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Abstract In this paper, a brand-new wavelet-homotopy Galerkin technique is devel-

oped to solve nonlinear ordinary or partial differential equations. Before this investigation,

few studies have been done for handling nonlinear problems with non-uniform boundary

conditions by means of the wavelet Galerkin technique, especially in the field of fluid me-

chanics and heat transfer. The lid-driven cavity flow and heat transfer are illustrated as

a typical example to verify the validity and correctness of this proposed technique. The

cavity is subject to the upper and lower walls’ motions in the same or opposite directions.

The inclined angle of the square cavity is from 0 to π/2. Four different modes including

uniform, linear, exponential, and sinusoidal heating are considered on the top and bottom

walls, respectively, while the left and right walls are thermally isolated and stationary.

A parametric analysis of heating distribution between upper and lower walls including

the amplitude ratio from 0 to 1 and the phase deviation from 0 to 2π is conducted. The

governing equations are non-dimensionalized in terms of the stream function-vorticity

formulation and the temperature distribution function and then solved analytically sub-

ject to various boundary conditions. Comparisons with previous publications are given,

showing high efficiency and great feasibility of the proposed technique.
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1 Introduction

In recent years, fundamental problems of mixed convection heat transfer involving natural
and forced convection in lid-driven cavities have received considerable attention in science and
engineering. Practical applications of such cavity flows could be found in atmospheric flow[1],
lakes and reservoirs[2], nuclear reactors[3], chemical equipment[4], lubrication grooves[5], solar
collectors[6], solidification process[7], and float grass production[8].

Mixed convection in a lid-driven cavity is difficult to analyze since its governing equations
are coupled partial differential equations. The flow governing dimensionless parameter is the
Richardson number Ri = Gr/Re2, which is defined as the ratio between the Grashof number
Gr and the square of the Reynolds number Re, where they represent the relative strength of the
natural and forced convection flow effects[9]. The combined shear and buoyancy-driven convec-
tion is categorized into pure forced convection flow (Ri≪ 1), natural convection (Ri≫ 1), and
mixed one for Ri = 0.1 ∼ 10, of which the former two regimes are the limiting cases. Therefore,
it is of great significance to understand intensively the mechanism of mixed convection.

Various configurations of mixed convection cavity flows have been investigated. For example,
the upper lid-driven case was investigated in Refs. [10]–[21]. Both the top and bottom lid-driven
cases were discussed in Refs. [22]–[26]. The inclination case was studied in Refs. [27]–[31]. There
were also many investigations on mixed convection flow with non-uniform heated boundaries
that are commonly found in the industrial process. For example, Basak et al.[32–34] carried
out a series of studies on mixed convection in the lid-driven cavity with linear distribution of
temperature at vertical sides or sinusoidal type[35] at the bottom. More studies were carried
out by Sivasankaran et al.[36–37], Hsu and Wang[38], Al-Amiri and Khanafer[39], Abu-Nada and
Chamkha[40], and Nasrin and Parvin[41].

In the above-mentioned studies, many different numerical techniques have been applied,
such as the finite difference method[9], the finite volume method (FVM)[33,42], and the pseudo-
spectral collocation method[43], while no wavelet technique was used. It is known that the
wavelet technique has great excellence for illustration of the local details of solutions, which
has been successively applied in many different fields, including signal analysis[44], fluid[45], and
solid[46] mechanics. It is reasonable to suppose that this technique has better capability than
other approaches to show the detailed information of vortexes and eddies. However, by now,
the wavelet technique has rarely been used to solve nonlinear problems in fluid mechanics and
heat transfer, owing to complex governing equations and boundary conditions. To overcome
its major limitation, we introduce the homotopy idea to the Coiflets-type wavelet. This idea
has been proved practicably. Several successful examples can be found in Refs. [47]–[49]. How-
ever, all of those examples were confined to handle nonlinear problems subject to homogeneous
boundary conditions. None has been done on nonlinear problems with nonhomogeneous bound-
ary conditions, which are obviously often encountered in the research of fluid mechanics and
heat transfer.

In this paper, we shall extend the wavelet homotopy analysis method (wHAM) to the clas-
sical cavity flow and heat transfer problem. Similar studies have not been reported in the
literature, as far as we know. The general case of the convective heat transfer in a cavity is
considered. The cavity is placed on a slope with the upper and lower walls moving at constant
speeds simultaneously. Both moving walls are subject to four different heating modes, includ-
ing uniform, linear, exponential, and sinusoidal distributions. Comparisons with the previous
results are given to testify the validity and correctness of our proposed technique. Detailed
parametric investigations of nonuniform boundaries, amplitude ratio, phase deviation of tem-
perature, and inclination of cavity are carried out for this generalized problem.

2 Mathematical description

A two-dimensional square cavity of length H is placed on a slope of inclined angle γ with
its top and bottom walls moving at constant speeds U0 and λU0 in the same or opposite
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directions and heating non-uniformly. The sketch is shown in Fig. 1, where the origin of the
Cartesian coordinate system is at the bottom left corner with the x- and y-axes along the length
and height of the cavity, respectively. Non-uniform temperature distributions are imposed on
both horizontal walls of the enclosure. λ = 0 indicates that the bottom lid is stationary.
λ = 1 and λ = −1 mean that the horizontal walls move in the same or opposite directions,
respectively. It is assumed that the viscous dissipation and heat radiation are neglected. It is
also assumed that the fluid properties are constant and laminar so that the conservations of
mass, momentum, and energy are satisfied. The density variation is modeled according to the
Boussinesq approximation, in which the variations in fluid properties other than the density are
ignored, and the density ρ only appears when it is multiplied by the gravitational acceleration
linearized with the temperature,

ρ = ρ0(1 − β(T − T0)), (1)

where β is the thermal expansion coefficient, and ρ0 and T0 denote the reference state.

λ

Fig. 1 Schematic diagram of inclined cavity with heat transfer

Since the flow transients are always smooth, the steady mixed convection flow in a square
cavity makes sense compared with the unsteady one which plays an important role in the
configurations[10]. With those assumptions, the governing equations are written as follows.

The continuity equation is

∂U

∂X
+
∂V

∂Y
= 0. (2)

The momentum equations in the X- and Y -directions are

U
∂U

∂X
+ V

∂U

∂Y
= −

1

ρ

∂P

∂X
+ ν

( ∂2U

∂X2
+
∂2U

∂Y 2

)
− β(T − T0)g sin γ, (3)

U
∂V

∂X
+ V

∂V

∂Y
= −

1

ρ

∂P

∂Y
+ ν

( ∂2V

∂X2
+
∂2V

∂Y 2

)
− β(T − T0)g cos γ. (4)

The thermal energy transport equation without internal heat production is

U
∂T

∂X
+ V

∂T

∂Y
=

k

ρcp

( ∂2T

∂X2
+
∂2T

∂Y 2

)
. (5)
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The appropriate boundary conditions are




U = λU0, V = 0, T = Tb(X) on Y = 0,

U = U0, V = 0, T = Tt(X) on Y = H,

U = 0, V = 0,
∂T

∂Y
= 0 on X = 0,

U = 0, V = 0,
∂T

∂Y
= 0 on X = H.

(6)

Here, U and V are the velocity components in the X- and Y -directions, respectively, P is the
pressure, T is the temperature, Tt(X) and Tb(X) are the temperature distributions on the top
and bottom walls, respectively, g is the acceleration of gravity, and k and cp denote the thermal
conductivity and the specific heat, respectively.

Substituting the following vorticity-stream function formulation

U =
∂Ψ

∂Y
, V = −

∂Ψ

∂X
, Ω =

∂V

∂X
−
∂U

∂Y
(7)

and the following dimensionless variables




x =
X

H
, y =

Y

H
, u =

U

U0
, v =

V

U0
,

ψ =
Ψ

U0H
, ω =

ΩH

U0
, θ =

T − T0

∆T

(8)

into the above governing equations, the dimensionless governing equations are obtained,

∂ψ

∂y

∂ω

∂x
−
∂ψ

∂x

∂ω

∂y
=

1

Re

(∂2ω

∂x2
+
∂2ω

∂y2

)
+

Gr

Re2

( ∂θ
∂x

cos γ −
∂θ

∂y
sin γ

)
, (9)

∂ψ

∂y

∂θ

∂x
−
∂ψ

∂x

∂θ

∂y
=

1

RePr

(∂2θ

∂x2
+
∂2θ

∂y2

)
, (10)

where the Reynolds number Re, the Grashof number Gr, and the Prandtl number Pr are
defined by

Re =
U0H

ν
=
ρfU0H

µ
, Gr =

βg∆TH3

ν2
, P r =

ν

α
, (11)

in which α, ν, and ∆T denote the thermal diffusivity, the dynamic viscosity, and the reference
temperature difference, respectively.

