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The present study reports a numerical procedure based on a series of tests that make use of the method of
manufactured solutions (MMS) and allow to evaluate the effective numerical performance with respect
to the theoretical order of accuracy. The method is applied to a pressure-based finite volume numerical
scheme suited to variable density flows representative of those encountered in combustion applications.
The algorithm is based on a predictor-corrector time integration scheme that employs a projection
method for the momentum equations. A physically consistent constraint is retained to ensure that the
velocity field is solved correctly. The MMS application shows that the combination of this velocity con-
straint and the variable-coefficient Poisson solver is of fundamental importance to ensure both the
numerical stability and the expected order of accuracy. Especially, the resort to an inner iteration proce-
dure gives rise to undeniable improvements in terms of both the order of accuracy and error magnitude.
The MMS applications confirm the interest of the method to conduct a preliminary check of the perfor-
mance of any numerical algorithm applied to both fully incompressible and variable density flows.
Finally, the analysis is ended by the application of the retained pressure-based finite-volume scheme
to the numerical simulation of mixing layers featuring increasing values of the density contrast. The cor-
responding results shed some light onto the stability and robustness of the numerical scheme, important
issues that are not addressed through MMS analyses.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Low Mach number variable density flows arise in several natural
as well as technological processes, including meteorological flows
or combustion in energy conversion devices (engine, turbojets,
etc.). Regarding the prediction and understanding of such a cate-
gory of flows, the extensive use of mathematical and numerical
techniques is unavoidable. Hence, as the mathematical and numer-
ical methods become more complex, the procedures of validation
and verification of computer codes must evolve as well. The present
work aims at systematically demonstrating the procedure of verifi-
cation of a CFD code designed to perform the numerical simulation
of low Mach number flows. Although such a procedure appears as a
necessary preliminary step before tackling the computational mod-
eling of turbulent combustion problems of interest to the authors
[1-4], the literature still lacks detailed information regarding the
subject, especially concerning the verification of variable density
low Mach number flows. In order to clarify the differences between
the words verification and validation, we used the following
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definitions. Verification aims at providing information on whether
the mathematical model has been well implemented according to
initial design or not, whereas validation refers to how closely the
correctly implemented mathematical model mimics a given set of
experimental data [5]. The solutions of the balance equations
(mass, momentum, energy, species mass fractions, etc.) are deemed
sufficient to represent any flows irrespective of their characteristic
velocity, provided that the continuum hypothesis holds, and once
suitable constitutive equations for the fluids of interest are pro-
vided. However, when dealing with discrete approaches for solving
such a system of balance equations, the numerical techniques do in-
volve, invariably, errors. These errors have different sources, span-
ning from unavoidable roundoff errors to mere programming
mistakes (bugs), hence emphasizing the crucial need for well
defined procedures to evaluate the numerical accuracy [6]. More-
over, it is of fundamental importance to be able to characterize
the capabilities of a numerical approach, i.e., it is imperative to
determine whether (or not) the retained mathematical/numerical
scheme is suitable to cope with the problem of interest.

The manuscript is organized as follows: before introducing the
method of manufactured solutions (MMS) that is retained here to
proceed with the verification of low Mach number schemes, we
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first briefly review the existing strategies used to perform such
numerical simulations. Further, we present the specificities of the
computational model adopted herein, and then focus on the
MMS procedure retained for the verification. Finally, the analysis
is completed by the application of the retained pressure-based fi-
nite-volume scheme to the numerical simulation of mixing layers
featuring increasing values of the density contrast, a critical
parameter for such a kind of numerical schemes.

1.1. Low Mach number limit

In the present work, we are interested in low velocity flows, i.e.,
in the incompressible regime, but featuring non negligible density
variations, the so-called low Mach number flows. There are basi-
cally two broad classes of numerical methodologies to deal with
this kind of flows: those relying on density-based solvers, i.e.,
based on methods usually retained for compressible flows [7],
and those relying on pressure-based solvers, such as those retained
to perform the numerical simulation of incompressible flows.

The density-based methods represent a wide class of numerical
schemes originally developed to study compressible flows [8]. Tur-
kel et al. [9] determined that the set of discretized equations re-
tained for the numerical simulation of a compressible flows fails
to provide an accurate solution for an incompressible flow. The
simulations of incompressible flows based on the fully compress-
ible method, with no modifications to reduce the disparity existing
between the flow velocity and the speed of sound, are found
impracticable due to the associated computational costs. In this
case, temporal integration schemes, whatever they are explicit or
implicit, are penalized. In the former case, the Courant-Fried-
richs-Lewy (CFL) condition, that must be satisfied at each time
step to enforce the numerical stability of the numerical integration
scheme, leads to prohibitively small time step values due to the
prevailing influence of acoustic waves propagation. In the case of
implicit methods such a disparity induces large differences in the
characteristic eigenvalues of the algebraic system to be solved,
which becomes ill-conditioned, leading therefore to extremely
high-cost iterative solutions [10]. Two distinct sets of techniques
have been proposed to achieve better convergence properties of
density-based solvers, in the limit of low Mach number flows: pre-
conditioning and perturbation methods. Both techniques strive to
minimize the stiffness of the algebraic system that results from
the discretization of the balance equations. The first technique
pre-multiplies the temporal derivatives by a preconditioning ma-
trix, whose choice is determined according to the problem to be
analyzed [11], thus leading to a new set of equations. As a conse-
quence, the initial (stiff) system is altered. The approach essentially
aims at re-scaling the characteristic eigenvalues with respect to the
original system, so that eigenvalues of similar orders of magnitude
can be obtained, thus leading to a better conditioned system
[9,12,13]. The second set of techniques is the perturbation meth-
ods, or asymptotic analysis. In this case, a perturbed form of the
equations is used to reduce the stiffness of the algebraic system
of equations. A Taylor expansion is performed in terms of the Mach
number decoupling the acoustic waves from the equations, and
replacing them with a set of pseudo-acoustic forms, where the
wave velocities become the same order of magnitude as the fluid
velocity. Such a procedure alters the velocity of the acoustic waves
in order to allow the numerical integration to be performed with
larger time steps [10,11]. Other methodologies have been also
developed for the purpose of considering density variations, such
as the artificial compressibility methods [14,15], and the Pressure
Gradient Scaling approach [16-19].

In contrast to the methodologies discussed above, pressure-
based methods have been initially proposed to solve fully incom-
pressible flows, retaining the pressure as one of the primary vari-

ables. Such numerical schemes that are often referred to as
pressure-corrections methods, or projection methods, evaluate
the pressure and velocity fields in a segregated manner [20,21].
In pressure-based methods, the pressure does not play a thermo-
dynamic role, but ensures the incompressibility condition, which
leads to a discretization scheme based on a separation of operators
(splitting method). In a first step, momentum equations are solved
to obtain an estimated velocity field, based on a previous evalua-
tion of pressure. The velocity field should be solenoidal, and this
property is enforced by a subsequent projection step within the
subspace of divergence-free vectorial fields. Such projection, which
defines the corrector step, relies on the Hodge decomposition the-
orem [22]. The pioneering works in this field [20,23] have provided
the basis for the development of several projection schemes that
are still currently used.

