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Veri� cation and Validation for Laminar Hypersonic
Flow� elds, Part 1: Veri� cation

Christopher J. Roy,¤ Mary A. McWherter-Payne,† and William L. Oberkampf‡

Sandia National Laboratories, Albuquerque, New Mexico 87185

Numerical simulations are performed for Mach 8 laminar � ow of a calorically perfect gas over a spherically
blunted cone. Code veri� cation calculations are conducted to provide con� dence that there are no coding mistakes
and include comparisons to highly accurate inviscid benchmark solutions as well as code-to-code comparisons.
Special attention is paid to the numerical accuracy of the solutions by carefully monitoring iterative convergence
errors and by conducting an extensive grid convergence study. Nonmonotonicconvergence of the surface pressure
and drag are observed with mesh re� nement. The source of this nonmonotonicityis explored in detail. The standard
method for determining the spatial order of accuracy is shown to be inadequate for the numerical algorithm
employed, and an alternative method is proposed. The overall discretization error of the � ne grid surface pressure
distributions is estimated to be below 0.4%, with the maximum errors found at the sphere–cone tangency point.
With the accuracies demonstrated, it is recommended that the present computations can be used as a numerical
benchmark solution for code veri� cation.

Nomenclature
f = solution variable
gi = i th-order error term coef� cient
h = measure of the grid cell spacing
M = Mach number
N = total number of grid cells
Pr = Prandtl number, 0.71
p = pressure, N/m2, or spatial order of accuracy
RN = nose radius, 0.00508 m
r = grid re� nement factor, hk C 1=hk

T = temperature,K
t = time, s
W = molecular weight, 28.013 kg/kmol for N2

x = axial coordinates, m
y = radial coordinate, m
®; ¯ = constants
° = ratio of speci� c heats
" = iterative convergence error
"21 = solution difference between mesh levels 2 and 1,

f2 ¡ f1

"32 = solution difference between mesh levels 3 and 2,
f3 ¡ f2

3 = iterative convergenceparameter

Subscripts and Superscripts

exact = exact (or best estimate) value
k = mesh level
n = iteration number
RE = Richardson extrapolation
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Introduction

W ITH advances in computing power, engineers increasingly
rely on modeling and simulation for the design, analysis,

and certi� cation of engineering systems. Thus, there is a need to
increase the con� dence in these simulations, especially in high-
risk areas such as aviation, nuclear power generation, and nuclear
weapons systems. Veri� cation and validation provides the primary
means by which the overall accuracy of computational simulations
can be assessed.

To develop a computational model, one must � rst de� ne a con-
ceptual model of the physical system. Veri� cation is the process
of both determining that a model implementation accurately rep-
resents the developer’s conceptual description and assessing how
accurately this conceptual model is solved.1 Validation, as de� ned
in Ref. 1, is “the processof determining the degree to which a model
is an accurate representationof the real world from the perspective
of the intended uses of the model.” Simply put, veri� cation asks
the mathematical question, Are we solving the equations right?,
whereas validation asks the physical question, Are we solving the
right equations?

Veri� cation can be separated into two parts, codeveri� cation and
solution veri� cation. Code veri� cation is used to � nd coding errors
in the discrete solution to a given set of governing equations and
boundary conditions. Code veri� cation can be assessed by com-
parison to exact analytical solutions, the method of manufactured
solutions,2;3 comparison to highly accurate numerical benchmark
solutions, and code-to-codecomparisons. The � rst two approaches
are rigorous code veri� cation procedures, especially when the or-
der of accuracy of the numerical method is veri� ed. The last two
approaches are less rigorous and can be classi� ed as con� dence-
building approaches,where other tests such as quantifyingthe error
(or difference) may be used for code-to-code comparisons. In this
paper, codeveri� cation is addressedthrougha comparisonto highly
accuratenumerical benchmark results for inviscid � ow and through
code-to-codecomparisons.

Solutionveri� cation(or numericalerrorassessment) is concerned
with quantifying the numerical error of a given simulation and
should ideally take place after codeveri� cation has been completed.
Solutionveri� cationshouldbe performedfor eachapplicationof the
code that is signi� cantly different than previous applications. For
steady-stateproblems, the two main aspects of solution veri� cation
are iterative convergence and grid convergence. The former deals
with the marching of a solution in pseudotime toward a steady state,
whereas the latter addresses the adequacy of the mesh on which the
discrete equations are being solved. The spatial order of accuracy
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is also an important metric for assessing the errors due to spatial
resolution. This paper places a strong emphasis on solution veri-
� cation. In particular, issues dealing with numerical schemes that
have mixed-order spatial accuracy will be addressed.

The goal of the current study is to assess the numerical accu-
racy of axisymmetric simulations for Mach 8 � ow past a spher-
ically blunted cone, the con� guration studied under the Joint
Computational/Experimental Aerodynamics Program (JCEAP) at
Sandia National Laboratories. The Reynolds number is suf� ciently
low so that the � ow remains laminar, and the � ow of a calorically
perfect gas is assumed. In the companion study,4 validation com-
parisons are made between the numerical solutions and the experi-
mental data for surface pressure reported in Refs. 5 and 6. However,
before model validation can take place, the numerical accuracy of
the simulations must be quanti� ed.

