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SUMMARY

The method of manufactured solutions is used to verify the order of accuracy of two �nite-volume
Euler and Navier–Stokes codes. The Premo code employs a node-centred approach using unstructured
meshes, while the Wind code employs a similar scheme on structured meshes. Both codes use Roe’s
upwind method with MUSCL extrapolation for the convective terms and central di�erences for the
di�usion terms, thus yielding a numerical scheme that is formally second-order accurate. The method
of manufactured solutions is employed to generate exact solutions to the governing Euler and Navier–
Stokes equations in two dimensions along with additional source terms. These exact solutions are
then used to accurately evaluate the discretization error in the numerical solutions. Through global
discretization error analyses, the spatial order of accuracy is observed to be second order for both
codes, thus giving a high degree of con�dence that the two codes are free from coding mistakes in the
options exercised. Examples of coding mistakes discovered using the method are also given. Copyright
? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modelling and simulation (M&S) has enormous potential to impact the design, analysis, and
optimization of engineering systems. Here M&S is viewed as the numerical solution to any
set of partial di�erential equations that govern continuum mechanics or energy transport (e.g.
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structural dynamics, heat conduction, electrostatics, �uid dynamics). In order for M&S to
fully achieve its potential, the engineering community must gain increased con�dence that
it can provide accurate predictions. Although the speci�c examples presented herein are for
Computational Fluid Dynamics (CFD), the general concepts apply to any M&S code.
The sources of error in M&S can be categorized into two distinct areas [1, 2], physical

modelling errors (validation related) and mathematical errors (veri�cation related). The phys-
ical modelling errors arise due to shortcomings in the chosen model or when a model is
applied outside of its intended range. An example of the latter is a turbulence model which
provides surface heating results for an attached boundary layer �ow within 10% accuracy.
When this model is applied outside the range where it was calibrated, say for shock-induced
separation, then the model may only give 50% accuracy on heating rates.
Mathematical or veri�cation-related errors can arise from a number of sources including

insu�cient mesh resolution, improper time step, incomplete iterative convergence, round-o�
and coding mistakes (i.e. coding bugs). The presence of coding mistakes is an often over-
looked source of error in M&S. Code developers often rely on expert judgement to determine
when a code is producing the correct results. As M&S codes become more complex with
numerous modelling options and multiphysics coupling, the reliance on expert judgement can
be problematic. This paper will discuss a rigorous method for �nding and eliminating coding
mistakes known as the method of manufactured solutions [1, 3].
Veri�cation is de�ned as ensuring that a model implementation matches the developer’s

conception [2]. Veri�cation can be broken down into two distinct categories: code veri�cation
and solution veri�cation. Code veri�cation is a process performed to provide a high degree of
certainty that a code is free from coding mistakes (i.e. coding bugs); however, a formal proof
that a piece of software is ‘bug-free’ is probably not forthcoming. If performed rigorously,
the code veri�cation process needs to be performed only once for each independent portion
of the code, assuming no subsequent changes to the code are made.
There are four di�erent ways to verify a code: the method of exact solutions, the method

of manufactured solutions, comparison to benchmark numerical solutions and code-to-code
comparisons. The latter two are really con�dence-building exercises, and should not take the
place of rigorous code veri�cation. In the method of exact solutions, numerical solutions are
compared to exact solutions, often with simpli�cations to the equations and=or the boundary
conditions. In the method of manufactured solutions, an analytical solution is chosen a priori
and the governing equations are modi�ed by the addition of analytical source terms.
The use of manufactured solutions and grid convergence studies for the purposes of code

veri�cation was �rst proposed by Roache and Steinberg [4]. They employed the symbolic
manipulation software Macsyma to verify a code for generating three-dimensional transforma-
tions for elliptic partial di�erential equations. These concepts were later extended by Roache
et al. [5]. The term “manufactured solution” was coined by Oberkampf and Blottner [6] and
refers to the fact that the method generates (or manufactures) a related set of governing
equations to a chosen analytic solution. An extensive discussion of manufactured solutions
for code veri�cation was presented by Salari and Knupp [7], and includes both details of the
method as well as application to a variety of partial di�erential equation sets. This report was
later re�ned and published in book form by Knupp and Salari [3]. A recent review=tutorial
was also given by Roache [8].
The �rst CFD code to be veri�ed in the current work is the Premo code, which is being

developed as part of the Department of Energy’s Accelerated Strategic Computing Initiative
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METHOD OF MANUFACTURED SOLUTIONS 601

