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Introduction

Discussion and methodology for estimating errors and uncer-
tainties in computational fluid dynami¢€FD) simulations have
reached a certain level of maturity with recognition of importan
through editorial policiegFreitas[1]), increased attention and re-
cent progress on common terminolo@AA, [2]), advocacy and
detailed methodologyRoache[3]), and numerous case studies

Comprehensive Approach to
Verification and Validation of CFD
Simulations—Part 1:
Methodology and Procedures

Part 1 of this two-part paper presents a comprehensive approach to verification and
validation methodology and procedures for CFD simulations from an already developed
CFD code applied without requiring availability of the source code for specified objec-
tives, geometry, conditions, and available benchmark information. Concepts, definitions,
and equations derived for simulation errors and uncertainties provide the overall math-
ematical framework. Verification is defined as a process for assessing simulation numeri-
cal uncertainty and, when conditions permit, estimating the sign and magnitude of the
numerical error itself and the uncertainty in that error estimate. The approach for esti-
mating errors and uncertainties includes (1) the option of treating the numerical error as
deterministic or stochastic, (2) the use of generalized Richardson extrapolation for J input
parameters, and (3) the concept of correction factors based on analytical benchmarks,
which provides a quantitative metric to determine proximity of the solutions to the
asymptotic range, accounts for the effects of higher-order terms, and are used for defining
and estimating errors and uncertainties. Validation is defined as a process for assessing
simulation modeling uncertainty by using benchmark experimental data and, when con-
ditions permit, estimating the sign and magnitude of the modeling error itself. The ap-
proach properly takes into account the uncertainties in both the simulation and experi-
mental data in assessing the level of validation. Interpretation of results of validation
efforts both where the numerical error is treated as deterministic and stochastic are
discussed. Part 2 provides an example for RANS simulations for a cargo/container ship
where issues with regard to practical application of the methodology and procedures and
interpretation of verification and validation results are discussed.
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phy is strongly influenced by experimental fluid dynamigE$D)
uncertainty analysi§Coleman and Steelg7]), which has been
Standardized. Hopefully, CFD verification and validation proce-
Cdures and methodology can reach a similar level of maturity and
Gser variability can reach similar low levels, as for EFD. The work
is part of a larger progrartRood|[8]) for developing and imple-
menting a strategy for verification and validation of Reynolds-

(e.g.[4]). Pro.gre:ss has been accelerated in response to the ur program includes complementary CFD and EFD towing-tank
need for achieving consensus on concepts, defmmong and USEIY stigations and considers errors and uncertainties in both the
methodology and procedure_s, as C.FD IS app_lled to 'ncreas'n%h{nulations and the data in assessing the success of the verifica-
complex geometry and physics and integrated into the engineer and validation efforts. The work also benefited from collabo-
design process. Such consensus Is required to realize the goallsaﬁ n with the 2% and 22‘dlnternational Towing Tank Resistance
simulation-based design and other uses of CFD such as simulat} mitteesITTC [9,10]). The procedures proposed in this paper
flows for which experiments are difficulé.qg., full-scale Reynolds were adopted on an,intelrim basis by thd2ZTC and also were
numbers, hypersonic flows, off-design conditipria spite of the Qrgﬁommended and used at the recent Gothenburg 2000 Workshop

av%raged Navier-StokéRANS) ship hydrodynamics CFD codes.

progress and urgency, the various viewpoints have not conver ; . :
and current approaches fall short of providing practical methodo -TCFD in Ship HydrodynamicgLarsson et al[ 11)).

d d ; timati d tainties in CE he focus is on verification and validation methodology and
g%’u"?gﬁozgoce ures for estimating errors and uncertainties in pRJcedures for CFD simulations with an already developed CFD

Th i K id i hf i t.code applied without requiring availability of the source code for
€ present work provides a pragmatic approach for estimatige . ifiq objectives, geometry, conditions, and available bench-
errors and uncertainties in CFD simulations. Previous work

ification (St t al[5]) i tended and put X ark information. The methodology and procedures were devel-
verification(Stern et al[5)) is extended and put on a more N9orHhed considering RANS CFD codes, but should be applicable to a

ous foundation and combined with subsequent work on validatig fly broad range of codes such as boundary-element methods
(Coleman and Sterr6]) thereby providing a comprehensweand certain aspects of large-eddy and direct numerical simula-

framework for overall procedures and methodology. The philos%ns_ The present work differs in many respects from recent lit-

erature. The presentation is relatively succinct with intention for
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The definitions of errors and uncertainties and verification andg to the error iné*. When 6* is estimated, it can be used to
validation that are used in any approach need to be clearly statedtain a corrected value of the variable of interest.
The present and Roach&] definitions for errors and uncertainties  Sources of errors and uncertainties in results from simulations
are consistent with those used for EFD. The AIR definitions  can be divided into two distinct sources: modeling and numerical.
are from an information theory perspective and differ from thosdodeling errors and uncertainties are due to assumptions and ap-
used in EFD, but are not contradictory to the present definitionstoximations in the mathematical representation of the physical
The present concepts and definitions for verification and validgroblem (such as geometry, mathematical equation, coordinate
tion are closely tied to the present definitions of errors and unceransformation, boundary conditions, turbulence models) atxl
tainties and equations derived for simulation errors and uncertaineorporation of previous datésuch as fluid properti¢snto the
ties thereby providing the overall mathematical framework. Th@odel. Numerical errors and uncertainties are due to numerical
Roache[3] and AIAA [2] definitions are broader, but not contra-solution of the mathematical equatiofssich as discretization, ar-
dictory to the present definitions. The present approach includgficial dissipation, incomplete iterative and grid convergence, lack
both the situation$l) of estimating errors and the uncertainty ofof conservation of mass, momentum, and energy, internal and ex-
those estimates an@) of estimating uncertainties only. Richard-ternal boundary noncontinuity, computer round-off, et@he
son extrapolatioRE) is used for verification, which is not new; present work assumes that all correlations among errors are zero,
however, the present generalizations Jomput parameters and which is doubtless not true in all cases, but the effects are assumed
concept of correction factors based on analytical benchmarkggligible for the present analyses.
which provides a quantitative metric to determine proximity of the The simulation erros is defined as the difference between a
solutions to the asymptotic range, accounts for the effects sitnulation resultS and the truthT. In considering the develop-
higher-order terms, and are used for defining and estimating erratent and execution of a CFD code, it can be postulateddhiat
and uncertainties constitute a new approach. The use of quantdamprised of the addition of modeling and numerical errors
tive estimates for errors and the use of uncertainties for those
estimates also constitute a new approach in verification and 9s=S—T=dsu+t Isn @)