The remainder of this paper is organized as follows: A brief de-
scription is given of the computational tool and the � ow� eld con-
ditions. Next, code veri� cation studies are presented and include
comparisonsto highlyaccurate inviscidbenchmarksolutionsas well
as code-to-codecomparisons.A comprehensive analysis of the nu-
merical accuracy of the simulations is then presented, including a
discussion of the iterative and spatial errors and the nonmonotonic
solution behavior as the grid is re� ned. Finally, error estimates are
given for the surface pressure distributions using the mixed-order
method.

Flow� eld Model
The computational � uid dynamics code used herein is

SACCARA, the Sandia advanced code for compressible aerother-
modynamics research and analysis. The SACCARA code was de-
veloped from a parallel distributedmemory version7;8 of the INCA
code,9 originally written at Amtec Engineering. The SACCARA
code is used to solve the Navier–Stokes equations for conservation
of mass, momentum, and energy in axisymmetric form. Prior code
veri� cation studies with SACCARA include code-to-codecompar-
isons with other Navier–Stokes codes (see Refs. 10 and 11) and
with the direct simulation Monte Carlo method.12 The governing
equations are discretized using a cell-centered � nite volume ap-
proach. The convective � uxes at the interface are calculated using
the Steger–Warming13 � ux vector splitting scheme. Second-order
reconstructions of the interface � uxes are obtained via MUSCL
extrapolation.14 The viscous terms are discretizedusing central dif-
ferences. A � ux limiter is employed that reduces the spatial dis-
cretization to � rst order in regions of large second derivatives of
pressure and temperature. This limiting is used to prevent oscilla-
tions in the � ow properties at shock waves. The use of � ux limiting
results in a mixture of � rst- and second-orderaccuracy in space.The
rami� cations of the mixed-order scheme on the grid convergence
behavior will be discussed in detail.

The SACCARA code employs a massively parallel distributed
memory architecture based on multiblock structured grids. The
point-implicit solver is a lower–upper symmetric Gauss–Seidel
scheme based on the works of Yoon and Jameson,15 Yoon and
Kwak,16 and Peery and Imlay,17 which provides for scalabilityup to
thousands of processors.18 The simulations presented herein were
run using a single 400-MHz processor of a Sun Enterprise 10000
shared-memory machine. The only exception was the � nest mesh
level (960 £ 960 cells), which was domain decomposed and run in
parallel on 50 processors of the Accelerated Strategic Computing
Initiative Red Tera� op machine.

Flow� eld Conditions
The problem of interest is the Mach 8 perfect gas � ow of nitro-

gen (° D 1:4)over a sphericallybluntedcone.The conehalf-angleis
10deg,and themodelhasa total lengthof 0.2639m anda noseradius
of 0.00508m. A sample � ow� eld mesh is shown in Fig. 1 alongwith
an enlargementof the spherical nose region. The freestreambound-
ary conditions given in Table 1 are applied at the outer boundary,
symmetry is applied at y D 0, and a no-slip boundary condition is
employedat the vehicle surface with a constant wall temperatureof
316.7K as recommendedin Ref. 19. These conditionscorrespondto

Table 1 Flow� eld conditions for sphere–cone geometry

Flow parameter Value

Freestream Mach number 7.841
Stagnation pressure 2:4724£ 106 N/m2

Stagnation temperature 632.8 K
Freestream static pressure 286.8 N/m2

Freestream static temperature 47.7 K
Freestream unit Reynolds number 6:88 £ 106/m
Wall temperature 316.7 K

Fig. 1 Sample � ow� eld mesh for axisymmetric calculations.

the validationexperimentsconductedby Oberkampf et al.,5;6 which
include surface pressure data.

The � ow in the base region is not computed due to the large
computational expense; thus, a supersonic out� ow boundary con-
dition, that is, zero gradient extrapolation, is applied at the out� ow
plane. The grid lines that intersect with the body are normal to the
surface and employ hyperbolic tangent functions to ensure smooth
variations in grid spacing for adjacent cells. For the � nest mesh, the
height of the � rst cell at the wall is approximately 5:0 £ 10¡7 m at
the stagnation point and 3:0 £ 10¡6 m at the aft corner. The spac-
ing along the surface varies from 1:0 £ 10¡5 m near the stagnation
point to 2:5 £ 10¡4 m at the end of the body. The coarser meshes,
mesh 2 (480 £ 480 cells)–mesh 7 (15 £ 15 cells), are speci� ed by
successively eliminating every other grid line, that is, grid halving.
All calculations used the freestream properties as initial conditions
over the entire domain.

