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a b s t r a c t 

In this paper, we propose a new homotopy-wavelet approach to solve linear and nonlinear 

problems with nonhomogeneous boundary conditions. The essence of this technique is to 

apply the homotopy analysis method (HAM) to transform the governing equations into a 

set of linear equations and employ the generalized Coiflet-type orthogonal wavelet to ex- 

press and solve the resulting linear equations. The proposed technique is expected to keep 

the superiority of the HAM for handling nonlinearities, but with better computational effi- 

ciency. The nonhomogeneous boundary conditions including the mixed Dirichlet-Neumann 

and Robin conditions are reconstructed by introducing the Coiflets on the boundaries, 

which overcomes the deficiency of the close wavelet method that is difficult to handle 

the nonhomogeneous boundary conditions. Illustrative examples show very high efficiency 

of our proposed technique. Furthermore, the classic problem of the incompressible flow 

in a 2-D lid-driven cavity are investigated. By reconstructing the incompatible boundary 

conditions with the Coiflets, the singularities of velocity field on rigid points are success- 

fully eliminated so that the vortex on the lid that is difficult to be obtained by previous 

approaches can be captured clearly. Comparison with previous results is made, excellent 

agreement is found. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In the past several decades, wavelet analysis [1] has been developed as a very efficient analytical tool to give solutions

for various kinds of differential equations. The classic Daubechies wavelets were commonly used as the classical compactly

supported wavelet to resolve boundary value problems for a long time. To improve on solution accuracy via enlarging the

wavelet supported branch, Coifman [2] established Coiflets wavelet which possesses the property that both scaling and

wavelet functions have vanishing moment whose support region is three times over the biggest vanishing moment. Since

then, Coiflets wavelet received considerable attention and was successively developed by many researchers. For examples,

Sweldens [3] and Tian [4] respectively proposed the standard orthogonal and the biorthogonal Coiflets systems which were

shown to be accurate for wavelet approximations in graphical optimization algorithm. Wei [5] generalized the orthogonal

and biorthogonal Coiflets by modifying conditions of moments of scaling functions. Zhang et al. [6] , Wang [7] and Liu

et al. [8] further suggested a closed wavelet method based on the generalized orthogonal Coiflets system (GOCS), which is

expected to give more accurate solutions by enlarging the first order vanishing moment from 6 to 7. Generally speaking,
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the basic approach for construction of the Coiflets is the boundary modification [9] , that means building interpolation

functions based on the boundary point for extension. The boundary interpolation matrices are modified in accordance

with homogeneous conditions. Variable and nonlinear parts are then approximated by different wavelets respectively. In

this way, nonlinear differential equations can be transformed into nonlinear algebra ones. Coefficients of Coiflets series are

finally determined by the Newton iterating method. 

Though many nonlinear problems have been attacked by a number of wavelet users, few of them [10,11] considered

nonhomogeneous nonlinear problems widely appeared in the fields of science and engineering. For such problems, they

usually homogenize the boundary conditions by introducing proper auxiliary functions, then solve the differential equations

with their homogenous boundary conditions by above-mentioned closed wavelet method. Unfortunately, two major issues

are usually encountered in this approach. 

• For 1-D nonhomogeneous problems, though the boundary conditions can be normalized, it is extremely difficult to

choose an optimal auxiliary homogeneous function to reduce loss of the approaching precision of wavelet solutions

owing to the non-uniqueness of the selected function. 
• For 2-D or 3-D problems, it is almost impossible to find such an appropriate auxiliary function to normalize the boundary

conditions, which can hardly be resolved by previous wavelet techniques. 

Obviously, it is very urgent to extend the existing wavelet technique so that the nonhomogeneous problems can be

readily resolved by this technique. 

In this study, nonlinear problems with nonhomogeneous boundary conditions including Dirichlet, Neumann and Robin

types’ boundaries will be investigated in-depth. Based on the former work [12–14] , the nonhomogeneous boundaries

will be handled by a novel wavelet technique based on the modification of the Coiflets via introducing a spline function

of polynomial type that possesses the nonhomogeneous behaviours on the boundaries. we combine the Coiflets basis

with the Homotopy Analysis Method (HAM) [15–21] for solving those problems. By selecting proper linear operators,

optimal convergence-control parameters and completeness auxiliary functions, the original nonlinear differential equation

is converted into an infinity number of linear differential equations. Solutions of those linear equations are approximated

by wavelets and obtained by Wavelet–Galerkin method which is applied to transform those linear differential equations to

linear algebra ones by means of the Generalized Gauss Integration Method [22] . 

The paper is outlined as follows. In Section 2 , boundary wavelets are introduced. In Section 3 , the validity and efficiency

of this approach is checked by examining 1-D and 2-D nonhomogeneous partial differential equations governed by the

Laplace and the Biharmonic operators respectively. In Section 4 , the classical lid driven cavity flow subjected to mixed

Neumann-Dirichlet boundary in two cases that the up lid moves in variable velocity with analytical solution and in a

constant velocity with unknown analytical solution are investigated as an illustrative example in comparison with other

numerical results. In Section 5 , some conclusions are made. 

2. Boundary modification by the generalized orthogonal Coiflets 

The boundary zero extension is often encountered when a function of finite interval is approximated by the compactly

supported wavelet basis. It can increase errors in approaching process since the continuous and non-derivative points on

edge result in Gibbs’s border jump. 

In order to improve on the approaching precision, the interpolated extension [8] by the Taylor expansions for f ( x ) at

x = 0 and x = 1 are conducted respectively. 

˜ f (x ) = 

{ ∑ 3 
k =0 f j,k T 0 ,k (x ) , x ∈ (−δ, 0) , 

f (x ) , x ∈ [0 , 1] , ∑ 3 
k =0 f j, 2 j −k T 1 ,k (x ) , x ∈ (1 , 1 + δ) . 

(1)

where δ is small amount, j is wavelet resolution level, T 0, k ( x ) and T 1, k ( x ) are the modification functions defined by 

T 0 ,k (x ) = 

3 ∑ 

i =0 

( p 0 
i,k 

i ! 

)
x i , T 1 ,k (x ) = 

3 ∑ 

i =0 

( p 1 
i,k 

i ! 

)
(x − 1) i . (2)

with p 0 
i,k 

and p 1 
i,k 

determined by coefficients matrices P 0 and P 1 . 

P 0 = 

⎛ ⎜ ⎝ 

1 0 0 0 

−11 / 6 3 −3 / 2 1 / 3 

2 −5 4 −1 

−1 3 −3 1 

⎞ ⎟ ⎠ 

, P 1 = 

⎛ ⎜ ⎝ 

1 0 0 0 

11 / 6 −3 3 / 2 −1 / 3 

2 −5 4 −1 

1 −3 3 −1 

⎞ ⎟ ⎠ 

. 

Taking the compactly supported region of wavelets [0, L ] and the domain of function [0,1] into consideration [7] , ˜ f (x ) is

approximated as 

˜ f (x ) ≈
2 j −1 ∑ 

k =2 −3 N ̃

 f 

(
M 1 + k 

2 

j 

)
φ(2 

j x − k ) = 

2 j −1+ M 1 ∑ 

k =2 −3 N+ M 1 ̃

 f 

(
k 

2 

j 

)
φ(2 

j x − k + M 1 ) . (3)
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where M 1 is the first order vanishing moment, N is the vanishing moment, L is the compactly supported length which

equates to 3 N − 1 in Coiflets family, ψ is the wavelet basis. It turns out that the coefficients of Coiflets series are the

approximate values of the middle points of the function. 

The essence of the above-mentioned closed wavelet method is the polynomial interpolation by three points at x = 0 and

x = 1 . However, when the boundary conditions are not homogeneous, this approach is invalidate since the information of

the variables and their derivatives on the boundaries can not be kept properly by the Coiflets. To overcome this limitation,

we construct the following spline function by including additional functions of polynomial types on the boundaries into the

Coiflets, which hold all inhomogeneous behaviours of the solutions. 

ˆ f (x ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

∑ 3 
k =0 

[ 
f j,k T 0 ,k (x ) + 

α0 ,k 

k ! 
x k 
] 
, x ∈ (−δ, 0) , 

f (x ) , x ∈ [0 , 1] , ∑ 3 
k =0 

[ 
f j, 2 j −k T 1 ,k (x ) + 

α1 ,k 

k ! 
(x − 1) k 

] 
, x ∈ (1 , 1 + δ) . 

(4) 

Substituting Eq. (4) into Eq. (3) , we obtain 

˜ f (x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∑ 3 
k =0 f j,k 

{ ∑ −1 
i =2 −3 N+ M 1 

T 0 ,k 

(
i 

2 j 

)
φ j,i + φ j,k 

} 

+ 

∑ 3 
k =0 

α0 ,k 

k ! 

{ ∑ −1 
i =2 −3 N+ M 1 

(
i 

2 j 

)k 

φ(2 

j x − i + M 1 ) 
} 

k ∈ [0 , 3] , ∑ 2 j −4 
k =4 f j,k φ j,k k ∈ [4 , 2 

j − 4] , ∑ 2 j 

k =2 j −3 f j,k 

{ ∑ 2 j −1+ M 1 

i =2 j +1 
T 1 , 2 j −k 

(
i 

2 j 

)
φ j,i + φ j,k 

} 

+ 

∑ 3 
k =0 

α1 ,k 

k ! 

