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Comprehensive Approach to
Verification and Validation of CFD
Simulations—Part 1:
Methodology and Procedures
Part 1 of this two-part paper presents a comprehensive approach to verification
validation methodology and procedures for CFD simulations from an already devel
CFD code applied without requiring availability of the source code for specified ob
tives, geometry, conditions, and available benchmark information. Concepts, defini
and equations derived for simulation errors and uncertainties provide the overall m
ematical framework. Verification is defined as a process for assessing simulation nu
cal uncertainty and, when conditions permit, estimating the sign and magnitude o
numerical error itself and the uncertainty in that error estimate. The approach for e
mating errors and uncertainties includes (1) the option of treating the numerical erro
deterministic or stochastic, (2) the use of generalized Richardson extrapolation for J
parameters, and (3) the concept of correction factors based on analytical benchm
which provides a quantitative metric to determine proximity of the solutions to
asymptotic range, accounts for the effects of higher-order terms, and are used for de
and estimating errors and uncertainties. Validation is defined as a process for asse
simulation modeling uncertainty by using benchmark experimental data and, when
ditions permit, estimating the sign and magnitude of the modeling error itself. The
proach properly takes into account the uncertainties in both the simulation and ex
mental data in assessing the level of validation. Interpretation of results of valida
efforts both where the numerical error is treated as deterministic and stochastic
discussed. Part 2 provides an example for RANS simulations for a cargo/container
where issues with regard to practical application of the methodology and procedures
interpretation of verification and validation results are discussed.
@DOI: 10.1115/1.1412235#
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1 Introduction
Discussion and methodology for estimating errors and un

tainties in computational fluid dynamics~CFD! simulations have
reached a certain level of maturity with recognition of importan
through editorial policies~Freitas@1#!, increased attention and re
cent progress on common terminology~AIAA, @2#!, advocacy and
detailed methodology~Roache@3#!, and numerous case studie
~e.g.@4#!. Progress has been accelerated in response to the u
need for achieving consensus on concepts, definitions, and u
methodology and procedures, as CFD is applied to increasi
complex geometry and physics and integrated into the enginee
design process. Such consensus is required to realize the go
simulation-based design and other uses of CFD such as simul
flows for which experiments are difficult~e.g., full-scale Reynolds
numbers, hypersonic flows, off-design conditions!. In spite of the
progress and urgency, the various viewpoints have not conve
and current approaches fall short of providing practical method
ogy and procedures for estimating errors and uncertainties in C
simulations.

The present work provides a pragmatic approach for estima
errors and uncertainties in CFD simulations. Previous work
verification~Stern et al.@5#! is extended and put on a more rigo
ous foundation and combined with subsequent work on valida
~Coleman and Stern@6#! thereby providing a comprehensiv
framework for overall procedures and methodology. The philo

Contributed by the Fluids Engineering Division for publication in the JOURNAL
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Divisio
November 4, 1999; revised manuscript received July 10, 2001. Associate E
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phy is strongly influenced by experimental fluid dynamics~EFD!
uncertainty analysis~Coleman and Steele@7#!, which has been
standardized. Hopefully, CFD verification and validation proc
dures and methodology can reach a similar level of maturity
user variability can reach similar low levels, as for EFD. The wo
is part of a larger program~Rood @8#! for developing and imple-
menting a strategy for verification and validation of Reynold
averaged Navier-Stokes~RANS! ship hydrodynamics CFD codes
The program includes complementary CFD and EFD towing-ta
investigations and considers errors and uncertainties in both
simulations and the data in assessing the success of the ver
tion and validation efforts. The work also benefited from collab
ration with the 21st and 22nd International Towing Tank Resistanc
Committees~ITTC @9,10#!. The procedures proposed in this pap
were adopted on an interim basis by the 22nd ITTC and also were
recommended and used at the recent Gothenburg 2000 Work
on CFD in Ship Hydrodynamics~Larsson et al.@11#!.

The focus is on verification and validation methodology a
procedures for CFD simulations with an already developed C
code applied without requiring availability of the source code
specified objectives, geometry, conditions, and available ben
mark information. The methodology and procedures were de
oped considering RANS CFD codes, but should be applicable
fairly broad range of codes such as boundary-element meth
and certain aspects of large-eddy and direct numerical sim
tions. The present work differs in many respects from recent
erature. The presentation is relatively succinct with intention
use for practical applications~i.e., industrial CFD! for which nu-
merical errors and uncertainties cannot be considered negligib
overlooked.
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The definitions of errors and uncertainties and verification a
validation that are used in any approach need to be clearly sta
The present and Roache@3# definitions for errors and uncertaintie
are consistent with those used for EFD. The AIAA@2# definitions
are from an information theory perspective and differ from tho
used in EFD, but are not contradictory to the present definitio
The present concepts and definitions for verification and val
tion are closely tied to the present definitions of errors and un
tainties and equations derived for simulation errors and uncert
ties thereby providing the overall mathematical framework. T
Roache@3# and AIAA @2# definitions are broader, but not contra
dictory to the present definitions. The present approach inclu
both the situations~1! of estimating errors and the uncertainty
those estimates and~2! of estimating uncertainties only. Richard
son extrapolation~RE! is used for verification, which is not new
however, the present generalizations forJ input parameters and
concept of correction factors based on analytical benchma
which provides a quantitative metric to determine proximity of t
solutions to the asymptotic range, accounts for the effects
higher-order terms, and are used for defining and estimating e
and uncertainties constitute a new approach. The use of qua
tive estimates for errors and the use of uncertainties for th
estimates also constitute a new approach in verification
validation.

Part 1 of this two-part paper presents the verification and v
dation methodology and procedures. In Section 2, the overall v
fication and validation methodology is presented by provid
concepts, definitions, and equations for the simulation numer
and modeling errors and uncertainties. In Section 3, detailed v
fication procedures for estimation of various sub-component
the simulation numerical error and uncertainty are given. In S
tion 4, validation procedures are given including a discussion
the interpretation of validation results and use of corrected si
lation results. Finally, conclusions are provided in Section 5. P
2 provides an example for RANS simulations for a carg
container ship where issues with regard to practical applicatio
the methodology and procedures and interpretation of verifica
and validation results are discussed~Wilson et al.@12#!. Present
papers are based on Stern et al.@13#, which is sometimes refer
enced for additional details. However, presentation and expan
discussions of verification procedures and implementation w
improved based on nearly two years experience with presen
proach, especially through ITTC community and Gothenb
2000 Workshop on CFD in Ship Hydrodynamics.

2 Overall Verification and Validation Methodology
In Section 2.1, the overall verification and validation metho

ology is presented by providing key concepts, definitions, a
derivation of equations for the simulation error and uncertainty
sum and root-sum-square~RSS! of simulation numerical and
modeling errors and uncertainties, respectively. The verifica
and validation equations are derived in Sections 2.2 and 2.3
spectively, where subcomponents of the simulation numerica
ror are identified and an approach for assessing the simula
modeling uncertainty is presented.

