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Factors of Safety for Richardson
Extrapolation
A factor of safety method for quantitative estimates of grid-spacing and time-step uncer-
tainties for solution verification is developed. It removes the two deficiencies of the grid
convergence index and correction factor methods, namely, unreasonably small uncer-
tainty when the estimated order of accuracy using the Richardson extrapolation method
is greater than the theoretical order of accuracy and lack of statistical evidence that the
interval of uncertainty at the 95% confidence level bounds the comparison error. Differ-
ent error estimates are evaluated using the effectivity index. The uncertainty estimate
builds on the correction factor method, but with significant improvements. The ratio of
the estimated order of accuracy and theoretical order of accuracy P instead of the
correction factor is used as the distance metric to the asymptotic range. The best error
estimate is used to construct the uncertainty estimate. The assumption that the factor of
safety is symmetric with respect to the asymptotic range was removed through the use of
three instead of two factor of safety coefficients. The factor of safety method is validated
using statistical analysis of 25 samples with different sizes based on 17 studies covering
fluids, thermal, and structure disciplines. Only the factor of safety method, compared with
the grid convergence index and correction factor methods, provides a reliability larger
than 95% and a lower confidence limit greater than or equal to 1.2 at the 95% confidence
level for the true mean of the parent population of the actual factor of safety. This
conclusion is true for different studies, variables, ranges of P values, and single P values
where multiple actual factors of safety are available. The number of samples is large and
the range of P values is wide such that the factor of safety method is also valid for other
applications including results not in the asymptotic range, which is typical in industrial
and fluid engineering applications. An example for ship hydrodynamics is
provided. �DOI: 10.1115/1.4001771�
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Introduction
Current quantitative numerical error/uncertainty estimates for

rid-spacing and time-step convergence are based on the Richard-
on extrapolation method where the error is expanded in a power
eries with integer powers of grid-spacing or time step as a finite
um. It is a common practice to retain only the first term of the
eries assuming that the solutions are in the asymptotic range,
hich leads to a grid-triplet study. The grid convergence index

GCI� derived by Roache �1� can be used to estimate the uncer-
ainties due to grid-spacing and time-step errors and is widely
sed and recommended by ASME �2� and AIAA �3�.

Stern et al. �4� derived the correction factor �CF� method with
mprovements made by Wilson et al. �5�. The CF method uses a
ariable factor of safety �FS� and was validated for a correction
actor less than 1 using analytical benchmarks. The factor of
afety for correction factor larger than 1 is obtained by assuming
hat the factor of safety is symmetric with respect to the
symptotic range.

There are several problems in using the Richardson extrapola-
ion method. As shown by Stern et al. �6�, it is difficult to improve
he accuracy by retaining more terms in the power series. For
nstance, use of both first- and second-order terms requires solu-
ions for five grids, which significantly increases the computa-
ional cost. Additionally, it requires that all solutions should be
ufficiently close to the asymptotic range, i.e., within about 6% of
he theoretical order of accuracy of the numerical method pth.
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When solutions are not in the asymptotic range, multiple grid-
triplet studies often show nonsmooth convergence. In such cases,
the estimated order of accuracy pRE approaches pth with oscilla-
tions and a wide range of values �2�. The Richardson extrapolation
method requires at least three systematic high-quality grids, which
may be too expensive for industrial applications. The grid refine-
ment ratio r must be carefully selected. The magnitude of r cannot
be too large as the grids may resolve different flow physics. Too
small values of r �very close to one� are also undesirable since
solution changes will be small and the sensitivity to grid-spacing
and time step may be difficult to identify compared with iterative
errors.

The nonsmooth grid convergence problem may be resolved us-
ing the least-squares �7� or response-surface �8� methods, which
requires solutions for more than three grids. There are some issues
in using these two methods. The relationship between their esti-
mates for the order of accuracy, error estimate, and numerical
benchmark and those for individual grid-triplet studies is not es-
tablished. They do not discriminate between converging and di-
verging grid studies and the use of diverging grid studies is not
well founded. The requirement of at least four solutions is often
too expensive for industrial applications. All the solutions are re-
quired to be in the asymptotic range, which is contradictory to the
use of solutions that show nonsmooth and nonmonotonic conver-
gence. They introduce additional uncertainties due to the least-
squares fit.

The difficulty and computational cost associated with the Rich-
ardson extrapolation method may be resolved by the single-grid
method. Celik and Hu �9� demonstrated the use of an error-
transport equation to quantify the discretization error. The one-
dimensional convection-diffusion equation and two-dimensional

Poisson equation using uniform grids showed that the method
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easonably captured the sign and magnitude of the discretization
rror. Cavallo and Sinha �10� derived an inviscid error-transport
quation for the Euler equation and applied it to a three-
imensional unmanned combat air vehicle 1303 using unstruc-
ured grids. The authors concluded that the error-transport equa-
ion offers a viable alternative approach to solution verification,
articularly for cases where the Richardson extrapolation method
annot be applied. Cavallo et al. �11� extended their method to
urbulent flow simulations using Reynolds-averaged Navier–
tokes equations by developing a viscous error-transport equation.
esults for wall-bounded and free-shear flows showed marked

mprovements over the results obtained using an inviscid error-
ransport equation; however, the sensitivity of the solutions to
rid-spacing and time step is not provided, and control of the
patial discretization error as the simulation progresses needs to
e further investigated. Additionally, the applicability of the
ingle-grid method to different discretization schemes and turbu-
ence models needs to be validated.

The GCI and CF methods have two deficiencies. The first is
hat the uncertainty estimates for pRE� pth are unreasonably small
n comparison to those with the same distance to the asymptotic
ange for pRE� pth. This is due to the fact that the error estimate
RE for the former is much smaller than that of the latter. The
econd is that there is no statistical evidence for what confidence
evel the GCI and CF methods can actually achieve. Roache �1�
nd the ASME performance test codes committee PTC 61 �12�
tated that a 95% confidence level is achieved for the GCI method
ith a factor of safety of 1.25 based on over 500 demonstrated

ases by dozens of groups; however, no statistical samples or
nalyses are reported.