{ ∑ 2 j −1+ M 1 

i =2 j +1 

(
i 

2 j 
− 1 

)k 

φ(2 

j x − i + M 1 ) 
} 

k ∈ [2 

j − 3 , 2 

j ] , 

(5) 

where 

φ j,i = φ(2 

j x − i + M 1 ) , φ j,k = φ(2 

j x − k + M 1 ) . 

Taking Eq. (5) into account, the targeted approximation of ˜ f (x ) is divided into two parts. One is the generalized Coiflets

[8] with the polynomial interpolation modifications on the boundaries 

ϕ j,k (x ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

∑ −1 
i =2 −3 N+ M 1 

T 0 ,k 

(
i 

2 j 

)
φ j,i + φ j,k k ∈ [0 , 3] , ∑ 2 j −4 

k =4 φ j,k k ∈ [4 , 2 

j − 4] , ∑ 2 j −1+ M 1 

i =2 j +1 
T 1 , 2 j −k 

(
i 

2 j 

)
φ j,i + φ j,k k ∈ [2 

j − 3 , 2 

j ] . 

(6) 

The other is the boundary wavelets, which are expressed by 

� 

0 
j,a (x ) = 

−1 ∑ 

i =2 −3 N+ M 1 

1 

a ! 

(
i 

2 

j 

)a 

φ j,i , � 

1 
j,b (x ) = 

2 j −1+ M 1 ∑ 

i =2 j +1 

1 

b! 

(
i 

2 

j 
− 1 

)b 

φ j,i . (7) 

where the prefix 0,1 correspond to the left and right boundaries and suffix a, b related to orders respectively. 

3. Application in linear cases 

3.1. Wavelet expansion for various boundary conditions 

We then make attempts to apply the above-mentioned modified generalized orthogonal Coiflets to solve linear problems

subjected to the boundary conditions of Dirichlet, Neumann and Robins’ types, respectively. The strategy is elaborated as

follows. 

For a linear equation 

L [ u (x )] = 0 . (8) 

its boundary conditions can be expanded by Coiflets, upon the type of the boundary conditions, into the following forms: 

• Dirichlet boundary condition 

u (0) = C 0 , u (1) = C 1 . (9) 

It should be noted that such boundary conditions can be handled directly by the traditional wavelet expansion (refer to

Wang [7] ) as 

u (x ) ≈ P j u (x ) = 

2 j −1 ∑ 

u 

(
k 

2 

j 

)
ϕ j,k (x ) + C 0 ϕ j, 0 (x ) + C 1 ϕ j, 2 j (x ) . (10) 
k =1 
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• Neumann boundary condition 

d 

a u(x) 

dx a 

∣∣∣
x =0 

= C 0 , 
d 

b u(x) 

dx b 

∣∣∣
x =1 

= C 1 . (11)

In literature, Wang [7] constructed the following wavelet to solve differential equations with Neumann boundary

conditions. While his approach is only valid for the homogeneous boundary conditions ( C 0 = C 1 = 0 ). 

h j,k (x ) = ϕ j,k (x ) | p 0 ,a,i → 0 ,p 1 ,b,i → 0 . (12)

For non-homogeneous boundary conditions, we construct the following boundary wavelet 

u (x ) ≈ P j u (x ) = 

2 j ∑ 

k =0 

u 

(
k 

2 

j 

)
h j,k (x ) + C 0 � 

0 
j,a (x ) + C 1 � 

1 
j,b (x ) . (13)

• Robin boundary condition 

As far as we know, few researchers considered such boundary conditions before. On the boundaries, the following

relationship can be built 

d 

a u(x) 

dx a 
+ k 1 u (x ) 

∣∣∣
x =0 

= C 0 , 
d 

b u(x) 

dx b 
+ k 2 u (x ) 

∣∣∣
x =1 

= C 1 . (14)

By modifying the interpolation functions T 0, k and T 1, k , we obtain 

˜ T 0 ,k = 

{
T 0 ,k − k 1 

x a 

a ! 
, k = 0 , 

T 0 ,k , k > 0 . 
(15)

and 

˜ T 1 ,k = 

{
T 1 ,k − k 2 

(x −1) b 

b! 
, k = 0 , 

T 1 ,k , k > 0 . 
(16)

Finally, we obtain the wavelet approximation for u ( x ) as 

u (x ) ≈ P j u (x ) = 

2 j ∑ 

k =0 

u 

(
k 

2 

j 

)
h j,k (x ) + C 0 � 

0 
j,a (x ) + C 1 � 

1 
j,b (x ) , (17)

where 

h j,k (x ) = ϕ j,k (x ) | p 0 ,a,i → 0 ,p 1 ,b,i → 0 ,T 0 ,k → ̃

 T 0 ,k ,T 1 ,k → ̃

 T 1 ,k . 
(18)

3.2. Validation in 1-D linear cases 

In this section, we will now present two examples in 1-D cases, aimed to validate the method in terms of accuracy

and assess its performance. For nonhomogeneous problems, Liu et al. [8] chose auxiliary functions of polynomial type

to homogenize them, then applied the Wavelet-Galerkin method to solve the resulting homogeneous ones. However, this

approach is only valid for differential equations with Dirichlet boundary conditions. Different from what Liu et al. [8] did,

we directly approximate variables by Coiflets together with the boundary wavelets, without homogenizing them by auxiliary

functions. Our examples are shown in details thereinafter. 

In order to estimate error distribution in 1D case, criterion Err ( x ) between calculated results u ( x ) and exact solutions

u e ( x ) using the Norm-1 of L 2 [0, 1], 

Er r (x ) = 

∣∣u (x ) − u e (x ) 
∣∣, 0 < x < 1 . (19)

To illustrate the global error level, more consideration of ErrSQ vanishing to zero is essential in contrast with exact or

numerical solutions while exact ones are non-existent. Numerical integration of Norm-2 in L 2 [0, 1] is 

Er r SQ = || Er r (x ) || 2 L 2 [0 , 1] ≈
1 

(2 

j + 1) 

2 j ∑ 

k =0 

[ 
u 

(
k 

2 

j 

)
− u e 

(
k 

2 

j 

)] 2 
. (20)

We first consider the 1-D linear differential equation 

d 

2 u (x ) 

d x 2 
− 2 π

d u (x ) 

d x 
+ 2 π2 u (x ) = 0 . (21)

subjected to the Neumann boundary conditions 

u 

′ (0) = e −π , u 

′ (1) = −1 . (22)
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with the analytical solution 

u e (x ) = 

1 

π
e π(x −1) sin πx. (23) 

Using Liu’s approach [8] , u ( x ) can be expressed by 

u (x ) = w (x ) + v (x ) . (24) 

subjected to 

w 

′ (0) = 0 , w 

′ (1) = 0 , v ′ (0) = e −π , v ′ (1) = −1 . (25) 

where w ( x ) is the homogenized function to be determined, v ( x ) is the auxiliary homogeneous function that is known and

holds the information of the boundaries. 

Substituting Eq. (24) into Eq. (21) , we obtain 

d 

2 w 

d x 2 
− 2 π

d w 

d x 
+ 2 π2 w = −L [ v (x )] , (26) 

where 

L = 

d 

2 

d x 2 
− 2 π

d 

dx 
+ 2 π2 . (27) 

It is known that v ( x ) is not unique, which can have many different forms. For example, we can select 

v (x ) = e −π x − (e −π + 1) 
x K 

K 

, (28) 

where K ≥ 2 is the integer. 

The wavelet approximations for w ( x ) and v ( x ) can be written by different wavelet basis as 

w (x ) ≈
2 j ∑ 

k =0 

u 

(
k 

2 

j 

)
h j,k (x ) , L [ v (x )] ≈

2 j ∑ 

k =0 

L 

[ 
v 
(

k 

2 

j 

)] 
ϕ j,k (x ) . (29) 

where 

h j,k (x ) = ϕ j,k (x ) | p 0 , 1 ,i → 0 ,p 1 , 1 ,i → 0 , (30) 

According the General Gaussian Integration Method(GGIM) [22] , the linear operator L and the nonlinear operator N 

acting on the wavelet approximate functions can be transformed to the following forms 

R [ ̃  f (x )] ≈ R [ P j ˜ f (x )] = 

2 j −1+ M 1 ∑ 

2 −3 N+ M 1 ̃

 f 

(
k 

2 

j 

)
R [ φ j,k (x )] , R = L , N . (31) 

Some symbolic definitions can be referred in Appendix A . By multiplying h j, l ( x ) on both sides of Eq. (31) and then

integrating on the interval [0,1], we obtain 

˜ A 1 • ˆ U 1 + 

˜ B 1 • ˆ V 1 = 0 . (32) 

where straight vectors are 

ˆ U 1 = 

{ 

u k = u 

(
k 

2 

j 

)} 

, ˜ A 

T 
1 = � j, 2 

k,l 
− 2 π� j, 1 

k,l 
+ 2 π2 � j, 0 

k,l 
, 

˜ B 

T 
1 = �̄ j, 0 

k,l 
, ˆ V 1 = 

{ 

v k = L 

[ 
v 
(

k 

2 

j 

)] } 

. 

in which, the tensors of connection coefficients are given by 

� j,n 

k,l 
= 

{ 

γ j,n 

k,l 
= 

∫ 1 

0 

d n h j,k (x ) 

dx n 
h j,l (x ) dx 

} 

, (33) 

�̄ j,n 

k,l 
= 

{ 

γ̄ j,n 

k,l 
= 

∫ 1 

0 

d n ϕ j,l (x ) 

dx n 
h j,k (x ) dx 

} 

. (34) 

Different from Liu’s approach [8] , We directly expand u ( x ), without introducing homogeneous function, as 

u (x ) ≈ P j u (x ) = 

2 j ∑ 

k =0 

u 

(
k 

2 

j 

)
h j,k (x ) + e −π� j,L (x ) − � j,R (x ) , (35) 

by setting 

� j,L (x ) = � 

0 
j, 1 (x ) , � j,R = � 

1 
j, 1 (x ) . (36) 
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Table 1 

The consuming CPU time and precisions ErrSQ u for 1-D linear problem subjected to the Neumann and the mixed Dirichlet-Neumann boundary conditions. 

