Venditti and Darmofal, 2002, 2003). While adjoint 
methods hold significant promise as discretization error estimators for solution functionals, they currently require 
significant code modifications to compute the Jacobian and other sensitivity derivatives and have not yet seen 
widespread use in commercial scientific computing software.  

III. Reliability of Discretization Error Estimators 
One of the key requirements for reliability of any of the discretization error estimators discussed in this paper is 

that the solution(s) must be in the asymptotic range. This section provides a discussion of just what this asymptotic 
range means for discretization approaches involving both mesh (h) refinement and order (p) refinement. Regardless 
of whether h- or p-refinement is used, the demonstration that the asymptotic range has been achieved generally 
requires that at least three discrete solutions be computed. Demonstrating that the asymptotic range has been reached 
can be surprisingly difficult for complex scientific computing applications involving nonlinear, hyperbolic, coupled 
systems of equations. It is unlikely that the asymptotic range will be reached without the use of solution adaptation 
(e.g., see Roy, 2009 and Oberkampf and Roy, 2010). 

A. Asymptotic Range 
The asymptotic range is defined differently depending on whether one is varying the mesh resolution or the 

formal order of accuracy of the discretization scheme. When mesh refinement is employed, then the asymptotic 
range is defined as the sequence of systematically-refined meshes over which the discretization error reduces at the 
formal order of accuracy of the discretization scheme. Examining the discretization error expansion for a pth-order 
accurate scheme given by Equation (9), the asymptotic range is achieved when h is sufficiently small that the hp 
term is much larger than all of the higher-order terms combined. Due to possible differences in the signs for the 
higher-order terms, the behavior of the discretization error outside of the asymptotic range can be extremely 
unpredictable. Confirming that the asymptotic range has been reached using systematic mesh refinement is achieved 
by evaluating the observed order of accuracy. The observed order assesses the behavior of the discrete solutions 
over a range of meshes and its evaluation is discussed in the next section.  

For discretization methods involving order refinement, the asymptotic range is determined by examining the 
behavior of the numerical solutions with successively-refined basis functions, all on the same domain mesh. As the 
basis functions are refined and the physical phenomena in the problem are resolved, the discrete solutions will 
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eventually become better approximations of the exact solution to the mathematical model. Convergence is best 
monitored with error norms since convergence can be oscillatory with increased basis order. An example of 
hierarchical basis functions used within the finite element method is given by Bank (1996). 

B. Observed Order of Accuracy 
The observed order of accuracy is the measure that is used to assess the confidence in a discretization error 

estimate. When the observed order of accuracy is shown to match the formal order, then one can have a high degree 
of confidence in the error estimate. When the exact solution is not known, three numerical solutions on 
systematically-refined meshes are required to calculate the observed order of accuracy. For the observed order of 
accuracy to match the formal order of the discretization scheme, the requirements are the same as those given in 
Section II.A.1 for Richardson extrapolation. When any of these requirements fail to be met, unrealistic values for the 
observed order of accuracy can be obtained (e.g., see Roy, 2003; Salas, 2006; and Eca and Hoekstra, 2009). 

1. Constant Grid Refinement Factor 
Consider a pth-order accurate scheme with numerical solutions on a fine mesh (h1), a medium mesh (h2), and a 

coarse mesh (h3). For the case of a constant grid refinement factor, i.e., 
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Neglecting terms of order hp+1 and higher allows us to recast these three equations in terms of a locally-observed 
order of accuracy p̂ : 
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which will only match the formal order of accuracy if the higher order terms are indeed small. Subtracting f2 from f3 
and f1 from f2 yields: 
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p
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Dividing Equation (38) by Equation (39) gives 
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ff

ff ˆ

12
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−
−

. (40) 

Taking the natural log of both sides and solving for the observed order of accuracy p̂  gives: 
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(41) 

Consistent with the development of generalized Richardson extrapolation in Section II.A.1, the Richardson 

extrapolated estimate of the exact solution f  and the leading error term coefficient gp are given by: 
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ff
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and 
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ff
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1 −=
.
 (43) 

Note that it is only when the observed order of accuracy  matches the formal order of the numerical scheme that 
we can expect the discretization error estimate given by Equation (42) to be accurate. This is equivalent to saying 
that the solutions on all three meshes are in the asymptotic range and the higher-order terms in Equations (36) are 
small. In practice, when this locally observed order of accuracy is used for the extrapolation estimate, it is often 
limited to be in the range 

                          fpp ≤≤ ˆ1  

where pf is the formal order of accuracy of the discretization scheme. Allowing the observed order of accuracy to 
increase above the formal order can result in discretization error estimates that are not conservative (i.e., they 
underestimate the error).  