Code Veri� cation
Benchmark Inviscid Solutions

Inviscid solutions with the SACCARA code were computed us-
ing the grids already discussed and then compared with two highly
accuratenumericalbenchmarkresults.The � rst set of benchmarkre-
sults are for the inviscid� ow of a perfect gas (° D 1:4) over a sphere
and were providedby Carpenter of NASA Langley Research Center
(private communication, June 2000). These calculations employed
a high-order, shock-� tting Chebyshev collocation spectral method
to achieve accuracies on the order of eight signi� cant � gures. (See
Refs. 20 and 21 for more details.) The second set of inviscid bench-
mark calculationsare for the Mach 8 perfect gas � ow (° D 1:4) over
a 10-deg half-angle spherically blunted cone. These calculations
used shock-� tting � nite-difference methods and employed tempo-
ral marching in the subsonic region and a space marching procedure
in the supersonic region.22;23

Surface pressure distributions over the spherical nose tip are
given in Fig. 2 for the SACCARA code, the Chebyshev collocation
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Fig. 2 Comparison of SACCARA pressure distribution with bench-
mark inviscid solutions (Ref. 23; Carpenter, private communication,
June 2000) on the spherical nose tip.

Fig. 3 Error in SACCARA pressure distribution relative to the bench-
mark inviscid solutions (Ref. 23; Carpenter, private communication,
June 2000) on the spherical nose tip.

benchmark solution, and the � nite difference benchmark solution.
Good agreement is seen between the three methods.The error in the
inviscid SACCARA solutionwith respect to each of the benchmark
solutions is shown in Fig. 3 for two mesh levels, 240 £ 240 and
480 £ 480 cells. This error is de� ned by

error.%/ D [. f ¡ fbenchmark /= fbenchmark ] £ 100 (1)

where f refers to a SACCARA solution and fbenchmark refers to one
of the two benchmark solutions. These two benchmark numerical
solutions for surface pressure are in excellent agreement on the
spherical nose but show some minor differences near the sphere–

cone tangency point. The effects of grid re� nement are to reduce
the error by a factor of two on the � ner mesh, indicating � rst-order
spatial accuracy, which is lower than the nominal accuracy of the
scheme(secondorder). This reductionin theobservedorderof accu-
racy will be explored in detail in the “Solution Veri� cation” section.
The increase in error near y=RN D 0:9 is due to the lack of axial
clustering at the sphere–cone tangency point in the SACCARA so-
lution. Whereas the surface location and slope are continuous in
this region, the curvature is discontinuousand, as a result, requires

Table 2 Comparison of SACCARA results to Lyubimov
and Rusanov23 normalized surface pressures (p/p1 )

for a 10-deg sphere–cone

120£ 120 240 £ 240 480£ 480 Lyubimov and
x=RN cells cells cells Rusanov23

1 6.248 6.293 6.279 6.258
2 4.959 4.974 4.990 4.982
3 4.133 4.146 4.155 4.156
4 3.645 3.656 3.667 3.663
5 3.366 3.378 3.380 3.376
10 3.030 3.032 3.035 3.050
15 3.215 3.216 3.215 3.242
20 3.466 3.468 3.468 3.496
25 3.679 3.680 3.680 3.705
30 3.830 3.830 3.830 3.850
40 3.998 3.999 3.999 4.014
50 4.049 4.052 4.053 4.060

Fig. 4 Comparison of SACCARA pressure distribution with bench-
mark inviscid solution23 on the conical afterbody.

further axial clustering to achieve small errors. The magnitude of
the errors in surface pressure away from this region are approxi-
mately 0.3 and 0.15% for the 240£ 240 and 480 £ 480 cell meshes,
respectively.

The � nite difference benchmark solution of Lyubimov and
Rusanov also provides � ow properties on the conical portion of
the body, although the estimated error in the benchmark solutionon
the cone are larger than those on the sphere.22;23 A comparison of
the inviscid SACCARA solution for surface pressure on the cone is
shown in Fig. 4, with goodqualitativeagreementseen.An expanded
scale is used on the y axis to emphasizedifferencesin the solutions.
The pressure values for three grid levels using the SACCARA code
are given in Table 2 along with the data from the � nite difference
benchmark solution. In this case, the SACCARA solutions do not
appear to converge to the benchmark solution. Possible sources of
error in the benchmark calculations include interpolation error be-
tween the time-marching scheme (subsonic region) and the space-
marchingscheme (supersonicregion) and the increasein erroras the
space-marching method proceeds downstream. Both of these error
sources are discussed in detail in Refs. 22 and 23. Note that only
four signi� cant � gures are provided for this benchmark solution,
with errors estimated to be as large as §0.001 by the authors.

Navier–Stokes Code-to-Code Comparisons
Comparisons have been made using the thin-layer Navier–

Stokes code NSEQ24;25 and the parabolized Navier–Stokes code
SPRINT26;27 to increase the con� dence in the laminar SACCARA
simulations. Both of these codes have been used extensively at
Sandia National Laboratories for the analysis of hypersonic � ows.
The SPRINT code uses NSEQ to provide initial conditions for the
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Fig. 5 Code-to-code comparison of SACCARA surface pressure dis-
tributions with SPRINT and NSEQ.