Boundary types j 3 4 5 6 

Neumann ErrSQ u 7.969E–03 4.195E–04 4.094E–05 7.164E −07 

Neumann CPU time(s) 1.805 2.258 3.087 6.090 

Mixed ErrSQ u 3.617E −07 3.051E −09 1.710E −11 9.548E −14 

Mixed CPU time(s) 1.454 1.546 2.531 5.485 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiplying h j, l ( x ) on both sides and then applying the Wavelet–Galerkin Method, we obtain 

˜ A 1 • ˆ U 1 + e −π ˜ B L − ˜ B R = 0 . (37)

where 

˜ B 

T 
i = 

ˆ � j, 2 

i,l 
− 2 π ˆ � j, 1 

i,l 
+ 2 π2 ˆ � j, 0 

i,l 
, i = L, R. 

here the connection coefficients determined by sides and orders of boundary derivatives where the first subscript 0,1

represent the derivatives in integration with order n are 

ˆ � j,n 

L,k 
= 

{ 

γ̄ j,n 

L,k 
= 

∫ 1 

0 

d n � j,L (x ) 

dx n 
h j,k (x ) dx 

} 

, 

ˆ � j,n 

R,k 
= 

{ 

γ̄ j,n 

R,k 
= 

∫ 1 

0 

d n � j,R (x ) 

dx n 
h j,k (x ) dx 

} 

. (38)

Further to check the validity of our approach, we consider Eq. (27) subjected to the Neumann and the mixed Dirichlet–

Neumann boundary conditions. In this case, the boundary conditions take the form 

u (0) = 0 , u 

′ (1) = −1 . (39)

The auxiliary function v ( x ) for Liu’s approach [8] is replaced by 

v (x ) = −x K 

K 

, K ≥ 2 , K ∈ Z. (40)

Our wavelet extension for u ( x ) is 

u (x ) ≈
2 j ∑ 

k =1 

u 

(
k 

2 

j 

)
h j,k (x ) − ϕ 

1 
j, 1 (x ) . (41)

Using the software Mathematica on an ordinary laptop (CPU Intel Core i7-6500U 2.5 GHz, Memory 8GB), it is readily

to give results for those equations. As shown in Table 1 , our approach can give excellent results in very short time.

We notice that the precision of wavelet solutions improves gradually as the resolution level j increases. Note that the

homogeneous auxiliary function introduced by Liu et al. [8] is non-unique, which leads to the computational accuracies

could be seriously affected when this function is changed, as shown in Fig. 1 . Particularly, for the mixed Dirichlet-Neumann

boundary conditions’ case, it is found that when K = 4 , the square error of Liu’s [8] can reach 1 . 0 × 10 −14 in about five

seconds. Unfortunately, it is not easy to find this optimal value K , a series of computations are needed for determination of

this best value. The total time consumed in the computation is therefore very much. Without taking efforts to try the best

value of the optimal parameter K , we are able to obtain the exact wavelet approximations directly by our approach, the

errors can readily reach to 9 . 54866 × 10 −14 in very short time, as shown in Fig. 2 (Dash red line). This shows great priority

of our proposed technique. 

3.3. Validation in 2-D linear cases 

Further to verify the validity and efficiency of our proposed approach, we apply it in the nonhomogeneous 2-D linear

problem. Note that for such case, Liu’s approach [8] can hardly find an appropriate auxiliary function to homogenize the

nonhomogeneous boundaries. This is to say, his approach is invalid for most 2-D problems with the nonhomogeneous

boundaries. While our skill still work very well, as illustrated below. 

The governing equation considered here is in the following form 

L [ ξ (x, y )] = 0 , (42)

subjected to the boundary conditions 

∂ a ξ

∂x a 

∣∣∣
x =0 

= f 1 (y ) , 
∂ b ξ

∂x b 

∣∣∣
x =1 

= f 2 (y ) , 

∂ c ξ

∂y c 

∣∣∣
y =0 

= g 1 (x ) , 
∂ d ξ

∂y d 

∣∣∣
y =1 

= g 2 (x ) . (43)
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Fig. 1. Approaching precision and consuming time of auxiliary function with different order K by Liu’s approach. Er r SQ − u : solid with rectangular points; 

CPU time: solid with circle points; Red dash horizontal line: approaching precision of our approach with boundary Coiflets. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Comparison in 1-D case subjected to the mixed Dirichlet-Neumann boundary. Calculated results ( j = 6 ): red circled points; exact solution: black 

line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 
where a, b, c, d are orders of function on the left side x = 0 , the right side x = 1 , the down side y = 0 and the up side

y = 1 , respectively. 

Using our approach, the boundary interpolation matrices can be modified as 

h j,k (x ) = ϕ j,k (x ) | p 0 ,a,i → 0 ,p 1 ,b,i → 0 , h j,l (y ) = ϕ j,l (y ) | p 0 ,c,i → 0 ,p 1 ,d,i → 0 . (44) 

So that the wavelet approximations can be written by 

ξ (x, y ) ≈ P j ξ (x, y ) = 

2 j ∑ 

k =0 

2 j ∑ 

l=0 

ξ
(

k 

2 

j 
, 

l 

2 

j 

)
h j,k (x ) h j,l (y ) + B 

n 
ξ , (45) 

where modification by nonhomogeneous boundary are 

B 

n 
ξ = h j,k (x ) 

{ 2 j ∑ 

k =0 

g 1 

(
k 

2 

j 

)
� 

0 
j,c (y ) + 

2 j ∑ 

k =0 

g 2 

(
k 

2 

j 

)
� 

1 
j,d (y ) 

} 

+ h j,l (y ) 
{ 2 j ∑ 

l=0 

f 1 

(
l 

2 

j 

)
� 

0 
j,a (x ) + 

2 j ∑ 

l=0 

f 2 

(
l 

2 

j 

)
ϕ 

1 
j,b (x ) 

} 

. 

Analogous to Eqs. (19 ) and ( 20) , the distributed error function and system errors for 2D case are defined as 

Err ξ (x, y ) = 

∣∣ξ (x, y ) − ξe (x, y ) 
∣∣2 

, 0 < x, y < 1 , (46) 
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Er r SQ ξ ≈ 1 

(2 

j + 1) 2 

2 j ∑ 

k =0 

2 j ∑ 

l=0 

[ 
ξ
(

k 

2 

j 
, 

l 

2 

j 

)
− ξe 

(
k 

2 

j 
, 

l 

2 

j 

)] 2 
. (47)

where ξ ( x, y ) and ξ e ( x, y ) are the wavelet approximation and the analytical solution, respectively. 

The first example for the 2-D linear equation governed by Laplace operator is given by 

�ξ + π2 ξ + f = 0 , f = π2 ( M̄ 

2 + N̄ 

2 − 1) sin ( M̄ πx ) sin ( ̄N πy ) , (48)

with the analytical solution 

ξe (x, y ) = sin ( M̄ πx ) sin ( ̄N πy ) . (49)

subjected to Neumann type boundary conditions 

∂ξ

∂x 

∣∣∣
x =0 

= M̄ π sin ( ̄N πy ) , 
∂ξ

∂x 

∣∣∣
x =1 

= (−1) M̄ M̄ π sin ( ̄N πy ) , 

∂ξ

∂y 

∣∣∣
y =0 

= N̄ π sin ( M̄ πx ) , 
∂ξ

∂y 

∣∣∣
y =1 

= (−1) N̄ N̄ π sin ( M̄ πx ) . (50)

where M̄ , N̄ are angular velocity parameters. 

In our approach, the boundary matrices are expressed by 

h j,k (x ) = ϕ j,k (x ) | p 0 , 1 ,i → 0 ,p 1 , 1 ,i → 0 , h j,l (y ) = ϕ j,l (y ) | p 0 , 1 ,i → 0 ,p 1 , 1 ,i → 0 . (51)

Therefore, ξ ( x, y ) and f ( x, y ) are approximated by 

f (x, y ) ≈ P j f (x, y ) = 

2 j ∑ 

k =0 

2 j ∑ 

l=0 

f 

(
k 

2 

j 
, 

l 

2 

j 

)
ϕ j,k (x ) ϕ j,l (y ) , (52)

ξ (x, y ) ≈ P j ξ (x, y ) = 

2 j ∑ 

k =0 

2 j ∑ 

l=0 

ξ
(

k 

2 

j 
, 

l 

2 

j 

)
h j,k (x ) h j,l (y ) + B 

′ 
ξ , (53)

where 

B 

′ 
ξ = M̄ π

{
2 j ∑ 

k =0 

sin 

(
M̄ πk 

2 

j 

)
h j,k (x ) 

[
ϕ 

0 
j, 1 (y ) + (−1) M̄ ϕ 

1 
j, 1 (y ) 

]}
+ ̄N π

{
2 j ∑ 

l=0 

sin 

(
N̄ π l 

2 

j 

)
h j,l (y ) 

[
ϕ 

0 
j, 1 (x ) + (−1) N̄ ϕ 

1 
j, 1 (x ) 

]}
. 