Finally, we eliminate the vortices ω to obtain the final coupled dimensionless differential
equations,

∇4ψ −RiRe
(∂θ
∂x

cos γ −
∂θ

∂y
sin γ

)
+ReN [ψ, ψ] = 0, (12)

∇2θ + PrRe
(∂ψ
∂x

∂θ

∂y
−
∂ψ

∂y

∂θ

∂x

)
= 0 (13)

subject to the boundary conditions





ψ = 0,
∂ψ

∂y
= λ, θ = θb(x) on y = 0,

ψ = 0,
∂ψ

∂y
= 1, θ = θt(x) on y = 1,

ψ = 0,
∂ψ

∂x
= 0,

∂θ

∂x
= 0 on x = 0,

ψ = 0,
∂ψ

∂x
= 0,

∂θ

∂x
= 0 on x = 1,

(14)
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whereRi = Gr/Re2 is the Richardson number, ∇2 is the Laplace operator, ∇4 is the Biharmonic
operator, elaborated in the Cartesian coordination system by

∇4 = ∇2∇2 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
,

and the nonlinear operator N for arbitrary functions F and G is

N [F,G] =
∂F

∂x

∂3G

∂x2∂y
+
∂F

∂x

∂3G

∂y3
−
∂F

∂y

∂3G

∂x3
−
∂F

∂y

∂3G

∂x∂y2
.

It is known that the no-slip boundary conditions (14) have been widely used to describe one side
or two-side lid-driven cavities. However, there are non-physical singularities at four corners,
which have to be considered in the computation.

The local Nusselt number Nu = −∇θ ·n = − ∂θ
∂n

is a key factor to measure the heat transfer
rate, which can be defined as

Nub =
∂θ

∂y

∣∣∣∣
y=0

, Nut = −
∂θ

∂y

∣∣∣∣
y=1

, (15)

where Nub and Nut are the Nusselt numbers on the bottom and top walls, respectively.
The average Nusselt numbers along the horizontal surfaces demonstrating the level of heat

transfer rate are defined by

Nub =

∫ 1

0

Nubdx, Nut =

∫ 1

0

Nutdx. (16)

3 Wavelet-homotopy technique

In the generalized orthogonal Coiflet system, when an arbitrary function f(x) is approxi-
mated by the Coiflets, the approaching precision only depends on its resolution level and wavelet
properties irrelevant to f(x). Hence, the generalized orthogonal Coiflet basis can be employed
as the expression functions for approximating solutions of nonlinear problems to be solved. In
doing so, the governing equations (12) and (13) are first transformed into a group of linear
ones by the homotopy analysis method (HAM) technique. The highly accurate generalized
orthogonal Coiflet series solutions are given by the wavelet Galerkin method.
3.1 Linearization

The linearization of the nonlinear systems (12) and (13) is fulfilled by means of the HAM
via constructing the zero deformation equations,

(1 − p)Lψ[Φ(x, y; p) − Φ(x, y; 0)] = p c1Nψ[Φ(x, y; p),Θ(x, y; p)], (17a)

(1 − p)Lθ[Θ(x, y; p) − Θ(x, y; 0)] = p c2Nθ[Φ(x, y; p),Θ(x, y; p)], (17b)

where p ∈ [0, 1] is an embedding parameter, Lψ and Lθ are the linear operators, c1 and c2 are
the convergence-control parameters, Φ(x, y; p) and Θ(x, y; p) are the mappings of ψ(x, y) and
θ(x, y), and Nψ[Φ,Θ] and Nθ[Φ,Θ] are the nonlinear operators defined by

Nψ[Φ,Θ] = ∇4Ψ −RiRe
(∂Θ

∂x
cos γ −

∂Θ

∂y
sin γ

)
+ReN [Ψ,Ψ], (18a)

Nθ[Φ,Θ] = ∇2Θ + PrRe
(∂Ψ

∂x

∂Θ

∂y
−
∂Ψ

∂y

∂Θ

∂x

)
. (18b)
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For p = 0 and p = 1, we have

{
Ψ(x, y; 0) = ψ0(x, y), Ψ(x, y; 1) = ψ(x, y),

Θ(x, y; 0) = θ0(x, y), Θ(x, y; 1) = θ(x, y).
(19)

It should be pointed that as p varies from 0 to 1, the initial guesses ψ0 and θ0 are transformed
to the desired solutions ψ and θ. Therefore, the Taylor expansions for Ψ and Θ with respect to
p are illustrated as

Ψ(x, y; p) = ψ0(x, y) +

+∞∑

M=1

ψM (x, y)pM , (20)

Θ(x, y; p) = θ0(x, y) +
+∞∑

M=1

θM (x, y)pM , (21)

where 



ψM (x, y) =
1

M !

∂MΨ(x, y; p)

∂pM

∣∣∣∣
p=0

,

θM (x, y) =
1

M !

∂MΘ(x, y; p)

∂pM

∣∣∣∣
p=0

.

(22)

The auxiliary linear operators, the initial guesses, and the convergence control parameters
are appropriately selected so that the Taylor series converge at p = 1. The homotopy series
solutions are determined as

ψ(x, y) = ψ0(x, y) +

+∞∑

M=1

ψM (x, y)pM , (23)

θ(x, y) = θ0(x, y) +

+∞∑

M=1

θM (x, y)pM . (24)

Differentiating Eqs. (17a) and (17b) M times with respect to p, then dividing them by M !,
and finally setting p = 0, we obtain the Mth-order deformation equations,

Lψ(ψM − κMψM−1) = c1(∇
4ψM−1 + SθM−1 +RψM ), (25)

Lθ(θM − κMθM−1) = c2(∇
2θM−1 +RθM ), (26)

where

SθM−1 = −RiRe
(∂θM−1

∂x
cos γ −

∂θM−1

∂y
sin γ

)
,

RψM = Re
M−1∑

s=0

N (ψs, ψM−1−s),

RθM = PrRe

M−1∑

s=0

(∂ψs
∂x

∂θM−1−s

∂y
−
∂ψs
∂y

∂θM−1−s

∂x

)

with

κM =

{
0, M 6 1,

1, M > 1.
(27)
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3.2 Generalized orthogonal Coiflets selection

Following Liu et al.[50] and Zhou and Wang[51], an arbitrary function f̃(x) is approximated
by Coiflets,

f̃(x) ≈
2j−1+M1∑

k=2−3N+M1

f̃
( k

2j

)
φ(2jx− k +M1), (28)

where N is the vanishing moment, M1 is the first-order vanishing moment, and φ is the wavelet
basis. Note that the coefficients of Coiflets series are the approximate values of the function
middle points. In order to include nonhomogeneous boundary information into the Coiflets,
inspired by Liu et al.[50] and Zhou and Wang[51], we construct the boundary Coiflets by adding
the spline functions to make up for the missing derivative information on boundaries, which
can be written as

f̂(x) =






3∑

k=0

(
fj,kT0,k(x) +

α0,k

k!
xk

)
, x ∈ (−δ, 0),

f(x), x ∈ [0, 1],

3∑

k=0

(
fj,2j−kT1,k(x) +

α1,k

k!
(x− 1)k

)
, x ∈ (1, 1 + δ),

(29)

where T0,k(x) and T1,k(x) are the modification functions

T0,k(x) =

3∑

i=0

(p0
i,k

i!

)
xi, T1,k(x) =

3∑

i=0

(p1
i,k

i!

)
(x− 1)i, (30)

in which p0
i,k and p1

i,k are coefficients, determined by the following coefficient matrices P
c
0 and

P c
1 :

P
c
0 =




1 0 0 0
−11/6 3 −3/2 1/3

2 −5 4 −1
−1 3 −3 1


 , P

c
1 =




1 0 0 0
11/6 −3 3/2 −1/3

2 −5 4 −1
1 −3 3 −1


 .