2.1 Concepts and Definitions. Accuracy indicates the
closeness of agreement between a simulation/experimental v
of a quantity and its true value. Errord is the difference between
a simulation value or an experimental value and the truth. Ac
racy increases as error approaches zero. The true value
simulation/experimental quantities are rarely known. Thus, er
must be estimated. An uncertaintyU is an estimate of an erro
such that the interval6U contains the true value ofd 95 times
out of 100. An uncertainty interval thus indicates the range
likely magnitudes ofd but no information about its sign.

For simulations, under certain conditions, errors can be e
mated including both sign and magnitude~referred to as an erro
estimated* !. Then, the uncertainty considered is that correspo
794 Õ Vol. 123, DECEMBER 2001
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ing to the error ind* . Whend* is estimated, it can be used t
obtain a corrected value of the variable of interest.

Sources of errors and uncertainties in results from simulati
can be divided into two distinct sources: modeling and numeri
Modeling errors and uncertainties are due to assumptions and
proximations in the mathematical representation of the phys
problem ~such as geometry, mathematical equation, coordin
transformation, boundary conditions, turbulence models, etc.! and
incorporation of previous data~such as fluid properties! into the
model. Numerical errors and uncertainties are due to numer
solution of the mathematical equations~such as discretization, ar
tificial dissipation, incomplete iterative and grid convergence, la
of conservation of mass, momentum, and energy, internal and
ternal boundary noncontinuity, computer round-off, etc.!. The
present work assumes that all correlations among errors are
which is doubtless not true in all cases, but the effects are assu
negligible for the present analyses.

The simulation errordS is defined as the difference between
simulation resultS and the truthT. In considering the develop
ment and execution of a CFD code, it can be postulated thatdS is
comprised of the addition of modeling and numerical errors

dS5S2T5dSM1dSN (1)

Support for this postulation is provided by using the model va
M in definitions for modeling and numerical errors. The simu
tion modeling errordSM5M2T is defined as the difference be
tween the trueT and modelM values while the simulation numeri
cal error dSN5S2M is defined as the difference between t
simulationSand modelM values. The simulationSand modelM
values are obtained by numerical and exact solutions of the c
tinuous equations used to model the truth, respectively. Since
act solution of nonlinear equations is seldom possible, approxi
tions are used to replace the continuous modeled equations
discrete ones that are solved algebraically with a CFD code
yield the simulation valueS.

The uncertainty equation corresponding to error equation~1! is

US
25USM

2 1USN
2 (2)

whereUS is the uncertainty in the simulation andUSM andUSN
are the simulation modeling and numerical uncertainties.

For certain conditions, the numerical errordSN can be consid-
ered as

dSN5dSN* 1«SN (3)

wheredSN* is an estimate of the sign and magnitude ofdSN and
«SN is the error in that estimate~and is estimated as an uncertain
since only a range bounding its magnitude and not its sign can
estimated!. The corrected simulation valueSC is defined by

SC5S2dSN* (4)

with error equation

dSC
5SC2T5dSM1«SN (5)

The uncertainty equation corresponding to error equation~5! is

USC

2 5USM
2 1USCN

2 (6)

whereUSC
is the uncertainty in the corrected simulation andUSCN

is the uncertainty estimate for«SN.
Debate on verification and validation has included discuss

on whether errors such asdSN are deterministic or stochastic, an
thus how they should be treated in uncertainty analysis was
clear. In the ‘‘corrected’’ approach given by Eqs.~3!–~6!, a deter-
ministic estimatedSN* of dSN and consideration of the error«SN in
that estimate are used. The approach is analogous to that in
when an asymmetric systematic uncertainty is ‘‘zero-centered’
inclusion of a model for the systematic error in the data reduct
equation and then the uncertainty considered is that assoc
with the model~Coleman and Steele@7#!. In the ‘‘uncorrected’’
Transactions of the ASME
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approach given by Eqs.~1!–~2!, any particulardSN is considered
as a single realization from some parent population ofdSN’s and
the uncertaintyUSN is interpreted accordingly in analogy to th
estimation of uncertainties in EFD~with a similar argument for
«SN andUSCN!. Oberkamp and Trucano@14# have criticized Cole-
man and Stern@6# for treating USN statistically; however, the
present approach is well justified both conceptually and ma
ematically for reasons just given.

The overall CFD verification and validation procedures can
conveniently grouped in four consecutive steps. The first ste
preparation, which involves selection of the CFD code and sp
fication of objectives, geometry, conditions, and available ben
mark information. The objectives might be prediction of certa
variables at certain levels of validation~e.g., programmatic vali-
dation requirementsUreqd!. The variables can either be integr
~e.g., resistance! or point ~e.g., mean velocities and turbulent Re
nolds stresses! values and the programmatic validation requir
ments may be different for each variable. The second and t
steps are verification and validation, which are described in S
tions 2.2 and 2.3. The fourth step is documentation, which
detailed presentation of the CFD code~equations, initial and
boundary conditions, modeling, and numerical methods!, objec-
tives, geometry, conditions, verification, validation, and analys

2.2 Verification. Verification is defined as a process for a
sessingsimulation numerical uncertaintyUSN and, when condi-
tions permit, estimating the sign and magnitudedSN* of the simu-
lation numerical error itself and the uncertainty in that er
estimate. For many CFD codes, the most important numer
errors and uncertainties are due to use of iterative solution m
ods and specification of various input parameters such as sp
and time step sizes and other parameters~e.g., artificial dissipa-
tion!. The errors and uncertainties are highly dependent on
specific application~geometry and conditions!.

The errors due to specification of input parameters are dec
posed into error contributions from iteration numberd I , grid size
dG , time stepdT , and other parametersdP , which gives the
following expressions for the simulation numerical error and u
certainty

dSN5d I1dG1dT1dP5d I1(
j 51

J

d j (7)

USN
2 5UI

21UG
2 1UT

21UP
2 5UI

21(
j 51

J

U j
2 (8)

Similarly, error estimatesd* can be decomposed as

dSN* 5d I* 1(
j 51

J

d j* (9)

which gives the following expressions for the corrected simulat
and corrected simulation numerical uncertainty

SC5S2S d I* 1(
j 51

J

d j* D 5T1dSM1«SN (10)

USCN
2 5UI C

2 1(
j 51

J

U j C

2 (11)

Verification is based on equation~10!, which is put in the form

S5SC1S d I* 1(
j 51

J

d j* D (12)

Equation~12! expressesS as the corrected simulation valueSC
plus numerical errors.SC is also referred to as a numerical benc
Journal of Fluids Engineering
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mark since it is equal, as shown by Eq.~10!, to the truth plus
simulation modeling error and presumable small error«SN in the
estimate of the numerical errordSN* .

2.3 Validation. Validation is defined as a process for asse
ing simulation modeling uncertaintyUSM by using benchmark
experimental data and, when conditions permit, estimating
sign and magnitude of the modeling errordSM itself. Thus, the
errors and uncertainties in the experimental data must be con
ered in addition to the numerical errors and uncertainties
cussed in Section 3. Approaches to estimating experimental
certainties are presented and discussed by Coleman and Stee@7#.

The validation methodology of Coleman and Stern@6# which
properly takes into account the uncertainties in both the sim
tion and the experimental data is discussed in this section for b
approaches of treating the numerical error as stochastic an
deterministic.