Multiplying h j, n ( x ) h j, m 

( y ) on both sides of the above equations, and applying the multiple integrals on interval [0, 1] 2 ,

we obtain 

˜ A 3 • ˆ U 3 + 

˜ B 3 • ˆ F + 

4 ∑ 

i =1 

˜ C i • ˆ S i = 0 . (54)

where the straight vectors of the variable ξ ( x, y ) and f ( x, y ) are written as 

ˆ U 3 = 

{
ξp = ξ

(
k 

2 

j 
, 

l 

2 

j 

)}
, ˆ F = 

{
f p = f 

(
k 

2 

j 
, 

l 

2 

j 

)}
. 

and the boundary vectors are 

ˆ S 1 = 

{
s 1 k = M̄ π sin 

(
M̄ πk 

2 

j 

)}
, ˆ S 2 = 

{
s 2 k = (−1) M̄ M̄ π sin 

(
M̄ πk 

2 

j 

)}
, 

ˆ S 3 = 

{
t 1 l = N̄ π sin 

(
N̄ π l 

2 

j 

)}
, ˆ S 4 = 

{
t 2 l = (−1) N̄ N̄ π sin 

(
N̄ π l 

2 

j 

)}
. (55)

The iterating matrix are 

˜ A 

T 
3 = � j, 2 

k,n 

⊗ 

� j, 0 

l,m 

+ π2 � j, 0 

k,n 

⊗ 

� j, 0 

l,m 

+ � j, 0 

k,n 

⊗ 

� j, 2 

l,m 

, ̃  B 

T 
3 = �̄ j, 0 

k,n 

⊗ 

�̄ j, 0 

l,m 

, 

˜ C 

T 
1 = � j, 2 

k,n 

⊗ 

ˆ � j, 0 
L,m 

+ � j, 0 

k,n 

⊗ 

ˆ � j, 2 
L,m 

, ̃  C 

T 
2 = � j, 2 

k,n 

⊗ 

ˆ � j, 0 
R,m 

+ � j, 0 

k,n 

⊗ 

ˆ � j, 2 
R,m 

, 

˜ C 

T 
3 = 

ˆ � j, 0 
L,n 

⊗ 

� j, 2 

l,m 

+ 

ˆ � j, 2 
L,n 

⊗ 

� j, 0 

l,m 

, ̃  C 

T 
4 = 

ˆ � j, 0 
R,n 

⊗ 

� j, 2 

l,m 

+ 

ˆ � j, 2 
R,n 

⊗ 

� j, 0 

l,m 

, 

o = 2 

j n + m + 1 , p = 2 

j k + l + 1 , k, l, n, m = 0 ∼ 2 

j . 
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Table 2 

Approximation time and precision in 2D linear equations governed by Laplace and Biharmonic operators. 

Operators j 3 4 5 6 

Laplace( ∇ 

2 ) ErrSQ ξ 3.798E −03 5.050E −04 2.706E −05 5.558E −06 

CPU time(s) 2.525 3.901 7.359 57.842 

Biharmonic( ∇ 

4 ) ErrSQ ξ 6.349E −07 4.518E −09 1.636E −10 2.423E −12 

CPU time(s) 3.143 2.956 6.339 51.366 

 

 

 

 

 

 

 

 

 

 

The other example is governed by the biharmonic operator with the function f ( x, y ) being not zero on boundaries 

∂ 4 ξ

∂x 4 
+ 2 

∂ 4 ξ

∂ x 2 ∂ y 2 
+ 

∂ 4 ξ

∂y 4 
+ 

∂ 2 ξ

∂ x∂ y 
+ f = 0 , 

f = −( M̄ 

4 + 2 M̄ 

2 N̄ 

2 + N̄ 

4 ) π4 sin ( M̄ πx ) sin ( ̄N πy ) 

−π2 M̄ ̄N cos ( M̄ πx ) cos ( ̄N πy ) , (56) 

subjected to the Cauchy type boundary conditions (50) , together with the following add-in Dirichlet conditions. 

ξ | 
 = 0 , 
 = [0 , 1] × [0 , 1] . (57) 

Note that this equation has the analytical solution given in Eq. (49) . 

The Coiflets modifications for ξ ( x, y ) are exactly same as Eq. (51) but the approximations is different from Eq. (53) 

ξ (x, y ) ≈ P j ξ (x, y ) = 

2 j −1 ∑ 

k ′ =1 

2 j −1 ∑ 

l ′ =1 

ξ

(
k ′ 
2 

j 
, 

l ′ 
2 

j 

)
h j,k ′ (x ) h j,l ′ (y ) + B 

′ 
ξ . (58) 

the source item f ( x, y ) is same as Eq. (52) that can not simplified since it is not equal to zero at the boundaries. Multiplying

h j,n ′ (x ) h j,m 

′ (y ) on both sides and then integrating with the help of the Wavelet–Galerkin method, we obtain 

˜ A 4 • ˆ U 4 + 

˜ B 4 • ˆ F + 

4 ∑ 

i =1 

˜ D i • ˆ S i = 0 . 

where the straight vectors and systematic iterating matrixes are listed as 

ˆ U 4 = 

{
ξp ′ = ξ

(
k ′ 
2 j 

, l ′ 
2 j 

)}
, ˜ B 

T 
4 = �̄ j, 0 

k,n ′ 
⊗ 

�̄ j, 0 

l,m 

′ , 

˜ A 

T 
4 = �4 , 0 + 2 �2 , 2 + �0 , 4 , �s,t = � j,s 

k ′ ,n ′ 
⊗ 

� j,t 

l ′ ,m 

′ . 

The boundary vectors are identical to Eq. (55) , while the tensors of the nonhomogeneous boundary conditions are 

˜ D 

T 
i = �i 

4 , 0 + 2 �i 
2 , 2 + �i 

0 , 4 + �i 
1 , 1 , i = 1 , 2 , 3 , 4 , (59) 

where iterating matrices and suffix are 

�1 
s,t = � j,s 

k,n ′ 
⊗ 

ˆ � j,t 
L,m 

′ , �2 
s,t = � j,s 

k,n ′ 
⊗ 

ˆ � j,t 
R,m 

′ , 

�3 
s,t = 

ˆ � j,s 
L,n ′ 

⊗ 

� j,t 

l,m 

′ , �4 
s,t = 

ˆ � j,s 
R,n ′ 

⊗ 

� j,t 

l,m 

′ , 

o ′ = (2 

j − 1)(n 

′ − 1) + m 

′ , p ′ = (2 

j − 1)(k ′ − 1) + l ′ , 
p = 2 

j k + l + 1 , k, l = 0 ∼ 2 

j , k ′ , n 

′ , l ′ , m 

′ = 1 ∼ 2 

j − 1 . 

For the Laplace equation with Neumann boundary conditions and the Biharmonic equation with Cauchy boundary

conditions, we select the iterating dimensions are (2 j + 1) × (2 j + 1) and (2 j − 1) × (2 j − 1) respectively to make equations

closed. As shown in Table 2 , for both cases, the average square errors decrease with the resolution level j increasing. For

j = 6 and the approaching items numbers are 64 × 64, the errors reach to 10 −6 and 10 −12 respectively in less than 1 min.

Also, it can be seen from Fig. 3 , our results match the analytical ones. This shows very good computational efficiency of our

proposed technique. 

4. Homotopy-wavelet approach for steady flow in a lid-driven cavity 

It has been known that our proposed technique is valid for linear problems with nonhomogeneous boundary conditions.

Here we examine its potentials for nonlinear problems. The classical problem of 2-D incompressible steady flow in a

lid-driven cavity with two singular points of velocity field on rigid is a typical example to testify the validity and efficiency

of our approach. The overall calculations are conducted in a desktop computer(CPU Intel Core TM i5-4460 CPU @3.20 GHz,

Memory 8 GB). 
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Fig. 3. Solution error distributions of linear 2-D equations governed by Laplace operator subjected to Neumann boundary and Biharmonic operator sub- 

jected to Cauchy boundary. 

 

 

 

 

 

 

 

 

 

 

Many researchers have studied various aspects of the cavity flow problems by different numerical methods in different

Reynolds and formulation, as showed in Table 3 . The governing equations of 2D lid driven cavity flow are usually two

forms. One is the stream function-vorticity formulation with eliminating the pressure field by introducing stream function

to simplify the original equations. Another is the form of original coupled equations for velocity and pressure field. 

The cavity flow problem is demonstrated as a benchmark to validate efficiency of various algorithms, such as the Finite

Difference Method(FDM) [23–25] , the Finite Element Method(FEM) [26,27] , the Finite Volume Method(FVM) [28] , the Lattice

Boltzmann Method(LBM) [29] , the Boundary Element Method(BEM) [30,31] , the Wavelet BEM-FEM [32–34] , the Spectral

Method [35] with different range of Reynolds and grid discretization [36] . The benchmark data were elaborated by Ghia

et al. [37] , Botella and Peyret [38] , Bruneau and Saad [39] , and Marchi et al. [40] , respectively. Due to the strong nonlinearity

of the governing equation and its nonhomogeneous boundaries, analytic solutions to this problems is extremely difficult to

give by analytical approaches. 