On substitution of Eq. (29) into Eq. (28), we finally obtain

f(x) =





3∑

k=0

fj,k

( −1∑

i=2−3N+M1

T0,k

( i

2j

)
φj,i + φj,k

)

+

3∑

k=0

α0,k

k!

( −1∑

i=2−3N+M1

( i

2j

)k
φj,i

)
, k ∈ [0, 3],

2j−4∑

k=4

fj,kφj,k, k ∈ [4, 2j − 4],

2j∑

k=2j−3

fj,k

( 2j−1+M1∑

i=2j+1

T1,2j−k

( i

2j

)
φj,i + φj,k

)

+

3∑

k=0

α1,k

k!

( 2j−1+M1∑

i=2j+1

( i

2j
− 1

)k
φj,i

)
, k ∈ [2j − 3, 2j],

(31)

where
φj,i = φ(2jx− i+M1), φj,k = φ(2jx− k +M1).
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Taking Eq. (31) into account, the targeted approximation of f(x) is divided into two parts.
One is the generalized Coiflets with the polynomial interpolation modifications, written by

ϕj,k(x) =





−1∑

i=2−3N+M1

T0,k

( i

2j

)
φj,i + φj,k, k ∈ [0, 3],

2j−4∑

k=4

φj,k, k ∈ [4, 2j − 4],

2j−1+M1∑

i=2j+1

T1,2j−k

( i

2j

)
φj,i + φj,k, k ∈ [2j − 3, 2j].

(32)

The other is the boundary wavelets expressed by





̟0
j,a(x) =

−1∑

i=2−3N+M1

1

a!

( i

2j

)a
φj,i,

̟1
j,a(x) =

2j−1+M1∑

i=2j+1

1

a!

( i

2j
− 1

)a
φj,i,

(33)

where the superscripts 0 and 1 correspond to the left and right boundaries, respectively, and
the subscript a relates to orders.
3.3 Coiflets selection and approaching process

Taking the inhomogeneous boundary conditions (14) into consideration, we need to construct
the appropriate Coiflets to approximate ψ and θ. The procedure is listed below.

Firstly, we determine the quantities of needful types of Coiflets by defining the following
boundary matrices:

hψ,xj,k (x) = ϕj,k(x)|p0,1,i→0,p1,1,i→0, hψ,yj,l (y) = ϕj,l(y)|p0,1,i→0,p1,1,i→0, (34)

hθ,xj,k (x) = ϕj,k(x)|p0,1,i→0,p1,1,i→0, hθ,yj,l (y) = ϕj,l(y). (35)

Thus, the boundary Coiflets related to the different orders of derivative are subject to the
nonhomogeneous Neumann boundaries,

̟j,b(x) = ̟0
j,1(x), ̟j,t(x) = ̟1

j,1(x). (36)

As a result, the dimensionless stream function and the temperature for Mth-order solutions
are expressed by Coiflets as

ψM (x, y) ≈
2j−1∑

k′=1

2j−1∑

l′=1

ψM

( k′
2j
,
l′

2j

)
hψ,xj,k′(x)h

ψ,y
j,l′ (y) + (1 − χM+1)Bψ(x, y), (37)

θM (x, y) ≈
2j∑

k=0

2j−1∑

l′=1

θM

( k

2j
,
l′

2j

)
hθ,xj,k (x)ϕθ,yj,l′ (y) + (1 − χM+1)Bθ(x, y), (38)

where the boundary parts Bψ(x, y) and Bθ(x, y) correspond to the Dirichlet and Neumann
types, 




Bψ(x, y) =

2j∑

k=0

hψ,xj,k (x)(λ̟j,b(y) +̟j,t(y)),

Bθ(x, y) =

2j∑

k=0

hθ,xj,k (x)
(
θb

( k

2j

)
ϕθ,yj,0 (y) + θt

( k

2j

)
ϕθ,y
j,2j (y)

)
.

(39)
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According to the general Gaussian integration method[51], the linear and nonlinear operators
L and N acting on the approximating functions are converted to

R[f̃(x)] ≈ R[P j f̃(x)] =

2j−1+M1∑

k=2−3N+M1

f̃
( k

2j

)
R[ϕj,k(x)], R = L,N . (40)

Therefore, based on the above criterion, the fields of vorticity and velocity in the x- and
y-directions are reconstituted by

ω(x, y) = −
2j−1∑

k′=1

2j−1∑

l′=1

ψ
( k′

2j
,
l′

2j

)
(h

(2)
j,k′(x)hj,l′ (y) + hj,k′(x)h

(2)
j,l′(y)) +Bω, (41)

u(x, y) =

2j−1∑

k′=1

2j−1∑

l′=1

ψ
( k′

2j
,
l′

2j

)
hj,k′(x)h

(1)
j,l′ (y) +Bu, (42)

v(x, y) = −
2j−1∑

k′=1

2j−1∑

l′=1

ψ
( k′

2j
,
l′

2j

)
h

(1)
j,k′(x)hj,l′ (y) +Bv, (43)

where the boundary parts are

Bω = −
2j∑

k=0

h
(2)
j,k(x)(λ̟j,b(y) + ωj,t(y)) + hj,k(x)(λ̟

(2)
j,b(y) +̟

(2)
j,t (y)),

Bu =

2j∑

k=0

hj,k(x)(λ̟
(1)
j,b(y) +̟

(1)
j,t (y)),

Bv = −
2j∑

k=0

h
(1)
j,k(x)(λ̟j,b(y) +̟j,t(y)).

Finally, we substitute Eq. (38) into Eqs. (15) and (16) to define Coiflets constitution of local
and average Nusselt numbers,






Nub(x) =
2j∑

k=0

hj,k(x)
2j−1∑

l′=1

θ
( k

2j
,
l′

2j

)
ϕ

(1)
j,l′(0) +Bb

Nu,

Nut(x) = −
2j∑

k=0

hj,k(x)

2j−1∑

l′=1

θ
( k

2j
,
l′

2j

)
ϕ

(1)
j,l′(1) +Bt

Nu,

(44)






Nub =

2j∑

k=0

h̃j,k

2j−1∑

l′=1

θ
( k

2j
,
l′

2j

)
ϕ

(1)
j,l′(0) +Bb

Nu
,

Nut = −
2j∑

k=0

h̃j,k

2j−1∑

l′=1

θ
( k

2j
,
l′

2j

)
ϕ

(1)
j,l′(1) +Bt

Nu
,

(45)
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where

Bb
Nu =

2j∑

k=0

hj,k(x)
(
θb

( k

2j

)
ϕ

(1)
j,0(0) + θt

( k

2j

)
ϕ

(1)
j,2j (0)

)
,

Bt
Nu = −

2j∑

k=0

hj,k(x)
(
θb

( k
2j

)
ϕ

(1)
j,0 (1) + θt

( k

2j

)
ϕ

(1)
j,2j (1)

)
,

Bb
Nu

=

2j∑

k=0

h̃j,k

(
θb

( k

2j

)
ϕ

(1)
j,0(0) + θt

( k

2j

)
ϕ

(1)
j,2j (0)

)
,

Bt
Nu

= −
2j∑

k=0

h̃j,k

(
θb

( k
2j

)
ϕ

(1)
j,0 (1) + θt

( k

2j

)
ϕ

(1)
j,2j (1)

)
,

h̃j,k =

∫ 1

0

hj,k(x)dx.

Finally, linear operators are selected as Lψ = ∇4 and Lθ = ∇2. We construct the iterating
equations by substituting Eqs. (37) and (38) into the high order HAM deformation equations
(25) and (26), with the consideration of criterion Eq. (40). Detailed precesses are illustrated in
Appendix B along with some definitions in Ref. [49].