Fig. 6 Percent difference in surface pressure distributions between
SACCARA (480££ 480 cells), SPRINT (959££ 241 nodes), and NSEQ
(221££ 241 nodes).

space-marching procedure. These two formulations employ shock
� tting and use a � nite difference scheme, whereas the SACCARA
code uses a � nite volume shock-capturingapproach.

Figure 5 shows results for surface pressure,with good agreement
shown between the three codes. Quantitative differences between
these three codes are given in Fig. 6. Again, the largest differences
are seen near the sphere–cone tangency point (x=RN ¼ 1). Away
from this region, the differences between the SACCARA code and
NSEQ are fairly constant at approximately0.25%, whereas the dif-
ferencesbetweenSACCARA and SPRINT showmore variationand
peak near 0.4%. Consistentwith the inviscid space-marchingproce-
dure discussed in the preceding section, the SPRINT solution also
suffers from interpolationerror during initializationand error accu-
mulation at the downstream locations. The large number of points
used in the axial direction for SPRINT are required because the
space-marching procedure is nominally � rst-order accurate in the
marching direction. The benchmark inviscid solutions, the code-
to-code comparisons, and the previously published results10;12 all
provide a level of con� dence that the SACCARA code is free from
coding errors in the exercised portions of the code.

Solution Veri� cation
Iterative Convergence Error

The standard method for assessing iterative convergence is to
monitor the L2 norms of the residuals for the governing equations
over the entire domain. The residuals are formed by simply substi-
tuting the current numericalsolution into the discretizedform of the
steady-stateequations,which shouldapproachzero as iterativecon-
vergence is achieved. A solution can be considered fully iteratively
converged, within the precision of the computer used, when the
residuals are reduced to machine zero (approximately 15 orders of
magnitude for a double-precisioncomputer). However, the practice
of monitoring iterative convergence does not necessarily provide
information on the iterative error in a given � ow� eld quantity. Fur-
thermore, for engineering calculations, it is not always necessary,
or even possible, to converge the solution to machine zero.

For the axisymmetric, laminar, perfect gas � ow� eld examined
herein, the residuals for each of the governing equations were re-
duced by approximately 14 orders of magnitude on all grid levels.
The reduction of the residuals to machine zero provides con� dence
that the iterative errors in the solution variables are small; however,
it does not provide quantitative estimates of the iterative errors. To
assess the actual iterative convergence errors in the surface pres-
sure, the method developed in Ref. 28 is employed for the � ne grid
calculations.This method is repeated for completeness.

The accuracyof a given � ow� eld variable f relativeto the steady-
state value is determined by expressing the numerical solution at
time t n as

f .t n/ D f n D fexact C "n (2)

The exact steady-state value is fexact and the convergence error at
time t n is "n . The iterative convergence error of the SACCARA
codehas generallybeenobservedto have an exponentialdecreasein
time, which gives the followingvariationas the solutionapproaches
a steady state:

"n D ®e¡¯t n
(3)

where ® and¯ are constants.Equations(2) and (3)may be combined
and rewritten as

¯ tn D ® ¡
¡

f n ¡ fexact

¢
(4)

Equation (4) is evaluatedat three time levels, (n ¡ 1), n, and (n C 1),
and the three relations are used to eliminate ® and obtain

¯.t n ¡ t n ¡ 1/ D

"¡
f n ¡ 1 ¡ fexact

¢
¡

f n ¡ fexact

¢
#

¯.t n C 1 ¡ tn/ D

" ¡
f n ¡ fexact

¢
¡

f n C 1 ¡ fexact

¢
#

If the time increments are equal, then .tn ¡ t n ¡ 1/ D .t n C 1 ¡ t n/ and
the preceding equations become

¡
f n ¡ 1 ¡ fexact

¢¡
f n C 1 ¡ fexact

¢
D

¡
f n ¡ fexact

¢2

The exact steady-statevalue is solved for in the precedingequation,
which gives

fexact D
f n ¡ 3n f n ¡ 1

1 ¡ 3n
; where 3n D

. f n C 1 ¡ f n/

. f n ¡ f n ¡ 1/
(5)

The iterative convergence error becomes

"n D ¡ . f n C 1 ¡ f n/

.1 ¡ 3n/

and the percent convergence error relative to the exact steady-state
value becomes

% error of f n D ¡100

µ
f n C 1 ¡ f n

f n ¡ 3n f n ¡ 1

¶
(6)
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Fig. 7 Iterative convergence error for the 960 ££ 960 cell parallel
SACCARA simulation: stagnation point.

Similar results were independently developed by Ferziger and
Peric29;30 for determining the convergence error of the numerical
iterative solution of differenceequations,but their results have been
obtained with a different approach. In their work, the parameter 3n

is the spectral radius (or the magnitude of the largest eigenvalue)of
the iterationmatrix. If the eigenvaluesare complex, then the present
approach is not appropriate.The complex eigenvaluecase has been
considered by Ferziger and Peric in Ref. 30.