(ASCI) to meet the needs of the Stockpile Stewardship Program. The Premo code is one of
a number of mechanics and energy transport codes that serves as a module to the SIERRA
multi-mechanics framework [9]. The SIERRA framework provides services for I=O, domain
decomposition, massively parallel processing, mesh adaptivity, load balancing, code coupling
and interfaces to a host of linear and non-linear solvers.
The second CFD code to be veri�ed is version 6.0 of the Wind code [10] (projected to be

released in 2004), the primary component of the National Project for Applications-oriented
Research in CFD (NPARC) Alliance Flow Simulation System. Wind is derived from the
NASTD code, which was donated by the Boeing Company to NPARC in 1997. Wind is
developed and maintained jointly by the Arnold Engineering Development Center, NASA
Glenn Research Center and the Boeing Company under the auspices of the NPARC Alliance.

2. NUMERICAL FORMULATION

2.1. Euler equations

The two-dimensional Euler equations in conservation form are
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where � is the mass density, u and v the Cartesian velocity components, p the static pressure,
and et the total energy (internal plus kinetic). The �rst term is the unsteady term, the next two
terms are the convective terms in the x and y directions, respectively, and a general source
term is included on the right-hand side. For a calorically perfect gas, the Euler equations are
closed with two auxiliary relations for energy

e=
1

�− 1 RT (4)

et = e+
u2 + v2

2
(5)

and with the ideal gas equation of state

p=�RT (6)
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where T is the temperature. For the solutions presented herein, the ratio of speci�c heats is
�=1:4 and the speci�c gas constant is R=287:0 N m=(kg K).

2.2. Navier–Stokes equations

For viscous �ows, the mass conservation equation given in Equation (1) is still valid; however,
the inviscid momentum equations are replaced by the Navier–Stokes equations, which may
be written in two-dimensional form as
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Including the viscous e�ects, the energy conservation equation is now
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For the two-dimensional Navier–Stokes equations, the shear stress tensor is
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and the heat �ux vector is given by

qx =−k @T
@x

qy =−k @T
@y

(10)

For the Navier–Stokes simulations presented herein, the absolute viscosity is chosen to be
a large constant value (�=10 N s=m2) in order to obtain a balance between convection and
di�usion. The thermal conductivity k is determined from the viscosity by specifying a constant
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Figure 1. Edge-based control-volume discretization scheme (Premo code).

Prandtl number (Pr=1):

k=
�R
�− 1

�
Pr

(11)

2.3. Discretization

The spatial discretization employed in the Premo code is a node-centred �nite-volume formu-
lation [11]. This discretization is implemented on unstructured meshes using an edge-based
scheme which allows arbitrary element topologies, where an element is determined by con-
necting nearest-neighbour nodes. The surfaces of the control volume are found by connecting
nodal edge mid-points and element centroids, i.e. the median dual mesh. The convective �uxes
are evaluated with Roe’s approximate Riemann solver [12]. Second-order spatial accuracy is
achieved via MUSCL extrapolation [13] for the primitive variables to the control-volume
surface. This extrapolation takes the form

�− =�L + 1
2 [∇�L] •� r

¿

�+ =�R − 1
2 [∇�R] •� r

¿ (12)

where L and R refer to the nodes to the left and right of the control surface, the − and +
refer to the left and right Riemann states, respectively, and � r¿ is distance vector

� r¿ =(xR − xL)i + (yR − yL)j
The left and right states for the node-centred control volume are shown graphically in
Figure 1. For the results presented herein, the gradient is evaluated using the least-squares
gradient operator [14]. This gradient is also used in the evaluation of the viscous �uxes at the
control-volume surface, resulting in a second-order discretization for the viscous terms. On
uniform meshes, this scheme results in an upwind-biased Fromm’s stencil for convection [15]
and central di�erence for di�usion. For the simulations discussed in this paper, the governing
equations are integrated in time to a steady state using a low-storage, four-stage Runge–Kutta
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Figure 2. Grid nodes and control volumes on a uniform nodal mesh (Wind code).