validation. Support for this postulation is provided by using the model value
Part 1 of this two-part paper presents the verification and val4 in definitions for modeling and numerical errors. The simula-
dation methodology and procedures. In Section 2, the overall vefibn modeling errorésy=M —T is defined as the difference be-
fication and validation methodology is presented by providingveen the trud and modeM values while the simulation numeri-
concepts, definitions, and equations for the simulation numeriggll error 55,=S—M is defined as the difference between the
and modeling errors and uncertainties. In Section 3, detailed vetimulationS and modeM values. The simulatio® and modeM
fication procedures for estimation of various sub-components @jues are obtained by numerical and exact solutions of the con-
the simulation numerical error and uncertainty are given. In Segnuous equations used to model the truth, respectively. Since ex-
tion 4, validation procedures are given including a discussion gt solution of nonlinear equations is seldom possible, approxima-
the interpretation of validation results and use of corrected simions are used to replace the continuous modeled equations with
lation results. Finally, conclusions are provided in Section 5. Pafiscrete ones that are solved algebraically with a CFD code to
2 provides an example for RANS simulations for a carggfield the simulation valu&
container ship where issues with regard to practical application ofThe uncertainty equation corresponding to error equatidiis
the methodology and procedures and interpretation of verification _— )
and validation results are discuss@dlilson et al.[12]). Present Us=Usut+Usn (2
papers are based on Stern et[aB8], which is sometimes refer- hereUs is the uncertainty in the simulation adk,, and Uy,
enced for additional details. However, presentation and expan the simulation modeling and numerical uncertainties.
discussions of verification procedures and implementation Weregq, certain conditions, the numerical errégy can be consid-
improved based on nearly two years experience with present apaq as
proach, especially through ITTC community and Gothenburg
2000 Workshop on CFD in Ship Hydrodynamics. Ssn= OsnT Esn 3)

where 8%, is an estimate of the sign and magnitudedaf, and
2 Overall Verification and Validation Methodology egn IS the error in that estimat@nd is estimated as an uncertainty
. I o ince only a range bounding its magnitude and not its sign can be
In Section 2.1, the overall verification and validation method;

ology is presented by providing key concepts, definitions, andstlmateﬂi The corrected simulation valu is defined by

derivation of equations for the simulation error and uncertainty, as Sc=S- %y (4)
sum and root-sum-squar€RSS of simulation numerical and ith .
modeling errors and uncertainties, respectively. The verificatidfth €rror equation
and validation equations are derived in Sections 2.2 and 2.3, re- 85.=Sc—T= 685wt esn (5)
spectively, where subcomponents of the simulation numerical er- ) ) _ _
ror are identified and an approach for assessing the simulatibhe uncertainty equation corresponding to error equatoris
modeling uncertainty is presented.

J YR U§C=U§M+U§CN (6)

2.1 Concepts and Definitions. Accuracy indicates the ) o ) .
closeness of agreement between a simulation/experimental va(iereUs, is the uncertainty in the corrected simulation gl y
of a quantity and its true value. Erreris the difference between is the uncertainty estimate fers).
a simulation value or an experimental value and the truth. Accu-Debate on verification and validation has included discussion
racy increases as error approaches zero. The true valuesoofwhether errors such &k, are deterministic or stochastic, and
simulation/experimental quantities are rarely known. Thus, errdtfsus how they should be treated in uncertainty analysis was un-
must be estimated. An uncertainty is an estimate of an error clear. In the “corrected” approach given by Eq8)—(6), a deter-
such that the intervat- U contains the true value af 95 times ministic estimatasg, of dsy and consideration of the erregy in
out of 100. An uncertainty interval thus indicates the range ofiat estimate are used. The approach is analogous to that in EFD
likely magnitudes ofs but no information about its sign. when an asymmetric systematic uncertainty is “zero-centered” by
For simulations, under certain conditions, errors can be esiiclusion of a model for the systematic error in the data reduction
mated including both sign and magnitu@teferred to as an error equation and then the uncertainty considered is that associated
estimates™ ). Then, the uncertainty considered is that corresponddth the model(Coleman and Steelgr]). In the “uncorrected”
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approach given by Eq$1)—(2), any particulardgy is considered
as a single realization from some parent populatiod£fs and
the uncertaintyUgy is interpreted accordingly in analogy to the
estimation of uncertainties in EFQwith a similar argument for
esyandUs y). Oberkamp and Trucar{d4] have criticized Cole-

man and Sterri6] for treating Ugy statistically; however, the
present approach is well justified both conceptually and mat
ematically for reasons just given.

The overall CFD verification and validation procedures can t
conveniently grouped in four consecutive steps. The first step
preparation, which involves selection of the CFD code and spe
fication of objectives, geometry, conditions, and available benc
mark information. The objectives might be prediction of certai
variables at certain levels of validatide.g., programmatic vali- S
dation requirementt),.qq). The variables can either be integral
(e.g., resistangeor point(e.g., mean velocities and turbulent Rey-
nolds stressgsvalues and the programmatic validation require X
ments may be different for each variable. The second and third
steps are verification and validation, which are described in Sec-
tions 2.2 and 2.3. The fourth step is documentation, which is
detailed presentation of the CFD codequations, initial and
boundary conditions, modeling, and numerical methodbjec- mark since it is equal, as shown by Ed0), to the truth plus
tives, geometry, conditions, verification, validation, and analysisimulation modeling error and presumable small egrgy in the

22 Verification. Verification is defined as a process for as€Stimate of the numerical errdiy.

sessingsimulation numerical uncertaintyJsy and, when condi- 23 validation. Validation is defined as a process for assess-
tions permit, estimating the sign and magnituifg, of the simu- ing simulation modeling uncertaintysy by using benchmark
lation numerical error itself and the uncertainty in that erragxperimental data and, when conditions permit, estimating the
estimate. For many CFD codes, the most important numerigdyn and magnitude of the modeling errds,, itself. Thus, the
errors and uncertainties are due to use of iterative solution me#itirors and uncertainties in the experimental data must be consid-
ods and specification of various input parameters such as spagi@d in addition to the numerical errors and uncertainties dis-
and time step sizes and other parameterg., artificial dissipa- cussed in Section 3. Approaches to estimating experimental un-
tion). The errors and uncertainties are highly dependent on tbertainties are presented and discussed by Coleman and Steele
specific applicatior(geometry and conditions The validation methodology of Coleman and Stgéh which

The errors due to specification of input parameters are decoproperly takes into account the uncertainties in both the simula-
posed into error contributions from iteration numidgy grid size tion and the experimental data is discussed in this section for both
dg, time stepdr, and other parametersp, which gives the approaches of treating the numerical error as stochastic and as
following expressions for the simulation numerical error and urteterministic.
certainty The validation comparison is shown in Fig. 1. The experimen-
tally determinedr-value of the ¥;,r;) data point isD and simu-
latedr-value isS. Recall from Eq(1) that the simulation errofg
Son= 01+ do+ Sr+ Gp =81+ 2, &, (7) is the difference betweeBand the truthT. Similarly, the errorsy

=1 in the data is the difference betweBnand the truthl, so setting
the simulation and experimental truths equal results in

J
U§N=U?+Ué+U$+U%=Uf+El u? ®) D—6p=5- 65 (13)
=
The comparison errde is defined as the difference BfandS
E=D—S=6p— ds= dp — (Ismat SsppT Isn) (14)

. . with 85 decomposed into the sum 6§, error from the use of
Ssn=0F + ; 9] ©) previousdata such as fluid properties, adgy, error frommod-
! eling assumptions. Thu& is the resultant ofll the errors asso-

which gives the following expressions for the corrected simulatidated both with the experimental data and with the simulation.