The validation comparison is shown in Fig. 1. The experime
tally determinedr-value of the (Xi ,r i) data point isD and simu-
latedr-value isS. Recall from Eq.~1! that the simulation errordS
is the difference betweenSand the truthT. Similarly, the errordD
in the data is the difference betweenD and the truthT, so setting
the simulation and experimental truths equal results in

D2dD5S2dS (13)

The comparison errorE is defined as the difference ofD andS

E5D2S5dD2dS5dD2~dSMA1dSPD1dSN! (14)

with dSM decomposed into the sum ofdSPD, error from the use of
previousdata such as fluid properties, anddSMA, error frommod-
eling assumptions. ThusE is the resultant ofall the errors asso-
ciated both with the experimental data and with the simulati
For the approach in which no estimatedSN* of the sign and mag-
nitude ofdSN is made, all of these errors are estimated with u
certainties.

If ( Xi ,r i), andS share no common error sources, then the u
certaintyUE in the comparison error can be expressed as

UE
25S ]E

]D D 2

UD
2 1S ]E

]SD 2

1US
25UD

2 1US
2 (15)

or

UE
25UD

2 1USMA
2 1USPD

2 1USN
2 (16)

Ideally, one would postulate that if the absolute value ofE is
less than its uncertaintyUE , then validation is achieved~i.e., E is
‘‘zero’’ considering the resolution imposed by the ‘‘noise leve
UE!. In reality, there is no known approach that gives an estim
of USMA, soUE cannot be estimated. That leaves a more string

Fig. 1 Definition of comparison error.
DECEMBER 2001, Vol. 123 Õ 795
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validation test as the practical alternative. If the validation unc
tainty UV is defined as the combination of all uncertainties that
know how to estimate~i.e., all butUSMA!, then

UV
25UE

22USMA
2 5UD

2 1USTE
2 (17)

whereUSTE
2 5USPD

2 1USN
2 is the total estimated simulation unce

tainty, as shown in Fig. 1.
If uEu is less than the validation uncertaintyUV , the combina-

tion of all the errors inD and S is smaller than the estimate
validation uncertainty and validation has been achieved at theUV
level. UV is the key metric in the validation process.UV is the
validation ‘‘noise level’’ imposed by the uncertainties inherent
the data, the numerical solution, and the previous experime
data used in the simulation model. It can be argued that one
not discriminate onceuEu is less than this; that is, as long asuEu is
less than this, one cannot evaluate the effectiveness of prop
model ‘‘improvements.’’ On the other hand, ifuEu@UV one could
argue that probablyE'dSMA.

Oberkamp and Trucano@14# have criticized Coleman and Ster
@6# for fact thatUV excludesUSMA. As already acknowledged
there is no known way for directly estimatingUSMA. However,
the present approach does provide a more stringent valida
metric UV which sets the level that validation can be achieved
the root sum square of the experimentalUD and the total esti-
mated simulationUSTE uncertainties. Additionally, under certai
conditions, the simulation modeling errordSMA itself can be esti-
mated, as further discussed in Section 4. Consideration of Eq.~17!
shows that~1! the more uncertain the data~greaterUD! and/or~2!
the more inaccurate the code~greaterUSTE!, the easier it is to
validate a code, since the greater the uncertainties in the data
code predictions, the greater the noise levelUV . Both Roache@3#
and Oberkamp and Trucano@14# have criticized Coleman and
Stern@6# for this fact. However, if the value ofUV is greater than
that designated as necessary in a research/design/develop
program, the requiredlevel of validationcould not be achieved
without improvement in the quality of the data, the code, or bo
Also, if USN andUSPD are not estimated, butuEu is less thanUD ,
then a type of validation can be argued to have been achieved
clearly as shown by the present methodology, at an unkno
level.

If the ‘‘corrected’’ approach of Eqs.~3!–~6! is used, then the
equations, equivalent to Eqs.~14! and ~17! are

EC5D2SC5dD2~dSMA1dSPD1«SN! (18)

for the corrected comparison error and

UVC

2 5UEC

2 2USMA
2 5UD

2 5UD
2 1USCTE

2 (19)

for the corrected validation uncertainty whereUSCTE
2 5USPD

2

1USCN
2 is the total estimated corrected simulation uncertain

also shown in Fig. 1. Note thatSC andEC can be either larger o
smaller than their counterpartsS andE, but UEC

andUVC
should

be smaller thanUE and UV , respectively, sinceUSCN should be
smaller thanUSN.

If there is a programmatic validation requirement, there is
other uncertaintyUreqd that must be considered since validation
required at that uncertainty level or below. Interpretation of
meaning of the relative magnitudes ofE ~or EC!, Ureqd and UV
~or UVC

! and of the implications on the possibility of estimatin
dSMA are discussed in Section 4. Additional discussion is provid
in Coleman and Stern@6# on: estimatingUSPD; estimatingUD for
the data point (Xi ,r i), including both the experimental unce
tainty in r i and the additional uncertainties inr i arising from the
experimental uncertainties in the measurements of the n inde
dent variables (Xj ) i in Xi ; and for validation of a CFD code
multiple codes and/or models, and prediction of trends.
796 Õ Vol. 123, DECEMBER 2001
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3 Verification Procedures
In Section 2, the simulation numerical error and uncertai

were decomposed into contributions from iteration number, g
size, time step, and other parameters in Eqs.~7! and ~8!. In this
section, detailed verification procedures are given for estima
of these contributions through convergence studies~Section 3.1!.
Iterative ~Section 3.2! and parameter~Sections 3.3–3.5! conver-
gence studies are conducted using multiple solutions with syst
atic parameter refinement to estimate numerical errors and un
tainties. Three convergence conditions are possible:~i! monotonic
convergence;~ii ! oscillatory convergence; and~iii ! divergence and
are described in Sections 3.3, 3.4, and 3.5, respectively. For
dition ~i!, as already mentioned, errors and uncertainties are
mated using generalized RE. For condition~ii !, uncertainties are
estimated simply by attempting to bound error based on osc
tion maximums and minimums. For condition~iii !, errors and un-
certainties cannot be estimated. As discussed below and lat
Section 5, there are many issues in estimating errors and un
tainties for practical applications.

3.1 Convergence Studies. Iterative and parameter conve
gence studies are conducted using multiple~m! solutions and sys-
tematic parameter refinement by varying thekth input parameter
Dxk while holding all other parameters constant. The present w
assumes input parameters can be expressed such that the
resolution corresponds to the limit of infinitely small parame
values. Many common input parameters are of this form, e.g.,
spacing, time step, and artificial dissipation. Additionally, a u
form parameter refinement ratior k5Dxk2

/Dxk1
5Dxk3

/Dxk2

5Dxkm
/Dxkm21

between solutions is assumed for presentat
purposes, but not required as discussed later.