As previously mentioned, in the low Mach number regime, the
compressibility effects have a negligible influence on the momen-
tum transport and the pressure is only a weak function of density.
To prevent significant inaccuracies when performing the evalua-
tion of pressure, it is usually divided into two distinct components:

P(X,t) = P,(t) + P'(X, 1), (1)

where P, is a reference pressure level,! with P,(t)/P,=0(1), and
P(x,t)/P, = O(Ma?). It is worth noting that P,(t) is often referred to
as the thermodynamic pressure, whereas P(x,t) is called the dy-
namic pressure since it is directly related to modifications of the
velocity field.

Using such a decomposition, the thermodynamic pressure ap-
pears in the equations of state and energy conservation only, van-
ishing in the momentum equation. Since its gradient is zero
everywhere, only the gradient of the dynamic pressure component
remains. It is worth noting that this procedure significantly accel-
erates the convergence only if the pressure fluctuations remain
sufficiently small. A wide class of methods used to perform the
numerical simulations of low Mach number flows, is based on such
a predictor-corrector methods. Several works [24-31] share such
pressure-velocity coupling. For further details, the interested read-
er is referred to the analysis of Rider et al. [32] where an extensive
discussion about robust projection methods applied to variable
density low Mach number flows has been reported.

In the present work, the method of manufactured solutions is
used to assess the capability of a CFD solver that has been recently
extended to the consideration of variable density flows. The re-
tained numerical approach falls into the second category discussed
above, i.e. the one associated with pressure-based formulations.
The details of corresponding numerical strategy will be described
later on. We now enter into the core of the present study and intro-
duce the method of manufactured solutions.

1.2. Code verification and manufactured solutions

The resort to the method of manufactured solutions is progres-
sively becoming a classical, and well accepted methodology re-
tained in the framework of numerical code verification [33].
There is an undeniable interest in the use of such a method to
quantify accurately numerical capabilities before using computa-
tional programs to perform the simulation of complicated physical
systems. Herein the method is applied to a low Mach number flow
solver. To represent the corresponding variable density flows, we
consider a mathematical model in which the primary transported
variables are the density p(x,t), the three velocity components
ui(x,t) (i=1,2,3), and the temperature.

1 Since we are interested in high Froude number gaseous flows, the effects of
gravity are not considered, hence P,(t) is a function of the time only.
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The non-dimensional balance equations for the cited variables
in space, (x; i=1,2,3), and time, t, are summarized below along
with an equation of state that relates the thermodynamic compo-
nent of the pressure to density and temperature. It is worth noting
that dimensional quantities are now referred to with the super-
script ‘A,

op  opu;

E axi — Y0 (2)
opu_ oputy 0P 1 0

ot TTox ok T Reax i Sw 3
L2 O (O O

i = BManéU+M(an+0Xi ’ (4)
P ="Po(t) + P'(X,t); Po = po. (5)

The above set of equations is obtained in a non-dimensional
form using:

Xi =Xi/Les, t= %uref/Lreﬁ, Ui = Ui /Ure, (6)
P .
P=——e p=p/pry- 7
(p ref u%ef ) el

In Eq. (5), Py(t) is the thermodynamic pressure, a function of
time only, P'(x,t) is the dynamic pressure, henceforth denoted only
by p. In the same equation, the variable ¢ stands for a reduced tem-
perature, defined by

¢ = (T_Tu)/(Tb _Tu)~, (8)

where T}, (resp. T,,) denotes the maximal (resp. minimal) value of the
temperature, in such a manner that ¢ < [0;1]. For instance, if we
consider a premixed flame propagating towards unburned reac-
tants, T, and T, stand for the temperature in the fresh mixture
and fully burned products of combustion respectively. The transport
equation for the reduced temperature writes:

9 a1 0 (0 (1-1)dP,
pc”ﬁ+pcpu'6_xi7RePr8xj (Kaxj>+< y ) dt +Ss ®)

where Pr = ft,,Cp, . /Kre, and Re = preflrerLref ftrer, denote the Prandtl
and Reynolds numbers.

It is noteworthy that, in the previous set of conservation equa-
tions (Egs. (2), (3), and (9)), temperature dependent variables, such
as the transport properties: viscosity u, and thermal conductivity
k, and the heat capacity C,, have been made non dimensional with
respect to their values at temperature T,. The corresponding values
are denoted Urep, Kref, and Gy, Finally, the source terms Sy, Sp, and
S, have been included in Egs. (2), (3), and (9), just for the sake of
generality.

The method of manufactured solutions (MMS) consists in devel-
oping a priori known analytical solutions of the system of govern-
ing equations. The pioneering works that make use of
manufactured solutions with the objective of verifying the order
of accuracy of a given numerical code can be assigned to Steinberg
and Roache [33], Roache et al. [34] and Roache [35]. These manu-
factured solutions modify the original equations by adding a
‘source term’ into their right hand side, such as those presented
above in Egs. (2), (3) and (9). To construct the manufactured solu-
tion a set of almost arbitrary functions are selected and substituted
into the considered system PDEs, thus allowing to solve its deriva-
tives analytically. The result of such a substitution is the * source
term’ mentioned above. The source term is then considered as an
input to the numerical code, in such a manner that it becomes able
to reproduce the manufactured solution. Salari and Knupp [36]
provide a well documented guideline for creating manufactured
solutions as well as the procedure for obtaining the corresponding
source terms and further analysis of the results.

In order to obtain the order of accuracy of the developed
numerical implementation, a quantitative metric of the error is
chosen, and successive grid refinements are performed. As the er-
ror metric decays with the grid refinement, it is evaluated as a
function of the characteristic mesh size h.

The method appears as very appealing but it should be noted
that the arbitrary nature of the analytical functions must satisfy,
at least, the following conditions:

e They must be continuous smooth function of independent vari-
ables (problems involving discontinuities are generally dealt
with using lower order algorithms due to stability issues).

e The solution must be continuously differentiable up to the
order required by the corresponding terms in the governing
equations.

e To avoid numerical difficulties, manufactured solutions should
avoid negative values for quantities that are physically defined
as positive semi-definite (e.g. density, molecular viscosity).

o If periodic boundary conditions are chosen, the solution must
be periodic as well to avoid the development of
discontinuities.

For a given level of resolution, we define diﬁ- ) as the discrete
value of any variable @ of interest, e.g. the density, velocity compo-
nents, pressure or reduced temperature, at any point (i,j, k), and
@(;1, the corresponding value of the manufactured solution. The
first step of the verification procedure now requires to define a
metric of the numerical error, denoted ¥}, in the following, in order
to quantify subsequently the error decay rate obtained for decreas-
ing values of the characteristic grid mesh size h.

Retaining the L,-norm as a relevant metric of the numerical er-
ror, we introduce:

1 2
Vi = Lo (@) = \/ N > (i = i) (10)

where N denotes the total number of grid points.
The ratio of error decay is defined according to:

re = log (iff) (11)
n

with ¥, the numerical value of the metric error obtained on a grid
with a characteristic mesh size 2h.