method [16]. See Reference [11] for more details on the temporal and spatial discretization
of the Premo code.
The Wind code also employs a �nite-volume discretization in the solution of the governing

equations. Interior mesh points are treated as cell centres and the corners that de�ne a given
control volume around them are computed by averaging the co-ordinates of neighbouring cell
centres. With this information, cell volumes and face areas can be readily computed. On the
boundaries, however, Wind uses a technique that was inherited from the NASTD code. Rather
than solving half-cells at boundaries, the nearest interior cell is enlarged to reach all the way
to the boundary. Therefore, if a uniform grid is input, this results in the so-called ‘fat’ cells
at boundaries, as illustrated in Figure 2. These fat cells have two main drawbacks: �rst, they
introduce a discontinuity in the grid spacing at the boundaries, and second, the cell centres of
the fat cells are not actually in the centre of mass of the cell (even on a uniform grid). Both
of these issues can introduce errors. In order to avoid problems with fat cells in the current
work, a pre-processor was employed to read in a smooth, well-de�ned nodal grid, compute
cell centres, and add a fringe of boundary points around the edges. This ‘cell-centred’ grid
results in better behaved boundary cells as shown in Figure 3. For the cases reported here,
this procedure yields cells which are truly uniform across the domain and cell centres that
are exactly in the centre of mass of the cell. Thus, the Wind code behaves much like a cell-
centred �nite-volume code, although the internal algorithm remains node-centred. In order to
compare the results from Wind and Premo in a consistent fashion, the solution at the original
grid nodes was computed using an average of the values at the surrounding cell centres. Since
this averaging procedure is a second-order process on uniform meshes, this should not a�ect
the predicted order of the scheme, although the absolute magnitude of the error will change.
For the current computations, the Wind code, much like Premo, uses Roe’s approximate

Riemann solver for the evaluation of the convective �uxes. An approximate factorization
implicit scheme is used to integrate the solution in time. For the Navier–Stokes results, the
viscous �uxes are evaluated at cell faces using a central-di�erence scheme. This results in
an overall scheme which, on uniform meshes, is formally second order in space. One major
di�erence between Premo and Wind is that the latter cannot presently be run in double
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Figure 3. Grid nodes and control volumes on a nodal mesh modi�ed to achieve
uniform control volumes (Wind code).

precision (64 bit) mode. Thus, all Wind results shown here employ single precision (32 bit)
computations. For more details regarding the numerics of Wind, see References [10, 17–19].

2.4. Boundary conditions

The Euler simulations are for supersonic �ow and thus employ exact Dirichlet values for
all primitive variables at the in�ow boundaries based on the speci�ed manufactured solution.
For the Premo code, which employs a node-centred �nite-volume discretization, the Dirichlet
boundary condition is enforced by simply setting the nodal boundary value. For the out�ow
boundary nodes the weak form of the boundary condition is used where the nodal values are
updated from the �ux balance consistent with the Roe discretization. These nodal values are
used for the entire control-volume surface along the out�ow boundary. The Wind code uses
a similar treatment at in�ow boundaries, while �rst-order extrapolation of all the variables is
used at the supersonic out�ow boundaries.
For the Navier–Stokes simulations which employ subsonic �ow, the viscosity was chosen

to be a large value in order to ensure that the di�usive terms are on the same order as the
convective terms (see Reference [20] for details). By setting the viscosity to a large value,
the characteristic-based boundary conditions for in�ow and out�ow, which are based on one-
dimensional inviscid theory, are no longer valid. Therefore, for the Navier–Stokes simulations,
the exact Dirichlet values for all primitive variables are speci�ed on both in�ow and out�ow
boundaries.

3. CODE VERIFICATION

Code veri�cation is a way to build con�dence that there are no coding mistakes (or ‘bugs’)
in a simulation code. While no rigorous proof of code veri�cation currently exists (and none
may be forthcoming), the procedures discussed in this section can provide a high degree
of con�dence that a code is mistake free. There is an ongoing debate as to whether code
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veri�cation is something that must be carried out only once for a given set of code options
[1, 8], or whether code veri�cation is a process by which code veri�cation evidence is gathered
to provide increased con�dence that the code is ‘bug’ free [21]. The authors subscribe to the
view that, if carried out properly, code veri�cation need be performed only once for a given
set of code options.

