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a b s t r a c t

An overview of a comprehensive framework is given for estimating the predictive uncertainty of scientific
computing applications. The framework is comprehensive in the sense that it treats both types of uncer-
tainty (aleatory and epistemic), incorporates uncertainty due to the mathematical form of the model, and
it provides a procedure for including estimates of numerical error in the predictive uncertainty. Aleatory
(random) uncertainties in model inputs are treated as random variables, while epistemic (lack of knowl-
edge) uncertainties are treated as intervals with no assumed probability distributions. Approaches for
propagating both types of uncertainties through the model to the system response quantities of interest
are briefly discussed. Numerical approximation errors (due to discretization, iteration, and computer
round off) are estimated using verification techniques, and the conversion of these errors into epistemic
uncertainties is discussed. Model form uncertainty is quantified using (a) model validation procedures,
i.e., statistical comparisons of model predictions to available experimental data, and (b) extrapolation
of this uncertainty structure to points in the application domain where experimental data do not exist.
Finally, methods for conveying the total predictive uncertainty to decision makers are presented. The dif-
ferent steps in the predictive uncertainty framework are illustrated using a simple example in computa-
tional fluid dynamics applied to a hypersonic wind tunnel.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Scientific computing plays an ever-growing role in predicting
the behavior of natural and engineered systems. In many cases,
scientific computing is based on mathematical models that take
the form of coupled systems of nonlinear partial differential equa-
tions. We will refer to the application of a model to produce a result,
often including associated numerical approximation errors, as a
simulation. While scientific computing has undergone extraordi-
nary increases in sophistication over the years, a fundamental
disconnect often exists between simulations and practical applica-
tions. Whereas most simulations are deterministic in nature, engi-
neering applications are steeped in uncertainty arising from a
number of sources such as those due to manufacturing processes,
natural material variability, initial conditions, wear or damaged
condition of the system, and the system surroundings. Further-
more, the modeling process itself can introduce large uncertainties
due to the assumptions in the model as well as the numerical
approximations employed in the simulations. The former is com-
ll rights reserved.
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monly addressed through model validation, while the latter is ad-
dressed by code and solution verification. Each of these different
sources of uncertainty must be estimated and included in order to
estimate the total uncertainty in a simulation. In addition, an
understanding of the sources of the uncertainty can provide guid-
ance on how to reduce or manage uncertainty in the simulation
in the most efficient and cost-effective manner. Information on
the magnitude, composition, and sources of uncertainty in simula-
tions is critical in the decision-making process for natural and engi-
neered systems. Without forthrightly estimating and clearly
presenting the total uncertainty in a prediction, decision makers
will be ill advised, possibly resulting in inadequate safety, reliabil-
ity, or performance of the system. Consequently, decision makers
could unknowingly put at risk their customers, the public, or the
environment.

This paper presents a high level overview of our comprehensive
framework for verification, validation, and uncertainty quantifica-
tion (VV&UQ) in scientific computing. This framework has much
in common with previous work in VV&UQ, but it also includes
new concepts for estimating and combining various uncertainties.
For more details on the approach, see Ref. [1]. The organization of
this paper is as follows. First, the two different types of uncertainty
are discussed; aleatory and epistemic. Then the key sources of
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uncertainty in scientific computing are identified: model inputs,
numerical approximations, and model form uncertainty. A
comprehensive framework is then described for treating all sources
of uncertainty and their effects on the predicted system responses
quantities (SRQs) of interest. The framework includes (1) the iden-
tification of all sources of uncertainty, (2) characterization of model
input uncertainties, (3) elimination or estimation of code and solu-
tion verification errors, (4) propagation of input uncertainties
through the model to obtain uncertainties in the SRQs, (5) quantifi-
cation of model form uncertainty, and (6) estimation of model form
uncertainty due to extrapolation to application conditions of inter-
est. We conclude with a discussion of the paradigm shift from
deterministic to nondeterministic simulations and the impact of
this shift on risk-informed decision-making.

2. Types of uncertainty

While there are many different ways to classify uncertainty, we
will use the taxonomy prevalent in the risk assessment community
which categorizes uncertainties according to their fundamental es-
sence [2–5]. Thus, uncertainty is classified as either (a) aleatory –
the inherent variation in a quantity that, given sufficient samples
of the stochastic process, can be characterized via a probability
density distribution, or (b) epistemic – uncertainty due to lack of
knowledge by the modelers, analysts conducting the analysis, or
experimentalists involved in validation. The lack of knowledge
can pertain to, for example, modeling of the system of interest or
its surroundings, simulation aspects such as numerical solution
error and computer round-off error, and lack of experimental data.
In scientific computing, there are many sources of uncertainty
including the model inputs, the form of the model, and poorly-
characterized numerical approximation errors. All of these sources
of uncertainty can be classified as either purely aleatory, purely
epistemic, or a mixture of the two.

2.1. Aleatory uncertainty

Aleatory uncertainty (also called irreducible uncertainty, sto-
chastic uncertainty, or variability) is uncertainty due to inherent
variation or randomness and can occur among members of a pop-
ulation or due to spatial or temporal variations. Aleatory uncer-
tainty is generally characterized by either a probability density
function (PDF) or a cumulative distribution function (CDF). A CDF
is simply the integral of the PDF from minus infinity up to the value
of interest. An example of an aleatory uncertainty is a manufactur-
ing process which produces parts that are nominally 0.5 m long.
Measurement of these parts will reveal that the actual length for
any given part will be different than 0.5 m. With a sufficiently large
number of samples (i.e., information), both the form of the CDF and
the parameters describing the distribution of the population can be
determined. The aleatory uncertainty in the manufactured part can
only be changed by modifying the manufacturing or quality control
processes; however, for a given set of processes, the uncertainty
due to manufacturing is considered irreducible.

2.2. Epistemic uncertainty

Epistemic uncertainty (also called reducible uncertainty or
ignorance uncertainty) is uncertainty that arises due to a lack of
knowledge on the part of the analyst, or team of analysts, con-
ducting the modeling and simulation. If knowledge is added
(through experiments, improved numerical approximations, ex-
pert opinion, higher fidelity physics modeling, etc.) then the
uncertainty can be reduced. If sufficient knowledge (which costs
time and resources) is added, then the epistemic uncertainty
can, in principle, be eliminated. Epistemic uncertainty is tradi-
tionally represented as either an interval with no associated PDF
or a PDF which represents degree of belief of the analyst (as op-
posed to frequency of occurrence of an event in aleatory uncer-
tainty). We will represent epistemic uncertainty as an interval-
valued quantity, meaning that the true (but unknown) value
can be any value over the range of the interval, with no likelihood
or belief that any value is more true than any other value. The
Bayesian approach to uncertainty quantification characterizes
epistemic uncertainty as a PDF that represents the degree of be-
lief of the true value on the part of the analyst [6–8].

The distinction between aleatory and epistemic uncertainty is
not always easily determined during characterization of input
quantities or the analysis of a system. For example, consider the
manufacturing process mentioned above, where the length of the
part is described by a PDF, i.e., it is an aleatory uncertainty. If we
are only able to measure a small number of samples (e.g., three)
from the population, then we will not be able to accurately charac-
terize the PDF representing the random variable. In this case, the
uncertainty in the length of the parts could be characterized as a
combination of aleatory and epistemic uncertainty. By adding
information, i.e., by measuring more samples of manufactured
parts, then the PDF (both its form and its parameters) could be
more accurately determined. When one obtains a sufficiently large
number of samples, then one can characterize the uncertainty in
length as a purely aleatory uncertainty given by a precise PDF,
i.e., a PDF with scalar values for all of the parameters that define
the chosen distribution.