A recent study by Logan and Nitta �8� evaluated ten different
erification methods for estimating grid uncertainty using the re-
iability Rsm and reduced chi-square Xv�

2 . The reliability was used
o measure the difference between the estimated and expected
ractions that the uncertainty estimate will bound the comparison
rror. The reduced chi-square was used to measure the robustness
uch that a high value indicates that a verification method is too
onservative. Methods 1–5 are for solutions that show smooth and
onotonic convergence. Methods 1 and 2 implemented the GCI1
ethod, which is the same as the GCI method except replacing

RE by pth when pRE� pth. The expected fractions that the uncer-
ainty estimate will bound the comparison error are 95% for

ethod 1 and 68% for method 2. Methods 3–5 are based on the
ichardson extrapolation method with different methods to com-
ute pRE. Methods 6–10 use the least-squares or response-surface
ethod to account for nonsmooth or nonmonotonic convergence

nd use an explicit method to compute the uncertainty due to the
urve fit. Method 1 showed 60% Rsm. Method 2 shows 93% Rsm.
hese facts suggest that the use of the GCI1 method is closer to a
8% than a 95% confidence level. The other methods show more
han 90% Rsm except method 5 that shows 82%. Methods 1–5
redict much higher Xv�

2 than methods 6–10, which indicates that

here is no correlation between Rsm and Xv�
2 . Since this study has

nly three structure problems with 18 individual grid solutions, it
as recommended that a sample with the number of grid conver-
ence studies much larger than 100 is needed to draw general
onclusions.

Two other recent studies �13,14� considered the use of different
ncertainty estimates for different ranges of pRE for solutions that
how monotonic convergence. Eça and Hoekstra �13� presented
he least-squares version of the GCI method for a nominally
econd-order accurate discretization scheme. Three different un-
ertainty estimates were provided for 0� �P= pRE / pth��0.475,
.475� P�1.025, and P�1.025. The estimates were based on
he experience obtained in a variety of test cases and suggestions
nd comments of the First Workshop on Computational Fluid Dy-
amics �CFD� Uncertainty Analysis �15�. Rumsey and Thomas

14� similarly modified the GCI method �2� for a nominally third-
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order accurate discretization scheme. Three different uncertainty
estimates were provided for 0� P�0.317, 0.317� P�1.017, and
P�1.017. These two verification methods were demonstrated for
a manufactured solution �13� and the flow over a backward facing
step �13,14� without detailed derivation and validation. Statistical
samples or analyses were not reported in either of these studies.

The objective of the present study is to develop a FS method
for solution verification. It removes the two deficiencies previ-
ously discussed for the GCI and CF methods. Different error es-
timates are evaluated using the effectivity index. The uncertainty
estimate for the FS method builds on the CF method, but with
significant improvements. A better distance metric to the
asymptotic range is used. The best error estimate is used to con-
struct the uncertainty. The assumption that the factor of safety is
symmetric with respect to the asymptotic range is removed. The
FS method is validated using statistical analysis of 25 samples
with different sizes based on 17 studies that have analytical or
numerical benchmarks and cover fluids, thermal, and structure
disciplines. The samples cover a wide range of P values that are
within and far from the asymptotic range �P=1�. The results of
the FS method are compared with the GCI, GCI1, GCI2 �16�, and
CF methods.

There are two earlier versions of the FS method. The first ver-
sion �17� resolved the unreasonably small uncertainty estimate for
correction factor larger than 1 by reflecting the uncertainty esti-
mate itself instead of the factor of safety with respect to the
asymptotic range. This method was criticized for the lack of vali-
dation. The second version �18� extended and improved the first
version by modifying the uncertainty for a correction factor less
than 1 with the introduction of factors of safety for correction
factors equal 0 and 1, which were validated using statistical analy-
sis as conducted herein. The second version was criticized by
colleagues for the deficiencies of using the correction factor as the
distance metric to the asymptotic range, the inapplicability of the
method for correction factors larger than 2, and the omission of
effectivity index for evaluating error estimates. Their comments
motivated the improvements over �18� as presented herein. Com-
pared with Ref. �18�, the present FS method has more general
applicability without restriction on the maximum P, larger
samples with the addition of 25 items, and a 95% reliability for all
P ranges.

The number of samples and items are large and the range of P
values is wide such that the FS method is also valid for other
applications including the results not in the asymptotic range,
which is typical in industrial and fluid engineering applications.
An example for ship hydrodynamics is provided.

2 Error and Uncertainty Estimates Using the Richard-
son Extrapolation Method

It is useful to consider the following four steps in deriving and
evaluating solution verification methods: �a� convergence studies;
�b� error estimate � with magnitude and sign; �c� uncertainty es-
timate U that indicates the range of likely magnitudes of �, but no
information about its sign; and �d� statistical analysis to establish
that the interval of U at a 95% confidence level bounds the com-
parison error E. The comparison error E equals the difference
between the true value T and simulation value S. For modeling
validation, T is the experimental data. For verification method
validation, T is either the analytical benchmark SAB or numerical
benchmark SNB.

2.1 Convergence Studies. It is assumed that iterative conver-
gence has been achieved such that the iterative uncertainty is at
least one order-of-magnitude smaller than the grid-spacing and
time-step uncertainty. Grid-spacing and time-step convergence

studies are conducted with multiple solutions using systematically
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efined grid-spacing or time steps. First, the value of r is selected.
f 3, 2, and 1 represent the coarse, medium, and fine grids with
pacings �x3, �x2, and �x1, respectively, then

r =
�x2

�x1
=

�x3

�x2
�1�

onstant r is not required �1� but simplifies the analysis. If the
olutions for the fine, medium, and coarse grids are S1, S2, and S3,
espectively, solution changes � for medium-fine and coarse-
edium solutions and the convergence ratio R are defined by

�21 = S2 − S1

�32 = S3 − S2

R = �21/�32 �2�

hen 0�R�1 monotonic convergence is achieved and the Ri-
hardson extrapolation method is used to estimate pRE, �

RE
, and

he numerical benchmark SC. The error is expanded in a power
eries with integer powers of grid-spacing or time step as a finite
um. The accuracy of the estimates depends on how many terms
re retained in the expansion, the magnitude �importance� of the
igher-order terms, and the validity of the assumptions made in
he Richardson extrapolation method. With three solutions, only
he leading term can be estimated, which provides the one-term
stimates,

pRE =
ln��32/�21�

ln�r�
�3�

�RE =
�21

rpRE − 1
�4�

SC = S1 − �RE �5�

When solutions are in the asymptotic range, then pRE= pth;
owever, in many circumstances, especially for coarse grids and
ndustrial applications, solutions are far from the asymptotic range
uch that pRE is greater or smaller than pth. Stern et al. �4� used the
orrection factor as a metric for defining the distance of solutions
rom the asymptotic range based on the fact that CF�RE is a better
rror estimate than �RE:

CF =
rpRE − 1

rpth − 1
�6�

he deficiency of using the correction factor as the distance metric
s that it is also a function of r. Therefore, even for the same pRE
nd pth, correction factors could be different. The ratio of pRE to
th is used here as the distance metric:

P =
pRE

pth
�7�

he error estimate P�RE is better than CF�RE and useful for sta-
istical analysis, for which analytical and numerical benchmarks
an be combined according to the same P or different ranges of P
alues.