Fig. 1 Definition of comparison error.

J

Similarly, error estimates* can be decomposed as

J

and corrected simulation numerical uncertainty For the approach in which no estimaf§,, of the sign and mag-
nitude of ésy is made, all of these errors are estimated with un-
J certainties.
Sc=S—| o +2 5]* =T+ dsutesn (10) If (X;,r;), andS share no common error sources, then the un-
=1 certaintyUg in the comparison error can be expressed as
J 2 2
2 2 2 uz=( =) vz [ ] s uz=uz w2 (15)
USCN:UIC+j21 Ui, 11) E-lop) "P1oS s TboTs
e . S . or
Verification is based on equati@h0), which is put in the form s s 5 5 5
5 Ug=Up+UsuatUspptUsy (16)
_ * Ideally, one would postulate that if the absolute valueEas
S SC+( o + 121 51 ) (12) less than its uncertainty ¢, then validation is achieved.e., E is

“zero” considering the resolution imposed by the “noise level”
Equation(12) expressesS as the corrected simulation val® Ug). In reality, there is no known approach that gives an estimate
plus numerical errorsS; is also referred to as a numerical benchef Ugy,5, SOUg cannot be estimated. That leaves a more stringent
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validation test as the practical alternative. If the validation unce® Verification Procedures
tainty Uy is defined as the combination of all uncertainties that we

know how to estimatéi.e., all butUsy), then In Section 2, the simulation numerical error and uncertainty

were decomposed into contributions from iteration number, grid
size, time step, and other parameters in E@s.and (8). In this
section, detailed verification procedures are given for estimation
2 2 2 . . . . of these contributions through convergence stu¢@estion 3.1
whereUsre=Usppt Usy is the total estimated simulation uncer-jierative (Section 3.2 and parametefSections 3.3—3)5conver-
tainty, as shown in Fig. 1. . . gence studies are conducted using multiple solutions with system-
_If |E] is less than the validation uncertairitl,, the combina- atic parameter refinement to estimate numerical errors and uncer-
tion of all the errors inD and S is smaller than the estimated ajnties. Three convergence conditions are possiblenonotonic
validation uncertainty and validation has been achieved atlthe convergencesii) oscillatory convergence; arii) divergence and
level. Uy is the key metric in the validation procedsy is the  gre described in Sections 3.3, 3.4, and 3.5, respectively. For con-
validation “noise level” imposed by the uncertainties inherent igyition (i), as already mentioned, errors and uncertainties are esti-
the data, the numerical solution, and the previous experimenfghted using generalized RE. For conditi@ii, uncertainties are
data used in the simulation model. It can be argued that one c@Rtimated simply by attempting to bound error based on oscilla-
not discriminate onc¢E] is less than this; that is, as long @S tion maximums and minimums. For conditicii ), errors and un-

less than this, one cannot evaluate the effectiveness of propogggainties cannot be estimated. As discussed below and later in
model “improvements.” On the other hand,|E[>Uy one could  gection 5, there are many issues in estimating errors and uncer-

argue that probablf~ dsya. o tainties for practical applications.
Oberkamp and Trucar{d 4] have criticized Coleman and Stern

[6] for fact thatU, excludesUgy,. As already acknowledged, 3.1 Convergence Studies. Iterative and parameter conver-
there is no known way for directly estimatinds,,». However, gence studies are conducted using multijphe solutions and sys-
the present approach does provide a more stringent validatigfnatic parameter refinement by varying #te input parameter
metric U,, which sets the level that validation can be achieved asxi while holding all other parameters constant. The present work
the root sum square of the experiments) and the total esti- assumes input parameters can be expressed such that the finest
mated simulatiorl s uncertainties. Additionally, under certainresolution corresponds to the limit of infinitely small parameter
conditions, the simulation modeling errég,, » itself can be esti- values. Many common input parameters are of this form, e.g., grid
mated, as further discussed in Section 4. Consideration ofi2y. spacing, time step, and artificial dissipation. Additionally, a uni-
shows that1) the more uncertain the datgreaterUp) and/or(2) form parameter refinement ratio,=Ax, /Ax,, = AXy [AXy,
the more inaccurate the codgreaterUsrg), the easier it is to =Ax, /Ax, _ between solutions is assumed for presentation
validate a code, since the greater the uncertainties in the data Bﬂ%oges, bnl]ilnot required as discussed later.
code predictions, the greater the noise l&Vgl Both Roachg3] Careful consideration should be given to selection of uniform
and Oberkamp and Trucarfd4] have criticized Coleman and parameter refinement ratio. The most appropriate values for indus-
Stern[6] _for this fact. However, |f_the value dfl is greater than irial CED are not yet fully established. Small valuge., very
that designated as necessary in a research/design/developragiie to ongare undesirable since solution changes will be small
program, the requiretevel of validationcould not be achieved g sensitivity to input parameter may be difficult to identify com-
without improvement in the quality of the data, the code, or bothyreq 1o jterative errors. Large values alleviate this problem; how-
Also, if Usy andUspp are not estimated, bi| is less tharlp , ever, they also may be undesirable since the finest step size may
then a type of validation can be argued to have been achieved, fityrohipitively smalli.e., require many stepi the coarsest step
clearly as shown by the present methodology, at an unknow[ye is designed for sufficient resolution such that similar physics
level. i , are resolved for all m solutions. Also, similarly as for small val-
If the “corrected” approach of Eqs3)—(6) is used, then the yeg solution changes for the finest step size may be difficult to
equations, equivalent to Eqel4) and (17) are identify compared to iterative errors since iterative convergence is
more difficult for small step size. Another issue is that for param-
Ec=D—Sc=8p— (Ssmat dspptesn) (18)  eter refinement ratio other thaip=2, interpolation to a common
location is required to compute solution changes, which intro-
duces interpolation errors. Roach8] discusses methods for
5 ) ) ) ) ) evaluating interpolation errors. However, for industrial CF,
Uy =Ug,~Usua=Up=Up+Us 1e (19) =2 may often be too large. A good alternative mayrpe v2, as
it provides fairly large parameter refinement ratio and at least
for the corrected validation uncertainty whetés c=U%,, enables prolongation of the coarse-parameter solution as an initial
N uess for the fine-parameter solution.
Equation(12) is written for thekth parameter andnth solution

U\Z/:UE*L%MA:UZD*UéTE (17)

for the corrected comparison error and

+U§CN is the total estimated corrected simulation uncertaint?,

also shown in Fig. 1. Note th&; andE can be either larger or 44
smaller than their counterpar&andE, butUEC and Uy, should
be smaller tharg andU,,, respectively, sinc&JSCN should be

smaller thanUgy.