Following the nomenclature retained in [36], we define also the
order of accuracy q as:

Te

q= m- (12)

Using Eq. (12), it is possible to verify that the characteristic error
decay ratio, using grids with characteristics mesh sizes 2h and h, for
methods of order of accuracy g = 1, 2 and 3, must be, approximately,
2, 4 and 8, respectively. It is worth noting that, although possible,
the value of . does not always converge monotonically as the mesh
is progressively refined, and it may exhibit some oscillations.

Directly related to the results obtained from the application of the
MMS procedures are the characteristics of the computational solver
under consideration and especially the associated orders of accuracy
of the retained numerical schemes. The next section therefore aims
at providing all the necessary information about the solution proce-
dure on which the MMS procedures will be subsequently applied.

2. Description of the retained numerical scheme

The discretization of the set of Egs. (2), (3) and (9) is now pre-
sented. In transient flows the integration in time requires the
choice of a suitable time marching scheme. Temporal integration
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schemes are essentially controlled by the Courant criterion
Co = (u;6t)/dx;, i =1,2,3. Explicit schemes exhibit numerical stabil-
ity issues when using Courant number values larger than unity.
However, such a numerical limitation does not apply to implicit
or semi-implicit discretizations. Ferziger and Peric [14] provide
an introduction to several types of classical temporal integration
methods. Examples of semi-implicit approaches can be found in
[37], and a detailed evaluation of various semi-implicit schemes
has been reported in [38]. The temporal integration schemes re-
tained in the present work are fully implicit, in such a manner that
it is possible to reach statistically steady regimes faster than by
resorting to explicit time integration techniques.

Arscher et al. [38] proposed a semi-discretized arrangement in
such a way that any differential equation could be temporally inte-
grated using second order semi-implicit schemes:

1 1 1
ae| (73 ) =2 (3= 5)u ] = o Do < e

E n+1 Y n E n-1

+[(y+2)e(u )+ (1=7 - Oe(u”) + 5 €l ik (13)
where ((u) and €(u) stand for, respectively, diffusive and advective
contributions to the differential equation, and n represents the time
level. Depending on the values retained for constants y and c, differ-
ent time integration schemes can be obtained [38]:

e Crank-Nicolson Adams-Bashfort (CNAB): (y,c) = (0.5,0.0).

e Modified Crank-Nicolson Adams-Bashfort (MCNAB): (7y,c)=
(0.5,0.125).

e Crank-Nicolson Leap Frog (CNLF): (y,c) =(0.0,1.0).

e Semi-Backward Difference Formula (SBDF): (y,c)=(1.0,0.0).

In the present work, instead of a semi-implicit, a fully implicit
scheme is adopted. However, the organization allowed by Eq.
(13) remains very attractive, since it includes the possibility of (i)
describing several methods of temporal discretization and, hence,
(ii) choosing the more adequate for a given problem. Retaining
the same values of the constants y and c, Eq. (13) can be adapted
within a fully implicit framework as follows:

e (g2 (g )] = () o)
() + (1= 7= O L")+ €(u) +5 (W) +e™)). (14)

Applying Eq. (3) in Eq. (14), and re-arranging the different terms,
the momentum equation, once discretized in time takes the follow-
ing form:

(7 +0.5)p™ 1wt — (29)p"uf + (= 0.5)p" 'y

At
8pn+1 it
== T +050mz + (1 -y —0)mi +(0.50mo+S5,;,  (15)
1
where we defined:
(%Eﬁk apn+ku?+kur_1+k
M1 = | —o— — |, k=-1,0,1. (16)
1 < ax,- an

As mentioned previously, the choice of the constant values y and
¢, allows to recover the Crank-Nicolson method (7,c) = (0.5,0.0), the
Modified Crank-Nicolson (y,c) =(0.5,0.125), the Leap Frog method
(y,¢)=(0.0,1.0) and, the Backward Difference Formula - BDF,
(7,¢)=(1.0,0.0).

Finally, it is wort recalling that, that through Eq. (15), the fully
implicity framework retained here requires the numerical resolu-
tion of a large algebraic system.

Since a fully implicit fractional step method is used in the pres-
ent work, a Poisson type equation must be solved to apply a pres-

sure correction to both velocity and pressure fields. To provide
such an equation, we write Eq. (15), with the pressure derivative
evaluated at time level n:

(7 +05)p" 1"t — 2p)p"uf + (y ~0.5)p" Tu T op"
At - OXi
+(740.50)my + (1 -7y —c)ymy + (0.5¢)mg + S, (17)

where @' stands for the estimated velocity field. Subtracting Eq.
(17) from Eq. (15), defining Q = p™" — p", and rearranging the differ-
ent terms, one obtains:

P +05) 9

s+l g+l 7%

e - - 52 1)
we then proceed classically by taking the divergence of Eq. (18):
(y +0.5) fourt! B ouir! _ o1 (19)

At OX; o ) oxi\p"toxi)

In situations where the density can be considered to be constant,
at least along a streamline, the second derivative at the LHS of Eq.
(19) is zero due the incompressibility condition. However, when
density variations arise from temperature (and potential composi-
tion) variations as encountered for instance in reactive flows, such
term can no longer be discarded.

In the low Mach number flows under consideration, the density
is solely determined by the temperature and thermodynamic pres-
sure fields. The energy equation plays the role of an additional con-
straint on the velocity field, which is enforced by the dynamic
pressure. This constraint acts onto the flow field divergence, and
it is related to the total derivative of the density field, which in-
volves - through the equation of state Eq. (5) - the total derivatives
of both pressure and temperature. The latter can be expressed
thanks to the energy conservation equation, i.e. Eq. (9), thus lead-
ing to:

o o 1 (1 9 ( 0p\ (7-1 dp,
5= e (o) (1576 + 5o+ 6

(20)

where S, is a mathematical source term associated with the con-
straint itself. This source term, which is added to the constraint, will
be used in the subsequent application of the method of manufac-
tured solutions devoted to the low Mach number scheme verifica-
tion. The equation for pressure correction, for low Mach number
flows simulations may therefore be written as:

0 (1 0Q\_(+05) fou 1 [ 1 0 ( 0
ox \p1ax;) At ox;  CoP, |RePr ox; \' 0x;

(y+05)[(y—1 dp,
A 7 -G dt+5¢+C,,TS,J—SC.

(21)

Once the pressure correction is evaluated, the velocity field can
be updated:

= 22)

At oQ
V + 0.5)pn+1

8_Xi .

The constraint given by Eq. (20) in variable density flows has
been previously discussed, for instance, in [29,39]. Moreover, an in-
ner iterative process can be used to enhance both stability and con-
vergence of the solution process. Further comments about such a
procedure and its effects on the numerical convergence are deferred
to the section devoted to the validation of low Mach number man-
ufactured solutions. Finally, it is worth recalling that, for incom-
pressible flows simulations, the constraint presented above is no
longer necessary.
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Important factors that directly impact the performance of a
numerical method that seeks to solve variable density incompress-
ible flows are: (i) the choice of the variables arrangement in the
computational grid, (ii) the type and order of accuracy of the
numerical scheme retained to perform the discretization in space
of both viscous and advective terms, and (iii) the type and order
of accuracy of the method chosen to perform the temporal
integration.