The local iterative error estimates for various surface quantities
at the stagnation point are presented in Fig. 7 along with the best
estimates. The local error estimates obtained from Eq. (6) based on
time levels (n ¡ 1), n, and (n C 1) are indicatedby the symbols.The
curves in Fig. 7 represent the percent error obtained from the best
estimate of the exact solution given by Eq. (5). This best estimate
is determined from the � nal three iteration levels of the solution
before machine zero is reached. These estimates indicate that the
surface pressure, shear stress, and heat � ux at the stagnation point
all converge to machine zero at roughly 100,000 iterations. The
pressure and heat � ux exhibit approximately a 13 order of magni-
tude drop from the initial error values, whereas the surface shear
stress achieves only an 11 order of magnitude drop. The limited
convergenceof the stagnationpoint shear stress is possibly because
the exact value at this location is zero and, thus, is more suscepti-
ble to roundoff errors. Whereas the required number of iterations is
high, the diagonalpoint-implicitscheme, which has excellentparal-
lel scalability, requires essentially the same computational cost per
iteration as an explicit scheme.

The iterative convergence behavior at a location halfway down
the body (x=RN D 27:2) is presented in Fig. 8. The surface proper-
ties converge to machine zero by approximately400,000 iterations.
At this location, all of the surface properties exhibit a 13 order of
magnitude drop in error. The larger number of iterations for this
downstream location is indicative of the hyperbolic nature of the
problem,where iterativeconvergenceerrors in the upstreamregions
essentiallyserveas varyingboundaryconditionsfor the downstream
locations.

The iterativeconvergencebehaviorfor the forebodydrag (exclud-
ing the base region,which was not simulated) is shown in Fig. 9. The
total forebodydrag convergesin a manner similar to the downstream
surface pressure, which is not surprising because the pressure drag
makes up more than 90% of the total drag. Also shown in Fig. 9
is the convergenceof the drag contributionscoming from the nose
region (zone 1) and the aft region (zone5). Zones 1–5 are each made
up of 192 axial and 96 radial cells adjacent to the surface and arise
from the parallel-domain decomposition (used for the � nest mesh
only).The slower convergenceof the aft region is again indicativeof
the hyperbolic nature of the � ow. The iterative errors in the surface

Fig. 8 Iterative convergence error for the 960££ 960 cell parallel
SACCARA simulation: x/RN = 27.2.

Fig. 9 Iterative convergence error of forebody drag for the 960££ 960
cell parallel SACCARA simulation.

pressure are below 10¡12% and are much smaller than the spatial
errors, as will be demonstrated in the next section.

Grid Convergence Error
Richardson Extrapolation

The Richardson extrapolationprocedure is a techniqueby which
two discrete solutions on different grid levels are used to obtain
a solution extrapolated to zero mesh size. These Richardson ex-
trapolated values can be used as a more accurate solution, or more
important, as an approximation to the exact continuum solution,
which can then be used to obtain error estimates in the discrete so-
lutions. See Chap. 5 of Ref. 3 for a thorough discussionof the basic
Richardson extrapolationtechnique.The underlying assumption in
the Richardsonextrapolationprocedureis that the discretesolutions
f on mesh level k have a series representationin powers of the mesh
size, that is,

fk D fexact C g1hk C g2h2
k C O

¡
h3

k

¢
(7)

In Eq. (7), fexact is the exact continuum solution, g1 and g2 are
coef� cients for the � rst- and second-order terms, respectively, and
hk is some measureof the grid spacingon mesh level k. The required
conditions for applying general Richardson-typeextrapolationsare
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that the observedorderof the scheme is known and that the grids are
suf� ciently re� ned to be in the asymptotic grid convergence range,
that is, the higher-order terms in Eq. (7) are small.

For a numerical method with second-order spatial accuracy, the
coef� cientg1 is zero.If two second-ordersolutionsare available,one
on mesh 1 (� ne mesh) and one on mesh 2 (coarse mesh), then Eq. (7)
can be solved using these two discrete solutions to obtain a third-
order (fourth-order if central differences are employed) accurate
estimate of fexact , that is,

fexact
»D fRE D f1 C

f1 ¡ f2

r 2 ¡ 1
(8)

where fRE is the Richardsonextrapolatedestimate.Furthermore, if a
grid re� nement factor of two is used, that is, grid halving/doubling,
then Eq. (8) reduces to the standard second-order Richardson ex-
trapolation expression:

fRE D f1 C . f1 ¡ f2/=3 (9)

Again, the assumptionsthat go into usingEq. (9) are that the scheme
is second-order accurate, the solutions are in the grid asymptotic
range, and the grid re� nement factor is two.

Solutions were obtained for seven grid re� nement levels, from
mesh 1 (960 £ 960 cells) to mesh 7 (15 £ 15 cells), with each suc-
cessive grid level determined by eliminatingevery other grid line in
each coordinatedirection,that is, grid halving.The standardsecond-
order Richardson extrapolation method was then applied using the
two � nest mesh levels to obtain a nominally third-orderaccurate es-
timate of the exact solution.Figure 10 shows the normalizedsurface
pressuresfor the sevengrid levels along with the Richardsonextrap-
olation results. Differences between the � ner grid solutions and the
extrapolated results are not discernible from Fig. 10. The limits of
the pressure axis have been chosen to highlight the differences in
the solutions. In general, the Richardson extrapolation values can
be used to obtain error estimates on the various grid levels; how-
ever, the assumptionsof second-orderaccuracyand asymptoticgrid
convergencemust � rst be veri� ed.