As shown in Fig. 4 , the classic 2-D incompressible viscous cavity flow is governed by ψ − ω equation in the following

form 

∇ 

2 ω = 

∂ 2 ω 

∂x 2 
+ 

∂ 2 ω 

∂y 2 
= Re 

(
∂ω 

∂x 

∂ψ 

∂y 
− ∂ω 

∂y 

∂ψ 

∂x 

)
, 

∇ 

2 ψ = 

∂ 2 ψ 

∂x 2 
+ 

∂ 2 ψ 

∂y 2 
= −ω, 
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Table 3 

References with governing equations formulation and grid scale for the classical cavity driven flow. 

Authors Formulation Re Methods Grids 

Kawaguiti [42] ψ − ω 0 − 64 FDM 11 × 11 

Burggraf [43] ψ − ω 0 − 700 FDM 11 × 11 ∼ 51 × 51 

Rubin and Khosla [23] ψ − ω 100 &1000 FDM 17 × 17 ∼ 128 × 128 

Benjamin and Denny [24] ψ − ω 10 0 0 ∼ 10 0 0 0 FDM 61 × 61 ∼ 151 × 151 

Ghia et al. [37] ψ − ω 100 ∼ 10 0 0 0 FDM 129 × 129 ∼ 257 × 257 

Schreiber and Keller [44] ψ − ω 1 ∼ 10 0 0 0 FDM 121 × 121 ∼ 180 × 180 

Vanka [45] u, v, p 100 ∼ 5000 FDM 41 ∼ 41 ∼ 321 ∼ 321 

Nishida and Satofuka [46] ψ − ω 100 ∼ 3200 FDM 65 × 65 ∼ 129 × 129 

Liao [30] ψ − ω 100 ∼ 2000 BEM 64 × 64 

Hou et al. [29] LBE 100 ∼ 7500 LBM 256 × 256 

Wright and Gaskell [47] u, v, p 100&1000 FVM 1024 × 1024 

Goyon [48] 10 0 0 FDM 129 × 129 

Barragy and Carey [49] ψ − ω 0.0 0 01 ∼ 10 0 0 0 FEM 257 × 257 

Botella and Peyret [38] u, v, p 100 & 10 0 0 Spectral 160 

Zhang [50] ψ − ω 100 ∼ 7500 FDM 17 × 17 ∼ 129 × 129 

Zhao and Liao [31] ψ − ω 10 0 0 ∼ 10 0 0 0 BEM 64 × 64 

Ravnik et al. [32] 400 Wavelet BEM-FEM 120eqs 

Gupta et al. [51] ψ − V 100 ∼ 10 0 0 0 FDM 41 × 41 ∼ 161 × 161 

Erturk et al. [52] ψ − ω 100 ∼ 210 0 0 FDM 401 × 401 

Bruneau and Saad [39] u, v, p 10 0 0 ∼ 10 0 0 0 FDM 128 × 128 ∼ 2048 × 2048 

Marchi et al. [40] u, v, p 0.01 ∼ 10 0 0 FVM 2 × 2 ∼ 1024 × 1024 

This work ψ − ω 0.01 ∼ 20 0 0 wHAM 8 × 8( j = 3) ∼ 64 × 64( j = 6) 

Fig. 4. Schematic diagram and boundary conditions of viscous flow in a Cavity. 
ū = 

∂ψ 

∂y 
v̄ = −∂ψ 

∂x 
. (60) 

subjected to the no-slip and impenetrable boundary conditions 

ū = 

∂ψ 

∂y 
= 0 , v̄ = −∂ψ 

∂x 
= 0 , on x = 0 , 

ū = 

∂ψ 

∂y 
= 0 , v̄ = −∂ψ 

∂x 
= 0 , on x = 1 , 

ū = 

∂ψ 

∂y 
= 0 , v̄ = −∂ψ 

∂x 
= 0 , on y = 0 , 

ū = 

∂ψ 

∂y 
= f (x ) , v̄ = −∂ψ 

∂x 
= 0 , on y = 1 . (61) 
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where ψ is the stream function, ω is the vortex function, ū , ̄v are velocities in x, y direction, respectively. It should be

noted here that the closed wavelet method does not work for this problem since the boundary conditions are unable to be

transformed into homogeneous ones. 

4.1. Mathematical formulation 

As illustrated above, our approach works well for differential equations with the mixed Cauchy boundary conditions.

Hence we make attempt to convert the boundary conditions (61) for ψ to Cauchy ones. 

Due to the border speciality of the rectangular computational domain, ψ is single-valued function of x when y is

prescribed, or vice versa. Choosing an arbitrary point P = (0 , y P ) and its neighboring point P 1 = (0 , y P + δ) , employing the

single-valued function 

ˆ ψ (y ) at x = 0 , the derivative of ψ( x, y ) can expressed by 

∂ψ(x, y ) 

∂y 

∣∣∣∣
x =0 

= 

ψ p 1 − ψ p 

−→ 

P P 1 
= 

ˆ ψ p 1 (y + δ) − ˆ ψ p (y ) 

δ
= 0 . 

Since δ is an arbitrary small amount and P is a random point, we are able to assume ψ = C 1 at x = 0 . Similarly, taking

account of the no-slip boundary conditions on other three sides, ψ ∈ C 4 [0, 1] is constant for four boundary edges. It is

known that the velocity field is only determined by the derivatives of ψ , so we can prescribe this constant without changing

behaviours for the original problems. For simplicity, we set ψ = 0 on the boundaries such that the mixed nonhomogeneous

Cauchy boundary conditions are 

x = 0 , ψ = 0 , 
∂ψ 

∂x 
= 0 ; x = 1 , ψ = 0 , 

∂ψ 

∂x 
= 0 ;

y = 0 , ψ = 0 , 
∂ψ 

∂y 
= 0 ; y = 1 , ψ = 0 , 

∂ψ 

∂y 
= f (x ) . (62)

By eliminating the vortex ω and adding the source item Q , Eq. (60) is reduced to 

∇ 

2 ∇ 

2 ψ + Re 

(
∂ψ 

∂x 

∂ 3 ψ 

∂y 3 
+ 

∂ψ 

∂x 

∂ 3 ψ 

∂ x 2 ∂ y 
− ∂ψ 

∂y 

∂ 3 ψ 

∂x 3 
− ∂ψ 

∂y 

∂ 3 ψ 

∂ x∂ y 2 

)
= Q . (63)

Here Q is used to validate convergence and it equates to 0 in later computation. 

4.2. Solutions by the HAM with the generalized orthogonal Coiflets 

We combine the HAM technique with Coiflets to give the exact wavelet approximations to this cavity problem. We

first transform the nonlinear equation into a set of linear homogenous ones. In the framework of the HAM technique, the

zeroth-order deformation equation is constructed as 

(1 − p) L ψ 

[�(x, y ; p) − ψ 0 (x, y )] = pc 0 N ψ 

[�(x, y ; p)] . (64)

where p is the embedding parameter, c 0 is the convergence-control parameter, L is the linear operator given by 

L ψ 

[ f ] = ∇ 

4 [ f ] = 

∂ 4 

∂x 4 
+ 2 

∂ 4 

∂ x 2 ∂ y 2 
+ 

∂ 4 

∂y 4 
[ f ] , (65)

and N ψ 

[�] is the nonlinear operator defined by 

N ψ 

[�] = ∇ 

4 � + Re 

(
∂�

∂x 

∂ 3 �

∂y 3 
+ 

∂�

∂x 

∂ 3 �

∂ x 2 ∂ y 
− ∂�

∂y 

∂ 3 �

∂x 3 
− ∂�

∂y 

∂ 3 �

∂ x∂ y 2 

)
− Q . (66)

Note that for p = 0 and p = 1 , we have respectively 

�(x, y ; 0) = ψ 0 (x, y ) , �(x, y ; 1) = ψ(x, y ) . (67)

As p increases from 0 to 1, �( x, y ; p ) varies from the initial guess ψ 0 ( x, y ) to the desired solution ψ( x, y ). Using the

Taylor expansion, �( x, y ; p ) can be expanded with respect to p in the following form 

�(x, y ; p) = ψ 0 (x, y ) + 

+ ∞ ∑ 

M=1 

ψ M 

(x, y ) p m , (68)

where 



136 Q. Yu et al. / Commun Nonlinear Sci Numer Simulat 67 (2019) 124–151 

 

 

 

 

 

 

 

ψ M 

(x, y ) = 

1 

M! 