2.2 Error Estimates � . In the GCI method, � equals �RE for
he whole range of P values. In the GCI1 and GCI2 methods, �
qual �RE and CF�RE for 0� P�1 and P�1, respectively. Stern
t al. �4� showed that CF�RE is a better error estimate than �RE
ased the on results from the numerical solution of the one-
imensional wave and two-dimensional Laplace equation analyti-

al benchmarks

ournal of Fluids Engineering
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CF�RE = CF� �21

rpRE − 1
� �8�

The use of Eq. �8� replaces pRE by pth in the error estimate; how-
ever, pRE is not discarded, but included in the correction factor
and subsequently in the uncertainty estimate. In the FS method, �
equals P�RE.

The accuracies of the different error estimates are evaluated
using numerical solutions for the one-dimensional wave and two-
dimensional Laplace equation analytical benchmarks. Figure 1
shows the comparison error E=SAB−S1 along with �RE, CF�RE,
and P�RE for the one-dimensional wave equation as functions of
P. The comparison error increases as a second-order polynomial
of P as solutions are farther from the asymptotic range. All error
estimates also increase with the distance from the asymptotic
range, but with different order polynomials of P. The error esti-
mate �RE is a fifth-order polynomial and overpredicts the compari-
son error by up to 61%. The error estimate CF�RE is a first-order
polynomial and underpredicts the comparison error by up to 23%.
The error estimate P�RE is a second-order polynomial and under-
predicts the comparison error by up to 9%. Differences between
different error estimates become smaller when solutions approach
the asymptotic range. For the two-dimensional Laplace equation,
the CF�RE and P�RE agree better with the comparison error than
�RE and the differences between CF�RE and P�RE are negligible
since P and CF were very close to 1.

The accuracies of the different error estimates can be evaluated
using the effectivity index 	, which is defined as the magnitude of
the ratio of � to E

	 = � �

E
� �9�

where E is the comparison error that is either SAB−S1 or SNB
−S1. An ideal error estimate has 1�	�1+
, where 
 is a small
positive number. As discussed later, the 17 studies that have ana-
lytical and numerical benchmarks provide 329 grid-triplet studies
that show monotonic convergence, for which the same number of
�, E, and 	 are calculated and 	 is shown in Fig. 2. For P�1, the
effectivity index for the three GCI methods is the same and much
larger than those for the CF and FS methods. For P�1, the ef-
fectivity index for the CF, GCI1, and GCI2 methods is the same
and larger than those for the FS and GCI methods. Table 1 pre-

Fig. 1 Comparison of error estimates for the one-dimensional
wave equation
sents the mean effectivity index for different ranges of P values.
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or the whole range of P values, the comparison error is overes-
imated by more than 33%E for the three GCI methods, underes-
imated by 0.2%E for the CF method, and overestimated by
.2%E for the FS method. For 0� P�1, the comparison error is
verestimated by more than 55%E for the three GCI methods,
nderestimated by 4.6%E for the CF method, and overestimated
y 6.2%E for the FS method. For 1� P�2, the GCI method is
he only one that underestimates the error by 11.2%E. The over-
stimations of the comparison error in this range for the other
ethods are 8.3%E for the GCI1, GCI2, and CF methods and

.1%E for the FS method.

2.3 Uncertainty Estimates. The uncertainty U is defined as
n estimate of an error such that the interval of U,�U, bounds the
rue value of � at a specified level of confidence, which is usually
5% for experimental fluid dynamics and CFD. For comparison
urposes, all the present methods can be written in the form of
=FS��RE�, where in the present context FS is the verification
ethod factor of safety over �RE.
Given an �21 from a grid convergence study, the GCI is derived

y first calculating the error estimate �RE using Eqs. �3� and �4�,
nd then calculating an equivalent �21 that would produce ap-
roximately the same �RE with pRE=2 and r=2. The absolute
alue of that equivalent �21 is the GCI for the fine grid solution,
hich is expressed as �1�

UGCI = FS
��21�

rpRE − 1
= FS��RE� �10�

oache �1� suggested values of FS=3 for two-grid sensitivity
tudies using pth and FS=1.25 for convergence studies with a
inimum of three grids using pRE. Both approaches use a constant

Fig. 2 Effectivity indices for different error estimates

able 1 Summary of mean effectivity indices for different
anges of P values

P No. of points 	GCI 	GCI1,2
	CF 	FS

0� P�2 329 1.332 1.398 0.998 1.042
0� p�1 218 1.558 1.558 0.954 1.062
1� P�2 111 0.888 1.083 1.083 1.001
61403-4 / Vol. 132, JUNE 2010
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factor of safety for all P values, e.g., FS=1.25, as shown in Fig. 3.
Logan and Nitta �8� used the GCI1 method, for which the factor

of safety for the GCI is multiplied by the correction factor for
P�1.

UGCI1
= FS�P,CF���RE� = 	 1.25��RE�, P � 1

1.25CF��RE�, P � 1

 �11�

The GCI2 method �16� is the same as the GCI1 method except
FS=3 instead of 1.25 for P�1.

UGCI2
= FS�P,CF���RE� = 	1.25��RE�, P � 1

3CF��RE�, P � 1

 �12�

The uncertainty for the CF method is estimated by the sum of
the absolute value of the improved error estimate CF��RE� and the
absolute value of the amount of the correction.

UCF = FS�CF���RE�

= 	 �9.6�1 − CF�2 + 1.1���RE�, 0.875 � CF � 1.125

�2�1 − CF� + 1���RE�, 0 � CF � 0.875 or CF � 1.125



�13�

As shown by Wilson et al. �5� and in Fig. 3, the CF method differs
from the GCI method since it provides a variable factor of safety.
The CF method has the “common-sense” advantage in providing
a quantitative metric to determine proximity of the solutions to the
asymptotic range and approximately accounts for the effects of the
higher-order Richardson extrapolation terms. The CF method has
been used in ship hydrodynamics CFD workshops �19�.

The procedure of constructing the uncertainty estimate for the
FS method builds on the CF method, but with significant im-
provements: �1� P is used instead of the correction factor as the
distance metric to the asymptotic range, �2� an improved error
estimate P�RE is used, and �3� three factor of safety coefficients at
P=0 �FS0�, 1 �FS1�, and 2 �FS2� are used instead of the two factor
of safety coefficients. The addition of FS2 enables the removal of
the symmetry assumption for the uncertainty estimate used in the
two earlier versions of the FS method, thereby extending the ap-
plicability of the FS method for P�2. The uncertainty estimate

Fig. 3 Factor of safety for different verification methods with
pth=2 and r=2 for the CF method
for the FS method is

Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



m
3
P
a
r
c
c

v
a
n
v
r
9
s
o

F
m
m

3

f
r
g
t

w
G
f

f

f
fi
o
r
e
u
e

t
p
s
t
g
r
c
o
F

J

Downloa
UFS = FS�P���RE� = 	�FS1P + FS0�1 − P����RE�, 0 � P � 1

�FS1P + FS2�P − 1����RE�, P � 1



�14�

The uncertainty estimate for the GCI method is obtained by
ultiplying the ��RE� by a constant factor of safety, either 1.25 or

. If the same approach is applied for the best error estimate
��RE�, then FS=1.25P or FS=3P. Both approaches are unaccept-
ble for P�1 since FS=0 at P=0 and FS�1 for certain P
anges. For P�1, the factors of safety of both approaches in-
rease linearly with different slopes as P increases, which are not
onservative enough.