In order to accelerate the solution convergence, the iteration HAM (iHAM) technique[52]

is introduced. In doing so, we continuously replace the initial guesses by Mth-order approx-
imations to adjust the trajectory of solutions from the initial guesses to the exact ones. The
iteration formula is

Fiter = Finitial +

M∑

i=1

Fi(x, y) → Finitial, F = ψ, θ. (46)

To evaluate the validity of our solutions, an error function ERes is defined as an indicator
for checking convergence of Mth-order solutions. It works well for nonlinear problems without
analytical solutions and is written by

ERes(FM ) = ||FM (x)||L2(R) ≈
1

(2j + 1)2

2j∑

k=0

2j∑

l=0

FM

( k

2j
,
l

2j

)2

, F = ψ, θ. (47)

If analytical solutions exist, we define the error distribution function as

E(x, y) = |F (x, y) − Fe(x, y)|
2, (48)

where F (x, y) denotes analytical solutions, and Fe(x, y) denotes computational results. It can
help us know exactly the error distribution at a certain point. The absolute error between the
analytical solutions and our approximations is calculated by using the following error function:

ESQ(F ) = ||E||L2(R) ≈
1

(2j + 1)2

2j∑

k=0

2j∑

l=0

(
F

( k

2j
,
l

2j

)
− Fe

( k

2j
,
l

2j

))2

, (49)

where F = ψ, θ are the Coiflets approximations, and Fe = ψe, θe are the analytical ones.
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4 Validation

At the beginning of our analysis, we validate the efficiency of our proposed technique by three
steps. First, we compare our Coiflets solutions with the exact ones that exist in very particular
cases. Then, a comparison of our solutions for the pure cavity flow with the previous published
results is made for check of the accuracy. Finally, a further comparison of our solutions with
other numerical ones available in the literature for general cases of mixed convection in the
cavity (Gr = 103 ∼ 106, Re = 1 ∼ 103) is given for testification of the generalization of our
proposed technique.

We first check the convergence of our solutions by comparing them with the exact ones.
Note that, for Re = 100, Gr = 100, and λ = 0, append the following additional items P and Q
defined in Appendix A on the right-hand side of Eqs. (12) and (13).

As shown in Fig. 2, the absolute error ESQ between our solutions and the exact ones reduces
very quickly as the iteration increases. We also notice that the convergence rate can be improved
as the resolution level j enlarges. Further to check the accuracy of our solutions, we list the
relative and absolute errors of ψ(x, y) and θ(x, y) in Table 1. It is found that all errors reduce
rapidly as the resolution level j increases from 3 to 5. It is also noticed from the table that the
error for j = 6 is not obviously superior to that for j = 5, but the computational time is much
longer. In order to balance precision and efficiency, the resolution level j = 5 is selected in the
following computations so that the Coiflets series solutions contain 31 × 31 and 31 × 33 items
for the stream and temperature approximations, respectively.

  

  

  

  

Fig. 2 ESQ of temperature compared with exact solutions at different resolution levels j = 3, 4, 5, 6
when Re = 100 and Gr = 100 (color online)

Table 1 Precision verification of ERes and ESQ for stream function ψ and temperature θ at different
resolution levels (M = 5 and iteration is 100)

Level ERes(ψ) ESQ(ψ) ERes(θ) ESQ(θ) CPU time/s

j = 3 4.85×10−16 6.89×10−7 4.69×10−15 2.63×10−5 8.28

j = 4 5.15×10−16 9.66×10−9 1.52×10−16 2.78×10−7 92.06

j = 5 3.31×10−16 1.21×10−10 1.25×10−16 3.56×10−9 659.25

j = 6 2.02×10−13 3.83×10−10 1.29×10−12 2.73×10−9 3 966.52

Further to assess the accuracy of our solutions, we compare them with the previously pub-
lished results for the pure lid driven cavity flow[53–56]. It is known from Eq. (12) that for the
case of Gr = 0, the problem is reduced to the classical cavity flow. Many numerical computa-
tions are available for various configurations of cavity flow with upper lid driven. We compare
our results with theirs, as illustrated hereinafter. The comparisons of our results for the values
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of the minimum stream function ψ, the minimum and maximum velocity components of the
flow field at midsections x, y = 0.5, and their locations with those given by Rubin et al.[57],
Schreiber and Keller[58], Vanka[59], Hou et al.[60], Goyon[61], Barragy and Carey[62], Zhang[63],
Gupta and Kalita[64], Erturk et al.[65], and Marchi et al.[56] are shown in Tables 2 and 3. Ex-
cellent agreement is found. Furthermore, by comparing our results with those given by Ghia
et al.[53], Botella and Peyret[54], Bruneau and Saad[55], and Marchi et al.[56] for distributions of
velocity at sections x, y = 1/2, it is found that our results agree well with theirs, showing good
precision of our proposed technique, as illustrated in Fig. 3.

Table 2 Minimum ψmin and its location of cavity flow without heat transfer Gr = 0 when Re = 1 000
at resolution level j = 6 by first-order iHAM (M = 1) with iteration of 6 000

Result −ψmin x(ψmin) y(ψmin)

Rubin and Khosla[57] 0.114 000 000 − −

Ghia et al.[53] 0.117 929 000 0.531 30 0.562 50
Schreiber and Keller[58] 0.118 940 000 0.528 57 0.564 29
Vanka[59] 0.117 300 000 0.543 80 0.562 50
Hou et al.[60] 0.117 800 000 0.533 30 0.564 70
Goyon[61] 0.115 700 000 − −

Barragy and Carey[62] 0.118 930 000 − −

Botella and Peyret[54] 0.118 936 600 0.530 80 0.565 20
Zhang[63] 0.118 806 000 0.531 25 0.562 50
Gupta and Kalita[64] 0.117 000 000 0.525 00 0.562 50
Erturk et al.[65] 0.118 942 000 0.530 00 0.565 00
Bruneau and Saad[55] 0.118 920 000 0.531 25 0.565 43
Marchi et al.[56] 0.118 936 708 0.531 25 0.565 43
Present work (j = 6) 0.118 950 978 0.531 25 0.562 50

Table 3 Results of minimum velocity umin at x = 0.5, minimum and maximum velocities umin, umax

at y = 0.5, and their locations by the present approach with c1 = −5/1 000, iteration of
6 000, and M = 1 compared with Ref. [56] for classical problem when Re = 1 000 and j = 6

Variable This work (j = 6) Ref. [56]

umin −3.884 333 59×101
−3.885 721×101

vmax 3.777 338 1×101 3.769 471×101

vmin −5.288 102 67×101
−5.270 56×101

y(umin) 0.171 875 0.171 39
x(vmax) 0.161 875 0.157 71
x(vmin) 0.906 250 0.909 67

CPU time/s 9 038.5 216 000

Fig. 3 Horizontal and vertical velocities Ux, Vy through centerlines x = 0.5 and y = 0.5 of cavity flow

at Re = 1 000 compared with results by Ghia et al.[53] , Botella and Peyret[54], Bruneau and
Saad[55], and Marchi et al.[56] (color online)
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The average Nusselt numbers, which are physically important quantities to measure the
ratio of the conductive thermal resistance to the convective thermal resistance of the fluid,
are also calculated via the reconstitution algorithm denoted in Eq. (45) when Gr = 100 and
Re = 1 ∼ 1 000, as shown in Table 4. It is clearly shown from the table that our solutions match
all of those previous results given by Iwatsu et al.[9], Khanafer and Chamkha[11], Waheed[67],
Tiwari and Das[16], Ismael et al.[24], Sheremet and Pop[25], Ahmed[68], Sharif[27], Sivasankaran
et al.[30], and Abu-Nada and Chamkha[40]. Besides, the local Nusselt number Nub and the
velocity at midsections x, y = 0.5 by our approach are also in excellent agreement with those
by the FVM using SIMPLEC algorithms[69], as shown in Fig. 4.