In addition, the classification of uncertainties as either aleatory
or epistemic depends on the question being asked. In the manufac-
turing example given above, if one asks ‘‘What is the length of a
specific part produced by the manufacturing process?’’ then the
correct answer is a single true value that is not known, unless
the specific part is accurately measured. If instead, one asks ‘‘What
is the length of any part produced by the manufacturing process?’’
then the correct answer is that the length is a random variable that
is given by the PDF determined using the measurement informa-
tion from a large number of sampled parts.

3. Sources of uncertainty in scientific computing

For a comprehensive VV&UQ framework, all of the possible
sources of uncertainty must be identified and characterized. When
fixed values are known precisely (or with negligibly small uncer-
tainty), then they can be treated as deterministic. Otherwise, they
should be classified as aleatory, epistemic, or mixed uncertainties
and characterized with the appropriate mathematical representa-
tion. Sources of uncertainty can be broadly categorized as occur-
ring in model inputs, numerical approximations, or in the
assumptions embodied in the mathematical model, i.e., model
form. We will briefly discuss each of these categories below; see
Ref. [1] for a complete description.

3.1. Model inputs

Model inputs include not only parameters used in the model of
the system, but also data from the description of the surroundings
(see Fig. 1). Model input data includes things such as geometry,
constitutive model parameters, and initial conditions, and can
come from a range of sources including experimental measure-
ment, theory, other supporting simulations, or expert opinion. Data
from the surroundings include boundary conditions and system
excitation (e.g., mechanical forces or moments acting on the sys-
tem, force fields such as gravity and electromagnetism). Uncer-
tainty in model inputs can be aleatory, epistemic, or mixed.



Fig. 1. Schematic of model input uncertainty (from [1]).
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3.2. Numerical approximation

Since differential equation-based models rarely admit exact
solutions for practical problems, approximate numerical solutions
must be used. The characterization of the numerical approximation
errors associated with a simulation is called verification [9,10]. It
includes discretization error, iterative convergence error, round-
off error, and also errors due to computer programming mistakes.
Discretization error arises due to the fact that the spatial domain is
decomposed into a finite number of nodes/elements and, for un-
steady problems, time is advanced with a finite time step. Discret-
ization error is difficult to estimate for practical problems and is
often the largest of the numerical errors. Iterative convergence er-
rors are present when the discretization of the model results in a
simultaneous set of algebraic equations that are solved approxi-
mately or when relaxation techniques are used to obtain a stea-
dy-state solution. Round-off errors occur due to the fact that only
a finite number of significant figures can be used to store floating
point numbers in a digital computer. Finally, coding mistakes can
occur when numerical algorithms are implemented into a software
tool. Since coding mistakes are, by definition, unknown errors
(they are generally eliminated when they are identified), their ef-
fects on the numerical solution are extremely difficult to estimate.

When nondeterministic methods are used to propagate input
uncertainties through the model (as will be discussed in Section
4.4), then the statistical convergence of the propagation technique
itself must also be considered. The key issue in nondeterministic sim-
ulations is that a single solution to the mathematical model is no
longer sufficient. A set, or ensemble, of calculations must be per-
formed to map the uncertain input space to the uncertain output
space. Sometimes, this is referred to as ensemble simulation instead
of nondeterministic simulations. Fig. 2 depicts the propagation of
input uncertainties through the model to obtain output uncertain-
ties. The number of individual calculations needed to accurately
accomplish the mapping depends on four key factors: (a) the non-
linearity of the partial differential equations, (b) the dependency
Fig. 2. Propagation of input uncertainties to
structure between the uncertain input quantities, (c) the nature of
the uncertainties, i.e., whether they are aleatory, epistemic, or
mixed uncertainties, and (d) the numerical methods used to com-
pute the mapping. The number of mapping evaluations, i.e., individ-
ual numerical solutions of the mathematical model, can range from
tens to hundreds of thousands. Many techniques exist for propagat-
ing input uncertainties through the mathematical model to obtain
uncertainties in the SRQs. Sampling techniques (e.g., Monte Carlo
and Latin hypercube sampling) are the most common techniques
to propagate input uncertainties through the model. Monte Carlo
sampling is discussed in more detail in Section 5.4.

For cases where numerical approximation errors can be esti-
mated, their impact on the SRQs of interest can, in principle, be
eliminated, given that sufficient computing resources are available.
If this is not practical, they should generally be converted to episte-
mic uncertainties due to the uncertainties associated with the er-
ror estimation process itself. Some researchers argue that
numerical approximation errors can be treated as random vari-
ables and that the variance of the contributors can be summed in
order to obtain an estimate of the total uncertainty due to numer-
ical approximations [11,12]. We believe this approach is un-
founded and that traditional statistical methods cannot be used.
Estimates of numerical approximation errors are analogous to bias
(systematic) errors in experimental measurements; not random
measurement errors. That is, numerical approximation errors do
not display a random character, unless the discretization is far
from the asymptotic region; in which case one should not be rely-
ing on the approximation procedure. As is well known, bias errors
are much more difficult to identify and quantify than random
errors.

3.3. Model form

The form of the model results from all assumptions, conceptu-
alizations, abstractions, approximations, and mathematical formu-
lations on which the model relies [1]. The characterization of
model form uncertainty is commonly estimated using model vali-
dation. Since the term validation can have different meanings in
various communities, we expressly define it to be: assessment of
model accuracy by way of comparison of simulation results with
experimental measurements. This definition is a specific, and more
restrictive, interpretation of the common definition of validation
given in Ref. [10]. Although model validation has been a standard
procedure in science and engineering for over a century, our ap-
proach takes two additional steps. First, it statistically quantifies
the disagreement between the simulation results and all of the
conditions for which experimental measurements are available.
Second, it extrapolates this uncertainty structure from the domain
of available experimental data to the application conditions of
interest where experimental data are not available. This extrapola-
tion entails both a regression fit of the computed model form
uncertainty in the validation space and the evaluation of prediction
obtain output uncertainties (from [1]).
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intervals (similar to confidence intervals) at the prediction condi-
tions of interest; see Section 4.5.2 for more details. A key aspect
of this approach is that model form uncertainty is treated as episte-
mic [13].
4. Uncertainty framework

The proposed framework for treating predictive uncertainty
uses the technique of probability bounds analysis, which was
developed by Ferson and his colleagues. [13–15]. Only a high-level
description of this predictive uncertainty framework is given here,
additional details can be found in Ref. [1]. A novel aspect of the
framework is that it addresses all sources of uncertainty in scien-
tific computing including uncertainties due to the form of the mod-
el and numerical approximations. The purpose of this framework is
to be able to estimate the uncertainty in a SRQ for which no exper-
imental data are available. That is, the mathematical model, which
embodies approximations to the relevant physics and character-
ization of the input uncertainties, is used to predict the uncertain
SRQ, which includes numerical approximation uncertainties and
an extrapolation of the model form uncertainty to the conditions
of interest. The basic steps in the VV&UQ framework are described
next, with emphasis on aspects of the framework that are new in
the field of predictive uncertainty.

4.1. Identify all sources of uncertainty

All potential sources of uncertainty in model inputs must be
identified. If an input is identified as having little or no uncertainty,
then it is treated as deterministic, but such assumptions must be
justified and understood by the decision maker using the simula-
tion results. The goals of the analysis should be the primary deter-
minant for what is considered as fixed versus what is considered
as uncertain. The general philosophy that should be used is: con-
sider an aspect as uncertain unless there is strong evidence (e.g.,
from a sensitivity analysis) that the uncertainty in the aspect will
result in minimal uncertainty in all of the SRQs of interest in the
analysis.