3.1. Method of exact solutions

In the method of exact solutions, specialized cases are identi�ed where exact solutions exist
to a given set of governing equations. For the Euler and Navier–Stokes sets of equations,
there are only a limited number of exact solutions. Furthermore, these exact solutions may
not exercise all of the terms in the governing equations. For example, in the �ow between two
in�nite parallel plates, one moving relative to the other (Couette �ow), the velocity pro�le
is linear, hence the di�usion term, a second derivative of velocity, is identically zero and
therefore would not be fully exercised.

3.2. Method of manufactured solutions

A more general approach to code veri�cation is the method of manufactured solutions [1, 7].
With this approach, the mathematical form of the solution is chosen a priori. The di�erential
operator for the governing equations is applied to this chosen analytical solution to generate
analytical source terms. These source terms are implemented within the code, and the modi�ed
governing equations (including the source terms) are then discretized and solved numerically
and compared to the exact solution.
There are a variety of acceptance criteria for code veri�cation [3, 7]. In order of increasing

rigor these criteria are:

• expert judgement,
• error quanti�cation,
• consistency and
• order of accuracy.

The order of accuracy test is the most rigorous test and is therefore the recommended
acceptance criteria. This test involves evaluating the numerical solution on a series of grids,
and with various time steps for unsteady problems. The spatial (and=or temporal) discretiza-
tion error is monitored to determine if the observed order of accuracy matches the formal
order of accuracy, which can be determined by a truncation-error analysis of the discretized
equations. The discretization error is de�ned as the di�erence between the solution to the
discretized equations and the exact solution to the continuum partial di�erential equations.
The discretization error will generally decrease as 1=rp, where r is the grid re�nement factor
(e.g. r=�xcoarse=�x�ne) and p is the order of accuracy. For example, if the numerical scheme
is second order (p=2) and the grid is doubled (r=2), then the discretization error should
decrease by a factor of four as the mesh is re�ned.
Although the form of the manufactured solution is somewhat arbitrary, it should be chosen

to be smooth, in�nitely di�erentiable and realizable (i.e. solutions should be avoided which
have negative densities, pressures, temperatures, etc.). Solutions should also be chosen that
are su�ciently general so as to exercise all terms in the governing equations. Adherence to
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these guidelines will help ensure that the formal order of accuracy is attainable on reasonably
coarse meshes. Symbolic manipulation tools such as MathematicaTM or MapleTM can be used
to apply the di�erential operator to the solution and generate source terms. These tools can
then be used to generate the FORTRAN or C coding for the source term automatically. See
References [1, 7] for more information on the method of manufactured solutions.
While the method of manufactured solutions can be used to rigorously test the spatial and

temporal discretization of a code, as well as the associated boundary conditions, this method
will not test the e�ciency or robustness of a given numerical solution method. In addition,
the method cannot be used to test the stability of a given algorithm. Furthermore, options that
are not exercised by the given manufactured solution are not veri�ed.
The six steps required for implementing the method of manufactured solutions are:

(Step 1) Choose the form of the governing equations.
(Step 2) Choose the form of the manufactured solution.
(Step 3) Apply the governing equations to the manufactured solution to generate analytical

source terms.
(Step 4) Discretize the equations and solve on multiple mesh levels using analytical bound-

ary conditions and source terms from the manufactured solution.
(Step 5) Evaluate the global discretization error in the numerical solutions.
(Step 6) Determine whether or not the observed order of accuracy matches the formal order

of accuracy.

If the comparison in Step 6 is favourable, then the coding options exercised are veri�ed. If
the comparison is unfavourable, then one generally examines the local discretization error,
uses this information to debug the code, then returns to Step 4. The manufactured solution
itself can be used to help debug the code by selectively turning o� certain solution terms
(viscous terms, a given spatial variation, etc.).