Careful consideration should be given to selection of unifo
parameter refinement ratio. The most appropriate values for in
trial CFD are not yet fully established. Small values~i.e., very
close to one! are undesirable since solution changes will be sm
and sensitivity to input parameter may be difficult to identify com
pared to iterative errors. Large values alleviate this problem; h
ever, they also may be undesirable since the finest step size
be prohibitively small~i.e., require many steps! if the coarsest step
size is designed for sufficient resolution such that similar phys
are resolved for all m solutions. Also, similarly as for small va
ues, solution changes for the finest step size may be difficul
identify compared to iterative errors since iterative convergenc
more difficult for small step size. Another issue is that for para
eter refinement ratio other thanr k52, interpolation to a common
location is required to compute solution changes, which int
duces interpolation errors. Roache@3# discusses methods fo
evaluating interpolation errors. However, for industrial CFD,r k
52 may often be too large. A good alternative may ber k5&, as
it provides fairly large parameter refinement ratio and at le
enables prolongation of the coarse-parameter solution as an in
guess for the fine-parameter solution.

Equation~12! is written for thekth parameter andmth solution
as

Skm
5SC1d I km

* 1dkm
* 1 (

j 51,j Þk

f

d j m
* (20)

Iterative convergence must be assessed andSkm
corrected for it-

erative errors prior to evaluation of parameter convergence s
the level of iterative convergence may not be the same for am
solutions used in the parameter convergence studies. Equ
~20! shows that iterative errorsd I km

* must be accurately estimate

or negligible in comparison todkm
* for accurate convergence stud

ies and that they should be considered within the context of c
vergence studies for each input parameter. Methods for estima
UI or d I* andUI C

are described in Section 3.2.2.

With d I k
* evaluated,Skm

is corrected for iterative errors as

m
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Ŝkm
5Skm

2d I km

* 5SC1dkm
* 1 (

j 51,j Þk

J

d j m
* (21)

Ŝkm
can be calculated for both integral~e.g., resistance coeffi

cients! and point ~e.g., surface pressure, wall-shear stress,
velocity! variables.Ŝkm

can be presented as an absolute quan
~i.e., non-normalized! or normalized with the solution as a pe
centage change; however, if the solution value is small, a m
appropriate normalization may be the range of the solution.

Convergence studies require a minimum ofm53 solutions to
evaluate convergence with respect to input parameter. Note
m52 is inadequate, as it only indicates sensitivity and not c
vergence, and thatm.3 may be required. Consider the situatio
for 3 solutions corresponding to fineŜkl

, mediumŜk2
, and coarse

Ŝk3
values for thekth input parameter. Solution changes« for

medium-fine and coarse-medium solutions and their ratioRk are
defined by

«k21
5Ŝk2

2Ŝk1

«k32
5Ŝk3

2Ŝk2
(22)

Rk5«k21
/«k32

Three convergence conditions are possible:

~ i ! Monotonic convergence: 0,Rk,1

~ i i ! Oscillatory convergence: Rk,01 (23)

~ i i i ! Divergence: Rk.1

For monotonic convergence~i!, generalized RE is used to est
mateUk or dk* and UkC

. Methods for estimating errors and un
certainties for condition~i! are described in Section 3.3.

For oscillatory convergence~ii !, the solutions exhibit oscilla-
tions, which may be erroneously identified as condition~i! or ~iii !.
This is apparent if one considers evaluating convergence co
tion from three points on a sinusoidal curve~Coleman et al.@15#!.
Depending on where the three points fall on the curve, the co
tion could be incorrectly diagnosed as either monotonic conv
gence or divergence. Methods discussed here for estimating
certaintiesUk for condition~ii ! require more thanm53 solutions
and are described in Section 3.4.

For divergence~iii !, the solutions diverge and errors and unc
tainties cannot be estimated. Additional remarks are given in S
tion 3.5.

Determination of the convergence ratioRk for point variables
can be problematic since solution changes«k21

and«k32
can both

go to zero~e.g., in regions where the solution contains an infle
tion point!. In this case, the ratio becomes ill conditioned. Ho
ever, the convergence ratio can be used in regions where th
lution changes are both non-zero~e.g., local solution maximums
or minimums!. Another approach is to use a global convergen
ratio Rk , which overcomes ill conditioning, based on the L2 no
of the solution changes, i.e.,^Rk&5i«k21

i2 /i«k32
i2 . ^ & is used to

denote an averaged value andi«i25@( i 51
N « i

2#1/2 denotes the L2
norm of solution change over theN points in the region of inter-
est. Caution should be exercised when defining the converg
ratio from the ratio of the L2 norm of solution changes beca
the oscillatory condition (Rk,1) cannot be diagnosed since^Rk&
will always be greater than zero. Local values ofRk at solution
maximums or minimums should also be examined to confirm
convergence condition based on an L2 norm definition. An al
nate approach suggested by Hoekstra et al.@16# is to transform the
spatial profile to wave number space and to perform a con

1As discussed in the text that follows, 0,Rk,1 andRk.1 may also occur for
the oscillatory condition.
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gence study on the amplitude distribution of the Fourier modes
principle, this approach would remove the problem of i
conditioning of the convergence ratio,Rk .

3.2 Iterative Convergence. The number of order magni
tude drop and final level of solution residual~or residual imbal-
ance! can be used to determine stopping criteria for iterative
lution techniques. Iterative convergence to machine zero
desirable, but for complex geometry and conditions it is often
possible. Three or four orders of magnitude drop in solution
sidual to a level of 1024 is more likely for these cases. Method
for estimation of iterative errors and uncertainties can be base
graphical, as discussed below, or theoretical approaches an
dependent on the type of iterative convergence:~a! oscillatory;~b!
convergent; or~c! mixed oscillatory/convergent.

For oscillatory iterative convergence~a!, the deviation of the
variable from its mean value provides estimates of the itera
uncertainty based on the range of the maximumSU and minimum
SL values

UI5U12 ~SU2SL!U (24)

For convergent iterative convergence~b!, a curve-fit of an ex-
ponential function can be used to estimateUI or d I* and UI C

as
the difference between the value and the exponential func
from a curve fit for large iteration numberCF`

UI5uS2CF`u

d I km

* 5S2CF` ,UI C
50 (25)

For mixed convergent/oscillatory iterative convergence~c!, the
amplitude of the solution envelope decreases as the iteration n
ber increases, the solution envelope is used to define the m
mum SU and minimumSL values in the Ith iteration, and to est
mateUI or d I* andUI C

UI5U12 ~SU2SL!U
(26)

d I km

* 5S2
1

2
~SU2SL!,UI C

50

An increase in the amplitude of the solution envelope as
iteration number increases indicates that the solution is diverg

Estimates of the iterative error based on theoretical approa
are presented in Ferziger and Peric@17# and involve estimation of
the principal eigenvalue of the iteration matrix. The approach
relatively straightforward when the eigenvalue is real and the
lution is convergent. For cases in which the principal eigenvalu
complex and the solution is oscillatory or mixed, the estimation
not as straightforward and additional assumptions are require

3.3 Monotonic Convergence: Generalized Richardson Ex-
trapolation. For monotonic convergence, i.e., condition~i! in
Eq. ~23!, generalized RE is used to estimateUk or dk* and UkC

.
RE is generalized forJ input parameters and concept of correcti
factors based on analytical benchmarks is introduced. More
tailed derivations are provided by Stern et al.@13#.