As discussed earlier, sources of uncertainty are categorized as
occurring in model inputs, numerical approximations, and in the
form of the mathematical model. We point out that there are some
varieties of model form uncertainty that are difficult to identify.
These commonly deal with assumptions in the conceptual model
formulation or cases where there is a very large extrapolation of
the model. Some examples are (a) assumptions concerning the
environment (normal, abnormal, or hostile) to which the system
is exposed, (b) assumptions concerning the particular scenarios
the system is operating under, e.g., various types of damage or mis-
use of the system, and (c) cases where experimental data are not
available on any closely related systems, e.g., data are only available
on subsystems, but predictions of complete system performance
are required. Sometimes, separate simulations are conducted with
independent models (using different assumptions) in order to help
identify the additional sources of uncertainty in the model inputs or
the model form. In this case, care must be taken to avoid the intro-
duction or elimination of important uncertainties in the problem.

4.2. Characterize uncertainties

By characterizing a source of uncertainty we mean (a) assigning a
mathematical structure to describe the uncertainty and (b) deter-
mining the numerical values of all of the needed parameters of
the structure. Stated differently, characterizing the uncertainty re-
quires that a mathematical structure be given to the uncertainty
and all parameters of the structure be numerically specified such
that the structure represents the state of knowledge of every
uncertainty considered. The primary decision to be made concern-
ing the mathematical structure for each source is whether it should
be represented as a purely aleatory uncertainty, a purely epistemic
uncertainty, or a mixture of the two.

For purely aleatory uncertainties, the uncertainty is character-
ized as a precise distribution, e.g., a CDF is given with scalar quan-
tities for each of the parameters of the chosen distribution. If the
model input uncertainties are correlated, then joint PDFs or CDFs
should be used; however, for practical engineering problems there
may be little or no information concerning the covariance structure
of the marginal probability distributions for correlated inputs. For
purely epistemic uncertainties, such as numerical approximations
and model form, the uncertainty is characterized as an interval.
For an uncertainty that is characterized as a mixture of aleatory
and epistemic uncertainty, then an imprecise distribution is given.
This mathematical structure is a distribution where the parameters
of the distribution are not scalars, but are either (a) distributions
themselves or (b) interval-valued quantities. For this latter case,
the structure represents the ensemble of all possible distributions
of a single family that exist whose parameters are bounded by the
specified intervals. This structure commonly arises in characteriza-
tion of information from expert opinion. For example, suppose a
new manufacturing process is going to be used to produce a com-
ponent. Before inspection samples can be taken from the new com-
ponents, a manufacturing expert could characterize its features or
performance as an imprecise distribution based on experience with
similar processes.

Information for characterizing input uncertainties typically de-
rives from (a) experimentally measured data from the actual sys-
tem or similar systems of interest, (b) data generated from
separate models that support the modeling of the system of inter-
est, and (c) opinions expressed by experts familiar with the system
of interest. See, for example, Refs. [2–5] for more information on
methods for characterizing input uncertainties.

4.3. Estimate uncertainty due to numerical approximations

Recall that verification deals with estimating numerical errors
which include discretization error, iterative error, round-off error,
and coding mistakes. Methods for estimating discretization error
can be broadly categorized as either higher-order estimators
(Type I) or residual-based estimators (Type II) [1,16]. The Type I
methods involve post-processing of the solution (or multiple solu-
tions) and include Richardson extrapolation [1,17], order extrapo-
lation [18], and recovery methods from finite elements [19]. The
Type II methods employ additional information about the problem
being solved and include discretization error transport equations
[20,21], defect correction methods [22], and implicit/explicit resid-
ual methods in finite elements [23,24]. Of particular note is the re-
cent emergence of adjoint methods for estimating the error in
solution functionals (i.e., SRQs) for both finite element [24] and fi-
nite volume methods [25]. However, regardless of the approach
used for estimating the discretization error, the reliability of the
estimate depends on the solutions being in the asymptotic mesh
convergence range [1,16], which is extremely difficult to achieve
for complex scientific computing applications.

Various techniques are available for estimating iterative conver-
gence errors (e.g., see [1]). Round-off errors are usually small, but
can be reduced if necessary by increasing the number of significant
figures used in floating point computations (e.g., by changing from
double to quadruple precision arithmetic). Since errors due to the
presence of unknown coding mistakes or algorithm inconsistencies
are difficult to characterize, their effects should be minimized by
employing good software engineering practices and using specific
techniques for scientific computing software such as order of
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accuracy verification and the method of manufactured solutions
(e.g., see [1,17,26]).

Because of the difficulties in obtaining accurate estimates of the
different numerical approximation errors, in most cases they
should be converted to and explicitly represented as epistemic
uncertainties. The simplest method for converting error estimates
to uncertainties is to use the magnitude of the error estimate to ap-
ply uncertainty bands above and below the simulation prediction,
possibly with an additional factor of safety included, e.g.:
UDE ¼ Fsj�ej where UDE is the uncertainty due to discretization error,
Fs P 1 is the factor of safety, and �e is the discretization error esti-
mate. Roache’s Grid Convergence Index [17,27] provides a specific
example of converting the discretization error estimate from Rich-
ardson extrapolation to an uncertainty. Uncertainty due to numer-
ical approximation error is epistemic since additional information
(e.g., mesh levels, iterations, digits of precision) could be added to
reduce it. When treating epistemic uncertainties as intervals, the
proper mathematical method for combining uncertainties due to
discretization (UDE), incomplete iteration (UIT), and round off (URO)
is to simply sum the intervals using interval arithmetic. Assuming
the lower bound on each interval is zero, and the upper bound is gi-
ven by the associated uncertainty estimate, then one has:

UNUM ¼ UDE þ UIT þ URO: ð1Þ

It can easily be shown that UNUM is a guaranteed bound on the total
numerical error, given that each contributor is itself an accurate
bound.

Implementing Eq. (1) in practice is a tedious and demanding
task, even for relatively simple simulations, because of two fea-
tures. First, Eq. (1) must be calculated for each SRQ of interest in
the simulation. For example, if the SRQs are pressure, temperature,
and three velocity components in a numerical solution, then UNUM

should be calculated for each quantity over the domain of the flow
field. Second, each of the SRQs varies as a function of the uncertain
input quantities in the simulation. One common technique for lim-
iting the computational effort involved in making all of these esti-
mates is to determine the locations in the domain of the partial
differential equations and the conditions for which the input
uncertainties are believed to produce the largest values of UDE,
UIT, and URO. The resulting maximum uncertainties at these se-
lected conditions are then applied over the entire physical domain
and application conditions. This simplification is a reasonable ap-
proach, but it is not always reliable because of potentially large
variations in the SRQs over the domain of the differential equation,
characteristics of the physics in the mathematical model, and non-
linear interactions between input uncertainties.