If the discretization relies on a finite-volume (FV) approach, it is
necessary to evaluate vectorial fields coupled to scalar fields, as it is
the case when the Navier-Stokes equations are considered. The is-
sue associated to the positioning of the primary variables in the
computational grid must be carefully accounted. Several options
exist, but they may be classified into two principal groups: stag-
gered or co-located grids. In the former case, the vectorial and sca-
lar variables are positioned in different locations. In the latter, all
physical variables are evaluated at the same location. This is the
simplest choice for implementation, in particular when distributed
computing strategies are to be applied. However, in incompressible
flows, if the velocity and pressure are positioned in the same loca-
tion, decoupling instabilities, often referred to as checkerboard
patterns can arise [7,14,28].

The discretization procedure retained for the momentum equa-
tion is basically identical for both the staggered and the co-located
arrangements. Nevertheless, with the latter, the velocity compo-
nents, positioned at the center of the control volumes must be
interpolated to their faces. The most common procedure is to use
the Rhie-Chow interpolation [40]. Shen et al. [41] underline that
the Rhie-Chow interpolation produces excellent results when stea-
dy-state solutions are sought for, and large time steps used, but
pressure field oscillations may arise for small time steps and dur-
ing transient simulations. Versteeg and Malalasekera [42], and Fer-
ziger and Peric [14], argue that there is no intrinsic physical
requirement that all variables share the same location. For Carte-
sian grids, the concept of staggered grid was introduced in Ref.
[43]. If second order of accuracy schemes are retained for spatial
discretization, such an arrangement does not require additional
interpolations, which otherwise would be necessary for a co-lo-
cated grid. Finally, the major advantages of the staggered variable
arrangement is that the pressure terms are naturally discretized by
second order accuracy central differences scheme, without resort-
ing to interpolation rules, and the evaluation of mass fluxes at the
faces of control volumes is straightforward, which leads to a strong
coupling between pressure and velocity, thus avoiding spurious
instabilities in the calculated pressure field.

The numerical method chosen for solving the variable density
momentum, reduced temperature and Poisson equations is based
on a three-dimensional, conservative, staggered, finite-volume dis-
cretization. The central difference scheme (CDS) is applied to ex-
press both diffusive and advective contributions of the present
finite-volume scheme. Depending on the class of flows simulated,
iterative solvers may fail to converge when applied to the algebraic
equation systems derived from central difference approximations
of convective fluxes. The main reason is associated to odd-even

oo, | 0
(6,

Fig. 1. Non-uniform finite-volume grid and distances associated to the face e.

decoupling and, hence, the corresponding oscillations should be re-
moved to avoid numerical instabilities. Practically, the elimination
of these spurious short waves is obtained by introducing artificial
dissipation through additional damping terms in the equations
[44] or, more efficiently, through filtering procedures [45] without
affecting the physical long waves. It is also possible to apply a de-
ferred correction approach on the advective terms of the balance
equations, such approach, designed to improve stability, is de-
scribed for instance in [14]. In this respect, it seems worth noting
that the last solution, i.e., the use of the deferred correction ap-
proach, was successfully tested against the manufactured solutions
described herein. The corresponding detailed results are not re-
ported herein only for the sake of conciseness.

A fully implicit approach is adopted, and the resulting linear
systems are solved using the MSIP - Modified Strongly Implicit
Procedure [46]. The numerical code developed is capable of per-
forming massively parallel distributed computations also. The cor-
responding parallelization strategy relies on a three-dimensional
Cartesian topology of domain decomposition, its detailed descrip-
tion is outside the scope of the present study.

The structure adopted for the computational grid, can be non-
uniform in such a manner that it is necessary to perform interpo-
lations to discretize any spatial derivatives. Such interpolations
are obtained by using classical distance-weighted rules [14] e.g.,
to determine the value of a scalar property, 0, on a face e, the fol-
lowing expression is used: 0, = OgA, + 0p(1 — A.), where:

Ae =22 (23)

The indexes P, E and e, are, respectively, the center of the current
control volume, the center of the left control volume, and the posi-
tion of the face of the control volume centered in P, that lies be-
tween P and E, as can be seen in Fig. 1.

The iterative procedure, for each time step, is summarized in
Table 1:

It is important to underline that the algorithm described above
ensures mass conservation within each single iteration step.
Increasing the number of inner iterations improves both its preci-
sion and numerical stability, as will be shown in the following sec-
tion that is devoted to the verification of the numerical algorithm
just described.

Table 1
Algorithm 1 - Projection method with inner iteration procedure.
[1] The scalar equation for reduced temperature [Eq. (9)] is advanced in time using the
Crank-Nicolson integration scheme, [Eqgs. (15), (16)] with (y,c)=(0.5,0.0)
[2] The equation of state [Eq. (5)] is evaluated, yielding the density in the actual time step
[3] The momentum equations [Eq. (17)] are advanced in time, yielding the estimated velocity field ﬁ;’“
[4] The variable-coefficient Poisson equation [Eq. (21)] is solved yielding the pressure correction Q, the pressure and velocity fields are updated [Eq. (22)]
[5] The continuity equation [Eq. (2)] is evaluated to check the mass conservation
[6] Returns to item [1], until the cycling process is finished
[7] Time is advanced: t™! = t" + 5"

[8] Process is repeated from step [1] until " =t g
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3. Applications of the method of manufactured solutions

We provide now the detailed guidelines for verification and
cross-checks of low Mach number codes through the application
of the method of manufactured solutions. The process of verifica-
tion presented herein is divided into two distinct parts. First, the
numerical code is tested using a manufactured solution that aims
at verifying the order of accuracy for an incompressible solution
(zero Mach number limit). This is performed using solutions based
on sine and cosine functions, built in such a manner that the veloc-
ity divergence is zero. A second set of tests aims at mimicking the
propagation of a corrugated flame front that separates heavy from
light gases. The application of the method of manufactured solu-
tions still remains more scarce for such low Mach number situa-
tions. If we except the expression of the equation of state, the
solution retained to perform this analysis is the same as the one
previously considered in the recent studies conducted by Shunn
and Ham [47], and Shunn and Knupp [48]. This second set of tests
clearly aims at evaluating the numerical capabilities of the devel-
oped code to deal with variable density flows as those encountered
in combustion problems of interest to the authors.

3.1. Verification of an incompressible solution

Following the recent work conducted by [49 and 50], the set of
functions reported below is retained as a possible solution for
velocity, pressure and scalar fields in the limit of a zero Mach num-
ber scheme:

U = Sin® (27X + 27y + 27z + t), (24)
Ve = COS2(2MX + 2Tty + 27Z + t), (25)
We =1, (26)
De = COS(2TX + 27y + 27Z + t), (27)
de = Ky, +L+cos(2nx+2ny+2nz+t). (28)

Ky,

In the previous equations K, and K,, are constant parameters, t is
the time. The subscript e stands for the manufactured solutions of
the primary variables, i.e. the three velocity components, pressure
and reduced temperature.