As already mentioned, since Stern et al.@13# there has been
nearly two years experience with present approach, espec
through ITTC community and Gothenburg 2000 Workshop
CFD in Ship Hydrodynamics. In particular, detailed verificatio
procedures have been the focus of attention~Eca and Hoekstra
@18#; Ebert and Gorski@19#!. After some background for genera
ized RE is given, two approaches for estimating errors and un
tainties are presented and are based on~i! correction factors pro-
posed in the current paper and~ii ! factor of safety approach
proposed by Roache~1998!. Finally, a discussion of fundamenta
and practical issues for verification is provided.
DECEMBER 2001, Vol. 123 Õ 797

13 Terms of Use: http://asme.org/terms



r

r

i

f

i

t
-
(

h
n

n

s

-

E
f

by
lts
an-
e
ms,
ties.

s

nge

lex

n-

and

f the

he

Downloaded F
Background for Generalized RE.Generalized RE begins with
Eq. ~21!. The error terms on the right-hand side of Eq.~21! are of
known form ~i.e., power series expansion with integer powers
Dxk! based on analysis of the modified and numerical error eq
tions which is written below as a finite sum~i.e., error estimate!
and for thekth parameter andmth solution

dkm
* 5(

i 51

n

~Dxkm
!pk

~ i !
gk

~ i ! (27)

n5number of terms retained in the power series, powerspk
( i ) cor-

respond to order of accuracy~for the i th term!, and gk
( i ) are re-

ferred to as ‘‘grid’’ functions which are a function of various o
ders and combinations of derivatives ofSwith respect toxk . It is
assumed that the power series in Eq.~27! is convergent~i.e., the
finite sum convergence to the infinite series value as more te
are included!. Substituting Eq.~27! into Eq. ~21! results in

Ŝkm
5SC1(

i 51

n

~Dxkm
!pk

~ i !
gk

~ i !1 (
j 51,j Þk

J

d j m
* (28)

Subtraction of multiple solutions where input parameterDxk is
uniformly refined eliminates thed j m

* terms in Eq.~28! sinced j m
* is

independent ofDxk and provides equations forSC , pk
( i ) , andgk

( i ) .
This assumespk

( i ) and gk
( i ) are also independent ofDxk . Since

each term~i! contains 2 unknowns,m52n11 solutions are re-
quired to estimate the numerical benchmarkSC and the firstn
terms in the expansion in Eq.~28! ~i.e., for n51, m53 and for
n52, m55, etc!. The accuracy of the estimates depends on h
many terms are retained in Eq.~27!, the magnitude~importance!
of the higher-order terms, and the validity of the assumption t
pk

( i ) andgk
( i ) are independent ofDxk . For sufficiently smallDxk ,

the solutions are in the asymptotic range such that higher-o
terms are negligible and the assumption thatpk

( i ) andgk
( i ) are in-

dependent ofDxk is valid. However, achieving the asymptot
range for practical geometry and conditions is usually not poss
andm.3 is undesirable from a resources point of view; therefo
methods are needed to account for effects of higher-order te
for practical application of RE. Additionally, methods may b
needed to account for possible dependence ofpk

( i ) and gk
( i ) on

Dxk , although not addressed herein. Usuallydk* is estimated for
the finest value of the input parameter, i.e.,dk* 5dk1

* corresponding
to the finest solutionSk1

.
With three solutions (m53), only the leading-order term o

Eq. ~27! can be estimated. Solution of the three equations forSC ,
pk

( i ) , and gk
( i ) yields estimates for the errordk1

* and order-of-
accuracypk

dk1
* 5dREk1

* 5
«k21

r k
pk21

(29)

pk5
ln~«k32

/«k21
!

ln~r k!
(30)

Solving for the first-order term is relatively easy since evaluat
of Eqs. ~29! and ~30! only requires that them53 solutions are
monotonically convergent, even if the solutions are far from
asymptotic range and Eqs.~29! and ~30! are inaccurate. With so
lutions from five systematically refined input parametersm
55), more complicated expressions can be derived to estim
the first two terms of the power series expansion. However, t
range of applicability is more restrictive since all five solutio
must be both monotonically convergentand sufficiently close to
the asymptotic range for the expressions to be used.

As previously mentioned, solutions from three values of inp
parameter where the refinement ratio between the medium
fine input parametersr k21

is not equal to that between coarse a
798 Õ Vol. 123, DECEMBER 2001
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medium input parametersr k32
can be used to estimatedk1

* from
Eq. ~29!, provided that Eq.~30! for estimating order of accuracy i
modified as

pk5
ln~«k32

/«k21
!

ln~r k21
!

1
1

ln~r k21
!

@ ln~r k32

pk 21!2 ln~r k21

pk 21!#

(31)

For situations whenr k21
Þr k32

, Eq. ~31! is a transcendental equa
tion implicitly defining pk and must be solved iteratively. Ifr k21

5r k32
, Eq. ~31! degenerates to Eq.~30!.

Estimating Errors and Uncertainties Using Generalized R
With Correction Factors. Results from the numerical solution o
the one-dimensional~1D! wave and two-dimensional~2D!
Laplace equation analytical benchmarks show that Eq.~29! has
the correct form, but the order of accuracy is poorly estimated
Eq. ~30! except in the asymptotic range. Analysis of the resu
suggests the concept of correction factors, which provide a qu
titative metric to determine proximity of the solutions to th
asymptotic range, account for the effects of higher-order ter
and are used for defining and estimating errors and uncertain
Details are provided in Appendix A.

Multiplication of Eq.~29! by a correction factorCk provides an
estimate fordk1

* accounting for the effects of higher-order term

dk1
* 5CkdREk1

* 5CkS «k21

r k
pk21D (32)

If solutions are in the asymptotic range, correction of Eq.~29! is
not required@i.e.,Ck51 so that Eqs.~29! and~32! are equivalent#.
For solutions outside the asymptotic range,Ck,1 or Ck.1 indi-
cates that the leading-order term over predicts~higher-order terms
net negative! or under predicts~higher-order terms net positive!
the error, respectively. The estimate given by Eq.~32! includes
both sign and magnitude and is used to estimateUk or dk* andUkC

depending on how close the solutions are to the asymptotic ra
~i.e., how closeCk is to 1! and one’s confidence in Eq.~32!. There
are many reasons for lack of confidence, especially for comp
three-dimensional flows.

For Ck sufficiently less than or greater than 1 and lacking co
fidence,Uk is estimated, but notdk* and Ukc

. Equation~32! is

used to estimate the uncertainty by bounding the errordk* by the
sum of the absolute value of the corrected estimate from RE
the absolute value of the amount of the correction

Uk5uCkdREk1

* u1u~12Ck!dREk1

* u (33)

For Ck sufficiently close to 1 and having confidence,dk* and
Ukc

are estimated. Equation~32! is used to estimate the errordk* ,
which can then also be used in the calculation ofSc @in Eq. ~10!#.
The uncertainty in the error estimate is based on the amount o
correction

UkC
5u~12Ck!dREk1

* u (34)

Note that in the limit of the asymptotic range,Ck51, dk* 5dk1
*

5dREk1

* , andUkC
50.