If there is a programmatic validation requirement, there is an- .
other uncertainty .44 that must be considered since validation idt€"ative convergence must be assessedgdcorrected for it-
required at that uncertainty level or below. Interpretation of th@rative errors prior to evaluation of parameter convergence since
meaning of the relative magnitudes Bf(or E¢), U,eqq and Uy the level of iterative convergence may not be the same fomall
(or UVc) and of the implications on the possibility of estimatingsolutions used in the parameter convergence studies. Equation

Ssuaare discussed in Section 4. Additional discussion is providéd0) shows that iterative errorsrkm must be accurately estimated
in Coleman and Sterf6] on: estimatindJspp; estimatingUp for o pegligible in comparison toy_for accurate convergence stud-

the data point X; 1), including both the experimental uncer-. ' o they should be considered within the context of con-

tainty inr; and the additional uncertainties in arising from the roence studies for each inout parameter. Methods for estimatin
experimental uncertainties in the measurements of the n indep¥ﬁ-g putp : 9

dent variables X;); in X;; and for validation of a CFD code, Uj or 5f andU, _ are described in Section 3.2.2.
multiple codes and/or models, and prediction of trends. With 5,*k evaluatedskm is corrected for iterative errors as

f
> 5 (20)

S =S¢+ +685 +
m I, Tkm =Tk

796 / Vol. 123, DECEMBER 2001 Transactions of the ASME

Downloaded From: http://fluidsengineering.asmedigital collection.asme.or g/ on 09/03/2013 Ter ms of Use: http://asme.org/terms



J gence study on the amplitude distribution of the Fourier modes. In
s( =S — 8 =Sc+o + 2 51.* (21) principle, this approach would remove the problem of ill-
moom moj=Lj#k " conditioning of the convergence ratig, .

S<m can be calculated for both integréd.g., resistance coeffi- 3.2 Iterative Convergence. The number of order magni-
cienty and point(e.g., surface pressure, wall-shear stress, aftigde drop and final level of solution residualr residual imbal-

velocity) variables.§, can be presented as an absolute quantiff’c® can be used to determine stopping criteria for iterative so-

(i.e., non-normalizedor normalized with the solution as a per_Iutlon techniques. lterative convergence to machine zero is

centage change; however, if the solution value is small, a mo%swable, but for complex geometry and conditions it is often not

appropriate normalization may be the range of the solution. possible. Three or four orders of magnitude drop in solution re-
Convergence studies require a minimumno& 3 solutions to sidual to a level of 10 is more likely for these cases. Methods

evaluate convergence with respect to input parameter. Note tffy; estimation of iterative errors and uncertainties can be based on
m=2 is inadequate, as it only indicates sensitivity and not cograPhical, as discussed below, or theoretical approaches and are
vergence, and thah>3 may be required. Consider the situatior/€Pendent on the type of iterative convergertagoscillatory; (b)

. . P s convergent; oc) mixed oscillatory/convergent.
for 3 solutions corresponding to f'r&‘l‘ med|umSk2, and coarse For oscillatory iterative convergende), the deviation of the

S, values for thekth input parameter. Solution changesfor yariable from its mean value provides estimates of the iterative
medium-fine and coarse-medium solutions and their i@ti@re uncertainty based on the range of the maxinfyand minimum
defined by S, values

_g ¢ 1
Bl ™ S~ Sy U|=‘5(SU—SL) (24)

€y, ™ ST Sk, (2) For convergent iterative convergen@®, a curve-fit of an ex-
ponential function can be used to estimatgor & and U as

szsk /8k
o the difference between the value and the exponential function

Three convergence conditions are possible: from a curve fit for large iteration numb&F,,
(i) Monotonic convergence: OR,<1 U,=|S—-CF.|
(ii) Oscillatory convergence: R,<0* (23) & =S—-CF. U, =0 (25)
(iii ) Divergence: R>1 For mixed convergent/oscillatory iterative convergef@e the

amplitude of the solution envelope decreases as the iteration num-
ber increases, the solution envelope is used to define the maxi-
mum Sy and minimumS, values in the Ith iteration, and to esti-
mateU, or & andU,

For monotonic convergend®, generalized RE is used to esti-
mateU, or & and Uk, Methods for estimating errors and un-

certainties for conditiorti) are described in Section 3.3.
For oscillatory convergencéi), the solutions exhibit oscilla-
tions, which may be erroneously identified as conditioror (iii ). 1
This is apparent if one considers evaluating convergence condi- UI:‘E(SU_SL)
tion from three points on a sinusoidal cur¢@oleman et al[15]).
Depending on where the three points fall on the curve, the condi- 1
tion could be incorrectly diagnosed as either monotonic conver- =S 5(Sy=5)U; =0
gence or divergence. Methods discussed here for estimating un-
certaintiesU, for condition(ii) require more tham= 3 solutions An increase in the amplitude of the solution envelope as the
and are described in Section 3.4. iteration number increases indicates that the solution is divergent.
For divergencsiii ), the solutions diverge and errors and uncer- Estimates of the iterative error based on theoretical approaches
tainties cannot be estimated. Additional remarks are given in Sexe presented in Ferziger and P¢fiZ] and involve estimation of
tion 3.5. the principal eigenvalue of the iteration matrix. The approach is
Determination of the convergence rafy for point variables relatively straightforward when the eigenvalue is real and the so-
can be problematic since solution changgs andey_, can both lution is convergent. For cases in which the principal eigenvalue is
go to zero(e.g., in regions where the solution contains an infleomplex and the solution is oscillatory or mixed, the estimation is
tion poind. In this case, the ratio becomes ill conditioned. HowPOt as straightforward and additional assumptions are required.
ever, the convergence ratio can be used in regions where the so-
lution changes are both non-zef@.g., local solution maximums 3.3 Monotonic Convergence: Generalized Richardson Ex-
or minimums. Another approach is to use a global convergendeapolation. For monotonic convergence, i.e., conditigi in
ratio R, , which overcomes ill conditioning, based on the L2 nornq. (23), generalized RE is used to estimafg or §; and Uk