4.4. Propagate input uncertainties through the model

This section briefly describes requirements for propagating both
aleatory and epistemic uncertainty in model inputs through the
model in order to determine the effects on the SRQs. Recall that
model inputs can arise from the parameters used in describing
either the system of interest or the surroundings. Although both
aleatory and epistemic uncertainties can be propagated using a
variety of methods, they should each be treated independently be-
cause they characterize two different types of uncertainty. For
example, consider a simple sampling-based approach for propagat-
ing combined aleatory and epistemic uncertainty. Sampling an ale-
atory uncertainty implies a sample is taken from a random variable
and that each sample is associated with a probability. However,
sampling an epistemic uncertainty implies a sample is taken from
a range of possible values. The sample has no probability or
frequency of occurrence associated with it based on how the sam-
ple was chosen. That is, we only know it is possible, which could be
viewed as assigning a probability of unity, given the information
available concerning the input quantity. As mentioned above, this
characterization of uncertainties, where aleatory and epistemic
uncertainties are segregated, is referred to as probability bounds
analysis [13–15] and is a fundamental aspect of the proposed
uncertainty quantification framework. The treatment of model
form uncertainty and numerical approximation uncertainty are ad-
dressed in Sections 4.5 and 4.3, respectively.

When a given model input contains a mixture of aleatory and
epistemic uncertainty, it can usually be characterized as a PDF or
CDF with interval-valued parameters. For example, if an input is
assumed to be normally distributed, then the two parameters that
describe the normal distribution (the mean and standard devia-
tion) could be treated as intervals. In the uncertainty propagation
approaches described below, this model input would result in
three uncertainties: the original model input would be an aleatory
uncertainty and the mean and standard deviation (used to define
the PDF) would be treated as two separate epistemic uncertainties.
When there is conflicting evidence for the characterization of
uncertain model inputs, the Dempster-Shafer theory of evidence
can be used [28], but this case is beyond the scope of the current
work.

4.4.1. Aleatory uncertainty
The simplest approach for propagating aleatory uncertainty

through a model is sampling. In Monte Carlo sampling, a random
number is chosen between zero and one, then the inverse CDF
can be used to obtain the corresponding sample for the model in-
put parameter. Although sampling methods are conceptually sim-
ple, large numbers of samples are needed in order to accurately
characterize low probability events (e.g., when high confidence
levels such as 99% or 99.9% are required for the SRQ). More ad-
vanced approaches for propagating aleatory uncertainty include
polynomial chaos (e.g., [29–33]), stochastic collocation (e.g.,
[31,33]), and response surface approximation methods (e.g.,
[34]). For example, in polynomial chaos, the SRQ is expanded as
a polynomial in terms of the uncertain model inputs, and the coef-
ficients of this expansion are themselves allowed to be random
variables. While initial polynomial chaos implementations were
code intrusive, more recently non-intrusive forms of polynomial
chaos have been developed. When only a few aleatory uncertain
variables are present (e.g., less than five or ten), then polynomial
chaos has the potential to significantly reduce the number of sam-
ples required for statistical convergence of the CDF. For larger
numbers of uncertain variables, or when statistical correlations
exist between input quantities, more traditional sampling methods
have proven to be more robust.

4.4.2. Combined aleatory and epistemic uncertainty
When aleatory and epistemic uncertainties occur in the input

quantities, the propagation of each type of uncertainty must be
separated. For example, when employing sampling to propagate
uncertainty, each of the samples obtained from an aleatory uncer-
tainty is associated with a probability of occurrence. When a sam-
ple is taken from an epistemic uncertainty, however, there is no
probability associated with the sample. The sample is simply a pos-
sible realization over the interval-valued range of the input quan-
tity. Furthermore, if one takes a sample from each of the epistemic
uncertainties, and then one computes the aleatory uncertainty as
just described, the computed CDF of the SRQ can be viewed as a
conditional probability. That is, the computed CDF is for the condi-
tion of the given vector of fixed samples of the epistemic uncer-
tainties. This type of segregated sampling between aleatory and
epistemic uncertainties is usually referred to as double-loop or
nested sampling.

The recommended uncertainty propagation approach can be
summarized as follows. For each sample of all of the epistemic
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uncertainties, the aleatory uncertainties are propagated through
the model (using any of the aleatory uncertainty propagation meth-
ods mentioned above) to produce a single CDF of the SRQ. After all
of the epistemic samples have been chosen, and the resulting CDFs
have been computed, one has an ensemble of M CDFs. The widest
extent of the ensemble of CDFs is used to form a probability box
(also called a p-box) [13–15]. The p-box is a special type of CDF
which contains information on both aleatory and epistemic uncer-
tainties (see Fig. 3). A p-box expresses both epistemic and aleatory
uncertainty in a way that does not confound the two. A p-box shows
that an SRQ cannot be displayed as a precise probability, but it is
now an interval-valued probability. For example, in Fig. 3, for a
given value of the SRQ, the probability that that value will occur
is given by an interval-valued probability. That is, no single value
of probability can describe the uncertainty given the present state
of knowledge. Likewise, for a given probability value of the SRQ,
there is an interval-valued range predicted for the SRQ of interest.
Stated differently, the p-box accurately reflects the system response
given the present state of knowledge of the input uncertainties.

A p-box is an interval-valued probability, or stated another way,
it is a dual-valued probability. For example, suppose that for struc-
tural safety a decision maker requires that a predicted beam
deflection must be less that 5 mm with a probability of 0.95. Using
our approach, one uses the right-hand boundary of the p-box pre-
diction for deflection and then reads the cumulative probability for
a deflection of 5 mm. If the cumulative probability is less than 0.95,
then the safety requirement is not satisfied. What the p-box struc-
ture says is that, given (a) the stochastic nature of the system and
its input data, (b) the state of knowledge of the system and its in-
put data, and (c) our knowledge of the predictive uncertainty, one
can only assure that the probability will be not be any less than the
right-hand boundary of the p-box. An additional graphical example
of how to interpret p-boxes is given in the example problem in Sec-
tion 5.

4.5. Estimate model form uncertainty

Model form uncertainty is estimated through the process of mod-
el validation. As mentioned above, there are two aspects to estimat-
ing model form uncertainty. First, we quantitatively estimate the
model form uncertainty at the conditions where experimental data
are available using a mathematical operator referred to as a valida-
tion metric. During the last ten years there has been a flurry of
Fig. 3. Example p-box resulting from the propagation of combined aleatory and
epistemic uncertainties through a model (from [1]).
activity dealing with the construction of validation metrics
[13,35–37]. Second, we extrapolate the uncertainty structure ex-
pressed by the validation metric to the application conditions of
interest. As is common in scientific computing, no experimental
data is available for the application conditions of interest. Then
the extrapolated model form uncertainty is included in the predic-
tion of the model at the conditions of interest as an epistemic
uncertainty. This section discusses both of these topics.

4.5.1. Validation metrics
A validation metric is a mathematical operator that requires

two inputs: the experimental measurements of the SRQ of interest
and the prediction of the SRQ at the conditions used in the exper-
imental measurements. A flowchart for computing a validation
metric is given in Fig. 4. In the ideal case, the validation metric is
computed using specially-tailored validation experiments; but
more commonly one must use existing experimental data, e.g.,
from the literature or from an industrial/laboratory database. A
key part of computing the SRQ of interest is that the uncertainty
in all model input parameters should be carefully measured during
the experiment. Once the input uncertainties have been character-
ized, they are used as input to the model and are propagated
through it (as discussed above in Section 4.4) to obtain the SRQ
of interest. Depending on the nature of the model input uncertain-
ties (purely aleatory, purely epistemic, or mixed), the SRQ will be a
precise CDF, an interval, or a p-box, respectively. The key point that
should be stressed with regard to the input uncertainties is that
when they are propagated through the model, the model is ex-
pected to predict the experimentally measured variability in the
SRQs that is due to the experimental variability of the inputs.
Any disagreement between the experimentally measured and sim-
ulated SRQs (whether they are CDFs, intervals, or p-boxes) is attrib-
uted to model form uncertainty, the source of which can be either
physics modeling assumptions and/or imprecise knowledge of the
input uncertainties.