The computational domain retained for the present numerical
simulations is a cube of dimensions [0,1] x [0,1] x [0,1], in X, ¥
and z directions respectively. The time step is set constant and
equal to 10~ The parameters K,, and K,, are fixed respectively
to 1 and 0.5. The constant values of density and viscosity are set
to unity. The variable coefficient Poisson solver is used, however,
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Fig. 2. L, norm of the Zero Mach Number manufactured solution. B: u, A: v, ¢: w,
V: ¢, o: p. The solid line stands for the second order decay, and the dashed line
stands for first order decay.

Such an analysis of the incompressible solution under consider-
ation clearly demonstrates that, in terms of numerical accuracy,
the numerical code we developed is a good candidate to perform
Large Eddy Simulations of constant density turbulent flows that re-
quires at least second order accuracy.

The preliminary key step associated with the verification of the
numerical code being performed for an incompressible regime, we
now turn to variable density flows.

3.2. Verification of the low-Mach number solution

The set of manufactured solutions retained in the present section
are similar to those introduced in the previous studies by Shunn and
Knupp [48] and Shunn and Ham [47]. However, it is used here with a
different equation of state, which involves a different pressure—
velocity coupling. It is also worth mentioning that we are interested
in density ratio variations representative of those encountered in
flames, which are significantly smaller than those reported in [47].

The manufactured solutions are not necessarily related to an ex-
pected physical solution, however, a solution that attempts to rep-
resent some relevant features of a given problem becomes not only
a tool to assess the order of accuracy, but also provides a pertaining
preview of the behavior of the numerical code, when applied to sit-
uations of interest. In this sense, the set of analytical functions re-
ported below gathers some interesting features of a propagative
combustion front.

1+ tanh[bxexp(—wt)]

. . . . = , 29
no constraint is enforced for such incompressible solution. Table Pe (1 +%?> + (1 ,%a) tanh[biexp(—wt)] (29)
2 reports the grid refinement, the decay of L, norm and the result- P
ing order of accuracy q. Pe="", (30)
The results gathered in Table 2 are illustrated in Fig. 2. For the pe,p k1l wloglexp(2bRexp(—mt))+1]
incompressible solution, the numerical code is shown to yield at Ue ]p 0{* A+exp[2bf<exp(ffwt)]+l 2bexp(—wt)
least second order of accuracy for velocity. For the scalar variable ¢ (31)
¢, second order of accuracy is achieved as well, although minor I (32)
oscillations arise. Finally, concerning the pressure, it is possible e='h
. ) We =0, (33)
to note a continuous increase of the order of accuracy as the com- 0 34
putational mesh is refined, however, its value does not exceed 1.89. P. =V, (34)
Table 2
Order of accuracy for Dirichlet boundary conditions and constant physical properties.
Domain 163 q 323 q 64° q 1283 q
Lou 1.60E—02 - 3.80E-03 2.07 9.30E-04 2.03 2.33E-04 2.00
Ly 1.60E—02 - 3.80E-03 2.07 9.30E-04 2.03 2.33E-04 2.00
Lyw 3.42E-03 - 7.98E—04 2.10 1.94E-04 2.04 4.86E-05 2.00
Lop 1.82E-01 - 5.44E—02 1.52E—02 1.84 4,10E-03 1.89
Ly 1.54E—02 - 4.10E-03 2.08 8.88E—04 2.03 2.29E-04 1.96
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where X = ust — x + acos[kz(vst —y)] and a, b, ko, , uy, vrand P, are
constant parameters.

It is important to point out that the manufactured solution must
be compatible with the full set of equations that governs the evo-
lution of the system under consideration, and this also includes the
equation of state and the resulting constraint that applies to the
velocity field through Eq. (20). The above manufactured solution
does not fulfill, by itself, such a requirement, and the source term
S. previously introduced in Eqgs. (20) and (21), must be now con-
sidered. Its expression, which is a rather cumbersome combination
of exponential and hyperbolic functions, is not reported here but
included as a supplementary material for readers who are inter-
ested to perform the evaluation of their own codes. The corre-
sponding source term is evaluated in the same manner as S, and
Sy i.e. the exact functions (Egs. (29)-(34)) are substituted in Eq.
(20), and, after solving the derivatives analytically, one obtains
the expression of S.. Eqs. (29)-(34) satisfy the mass balance equa-
tion with S, =0, however, non-zero source terms also appear in
momentum, (S,), and reduced temperature transport equation
(Sd:)'

Fig. 3 displays the temporal evolution of the density field. It is
possible to note that, as the time passes, the front is simulta-
neously advected and diffused. The computational domain is a
box of [-1,2] x [-0.5,0.5] x [—h/2,h/2]. Five different grids are
used, from: 150 x 50 x 1, up to, 2400 x 800 x 1. These grids are
henceforth denoted, respectively, by: 4h, 2h, h, h/2 and h/4. For
velocity components, reduced temperature and density, Dirichlet
boundary conditions are set at x=0, y=—1/2 and y =1/2. A Neu-
mann boundary condition is used in the outlet x = 2.0. For the pres-
sure, Neumann boundary conditions are applied at x=0,y=-1/2
and y = 1/2. At the outlet a Dirichlet condition is retained. For all
variables, periodicity is assumed in spanwise, (z), direction. Table
3 presents the values considered in this work for simulation of
Egs. (29)-(31).

The procedure of cycling some parts of the algorithm is used to
enhance convergence and stability of the numerical scheme. Such
procedure is based on the recent work of Shunn and Ham [47],
but with some modifications. First a different equation of state is
used, second a constraint on the divergence of the velocity field
is added herein, as a part of the strategy retained to solve the Pois-
son problem. Finally, it is worth recalling that we are interested in
density ratio values smaller than those considered in [47].

3.2.1. Unsteady error behavior
In this section we discuss the effects of the outer iterative pro-
cedure, i.e., the number of times that the balance, state and the

b
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Fig. 3. Evolution of the density field. Top to bottom, t = 0.0, t = 0.5 and t = 1.0. From
left to right, each isolines stands for an increase of 0.5 in density from p; = 1, until
pPo=5.

Table 3

Values of the constant parameters for the variable density numerical simulation.
Parameter Value Parameter Value
Do 5 a 1/5
p1 1 b 20
ur 0.25 ks 4n
Ur 0 w 1
wy 0 K=p 1074
P, 5 G 1

Poisson equations are solved, before the numerical time integra-
tion scheme. The influence of the Courant number value on the
evolution of the L, norm is also assessed.

In order to quantify only the effects of spatial errors and cycling
procedure in the analysis of order of accuracy of low Mach number
MMS problems, a Courant number value is chosen, and then, the
grid refinement procedure is performed and the subsequent anal-
ysis of order of accuracy is conducted.

Fig. 4 shows the unsteady evolution of the L, norm evaluated
from the density field. In this case, the Courant number value for
the simulations is set to 2. It is noteworthy that, specially for the
refined grids, the increase in the number of cycles leads to a slight
decrease in the magnitude of the L, norm and therefore an
improvement in order of accuracy. It is also worth noting that such
a behavior is also observed for the variables u, v and ¢. In Fig. 5 the
evolution of the L, norm of pressure is reported. Unlike the other
primary variables of the system, as the number of cycles increases,
the magnitude of the L, norm increases as well. However, it will be
shown in the next section devoted to the analysis of order of accu-
racy for the low Mach number MMS that, even with such a nega-
tive sensitivity to the number of cycles, its order of accuracy is
not penalized.