Table 4 Comparison of average Nusselt number computed in this work with those of other authors
when Gr = 100

Result
Re

1 100 400 500 1 000

Iwatsu et al.[9] − 1.940 000 000 3.840 000 000 − 6.330 000

Khanafer and Chamkha[11]
− 2.020 000 000 4.040 000 000 − 6.420 000

Waheed[67] 1.000 330 2.031 160 000 4.024 620 000 4.526 710 000 6.484 230

Tiwari and Das[16] − 2.100 000 000 3.850 000 000 − 6.330 000

Ismael et al.[24] 1.019 700 2.080 000 000 4.036 000 000 4.548 000 000 6.259 900

Sheremet and Pop[25] 1.000 330 2.049 375 000 4.098 260 000 4.617 900 000 6.703 450

Ahmed[68] 1.000 899 2.105 628 000 4.221 871 000 4.599 386 000 6.494 660

Sharif[27] − − 4.050 000 000 − 6.550 000

Sivasankaran et al.[30] − − 4.090 000 000 − 6.480 000

Abu-Nada and Chamkha[40] 1.010 134 2.090 837 000 4.162 057 000 4.663 689 000 6.551 615

Present work (j = 5) 1.001 500 2.016 011 645 4.358 077 160 5.104 841 965 −

Present work (j = 6) 1.000 042 2.031 620 534 4.076 247 807 4.579 048 000 6.415 240

In the following, we make comparisons for Gr 6= 0. In this more general case, following the
previous studies[9], it is assumed that the top wall uniformly moves and heats, while the bottom
wall keeps fixed, and both the left and right walls are adiabatic and stationary. Note that in
this configuration, the jump discontinuity of the velocity and temperature at the corner points
exists, which corresponds to computational singularities contributing to the boundaries of the
Dirichlet and Neumann types for θ and ψ. Different from the previous numerical results with
special treatment by assuming the average temperature of two walls at the corner to keep the
adjacent grid-nodes at respective wall temperatures[66], or obtaining optimal grid size invariant
to grid by the intersection of the two differentially heated boundaries[33], we do not need any
particular treatment for boundary conditions. The only thing we need to do is to adjust the
vanishing moment and resolution level of wavelet. The highly accurate solutions can be readily
obtained using our proposed technique. Further comparisons of our results with the previously
published ones by Iwatsu et al.[9], Waheed[67], Khanafer et al.[13], and Abdelkhalek[14] for the
minimum and maximum velocity components Ux and Vy at x = 0.5 and y = 0.5 in the cases of
Gr = 100 and Re = 100, 400 are presented in Tables 5 and 6. An excellent agreement is found
for various resolution level j from 3 to 6.

5 Effects of alternative temperature distributions

In the above analysis, our proposed approach has been verified via a series of comparisons.
Here, we apply it to several different cases overlooked in the previous studies.
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Fig. 4 Local Nusselt numbers of top lid-driven wall and velocities at vertical mid-plane x = 0.5 and
horizontal mid-plane y=0.5 with λ= γ= 0 (line: results by wHAM j= 5, points: numerical
results by FVM) (color online)

Table 5 Maximum and minimum velocities U, V at midsections x = 0.5 and y = 0.5 respectively

when Re = Gr = 100 compared with results by Iwatsu et al.[9], Waheed[67], Khanafer et
al.[13] , and Abdelkhalek[14]

Result Umin Umax Vmin Vmax

Iwatsu et al.[9] −0.203 700 000 1.000 000 000 −0.244 800 000 0.169 900 000

Waheed[67]
−0.211 980 000 1.000 000 000 −0.251 027 000 0.177 125 000

Khanafer et al.[13] −0.212 200 000 1.000 000 000 −0.250 600 000 0.176 500 000

Abdelkhalek[14]
−0.214 700 000 1.000 000 000 −0.248 500 000 0.170 300 000

This work (j = 3) −0.374 153 816 0.987 907 540 −0.593 195 705 0.331 006 775
This work (j = 4) −0.208 786 662 1.006 324 861 −0.306 304 187 0.186 844 637
This work (j = 5) −0.210 092 061 1.002 456 198 −0.245 632 822 0.173 025 875
This work (j = 6) −0.212 866 445 1.000 407 663 −0.251 011 094 0.176 962 659
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Table 6 Maximum and minimum velocities U, V at midsections x = 0.5 and y = 0.5 respectively

when Re = 400 and Gr = 100 compared with results by Iwatsu et al.[9], Waheed[67],
Khanafer et al.[13], and Abdelkhalek[14]

Result Umin Umax Vmin Vmax

Iwatsu et al.[9] −0.319 700 000 1.000 000 000 −0.445 900 000 0.295 500 000

Waheed[67]
−3.187 100 000 1.000 030 000 −0.441 064 000 −0.294 505 000

Khanafer et al.[13] −0.309 900 000 1.000 000 000 −0.436 300 000 0.286 600 000

Abdelkhalek[14]
−0.310 400 000 1.000 000 000 −0.443 500 000 0.290 300 000

This work (j = 5) −0.310 264 822 1.006 956 325 −0.449 819 839 0.292 839 911

This work (j = 6) −0.320 187 326 1.002 311 854 −0.440 254 494 0.295 187 896

The mixed convection cavity flow considered here is subject to the stationary and thermally
isolated boundary conditions on the left and right walls, and the movable and variously thermal
boundary conditions on the top and bottom walls. This is to say, the temperature distribution
on the bottom boundary is settled as Tb = T0 + A1, while on the top boundary, it is given by
various forms of temperature distribution including constant, linear, exponential, and sinusoidal
cases,

Tt = T0 +A2, (50)

Tt = T0 +A1 + (A2 −A1)
(X
H

)
, (51)

Tt = T0 +A1
e − e

X
H

e − 1
+A2

e
X
H − 1

e − 1
, (52)

Tt = T0 +A2 sin
(2πX

H
+ ξ

)
, (53)

where T0 is a reference temperature, A1 and A2 are constants, and ξ is the phase deviation.
By introducing an amplitude ratio ǫ = A2/A1 ∈ [0, 1] and setting the reference temperature

difference ∆T = A1, we can obtain that the dimensionless temperature distribution on the
bottom is θb = 1, and the dimensionless temperature distribution on the top is

(i) uniform type: θt = ǫ,
(ii) linear type: θt = 1 + (ǫ− 1)x,
(iii) exponential type: θt = (e − ex + ǫ(ex − 1))/(e − 1),
(iv) sinusoidal type: θt = ǫ sin(2πx+ ξ).
Highly accurate results obtained by our proposed technique are presented in terms of the

streamline and isotherm patterns, and the velocity and temperature distributions, as well as the
local Nusselt number. The parameters used here are the amplitude ratio ǫ = 0.5, the inclined
angle γ = π/6, and the phase difference ξ = π/4. Since the Richardson number provides a
measure of the importance of buoyancy driven natural convection relative to lid-driven forced
one, Re = 100, Ri = 1, and Pr = 0.71 are selected which are commonly used in the previous
studies.

Taking Figs. 5(a) and 5(b) into consideration, the velocity profiles at x, y = 0.5 are nearly
the same for the uniform, linear, and exponential cases, while this profile is totally different
for the sinusoidal one. The flow fluctuation in the top and bottom half parts of the cavity is
contrary. The local Nusselt number is an important physical quantity to evaluate the active
conduction and transfer rate of losing energy. It is seen from Fig. 5(c) that on the top wall, the
local Nusselt number decays gradually along the x-coordinate in the uniformly heated case. For
the linearly and exponentially cases, the trend of the local Nusselt number is quite similar. It
first increases as x enlarges, and after reaching a peak value, it decreases as x evolves. In the left
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part of the top wall, the flow gains heat from the wall (Nu < 0), and the local Nusselt number
reduces to zero nearly at x = 0.25 and x = 0.31. Then, the conduction direction reverses that
the flow releases heat (Nu > 0) and the local Nusselt number reaches a maximum value around
x = 0.8. For the sinusoidally heated case, the local Nusselt number fluctuates as x evolves. In
the ranges of x = 0 ∼ 0.2 and x = 0.75 ∼ 1, the local Nusselt number reduces to two minimum
values respectively, while it reaches the maximum value at x ≈ 0.5. As seen in Fig. 5(d), the
distributions of local Nusselt numbers along x on the bottom wall for the uniformly, linearly,
and exponentially heated cases are quite similar. The uniform one is slightly higher than the
others. The sinusoidally heated case exhibits different trend, which performs a much higher
rate of absorbing heat from the wall except a small area near the left edge.