3.3. Order of accuracy

The most rigorous test for code veri�cation is the order of accuracy test. This test assesses
whether or not the numerical method reproduces the formal order of accuracy in space and=or
time. As previously discussed, the discretization error should drop as 1=rp, where in the current
case the grid re�nement factor is r=2 and the nominal order of accuracy is p=2; thus, the
error should drop by a factor of four on each successively re�ned mesh level. In order to
examine the behaviour of the global discretization error, the discrete L2 and L∞ norms of the
discretization error (�k;n − �exact;n) are used:

L2 normk =

(∑N
n=1|�k;n − �exact;n|2

N

)1=2

L∞ normk =max |�k;n − �exact;n| (13)

where k refers to the discrete mesh level and n varies over all interior mesh nodes N on
the coarsest mesh. Since the L∞ norm represents the maximum discretization error over the
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entire domain, obtaining the formal order of accuracy in this norm is generally more di�cult
than the other error norms. When these global error norms do not reproduce the formal order
of accuracy, it is often helpful to examine the behaviour of the local discretization error.
The observed order of accuracy can be calculated given two discrete mesh levels (k and

k + 1) and the exact solution by

pk = ln
(
Lk+1
Lk

)/
ln(r) (14)

where ‘L’ refers to one of the discrete error norms from Equation (13), k + 1 refers to the
coarser mesh level, and r is the grid re�nement factor. Once the order of accuracy is veri�ed
(assuming it is greater than zero), it is clear that the code is consistent in the sense that the
numerical solution approaches the continuum solution (which was chosen in the beginning)
as �x and �y approach zero.

4. RESULTS

This section reports manufactured solution results for the two-dimensional Euler and Navier–
Stokes equations. Since the manufactured solutions exist for all x and y, we are free to choose
any sub-domain on which to solve the governing equations. For the cases presented herein,
the numerical solutions are obtained on the domain

06x=L61
06y=L61

with L=1 m. The mesh sizes examined are given in Table I, where hk is the ratio of the
element size at the kth level to the element size at the �nest level:

hk =
�xk
�x1

=
�yk
�y1

Note that since only uniform Cartesian meshes are examined, the codes cannot be said to be
veri�ed for arbitrary meshes.

4.1. Euler equations

The method of manufactured solutions is �rst applied to the Euler equations given by Equa-
tions (1)–(3) along with the auxiliary relations given in Equations (4)–(6). These equations

Table I. Meshes for the manufactured solutions.

Mesh Mesh nodes Grid spacing, h

1 129× 129 1
2 65× 65 2
3 33× 33 4
4 17× 17 8
5 9× 9 16
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Figure 4. Supersonic Euler manufactured solution: � (top left), �et (top right), �u
(bottom left) and �v (bottom right).

govern the conservation of mass, momentum and energy for an inviscid (frictionless) �uid.
With the governing equations speci�ed, the next step is to choose the form of solution. The
general form of the primitive solution variables is chosen as a function of sines and cosines

�(x; y)=�0 + �xfs
(a�x�x

L

)
+ �yfs

(a�y�y
L

)
+ �xy fs

(a�yx�xy
L2

)
(15)

where �=�; u; v or p for density, u-velocity, v-velocity or pressure, respectively, and fs(·)
denotes either the sine or cosine function. Note that in this case, �x, �y and �xy are con-
stants (the subscripts do not denote di�erentiation). See Appendix A for the form of these
primitive variables for the Euler and Navier–Stokes results presented herein. The chosen so-
lutions are thus smoothly varying functions in space, while the temporal accuracy is not
addressed in this study. The constants used in the manufactured solutions for the supersonic
Euler case are given Table BI in of Appendix B. These solutions are presented graphically in
Figure 4, and are chosen to be smooth to allow the formal order of accuracy to be achieved
on relatively coarse meshes.
The governing equations (Equations (2)–(6)) were applied to the chosen solutions using the

MathematicaTM symbolic manipulation software to generate FORTRAN code for the resulting
source terms. The analytical source term for the Euler mass conservation equation is given in
Appendix C. The source terms for each of the governing equations for this case are shown
graphically in Figure 5.
The governing equations (Equations (2)–(6)) were then discretized and solved numerically,

including the analytical source terms. For a given control volume, the source terms were
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Figure 5. Generated source terms for the supersonic Euler case: mass (top left), energy (top right),
x-momentum (bottom left), y-momentum (bottom right).