of the solution changes, i.&R) =lex, [l2/llex 2. () is used to  RE is generalized fad input parameters and concept of correction
denote an averaged value dhd|,=[=N ,£2]"? denotes the L2 factors based on analytical benchmarks is introduced. More de-
norm of solution change over thé¢ points in the region of inter- tailed derivations are provided by Stern et[4l3].
est. Caution should be exercised when defining the convergencés already mentioned, since Stern et [dl3] there has been
ratio from the ratio of the L2 norm of solution changes becausarly two years experience with present approach, especially
the oscillatory conditionR,<1) cannot be diagnosed sin¢g,) through ITTC community and Gothenburg 2000 Workshop on
will always be greater than zero. Local valuesRyf at solution CFD in Ship Hydrodynamics. In particular, detailed verification
maximums or minimums should also be examined to confirm tisocedures have been the focus of attentiBna and Hoekstra
convergence condition based on an L2 norm definition. An altdrl8]; Ebert and Gorskji19]). After some background for general-
nate approach suggested by Hoekstra gt18l.is to transform the ized RE is given, two approaches for estimating errors and uncer-
spatial profile to wave number space and to perform a convéainties are presented and are basedipnorrection factors pro-
posed in the current paper ard) factor of safety approach
1as discussed in the text that follows<R.<1 andR>1 may also occur for Proposed by Roach@998. Finally, a discussion of fundamental
the oscillatory condition. and practical issues for verification is provided.

(26)

*
|
Km
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Background for Generalized RE Generalized RE begins with medium input parametens,,, can be used to estima@f1 from

Eq. (21). The error terms on the right-hand side of E2{) are of g4 (29) provided that Eq(30) for estimating order of accuracy is
known form (i.e., power series expansion with integer powers qf,;ified as

Ax,) based on analysis of the modified and numerical error equa-

tions which is written below as a finite su(ne., error estimate In(ey. /ey.)

and for thekth parameter andhth solution P= In(3r2 )21
k21

n
(i
&=, (Ax ) gy (27) 1)
i=1
For situations whemkni Mgy EO. (31) is a transcendental equa-

tion implicitly defining p, and must be solved iteratively. tf_
, Eqg. (31) degenerates to E@30).

. [In(rpx =1)=In(rf* —1)]
In(r k21) k3p kag

n=number of terms retained in the power series, povpé?scor-
respond to order of accuradjor theith term), and g(k') are re-
ferred to as “grid” functions which are a function of various or-~ s
ders and combinations of derivatives®fvith respect to, . It is Estimating Errors and Uncertainties Using Generalized RE

assumed that the power series in E2) is convergenti.e., the \yith Correction Factors. Results from the numerical solution of
finite sum convergence to the infinite series value as more tergg, one-dimensional(1D) wave and two-dimensional2D)

are includedt Substituting Eq(27) into Eq. (21) results in Laplace equation analytical benchmarks show that (26) has
n J the correct form, but the order of accuracy is poorly estimated by
~ i) ; . . .
—S + Ax, Pk gl + S5 28) Edq. (30) except in the asymptotic range. Analysis of the results
St~ Se .21 (A%,)™ B jlej;tk Im (28) suggests the concept of correction factors, which provide a quan-

. . . . . titative metric to determine proximity of the solutions to the
Subtraction of multiple solutions where input paramet&f is oy mntotic range, account for the effects of higher-order terms,

uniformly refined eliminates théj terms in Eq(28) sinced} is  and are used for defining and estimating errors and uncertainties.

independent oAx, and provides equations &, p{, andg{’. Details are provided in Appendix A. .

This assumeg{’ and g{" are also independent afx, . Since Multiplication of Eq.(29) by a correction facto€, provides an

each term(i) contains 2 unknownsn=2n+1 solutions are re- estimate for&ﬁ1 accounting for the effects of higher-order terms

quired to estimate the numerical benchm&k and the firstn

terms in the expansion in E¢28) (i.e., forn=1, m=3 and for . .

n=2, m=5, etd. The accuracy of the estimates depends on how 9k, = Ckdrg, = Ck

many terms are retained in E@7), the magnitudéimportance

of the higher-order terms, and the validity of the assumption thatse|utions are in the asymptotic range, correction of E9) is

p{) andg(’ are independent afx, . For sufficiently smallx,, not requiredi.e.,C,=1 so that Eqs(29) and(32) are equivalerit

the solutions are in the asymptotic range such that higher-ord&sr solutions outside the asymptotic ran@g<1 or C,>1 indi-

terms are negligible and the assumption thgt andg{ are in- cates that the leading-order term over predibigher-order terms

dependent ofAx, is valid. However, achieving the asymptoticnet negative or under predictghigher-order terms net positive

range for practical geometry and conditions is usually not possiifee error, respectively. The estimate given by E2p) includes

andm>3 is undesirable from a resources point of view; thereforéoth sign and magnitude and is used to estimiater 5y andUy_

methods are needed to account for effects of higher-order terfispending on how close the solutions are to the asymptotic range

for practical application of RE. Additionally, methods may bgje. how closeC, is to 1) and one’s confidence in E€B2). There

needed to account for possible dependence{Bfandg{’ on are many reasons for lack of confidence, especially for complex

Axy, although not addressed herein. Usudify is estimated for three-dimensional flows.

the finest value of the input parameter, i& = 5 corresponding  For Cy sufficiently less than or greater than 1 and lacking con-
to the finest solutiors, ! fidence,U, is estimated, but nos; and U, . Equation(32) is
1 c

With three solutions i=3), only the leading-order term of Used to estimate the uncertainty by bounding the esfoby the
Eq. (27) can be estimated. Solution of the three equationSgar  SUM of the absolute value of the corrected estimate from RE and
p(ki), and g(ki) yields estimates for the erroﬁ]’(‘l and order-of- the absolute value of the amount of the correction

accuracypy Uy=|Ckdre, |+](1=Cy) Ske, | (33)
1 1

€y )
T (32)

Pk _
r,—1

Ekay

SF=68_ =2 (29) For Cy sufficiently close to 1 and having confidenc®, and
ks REk1 rEk_ 1

Uy are estimated. Equatid32) is used to estimate the erréf ,
which can then also be used in the calculatiorsofin Eq. (10)].

Py= InCe g,/ ek, (30) The uncertainty in the error estimate is based on the amount of the
k In(ry) correction
Solving for the first-order term is relatively easy since evaluation U =[(1-Cy &g | (34)
of Egs. (29 and (30) only requires that then=3 solutions are ¢ B

monotonically convergent, even if the solutions are far from t
asymptotic range and Eg&9) and(30) are inaccurate. With so- .
lutions from five systematically refined input parametera ( = 5REk , andUkczo-

. . . . 1
=5), more complicated expressions can be derived to estimateryg definitions for the correction factor were developed. The

the first two terms of the power series expansion. However, theyi i hased on solution of EG32) for C, with 85 based on
range of applicability is more restrictive since all five solutions B,

must be both monotonically convergemtd sufficiently close to Ed. (29) but replacingpy with the improved estimatpy__
the asymptotic range for the expressions to be used.