Two definitions for the correction factor were developed. T
first is based on solution of Eq.~32! for Ck with dREk1

* based on

Eq. ~29! but replacingpk with the improved estimatepkest

Ck5
r k

pk21

r
k

pkest21
(35)
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Similarly, the second is based on a two-term estimate of the po
series which is used to estimatedREk1

* where pk and qk are re-

placed withpkest
andqkest

Ck5
~«k23

/«k12
2r

k

qkest!~r k
pk21!

~r
k

pkest2r
k

qkest!~r
k

pkest21!
1

~«k23
/«k12

2r
k

pkest!~r k
pk21!

~r
k

pkest2r
k

qkest!~r
k

qkest21!

(36)

pkest
andqkest

are estimates for limiting orders of accuracy of t
first and second terms of the error expansion equation~27! as
spacing size goes to zero and the asymptotic range is reac
Equation ~35! roughly accounts for the effects of higher-ord
terms by replacingpk with pkest

thereby providing an improved
single-term estimate. Equation~36! more rigorously accounts fo
higher-order terms since it is derived from the two-term estim
with first and second term order of accuracypk

(1) andpk
(2) replaced

by pkest
andqkest

. Equation~36! simplifies to Eq.~35! in the limit
of the asymptotic range. Both correction factors only require
lutions for three parameter values. The estimated valuespkest

and
qkest

can be based either on the assumed theoretical order o
curacypkth

andqkth
or solutions for simplified geometry and con

ditions. In either case, preferably including the effects of g
stretching.

In Appendix A, exact~A! and numerical~S! solutions are used
to compare the true simulation error (A2S) to ~i! an uncorrected
three-grid error estimate using Eq.~29! and ~ii ! corrected esti-
mates based on Eq.~32! with correction factor defined by Eq.~35!
or ~36!. Correction of error estimates with both definitions ofCk
results in improved error estimates. Also, uncertainty estima
using Eq.~33! with correction factor defined by Eq.~35! or ~36!
are shown to bound the true simulation error (A2S), while un-
certainty estimates using Eq.~34! are shown to bound the differ
ence between the corrected solution and the truth (Sc-T). Addi-
tional testing of expressions forCk given by Eqs.~35! and~36! is
needed and development of improved expressions within the
posed general framework is certainly possible.

Estimating Uncertainties Using Generalized RE With Facto
of Safety. In Roache@3#, a GCI approach is proposed where
standard three-grid error estimate from RE is multiplied by a f
tor of safetyFS to bound the simulation error

Uk5FSudREk1

* u (37)

Note that Eq.~37! with factor of safety differs significantly from
Eq. ~34!. HereinCk5Ck («,r k ,pk ,pkest

,qkest
), in contrast to Eq.

~37! whereCk is a constant referred to as a factor of safetyFS .
The exact value for factor of safety is somewhat ambiguous
Roache@3# recommends 1.25 for careful grid studies and 3
cases in which only two grids are used.

Although not proposed in Roache@3#, the factor of safety ap-
proach can be used for situations where the solution is corre
with an error estimate from RE. Equation~29! is used to estimate
dk* and the uncertainty in that error estimate is given by

UkC
5~FS21!udREk1

* u (38)

With this approach, a fixed percentage of a three-grid e
estimate~e.g., 25%dREk1

* for FS51.25! is used to define the un

certainty of the error estimate regardless of how close solut
are to the asymptotic range.

Discussion of Fundamental and Practical Issues.Fundamen-
tal and practical issues for verification are discussed in this
tion. Fundamental issues include convergence of power se
equation~27!, assumptions thatpk

( i ) and gk
( i ) are independent o

Dxk , and estimatingpkest
. Solution of analytical benchmarks ha
Journal of Fluids Engineering
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been used to address some of these fundamental issues while
ers need further research. Although both correction factor
factor of safety approaches were presented, the authors adv
the use of former. Results from the numerical solution of analy
benchmarks show that the factor of safety approach is overly c
servative, especially when the solutions approach the asymp
range~Appendix A!. This is in contrast to the variable correctio
factor approach proposed in Eqs.~33! and ~34!, where the uncer-
tainty in the error estimate correctly goes to zero as the asymp
range is approached becauseCk→1. Admittedly, others have rec
ommended the factor of safety approach, e.g., Eca and Hoe
@18#, although examination of their results as with our own ana
sis indicates that such estimates are overly conservative.

For practical applications, especially complex flows with re
tively coarse grids, solutions may be far from asymptotic ran
such that some variables are convergent while others are os
tory or even divergent. Order of accuracy and therefore correc
factors and factors of safety may display large variability indic
ing the need for finer grids. Clearly, more than 3 grids are requ
to estimate errors and uncertainties for such cases. Eca and H
stra@18# suggest a least-squares approach to estimate the erro
computing the three unknown parameters from RE when m
than three solutions are available. The behavior of the asymp
range was successfully demonstrated for simpler analytical be
marks in Appendix A. However, the existence and behavior of
asymptotic range for practical problems has not been dem
strated due to lack of sufficiently refined grids, number of so
tions to assess variability, and available resources, among o
issues. Another practical issue involves selecting and maintain
appropriate parameter refinement ratio and resources for obta
solutions with sufficient parameter refinement as well as num
of solutions. Lastly, interpretation of results is an issue since
already mentioned, there is limited experience and no kno
solutions for practical applications in the asymptotic range
guidance.

The present verification procedures represent the most rati
approach presently known. However, alternative strategies for
cluding effects of higher-order terms may be just as viable, e
treatment of the power series exponents as known integer
proposed by Oberkampf and investigated by Eca and Hoek
@18#. Once available, improved verification procedures can be e
ily incorporated into the present overall verification and validati
methodology. These issues are discussed further in Section 5
clusions and Recommendations and in Part 2~Wilson et al.@12#!.

3.4 Oscillatory Convergence. For oscillatory convergence
i.e., condition~ii ! in Eq. ~23!, uncertainties can be estimated, b
not the signs and magnitudes of the errors. Uncertainties are
mated based on determination of the upper (SU) and lower (SL)
bounds of solution oscillation, which requires more thanm53
solutions. The estimate of uncertainty is based on half the solu
range

Uk5
1

2
~SU2SL! (39)

3.5 Divergence. For divergence, i.e., condition~iii ! in Eq.
~23!, errors and or uncertainties can not be estimated. The pr
ration and verification steps must be reconsidered. Improvem
in iterative convergence, parameter specification~e.g., grid qual-
ity!, and/or CFD code may be required to achieve converging
oscillatory conditions.

4 Validation Procedures
In Section 2, an approach for assessing the simulation mode

uncertainty was presented where for successful validation,
comparison error,E is less than the validation uncertainty,UV
given by Eqs.~17! and ~19! for uncorrected and corrected solu
tions, respectively. In this section, validation procedures are p
sented through discussions in Section 4.1 on interpretation
DECEMBER 2001, Vol. 123 Õ 799
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validation results and in Section 4.2 on use of corrected sim
tion results. As previously mentioned, Coleman and Stern@6# pro-
vide additional discussion on validation procedures.