simply evaluated using the values at the control-volume centroid. The numerical solutions
were then compared to the manufactured solution to determine the discretization error in the
solutions. The formal order of accuracy of both the Premo and Wind codes is second order
in space.
For the steady-state solutions examined, all solutions are iterated in pseudo-time to achieve

iterative convergence. The most common method for judging iterative convergence is to ex-
amine the steady-state residuals of the governing equations. The steady-state residuals are
de�ned by plugging the discrete solution for the current iteration into the discrete form of the
steady-state equations (including the source terms). For non-linear equations, the relationship
between the steady-state residuals and the iterative error in the dependent variables (�; �u; �v
and �et) is di�cult to determine and is related to the condition number of the discretized
system. Both the steady-state residuals and the iterative errors will be examined.
The Premo solutions were marched to a steady-state solution using the four-stage Runge–

Kutta temporal integration, while the Wind solutions employed the implicit approximate fac-
torization scheme. All solutions presented herein were integrated in time until the L2 norm of
the steady-state residuals was converged to machine zero. The Premo code was run in double
precision (64 bit) mode, and the steady-state residuals were reduced by at least 13 orders of
magnitude from their initial levels. The Wind code was run in single precision (32 bit) mode,
and the residuals were reduced by at least 6 orders of magnitude from their initial levels.
Figure 6 shows the steady-state residual histories for the mass and energy equations on the
33× 33 node mesh using both codes (lines).
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Figure 6. L2 norms of the steady-state residuals (mass and energy equations) and the
iterative error (� and �et) for the Euler case.

Also shown in Figure 6 is the L2 norm of the iterative error in the mass � and the energy
�et (symbols). The iterative error is de�ned as the di�erence between the computed solution at
the current iteration and the computed solution at the �nal iteration. In all cases, the steady-
state residuals are driven to machine zero by the �nal iteration. The steady-state residuals
in Figure 6 are scaled so as to provide approximately the same order of magnitude as the
iterative errors. It is clear from the �gure that a drop in the residuals (the quantities most
often examined in steady-state calculations) provides a corresponding drop in the iterative
error. Similar iterative convergence was found for momentum (�u and �v). As a rule of
thumb, the iterative error will not pollute the discretization error studies if the iterative errors
are driven roughly two orders of magnitude smaller than the discretization error on all mesh
levels.
The discretization error norms for this case are presented in Figure 7 for the mass density

using both the Premo and Wind codes. The abscissa shows the measure of the grid spac-
ing h on a log scale, with h=1 being the �nest mesh (129× 129 nodes). Also shown on
the plot are curves for the �rst- and second-order slopes for reference. Both the discrete L2
and L∞ norms of the discretization error (see Equation (13)) drop by a factor of four with
each mesh re�nement, thus matching the second-order slope and verifying that both codes
are producing second-order accurate results. For both codes, the discretization error levels
are at least two orders of magnitude larger than the iterative error levels from Figure 6 as
desired.
The observed order of accuracy can be calculated given two discrete mesh levels (k and

k + 1) and the exact solution by Equation (14). These order of accuracy results are shown
graphically in Figure 8 which again show that the solutions are second-order accurate as the
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Figure 7. Behaviour of the density discretization error norms as the mesh is re�ned for the Euler case.
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Figure 8. Observed order of accuracy of the density discretization error norms as the
mesh is re�ned for the Euler case.

mesh is re�ned. In fact, the observed order of accuracy of the Wind code appears to be
slightly higher than second order for this case. Although not shown, similar behaviour was
found for the other conserved variables (�u, �v and �et).
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Figure 9. Discretization error in the �ne grid Premo solution for density for the Euler case.

The manufactured solutions can also be used to compute local discretization error in the
numerical solutions. The discretization error in the �nest grid solution using the Premo code
is given in Figure 9. The largest errors (+0:006% and −0:014%) occur at the top and
right boundaries, respectively. Since the �ow is everywhere supersonic in both the x- and
y-directions for this case, the mean �ow direction is oriented at a 45◦ angle to the grid. The
error at the bottom left corner both convects downstream and propagates along characteristic
Mach lines through the domain.