2.4 Confidence Levels. For the FS method, the recommended
alues of FS0, FS1, and FS2 are determined using a statistical
nalysis for a large number of samples based on analytical or
umerical benchmarks. The procedure is to determine the smallest
alues of the three coefficients until two criteria are met, i.e.,
eliability is larger than 95% and the lower confidence limit at the
5% confidence level is greater than or equal to 1.2 for all
amples. As a result, FS0=2.45, FS1=1.6, and FS2=14.8 are rec-
mmended and the final form of the FS method is

UFS = FS�P���RE� = 	�2.45 − 0.85P���RE�, 0 � P � 1

�16.4P − 14.8���RE�, P � 1



�15�
or comparison purposes, the statistical analyses for the other four
ethods are also presented. The factors of safety for different
ethods are shown in Fig. 3.

Statistical Analysis
Statistical analysis is based on 25 samples that consist of actual

actor of safety items FSAi
�i=1,N� with different sample sizes N

anging from 5 to 329. The actual factor of safety for the ith
rid-triplet study of a sample is defined as the ratio of the uncer-
ainty estimate Ui to the magnitude of Ei:

FSAi
=

Ui

�Ei�
�16�

here U is defined by Eqs. �10�–�13� and �15� for the GCI, GCI1,
CI2, CF, and FS methods, respectively. The comparison error Ei

or fine grid solution S1i
is

Ei = SAB − S1i
�17�

or an analytical benchmark and

Ei = SNB − S1i
�18�

or a numerical benchmark where SNB is either the solution on the
nest grid or the solution on a very fine grid using a very high-
rder numerical method, which has been considered the “exact” or
eference solution. Similar to the use of the effectivity index to
valuate the accuracy of different error estimates, FSAi

can be
sed as an index to evaluate the conservativeness of U for differ-
nt verification methods.

The error estimate is systematic, but Ei and therefore FSAi
are

reated as items drawn from the statistical and random parent
opulation of possible systematic errors, which are similar to the
ystematic error in experimental fluid dynamics. It is assumed that
here are no correlated systematic errors between the different
rid-triplet studies. The statistical results suggest that this is a
easonable assumption. Since FSAi

are randomly distributed, the
onfidence interval for the mean reveals how close the mean value
f FSAi

, FSA, is to the true mean � of the parent population of
SAi

.

3.1 Reliability. Reliability R is defined as

ournal of Fluids Engineering
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R =

�
i=1

N

number of FSAi
� 1

N
�19�

The reliability used in Ref. �8�, Rsm=1
− �estimated fraction for FSAi

�1−expected fraction for FSAi
�1�, is deficient as it does not discriminate between estimated
fractions with the same distance below or above the expected
fraction.

3.2 Confidence of the Mean Analysis. The confidence of
mean analysis is based on the methodology and procedures sum-
marized in Ref. �20�. If Xi�i=1,N� is the ith item of the sample
with size N, the mean, the standard deviation, and the standard

deviation of the mean of the sample are X̄, SXi
, and SX̄,

respectively.
The true mean � of the parent population at the 95% confidence

level is bounded by X̄−k and X̄+k:

Pr�X̄ − k � � � X̄ + k� � 0.95 �20�

where k is evaluated using the student t-distribution to account for
the effect of a limited number of items,

k = tSX̄ �21�

The lower confidence limit of the mean is defined by

LCL = X̄ − k �22�

3.3 Implementation. The 25 samples are based on 17 studies
that have analytical or numerical benchmarks and cover fluids,
thermal, and structure disciplines, as summarized in Table 2. The
17 studies have 98 variables. The largest sample 3 is for the actual
factors of safety that are obtained by combining the 329 grid-
triplet studies that show monotonic convergence from the 17 stud-
ies. The other samples are obtained by combining subsets of
sample 3 items for different studies, variables, P ranges, and

single P values. For each sample, the reliability, mean value X̄,

coefficient of variation SX̄�%X̄�, and lower confidence limit are
evaluated. It should be noted that the statistical results presented
in Sec. 5 are for the actual factor of safety, i.e., FSAi

in Eq. �16� is

equivalent to Xi such that X̄=FSA, and SXi
=SFSAi

, SX̄=SFSA
. For

convenience of presentation and discussion, both of the nomen-
clatures are used interchangeably.

Sample 1 is for the 17 studies, as shown in Table 3. The actual
factor of safety for each study is obtained by averaging all actual
factors of safety for that study, which may involve different vari-
ables and P values. Sample 2 is for the 98 various verification
variables, as also shown in Table 3. The verification variables are
extracted from the 17 studies and may involve different numbers
of grid-triplet studies. Sample 3 includes all the 329 grid-triplet
studies covering the largest P range, as shown in Table 4. To
evaluate the behavior of the five verification methods at different
distances to the asymptotic range, samples 4–8 are for five differ-
ent P ranges, as also shown in Table 4. The ranges are selected
such that a range very close to the asymptotic range �sample 6�
and four ranges far from the asymptotic range �samples 4, 5, 7,
and 8� are covered with sufficiently large sample sizes. To evalu-
ate the statistics at individual P values, an averaging process is
performed using a tolerance �P=0.01 for sample 3 such that P
values are regarded to be the same if the difference between any
two P values is less than 0.01. A smaller �P value 0.005 is shown
to have limited effects on the statistical results. As a result, there
are 17 individual P values �samples 9–25� ranging from 0.705 to
1.205 where at least five items are available after removing the
outliers, as shown in Table 5.
The number of outliers for samples 9–25 is summarized in
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able 5. The outliers are identified using Peirce’s criterion �21�.
ompared with Chauvenet’s criterion, Peirce’s criterion is more

igorous, does not make an arbitrary assumption concerning the
ejection of data, and theoretically accounts for the case where
here is more than one suspect data.