2. Non-Constant Grid Refinement Factor 
For the case of non-constant grid refinement factors 
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where r12 ≠ r23, the determination of the observed order of accuracy p̂  is more complicated. For this case, the 

following transcendental equation (Roache, 1998) must be solved for p̂ : 
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This equation can be easily solved with a simple direct substitution iterative procedure to give 
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(45) 

where an initial guess of f
k pp =ˆ  (the formal order of the scheme) can be used (Oberkampf and Roy, 2010). Once 

the observer order of accuracy is found, the estimate of the exact solution f  and the leading error term coefficient 

gp are given by Equations (42) and (43) but replacing the constant grid refinement factor with r = r12.  

3. Application to System Response Quantities 
Recall that system response quantities are defined as any solution property derived from the solution to the 

mathematical model its discrete approximation. Examples of common system response quantities in scientific 
computing are lift and drag in aerodynamics, heat flux through a surface in heat transfer analysis, and maximum 
stress is a structural mechanics problem. The observed order of accuracy for system response quantities can be 
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evaluated by the approaches described earlier in this section. For this observed order of accuracy to match the formal 
order of the discretization scheme, there is an additional requirement beyond those described in Section II.A.1 for 
Richardson extrapolation. This additional requirement pertains to the order of accuracy of any numerical 
approximations used to compute the system response quantity. When the system response quantity is an integral, a 
derivative, or an average, then the numerical approximations used in its evaluation must be of at least the same order 
of accuracy as the underlying discretization scheme. In most cases, the behavior of integrated quantities and 
averages are better behaved and converge more rapidly with mesh refinement than local quantities. However, in 
some cases the errors due to the numerical quadrature can interact with the numerical errors in the discrete solution 
and adversely impact the observed order of accuracy computation. An example of these interactions for the 
computation of drag on an inviscid supersonic blunt body problem (mixed elliptic/hyperbolic) is given by Salas and 
Atkins (2009).  

4. Application to Local Quantities 
Problems often arise when the observed order of accuracy is evaluated on a point-by-point basis in the domain. 

A simple example of a case where this local evaluation of the order of accuracy will fail is given in Figure 3 which 
shows the discretization error on three different meshes along a line. If the meshes are refined by a factor of two and 
the formal order of the scheme is first-order accurate, then we expect the discretization error to drop by a factor of 
two for each refinement. However, as can commonly occur in practical applications, part of the domain approaches 
the exact solution from above and part of it from below. Even if we neglect any other sources of numerical error 
(such as round-off error), the observed order of accuracy at this crossover point will be undefined, even though the 
discretization error on all three meshes is exactly zero.   

 
 

Figure 3. Simple example of how the observed order of accuracy computation will fail when applied locally over the 
domain: the observed order will be undefined at the crossover point. 

 
Another example of the problems that can occur when examining the observed order of accuracy on a point-by-

point basis through the domain was given by Roy (2003) and is shown in Figure 4. The problem of interest is 
inviscid, hypersonic flow over a sphere-cone geometry. The mathematical character of this problem is elliptic 
immediately behind the normal shock wave that forms upstream of the sphere, but hyperbolic over the rest of the 
solution domain. The observed order of accuracy for the surface pressure is plotted versus the normalized axial 
distance based on three uniformly refined meshes. The finest mesh is 1024×512 cells and a refinement factor of two 
is used to create the coarse meshes. While a formally second-order accurate finite volume discretization was used, 
flux limiters were employed in the region of the shock wave discontinuity to capture the shock in a monotone 
fashion by locally reducing the formal order of accuracy to one. The observed order of accuracy is indeed first order 
and well-behaved in the elliptic region (up to x/RN of 0.2). However, in the hyperbolic region, the observed order of 
accuracy is found to undergo large oscillations between -4 and +8, with a few locations being undefined. Farther 
downstream, the observed order again becomes well-behaved with values near unity. The source of these 
oscillations is likely the local characteristic waves generated when the shock moves from one grid line to another. 
(This is the same example that is given in Figure 1 showing the local and transported components of the 
discretization error.) Clearly extrapolation-based error estimates using the local order of accuracy would not be 
reliable in this region.  
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Figure 4. Observed order of accuracy in surface pressure for inviscid hypersonic flow over a sphere-cone geometry 