One additional important point should be made concerning
Fig. 4. The concept behind Fig. 4 is that the experimental processes
of nature, symbolized on the left, are expected to be reproduced to
some degree by the mathematical model on the right. However,
the existence of experimental uncertainty in the measurement of
the SRQ can potentially interfere with this seemingly reasonable
expectation of the model. Even if bias errors in the measurements
have been reduced to a negligible level, there is always random
Fig. 4. Flowchart detailing the key steps in computing a validation metric (from
[1]).



Fig. 6. Example of the area validation metric when only a small number of
simulations and experimental measurements are available (from [13]).
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measurement uncertainty in the SRQ. However, measurement
uncertainty is not expected to be modeled on the right. As a result,
there will be increased variance in the experimental results due to
measurement uncertainty. Since this will not be exhibited in the
model predictions, the model will be (incorrectly) assessed to be
in error due to this effect.

While there are many possible validation metrics, we will focus
on one implementation called the area validation metric. When
only aleatory uncertainties are present in the model inputs, then
propagating these uncertainties through the model produces a
CDF in the SRQ. Experimental measurements are then used to con-
struct another empirical CDF of the SRQ. The area between these
two CDFs is referred to as the area validation metric d (also called
the Minkowski L1 norm) and is given by

dðF; SnÞ ¼
Z 1

�1
FðxÞ � SnðxÞj jdx; ð2Þ

where F(x) is the CDF from the simulation, Sn(x) the CDF from the
experiment, and x is the SRQ. The area validation metric d has the
same units as the SRQ and effectively provides a measure of the evi-
dence for disagreement between the simulation and the experiment
[13]. It should be noted that the area validation metric satisfies all
the conditions for a distance function on a metric space (see Ref.
[1] for details).

An example of this area validation metric for a case with only
aleatory uncertainty occurring in the model input parameters is gi-
ven in Fig. 5. In this figure it is assumed that a large number of sim-
ulations, i.e., Monte Carlo samples, are performed, but only four
experimental measurements are available. With the large number
of simulation samples, one is able to construct an accurate CDF for
the simulation. The stair-steps in the experimental measurements
are the locations of each of the four experimental measurements.
As a result, each measurement is assigned a probability of 0.25.
The area validation metric is the smallest area between the simula-
tion CDF and the experimental CDF. It can be seen in the figure that
the model is assessed an error (i.e., an area) whether the model
prediction is greater than or less than the individual
measurements.

Fig. 6 is an example of the area metric for the case when there
are only three samples from the simulation and five experimental
measurements. This situation is not uncommon for computation-
ally intensive scientific computing applications such as computa-
tional fluid dynamics or nonlinear computational structural
mechanics. A significant advantage of the area validation metric
is that it can be computed even when very few samples are avail-
able from the simulation or from the experiment. In addition, when
only a few simulation or experimental samples are available, no
assumptions are required concerning the statistical nature of the
simulation or the experiment. The validation metric deals directly
with the samples computed and the measurements obtained.
Fig. 5. Area validation metric example with four experimental measurements of
the SRQ available (from [13]).
When little experimental information is available on needed
model input parameters, these parameters should be characterized
as an interval, i.e., epistemic uncertainties. This situation occurs
very commonly with published experimental data and experi-
ments that were not designed to be validation experiments. As a
result, when these intervals are propagated through the model,
the predicted SRQ of interest is represented as a p-box. The valida-
tion metric can also deal with this situation. Fig. 7 shows the case
where the model prediction is a p-box and only a single experi-
mental measurement is available. Fig. 7a occurs when the mea-
surement falls entirely within the p-box and Fig. 7b occurs when
the measurement is slightly larger than the p-box. When the
experimental measurement falls entirely within the simulation’s
p-box (Fig. 7a), then the area validation metric is zero. When a por-
tion of the experimental measurement falls outside of the p-box
(Fig. 7b), then the area validation metric is nonzero. Recall that
the area validation metric is the smallest area between the p-box
and the experimental CDF. That is, the validation metric reflects
the evidence for disagreement between the model and the experi-
ment. When the simulation is a p-box due to insufficient informa-
tion provided by the validation experiment, the model is given
more leeway in comparing with the experiment, as is appropriate.

4.5.2. Model extrapolation
Numerous validation experiments would normally be required

in order to estimate the area validation metric over the entire
space of model input parameters for the application of interest.
In many cases, however, it is not possible to obtain experimental
data at the application conditions of interest. As a result, the more
common situation is that the model must be applied at conditions
where there are no experimental data. Consider a simple example
when there are only two input parameters for the model: a and b
(Fig. 8). The validation domain consists of the set of points in this
parameter space where experiments have been conducted and
the validation metric has been computed (denoted by a ‘‘V’’ in
Fig. 8). In this example, the application domain (sometimes re-
ferred to as the operating envelope of the system) is larger than
Fig. 7. Example of area validation metric computed at one location in the model
input parameter space: (a) aleatory uncertainties only and (b) combined aleatory
and epistemic uncertainties (from [38]).



Fig. 8. Model validation relative to experimental data (adapted from [40]).

Fig. 9. Increase in predictive uncertainty due to the addition of model form
uncertainty (from [1]).
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the validation domain. Thus, one must choose between either
extrapolating the validation metric outside of the validation do-
main or performing additional validation experiments. In Fig. 8,
some conditions for candidate validation experiments are given
by a ‘‘C’’. The key point here is that the validation domain is gener-
ally not coincident with the application domain, thus either inter-
polation or extrapolation to the conditions of interest is needed.
Another point is that when one makes a prediction with the model
by extrapolating beyond the validation conditions, one must con-
ceptually abandon the notion of assessment of model accuracy be-
cause we use the term ‘‘prediction’’ to mean ‘‘no experimental data
is presently available.’’ Thus, extrapolation of the validation metric
deals only with the estimation of model form uncertainty due to
the fact that there are no experimental data available for the con-
ditions of interest.

The general process for determining the model form uncer-
tainty at the conditions of interest (i.e., the prediction location) is
as follows. First, a regression fit of the validation metric is per-
formed in the space of the validation domain. Next, a statistical
analysis is performed to compute the prediction interval at the
conditions of interest. This prediction interval is similar to a confi-
dence interval, but it will be larger because we are interested in a
future random deviate predicted by the regression fit of the valida-
tion metric data, i.e., the uncertainty due to the regression fit and
due to the variability of the validation metric evaluated at multiple
conditions. The computation of the prediction interval requires a
level of confidence to be specified (e.g., 95% confidence). The model
form uncertainty at the prediction conditions is then found by tak-
ing the maximum of zero and the value found from the regression
fit of the validation metric and adding in the upper value of the
prediction interval. For example, if the value of the regression fit
at the prediction conditions is d̂ and the 95% confidence interval
is d̂� P, then the model form uncertainty at that location is given
by

maxðd̂;0Þ þ P: ð3Þ

In the past, it has been common practice to either (a) ignore the
model form uncertainty in the predictions for the application con-
ditions or (b) calibrate adjustable parameters in the mathematical
model so that improved agreement could be obtained with the
available experimental data at conditions ‘‘V’’. However, we believe
a more forthright approach is to explicitly account for the mis-
match between the model and the experiments and include this
mismatch as additional uncertainty in the predictions of the SRQ
in the application domain. When the validation metric results are
extrapolated to new conditions, there is a subsequent increase in
the uncertainty due to the extrapolation process itself, i.e., the
standard error of the regression fit increases as one moves away
from the central region of the available data.