The optimal values of FS0, FS1, and FS2 are obtained itera-
ively by increasing their values from zero until two criteria are
atisfied. The first criterion is that for all the 25 samples a 95%
eliability is achieved for FSAi

�1,

R � 95% �23�

he second criterion is that the lower confidence limit for FSA at
he 95% confidence level is greater than or equal to a specified

inimum factor of safety FSmin. For practical applications, FSmin
alues are determined based on risk, reliability, accuracy, and cost,
hich show a large variation from 1.2 for new bridges and road
arks to 4.0 for pressure vessels. It is reasonable to choose
Smin=1.2 for the present application. The second criterion be-
omes

Table 2 Analytical and numeric

tudy Geometry Conditions

1 1D wave �6� -
2 2D Laplace �22� -

3 2D driven cavity �23� Re=1000

4
2D natural convection

flows in square cavities �25� Ra=104

5
2D natural convection flows

in square cavities �25� Ra=105

6
2D natural convection flows

in square cavities �25� Ra=106

7 Backward-facing step �26� Re=1.5
105

8 2D driven cavity �29� Re=100
9 2D driven cavity �29� Re=1000
10 3D cubic cavity �29� Re=100

11
Axisymmetric turbulent flow

through a valve �31,32� Re=105

12
1D steady-state

convection-diffusion �33� Pe=1 and Pe=10

13
Isothermal cylinder

enclosed by a square duct �29–31� Ra=106, Pr=10

14
Premixed methane/air laminar

flat flame on a perforated burner �31,34,35�
Inlet temperature

298.2 K

15
Data for “exact”

grid convergence set �8� Contrived

16
Beam bending problem

for second series �8� Second series

17
Beam bending problem

for third series �8� Third series

Table 3 Statistics of the „17… c

ample Factor of safety Average P �P̄� N

1 Means of studies 0.98 17

2 Means of all variables of 17 studies 0.96 98
61403-6 / Vol. 132, JUNE 2010
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Pr�LCL � 1.2� � 0.95 �24�
When the two criteria are met, the smallest values of the three
factor of safety coefficients are accepted. When Eq. �24� is satis-
fied,

Pr�X̄ � 1.2� � 0.95 �25�

Pr�� � 1.2� � 0.95 �26�

4 Analytical and Numerical Benchmarks
The 17 studies are obtained from published journal or confer-

ence proceedings for which either analytical or numerical bench-
marks for various verification variables are available. The 17 stud-
ies cover fluid, thermal and structure disciplines. Geometry,
conditions, verification variables, number of grids, and indication
of analytical or numerical benchmark are summarized in Table 2.

The analytical benchmarks are for the one-dimensional wave,
two-dimensional Laplace, and one-dimensional steady-state

benchmark verification studies

Verification
variables

No.
of grids Benchmark

Wave profile 10 AB
Arbitrary function 26 AB

Maximum/minimum
of stream-function, vorticity 4 NB �24�
aximum or monitored velocity,
location, temperature, and Nu 5 NB �S1�

Maximum or monitored
city, location, temperature, and Nu 6 NB �S1�

Maximum or monitored
city, location, temperature, and Nu 7 NB �S1�
Reattachment length, velocity 7 NB �27,28�

Velocity 5 NB �30�
Velocity 5 NB �30�
Velocity 4 NB �30�

Velocity, TKE, epsilon 5 NB �S1�

Arbitrary function 6 AB

Velocity, temperature 5 NB �S1�

locities, temperature, mass fraction 7 NB �S1�

- 7 AB
Beam bending stress,
beam end deflection

7 with 5
systematically refined AB

Beam bending stress,
beam end deflection 4 AB

studies and all „98… variables

Statistics GCI GCI1 GCI2 CF FS t

R �%N� 94.1 94.1 100 100 100 1.746

X̄ 1.64 1.75 2.42 2.31 3.18

SX̄�%X̄� 9.1 8.6 8.7 13.0 10.4
LCL 1.38 1.49 2.05 1.79 2.60

R �%N� 89.8 92.9 96.9 92.9 100 1.663

X̄ 1.64 1.75 2.45 2.28 3.14

SX̄�%X̄� 5.5 5.1 4.9 7.9 6.1
LCL 1.49 1.60 2.25 1.98 2.82
al
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onvection-diffusion equations and contrived and beam-bending
tructure problems. The fluid and thermal studies are for different
teady-state flows for two-dimensional and three-dimensional ge-
metries and physical phenomena: laminar flows, turbulent flows
sing the two-equation �k-epsilon� turbulence model, and reactive
ows. The analytical studies used first- and second-order upwind
chemes for the convection terms. The fluid and thermal studies
sed second-order central-difference schemes for the diffusion
erms and first-order upwind or high-order SMART schemes for
he convective terms. The types of boundary conditions include
onstant or nonconstant Dirichlet �inlet, wall� and Neumann �axi-
ymmetric, outlet, zero-gradient�. The same grid refinement ratio
=2 was used to generate the systematic grids except for the
wo-dimensional Laplace equation where a fourth root of 2 was
lso used. All solutions were reported to have achieved iterative
onvergence. The solutions in total represent 339 grid-triplet stud-
es. For each grid-triplet study, a grid convergence study is con-
ucted using Eq. �2�, which resulted in a total of 329 solutions that
how monotonic convergence for which pRE, �RE, and SC are
valuated using Eqs. �3�–�5�, respectively. The remaining ten so-
utions were either oscillatory or monotonically divergent.

The manner in which the 98 verification variables approach the
symptotic range as the grids are refined is evaluated for each
erification variable by the convergence characteristics of P and

E� as functions of �xfine /�xfinest, where �xfine is the fine grid-
pacing for an individual grid-triplet study and �xfinest is the finest
rid-spacing. Monotonic convergence is defined by P approaching
ne monotonically, as the grids are refined. Oscillatory conver-
ence is defined by P approaching one with oscillations, as the
rids are refined. In both cases, �E� approaches zero monotoni-
ally. Determination of the convergence characteristics requires a

Table 4 Statistics for different ranges of P v

Sample P N Statistics

3 0–2 �P̄=0.94� 329 R �%N�
X̄

SX̄�%X̄�
LCL

4 0–0.4 �P̄=0.24� 12 �3.65%� R �%N�
X̄

SX̄�%X̄�
LCL

5 0.4–0.9 �P̄=0.70� 81 �24.62%� R �%N�
X̄

SX̄�%X̄�
LCL

6 0.9–1.1 �P̄=0.98� 176 �53.50%� R �%N�
X̄

SX̄�%X̄�
LCL

7 1.1–1.5 �P̄=1.19� 50 �15.20%� R �%N�
X̄

SX̄�%X̄�
LCL

8 1.5–2.0 �P̄=1.63� 10 �3.04%� R �%N�
X̄

SX̄�%X̄�
LCL
inimum of three grid-triplet studies. Ten verification variables
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only have one grid-triplet study with an average P value �P̄� for

the grid-triplet studies for the finest grids P̄finest=1.026. Thirty-
three verification variables have two grid-triplet studies with an

average P̄finest=0.95; however, the errors decrease as the grids are
refined. The other 55 verification variables have multiple grid-
triplet studies ranging from 3 to 24 and show monotonic or oscil-
latory convergence. Seven verification variables show monotonic

convergence with an average P̄finest=0.997 covering studies with
SAB �studies 1 and 2� and SNB �studies 5, 6, and 14�. The remain-
ing 48 verification variables show oscillatory convergence with an

average P̄finest=0.996. The complete results are provided in Ref.
�36�.