(from Roy, 2003). 

  

IV. Discretization Error and Uncertainty 
As discussed previously, when the observed order of accuracy matches the formal order, then one can have high 

confidence that the error estimate is accurate and therefore use the error estimate to correct the solution. However, 
the much more common case is when the formal order does not match the observed order. In this case, the error 
estimate is much less reliable and should generally be converted into a numerical uncertainty. While the difference 
between the discrete solution and the (unknown) exact solution to the mathematical model is still truly an error, our 
lack of knowledge of the true value of this error forces us to represent it as an epistemic uncertainty. Epistemic 
uncertainties are distinct from aleatory (or random) uncertainties in that they are due to a lack of knowledge. They 
can be reduced by providing more information, in this case, additional computations on more refined meshes. The 
treatment of these numerical uncertainties and their effects on the predictive capability of scientific computing 
simulations is discussed in Oberkampf and Roy (2010).  

A. Roache’s Grid Convergence Index (GCI) 
Roache (1994) proposed the Grid Convergence Index, or GCI, as a method for uniform reporting of grid 

refinement studies. The GCI combines the often reported relative difference between two discrete solutions with the 

)1( −pr  factor required in the denominator. The GCI takes the further step of converting the error estimate into an 

error or uncertainty band, which is again appropriate when one does not have a high degree of confidence in the 
error estimate. 

1. Definition 
The GCI for the fine grid numerical solution is defined as (Roache, 1998) 

1

12

1 f

ff

r

F
GCI

p
s −
−

=
.
 (46) 

where Fs is a factor of safety (see the discussion below and in the next section). The key features of the GCI are the 

use of available discrete solution values f1 and f2, proper accounting of the 1−pr  factor in the denominator, 
absolute values to convert the error estimate to an error band, and the addition of a factor of safety Fs. When only 
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two discrete solutions are available, then the formal order of accuracy of the discretization scheme should be used in 
the definition of the GCI along with a factor of safety of Fs = 3. However, when three discrete solutions are available 
then the observed order of accuracy should be computed to assess the reliability of the error estimates. While this 
observed order of accuracy should be computed locally, a global averaged value should be used in the GCI 
computations along with a less conservative factor of safety of Fs = 1.25 (Roache, 2003; Cadafalch et al., 2002). As 
a final note, when the discrete solution values are expected to be near zero, then the normalization by f1 in the 
denominator should be omitted. For a discussion of the relationship between the GCI and an uncertainty based 
directly on Richardson extrapolation, see Roy (2001). 

2. Factor of Safety 
It is important to include the factor of safety in the GCI and the RDEband. Both of these error bands are based on 

Richardson extrapolation, and we don’t know a priori whether the estimated exact solution is above or below the 
true exact solution to the mathematical model. Consider Figure 5, which shows two numerical solutions (f1 and f2), 

the estimated exact solution from Richardson extrapolation f , and the true exact solution f
~

. In general, there is an 

equal chance that the true exact solution is above or below the estimated value. Thus a factor of safety of Fs = 1 

centered about the fine grid numerical solution f1 will only provide 50% chance that the true error f
~

 is within the 

error band. Increasing the factor of safety should increase the confidence that the true error is within the error band. 
This argument is made simply to justify the use of a factor of safety in converting the discretization error estimate 
into an epistemic uncertainty. It in no way implies that the resulting uncertainty is a randomly distributed variable 
(i.e., an aleatory uncertainty).   