∂ M �(x, y ; p) 

∂ p M 

∣∣∣∣
p=0 

. (69) 

If the auxiliary linear operator, the initial guess, and the convergence-control parameter are chosen properly so the

Taylor series all converge at p = 1 , we obtain the homotopy-series solutions 

ψ(x, y ) = ψ 0 (x, y ) + 

+ ∞ ∑ 

M=1 

ψ M 

(x, y ) . (70) 

The M th-order deformation equation can be obtained, by differentiating Eq. (64) with respect to p for M times, and then

setting p = 0 , as 

L ψ 

[ ψ M 

− χM 

ψ M−1 ] = c 0 
{∇ 

4 ψ M−1 + R M 

+ (χM 

− 1) Q 

}
(71) 

where 

R M 

= Re 

M−1 ∑ 

s =0 

{
∂ψ s 

∂x 

∂ 3 ψ M−1 −s 

∂y 3 
+ 

∂ψ s 

∂x 

∂ 3 ψ M−1 −s 

∂ x 2 ∂ y 
−
(

∂ψ s 

∂y 

∂ 3 ψ M−1 −s 

∂x 3 
+ 

∂ψ s 

∂y 

∂ 3 ψ M−1 −s 

∂ x∂ y 2 

)}
and 

χ
k̄ 

= 

{
0 , k̄ ≤ 1 , 

1 , k̄ > 1 . 
(72) 

The Coiflets used for the nonhomogeneous boundary conditions are taken into consideration by setting 

h j,k (x ) = ϕ j,k (x ) | p 0 , 1 ,i → 0 ,p 1 , 1 ,i → 0 h j,l (y ) = ϕ j,l (y ) | p 0 , 1 ,i → 0 ,p 1 , 1 ,i → 0 

� j,L (x ) = 0 , � j,R (x ) = � 

1 
j, 1 (x ) . 

Therefore, the wavelet approximations for each order stream function ψ M 

( x, y ) and its derivatives are written, at u = v = 0 ,

as 

∂ u + v ψ M 

∂ x u ∂ y v 
≈

2 j −1 ∑ 

k ′ =1 

2 j −1 ∑ 

l ′ =1 

ψ M 

(
k ′ 
2 

j 
, 

l ′ 
2 

j 

)
h 

(u ) 
j,k ′ (x ) h 

(v ) 
j,l ′ (y ) + (1 − χM+1 ) 

2 j ∑ 

k =0 

f 

(
k 

2 

j 

)
h 

(u ) 
j,k 

(x ) � 

(v ) 
j,R 

(y ) . (73) 

In our analysis, the coefficients of wavelet series are given at level j , while the reconstitution for the stream function,

the vortex and the velocity are showed at level J . Note that J is reconstitution level and j is resolution level, respectively.

In generalized orthogonal Coiflets system, we set J = j for simplicity and more detailed is illustrated in Appendix A . In this

way, we reconstitute 

ψ(x, y ) ≈ S j ψ(x, y ) = 

2 j −1 ∑ 

k ′ =1 

2 j −1 ∑ 

l ′ =1 

ψ 

(
k ′ 
2 

j 
, 

l ′ 
2 

j 

)
h j,k ′ (x ) h j,l ′ (y ) + 

2 j ∑ 

k =0 

f 

(
k 

2 

j 

)
h j,k (x ) � j,R (y ) , (74) 

ω(x, y ) ≈ −S j �ψ(x, y ) = −
2 j −1 ∑ 

k ′ =1 

2 j −1 ∑ 

l ′ =1 

ψ 

(
k ′ 
2 

j 
, 

l ′ 
2 

j 

)[
h 

(2) 
j,k ′ (x ) h j,l ′ (y ) 

+ h j,k ′ (x ) h 

(2) 
j,l ′ (y ) 

]
−

2 j ∑ 

k =0 

f 

(
k 

2 

j 

)[
h 

(2) 
j,k 

(x ) � j,R (y ) + h j,k (x ) � 

(2) 
j,R 

(y ) 
]
, (75) 

ū (x, y ) ≈
2 j −1 ∑ 

k ′ =1 

2 j −1 ∑ 

l ′ =1 

ψ 

(
k ′ 
2 

j 
, 

l ′ 
2 

j 

)
h j,k ′ (x ) h 

(1) 
j,l ′ (y ) + 

2 j ∑ 

k =0 

f 

(
k 

2 

j 

)
h j,k (x ) � 

(1) 
j,R 

(y ) , (76) 

v̄ (x, y ) ≈ −
2 j −1 ∑ 

k ′ =1 

2 j −1 ∑ 

l ′ =1 

ψ 

(
k ′ 
2 

j 
, 

l ′ 
2 

j 

)
h 

(1) 
j,k ′ (x ) h j,l ′ (y ) −

2 j ∑ 

k =0 

f 

(
k 

2 

j 

)
h 

(1) 
j,k 

(x ) � j,R (y ) . (77) 

Substituting Eq. (73) into Eq. (71) , we can approximate the solutions for ψ , at M th order HAM deformation equations,

as 

2 j −1 ∑ 

k ′ =1 

2 j −1 ∑ 

l ′ =1 

{
ψ M 

(
k ′ 
2 

j 
, 

l ′ 
2 

j 

)
L ψ 

[ h j,k ′ (x ) h j,l ′ (y )] 

−ψ M−1 

(
k ′ 
2 

j 
, 

l ′ 
2 

j 

){
χM 

L ψ 

[ h j,k ′ (x ) h j,l ′ (y )] + c 0 ∇ 

4 [ h j,k ′ (x ) h j,l ′ (y )] 

}}
= c 0 (1 − χM 

) 
2 j ∑ 

k =0 

f 

(
k 

2 

j 

)
∇ 

4 [ h j,k (x ) ϕ j,R (y )] 
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−c 0 

2 j ∑ 

k =0 

2 j ∑ 

l=0 

[
R M 

(
k 

2 

j 
, 

l 

2 

j 

)
+ (1 − χM 

) Q 

(
k 

2 

j 
, 

l 

2 

j 

)]
ϕ j,k (x ) ϕ j,l (y ) . (78)

Multiplying h j,n ′ (x ) h j,m 

′ (y ) on both sides of Eq. (78) and integrating on the domain [0, 1] 2 , we obtain the iterative

equation 

ˆ �s 
M 

= (c 0 + χM 

) ̂  �s 
M−1 + c 0 ̃  A 

−1 
ψ 

• ˜ R M 

+ c 0 (1 − χM 

) ̃  A 

−1 
ψ 

• ( ̃  P B − ˜ P Q ) . (79)

where the straight vectors and the systematic iterative tensors are given by 

ˆ �s 
M 

= 

{
ψ p ′ = ψ M 

(
k ′ 
2 

j 
, 

l ′ 
2 

j 

)}
˜ A 

T 
ψ 

= � j, 4 

k ′ ,n ′ 
⊗ 

� j, 0 

l ′ ,m 

′ + 2 � j, 2 

k ′ ,n ′ 
⊗ 

� j, 2 

l ′ ,m 

′ + � j, 0 

k ′ ,n ′ 
⊗ 

� j, 4 

l ′ ,m 

′ , 

p ′ = (2 

j − 1)(k ′ − 1) + l ′ , k ′ , l ′ , n 

′ , m 

′ = 1 ∼ 2 

j − 1 . 

Iterative correction tensor ˜ P B resulting from nonhomogeneous boundaries are written as 

˜ P B = 

˜ T R • ˆ S R , ˆ S R = 

{
s r k = f 

(
k 

2 

j 

)}
, 

˜ T 

T 
R = � j, 4 

k,n ′ 
⊗ 

ˆ � j, 0 
R,m 

′ + 2 � j, 2 

k,n ′ 
⊗ 

ˆ � j, 2 
R,m 

′ + � j, 0 

k,n ′ 
⊗ 

ˆ � j, 4 
R,m 

′ . 

The straight vector of external item 

ˆ Q and iterating matrix are expressed by 

ˆ P Q = 

˜ C ψ 

• ˆ Q , ˆ Q = 

{
q p = Q 

(
k 

2 

j 
, 

l 

2 

j 

)}
, ˜ C 

T 
ψ 

= �̄ j, 0 

k,n ′ 
⊗ 

�̄ j, 0 

l,m 

′ . 

It is worth mentioning that nonhomogeneous boundary affects the wavelet approaching precision for ψ 0 , via Eqs. (A.8 )

and ( A.9) , we therefore write 

ˆ �M, j 
u, v = 

(˜ � j 
u 

⊗ ˜ � j 
v 
)T • ˆ �U 

M 

+ (1 − χM+1 ) 
(˜ � j 

v 
)T •

(
˜ S R 

⊗ ˜ � j 
u,R 

)
. (80)

where the straight vectors of point value and the tensors are 

ˆ �U 
M 

= 

{
ψ o = ψ M 

(
k 

2 

j 
, 

l 

2 

j 

)}
, ˜ � j 

u,R 
= 

{
b j,s = � 

(u ) 
j,R 

(
s 

2 

j 

)}
. 

ˆ �M, j 
u, v = 

{
ψ 

j 
p = 

∂ u + v ψ 

∂ x u ∂ y v 

(
s 

2 

j 
, 

t 

2 

j 

)}
, 

o = 2 

j k + l + 1 , p = 2 

j s + t + 1 , k, l, s, t = 0 ∼ 2 

j . 

The straight vector of nonlinear part is regarded as a single function approximated by former Coiflets is 

˜ R M 

= 

˜ C ψ 

• ˆ R M 

, ˆ R M 

= 

{
r p = R M 

(
k 

2 

j 
, 

l 

2 

j 

)}
. 