Fig. 5 Velocities at vertical mid-plane x = 0.5 and horizontal mid-plane y = 0.5, local Nusselt
numbers on horizontal boundaries Nub, Nut for top sidewall uniformly, linearly, exponentially,
and sinusoidally heated with ǫ = 0.5, γ = π

6
, ξ = π

4
, and λ = 0 (color online)

To make contrast with the average Nusselt numbers, for the uniform, linear, exponential,
and sinusoidal cases, their results by Eq. (45) are, respectively, 0.946, 0.683, 0.610, and 1.591 6
for the top wall, and −0.918, −0.747, −0.677, and −1.611 for the bottom wall. The actual
heat absorption rate of fluid Nub +Nut is 0.031 5,−0.064,−0.067, and −0.02 for those cases.
From the point of view of energy conservation, when Nub +Nut is negative, most of the energy
generated from the bottom wall is transferred to the top wall, while only a small amount is
absorbed by fluid flow consumed in dissipation of viscosity along with input energy by lid-
driven wall. However, when Nub +Nut is positive, it indicates that the fluid flow absorbs the
kinetic energy transferred from the top moving wall. In summary, the sinusoidally heated top
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lid performs the highest heat transfer rate no matter on the bottom or top boundary. That is
superior to others in the same amplitude ratio, which changes the flow and temperature fields,
showing superiority in heat transfer as compared with the other heating modes.

6 Effects of parameters

It is known from Eqs. (12) and (13) that there are several important non-dimensionless
parameters that can affect flow and heat transfer in the cavity. Therefore, parametric studies
need to be considered to cover the scale of these important parameters.

In this section, the non-dimensional temperature distribution for the sinusoidal case is given
as θb = sin(2πx) and θt = ǫ sin(2πx+ ξ), which are simplified from

Tb = T0 +A1 sin
(2πX

H

)
, Tt = T0 +A2 sin

(2πX

H
+ ξ

)
. (54)

Most of our results are captured at Pr = 0.71 by the control variable method for different
values of the amplitude ratio ǫ, the phase deviation ξ, and the inclined angle γ. The first-order
iHAM technique is applied in all calculations with the convergence criterion that the relative
error ERes < 10−8. In Subsections 6.1 and 6.2, we figure out the effects of the amplitude
ratio and the phase deviation respectively on the top wall compared with the bottom one. In
Subsection 6.3, various inclined angles are investigated.
6.1 Part I: effect of amplitude ratio

In the following analysis, we simulate the uniformly heated case for ǫ = 0, 0.25, 0.5, 0.75, 1,
which will be used as a reference for comparison of the influence of the amplitude ratio with the
sinusoidally heated case. Assume that both the top and bottom walls are heated sinusoidally
for the non-uniformly heated case.

Table 7 lists the minimum ψ, the minimum velocities at x = 0.5, and the minimum and
maximum velocities at y = 0.5, together with the average Nusselt numbers. It is noticed that
for the uniformly heated case, as ǫ enlarges, ψmin and Vmin first decrease and then increase,
while the variation of Vmax is opposite. Umin and Nub increase gradually, while Nut decreases
instantly. However, for the sinusoidally heated case, Vmax and Nut increase, but the others
decrease as ǫ evolves. Besides, we notice that the heat transfer rate on the top wall (Nut) is
larger than that on the bottom wall (Nub) for the sinusoidal type.

Table 7 Minimum ψ, minimum velocity at x = 0.5, minimum and maximum velocities at y = 0.5,
and average Nusselt numbers in different amplitude ratios at resolution level j = 5 when
Gr = 104, Re = 100, γ = π

6
, ξ = π

4
with uniformly and sinusoidally heated cases 1 and 2

Case ǫ ψmin Umin Vmin Vmax Nut Nub Nut +Nub

1

0.00 −0.081 28 −0.354 15 −0.077 97 0.042 12 1.470 96 −1.439 02 0.031 94

0.25 −0.101 33 −0.296 55 −0.162 85 0.118 42 1.201 11 −1.165 61 0.035 50

0.50 −0.107 66 −0.266 26 −0.237 91 0.181 65 0.946 37 −0.914 84 0.031 53

0.75 −0.106 03 −0.237 78 −0.252 09 0.186 85 0.499 36 −0.481 59 0.017 77

1.00 −0.102 45 −0.210 67 −0.247 75 0.175 15 0.000 00 0.000 00 0.000 00

2

0.00 −0.119 37 −0.231 82 −0.358 91 0.305 72 0.635 55 −0.859 15 −0.223 60

0.25 −0.122 88 −0.238 35 −0.364 55 0.314 23 0.718 76 −0.976 99 −0.258 23

0.50 −0.126 29 −0.247 63 −0.370 11 0.322 36 0.803 89 −1.095 22 −0.291 32

0.75 −0.129 59 −0.257 59 −0.375 60 0.330 13 0.890 68 −1.213 59 −0.322 91

1.00 −0.132 78 −0.267 72 −0.381 02 0.337 56 0.978 91 −1.331 94 −0.353 03
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From the energy point of view, it is pointed out that the energy absorbed by flow from
boundaries is separated into two parts. One is from the boundary moving lid by the shear
force (Etk), and the other is by heat conduction from the bottom wall (Ebr). The energy is
transferred into two directions. One part is to add the internal energy of the top wall (Etr),
while the other is absorbed by the flow for the kinetic energy (Efk) and the internal energy
(Efr) with the conservation relation Etk + Ebr = Etr + Ekf + Efr. When Nut + Nub < 0, it
indicates Ebr > Etr contributing to Etk < Efk + Efr, showing that the energy absorbed from
the bottom wall is transformed into the energy of flow. If Nut + Nub > 0, the situation is
quite inverse that the part of the kinetic and internal energy of flow is used to be transferred
into the top wall. By increasing ǫ, Nut +Nub decreases, showing that the heat conduction is
dominant, and the heat energy absorbed by fluid flow from boundary also enhances gradually
at this time.

Figures 6(a) and 6(b) illustrate the variations of the local Nusselt number with x on the top
and bottom walls, respectively. It is found from Fig. 6 that ǫ is only associated with the top wall
and nearly has no effect on the heat transfer on the bottom wall. Moreover, the local Nusselt
number on the top wall fluctuates along with x, where the direction of heat transfer at both
ends is inwards (Nu < 0) contrary to that is outwards (Nu > 0) in the centre. In summary,
for the sinusoidal case, the heat transfer rate increases with ǫ evolving, while the reverse point
Nu = 0 is fixed irrelevant to ǫ as ǫ > 0. When ǫ = 0, the top wall is heated uniformly resulting
in totally different distribution of energy transfer rate, as shown in Fig. 6(a). In this situation,
not only the location of the reverse point Nu = 0 shifts right, but also the variational amplitude
anomalously increases, which is equaling to the scale in contrast with ǫ = 0.5.

  

  

  

  

  

  

  

  

  

  

Fig. 6 Effects of amplitude ratio ǫ on local Nusselt numbers along horizontal heated and cooling
walls for Ri = 1, Re = 100, γ = π

6
, ξ = π

4
, P r = 0.71, and λ = 0 (color online)

6.2 Part II: effect of phase deviation

The amplitude ratio and the inclined angle are selected as ǫ = 1/2 and γ = π/6, respectively.
Figure 7 illustrates the effect of the phase deviation on velocities at midsection x = 0.5 and
y = 0.5, respectively. It is seen from the figure that the change tendency along the section
is almost not affected by ξ. However, the minimum velocity at x = 0.5 and the maximum
and minimum velocities at y = 0.5 first increase and then decrease, reaching a maximum value
around ξ = 3π/4. In conclusion, the variation in the phase deviation affects the maximum
velocity value rather than its distribution to a large extent.
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Fig. 7 Effects of phase deviation ξ on velocity at vertical mid-plane x = 0.5 and horizontal mid-plane
y = 0.5 for Ri = 1, Re = 100, γ = π

6
, ǫ = 0.5, P r = 0.71, and λ = 0 (color online)

Figures 8(a) and 8(b) demonstrate the effect of the phase deviation on the local Nusselt
numbers along the top and bottom walls with the inclined angle π/6. It is seen that the local
Nusselt number along the top wall is significantly influenced with the phase deviation evolving.
Its profile along the top wall is approximately sinusoidal distribution and moves towards the
left wall with ξ increasing, indicating that the area of heat transfer moves inwards and outwards
periodically, alternately changing with each other. The maximum and minimum transfer rates
are slightly affected on the bottom wall so that its variation trend is not perceived.