 
Figure 5. Factor of safety for extrapolation-based error bands (from Roy, 2005). 

 
There is currently a debate going on in the extrapolation-based error estimation community regarding the factor 

of safety in the GCI and related uncertainty estimates. In the current formulation of the GCI, Roache (1998, 2003) 
recommends that the factor of safety be decreased from Fs = 3 to Fs = 1.25 when three discrete solutions are 
available on systematically-refined meshes. Roache’s stated goal in formulating the GCI is to achieve a 95% 
certainty (i.e., that it provide conservative uncertainty estimates in 19 out of 20 cases) over a wide range of 
applications. Other authors have proposed different formulations for the factor of safety which allow its value to 
vary depending on how well the observed order of accuracy matches the formal order (e.g., Stern et al., 2001). Our 
own view is that the reliability of any discretization error or uncertainty estimate can only be determined by 
assessing the asymptotic nature of the discrete solutions. When the solutions are found to be far outside the 
asymptotic range, the reliability of the error/uncertainty estimate will be poor and its behavior erratic. In this case, 
no value for the factor of safety is guaranteed to be conservative. 

3. Implementation 
In order to avoid problems when the solution values are near zero, most recent implementations of the GCI omit 

the normalization by the fine grid solution in the denominator, i.e., the GCI is redefined as 
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This implementation thus provides an uncertainty estimate for the fine grid solution in the same units as the solution 
itself. Roache (1998) provides clear guidelines for choosing the factor of safety when: 

1. solutions on only two grids are available (Fs = 3), or 

2. solutions on three grids are available and the observed order of accuracy is calculated and shown to match 

the formal order of the scheme (Fs = 1.25). 

In the first case, when only two grid levels are available, GCI estimates should be used with caution since one has no 
information on whether the solutions are in (or even near) the asymptotic range. Far from the asymptotic range, all 
approaches for estimating discretization error or uncertainty will be unreliable (see Section III). For the second case, 
when three solutions are available, if the observed order of accuracy matches the formal order, then Fs = 1.25 is used 
and either the formal or observed order of accuracy can be employed (since they match, this choice will have little 
effect on the estimate). Difficulties arise when the observed and formal orders of accuracy do not agree. 
Furthermore, exactly how does one define agreement? Ideally, one would simply continue to systematically refine 
the mesh until the solutions are demonstrably asymptotic, possibly incorporating local mesh refinement to achieve 
the asymptotic range faster. When no additional solutions are possible due to resource limitations, then Roache 
(1998) provides anecdotal examples of how to apply the GCI for a wide range of situations.  

We propose the following procedure for calculating the GCI when solutions on three or more systematically-
refined meshes are available. In all cases, the non-normalized GCI given by Equation (47) is used. When the 
observed order of accuracy p̂  agrees with the formal order pf  within 10%, then the formal order of accuracy along 

with a factor of safety of 1.25 is used in the GCI calculation. When the observed order of accuracy does not agree 
within 10%, then a factor of safety of three (Fs = 3.0) is used. Furthermore, the order of accuracy is limited between 
0.1 and the formal order. Allowing the order of accuracy to be much larger than the formal order causes the 
uncertainty estimates to be unreasonably small since the GCI goes to zero as p → ∞, while allowing the order of 
accuracy to go to zero causes the uncertainty estimate to approach infinity. These recommendations are summarized 
in Table 1. While these recommendations are “reasonable” (Roache, 2009), they require testing to see if they 
produce the desired 95% uncertainty bands on a wide range of problems. 

 
Table 1. Proposed implementation of the GCI for solutions on three or more systematically-refined grids using 

Equation (47). 

f

f

p

pp −ˆ
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≤ 0.1 1.25 pf 

   

> 0.1 3.0 ( )( )fpp ,ˆ,1.0maxmin  

 