It should be stressed that the extrapolation we use is based on a
regression fit of the model form uncertainty structure exhibited
within the validation domain, along with the statistical prediction
interval associated with the regression fit. In our method of extrap-
olation, the regression function for the validation metric is com-
pletely separate from any extrapolation of the prediction results
(based on the physics in the model) to conditions where experi-
mental data are not available. A common example of the latter is
the use of an aerodynamics model to extrapolate from wind tunnel
conditions (where data exist) to flight Reynolds numbers. As one
reviewer correctly pointed out, our framework does not address
(a) cases where some system response quantities are measured,
but these are not the SRQs that are of interest for the application
condition and (b) the case where most (or all) experimental data
are available for systems that are distantly related to the system
of interest, e.g., lower tiers in a validation hierarchy. The only val-
idation framework that we are aware of that attempts to deal with
these difficult issues is the recent work of Refs. [13,38,39].

4.6. Determine total uncertainty in the SRQ

The total uncertainty in the SRQ at the application conditions of
interest is computed as follows. First, one begins with the p-box
that was generated by propagating the aleatory and epistemic
uncertainties in the model input parameters through the model
(recall Figs. 2 and 3). Next, the area validation metric is appended
to the sides of the p-box, thus showing that the epistemic uncer-
tainty in the SRQ has increased due to model form uncertainty.
This is certainly not the only way that the area validation metric
could be included in the predictive uncertainty, but it is consistent
with the p-box representation of epistemically uncertain inputs
that are propagated through the model. As discussed above, if
extrapolation of the model form uncertainty is required, then it
is the extrapolated d values that are appended to the SRQ p-box.
This process is shown graphically in Fig. 9. Finally, the uncertainty
due to numerical approximations is treated as an additional episte-
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mic uncertainty and, in a similar fashion to the model form uncer-
tainty, is appended to the p-box of the SRQ. A more detailed exam-
ple of this total uncertainty representation is given in Section 5.

This approach for representing total uncertainty in the pre-
dicted SRQ of interest provides valuable information to decision
makers using the results from the simulation. The width of the ori-
ginal p-box provides information on the effects of epistemic uncer-
tainties in the model inputs on the predicted SRQ. The shape, or the
range, of the two bounding CDFs of the p-box provides information
on the effects of aleatory uncertainties in the model inputs. The
validation metric d that is appended to the p-box of the SRQ explic-
itly informs the decision maker of the estimated magnitude of the
uncertainty that is due to model form uncertainty. Finally, UNUM

that is appended to the p-box informs the decision maker of the
magnitude of the uncertainty due to numerical approximations.
In limited testing of this approach, it has been found that the model
form uncertainty has been a dominant contributor to the total
uncertainty in the predicted SRQ, even for relatively accurate mod-
els of the system of interest [1,13].
Fig. 10. Effective area and static temperature distributions through the hypersonic
wind tunnel.
5. Example: Hypersonic nozzle flow

As a simple example of the proposed VV&UQ framework, con-
sider the flow of air through a converging–diverging hypersonic
wind tunnel. This nozzle is designed to achieve a nominal test sec-
tion Mach number of 8. The flow is modeled with the quasi-one-
dimensional Euler equations which account for cross-sectional
area variations in the nozzle. While the inviscid flow through a
nozzle could be determined by simpler means (e.g., formulated
as a set of boundary-value ordinary differential equations or even
algebraic equations resulting from isentropic flow assumptions),
we retain the more complex formulation in order to demonstrate
all phases of the proposed framework. In order to cluster the mesh
cells in regions of high gradients (i.e., near the nozzle throat), a
(steady) global transformation n = n(x) is employed where x is the
axial location in the nozzle. The quasi-one-dimensional Euler equa-
tions in transformed coordinates can thus be written as:

A
nx

@q
@t þ @

@n ðquAÞ ¼ 0;
A
nx

@ðquÞ
@t þ @

@n Aðqu2 þ pÞ
� �

¼ p @A
@x ;

A
nx

@ðqetÞ
@t þ @

@n ðquhtAÞ ¼ 0;

ð4Þ

where A(x) is the area distribution of the nozzle, q is the density, u
the velocity, p the pressure, et the total energy (internal plus
kinetic), ht the total enthalpy, and nx the metric of the transforma-
tion. For a calorically perfect gas, one has

p ¼ qRT;

et ¼ RT
c�1þ u2

2 ;

ht ¼ cRT
c�1þ u2

2 ;

ð5Þ

where R is the specific gas constant and c is the ratio of specific
heats.

The weak form of these equations is solved with a cell-centered
finite volume formulation using Roe’s approximate Riemann solver
[41] to determine the interface fluxes. MUSCL extrapolation [42] is
used to determine the left and right states at each cell interface
(i.e., grid point) in a formally second-order accurate manner. The
grid points xi (1 6 i 6 imax) define the cell interfaces and are
nonuniformly distributed in physical space; however, these points
are uniformly distributed in transformed space from n = 1 to
n = imax. All simulations are performed with 128 cells in the spatial
direction unless otherwise noted.

The nozzle has a circular cross section with an effective radius
(in meters) given by
rðxÞ ¼
0:025þ 0:015 cosðpx=xtÞ x 6 xt ;

rtsþ0:01
2 þ 0:01�rts

2 cos p x�xt
2:5�xt

� �
x > xt;

(
ð6Þ

where the location of the throat is xt = 0.2 m. The effective tunnel
radius at the test section rts depends on both the wind tunnel con-
tour and the presence of the tunnel wall boundary layer. Thus the
effective test section radius can vary depending on whether the
tunnel wall boundary layer is laminar, transitional, or turbulent.
The nominal laminar value for this effective radius at the test sec-
tion is rts = 0.14 m, and the corresponding area variation of the tun-
nel is given in Fig. 10.

The SRQ of interest is the static temperature at the beginning of
the test section (x = 2.44 m). From prior experience, it is known
that condensation can occur in the test section when the static
temperature falls below 80 K. In addition to degrading the flow
quality in the test section, condensation at such high speeds can
also damage any aerodynamic models inserted into the tunnel.
The goal of the analysis is to determine whether one can have
95% confidence that the test section temperature will be greater
than or equal to 80 K. Fig. 10 shows the static temperature distri-
bution in the nozzle predicted by a deterministic simulation
assuming a stagnation temperature of To = 1,200 K and a laminar
boundary layer (i.e., rts = 0.14 m). This deterministic simulation re-
sults in a test section static temperature of 85.3 K, which is 6% lar-
ger than the specified minimum temperature of 80 K. The five steps
in the proposed VV&UQ framework will now be applied to this
example problem in order to quantify the total uncertainty in the
simulation predictions.

5.1. Identify all sources of uncertainty

The two primary sources of uncertainty in the model inputs are
the wind tunnel stagnation temperature and the effective area
downstream of the tunnel throat. The other model inputs include
wind tunnel stagnation pressure, the specific gas constant, the ra-
tio of specific heats, and the nozzle throat radius. These model
inputs are assumed to be known to sufficient accuracy so as to jus-
tify treating them as deterministic values as listed in Table 1.

5.2. Characterize uncertainties

After extensive measurements of the temperature in the stagna-
tion plenum (i.e., the low speed region upstream of the nozzle



Table 1
Deterministic model inputs for hypersonic wind tunnel
simulations.