Note that in the limit of the asymptotic rang€, =1, 5y = 5’,;1

As previously mentioned, solutions from three values of input rEk—l
parameter where the refinement ratio between the medium and Ckzm (35)
fine input parameters,, is not equal to that between coarse and M
798 /| Vol. 123, DECEMBER 2001 Transactions of the ASME
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Similarly, the second is based on a two-term estimate of the powsgen used to address some of these fundamental issues while oth-
series which is used to estimaffe wherepy and gy are re- €rs need further research. Although both correction factor and
1 factor of safety approaches were presented, the authors advocate

the use of former. Results from the numerical solution of analytic
i b Pr b benchmarks show that the factor of safety approach is overly con-
— k_ _ k_ . . . .

(il €1, 1 NI 1) (ErlEi,— T ) — 1) servative, especially when the solutions approach the asymptotic
= (rProsi— r Feesi) (rPhosi_ 1) (1 Phosi p ety (1 Feesi 1 range(Appendix A). This is in contrast to the variable correction

k k k k k k factor approach proposed in Eq83) and (34), where the uncer-

(36) tainty in the error estimate correctly goes to zero as the asymptotic

Pi., anda,__ are estimates for limiting orders of accuracy of théand€ is approached becausg—1. Admittedly, others have rec-

first and second terms of the error expansion equatRi as }%meended the factor of safety approach, e.g., Eca and Hoekstra

placed with Pk, and Ok,

k

], although examination of their results as with our own analy-

spacing size goes to zero and the asymplotic range is reac ‘indicates that such estimates are overly conservative.

Equation (35) roughly accounts for the effects of higher-order For practical applications, especially complex flows with rela-

tgrms by replaglng)k with p‘_‘est thereby prowdlng an improved tively coarse grids, solutions may be far from asymptotic range
single-term estimate. EquatigB6) more rigorously accounts for gch that some variables are convergent while others are oscilla-
higher-order terms since it is derived from the two-term estimajgyy or even divergent. Order of accuracy and therefore correction
with first and second term order of accurggy’ andp(? replaced factors and factors of safety may display large variability indicat-
by py,  anday . Equation(36) simplifies to Eq(35) in the limit  ing the need for finer grids. Clearly, more than 3 grids are required
of the asymptotic range. Both correction factors only require st estimate errors and uncertainties for such cases. Eca and Hoek-
lutions for three parameter values. The estimated vaiyesand ~stra[18] suggest a least-squares approach to estimate the error by
ge_ can be based either on the assumed theoretical order of §eMPUting the three unknown parameters from RE when more
est . L than three solutions are available. The behavior of the asymptotic
curacypy, andgy,, or solutions for simplified geometry and con-, 0 a5 successfully demonstrated for simpler analytical bench-
ditions. In either case, preferably including the effects of grigharks in Appendix A. However, the existence and behavior of the
stretching. ] ) ) asymptotic range for practical problems has not been demon-
In Appendix A, exactA) and numericalS) solutions are used strated due to lack of sufficiently refined grids, number of solu-
to compare the true simulation errok £ S) to (i) an uncorrected tions to assess variability, and available resources, among other
three-grid error estimate using E(29) and (ii) corrected esti- jssyes. Another practical issue involves selecting and maintaining
mates based on E(B2) with correction factor defined by E5)  appropriate parameter refinement ratio and resources for obtaining
or (36). Correction of error estimates with both definitions@f  solutions with sufficient parameter refinement as well as number
results in improved error estimates. Also, uncertainty estimatggsolutions. Lastly, interpretation of results is an issue since, as
using Eq.(33) with correction factor defined by E¢35) or (36)  already mentioned, there is limited experience and no known
are shown to bound the true simulation errér«S), while un-  sojutions for practical applications in the asymptotic range for
certainty estimates using E(4) are shown to bound the differ- guidance.
ence between the corrected solution and the tr{AT). Addi- = The present verification procedures represent the most rational
tional testing of expressions f@ given by Eqs(35) and(36) is  approach presently known. However, alternative strategies for in-
needed and development of improved expressions within the pegading effects of higher-order terms may be just as viable, e.g.,
posed general framework is certainly possible. treatment of the power series exponents as known integers as

Estimating Uncertainties Using Generalized RE With FactorBroPosed by Oberkampf and investigated by Eca and Hoekstra
of Safety. In Roache[3], a GCI approach is proposed where 18]. Once available, improved verification procedures can be eas-

standard three-grid error estimate from RE is multiplied by a fafy incorporated into the present overall verification and validation
tor of safetyF to bound the simulation error methodology. These issues are discussed further in Section 5 Con-

clusions and Recommendations and in PaifVson et al.[12]).
U=Fd 5§Ek1| (37

3.4 Oscillatory Convergence. For oscillatory convergence,
. . o i.e., condition(ii) in Eq. (23), uncertainties can be estimated, but
Note that Eq(37) with factor of safety differs significantly from 4t the signs and magnitudes of the errors. Uncertainties are esti-
Eq. (34). HereinCy=Cy (&,r'c, Pk Pi,, k) In contrast to E. mated based on determination of the upp@s)(and lower G,)
(37) whereCy is a constant referred to as a factor of saféty. bounds of solution oscillation, which requires more thas-3
The exact value for factor of safety is somewhat ambiguous asdlutions. The estimate of uncertainty is based on half the solution
Roache[3] recommends 1.25 for careful grid studies and 3 forange
cases in which only two grids are used.

Although not proposed in Roach8], the factor of safety ap- U :}(Sust) (39)
proach can be used for situations where the solution is corrected k72
with an error estimate from RE. Equati¢29) is used to estimate

&g and the uncertainty in that error estimate is given by 3.5 Divergence. For divergence, i.e., conditiofiii) in Eqg.