4. Reliability of the GCI 
Three recent studies have examined the reliability of the GCI. Eca and Hoekstra (2002) examined a wide range 

of fluid flow problems using a large number of non-integer refined meshes (at least sixteen different grids for each 
case). They employed a locally-evaluated observed order of accuracy and found that the GCI with a factor of safety 
of Fs = 1.25 worked well on the finer meshes. Cadafalch et al. (2002) examined five test cases for fluid flow (some 
with heat transfer) using four to seven meshes for each case with a grid refinement factor of two. In their case, they 
employed a globally-determined order of accuracy found by averaging locally-computed values. They also found 
good results for the GCI with a factor of safety of 1.25. Finally, Eca et al. (2004) looked at potential flow solutions 
around 2D airfoils where exact solutions were available. They achieved good uncertainty estimates using the GCI 
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when the locally-evaluated observed order of accuracy wasn’t “significantly larger” than the formal order of the 
method. See Pelletier and Roache (2006) for additional discussion of the effectiveness of the GCI.  

V. Mesh Refinement Issues 
Second only to the inability to achieve the asymptotic grid convergence range, the failure of extrapolation-based 

methods for estimating discretization error can often be tied to problems achieving uniform mesh refinement on the 
meshes in question (e.g., Baker, 2005; Salas, 2006). The use of locally-refined meshes, meshes refined in only one 
coordinate direction, and refinement where the refinement factor varies locally over the domain are all examples of 
improper approaches to mesh refinement. When combined with extrapolation-based methods for error or uncertainty 
estimation, these approaches are virtually guaranteed to fail. 

A. Measuring Systematic Mesh Refinement 
Recall the definition of systematic mesh refinement given in Section II.A.1, which requires that the mesh 

refinement be both uniform and consistent (Oberkampf and Roy, 2010). Uniform refinement requires that the mesh 
be refined by the same factor over the entire domain. This does not mean that the mesh itself must be uniform over 
the domain, only that the ratio of grid refinement from one mesh to another must not vary over the domain. 
Consistent refinement requires that the meshes should maintain the same grid quality (skewness, aspect ratio, 
stretching factor, etc.) or possibly provide for improved grid quality with mesh refinement.  

A simple technique to ensure that two meshes retain the same volume ratio over the domain was developed by 
Roy et al. (2007) and applied to 3D unstructured Cartesian meshes used for aerodynamic force and moment 
computations. The level of uniformity of the mesh refinement was evaluated by comparing cell volume ratios 
between the two successive mesh levels as follows. First, the local cell volumes were calculated and stored at the 
nodes. Next, the fine grid volume distribution was interpolated onto the coarse grid with using an inverse distance 
function. Now that the coarse grid contains both fine and coarse grid cell volume information, the coarse to fine grid 
volume ratios can be calculated and examined. The volume ratios between two mesh levels are shown in Figure 6 
and are fairly constant in the domain around a value of 1.6, with the exception of the regions where the Cartesian 
grid layers transition from one cell size to another. This approach could be easily extended to other mesh quality 
parameters such as skewness, aspect ratio, stretching factor, etc. (note: mesh quality was not an issue for the 
Cartesian meshes in this example).  

 

 
a)       b) 

Figure 6. Contour plots of the cell volume ratio between the two unstructured Cartesian mesh levels for a) the entire 
missile geometry and b) a close-up of the canard (from Roy et al., 2007). 
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B. Grid Refinement Factor 
As discussed earlier, the grid refinement factor is a measure of the ratio of mesh length or time scales in each of 

the coordinate directions. The refinement factor is simple to computer for structured grids, while for unstructured 
grids the refinement factor can be computed as follows. Assuming that the mesh has been refined uniformly, the 
refinement factor can be computed as a function of the total number of cells or elements in the mesh by 

d
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where Nk is the number of cells/elements on mesh k and d is the dimensionality of the problem (d = 1 for 1D, d = 2, 
for 2D, etc.). Note that in the case where local mesh refinement is applied from one mesh to another, the grid 
refinement factor will vary over the domain and the numerical solutions should no longer be used in an extrapolation 
procedure or for the computation of the observed order of accuracy.  