4.2. Navier–Stokes equations

A manufactured solution was generated for the Navier–Stokes equations (Equations (1), (7)
and (8)), along with the auxiliary relationships given in Equations (4)–(6) and (9)–(11).
The �ow was assumed to be subsonic over the entire domain. The constants used in this
manufactured solution are given in Table BII of Appendix B. In order to ensure that the
viscous terms were of the same order of magnitude as the convective terms, the absolute
viscosity was chosen as �=10 N s=m2. By balancing these two terms, the possibility of
a ‘false positive’ on the order of accuracy test is minimized [8, 20]. If instead, only high
Reynolds number solutions were examined (where the di�usive terms were much smaller
than the convective terms), then extremely �ne meshes would be needed in order to detect
discretization mistakes in the viscous terms. These solutions and source terms for mass, mo-
mentum and energy are shown graphically in Figures 10 and 11, respectively. Again, both the
solutions and the source terms are shown to be smooth, with variations in both the x and y
directions.
Iterative convergence histories for both the Wind and Premo codes are given in Figure 12.

In order to present results from both codes in the same �gure, the number of iterations for
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Figure 10. Subsonic Navier–Stokes manufactured solution: � (top left), �et (top right),
�u (bottom left) and �v (bottom right).

Figure 11. Generated source terms for the subsonic Navier–Stokes
case: mass (top left), energy (top right), x-momentum (bottom left),

y-momentum (bottom right).
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Figure 12. L2 norms of the steady-state residuals (mass and energy equations) and the iterative
error (� and �et) for the Navier–Stokes case.

the Premo code, which employs an explicit time integration scheme, were scaled down by a
factor of 100. Again, the steady-state residuals for the governing equations (lines) were scaled
in order to match the magnitude of the iterative error (symbols). The residuals of the mass
and energy equations provide a good indication of the level of iterative error in � and �et ,
respectively. Similar convergence behaviour was observed for momentum (�u and �v) and
for the other meshes examined. As will be shown, the iterative-error norms are signi�cantly
lower than the discretization-error norms.
Discretization-error norms for the conserved variable energy (�et) are given in Figure 13.

Owing to the ine�ciency of the Runge–Kutta temporal integration scheme, the �nest mesh
run with the Premo code is the 65× 65 node mesh. For both codes, the norms approach the
second-order slope as the mesh is re�ned. These results for spatial convergence are con�rmed
by examining the observed order of accuracy, shown in Figure 14. Although not shown, a
similar behaviour was found for the other conserved variables.
The local discretization error in the energy (�et) is presented in Figure 15 for the �ne

grid Wind solution. The magnitude of this error is largest at the top boundary (+0:015%)
and the right boundary (−0:01%). This error near the boundaries is likely caused by the
over-speci�cation of the boundary conditions with the exact Dirichlet values. Recall that, in a
one-dimensional inviscid sense, a subsonic in�ow requires the speci�cation of two properties
and the extrapolation of one property from within the domain, while a subsonic out�ow
boundary requires the speci�cation of one property and the extrapolation of two properties
from within the domain. While the application of a large viscosity value for this manufactured
solution makes the use of an inviscid boundary condition questionable, the order of accuracy
of the interior points was not a�ected. Further investigation of appropriate boundary conditions
for this case is beyond the scope of this paper.
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Figure 13. Behaviour of the energy (�et) discretization error norms as the mesh
is re�ned for the Navier–Stokes case.
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Figure 14. Observed order of accuracy of the energy (�et) discretization error norms as the
mesh is re�ned for the Navier–Stokes case.

5. CONCLUSIONS

The method of manufactured solutions has been applied to the compressible �uid dynamics
codes Premo and Wind. Two cases were examined: a supersonic �ow governed by the Eu-
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Figure 15. Discretization error in the �ne grid Wind solution for energy
(�et) for the Navier–Stokes case.

ler equations and a subsonic �ow governed by the Navier–Stokes equations. By solving the
manufactured solutions on a number of di�erent grid levels, the spatial order of accuracy was
ascertained by comparing the numerical solutions to the exact (manufactured) solutions. Both
codes demonstrated second-order spatial accuracy as the mesh was re�ned. By demonstrating
that the formal order of accuracy was achieved, the codes were veri�ed, thus providing con-
�dence that there are no mistakes in the spatial discretization for uniform meshes. For the
Navier–Stokes case, the speci�cation of in�ow and out�ow boundary values for each of the
primitive variables with exact Dirichlet values resulted in over-speci�ed boundary conditions;
however, the order of accuracy was not adversely a�ected.
The method of manufactured solutions was found to be an invaluable tool for �nding