5 Statistical Results
The actual factor of safety for sample 3, sample 3 averaged

using �P=0.01, and the upper and lower bands of the confidence
interval FSA� tSFSA

for samples 9–25 are shown in Fig. 4. The
three GCI methods are fairly conservative for P�0.9 where they
show a 93% reliability. The CF and FS methods are more conser-
vative by showing a 96% reliability in this range. Near the
asymptotic range when 0.9� P�1.1, the GCI method has a 93%
reliability, which is a little larger than the CF method but smaller
than the other three verification methods for which the FS method
is the most conservative with a 98% reliability. For P�1.1, the
GCI method is the least conservative with a reliability of 45%.
The GCI1 method is almost as conservative as the CF method and
both show reliability around 76%. The GCI2 method is much
more conservative than the GCI, GCI1, and CF methods with a

es using nonaveraged actual factor of safety

GCI GCI1 GCI2 CF FS t

83.9 90.3 94.2 90.0 96.96 1.645

1.67 1.75 2.39 2.29 3.04

7.8 7.4 5.9 13.1 8.2
1.46 1.54 2.16 1.80 2.63

00 100 100 100 100 1.796

7.34 7.34 7.34 16.40 13.52

29 29 29 31.3 30.8
3.51 3.51 3.51 7.19 6.03

91.4 91.4 91.4 95.1 95.1 1.664

2.01 2.01 2.01 3.07 3.03

6.5 6.5 6.5 8.8 7.3
1.79 1.79 1.79 2.62 2.66

92.6 93.8 95.5 92.0 97.7 1.646

1.34 1.36 1.88 1.25 1.87

2.2 2.2 3.7 2.4 2.1
1.29 1.31 1.76 1.20 1.80

48 76 94 72 96 1.676

1.04 1.36 3.27 1.35 3.74

7.03 6.45 6.45 6.39 6.93
0.92 1.22 2.92 1.21 3.31

30 80 90 90 100 1.833

0.86 1.70 4.08 2.03 7.67

19.8 18.7 18.7 18.4 18.4
0.55 1.12 2.68 1.35 5.08
alu

1

reliability of 93%. Only the FS method shows a reliability larger
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Table 5 Statistics excluding outliers at 17 P values

ample P N No. of outliers Statistics GCI GCI1 GCI2 CF FS t

9 0.705 9 0 R �%N� 100 100 100 100 100 1.86

X̄ 2.08 2.08 2.08 3.05 3.08
SX̄�%X̄� 10.4 10.4 10.4 11.5 10.4

LCL 1.68 1.68 1.68 2.40 2.48

10 0.755 5 0 R �%N� 100 100 100 100 100 2.13

X̄ 1.87 1.87 1.87 2.66 2.71
SX̄�%X̄� 11.2 11.2 11.2 11.3 11.2

LCL 1.43 1.43 1.43 2.02 2.07

11 0.805 15 0 R �%N� 100 100 100 100 100 1.76

X̄ 1.76 1.76 1.76 2.25 2.49
SX̄�%X̄� 5.4 5.4 5.4 6.0 5.4

LCL 1.59 1.59 1.59 2.01 2.26

12 0.855 6 0 R �%N� 100 100 100 100 100 2.02

X̄ 1.58 1.58 1.58 1.83 2.18
SX̄�%X̄� 9.6 9.6 9.6 10.3 9.6

LCL 1.27 1.27 1.27 1.45 1.76

13 0.905 29 0 R �%N� 100 100 100 100 100 1.70

X̄ 1.61 1.61 1.61 1.68 2.17
SX̄�%X̄� 6.8 6.8 6.8 6.7 6.8

LCL 1.42 1.42 1.42 1.49 1.92

14 0.925 5 0 R �%N� 100 100 100 100 100 2.13

X̄ 1.42 1.42 1.42 1.38 1.89
SX̄�%X̄� 3.1 3.1 3.1 4.8 3.1

LCL 1.33 1.33 1.33 1.24 1.76

15 0.945 6 0 R �%N� 100 100 100 100 100 2.02

X̄ 1.37 1.37 1.37 1.27 1.81
SX̄�%X̄� 2.0 2.0 2.0 3.0 2.0

LCL 1.32 1.32 1.32 1.20 1.73

16 0.955 16 0 R �%N� 87.5 87.5 87.5 87.5 100 1.75

X̄ 1.42 1.42 1.42 1.31 1.87
SX̄�%X̄� 6.8 6.8 6.8 7.1 6.8

LCL 1.25 1.25 1.25 1.14 1.64

17 0.965 6 0 R �%N� 100 100 100 100 100 2.02

X̄ 1.46 1.46 1.46 1.32 1.91
SX̄�%X̄� 7.1 7.1 7.1 7.3 7.1

LCL 1.25 1.25 1.25 1.13 1.63

18 0.975 7 0 R �%N� 100 100 100 100 100 1.94

X̄ 1.33 1.33 1.33 1.19 1.73
SX̄�%X̄� 3.6 3.6 3.6 3.8 3.6

LCL 1.24 1.24 1.24 1.10 1.61

19 0.985 9 0 R �%N� 100 100 100 100 100 1.86

X̄ 1.27 1.27 1.27 1.13 1.64
SX̄�%X̄� 1.1 1.1 1.1 1.1 1.1

LCL 1.25 1.25 1.25 1.10 1.60

20 0.995 8 0 R �%N� 100 100 100 87.5 100 1.90

X̄ 1.24 1.24 1.24 1.09 1.59
SX̄�%X̄� 2.0 2.0 2.0 2.0 2.0

LCL 1.19 1.19 1.19 1.05 1.53

21 1.005 56 4 R �%N� 98.2 98.2 98.2 98.2 100 1.68

X̄ 1.32 1.33 2.08 1.16 1.71
SX̄�%X̄� 3.0 3.0 5.6 3.0 3.0

LCL 1.26 1.26 1.88 1.11 1.63

22 1.015 6 0 R �%N� 100 100 100 83.3 100 2.02

X̄ 1.18 1.21 2.90 1.04 1.74
SX̄�%X̄� 2.9 3.0 3.0 3.0 3.6

LCL 1.11 1.14 2.73 0.98 1.62
61403-8 / Vol. 132, JUNE 2010 Transactions of the ASME
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han 96% in this range. The GCI, GCI1, and CF methods are not
onservative enough near the asymptotic range and far from the
symptotic range when P is larger than 1.1. This deficiency is
artly resolved by the GCI2 method, but with a jump of actual
actor of safety at P=1. The FS method completely resolves the
eficiency and has a nearly “symmetric” distribution of actual
actor of safety with respect to the asymptotic range. At those P
alues where the FS method shows an actual factor of safety less
han 1, all the other verification methods show even smaller actual
actor of safety. The FS method estimates uncertainties that bound
he largest fraction of the error and provides a minimum lower
onfidence limit larger than 1.2 for samples 9–25. Overall, the
agnitudes of the differences of the actual factors of safety be-

ween the different verification methods are consistent with the
ifferent magnitudes of factor of safety shown in Fig. 3.