Finally, M th nonlinear part are approximated by each ψ M 

as 

ˆ R M 

= Re 

M−1 ∑ 

s =0 

[
ˆ �s, j 

1 , 0 

⊙ 

ˆ �M−1 −s, j 
0 , 3 

+ 

ˆ �s, j 
1 , 0 

⊙ 

ˆ �M−1 −s, j 
2 , 1 

− ˆ �s, j 
0 , 1 

⊙ 

ˆ �M−1 −s, j 
3 , 0 

− ˆ �s, j 
0 , 1 

⊙ 

ˆ �M−1 −s, j 
1 , 2 

]
. 

Because of the strong nonlinearity of the nonlinear part R M 

, it is very time-consuming with the computational order

M increasing. To overcome this deficiency, we apply homotopy iteration by transforming M th results into the renew initial

guess to accelerate the convergence, that is to say 

ψ iter = ψ initial + 

M ∑ 

i =1 

ψ i (x, y ) → ψ initial . (81)

The computational errors are given, similar to Eqs. (46 ) and ( 47) , as 
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Er r SQ f = || Er r f || L 2 [0 , 1] ≈
1 

(2 

j + 1) 2 

2 j ∑ 

k =0 

2 j ∑ 

l=0 

[
f 

(
k 

2 

j 
, 

l 

2 

j 

)
− f e 

(
k 

2 

j 
, 

l 

2 

j 

)]2 

. (82) 

where f = ψ, ω, ū , ̄v , V̄ are the wavelet approximations and f e = ψ e , ω e , ū e , ̄v e , V̄ e are the analytical ones. 

4.3. Convergence check and error analysis 

To compare the validity and correctness of our wavelet approximations, we constitute a particular equation that contains

an analytical solution. In this case, the external term Q is chosen as 

Q(x, y ) = 128[ −1 + 3 y − 3 y 2 + 3 y 3 + 112 Re · x 6 y (1 − 3 y + 3 y 2 ) 

−32 Re · x 7 y (1 − 3 y + 3 y 2 ) + 48 Re · x 5 y (−3 + 9 y − 7 y 2 − 5 y 3 + 3 y 4 ) 

−40 Re · x 4 y (−2 + 6 y − 15 y 3 + 9 y 4 ) 

+16 Re · x 3 y (−1 + 3 y + 11 y 2 − 35 y 3 + 21 y 4 ) 

+2 x (−3 + 9 y + 8 Re · y 3 − 20 Re · y 4 + 12 Re · y 5 ) 

−6 x 2 (−1 + 3 y + 16 Re · y 3 − 40 Re · y 4 + 24 Re · y 5 )] . (83) 

So that we obtain the analytical expression for the stream function, the vortex, the velocity and its amplitude V̄ as 

ψ e = 16 x 2 (1 − x ) 2 y 2 (y − 1) , (84) 

ω e = −32(6 x 2 − 6 x + 1)(y − 1) y 2 − 32(x − 1) 2 x 2 (3 y − 1) , (85) 

ū e = 16(x − 1) 2 x 2 y (3 y − 2) , (86) 

v̄ e = −32(x − 1) x (2 x − 1)(y − 1) y 2 , (87) 

V̄ e = 16 

√ 

(x − 1) 2 x 2 y 2 
[
(x − 1) 2 x 2 (2 − 3 y ) 2 + 4(1 − 2 x ) 2 (y − 1) 2 y 2 

]
. (88) 

Note that it corresponds to the velocity distribution on the upper plate 

Ū 0 = f (x ) = 16 x 2 (1 − x ) 2 . (89) 

We notice that the velocity Ū 0 is equal to zero at x = 0 and x = 1 . Therefore, the velocity distribution on the boundaries

is continuous without singularity. As a result, Eq. (74) is simplified as 

ψ(x, y ) ≈
2 j −1 ∑ 

k ′ =1 

2 j −1 ∑ 

l ′ =1 

ψ 

(
k ′ 
2 

j 
, 

l ′ 
2 

j 

)
h j,k ′ (x ) h j,l ′ (y ) + 

2 j −1 ∑ 

k ′ =1 

f 

(
k ′ 
2 

j 

)
h j,k ′ (x ) � j,R (y ) . (90) 

To check the results, we define the error function Er r Res ψ M 
as an indicator for convergence. Note that it is not sufficient

to ensure the wavelet solutions converge to the analytical solutions. While it works well for the case that no analytical

solution exists. The error function Er r Res ψ M 
is defined as 

Er r Res ψ M 
= || ψ M 

(x, y ) || L 2 [0 , 1] ≈
1 

(2 

j + 1) 2 

2 j ∑ 

k =0 

2 j ∑ 

l=0 

ψ M 

(
k 

2 

j 
, 

l 

2 

j 

)2 

. (91) 

Besides, ErrX 0.5( f, y ) and ErrX 0.5( f, y ) are defined as the error distributions of arbitrary 2D function f ( x, y ) at x = 0 . 5 and

y = 0 . 5 

Er r X 0 . 5( f, y ) = 

∣∣ f (1 / 2 , y ) − f e (y ) 
∣∣2 

, (92) 

Er r Y 0 . 5( f, x ) = 

∣∣ f (x, 1 / 2) − f e (x ) 
∣∣2 

. (93) 

where f e ( y ) and f e ( x ) are the analytical solutions, respectively. 

For a prescribed Reynolds number, our results agree well with the analytical ones, which shows great efficiency of our

approach, as illustrated below. We first give the solution for Re = 100 . As shown in Fig. 5 , ErrRes decreases monotonously

as the iterating time increases for all selected j . The CPU time of iteration reveals different scale of nearly 10 j−3 (s ) at

different resolution level. Similarly, ErrSQ reduces rapidly to a certain scale as the iteration time enlarges. While as the

iteration time is sufficiently large, it has limited effect on the improvement of solution accuracies. Note that we employee

the homotopy iteration technique and the convergence control parameter is chosen as −13 / 100 . More details on error

computation are showed in Fig. 6 . It is found that our wavelet results agree well with the analytical ones for x = 0 . 5 and
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Fig. 5. ErrRes and ErrSQ of ψ in different wavelet resolution levels vary with iterations when Re = 100 . 

 

 

 

 

 

 

 

 

 

 

y = 0 . 5 , the maximum error ranges from 10 −6 to 10 −11 . In Fig. 7 , it is found that the error distributions are very sensitive

to the resolution level j , the larger is j , the error distribution contour is clearer. 

Residuals for the fields of stream, the vortex and the velocity obtained also reveal good accuracies of our solutions. As

showed in Table 4 , by improving on the reconstitution level, from j = 3 to 5, the errors ErrSQ for ψ, ω, ū , ̄v , V̄ decrease at

the rate of 10 −2 . But regarding results of level j = 6 , the iterating matrix ˜ A ψ 

in the iterating Eq. (79) formed by connection

coefficients is stiff without symmetry and is hard to be decomposed by LU technique with its dimension equaling 2 2 j in 2D

case. The improvement of j leads to the dramatic increase of the dimension with its inverse matrix difficult to be obtained

with numerical errors and precision losses, which the accuracies are not improved obviously. Due to this reason, in the

subsequent computation, we choose j = 5 for various Reynolds numbers. 

As is known from Eqs. (75) , (76) and (77) , the reconstructions of ū , ̄v , V̄ are associated with the first order derivatives of

Coiflets, while ω is related to the second one. Based on the Lemma denoted in Eqs. (A.6) and (A.7) , it is seen in Table 4 that

the precision loss exists, this leads to that the accuracies for ψ is around 10 −7 , 10 −9 , 10 −10 , these for ū , ̄v , V̄ are around

10 −5 , 10 −7 , 10 −9 , these for ω are 10 −2 , 10 −4 , 10 −5 at j = 3 , 4 , 5 , respectively. 
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Fig. 6. Comparison and error distributions of ψ on middle line at x, y = 0 . 5 in different wavelet resolution levels ( Re = 100 ). 

Table 4 

Residues of ψ, ω, ̄u , ̄v , ̄V with different wavelet resolution levels by our approach with M = 5 and iter = 30 when Re = 100 . 

j 3 4 5 6 

ErrSQ ψ 6.845E −07 9.4 4 4E −09 1.237E −10 3.856E −11 

ErrSQ ω 2.334E −02 8.172E −04 2.934E −05 1.303E −06 

Er r SQ ū 1.156E −05 1.189E −07 1.409E −09 4.796E −10 

Er r SQ v̄ 2.171E −05 2.510E −07 2.580E −09 4.435E −10 

Er r SQ V̄ 1.999E −05 2.550E −07 3.024E −09 7.142E −10 

CPU time(s) 2.973 12.793 93.966 1578.016 

 

 

 

 

 

 

As discussed above, our proposed approach can give exact approximations by selecting appropriate convergence control

parameters. We use this property to compute the solutions for larger Reynolds number Re . The computational results for

Re = 200 ∼ 500 with j = 5 are showed Table 5 . The convergence criterion is that the residuals ErrSQ decrease continuously

with increasing of the computational order. And at a certain order, the errors are less than the specified values in advance.

Mathematically, the nonlinearity becomes stronger and stronger when Re grows gradually. To get highly accurate solutions,

we must adjust the values of the convergence-control parameter c and increase the computational order M . For these
0 
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Fig. 7. Error distributions of ψ in different wavelet reconstitution levels when j = 3 , 5 . 

Table 5 

Residuals ErrSQ of ψ, ω, ̄u , ̄v , ̄V ,Time and c 0 when Re = 100 ∼ 500 and j = 5 . 