(23), errors and or uncertainties can not be estimated. The prepa-
| (38) ration and verification steps must be reconsidered. Improvements
Ba in iterative convergence, parameter specificatieny., grid qual-

With this approach, a fixed percentage of a three-grid errgy)’_lf‘rt'dlor CFth.COde may be required to achieve converging or
estimate(e.g., 25%5’,§Ek for Fg=1.25 is used to define the un- osciilatory conditions.
1

Ui =(Fs—1)| 5%

certainty of the error estimate regardless of how close solutiogs \/5jidation Procedures

are to the asymptotic range. ) ) ) ) )
In Section 2, an approach for assessing the simulation modeling

Discussion of Fundamental and Practical Issuesundamen- yncertainty was presented where for successful validation, the
tal and practical issues for verification are discussed in this segmparison errorf is less than the validation uncertainty,,
tion. Fundamental issues include convergence of power serigen by Eqs.(17) and (19) for uncorrected and corrected solu-
equation(27), assumptions thap{’ andg{ are independent of tions, respectively. In this section, validation procedures are pre-
Axy, and estimatingy__. Solution of analytical benchmarks hassented through discussions in Section 4.1 on interpretation of
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validation results and in Section 4.2 on use of corrected simula- Conclusions
tion results. As previously mentioned, Coleman and Siéfipro-

vide additional discussion on validation procedures. The present comprehensive approach to verification and valida-

tion methodology and procedures sets forth concepts, definitions,
and equations derived for simulation errors and uncertainties,
4.1 Interpretation of the Results of a Validation Effort. Which provide a well-founded mathematical framework. The ap-

First, consider the approach in which the simulation numericBloach should have applicability to a fairly broad range of CFD
error is taken to be stochastic and thus the uncertdingy is c0des, including RANS, Navier-Stokes, Euler, boundary-element

estimated. From a general perspective, if we consider the thf®§thods, and others. However, clearly much more work is needed

variablesUy, |E|, andU 44 there are six combinatior@ssuming for other CFD codegsuch as large-eddy simulationsdditional

none of the three variables are equal error sources, and alternative error and uncertainty estimation
methods, e.g., single-grid methods and both results for additional

1. |E|<Uy<Ueqq analytical benchmark&specially for nonlinear equations and us-
ing stretched gridsfor improved definitions of correction factors

2. |E[<Ureqq<Uy and estimates of orders of accuracy, and alternative strategies to

3. Ueqe<|E|<U account for the effects of higher-order terms in RE Improved

reqd v verification procedures once available can be easily incorporated

4. Uy<|E|<Ueqq into the present overall verification and validation methodology.
Furthermore, more experience is needed through application for

5. Uy<U,eq<|E| different codes and geometry and conditions, especially for prac-
tical applications.

6. Ueqa<Uv<|E| (40) As mentioned in the Introduction, present verification and vali-

dation methodology and procedures were recommended and used
t the recent Gothenburg 2000 Workshop on CFD in Ship Hydro-
ynamics(Larsson et al[11]). 22 participating research groups
y&m 12 countries and 19 different RANS codes were used for
below U so validation is successful from a programmati Imulations of 3 test cases representing t_anker, container, and sur-
reqd ace combatant hull forms. Most groups implemented the recom-

stamclr:gg;.‘l 5, and &)y <|E|, so the comparison error is abovemended procedures, but lack of familiarity with the procedures

Jsua is feasible from an uncertainty standpointlg<|E], then not all variables dig Ig monotgnic convergence andyoscillator
E corresponds t&s) 5, and the error from the modeling assump- play 9 y

tions can be determined unambiguously. In case 4, validationG&nvergence and even divergence is evident. For monotonic con-
successful at thiE| level from a programmatic standpoint. veérgence, variability in the estimated order of accuracy was ob-

Now consider the approach in which the simulation numericérrved for some cases. The current 1 million point grids are

fror is taken to be deterministic and thé, and the uncertaint early insufficient for more complex hull forms such as the tanker
error Is taken (o be deterministic a a e uncertainty 4nq4 an order of magnitude increase in points may be required to
Uy, are estimated. A similar set of comparisons as those in

- ; 'move variability and achieve monotonic convergence for most
(40) can be constructed usifj§c|, Uy,, andU,eqq. SinceEc  variables. In spite of difficulties, the effort was beneficial in en-
can be larger or smaller thag, but Uy, should always be less abling quantitative evaluation of levels of verification and valida-

thanUy , the results for a given corrected case are not necessaf|. increasing familiarity with verification and validation proce-
analogous to those for the corresponding uncorrected case. TH#€S, interpretation of results, and identification of grid
is, a variable can be validated in the corrected but not in tfgquirements for decreasing levels of errors and uncertainties.
uncorrected case, or vice versa. For cases 4, 5, and 6 in whie@reful examination of verification results even for relatively
ch<|Ec|: one can argue thd. is a better indicator obg,, Coarse grid solutions provides a road map towards achieving ac-
than isE, assuming that one’s confidence in using the estima‘fgpta.b.le "?VG'S of ver_lflca_ltlon.

* . Verification and validation methodology and procedures should
sn is not misplaced. be helpful in guiding future developments in CFD through docu-
mentation, verification, and validation studies and in transition of
CFD codes to design through establishment of credibility. Pre-
sumably, with a sufficient number of documented, verified, and
Yglidated solutions along with selected verification studies, a CFD

one and that confidence in solutions exist. Since the variability S?de_caf_‘ be accredited for a C.G”.a‘” range of applications. The
the order of accuracy cannot be determined from solutions GRN{rikution of the present work is in providing methodology and
three grids, confidence is difficult to establish in this case. AsRjocedures for the former, which hopefully will help lead to the

result, caution should be exercised when correcting solutions (RIET- . . .
ing information from only three grids 9 Part 2 provides an example for RANS simulations for a cargo/

If a validation using the corrected approach is successful a gntainer ship where issues with regar_d to practi_cal applic_a_tion_ of
set condition, then if one chooses to associate that validation Jf€ Methodology and procedures and interpretation of verification

certainty level with the simulation’s prediction at a neighborin@md validation results are discussitiilson et al.[12]).

condition that prediction must also be corrected. That means
enough runs are required at the new condition to allow estimatigppk led

of the numerical errors and uncertainties. If this is not done, th nowledgments

the comparison errde and validation uncertainty,, correspond-  This research was sponsored by the Office of Naval Research
ing to the use of the uncorrect&hnd its associatedargen Ugy under Grants N00014-96-1-0018, N00014-97-1-0014, and
should be the ones considered in the validation with which omM00014-97-1-0151 under the administration of Dr. E. P. Rood.
wants to associate the prediction at a new conditigvhether to The authors gratefully acknowledge Dr. Rood and other col-
and how to associate an uncertainty level at a validated conditimagues, especially Prof. W. G. Steele and Dr. H. Raven, who
with a prediction at a neighboring condition is very much unremade significant contributions through insightful discussions and
solved and is justifiably the subject of much debate at this jimecomments on early drafts. The recent Masters and Ph.D. theses of

In cases 1, 2, and 3E|<Uy ; validation is achieved at thg,,
level; and the comparison error is below the noise level, so
tempting to estimatedgy is not feasible from an uncertainty
standpoint. In case 1, validation has been achieved at a le

4.2. Use of Corrected Versus Uncorrected Simulation Re-
sults. As previously stated in Section 3.3, the requirements f
correcting the solution are that the correction factor be close
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Dr. B. Chen, Mr. G. Dolphin and Dr. S. H. Rhee, all at The 0.2 — 55 2
University of lowa, Department of Mechanical Engineering, wer :
helpful both in the development and testing of the present veri ™
cation and validation methodology and procedures. s