Although not shown here for the sake of conciseness, we have
also found that the L, norm of primary variables errors smoothly
decays with time as the front diffuses and the number of control
volumes within the front increases. In fact, this is the reason that
explains why the numerical simulations are stopped at t=1.0.

Fig. 6 displays L, norm for different number of cycles for the h
grid. The results clearly show that with higher values of Courant
number, the use of more than five iterations in the cycling proce-
dure does not provide any further gain in the reduction of error
magnitude. However, for Courant number values up to unity, an in-
crease in the number of cycles still gives rise to an improvement of
the results.

3.2.2. Order of accuracy analysis

In this section we present and discuss the results of an order of
accuracy analysis performed for the low Mach number MMS case.
All the simulations presented below have been carried out with a
constant value of the Courant number. Although the errors quanti-
fied herein by means of the L, norm is a rather complicated com-
bination of both spatial and temporal approximations,
performing the grid refinement with such a constant Courant num-
ber value allows to focus on the influence of the spatial discretiza-
tion only, and this despite the presence of a residual temporal error
since it will remains the same, provided that the Courant number
value is kept constant.

Tables 4-6 display the order of accuracy, and the value of the L,
norm obtained for velocity, density and reduced temperature for
different numbers of cycles and a Courant number value Co = 2.
These values of error and order of accuracy are measured at
t=1.0 [47].

Unlike the order of accuracy analysis conducted for the incom-
pressible solution, where the values of the L, norm decrease with a
constant order of accuracy, the present results show that, as the
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Fig. 6. Decay of the L, norm according to the number of cycles CFL = 0.5 (left) and CFL = 2.0 (right) for density. B: Single cycle, a: 5 cycles, e: 10 cycles. For the sake of better
visualization, the L, axis is plotted in log scale.

grid is refined, not only the magnitude of the L, norm decreases,
but also the order of accuracy increases. Such a trend is even more
pronounced for velocity, density and reduced temperature when
increasing the number of cycles. On the contrary, as far as the pres-
sure field is concerned, the magnitude of the L, norm also increases
for an increasing number of cycles.

Fig. 7 displays the order of accuracy achieved for both the pres-
sure and the u-component of the velocity. The simulations are car-

ried out using a constant value of the Courant number value Co = 2.
From a careful examination of Tables 4-6, and Fig. 7, one can notice
that the error decay is larger in single cycle simulations. A similar
analysis (not reported) demonstrates that such a conclusion also
holds for different Courant number values, and for all the primary
variables.

The decays of the L, norm obtained for the primary variables,
corresponding to the results gathered in Tables 4-6, are illustrated
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Table 4
Order of accuracy for low Mach number solution, single cycle, Co = 2.
Domain 4h q 2h q h q h/2 q h/4 q
Lou 8.82E-03 - 4.52E-03 0.96 1.65E-03 1.45 2.29E-04 2.85 1.91E-05 3.58
Lyv 3.06E-03 - 1.28E-03 1.25 3.27E-04 1.97 3.47E-05 3.24 3.44E-06 333
Lyp 9.82E-04 - 5.69E—-04 0.79 2.44E-04 1.22 5.89E-05 2.05 1.59E-05 1.89
Lyp 1.03E-01 - 6.73E-02 0.61 2.39E-02 1.50 7.70E-02 1.01 1.40E-03 2.07
Lp 2.18E-01 - 1.55E-01 0.49 7.70E-02 1.01 2.69E-02 1.52 7.31E-03 1.88
Table 5
Order of accuracy for low Mach number solution, five cycles, Co = 2.
Domain 4h q 2h q h q h[2 q h/4 q
Lou 8.19E-03 - 2.50E—03 1.71 5.01E—04 2.32 7.55E—05 2.73 1.00E—05 2.92
L 3.52E-03 - 1.17E-03 1.60 2.29E-04 2.35 2.82E-05 3.02 5.85E—06 227
Lop 2.68E-03 - 1.24E-03 1.11 4.49E-04 1.47 1.36E-04 1.72 6.07E—05 1.17
Lo 5.05E-02 - 1.16E-02 2.12 1.96E-03 2.57 2.98E-04 2.72 4.87E-05 2.61
Lap 1.15E-01 - 3.83E-02 1.59 8.97E-03 2.09 1.32E-03 2.76 1.76E—04 2.91
Table 6
Order of accuracy for low Mach number solution, 10 cycles, Co = 2.
Domain 4h q 2h q h q h/2 q h/4 q
Lyu 8.50E-03 - 2.58E-03 1.72 4.52E-04 2.51 6.59E-05 2.78 9.73E-06 2.82
Lyv 3.14E-03 - 1.02E-03 1.63 2.05E-04 231 2.12E-05 3.27 4.24E-06 232
Lop 3.90E-03 - 1.81E-03 1.11 6.44E—-04 1.49 1.76E-04 1.87 6.49E—-05 1.44
Lyo 4.19E-02 - 8.34E-03 233 1.26E-03 2.73 1.32E-04 3.25 1.29E-05 3.35
Lp 1.21E-01 - 3.97E-02 1.61 5.55E-03 2.84 1.17E-03 2.24 1.19E-04 3.31

in Fig. 8. In this Figure, one can note a higher value of the order of
accuracy as the number of cycles is increased. Even for the pres-
sure, that is less sensitive to the number of cycles than the others
variables, an increase in the order of accuracy is observed.

With regard to the effects of the number of cycles with respect
to the order of accuracy, it is worth noticing that, as the grid mesh
size is halved from h to h/2, and with a Courant number value
Co = 2, the order of accuracy for the density is found to increase
from 1.52 (Table 4, column 8, line 5) to 2.24 (Table 6, column 8, line
5), provided that the number of cycles is increased from 1 to 10.

4. Application of the numerical scheme to variable density
scalar mixing layers

In the previous section, our focus has been placed only on code
verification in terms of effective numerical precision with respect
to theoretical order of accuracy, and this issue undoubtedly consti-
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tutes the central core of the present work. However, in a final sec-
tion, we propose to shed some light on the stability and robustness
of the present pressure-based finite volume scheme. It is worth
emphasizing that the corresponding issues have not been ad-
dressed through the MMS analyses reported above. To avoid the
possible onset of spurious short waves numerical instabilities,
the computational simulations presented below have been con-
ducted with the deferred correction approach to represent the
advective terms [14]. It is worth noting that, with this numerical
scheme, second order accuracy was also achieved from MMS veri-
fication. As already mentioned, the essential aim of the manufac-
tured solutions described above is to allow for code verification,
and it is mainly focused here on the evaluation of the order of accu-
racy. However, it is worth noting that the existence of singular dis-
continuities in the solutions, as well as the use of flux limiters or
adaptive meshes, still constitute some among the crucial issues
that remain with MMS applications [51-53].