Stagnation pressure, po 20 MPa
Specific gas constant, R 287 J/(kg K)
Ratio of specific heats, c 1.4
Tunnel throat radius, rt 0.01 m
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throat), run-to-run variations are observed to be normally distrib-
uted about their mean value with a coefficient of variation of
3.33%. For the nominal mean stagnation temperature of
To = 1200 K, the stagnation temperature is thus treated as an alea-
tory uncertainty characterized by a normal distribution with a
standard deviation of r = 40 K.

The thickness of the wind tunnel side-wall boundary layer is
not measured, and the state of the boundary layer (laminar, transi-
tional, or turbulent) over the length of the wind tunnel is not
known. Separate boundary layer simulations are performed
assuming fully laminar and fully turbulent tunnel wall boundary
layers. After accounting for the displacement thickness of the
boundary layer, the effective radius of the wind tunnel test section
is found to be 0.14 m for the laminar boundary layer and 0.13 m for
the turbulent one. Since the effective wind tunnel test section ra-
dius (accounting for the boundary layer displacement thickness)
is expected to be somewhere within this range (depending on
where boundary layer transition occurs in the nozzle), the test sec-
tion radius is treated as an epistemic uncertainty using the interval
rts = [0.13,0.14] m.
5.3. Estimate uncertainty due to numerical approximation

The uncertainties arising due to the numerical solution to the
quasi-one-dimensional Euler equations are now estimated. As a pre-
liminary step, code verification studies are first performed on non-
uniform meshes in order to ensure that there are no programming
mistakes (i.e., bugs) in the code. For this simple case, an exact solu-
tion is available and is used to verify that the numerical solutions ap-
proach this exact solution at a second-order rate (i.e., as Dn2).

All simulations are performed using double precision floating
point numbers which provide approximately 14 significant digits
in the computations. Furthermore, the simulations are advanced
in time until a steady state is achieved. This steady-state is con-
firmed by inserting the current solution into the steady-state por-
tion of the discrete equations and evaluating the non-zero
remainder, i.e., the steady-state iterative residuals. These iterative
residuals are converged 12 orders of magnitude from their initial
levels, thus allowing both round-off and iterative errors to be
neglected in the simulations.

The remaining numerical errors occur due to the spatial discret-
ization of the domain. These discretization errors in the SRQ, test
section temperature, are estimated by running simulations on
three systematically-refined meshes (i.e., by the same refinement
factor over the entire domain) for a set of nominal conditions with
To = 1200 K and rts = 0.14 m. For systematically-refined meshes of
128, 256, and 512 cells, the test section static temperature was
found to be 85.307, 85.824, and 85.954 K, respectively. The
observed order of accuracy can then be computed as

p̂ ¼
ln Tcoarse�Tmed

Tmed�Tfine

� �
lnðrÞ ; ð7Þ

where r = 2 is the grid refinement factor. The observed order of
accuracy for this case is p̂ ¼ 1:99, which is very close to the formal
order of accuracy of p = 2, thus Richardson extrapolation [16,26] can
be used to reliably estimate the exact solution to the differential
equations T as

T ¼ Tfine þ
Tfine � Tmed

rp � 1
¼ 85:998 K:

The uncertainty due to numerical discretization is estimated with a
procedure similar to Roache’s Grid Convergence Index [17,27], but
applied to each mesh level. A factor of safety of 1.25 is used because
the solutions appear to be in the asymptotic range (i.e., the ob-
served order of accuracy equals the formal order). The resulting
uncertainty estimate due to discretization on the coarsest mesh of
128 cells (the mesh used for uncertainty propagation and predic-
tion) is

UNUM ¼ UDE ffi 1:25 Tcoarse � T
�� �� ¼ 0:86 K:
5.4. Propagate input uncertainties through the model

Recall that aleatory uncertainties are characterized as a nor-
mally distributed CDF. For Monte Carlo sampling, a sample is cho-
sen between 0 and 1 based on a uniform PDF. This probability is
then mapped, using the CDF characterizing the input uncertainty,
to determine the corresponding value of the input quantity (see
top of Fig. 11). When more than one aleatory uncertain input is
present (e.g., x1, x2, and x3), Monte Carlo sampling randomly (and
independently) picks probabilities for each of the input parameters
as shown in Fig. 11. Once the input parameter samples are chosen,
the model is used to compute a SRQ (y) for each sample. This se-
quence of SRQs is then ordered from smallest to largest, making
up the abscissa of the CDF of the SRQ. The ordinate is found by sep-
arating the corresponding probabilities into equally-spaced divi-
sions, where the incremental change in cumulative probability is
1/N for each Monte Carlo sample and N is the total number of sam-
ples (see bottom of Fig. 11). The CDF of the SRQ is the mapping of
the uncertain inputs through the model to obtain the uncertainty
in the model outputs.

For epistemic uncertainties, the issue is one of determining what
combination of possible values over the range of the epistemic
interval (in combination with all of the other uncertainties in the
analysis) produces the largest range (i.e., p-box) for the SRQ of
interest. As a result, the propagation of epistemic uncertainty can
actually be formulated as a constrained optimization problem.
The simplest way to formulate this optimization problem is
through sampling, with Latin hypercube sampling (LHS) being
the recommended approach [43,44]. For LHS over a single uncer-
tain input, the probabilities are separated into a number of
equally-sized divisions and one sample is randomly chosen in each
division. Since there is absolutely no structure over the range of the
interval, an appropriate structure for sampling over epistemic
uncertainties would be a combinatorial design. The number of
samples, M, of the epistemic uncertainties must be sufficiently
large to ensure satisfactory coverage of the combinations of all of
the epistemic uncertainties in the mapping to the SRQs. Based on
the work of Refs. [44–46], we recommend that a minimum of three
LHS samples be taken for each epistemic uncertainty, in combina-
tion with all of the remaining epistemic uncertainties [1]. For
example, if m is the number of epistemic uncertainties, the mini-
mum number of samples would increase as m3. Recall that for each
of these combinations, one must compute all of the samples for the
aleatory uncertainties. For more than a handful of epistemic uncer-
tainties, the total number of samples required for convergence be-
comes extraordinarily large, and other approaches should be
considered [44–46].

For this example problem, both aleatory and epistemic uncer-
tainties exist in the model inputs. The epistemic uncertainty in
the effective wind tunnel test section radius is propagated using



Fig. 11. Monte Carlo sampling to propagate aleatory uncertainties through a model (from [1]).

Fig. 12. Ensemble of Cumulative Distribution Functions (CDFs) generated by
propagating the aleatory uncertainty in the stagnation temperature and the
epistemic uncertainty in the effective test section radius.
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Latin hypercube sampling as discussed above. The interval for the
test section radius is decomposed into 10 sub-intervals, and a ran-
dom sample is selected from each of these sub-intervals using a
uniform distribution (i.e., a pseudo-random number). Probabilities
of 0 and 1 for the first and last sub-intervals, respectively, are used
to ensure that the endpoints of the intervals are included. For each
of these 10 samples of the epistemic uncertainty, the aleatory
uncertainty in the stagnation temperature is propagated through
the model using simple Monte Carlo sampling with 100 samples.
After each of these inner loops over the aleatory uncertainty vari-
able, a conditional CDF is generated which is conditioned on the
value of the epistemic uncertain variable (rts). The complete
ensemble of 10 CDFs is given in Fig. 12 below, and the widest ex-
tent of this ensemble in the SRQ coordinate is used to construct the
p-box.