Figures 5�a� and 5�b� show the standard deviation for the mean

X̄ and coefficient of variation SX̄�%X̄�, respectively, for samples
–25. The magnitudes of SX̄ for the different verification methods
re consistent with the magnitudes of the factors of safety shown
n Fig. 3, i.e., larger factor of safety leads to larger SX̄. As a result,
arger differences of SX̄ for the different verification methods are
hown for P�1 than for 0� P�1. Nonetheless, the standard de-
iations for the mean decrease, as the asymptotic range is ap-
roached. The coefficient of variation is a normalized measure of
he dispersion for samples 9–25. The different verification meth-

ds show small differences at each P value for SX̄�%X̄� that de-
rease as the asymptotic range is approached.

Table 3 shows the statistics for samples 1 and 2. Based on the

7 studies, P̄ is 0.98. The GCI2, CF, and FS methods achieve
00% reliability. The GCI and GCI1 methods achieve 94.1% re-
iability. The mean values of the actual factors of safety for the 17
tudies increase from the minimum value of 1.64 for the GCI
ethod to the maximum value of 3.18 for the FS method. The
inimum and maximum coefficients of variation are 8.6 and 13.0

or the GCI1 and CF methods, respectively. Based on the 98 vari-

bles, P̄ is 0.96. The reliability for the GCI method is 89.8%.
nly the FS and GCI2 methods have reliabilities larger than 95%.
ompared with the statistics of sample 1, sample 2 shows that the
ean values of the actual factors of safety for all the verification
ethods are almost the same; however, the coefficient of variation

or sample 2 is much lower than that for sample 1 since sample 2
as a much larger sample size. For all the verification methods,
he lower confidence limits are larger than 1.2 for both samples 1
nd 2.

In order to highlight the dependence of the different verification
ethods on different P ranges, Table 4 shows the statistics for

Table 5

ample P N No. of outliers Statistics

23 1.055 6 0 R �%N�
X̄

SX̄�%X̄�
LCL

24 1.105 13 2 R �%N�
X̄

SX̄�%X̄�
LCL

25 1.205 12 1 R �%N�
X̄

SX̄�%X̄�
LCL
amples 3–8 based on six different P ranges. For sample 3 �0
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� P�2�, only the FS method achieves reliability larger than 95%.
The GCI method achieves the lowest reliability at 83.9%. For
sample 4 �0� P�0.4�, all verification methods show a 100% re-
liability. For sample 5 �0.4� P�0.9�, the three GCI methods
achieve a 91.4% reliability and the CF and FS methods achieve a
reliability larger than 95%. For sample 6 �0.9� P�1.1�, only the
GCI2 and FS methods achieve a 95% reliability. Examination of
18.2% of the data for 1.1� P�2.0, which cover samples 7 and 8,
shows that only the FS method achieves a 95% reliability. The
reliability for the GCI method is 45% in this range. Based on the
means, the most conservative verification methods for samples 3,
7, and 8, samples 4 and 5, and sample 6 are the FS, CF, and GCI2
methods, respectively. For sample 3, the lower confidence limit is
larger than 1.2 for all the verification methods; however, only the
GCI2, CF, and FS methods satisfy that the lower confidence limit
is greater than or equal to 1.2 for all the P ranges.

In order to evaluate the performance of the different verification
methods at individual P values, Table 5 shows the statistics at the
17 P values �samples 9–25� ranging from 0.705 to 1.205. For
samples 9–19 �P�0.99�, all the verification methods achieve
100% reliability except at P=0.955 where only the FS method
achieves such a level. For samples 20–23 �P�1�, all the verifi-
cation methods achieve reliabilities larger than 95% except the CF
method for samples 20 and 22. For samples 24 and 25 �P�1�,
only the GCI2 and FS methods achieve reliabilities larger than
95%. Based on the means, the most conservative verification
method for samples �9–20 and 25� and samples 21–24 are the FS
and GCI2 methods, respectively. Only the FS method satisfies the
requirement that the lower confidence limit is larger than 1.2 for
samples 9–25. The samples for which the lower confidence limits
are less than 1.2 are 20, 22, 24, and 25 for the GCI and GCI1
methods, 20 for the GCI2 method, and 16–25 except 23 for the
CF method. The results indicate that the ranges of P values,
where the verification methods are not conservative enough, are
P�1 for the GCI, GCI1, and CF methods and P�1 for the GCI2
method.

6 Example for Ship Hydrodynamics Applications
To evaluate the performance of the different verification meth-

ods for practical applications, the verification study by Xing et al.
�37� is used. The application is the development of computational
towing tank procedures for single run curves of resistance and
propulsion for the high-speed transom ship Athena with and with-
out appendages. Verification variables are the total resistance co-
efficient CTX, sinkage, and trim. Seven grids are systematically
generated using r=20.25, i.e., from the coarsest grid 7 with

6

ntinued.…

CI GCI1 GCI2 CF FS t

0 100 100 100 100 2.02

1.66 1.83 4.39 1.59 3.25
9.0 8.9 8.9 8.8 8.6
1.36 1.50 3.60 1.31 2.68

1.5 76.9 100 61.5 100 1.78

1.32 1.52 3.65 1.38 3.43
4.4 14.1 14.1 13.9 14.3
0.98 1.14 2.73 1.04 2.56

8.3 83.3 100 83.3 100 1.80

1.04 1.38 3.32 1.38 4.08
8.9 8.9 8.9 9.1 8.9
0.88 1.16 2.79 1.16 3.43
„Co

G

10

6

1

5

360,528 points to the finest grid 1 with 8.1
10 points. This
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Fig. 4 Actual factor of safety for sample 3, sample 3 averaged using �P=0.01, and FSA± tSFSA
for samples 9–25: „a… GCI

method, „b… GCI method, „c… GCI method, „d… CF method, and „e… FS method
1 2
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llows nine grid-triplet studies with five for r=20.25 �5, 6, 7; 4, 5,
; 3, 4, 5; 2, 3, 4; and 1, 2, 3�, three for r=20.5 �3, 5, 7; 2, 4, 6; and
, 3, 5�, and one for r=20.75 �1, 4, 7�. The average iterative errors
re at least one order-of-magnitude smaller than the grid uncer-
ainty UG except for the two finest grids, which indicates that
eparating the iterative error and UG for fine grids can be prob-
ematic. The convergence studies show that the motions converge

ore slowly than the resistance. Six grid-triplet studies show
onotonic convergence for CTX, whereas only two and four grid-

riplet studies show monotonic convergence for the sinkage and
rim, respectively.