Order of Accuracy
An additional solution can be used to verify the spatial order

of accuracy of the numerical scheme. The standard method3;31 for
determining the order of accuracy is to assume that there is a single
dominant error term of order p, that is,

fk D fexact C gph p
k C O

¡
h p C 1

k

¢
(10)

Fig. 10 Surface pressure distributions for the 10-deg half-angle
sphere-cone simulations using seven mesh levels.

Fig. 11 Order of accuracy of the surface pressure solutions using the
three � nest meshes.

When three discrete solutionswith a constantgrid re� nement factor
(r D h2=h1 D h3=h2 ) are used, the system of equations found from
Eq. (10) can be solvedfor the orderof accuracy to give the following
relationship:

p D ."32="21/

.r/
(11)

where "21 and "32 represent differences between the discrete
solutions:

"21 D f2 ¡ f1; "32 D f3 ¡ f2 (12)

The order of accuracy as determined by Eq. (11) is presented in
Fig. 11 for the surface pressure distributions using the three � nest
mesh levels. The solution accuracyvaries locally from negativeval-
ues to values as large as eight. Assessment of the order of accuracy
from these types of plots is not possible; furthermore, Eq. (11) is
unde� ned when the three pressure solutions are nonmonotone, that
is, local maxima or minima exist in the surface pressure vs grid
spacing curve. Also shown in Fig. 11 are two locations that will
be used for additional analysis (x=RN D 0 and x=RN D 27:2). The
results shown in Fig. 11 imply that one of the assumptions used in
developing Eq. (11) is not valid.

One assumption to examine is the assumption of a constant grid
re� nement factor. A stretched, curvilinear mesh was used, so that
the mesh spacingis notuniformin physicalspace;however,the gov-
erning equations are transformed into a computational space with
� xed spacing. The assumption of a constant grid re� nement factor
should, thus, be valid. The transformation itself can introduce error
into the discrete solutions,but this error is expected to be very small
because smooth hyperbolic tangent grid point distributions were
used for clustering near to the surface. In addition, the maximum
ratio of adjacentcell sizes (cell stretchingfactors) for the � nest mesh
were 1.007 normal to the body and 1.03 along the body.

The remainingtwo assumptionsare that there is a singledominant
error term and that the discrete solutions are in the asymptotic grid
convergencerange.These two assumptionsare relatedbecausein the
trueasymptoticgrid convergencerange, that is, as h ! 0, the lowest-
order error term that is nonzerowill be the dominant error term. The
Steger–Warming13 upwind scheme used in the simulationsemploys
a � ux limiter that reduces the spatial accuracy of the scheme from
second-order to � rst-order in regions of large second derivatives.
For the � ner meshes, the � ux limiter is expected to be activated
only at the shock wave. Thus, although the numerical scheme is
nominally second-order accurate, there are regions in the domain
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where the scheme will be � rst-order accurate, resulting in a mixed
� rst- and second-order scheme. The order of accuracy calculation
from Eq. (11) (and shown in Fig. 11) is not appropriate when the
� rst- and second-order error terms are of the same magnitude.

Further insight into the described behavior can be gained by as-
suming that both � rst- and second-ordererror terms are present.11;32

The series representation for the discrete solution from Eq. (7) is
again assumed; however, now both the � rst-order (g1) and second-
order (g2) terms will be retained. Three solutions are required and
take the following form:

f1 D fexact C g1h1 ¡ g2h2
1 C O

¡
h3

1

¢

f2 D fexact C g1h2 ¡ g2h2
2 C O

¡
h3

2

¢

f3 D fexact C g1h3 ¡ g2h2
3 C O

¡
h3

3

¢
(13)

If the three solutions ( f1, f2 , and f3) are known along with the
three mesh spacing values (h1 , h2, and h3), then Eq. (13) forms a
linear systemthat may be solved for the � rst- and second-ordererror
coef� cients (g1 and g2) and the third-order accurate estimate of the
exact solution fexact . If we arbitrarily set h1 D 1, then the solution to
this linear system gives

g1
»D

¡"32 C r 2"21

r.r ¡ 1/2
(14)

g2
»D

"32 ¡ r"21

r.r C 1/.r ¡ 1/2
(15)

fexact
»D f1 C "32 ¡ .r 2 C r ¡ 1/"21

.r C 1/.r ¡ 1/2
(16)

where again a constant mesh re� nement factor r is assumed.
The mixed-ordermethod has been applied to the surface pressure

solutionson the seven mesh levels. Figure 12 shows the behaviorof
the error in the surface pressure at the stagnation point. The error
is calculated using the third-order accurate estimate for fexact from
Eq. (16) using the � nest three mesh levels and can be written as

spatial error.%/ D [. fk ¡ fexact/= fexact] £ 100 (17)

Because of the highly re� ned nature of the � nest three grids,
these spatial error estimates are expected to be very close to the
true discretization error. The spatial error estimates are plotted vs
h D .N1=Nk/

1=2, where N1 is the total numberof cells on mesh 1 (the
� ne mesh) and Nk is the number of cells on mesh k. Because a grid
re� nement factor of two (grid halving in each coordinatedirection)

Fig. 12 Magnitude of the error components in surface pressure at
x/RN = 0: stagnation point.