C. Fractional Uniform Refinement 
It is not necessary to use grid refinement factors of two, a process referred to as grid doubling or grid halving, 

depending on whether one starts with the fine mesh or the coarse mesh. For simple meshes, grid refinement factors 
as small as r = 1.1 can be employed (Roache, 1998). Since the refinement must always be uniform, we will herein 
refer to this procedure as fractional uniform refinement. When refinement factors near one are used, one should take 
special care to ensure that round-off error does not become large relative to the difference between the two solutions. 
For example, solving a 2D problem on two meshes of size 100×100 and 101×101 elements (i.e, r = 1.01) could 
easily result in solutions that differed by less than 0.01%. Single precision computations generally provide solution 
errors due to round off of approximately 0.001%, so the expected round-off errors will be only one magnitude 
smaller than the discretization errors. 

Using fractional uniform refinement has the added benefit that it increases the chances of getting discrete 
solutions on multiple meshes into the asymptotic grid convergence range. However, non-integer grid refinement 
factors are difficult to apply to complex mesh topologies, especially those involving significant mesh stretching. For 
simulations using complex, structured meshes, the grid generation can sometimes make up the majority of the 
overall analysis time. Thus, relying on the original grid generation procedure for grid refinement can be expensive; 
furthermore, it is difficult to enforce a constant grid refinement factor over the entire domain. Higher-order 
interpolation can be used for non-integer grid refinement. Here it is again better to start with the fine mesh and then 
coarsen (at least for structured meshes); however, this approach may not preserve the underlying surface geometry, 
especially in regions of high curvature.  

When a grid refinement factor of two is employed on structured meshes, there is only significant effort involved 
in generating the fine mesh; the coarser meshes are found by simply removing every other point. The drawback is 
not only that the fine mesh may be unnecessarily expensive, but there is also an increased chance that the coarse 
mesh will be outside the asymptotic grid convergence range.  

Ideally, one would like the ability to simply create a grid and then have a grid generation tool generate a family 
of uniformly-refined meshes based on specified (possibly fractional) refinement factors. Such a capability would 
greatly improve the reliability of extrapolation-based error and uncertainty estimation procedures. To our 
knowledge, this automatic fractional uniform refinement capability does not exist in any commercially-available 
grid generators.  

Finally, if the extrapolation (or error/uncertainty) estimation method is to be applied to the solution point-wise 
through the domain, then it is necessary to get fine grid information onto the coarse grid. This procedure is simple 
for integer refinement since the coarse grid is simply a subset of the fine grid. However, for fractional uniform 
refinement, fine mesh information must be interpolated to the coarse mesh points, possibly with an interpolation 
scheme that has a higher order of accuracy than the underlying numerical solutions (Roache and Knupp, 1993). 

D. Unidirectional Refinement 
It is sometimes the case that the discretization errors come primarily from just one of the coordinate directions. 

In such cases, it can be helpful to perform independent refinement in the coordinate directions to determine which 
one is the primary contributor to the overall discretization error. The approach discussed here is similar to the 
combined space-time method for code order of accuracy verification discussed in Oberkampf and Roy (2010). For 
independent refinement in x and y, we can write the expansion of the numerical solution on mesh k about the exact 
solution to the original partial differential equation as 
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where the error terms for each coordinate direction are included. In order to keep the analysis general, the formal 
order of accuracy in the x direction is assumed to be p and the order of accuracy in the y direction to be q, where the 
two may or may not be equal. Note that for some numerical schemes (e.g., the Lax-Wendroff scheme), a cross term 
gxy(∆x)s(∆y)t  may also be present.  

Consider the case of solutions on two meshes levels (fine: k = 1 and coarse: k = 2) with refinement only in the x 
direction by a factor of rx. As the ∆x element size is refined, the term gy(∆yk)

q will be constant. We are now unable to 

solve for an estimate of the exact solution f
~

, but instead must solve for the quantity 

q
kyx ygff )(
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which includes the error term due to the ∆y discretization. This term will simply be constant on the two meshes since 

the ∆y spacing does not change. Neglecting the higher-order terms in the estimated solution f  results in the 

following two equations  
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and the leading x-direction error term 
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Similarly, introducing a third solution (k = 3) with coarsening only in the y direction allows us to solve for the y-
direction error term 
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The size of the two error terms from Equations (52) and (53) can then be compared to determine the appropriate 
direction for further mesh refinement. In addition, since gx and gy have been estimated, Equation (49) can be used to 

obtain an estimate of f
~

. 