All the grid-triplet studies that show monotonic convergence
re presented in Table 6 for the total resistance coefficient CTX and
able 7 for the sinkage and trim. Overall the P values vary

Fig. 5 Standard deviation for the mean SX̄ and coefficient

Table 6 Verification study for CTX of Athena b
is %S1 and CTX is based on the static wetted

Grids Refinement ratio R P

2, 4, 6 20.5 0.63 0.66
1, 3, 5 20.5 0.40 1.33
4, 5, 6 20.25 0.97 0.08
3, 4, 5 20.25 0.80 0.63
2, 3, 4 20.25 0.60 1.49
1, 2, 3 20.25 0.50 2.00

Table 7 Verification study for motions of Athena bar

arameter Grids Refinement ratio R

inkage 1, 3, 5 20.5 0.31
inkage 2, 3, 4 20.25 0.13
rim 1, 3, 5 20.5 0.48
rim 4, 5, 6 20.25 0.86
rim 2, 3, 4 20.25 0.53
rim 1, 2, 3 20.25 0.53
ournal of Fluids Engineering
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greatly, which is typical for industrial applications. When P is less
than 1, the three GCI methods estimate the same UG, which are
smaller than the UG estimated by the CF and FS methods. The CF
method is more conservative than the FS method for P�0.5 and
less conservative than the FS method when 0.5� P�1. When P
is larger than 1, but close to the asymptotic range, i.e., P=1.06 for
the trim on grids �1, 3, and 5�, the GCI2 method is the most
conservative, followed by the FS, GCI1, GCI, and CF methods.
When P is much larger than 1, the FS method is the most conser-
vative, followed by the GCI2, CF, GCI1, and GCI methods. Grid
uncertainties estimated by the GCI, GCI1, and CF methods are
unreasonably small when P�1 due to the deficiency already dis-
cussed, which is resolved using the GCI2 and FS methods.

variation SX̄„%X̄… for samples 9–25: „a… SX̄ and „b… SX̄„%X̄…

hull with skeg at a Froude number of 0.48. UG
a.

UG
�%�

CI GCI1 GCI2 CF FS

3.34 3.34 3.34 4.90 5.04
0.72 1.09 2.61 1.16 4.02
4.7 54.7 54.7 125.2 104.2
4.98 4.98 4.98 7.23 7.62
1.07 1.75 4.21 1.95 8.30
0.36 0.87 2.10 1.11 5.22

ull with skeg at a Froude number of 0.48. UG is %S1.

UG
�%�

GCI GCI1 GCI2 CF FS

0.64 1.45 3.47 1.80 6.73
0.05 0.88 2.11 1.37 3.49
4.12 4.49 10.78 3.88 8.74

24.42 24.42 24.42 42.87 40.48
3.35 7.25 17.40 8.92 41.48
1.73 3.77 9.04 4.64 21.62
of
are
are

G

5

e h

P

1.70
6.01
1.06
0.45
1.85
1.85
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Conclusions
A factor of safety method for quantitative estimates of grid-

pacing and time-step uncertainties for solution verification is de-
eloped. It removes the two deficiencies of the GCI and CF meth-
ds, namely, unreasonably small uncertainty when pRE� pth and
ack of statistical evidence that the interval of uncertainty at the
5% confidence level bounds the comparison error. Different error
stimates are evaluated using the effectivity index. The uncer-
ainty estimate builds on the correction factor method, but with
ignificant improvements. The FS method is validated using sta-
istical analysis of 25 samples with different sizes ranging from 5
o 329 based on 17 studies covering fluids, thermal, and structure
isciplines.

The statistical results show that only the FS method, compared
ith the GCI, GCI1, GCI2, and CF methods, provides a reliability

arger than 95% and a lower confidence limit at the 95% confi-
ence level greater than or equal to 1.2 for the true mean of the
arent population of the actual factor of safety. This conclusion is
rue for different studies, variables, ranges of P values, and single

values where multiple actual factors of safety are available.
The statistical analysis is based on 25 samples of grid-triplet

tudies that show monotonic convergence with SAB or SNB solu-
ions covering a wide range of P values that is within or far from
he asymptotic range. The SAB or SNB are required for validation in
rder to evaluate the comparison error and actual factor of safety
or all the grid-triplet studies. The number of samples and items
re large and the range of P values is wide such that the FS
ethod is also valid for other applications including results not in

he asymptotic range, which is typical in industrial and fluid en-
ineering applications.

The confidence level in the results is based on the 17 studies, 98
ariables, and 329 grid-triplet studies that show monotonic con-
ergence published in journal articles or conference proceedings.
urther evaluation and development of the FS method should be
erformed by adding additional rigorous verification studies with
AB or SNB as they become available, especially those for indus-
rial applications that demonstrate that the asymptotic range is
chieved when grids are refined. This has two main benefits: �1�
educed SX̄ and thus k for X̄ at different P values and �2� chi-
quare analysis for evaluation of the validity of the assumption of
he student t-distribution.

The present statistical approach based on many analytical and
umerical benchmarks provides a robust framework for develop-
ng solution verification methods. There are other unresolved is-
ues and complex factors such as mixed numerical methods,
oupled numerical and modeling errors for large-eddy and
etached-eddy simulations, and single-grid methods. Even though
nly a small fraction �2.1%� of the data are outliers, it is worthy to
nvestigate the reason.
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omenclature
CTX � total resistance coefficient

E � comparison error
FSA � actual factor of safety

N � sample size
P= pRE / pth � distance metric to the asymptotic range

P̄ � average P value
Pr � probability

pRE � estimated order of accuracy

pth � theoretical order of accuracy
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R � convergence ratio
R � reliability

Rsm � reliability �8�
r � refinement ratio

SAB � analytical benchmark
SC � Richardson extrapolation numerical benchmark

SNB � numerical benchmark
Si � solution on the ith grid

SXi � standard deviation of the sample
SX̄ � standard deviation of the mean

SX̄�%X̄� � coefficient of variation
T � true value
U � uncertainty

UG � grid uncertainty

X̄ � mean value
Xv�

2
� reduced chi-square

�x � grid-spacing
�xfine � fine grid-spacing for an individual grid-triplet

study
�xfinest � finest grid-spacing for a verification variable

� � error estimate
� � solution change
� � true mean of the parent population
	 � effectivity index
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