Nomenclature

Ck correction factor
D = benchmark data
E,Ec = comparison error, corrected
px = order of accuracy
Ry = parameter refinement ratio
S,Sc = simulation result, corrected

Ax=At/2

I1A-S|
-,
-,

- Usu(Fg)

T = truth
U = uncertainty estimate
Up = data uncertaint s A . . .
Ue UL . y . 06T 10% _J0¢ 10° 107 10° 307 10°
E'YE. = comparison error uncertainty, corrected Ax=At2 Ax=At/2
U, = iteration uncertainty . L ) . )
Us U _ : id sizeG and Fig. 2 Verification results for first-order numerical solution of
P.YPc = parameter uncertaintie.g., grid sizeG an 1D wave equation. (a) Comparison of true error A—S to esti-
time stepT), corrected _ mates from RE, (b) correction factor, and (c) comparison of
Ueqa = Programmatic validation requirement |[A—5S | and Uscy, and (d) comparison of |A—S| and Usy.

Us.Us. = simulation uncertainty, corrected
Ugy = simulation modeling uncertainty
Usua = simulation modeling assumption uncertainty
Ugpp = simulation uncertainty due to use of previous

data tion; and (i) a second-order implicit method with second-order
Uste.Us.Te = simulation total estimated numerical uncertaintycentral spatial discretization. Since trends from both schemes are
USNrUSCN — simulation numerical uncertainty, corrected similar, on_Iy the r_esu_lts from _the first-order scheme are presented.
A combined grid size and time step study was performed where
ten solutions were obtained by successively doubling both the grid
and time step such thatt/Ax=0.5 for all solutions. With this
approach, solutions changes are used to estimate (tetaporal
o = error S . e .
B . . . and spatial simulation errors and uncertainties. Accordingly, the
‘5: = error estimate with sign and magnitude generic subscript appearing in expressions for errors and un-
6,6; = iteration error, estimate certainties in Section 3.3 is replaced witBN in this section
8p,0p = parameter error, estimate where appropriate.
ds,0s. = simulation error, corrected
dsn = simulation numerical error
dsma = Simulation modeling assumption error
& = solution change
ggn = error in §*

Uv,Uy. = validation uncertainty, corrected
Ax, = increment inkth input parametete.g., grid size
G and time stepl)

Errors, Uncertainties, and Correction Factors. The con-
cept of a multiplication correction factor was introduced in Sec-
tion 3.3. The correction factd®, was used to define the numerical
uncertainty in Eq(33) or when conditions permit to improve error
estimates in Eq(32) and to define the uncertainty in that error
. . estimate in Eq(34). Error and uncertainty estimates given by Egs.
Appendix A. Analytical Benchmarks (32)—(34) are tested by numerical solution of analytical bench-

The use of analytical benchmarks for development of the comarks as well as development of expressions for correction factor.
cept of correction factors as discussed in Section 3.3 is presenteffigure 2a) compares the true simulation errirto the three-
in this Appendix. For analytical benchmarks, the modeling error igid error estimateﬁ’FZEl from Eq. (29) versus step size at one

zero such that the simulation error is solely due to numerical emQhatial location(x=1 since maximums of numerical error occur

Results are obtained for two analytical benchmarks ong: : : :
. . . . ere. The three-grid estimate accurately estimates the true error
dimensional(1D) wave and two-dimension&PD) Laplace equa- 859 9 9 Y

X X L for smaller step sizes, but over predi&dor larger step sizes.
tions. The results for the 2D Laplace equation were qualitative loser examination reveals that H9) over estimates the error

similar to those for the 1Dlwave equation, which are present cause EQq(30) under estimates the order of accuracy, as also
Exact solutions from analytical benchmarks are used to determ%}q?own in Fig. 2a) '
i . 2a).

the exact simula_tion n_umerical error Wh.iCh is compared to eSU"Tyy0 definitions forCy were investigated. The first is based on
mates from RE, including use of correction factors. More details Vi tion(32) for C. with 5. defined in Ea.(29) but
are provided in Stern et dl13], including single grid error S°\Ving equation32) for Cy with oze, defined in Eq.(29) bu

estimates. replacingp, with the improved estimatpkes‘, which is provided

Verification of Analytical Benchmarks. For verification us- Y Ed- (39 wherg Pk, 1S @n estimate of the Ii.miting order of
ing an analytical benchmark, the simulation error and uncertairdgcuracy of the first term of the error expansion equatin.
are given byds=S— A= sy and U§:U§Nl while the corrected Similarly, the second definition of correction factor is based on
simulation error and uncertainty are given By =Sc—A=egy estimating(SZQEk using the first two terms of the powers series and

1
and U§C= UéCN. Simulations are verified ifE|=|A—S|<Ugy replacingp, andq, with improved estimatepy__ andgy,__, which
and corrected simulations are verified Hc|=|A—Sc|<Ug .  is provided by Eq.(36) wherep, andq,  are estimates for
C est est

The first-order, linear 1D wave equation models the behavior bifniting orders of accuracy of the first and second terms of the
a more complicatednonlineaj partial differential equation. The error expansion equatidi27) as spacing size goes to zero and the
initial condition is prescribed by a Gaussian function centered asymptotic range is reached. With this definition, correction fac-
x=0.0. Two discretization techniques were studigfirst-order tors approach one in the limit of zero spacing size. The estimated
(Eulen explicit method with first-order upwind spatial discretiza«/aluespkesl and Ok, can be based either on the assumed theoret-
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ical order of accuracypy, and gy, or solutions for simplified Laplace equation analytical benchmark. Their results are consis-

geometry and conditions. In either case, preferably including tf@nt with our own in showing that uncertainty estimates using Eq.
effects of grid stretching. (33) always bounded the true error. Unlike our own results, their

Figure Za) also compares the true errarto (|) an uncorrected results indicate that the Uncertainty estimate from (Bq—) failed
three_grid error estimate using E(Qg) and (”) corrected esti- to bound the difference in the truth and numerical benchmark for
mates based on E(B2) with correction factor defined by E¢35) Some grid triplets when the apparent order of accuracy was esti-
or (36). Both estimates are closer Ebthan the uncorrected threemated to be larger than the theoretical value.

grid estimatedge , but for coarser grid{” is somewhat too

small andC{? is slightly too large. Figure ®) shows the same References
trends, but directly compares the exact correction faEfdiy to [1] Freitas, C. J., 1993, “Editorial Policy Statement on the Control of Numerical
Egs.(35) and(36). In this caseC,<1 indicates that the leading- Accuracy,” ASME J. Fluids Eng.115 pp. 339-340.

; ; g _ [2] AIAA, 1998, Guide for the Verification and Validation of Computational Fluid
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