4.1 Interpretation of the Results of a Validation Effort.
First, consider the approach in which the simulation numer
error is taken to be stochastic and thus the uncertaintyUSN is
estimated. From a general perspective, if we consider the t
variablesUV , uEu, andU reqd there are six combinations~assuming
none of the three variables are equal!:

1. uEu,UV,Ureqd

2. uEu,Ureqd,UV

3. Ureqd,uEu,UV

4. UV,uEu,Ureqd

5. UV,Ureqd,uEu

6. Ureqd,UV,uEu (40)

In cases 1, 2, and 3,uEu,UV ; validation is achieved at theUV
level; and the comparison error is below the noise level, so
tempting to estimatedSMA is not feasible from an uncertaint
standpoint. In case 1, validation has been achieved at a l
below Ureqd , so validation is successful from a programma
standpoint.

In cases 4, 5, and 6,UV,uEu, so the comparison error is abov
the noise level and using the sign and magnitude ofE to estimate
dSMA is feasible from an uncertainty standpoint. IfUV!uEu, then
E corresponds todSMA and the error from the modeling assum
tions can be determined unambiguously. In case 4, validatio
successful at theuEu level from a programmatic standpoint.

Now consider the approach in which the simulation numeri
error is taken to be deterministic and thusdSN* and the uncertainty
UVC

are estimated. A similar set of comparisons as those in
~40! can be constructed usinguECu, UVC

, and Ureqd . SinceEC

can be larger or smaller thanE, but UVC
should always be less

thanUV , the results for a given corrected case are not necess
analogous to those for the corresponding uncorrected case.
is, a variable can be validated in the corrected but not in
uncorrected case, or vice versa. For cases 4, 5, and 6 in w
UVC

,uECu, one can argue thatEC is a better indicator ofdSMA

than is E, assuming that one’s confidence in using the estim
dSN* is not misplaced.

4.2. Use of Corrected Versus Uncorrected Simulation Re-
sults. As previously stated in Section 3.3, the requirements
correcting the solution are that the correction factor be close
one and that confidence in solutions exist. Since the variability
the order of accuracy cannot be determined from solutions
three grids, confidence is difficult to establish in this case. A
result, caution should be exercised when correcting solutions
ing information from only three grids.

If a validation using the corrected approach is successful
set condition, then if one chooses to associate that validation
certainty level with the simulation’s prediction at a neighbori
condition that prediction must also be corrected. That me
enough runs are required at the new condition to allow estima
of the numerical errors and uncertainties. If this is not done, t
the comparison errorE and validation uncertaintyUV correspond-
ing to the use of the uncorrectedSand its associated~larger! USN
should be the ones considered in the validation with which
wants to associate the prediction at a new condition.~Whether to
and how to associate an uncertainty level at a validated cond
with a prediction at a neighboring condition is very much un
solved and is justifiably the subject of much debate at this tim!
800 Õ Vol. 123, DECEMBER 2001
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5 Conclusions
The present comprehensive approach to verification and va

tion methodology and procedures sets forth concepts, definiti
and equations derived for simulation errors and uncertaint
which provide a well-founded mathematical framework. The a
proach should have applicability to a fairly broad range of CF
codes, including RANS, Navier-Stokes, Euler, boundary-elem
methods, and others. However, clearly much more work is nee
for other CFD codes~such as large-eddy simulations!, additional
error sources, and alternative error and uncertainty estima
methods, e.g., single-grid methods and both results for additio
analytical benchmarks~especially for nonlinear equations and u
ing stretched grids! for improved definitions of correction factor
and estimates of orders of accuracy, and alternative strategie
account for the effects of higher-order terms in RE. Improv
verification procedures once available can be easily incorpor
into the present overall verification and validation methodolo
Furthermore, more experience is needed through application
different codes and geometry and conditions, especially for p
tical applications.

As mentioned in the Introduction, present verification and va
dation methodology and procedures were recommended and
at the recent Gothenburg 2000 Workshop on CFD in Ship Hyd
dynamics~Larsson et al.@11#!. 22 participating research group
from 12 countries and 19 different RANS codes were used
simulations of 3 test cases representing tanker, container, and
face combatant hull forms. Most groups implemented the reco
mended procedures, but lack of familiarity with the procedu
and use of coarse grids led to difficulties. Coarser grid soluti
are far from the asymptotic range and show variability such t
not all variables display monotonic convergence and oscillat
convergence and even divergence is evident. For monotonic
vergence, variability in the estimated order of accuracy was
served for some cases. The current 1 million point grids
clearly insufficient for more complex hull forms such as the tan
and an order of magnitude increase in points may be require
remove variability and achieve monotonic convergence for m
variables. In spite of difficulties, the effort was beneficial in e
abling quantitative evaluation of levels of verification and valid
tion, increasing familiarity with verification and validation proce
dures, interpretation of results, and identification of g
requirements for decreasing levels of errors and uncertain
Careful examination of verification results even for relative
coarse grid solutions provides a road map towards achieving
ceptable levels of verification.

Verification and validation methodology and procedures sho
be helpful in guiding future developments in CFD through doc
mentation, verification, and validation studies and in transition
CFD codes to design through establishment of credibility. P
sumably, with a sufficient number of documented, verified, a
validated solutions along with selected verification studies, a C
code can be accredited for a certain range of applications.
contribution of the present work is in providing methodology a
procedures for the former, which hopefully will help lead to th
latter.

Part 2 provides an example for RANS simulations for a car
container ship where issues with regard to practical applicatio
the methodology and procedures and interpretation of verifica
and validation results are discussed~Wilson et al.@12#!.
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Nomenclature

Ck 5 correction factor
D 5 benchmark data

E,EC 5 comparison error, corrected
pk 5 order of accuracy
Rk 5 parameter refinement ratio

S,SC 5 simulation result, corrected
T 5 truth
U 5 uncertainty estimate

UD 5 data uncertainty
UE ,UEC 5 comparison error uncertainty, corrected

UI 5 iteration uncertainty
UP ,UPC 5 parameter uncertainty~e.g., grid sizeG and

time stepT!, corrected
Ureqd 5 programmatic validation requirement

US ,USC 5 simulation uncertainty, corrected
USM 5 simulation modeling uncertainty

USMA 5 simulation modeling assumption uncertainty
USPD 5 simulation uncertainty due to use of previous

data
USTE,USCTE 5 simulation total estimated numerical uncertain

USN,USCN 5 simulation numerical uncertainty, corrected
UV ,UVC 5 validation uncertainty, corrected

Dxk 5 increment inkth input parameter~e.g., grid size
G and time stepT!

d 5 error
d* 5 error estimate with sign and magnitude

d I ,d I* 5 iteration error, estimate
dP ,dP* 5 parameter error, estimate
dS ,dSC 5 simulation error, corrected

dSN 5 simulation numerical error
dSMA 5 simulation modeling assumption error

« 5 solution change
«SN 5 error in d*

Appendix A. Analytical Benchmarks
The use of analytical benchmarks for development of the c

cept of correction factors as discussed in Section 3.3 is prese
in this Appendix. For analytical benchmarks, the modeling erro
zero such that the simulation error is solely due to numerical er
Results are obtained for two analytical benchmarks o
dimensional~1D! wave and two-dimensional~2D! Laplace equa-
tions. The results for the 2D Laplace equation were qualitativ
similar to those for the 1D wave equation, which are presen
Exact solutions from analytical benchmarks are used to determ
the exact simulation numerical error which is compared to e
mates from RE, including use of correction factors. More det
are provided in Stern et al.@13#, including single grid error
estimates.