Fig. 13 Magnitude of the error components in surface pressure at
x/RN = 27.2.

was used, the discrete solution points fall at 1, 2, 4, 8, 16, 32, and
64 (from � nest to coarsest).

Also shown in Fig. 12 are the normalized magnitudesof the � rst-
and second-order error terms, respectively,

jg1h= fexact j £ 100;
­­g2h2

¯
fexact

­­£ 100 (18)

along with the normalized magnitude of their sum
­­¡g1h C g2h2

¢¯
fexact

­­£ 100 (19)

The � rst-order error term has a slope of unity on the log– log plot
(Fig. 12), whereas the second-order error term has a slope of two.
The magnitude of the sum of the two terms (solid line) is forced to
pass through the points associated with meshes 1–3 because these
discretesolutionsareused in the solutionto Eqs. (14–16). First-order
accuracy is seen in the � ne grid solutions, whereas the coarse grid
solutions begin to exhibit a second-orderbehavior. Indeed, the dis-
cretizationerror on the coarser grids begins to approach the second-
order slope. In this case, the � rst- and second-ordercoef� cients (g1

and g2 ) have the same sign, so that the magnitude of the sum of the
error terms is larger than each of the individual error terms. Also
shown in Fig. 12 is the observed order of accuracy p as calculated
from Eq. (11). Because the order of accuracy requires three discrete
solutions, results are only available for meshes 1–5. For this case,
the observed order of accuracy is well de� ned and varies around
unity (p D 1).

The error in surface pressureat a locationhalfway down the body
(x=RN D 27:2) is given in Fig. 13. As was seen in Fig. 12, the so-
lutions display � rst-order grid convergence for the � ner grids and
second-order convergence for the coarser grids. In this case, how-
ever, the � rst- and second-order error coef� cients are of opposite
sign, giving error cancellation at the crossover point (h ¼ 7). The
nonmonotonebehaviorpredicted from the mixed-ordererror analy-
sis (using the three � nest mesh solutions only) is qualitatively seen
in the discretizationerror estimates on the coarser meshes. The fact
that the pressure does not converge monotonically results in singu-
lar behavior for the standard method for calculating the observed
order of accuracy (also shown in Fig. 13) because the argument of
the natural logarithm in Eq. (11) becomes negative.

The error in the forebody drag, a global quantity, is shown in
Fig. 14. Again, the � rst- and second-order error terms are of op-
posite sign, resulting in error cancellation at h ¼ 4. Because there
is a discrete solution at h D 4, the effects of the error cancellation
are quite pronounced in this case, with the error in the drag for
the 240 £ 240 cell grid almost two orders of magnitude lower than
on the 960 £ 960 grid. Figure 14 clearly demonstrates how non-
monotonicgrid convergencecan be caused by error cancellationfor
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Table 3 Normalized surface pressure p/p1 for p1 = 286.8 N/m2 (percent error)

Mesh level Stagnation point Sphere–cone juncture x=RN D 27:2

15 £ 15 (¡5.9%) (52.4%) (¡1.9%)
30 £ 30 77.66557 (¡2.5%) 9.370761 (23.3%) 3.692487 (¡0.43%)
60 £ 60 78.74681 (¡1.1%) 8.315920 (9.4%) 3.706927 (¡0.041%)
120£ 120 79.22133 (¡0.54%) 7.858402 (3.4%) 3.710240 (0.048%)
240£ 240 79.42112 (¡0.28%) 7.723745 (1.6%) 3.711381 (0.079%)
480£ 480 79.54735 (¡0.13%) 7.658460 (0.74%) 3.710982 (0.068%)
960£ 960 79.60108 (¡0.060%) 7.629082 (0.36%) 3.709991 (0.041%)
First- and second-order 79.64854 7.601881 3.708474

extrapolation

Fig. 14 Magnitude of the error components in forebody drag, neglect-
ing base drag.

mixed-order schemes. Moreover, nonmonotonic grid convergence
greatly complicates the process of error assessment.

The assumption that both the � rst- and second-order error com-
ponents are important is supported by the qualitative agreement
between the coarse grid error estimates (solid lines) and the discrete
errors (symbols) shown in Figs.12–14. That the order of accuracy
tends toward � rst order as the grid is re� ned is not a new � nding.
Carpenterand Casper33 showed that all shock-capturingschemes re-
verted to � rst order behind the shock for suf� ciently re� ned meshes.
Two differences between their approach and the current work are
that they employed higher-order methods (third- and fourth-order
methods) and that they did not use a � ux limiting procedure. The
fact that Carpenter and Casper saw a reduction to � rst order without
using � ux limiters is surprising and implies that the current shock-
capturing schemes are only capable of transferring information in
a � rst-order manner through discontinuities,at least in two dimen-
sions and higher. See Ref. 33 for more details.