Fig. 7. Evolution of the order of accuracy q. Pressure (left), u (right). B: Single cycle, a: 5 cycles, o: 10 cycles. For the sake of better visualization, the N axis is plotted in log

scale.
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To proceed with the analysis of the robustness of the numerical
scheme we investigate two classical problems associated with non
reactive planar mixing layers between two inlet streams featuring
different density values p; and p,. Considering that the physical
specificities of the corresponding flow fields have been already lar-
gely discussed in the literature, see for instance Ref. [54], our focus
with these additional numerical simulations is not placed on the
physical phenomenology itself but rather on the computational
behavior and associated capabilities of the numerical scheme for
different values of the characteristic density contrast defined as
1 - 1/s where s=pq/p, > 1 denotes the density ratio between
the two streams.

The first numerical configuration retained to perform this anal-
ysis corresponds to a two-dimensional temporally developing mix-
ing layer involving transport of a passive scalar quantity ¢ and
featuring increasing values of the density ratio s=p;/p, where
p1=p(¢1) and p2 = p(¢-) denote the values of the density in the
top and bottom streams, respectively.

The last test case is undoubtedly more representative of the dif-
ficulties that can be encountered when dealing with the numerical
simulations of practical configurations. It corresponds to the Large
Eddy Simulation of a spatially developing turbulent mixing layer
[1,55,56]. In terms of both the density ratio s = 3.3, and Reynolds
number Re = 95,000, these conditions are clearly more representa-
tive of those encountered in practical applications, such as the
experimental results reported in Refs. [55,56].

4.1. Two-dimensional temporally developing mixing layers

This academic configuration appears as a well-suited test case
to evaluate the response of the low Mach number solver scheme
in terms of both efficiency and stability. The investigation is con-
ducted for increasing values of the density contrast and, to main-
tain the resolution level compatible with a parametric analysis,
two-dimensional numerical simulations are conducted for a mod-
erate value of the Reynolds number. It is well-known that such
two-dimensional calculations tend to overestimate the transverse
velocity fluctuations statistics but, as mentioned above, we have
here more interest in the response of the numerical scheme than
in the ability of the simulations to fully recover all the details of
the underlying physics. Finally, the issue associated with the con-
sideration of higher values of the Reynolds number will be ad-
dressed in the last subsection of the manuscript.

The temporal mixing layer consists of two coflowing streams
travelling in opposite directions with the same reference velocity
U, = AU[2 where AU denotes the velocity difference across the

layer. The flow variables reported below are normalized with re-
spect to a reference length scale L, equal to half the initial vorticity
thickness, i.e., L, = 6,(t = 0)/2. In the retained representation, x, and
y denote the streamwise, and the cross-stream directions,
respectively. The temporal mixing layers are initiated by a hyper-
bolic-tangent velocity profile, i.e., u = U,tanh(y/L;), with free stream
conditions as u; =U,=1 and ¢, =1 on the top, and u, = -U,= -1
and ¢, = 0 on the bottom. A weak white noise random perturbation
is superimposed on the initial velocity field in the rotational region.
Periodic boundary conditions have been retained in the stream-
wise direction, and the longitudinal extent of the computational
domain is defined according to Michalke’s inviscid most unstable
wavelength [54,57]. Slip conditions have been set in the transverse
directions. Simulations are conducted for five different values of
the density ratio s=1,2,4,6,8 at Re=100 where Re denotes the
Reynolds number based on the reference velocity U, and the initial
vorticity thickness §,t=0). The computational mesh features
homogeneous grid spacings Ax = Ay = 4, and two distinct resolu-
tion levels have been considered. In the first case, the number of
grid points is set to ny=2L,/4 =140 in the longitudinal direction,
and n,=2L,/4 =140 in the cross-stream direction, whereas the
resolution has been doubled in the second set of numerical simu-
lations, i.e., ny=n,=280. Numerical simulations are conducted
with a constant integration time step At=10">s. Once made non
dimensional using the reference velocity U,, and initial vorticity
thickness 5,(t = 0), it corresponds to At*=0.0002.

Fig. 9 displays simultaneously the scalar, pressure P'(x), and
normalized vorticity contours as obtained from the numerical sim-
ulations performed in cases s =1 (case of reference) and s = 2. The
results are made non dimensional using the reference velocity U,,
and initial vorticity thickness 6,(t=0), and they correspond to
t*=26.1 and t* = 42.1 for cases s = 1 and s = 2, respectively. The cor-
responding flowfield is dominated by the growth of large scale
coherent structures of Kelvin-Helmholtz type. The non dimen-
sional time t* required to observe the birth of these coherent struc-
tures differs from one case with respect to another. The figure
clearly evidences the ability of the numerical solver to recover
the emergence of these two-dimensional structures.

Fig. 10 displays simultaneously the scalar and normalized vor-
ticity fields obtained for increasing values of the density ratio from
s=2 up to s = 8. The results confirm that, in the present configura-
tion, if the mixing layer development is controlled at leading order
by the value of AU, it is also strongly influenced by the density ra-
tio s, the baroclinic torque being one of the most well-known
mechanisms that influences the corresponding flowfield dynamics
[58].
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Fig. 9. From left to right: instantaneous snapshots of scalar, pressure P'(x), and normalized vorticity contours as obtained from the numerical simulation of two-dimensional
temporally developing mixing layers conducted at s =1 at non dimensional time t* = 26.1 (top) and s = 2 at non dimensional time t* = 42.1 (bottom).

In Fig. 11, the temporal evolution of the Courant number is re-
ported as a function of the non dimensional time t*. For values of
the density ratio s =1,2,4, the variations of the Courant number,
as defined by Co = max{At(2u/(pi Ax;)*) + (ui/ Ax;))} [14], remains
bounded between the values Co=0 and Co = 0.25. However, for
higher values of the density ratio, i.e., s = 6,8, the figure clearly evi-
dences the difficulties that are encountered by the numerical sol-
ver as the roll-up of vortices involving large density differences
takes place.

Finally, in order to evaluate more quantitatively the response of
the numerical scheme, some code performance parameters have
been gathered in Table 7. It is worth noting that, whatever the case
under consideration, convergence of the steps [3 and 4] of the pro-
posed algorithm, see Table 2, is obtained in less than 3 iterations.

4.2. Three-dimensional spatially developing turbulent mixing layers

The present study is now finalized by considering a high speed
turbulent mixing layer. The retained conditions are similar to those
encountered in the early experimental analyses of turbulent pre-
mixed combustion conducted in Refs. [55,56]. In the corresponding
experiments a premixed flow of methane and air is ignited, and
stabilized thanks to a parallel flow of high temperature fully
burned gases. The wind tunnel features a squared section with
dimensions 800 x 100 x 100 mm that is discretized into a finite
volume computational mesh made up of 100 x 50 x 50 control
volumes in the directions x, y and z respectively. The inlet consists
of two distinct ducts separated by a thin splitter plate. In the main
(top) duct fresh reactants are injected, whereas high temperature
combustion products are injected through the auxiliary (bottom)
duct. No-slip boundary conditions are imposed at the boundary
in both y and z directions. A convective boundary condition is set
at the outlet of the computational domain.