5.5. Estimate model form uncertainty

In order to estimate the model form uncertainty, three simple
validation experiments are designed at stagnation pressures of 7,
10, and 12 MPa. Since the Reynolds number is proportional to
the pressure, these values are sufficiently low that the boundary
layer can be safely assumed to be laminar (i.e., rts = 0.14 m); note
that the stagnation pressure for the conditions where the uncer-
tainty is to be estimated is 20 MPa where the laminar/turbulent
state of the boundary layer is unknown. The stagnation tempera-
ture measured as part of the validation experiments is again found
to be normally distributed from run-to-run with a mean and stan-
dard deviation of 1200 K and 40 K, respectively. All other model in-
puts are assumed to be deterministic. Since an actual experiment is



Table 2
Stagnation pressure (x) and area validation
metric (y) used for statistical analysis.

xi (MPa) yi (K)

7 3.1
10 2.89
12 2.8

2142 C.J. Roy, W.L. Oberkampf / Comput. Methods Appl. Mech. Engrg. 200 (2011) 2131–2144
not performed for the purposes of this illustrative example, a hypo-
thetical ‘‘synthetic’’ set of experimental data is chosen. For the val-
idation experiment at a stagnation pressure of po = 10 MPa, the ten
synthetic measurements of the SRQ (test section static tempera-
ture) are chosen to be: SRQEXP = [78.5,80.2,81.6,81.8,81.9,82.5,
82.7,83.6,84.7,86.4] K. The synthetic experimental data were ob-
tained using a combination of the present mathematical model,
an assumed model bias error, and a random experimental error
in the SRQ. While performing an actual validation assessment,
these values would come directly from experimental observations.
The CDF formed from these experimental observations is given in
Fig. 13. Also shown in the figure is the CDF found by propagating
the aleatory uncertainty in the stagnation temperature through
the model. The area validation metric is then computed as the area
between these two CDFs and is found to be d = 2.89 K. Similar area
validation metrics are computed for the validation experiments at
stagnation pressures of 7 and 12 MPa resulting in values of d = 3.1
and 2.8 K, respectively.

Now that the area validation metric d has been computed for
the three validation experiments, it must be extrapolated to the
conditions of interest (i.e., po = 20 MPa). First, a linear regression
fit of the area validation metric is computed as a function of the
stagnation pressure. While a simple linear regression was chosen
to illustrate the concepts in this example, other regressions could
be used as dictated by the amount of data available and its charac-
ter. For notational simplicity, let the independent variable (stagna-
tion pressure, po) be represented by x and the dependent variable
(the area validation metric, d) be represented by y. The values used
for the statistical analysis are thus given in Table 2.

A linear (least squares) regression fit of the data from Table 2
results in

ŷ ¼ 3:518� 0:0608x K:

Next, a prediction interval [47] is computed at the stagnation pres-
sure where we are interested in estimating the model form uncer-
tainty (i.e., x = 20 MPa). This prediction interval provides the range
of possible expected values of the area validation metric for an
experiment conducted at a new condition and is given by

ŷ� ta=2;N�ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1
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vuut : ð8Þ
Fig. 13. Area validation metric d computed as the area between the experimental
and simulation CDFs for a stagnation pressure of 10 MPa.
Here N is the number of validation experiments conducted (N = 3),
x is the stagnation pressure where we wish to estimate the predic-
tion interval (x = 20 MPa), ta/2,N�d is the 1 � a/2 quantile of the stu-
dent’s t distribution for the degrees of freedom d (here d = 2 since
there are two parameters in the regression fit and for the two-sided
95% interval t95%,1 = 12.71), and s is the square root of the mean
square error of the regression fit

s ¼
PN

i¼1ðyi � ŷiÞ2

N � 2

" #1=2

¼ 0:02433 K:

The resulting 95% prediction interval for the area validation metric
at po = 20 MPa is d = 2.30 ± 0.97 K and is shown graphically in
Fig. 14. Note that these prediction intervals will always be larger
than the corresponding confidence intervals of the regression fit be-
cause they represent a predicted difference between two random
variables, i.e., the measured and the predicted SRQ. For the final
estimation of model form uncertainty at the conditions of interest,
the largest value of the 95% prediction interval is used, or
d = 2.30 + 0.97 K = 3.27 K.

Note that if some SRQ other than test section static temperature
is of interest, then one could not use the approach discussed here.
One would instead have to use a different approach such as de-
scribed in Refs. [13,38], or [39].

5.6. Determine total uncertainty in the SRQ

In order to determine the total predictive uncertainty in the SRQ
(test section static temperature), one begins with the p-box deter-
mined by propagating aleatory and epistemic uncertainties in the
model inputs through the model for the conditions of interest
(po = 20 MPa). The bounding limits from the ensemble of CDFs from
Fig. 12 are shown graphically by the blue region of Fig. 15. Then,
one appends the estimated model form uncertainty found by
Fig. 14. Extrapolation of the area validation metric d from the conditions of the
validation experiments to the condition where the model form uncertainty is to be
estimated (po = 20 MPa).



Fig. 15. Total uncertainty in the test section static temperature accounting for the
propagation of model input uncertainty (blue), model form uncertainty (green), and
uncertainty due to numerical approximations (red). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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extrapolating the area validation metric to the conditions of inter-
est, i.e., d = 3.27 K, to the left and right sides of the p-box. The re-
gions denoting model form uncertainty are shown in green in
Fig. 15. Finally, the estimated uncertainty due to numerical
approximation UNUM = 0.86 K is appended to the left and right sides
of the p-box, as shown by the red regions in Fig. 15.

The resulting nondeterministic prediction of uncertainty in the
test section static temperature is given in Fig. 15. Note that the to-
tal predictive uncertainty is primarily due to the aleatory uncer-
tainty in the model inputs (i.e., the stagnation temperature) and
the estimated model form uncertainty. No probability structure
is assumed inside the probability box since the various sources of
epistemic uncertainty were treated as interval-valued quantities.
Since the stated requirement was that the test section temperature
should not fall below 80 K due to the possibility of condensation,
the results of applying this VV&UQ framework can be interpreted
in the following ways: (a) there is as high as a 25% chance that
the test section temperature will fall below 80 K with 95% confi-
dence and (b) the interval valued probability of T < 80 K is
[0,0.25] with 95% confidence. The result of this total uncertainty
quantification exercise is that if one desires 95% confidence that
no condensation will occur in the test section (i.e., T P 80 K), then
the nominal stagnation temperature should be increased, since
currently there is only a 75% likelihood that this requirement will
be met.

6. Conclusions

The framework for verification, validation, and uncertainty
quantification (VV&UQ) in scientific computing presented here
represents a conceptual shift in the way that scientific and engi-
neering predictions are performed and presented to decision mak-
ers. The philosophy of the present approach is to rigorously
segregate aleatory and epistemic uncertainties in input quantities,
and to explicitly account for numerical solution errors and model
form uncertainty directly in terms of the predicted system re-
sponse quantities of interest. In this way the decision maker is
clearly and unambiguously shown the uncertainty in the predicted
quantities of interest. For example, if the model has been found to
be inaccurate in comparisons with relevant experimental data, the
decision maker will starkly see this in any new predictions; as
opposed to the approach of immediately incorporating newly
obtained experimental data for system responses into the model
by way of re-calibration of model parameters. We believe our pro-
posed approach to presenting predictive uncertainty to decision
makers is needed to reduce the tendency of under estimating pre-
dictive uncertainty, especially when large extrapolation of models
is required. We believe that with this clearer picture of the uncer-
tainties, the decision maker is better served. This approach is par-
ticularly important for predictions of high-consequence systems,
such as those where human life, the public safety, national secu-
rity, or the future of a company is at stake.
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