ξ π

ξ π

ξ π

ξ π

ξ
ξ π

ξ π

ξ π

π

Fig. 8 Effects of phase deviation ξ on local Nusselt numbers along horizontal top and bottom walls
for Ri = 1, Re = 100, γ = π

6
, ǫ = 0.5, P r = 0.71, and λ = 0 (color online)

Figure 9 illustrates the effect of the phase deviation on the average Nusselt number for
different inclined angles. As shown in Figs. 9(a) and 9(b), the fluid flow near the bottom wall
acquires heat energy from the wall (Nub < 0) and then dissipates the energy to the top wall
(Nub > 0) for arbitrary phases ξ ∈ [0, 2π]. As the phase deviation varies from 0 to 2π, which
is detailed in Table 8, both the absolute values of Nub and Nut perform sinusoidal periodic
variation, which first reduce to the minimum nearly at 7π/8. Thereafter, they simultaneously
and gradually increase. It indicates that heat transfer on bottom and top walls could be
suppressed to the greatest extent, while the phase deviation is selected properly. Meanwhile,
increasing γ is conducive to weaken the energy transfer rate on both the bottom and top
boundaries, because the efficient buoyancy effect by g cos γ gradually decreases. As shown in
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Fig. 9(c), the heat absorb rate of fluid Nub+Nut < 0 is affected by the phase deviation and the
inclined angle. When ξ evolves from 0 to 2π, its variation trend is similar to those of Nub and
Nut. However, it is irrelevant to alter the endothermic rate of fluid flow from the boundaries
by increasing the inclined angles.

π π π π

γ
γ π

γ π

γ π

ξ

γ
γ π

γ π

γ π

π π π π

ξ

γ
γ π

γ π

γ π

π π π π

ξ

Fig. 9 Effects of phase deviation ξ on average Nusselt numbers along horizontal top and bottom
walls for Ri = 1, Re = 100, γ = 0, π

6
, π

4
, π

3
, ǫ = 0.5, P r = 0.71, and λ = 0 (color online)

Table 8 Average Nusselt numbers of top and bottom walls with different phase deviations and incli-
nations when Ri = 1 and ǫ = 0.5

ξ
Top Bottom

γ = 0 γ = π/6 γ = π/4 γ = π/3 γ = 0 γ = π/6 γ = π/4 γ = π/3

0 −1.117 −0.971 −0.868 −0.741 −1.540 −1.391 −1.281 −1.142 0
π/4 −0.933 −0.804 −0.705 −0.579 −1.228 −1.095 −0.989 −0.854 0
π/2 −0.661 −0.540 −0.443 −0.324 −0.779 −0.658 −0.558 −0.434 0
3π/4 −0.447 −0.322 −0.224 −0.110 −0.452 −0.333 −0.237 −0.124 0
7π/8 −0.398 −0.283 −0.192 −0.087 −0.402 −0.279 −0.185 −0.078 5
π −0.412 −0.294 −0.208 −0.110 −0.432 −0.323 −0.238 −0.140 0

5π/4 −0.589 −0.476 −0.398 −0.310 −0.734 −0.626 −0.546 −0.453 0
3π/2 −0.879 −0.747 −0.661 −0.563 −1.189 −1.059 −0.969 −0.863 0
7π/4 −1.099 −0.949 −0.851 −0.734 −1.525 −1.375 −1.271 −1.145 0

6.3 Part III: effect of inclined angle

Here, we consider an enclosure with top and bottom walls moving simultaneously with
the reverse direction λ = −1 with different inclination angles. The phase deviation and the
amplitude ratio are selected as ξ = π/4 and ǫ = 1/2. The overall average Nusselt number on the
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top and bottom boundaries, which is used to measure the overall hear transfer rate, is plotted
in Fig. 10. Here, it is considered as a function of the cavity inclination angle from 0 ∼ π/2
with Ri = 0.1, 1, 10, respectively. For the forced convection regime (Ri = 0.1), the absolute
value of the average Nusselt number decreases slowly with the inclined angle. For the mixed
convection (Ri = 1) and the natural convection (Ri = 10), Nub and Nut decrease dramatically
as the inclined angle enlarges. This is because the buoyancy effect gradually prevails in the
heat transfer process. The sum Nub + Nut is negative, indicating that the absolute value of
average Nusselt on the top surface is smaller than that on the bottom one, which is different
from the one that is identical with the uniform temperature distribution by Sharif[27]. The
energy absorption rate of fluid from walls Nub +Nut is irreverent to the inclined angles when
Ri 6 1, but it slightly decreases when the natural convection regime (Ri = 10) dominates in
the heat transfer mode caused by the increase in γ.

γ ( )

γ ( )

γ ( )

Fig. 10 Effects of inclination γ on average Nusselt of top and bottom walls and sum for ξ = π
4
, ǫ =

0.5, Re = 100, Ri = 10, and λ = 0 (color online)

7 Conclusions

In the present work, the wavelet-homotopy technique is developed successfully to give
Coiflets wavelet solutions for the classic cavity flow and heat transfer problem with nonhomoge-
neous boundary conditions. It is the first time for application of the proposed technique to the
problems of fluid mechanics and heat transfer. Comprehensive validations are elaborated with
other numerical methods. Excellent agreement is found. Parametric physical analysis including
the amplitude ratio, the inclinations, and different phase deviations is given. In addition, the
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following physical findings are observed.
(i) In comparison with uniformly, linearly, and exponentially heated boundaries, sinusoidally

heated horizontal walls perform the best properties of heat transfer rate under the same condi-
tion of amplitude ratio, which greatly alters the flow and temperature fields.

(ii) As the amplitude ratio increases from 0 to 1, the heat transfer rate of top wall increases,
while on the bottom, it keeps the same and the reverse point Nu = 0 is also fixed.

(iii) Adding inclination efficiently reduces the buoyancy effect so as to weaken heat transfer
rate on both walls, but it is irrelevant to alter the rate of gaining energy by the fluid from the
boundaries.

(iv) Periodic variation of amplitude ratio resulting from different phase deviations con-
tributes to approximate periodic change of heat transfer properties, while an extreme phase
nearly 7π/8 exists where heat transfer is suppressed to the greatest extent.
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comments and suggestions.
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Appendix A

8
>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

P (x, y) = − 32(12 800x7y(3y2 − 3y + 1) − 44 800x6y(3y2 − 3y + 1)

− 19 200x5y(3y4 − 5y3 − 7y2 + 9y − 3)

+ 16 000x4y(9y4 − 15y3 + 6y − 2)

− 2x3y(67 200y4 − 112 000y3 + 35 200y2 + 9 599y − 3 200)

+ 3x2(19 200y5 − 32 000y4 + 12 800y3 − y2 − 24y + 8)

+ x(−9 600y5 + 16 000y4 − 6 400y3 + y2 + 72y − 24)

+ 4(−3y3 + 3y2 − 3y + 1)),

Q(x, y) = − 32(2 272x7y4 − 7 952x6y4 + 10 224x5y4 − x4(5 680y4 + 1)

+ 2x3(568y4 + 1) − x2(6y2 + 1) + 6xy2 − y2)

(A1)
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with the exact solutions

θ(x, y) = 16x2(1 − x)2y2, ψ(x, y) = 16x2(1 − x)2y2(y − 1). (A2)
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, (A3)

2jX

k=0

2j
−1X

l′=1

“
θM

“ k

2j
,
l′

2j

”
∇2(hj,kϕj,l′) − θM−1

“ k

2j
,
l′

2j

”
(κM∇2(hj,kϕj,l′) + c2∇

2(hj,kϕj,l′))
”

=c2
“ 2jX

k=0

2jX

l=0

RθM

“ k

2j
,
l

2j

”
ϕj,kϕj,l + (1 − κM )

·
2jX

k=0

“
θD

“ k

2j

”
∇2(hj,k(x)ϕj,0(y)) + θU

“ k

2j

”
∇2(hj,k(x)ϕj,2j (y))

””
. (A4)