Verification of Analytical Benchmarks. For verification us-
ing an analytical benchmark, the simulation error and uncerta
are given bydS5S2A5dSN and US

25USN
2 , while the corrected

simulation error and uncertainty are given bydSC
5SC2A5«SN

and USC

2 5USCN
2 . Simulations are verified ifuEu5uA2Su,USN

and corrected simulations are verified ifuECu5uA2SCu,USCN .
The first-order, linear 1D wave equation models the behavio

a more complicated~nonlinear! partial differential equation. The
initial condition is prescribed by a Gaussian function centered
x50.0. Two discretization techniques were studied:~i! first-order
~Euler! explicit method with first-order upwind spatial discretiz
Journal of Fluids Engineering
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tion; and ~ii ! a second-order implicit method with second-ord
central spatial discretization. Since trends from both schemes
similar, only the results from the first-order scheme are presen

A combined grid size and time step study was performed wh
ten solutions were obtained by successively doubling both the
and time step such thatDt/Dx50.5 for all solutions. With this
approach, solutions changes are used to estimate total~temporal
and spatial! simulation errors and uncertainties. Accordingly, t
generic subscript ‘k’ appearing in expressions for errors and u
certainties in Section 3.3 is replaced with ‘SN’ in this section
where appropriate.

Errors, Uncertainties, and Correction Factors. The con-
cept of a multiplication correction factor was introduced in Se
tion 3.3. The correction factorCk was used to define the numeric
uncertainty in Eq.~33! or when conditions permit to improve erro
estimates in Eq.~32! and to define the uncertainty in that erro
estimate in Eq.~34!. Error and uncertainty estimates given by Eq
~32!–~34! are tested by numerical solution of analytical benc
marks as well as development of expressions for correction fac

Figure 2~a! compares the true simulation errorE to the three-
grid error estimatedRE1

* from Eq. ~29! versus step size at on

spatial location~x51 since maximums of numerical error occu
there!. The three-grid estimate accurately estimates the true e
E for smaller step sizes, but over predictsE for larger step sizes.
Closer examination reveals that Eq.~29! over estimates the erro
because Eq.~30! under estimates the order of accuracy, as a
shown in Fig. 2~a!.

Two definitions forCk were investigated. The first is based o
solving equation~32! for Ck with dREk1

* defined in Eq.~29! but

replacingpk with the improved estimatepkest
, which is provided

by Eq. ~35! where pkest
is an estimate of the limiting order o

accuracy of the first term of the error expansion equation~27!.
Similarly, the second definition of correction factor is based
estimatingdREk1

* using the first two terms of the powers series a

replacingpk andqk with improved estimatespkest
andqkest

, which
is provided by Eq.~36! where pkest

and qkest
are estimates for

limiting orders of accuracy of the first and second terms of
error expansion equation~27! as spacing size goes to zero and t
asymptotic range is reached. With this definition, correction f
tors approach one in the limit of zero spacing size. The estima
valuespkest

andqkest
can be based either on the assumed theo

Fig. 2 Verification results for first-order numerical solution of
1D wave equation. „a… Comparison of true error AÀS to esti-
mates from RE, „b… correction factor, and „c… comparison of
zAÀSCz and USCN , and „d… comparison of zAÀSz and USN .
DECEMBER 2001, Vol. 123 Õ 801
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ical order of accuracypkth
and qkth

or solutions for simplified
geometry and conditions. In either case, preferably including
effects of grid stretching.

Figure 2~a! also compares the true errorE to ~i! an uncorrected
three-grid error estimate using Eq.~29! and ~ii ! corrected esti-
mates based on Eq.~32! with correction factor defined by Eq.~35!
or ~36!. Both estimates are closer toE than the uncorrected thre
grid estimatedRE1

* , but for coarser gridsCk
(1) is somewhat too

small andCk
(2) is slightly too large. Figure 2~b! shows the same

trends, but directly compares the exact correction factorE/dRE* to
Eqs.~35! and~36!. In this case,Ck,1 indicates that the leading
order term over predicts~higher-order terms net negative! the er-
ror. However, for the general case,Ck is equally likely to be,1 or
.1 depending whether the order of accuracy is approached f
below or above, respectively.Ck.1 indicates that the leading
order term under predicts~higher-order terms net positive! the
error. Thus, for the general case the correction to the leading-
error estimate is equally likely to be positive or negative and
be used to define the simulation numerical uncertainty.

For Ck sufficiently close to 1 and having confidence,dk* and
UkC

are estimated. Correction factorsCk
(1) and Ck

(2) are used to

estimate the errordk* in Eq. ~32! which can then also be used i
the calculation ofSC @in Eq. ~10!# and uncertaintyUkC

in Eq. ~34!.
Figure 2~c! shows a comparison ofuA2SCu and three uncertainty
estimates:~i! USCN

(1) defined usingCk
(1) ; ~ii ! USCN

(2) defined using

Ck
(2) ; and~iii ! USCN from a factor of safety approach given by E

~38! with FS51.25. The results show that the uncertainty estim
USCN

(1) successfully boundsuA2SCu over the entire range of ste

sizes and thatUSCN
(2) is not conservative enough sinceUSCN

(2) ,uA
2SCu. The uncertainty estimate based on the factor of safety
proach is not conservative enough for the coarsest two grids a
overly conservative by an order of magnitude for the four fin
grids ~i.e., when solutions are in the asymptotic range!. For Ck
sufficiently less than or greater than 1 and lacking confidenceUk

is estimated, but notdk* andUkC
. Correction factorsCk

(1) andCk
(2)

are used to estimate the uncertainty in Eq.~33! which is compared
to factor of safety approach given by Eq.~37!. Figure 2~d! shows
that all three uncertainty estimates successfully bound the
error uA2Su although the factor of safety approach is overly co
servative for all grids.

Uncertainty estimates enable a quantitative measure of veri
tion for analytical benchmarks. Figure 2~c, d! indicates that the
present solutions are verified over the chosen range of grid
and time step. As expected, the largest levels of uncertainty ar
the coarsest grid size and time step where levels are (Uk ,UkC

)
5(15%,7.5%).

Eca and Hoekstra@18# also perform verification for the 2D
802 Õ Vol. 123, DECEMBER 2001
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Laplace equation analytical benchmark. Their results are con
tent with our own in showing that uncertainty estimates using
~33! always bounded the true error. Unlike our own results, th
results indicate that the uncertainty estimate from Eq.~34! failed
to bound the difference in the truth and numerical benchmark
some grid triplets when the apparent order of accuracy was
mated to be larger than the theoretical value.
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