coding mistakes. In one case, a coding mistake allowed the gradient term in the MUSCL
extrapolation to be zeroed out when the �ux limiter (not used in the current work) was set
to zero. This error resulted in �rst-order behaviour of the spatial discretization error which
was easily found by the manufactured solutions. As another example, an option for a constant
angular rotation was inadvertently activated within the code, which triggered the constant
angular velocity terms. This coding mistake was found since non-ordered errors were gener-
ated.
A number of coding options were veri�ed by the method of manufactured solutions. The

options veri�ed include: inviscid (Euler) and viscous (Navier–Stokes), the Roe upwind scheme
(both subsonic and supersonic), the MUSCL extrapolation for second-order convection, the
viscous terms and boundary conditions for Dirichlet values and supersonic out�ow. Options
not veri�ed in the current study include solver e�ciency and stability (these are not ver-
i�able with the method), non-uniform or curvilinear meshes, temporal accuracy (the cho-
sen manufactured solutions were not functions of time) and variable transport properties �
and k.
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APPENDIX A: ANALYTICAL MANUFACTURED SOLUTION

The form chosen for the manufactured solution for both Euler and Navier–Stokes implemen-
tations is given as follows:

�(x; y) = �0 + �x sin
(a�x�x

L

)
+ �y cos

(a�y�y
L

)
+ �xy cos

(a�xy�xy
L2

)

u(x; y) = u0 + ux sin
(aux�x

L

)
+ uy cos

(auy�y
L

)
+ uxy cos

(auxy�xy
L2

)

v(x; y) = v0 + vx cos
(avx�x
L

)
+ vy sin

(avy�y
L

)
+ vxy cos

(avxy�xy
L2

)

p (x; y) =p0 + px cos
(apx�x

L

)
+ py sin

(apy�y
L

)
+ pxy sin

(apxy�xy
L2

)
(A1)

APPENDIX B: MANUFACTURED SOLUTION CONSTANTS

Constants employed for the manufactured solutions include L=1m, �=1:4 and R=287:0Nm=
(kgK). For the Navier–Stokes calculations, additional constants include the absolute viscosity
�=10 N s=m2 and the Prandtl number Pr=1:0. The constants for the supersonic Euler man-
ufactured solution are given in Table BI, and the constants for the subsonic Navier–Stokes
manufactured solution are given in Table BII. Note that the � constants all have the same
dimensions as the primitive variable (listed in the �rst column), and the a constants are
dimensionless.

Table BI. Constants for supersonic Euler manufactured solution.

Equation, � �0 �x �y �xy a�x a�y a�xy

�(kg=m3) 1 0.15 −0:1 0 1 0.5 0
u(m=s) 800 50 −30 0 1.5 0.6 0
v(m=s) 800 −75 40 0 0.5 2./3 0
p(N=m2) 1× 105 0:2× 105 0:5× 105 0 2 1 0

Table BII. Constants for subsonic Navier–Stokes manufactured solution.

Equation, � �0 �x �y �xy a�x a�y a�xy

�(kg=m3) 1 0.1 0.15 0.08 0.75 1.0 1.25
u(m=s) 70 4 −12 7 5./3 1.5 0.6
v(m=s) 90 −20 4 −11 1.5 1.0 0.9
p(N=m2) 1× 105 −0:3× 105 0:2× 105 −0:25× 105 1.0 1.25 0.75
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APPENDIX C: EXAMPLE SOURCE TERM

A sample source term is given in Equation (1) for the mass conservation equation. This source
terms is the result of analytically di�erentiating the general manufactured solution given in
Appendix A for �, u and v according to the mass conservation equation. These manufactured
solutions can be obtained from the �rst author:

@(�)
@t

+
@(�u)
@x

+
@(�v)
@y

=fm

=
[
v0 + vx cos

(avx�x
L

)
+ vy sin

(avy�y
L

)
+ vxy cos

(avxy�xy
L2

)]

×
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−a�y��y

L
sin
(a�y�y

L

)
− a�xy��xyx
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sin
(a�xy�xy

L2
)]

+
[
u0 + ux sin
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)
+ uy cos

(auy�y
L

)
+ uxy cos

(auxy�xy
L2

)]
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)
− a�xy��xyy
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+
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(C1)
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