Eventually, by multiplying hj,n′(x)hj,m′(y) and ϕj,n(x)ϕj,m′(y) on both sides of Eqs. (A3) and (A4)
and then integrating on the domain [0,1] by applying the wavelet Galerkin method, some definitions
were illustrated in Ref. [49]. We obtain the following coupled iterating algebra equations:

eAψ · ( bΨM − κM bΨM−1) = c1 eBψ · bΨM−1 + c1 eCψ · bΘC
M−1 + c1 eDψ · bRψ

1M

+ c1(1 − κM )( eEψ
1D · eP ψ

1D + eEψ
1U · eP ψ

1U + eEθ
1D · bP θ

1D + eEθ
1U · bP θ

1U ), (A5)

eAθ · ( bΘM − κM bΘM−1) = c2 eBθ · bΘM−1 + c2 eCθ · bRθ
2M

+ c2(1 − κM )( eEθ
2D · bP θ

2D + eEθ
2U · bP θ

2U ), (A6)

where the iterating tensors are

eAT
ψ = eBT

ψ = eΓj,4
k′,n′ ⊗ eΓj,0

l′,m′ + 2eΓj,2
k′,n′ ⊗ eΓj,2

l′,m′ + eΓj,0
k′,n′ ⊗ eΓj,4

l′,m′ ,

eAT
θ = eBT

θ = Γ̄
j,2,1
k,n ⊗ Γ

j,0
l′,m′ + Γ̄

j,0,1
k,n ⊗ Γ

j,2
l′,m′ ,

eCT
ψ = cos γ eΓj,1

k,n′ ⊗ Γ̄
j,0,2
l′,m′ − sin γ eΓj,0

k,n′ ⊗ Γ̄
j,1,2
l′,m′ ,

eDT
ψ = Γ̄

j,0,2
k,n′ ⊗ Γ̄

j,0,2
l,m′ , eCT

θ = Γ
j,0
k,n ⊗ Γ

j,0
l,m′ ,

( eEψ
1D)T = eΓj,4

k,n′ ⊗ bΓj,0
D,m′ + 2eΓj,2

k,n′ ⊗ bΓj,2
D,m′ + eΓj,0

k,n′ ⊗ bΓj,4
D,m′ ,

( eEψ
1U )T = eΓj,4

k,n′ ⊗ bΓj,0
U,m′ + 2eΓj,2

k,n′ ⊗ bΓj,2
U,m′ + eΓj,0

k,n′ ⊗ bΓj,4
U,m′ ,

( eEθ
1D)T = cos γ eΓj,1

k,n′ ⊗ Γ̄
j,0,2
0,m′ − sin γ eΓj,0

k,n′ ⊗ Γ̄
j,1,2
0,m′ ,

( eEθ
1U )T = cos γ eΓj,1

k,n′ ⊗ Γ̄
j,0,2

2j ,m′
− sin γ eΓj,0

k,n′ ⊗ Γ̄
j,1,2

2j ,m′
,

( eEθ
2D)T = Γ̄

j,2,1
k,n ⊗ Γ

j,0
0,m′ + Γ̄

j,0,1
k,n ⊗ Γ

j,2
0,m′ ,

( eEθ
2U )T = Γ̄

j,2,1
k,n ⊗ Γ

j,0

2j ,m′
+ Γ̄

j,0,1
k,n ⊗ Γ

j,2

2j ,m′
,
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the straight vectors are

bΨM =
n
ψp′′ = ψM

“ k′
2j
,
l′

2j

”o
, bΘM =

n
θp′ = θM

“ k

2j
,
l′

2j

”o
,

eP ψ

1U = {fk,U = 1}, eP ψ

1D = {fk,D = λ}, bΘC
M = −

Gr

Re
bΘM ,

eP θ
1D =

n
fk,D = −

Gr

Re
θD

“ k

2j

”o
, eP θ

1U =
n
fk,U = −

Gr

Re
θU

“ k

2j

”o
,

eP θ
2D =

n
fk,D = θD

“ k

2j

”o
, eP θ

2U =
n
fk,U = θU

“ k

2j

”o
,

bRψ
1M =

n
rp = RψM

“ k

2j
,
l

2j

”o
, bRθ

2M =
n
rp = RθM

“ k

2j
,
l

2j

”o
,

and the suffixes are defined as

p = (2j + 1)k + l + 1, p′ = (2j + 1)k + l′,

p′′ = (2j − 1)(k′ − 1) + l′,

m, n, k, l = 0 ∼ 2j , m′, n′, k′, l′ = 1 ∼ 2j − 1.

Then, we calculate the tensors constituted by the connection coefficients, which are split into three
categories for computation. By approaching the Coiflets hj,k with each other, the formula is given by

eΓj,nl,m =
n
γl,m =

Z 1

0

dnhj,l(x)

dxn
hj,m(x)dx

o
. (A7)

By the standard original Coiflets ϕj,k with each other, the formula is given by

Γ
j,n

l,m =
n
γl,m =

Z 1

0

dnϕj,l(x)

dxn
ϕj,m(x)dx

o
. (A8)

By the approaching Coiflets with the standard original Coiflets, they are written as

Γ̄
j,n,1
l,m =

n
γl,m =

Z 1

0

dnhj,l(x)

dxn
ϕj,m(x)dx

o
, (A9)

Γ
j,n,2
l,m =

n
γl,m =

Z 1

0

dnϕj,l(x)

dxn
hj,m(x)dx

o
. (A10)

By the approaching Coiflets with the boundary Coiflets ̟j,S(x), it is defined by

8
>><
>>:

bΓj,nD,k =
n
γj,nL,k =

Z 1

0

dn̟j,b(x)

dxn
hj,k(x)dx

o
,

bΓj,nU,k =
n
γj,nL,k =

Z 1

0

dn̟j,t(x)

dxn
hj,k(x)dx

o
.

(A11)

The straight vectors of the nonlinear parts bRψ

1M and bRθ
2M are approximated by product of calculated

vectors of ψ and θ, which are expressed by
8
>>>>>>>><
>>>>>>>>:

bRψ

1M =Re

M−1X

s=0

( bΨs,j
1,0 ⊙

bΨM−1−s,j
0,3 + bΨs,j

1,0 ⊙ bΨM−1−s,j
2,1

− bΨs,j
0,1 ⊙ bΨM−1−s,j

3,0 − bΨs,j
0,1 ⊙ bΨM−1−s,j

1,2 ),

bRθ
2M =PrRe

M−1X

s=0

( bΨs,j
1,0 ⊙ bΘM−1−s,j

0,1 − bΨs,j
0,1 ⊙ bΘM−1−s,j

1,0 ).

(A12)

It is worth mentioning that the effects of the nonhomogeneous boundaries involve two aspects. One is
that it affects the wavelet approaching precision for ψ0 and θ0 via Eqs. (37) and (38). The other is that
it adds the integration correction items in Eqs. (A5) and (A6),

( bΨM,j
u,v = ( eΦj

u ⊗ eΦj
v)

T · bΨU
M + (1 − χM+1) bP ψ,j

u,v ,

bΘM,j
u,v = ( eΦj

u ⊗ eΦj
v)

T · bΘU
M .

(A13)
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Then, we take the sum according to Eqs. (23) and (24),

8
>>>>><
>>>>>:

bΨj
u,v =

MX

i=0

bΨi,j
u,v = (fHj

u ⊗ fHj
v)

T ·
MX

i=0

bΨU
i + bP ψ,j

u,v ,

bΘj
u,v =

MX

i=0

bΘi,j
u,v = ( eΦj

u ⊗ fHj
v)

T ·
MX

i=0

bΘU
i ,

(A14)

where the approximation of the nonhomogeneous boundary part is

8
>>><
>>>:

bP ψ,j
u,v = ( eΦj

u)
T · ( eP1D ⊗ eΦj

v,D) + ( eΦj
u)

T · ( eP1U ⊗ eΦj
v,U ),

fHj
u =

n
hs = hj,k

“ s

2j

”o
, eΦj

u =
n
ϕs = ϕj,k

“ s

2j

”o
,

eΦj
v,D =

n
̟s = ̟j,D

“ s

2j

”o
, eΦj

v,U =
n
̟s = ̟j,U

“ s

2j

”o
, s = 0 ∼ 2j .

(A15)

It is pointed out that the approximate tensors of dimension are (2j + 1) × (2j + 1),

bF U =
n
fp = f

“ k

2j
,
l

2j

”o
, F = Ψ,Θ, f = ψ, θ.