VI. Open Research Issues 
There are a number of issues which are currently active areas of research. These include the presence of 

singularities and discontinuities (especially in hyperbolic problems), oscillatory grid convergence, multiscale 
models, and approaches for estimating discretization errors on coarse grids which are not in the asymptotic range. 

A. Singularities and Discontinuities 
Practical scientific computing applications are fraught with singularities and discontinuities. In some cases, they 

may take the form of relatively weak singularities/discontinuities such as discontinuous surface curvature in a linear 
elasticity analysis. Examples of strong singularities include shock waves in inviscid flow, the leading edge region in 
the flow over a sharp-nosed body, and the interface between two different materials in thermal or structural analysis 
problems. Nature tends to “smooth out” singularities such as the sharp leading edge that takes a more rounded 
appearance under high magnification or the shock wave that actually transports mass, momentum, and energy in the 
upstream direction via molecular motion. However, singularities and discontinuities are much more common than is 
often recognized, especially in idealized geometries and simplified mathematical models. Some examples include 
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flow over a surface with discontinuous slope or curvature, loading of a structure with point loads, and loading of a 
plate with angled holes.  

The presence of singularities and discontinuities can adversely impact our ability to obtain reliable estimates of 
the discretization error as well as our ability to compute the numerical solutions themselves. This is because all of 
the discretization error estimators (and most discretization schemes) require that the solutions be continuous and 
differentiable. Nevertheless, we still must compute numerical solutions to these problems and then estimate the 
discretization error in those solutions.  

Work by Carpenter and Casper (1999) suggests that for the Euler equations on sufficiently refined meshes, the 
simulation of flows containing shock waves will reduce down to first-order accuracy, regardless of the formal order 
of the numerical scheme employed. This reduction to first-order accuracy in the presence of shock waves has also 
been observed by Roy (2001, 2003) for laminar and inviscid hypersonic flows. In these latter cases, flux limiters 
were employed to reduce a formally second-order accurate scheme to first order at a shock wave to prevent 
numerical oscillations.  

Banks et al. (2008) provide an excellent explanation of why the formal order of accuracy of any discretization 
scheme will reduce to first-order accuracy or lower in the presence of discontinuities. They consider the inviscid 
Euler equations for compressible flows. The Euler equations admit discontinuous solutions such as shock waves, 
contact discontinuities, and slip lines. However, in the absence of viscosity which enforces the entropy condition in 
viscous flows, these discontinuous solutions are not unique (i.e., the Euler equations will admit infinitely many jump 
conditions). It is only in the limit of a vanishing viscosity that the correct Rankine-Hugoniot jump conditions are 
met. Note that this non-uniqueness generally does not pose a problem for numerical solutions to the Euler equations 
due to the presence of numerical viscosity in the form of even spatial derivatives in the truncation error. For 
nonlinear discontinuities such as shock waves, numerical schemes reduce down to first-order accuracy. For linear 
discontinuities (i.e., linearly degenerate waves) such as contact discontinuities and slip lines, they perform a 
truncation error analysis to show that most discretization schemes reduce their formal order of accuracy to p/(p+1), 
where p is the formal order of the method for smooth problems. They also provide numerical examples to confirm 
their theoretical analysis. 

Regardless of the discretization scheme employed, the reduction of the order of accuracy to first order in the 
presence of discontinuities results in a numerical scheme that is of mixed order. In this case, the scheme will be 
second-order accurate (or higher) in the smooth regions, but locally first-order accurate at the shock wave. This 
mixed order behavior can lead to non-monotone convergence of the solutions with grid refinement, as is 
demonstrated below. In order to analyze mixed first- and second-order schemes, Roy (2001, 2003) proposed the 
following expansion for the discretization error 

2
21 kkk hghgff ++=  (54) 

In this approach, terms accounting for the formal order of accuracy in both smooth regions (p = 2) and non-smooth 
regions (p = 1) are included. If three mesh levels are available, then Equation (54) can be solved for the two 

unknown coefficients g1 and g2 as well as the estimated exact solution f . Consider the case where three discrete 

solutions fk are available on fine (k = 1), medium (k = 2), and coarse (k = 3) meshes, where the grid refinement factor 
is held constant between mesh levels (i.e., r12 = r23 = r). If we further arbitrarily set h1 = 1 (this will simply require 
the absorbing of constants in the gk coefficients), then the expressions for the three unknowns become: 
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 (55) 

These three expressions can be used to not only estimate the discretization error in the numerical solutions, but also 
to examine the behavior of the two different error terms in the discretization error expansion given by Equation (54). 