The mean velocity profile at inlet is imposed using a hyperbolic
function:

Uy — 1, Ug+1, 2h(z) 2h,
5 + 3 tanh<6m 5. )

35)

where i; and u, denote the mean velocity values in the auxiliary
burner and main duct, respectively, h, is the height of auxiliary
duct, and é,, is the prescribed width of the mixing layer. The main
duct incoming flow is characterized by a maximum longitudinal
velocity &1, = 65 m/s whereas the auxiliary duct incoming flow fea-
tures a maximum longitudinal velocity i, = 130 m/s. The Reynolds
number Re, based on the main duct incoming flow velocity, its
height, and the value of the kinematic viscosity of air at 600 K is
of the order of Re ~95,000. The resolution required to deal with
such a high Reynolds number turbulent flow is impracticable for a
direct numerical simulation of the Navier-Stokes equations, and
we resort to the LES filtered set of Navier-Stokes equations. The
classical Smagorinsky closure is retained to represent the influence
of unresolved subgrid-scale fluctuations effects [59]. The Smagorin-
sky constant value is set to Cs = 0.18, and the closure is used in con-
junction with the Van-Driest damping function [14]. It is outside
the scope of the present study to report the details of turbulent
combustion modelling in such conditions. Therefore, only non reac-
tive flow fields featuring either the same density ratio as the one
encountered in the experiments, i.e., s = 3.3, or no density fluctua-
tions, i.e., s = 1 (case of reference) are considered below.

For the present Large Eddy Simulations, a methodology based
on the use of digital filters has been retained to generate realistic
fluctuating inlet boundary conditions [60]. Such an approach re-
quires to generate an entire set of random number data which
can then be processed using digital filters in such a manner that
the resulting set of filtered data will present desired statistical
properties such as spatial and temporal correlations [60]. An inter-
esting feature of this approach is its ability to recover anisotropic
turbulence properties which is of crucial importance to perform
Large Eddy Simulations of practical applications such as the one
considered here.

Instantaneous snapshots obtained from the three dimensional
simulations of the flow described above are reported in Figs. 12
and 13. The property Q offers an interesting way to evidence the
flow field coherent structures [61]. For a flow of uniform density,
the corresponding quantity, i.e., the second invariant Q of the
velocity-gradient tensor du;/dx;, is related to the Laplacian of the
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Fig. 10. From top to bottom: instantaneous snapshots obtained for increasing values of the density ratio, s = 2 (top), s = 4 (middle), s = 8 (bottom); on the right: scalar field; on

the left: vorticity contours.
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Fig. 11. Temporal evolution of the Courant number Co for different values of the
density ratio.

pressure field, and positive iso-values of Q are often used to char-
acterize low pressure tubes that are generally associated with
coherent structures. In Figs. 12 and 13 the isosurface of the

Table 7
Code performance parameters for different density ratios; grid 140 Note: in the first
column [3,4] denote two steps of the algorithm described previously in Table 1.

s=1 s=2 s=4 s=6 s=8
CPU time (s) 3865 4484 4576 4496 4607
Iteration Nb. (step [3]) 3 3 3 3 3
Iteration Nb. (step [4]) 1 1 2 2 2
Co (max. value) 0.030 0.040 0.443 0.526 0.419
Co (t*=100) 0.025 0.040 0.092 0.064 0.069
Co (average value) 0.023 0.023 0.077 0.088 0.123

property Q =2° have been displayed. The high value retained in
this case results from the fact that the flow is a high velocity, high
Reynolds number, confined flow. In Fig. 12, Kelvin-Helmholtz
structures that are characteristic of the mixing layers dynamics
can be recognized downstream of the computational domain inlet.
In comparison with the case of reference, i.e., s = 1, the isosurface
reported in Fig. 13 features smaller characteristic length scales.
The two figures also evidence the strong three-dimensionality of
the flow which results, to a large extent, from the fluctuating
boundary conditions that have been used at the inlet of the compu-
tational domain.
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Fig. 13. Perspective, top and lateral views of the iso-value surface of the second invariant of the velocity-gradient tensor Q = 26, at t = 0.020 s. The density ratio is set to s = 3.3.

Finally, longitudinal slices of the normalized temperature field
as obtained from the numerical simulations conducted with uni-
form density field, i.e., s = 1, or with a density contrast that is rep-
resentative of the experimental reactive conditions, i.e., s=3.3,
have been reported in Fig. 14.

Together with the previous verification of the discretization
scheme performed thanks to MMS, the results discussed above
provide some interesting insights on the stability and robustness
of the numerical solver. As suggested by one of the reviewers of
the manuscript, it would have been also interesting to evaluate
the computational efficiency of the present numerical scheme
through a detailed comparison with others simulations performed
using higher order, multigrid or adaptive methods. However, such
an analysis definitely exceeds the scope of the present study. Final-
ly, it is worth emphasizing that the MMS verification step undoubt-
edly facilitates the subsequent application of the solver to more
complex situations. This confirms that even if MMS are applied
to smooth and simple problems, it does serves, and should be used,
as a well-suited preliminary test before coping with other prob-
lems that are physically more demanding.

Fig. 14. Longitudinal slices of the normalized temperature field as obtained from
the numerical simulations conducted with uniform density field, i.e., s=1 (top of
the figure), or with a density contrast that is representative of the experimental
reactive conditions, i.e., s = 3.3 (bottom of the figure).
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5. Conclusions

We have described a procedure for code verification (i) to deter-
mine whether, or not, a numerical code solves its governing equa-
tions correctly, and (ii) to preview how such a numerical scheme
behaves when dealing with real problems. The numerical proce-
dure relies on the manufacture of a general solution of the system
of governing equations. Generality of the solution is essential be-
cause it guarantees that few, if any, code capabilities will remain
unverified.

Two MMS problems are considered. First, a fully incompressible
manufactured solution is proposed, achieving the expected order
of accuracy. Second, an analytical propagating front separating
heavy from light gases is considered. A variable coefficient Poisson
solver is used to simulate the corresponding low Mach number
flow. A physically consistent constraint is used to ensure that the
velocity field is solved correctly. Such a combination of the velocity
constraint and the variable-coefficient Poisson solver is found of
fundamental importance to ensure both the numerical stability
and the expected order of accuracy. An inner iteration procedure
is implemented, and despite its high numerical cost, the improve-
ments in terms of both the order of accuracy and error magnitude
are undeniable. In this respect, further investigations may be car-
ried out since although possible, the order of accuracy q does not
always converge monotonically.

The present results also suggest that determining the optimal
operating conditions in terms of grid size, Courant number value,
number of outer iterations, etc. is a nontrivial and problem-depen-
dent task that deserves more attention than currently afforded.

Although not fully physically consistent - since the MMS is
more a mathematical exercise rather than a real attempt of repro-
ducing a real life experiment or physical problem - the procedure
of verification allows to gain more insights into the capabilities and
limitations of the numerical code we presented to deal with vari-
able density flow fields representative of those encountered in sit-
uations relevant of combustion. It is completed herein by a brief
stability and robustness illustration of the pressure-based finite-
volume numerical scheme. Very encouraging results have been ob-
tained, and the numerical scheme appears as a good candidate for
further studies devoted to Large Eddy Simulation of turbulent
combustion.
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