The capturingof discontinuities,for example, shock waves, with-
out oscillation requires a reduction in the local spatial accuracy of
a numerical scheme to � rst order.34 The prevention of oscillations
is especially critical for chemically reacting � ows, where nonphys-
ical temperature extrema can strongly affect the chemistry. For the
Mach 8 sphere–cone simulations presented herein, the � rst-order
behavior at the shock wave leads to the presence of a � rst-order
error component (however small) everywhere downstream due to
error “pollution.” As the mesh spacing is re� ned and h ! 0, this
� rst-order error component must eventually dominate. The stan-
dard method for assessing the order of spatial accuracy given in
Eq. (11) is inadequate when the � rst- and second-ordererror terms
are of the same magnitude. In a strict sense, the asymptotic grid
convergence regime occurs when there is a single dominant error
term as h ! 0, which for this case is � rst order. Downstream of
the shock wave, the coef� cient on the � rst-order error term g1 is
small, with the magnitude possibly related to the proximity to the
discontinuity. In these regions, a second-order asymptotic region

Fig. 15 Error in the surface pressure distributions in the nose region
using six mesh levels.

may exist, which correspondsto the local discretizationerror. Once
suf� cient grid re� nement is performed, the errors from the disconti-
nuity become signi� cant, thus, resulting in a � rst-order asymptotic
region. For practical purposes, the second-order asymptotic range
should be suf� cient for engineering calculations; however, the er-
ror and order of accuracy analyses must take into account that both
� rst- and second-order error terms may be present. The effects of
the � rst-order pollution error from the discontinuity could be mit-
igated by clustering to the shock; however, no attempt to provide
such clustering was made in the current work.

Error Assessment
The error of the surfacepressuredistributionsrelative to the third-

order accurate estimate from Eq. (16) is presented in Fig. 15 for the
nose and the beginning of the conical region. The errors are largest
at the sphere–cone juncture (x=RN ¼ 0:83), which indicates that
additional grid re� nement is required at geometric boundarieswith
discontinuous surface curvature. The errors on the conical portion
of the body are given in Fig. 16 for the region in which experi-
mental data are available (6 < x=RN < 46). The spatial errors in this
region are below 0.06% for mesh 1 and 0.11% for mesh 2. The com-
parisons to the experimental data are presented in the companion
paper.4

The numerical errors at the stagnation point, the sphere–cone
tangency point, and x=RN D 27:2 are summarized in Table 3. The
nonmonotonicgrid convergencebehavior observed at x=RN D 27:2
in Fig. 13 is clearly evident in Table 3. With the exception of the
sphere–cone juncture point, the spatial errors on the three � nest
meshes are all below 1%. For the two � nest meshes, the maximum
numerical errors in the surface pressure are 0.36% (mesh 1) and
0.74% (mesh 2) and are considered suf� ciently small to qualify as
numerical benchmark solutions for code veri� cation.
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Fig. 16 Error in the surface pressure distributionsalongthe cone using
six mesh levels.

Conclusions
Code veri� cation efforts were performed including comparisons

to inviscid benchmark solutions and a code-to-code comparison.
These activities give increasedcon� dence that the SACCARA code
is free from coding errors. Simulations have been conducted for
the laminar, perfect gas � ow over a 10-deg half-angle sphere–cone.
A method for monitoring the iterative convergence error during a
calculation was presented. Application of this technique to the � ne
grid calculationwas used to obtain iterative convergenceof the sur-
face pressure down to machine zero, or 10¡12% error. Solutions
on seven mesh levels were obtained to assess the adequacy of the
computationalmeshes and to gain insight into the grid convergence
behavior. Nonmonotonic convergence of the surface pressure and
forebody drag was observed and was found to be related to the
presence of both � rst- and second-order terms in the discretiza-
tion error. The grid convergence errors for surface pressure were
estimated to be below 0.36 and 0.74% for meshes 1 and 2, re-
spectively. These numerical errors are suf� ciently small to qualify
as numerical benchmark solutions. Detailed surface and � eld � les
for this numerical benchmark solution are available from the � rst
author.

In general, it is desirable to use numerical schemes that reduce to
� rst-order accuracy through discontinuitiessuch as shock waves to
prevent numerical oscillations.The � rst-orderbehaviorat the shock
wave leads to the presenceof a � rst-ordererror component(however
small) everywhere downstream. Because the mesh spacing is suf-
� ciently re� ned, this � rst-order error component must eventually
dominate. The standard method for assessing the order of spatial
accuracy was shown to be inadequate when the � rst- and second-
order error terms were of similar magnitude.An alternativemethod
was applied for analyzing the convergencebehavior of mixed � rst-
and second-orderschemes. This method allows solution nonmono-
tonicitydue to thecancellationof � rst- andsecond-ordererror terms.
Although this alternativemethod requires only three grid solutions,
the authors recommend that a fourth mesh level be computed to
verify that the error behaves as predicted.
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