This mixed-order analysis method has been applied to the dimensionless frictional resistance (i.e., skin friction 
coefficient) at points along the surface of a sphere-cone geometry in laminar, hypersonic flow (Roy, 2001). The 
results are shown below in Figure 7a for the behavior of the skin friction coefficient with mesh refinement. The 
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solution displays non-monotone behavior as the skin friction first decreases with mesh refinement and then begins to 
increase. Insight into why this non-monotone behavior occurs can be found by examining the discretization error 
given in Figure 7b which also shows the first- and second-order error terms from Equation (54). In this case, both 
error terms have the same magnitude near h = 4, but they have opposite signs. This leads to error cancellation at h = 
4 which manifests as a crossing of the estimated exact solution in Figure 7a. Since the two terms have opposite 
signs, when the mesh is sufficiently refined such that the first order term dominates, the skin friction coefficient 
displays a local minimum when plotted versus the mesh spacing h.  
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a)      b) 

Figure 7. Dimensionless frictional resistance at one location on the body as a function of mesh spacing: a) skin friction 
coefficient and b) discretization error (from Roy, 2001). 

 

B. Oscillatory Convergence with Mesh Refinement 
There has been much discussion in recent years on the presence of oscillatory convergence of numerical 

solutions with mesh refinement (e.g., see Coleman et al., 2001; Celik et al., 2005; and Brock, 2007). However, 
examination of the Taylor series expansion of the numerical solution about the exact solution the governing partial 
differential equations in terms of the mesh spacing parameter as given in Equation (5), or even the more general 
series expansion from Equation (6), shows that there can be only a single term that dominates the expansion in the 
limit as h → 0. While this debate may not yet be settled, our opinion is that there can be no oscillatory convergence 
with mesh refinement in the asymptotic grid convergence range. The solution behavior being interpreted as 
oscillatory convergence is mostly likely due to a failure to achieve the asymptotic range (as discussed in Section 
III.A), nonuniform refinement of the mesh (Eca and Hoekstra, 2002), or the presence of non-negligible iterative 
and/or round-off errors. In the case of the former, we do not dispute the fact that the asymptotic range may be 
extremely difficult to achieve for complex scientific computing problems. 

C. Multiscale Models 
A multiscale model is one which resolved different physical phenomena at different mesh resolutions. For some 

multiscale models, the governing equations actually change as the mesh is refined, thus making it difficult to 
separate out issues of verification (mathematics) from those of validation (physics). A classic example of a 
multiscale model is in the Large Eddy Simulation (LES) of turbulent flows. In most LES computations, the mesh 
itself is used as a filter for the small scale turbulent structures. Thus as one refines the mesh, it is equivalent to 
solving the Navier-Stokes equations with a different filter size (i.e., a different set of governing equations). The 
rigorous assessment of numerical errors and physical modeling errors thus becomes extremely difficult since both 
are tied to the mesh spacing. One possible remedy for this problem is to fix the filter width at the coarse grid spacing 
while performing mesh refinement to assess numerical errors (Moin, 2007).  
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D. Coarse Grid Error Estimators 
For scientific computing simulations where the physics and/or geometry are complex, the meshes are often 

under-resolved due to computational resource limitations. This is especially true for 3D time-dependent problems. 
The ideal discretization error estimator is one that not only provides consistent error estimates as the mesh is refined, 
but also provides reliable error estimates on under-resolved coarse grids which are outside of the asymptotic grid 
convergence range. Although often buried deep within the details, all of the discretization error estimation methods 
discussed in this paper require the solutions to be within the asymptotic range. The reliability of discretization error 
estimators when the discrete solutions are not in (and possibly far from) the asymptotic range is an area for further 
investigation.  
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