Re 100 200 300 400 500 

c 0 −0.13 −0.11 −0.05 −0.03 −0.02 

M × iter 108 254 750 10 0 0 1500 

Er r Res ψ M 3.770E −07 1.651E −06 1.554E −07 1.138E −05 1.552E −05 

ErrSQ ψ 1.236E −10 1.686E −10 2.135E −10 2.421E −10 2.608E −10 

ErrSQ ω 2.934E −05 2.885E −05 2.828E −05 2.776E −05 2.733E −05 

Er r SQ ū 1.409E −09 2.010E −09 2.749E −09 3.375E −09 3.882E −09 

Er r SQ v̄ 2.580E −09 3.094E −09 3.662E −09 4.178E −09 4.748E −09 

Er r SQ V̄ 3.024E −09 3.491E −09 3.979E −09 4.185E −09 4.354E −09 

CPU time(s) 58.861 139.572 412.516 548.677 1609.593 

 

 

 

 

computations, the relative errors decays rapidly with the increase of the computational order, as shown in Fig. 8 (a), the

absolute error can reach 10 −9 in a reasonable time, as seen in Fig. 8 (b). 

It is worth mentioning that the scale of the approximating precision of Coiflets basis in our proposed approach is

only dependent on the resolution level j but is irrelevant to the nonlinearity, that is in agreement with Zhao’s conclusion

[41] for the traditional elementary function basis. The absolute error ErrSQ in Fig. 8 (b) reduces to a stable level, namely,
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Fig. 8. Convergence process of ψ revealed by ErrSQ and ErrRes with different Reynolds when j = 5 . 

 

 

 

 

 

 

the approximate scale of 10 −10 for all Reynolds. But the iteration rate becomes slow as Reynolds increase, that means more

iterations are needed to get specific error values in advance. 

4.4. Classical problem with singularities 

As discussed above, investigations of previous case with exact solution show excellence computational efficiency of our

proposed technique, we therefore apply it to the classical cavity flow problem in higher Reynolds with the uniform velocity

of the lid-driven being Ū 0 = f (x ) = 1 in Eq. (61) . 

It needs to be emphasized that the rigid points (0,1) and (1,1) are singular so that the velocity at such points is not

continuous. In the finite difference method, researchers usually overcome the weakness by setting two small amount called

double-node approach as the initial iterating parameters. While in our technique, we adopt alternative technique by the

Coiflets, as illustrated below. 
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Table 6 

Results of ψ min and its location, minimum velocity u min at x = 0 . 5 , minimum and maximin velocity u min , u max at y = 0 . 5 and their locations by our approach 

with c 0 = −0 . 93 and M = 5 compared with FVM Results for the classical problem when Re = 0 . 01 and j = 3 ∼ 6 . 

Variables This work ( j = 3 ) This work ( j = 4 ) This work ( j = 5 ) This work ( j = 6 ) FVM [40] 

ψ min −1.00348908E −01 −9.99955300E −02 −9.98857540E −02 −1.00102022E −01 −1.0 0 076220E −01 

x( ψ min ) 0.5 0.5 0.5 0.5 0.5 

y( ψ min ) 0.75 0.75 0.75 0.765625 0.76465 

ū min −2.0640 010 0E −01 −2.06213767E −01 −2.07842507E −01 −2.07745723E −01 −2.07755600E −01 

y( ̄u min ) 0.5 0.5625 0.53125 0.53125 0.53564 

v̄ min −0.178655984 −0.183209859 −0.184278844 −0.184397791 −1.84 4 49100E −01 

x( ̄v min ) 0.75 0.8125 0.78125 0.796875 0.79053 

v̄ max 1.78402927E −01 1.83234340E −01 1.84275691E −01 1.84389166E −01 1.84 4 41500E −01 

x( ̄v max ) 0.25 0.1875 0.21875 0.203125 0.20947 

CPU time 0.15 s 2.53 s 24.58 s 882.5 s 4 d10 h 

Table 7 

Results of ψ min and its location, minimum velocity u min at x = 0 . 5 , minimum and maximin velocity u min , u max at y = 0 . 5 and their locations by our approach 

with c 0 = −0 . 13 and M = 5 compared with FVM Results for the classical problem when Re = 10 and j = 3 ∼ 6 . 

Variables This work ( j = 3 ) This work ( j = 4 ) This work ( j = 5 ) This work ( j = 6 ) FVM [40] 

ψ min −1.00615885E −01 −9.98798280E −02 −9.98112060E −02 −1.00137061E −01 −1.0 011320 0E −01 

x( ψ min ) 0.5 0.5 0.53125 0.515625 0.5166 

y( ψ min ) 0.75 0.75 0.75 0.765625 0.76465 

ū min −2.06453858E −01 −2.05789736E −01 −2.07661250E −01 −2.07584378E −01 −2.07576500E −01 

y( ̄u min ) 0.5 0.5625 0.53125 0.53125 0.53467 

v̄ min −1.86115119E −01 −1.88362645E −01 −1.88080766E −01 −1.88548241E −01 −1.88506200E −01 

x( ̄v min ) 0.75 0.8125 0.78125 0.796875 0.79346 

v̄ max 1.74023330E −01 1.78530 0 03E −01 1.80858390E −01 1.808690 0 0E −01 1.80911700E −01 

x( ̄v max ) 0.25 0.1875 0.21875 0.21875 0.2124 

CPU time 3.50 s 34.80 s 395.88 s 5558.18 s 9 d1 h 

Table 8 

Results of ψ min and its location, minimum velocity u min at x = 0 . 5 , minimum and maximin velocity u min , u max at y = 0 . 5 and their locations by our approach 

with c 0 = −0 . 13 and M = 5 compared with FVM Results for the classical problem when Re = 100 and j = 3 ∼ 6 . 

Variables This work ( j = 3 ) This work ( j = 4 ) This work ( j = 5 ) This work ( j = 6 ) FVM [40] 

ψ min −1.42369945E −01 −1.05831527E −01 −1.02448567E −01 −1.03384675E −01 −1.03521200E −01 

x( ψ min ) 0.625 0.625 0.625 0.609375 0.61621 

y( ψ min ) 0.625 0.75 0.75 0.734375 0.7373 

ū min −3.76074920E −01 −2.09524293E −01 −2.10673843E −01 −2.13622584E −01 −2.14041700E −01 

y( ̄u min ) 0.25 0.4375 0.46875 0.453125 0.4585 

v̄ min −5.94555821E −01 −3.08263479E −01 −2.47750443E −01 −2.53151085E −01 −2.538040 0 0E −01 

x( ̄v min ) 0.875 0.875 0.8125 0.8125 0.81006 

v̄ max 3.33197374E −01 1.88994985E −01 1.75149885E −01 1.79246343E −01 1.79572814E −01 

x( ̄v max ) 0.25 0.25 0.25 0.234375 0.23682 

CPU time 5.77 s 48.07 s 414.32 s 6906.41 s 2 d9 h 

 

 

 

 

 

 

 

 

 

 

 

 

In a rectangular domain, we consider the discontinuous variable η which is the m̄ th order derivative of ξ , whose

distribution is f ( x ) at y = 1 and g ( x ) at x = 0 with f (0) � = g (1) at rigid point (0,1). Then the wavelet expansion at (0,1) is 

ξ (x, y ) | (x,y ) → (0 , 1) ≈ f (0) ϕ j, 0 (y ) � j,L (x ) + g(1) ϕ j, 0 (x ) � j,R (y ) . (94)

Meanwhile the m̄ line of interpolating matrix P 0 corresponding to h j , 0 is set to zero. Other discontinuous points can be

expanded by Coiflets analogous to the same way. Finally, we substitute Eq. (94) into Eq. (79) via applying wavelet Galerkin

method, a modification constant in the iterating equation is appeared. 

Numerical solutions of Finite Volume Method with 1024 × 1024 grids by Marchi et al. [40] are considered as a benchmark

listed in Tables 6 –9 . For the minimum ψ and its position in fluid field, the minimum and the maximum v̄ at y = 1 / 2 ,

minimum ū at x = 1 / 2 , we compare our results with the benchmark for Re = 0 . 01 ∼ 10 0 0 in the cases of j = 3 ∼ 6 , very

excellent agreement is found. 

In Tables 10 and 11 , our results match well by other numerical methods such as FDM, FVM, LBM, Spectral, Wavelet

BEM-FEM and LBM at Re = 10 0 , 40 0 , 10 0 0 , respectively. We notice from these tables that our computational results for

the minimum of ψ , the extremum of the velocity and their locations are improved on by increasing the resolution level j .

Particularly, comprehensive considering Tables 3 and 11 at j = 6 , with very few wavelet basis (64 × 64) to construct grids

in Table 3 , our results for Re = 10 0 0 have four digits are the same as the ones given by the Marchi et al. [40] . But much

little consuming time is needed 8 h compared to 60 h with superior computing efficiency. 
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Table 9 

Results of ψ min and its location, minimum velocity u min at x = 0 . 5 , minimum and maximin velocity u min , u max at y = 0 . 5 and their locations by our approach 

with other authors for the classical problem when Re = 40 0 , 10 0 0 and j = 5 ∼ 6 . 

Variables Re = 400 Re = 10 0 0 

This work ( j = 5 ) This work ( j = 6 ) FVM [40] This work( j = 6 ) FVM [40] 

c 0 −1/50 −1/50 −5/10 0 0 

M 5 1 − 2 −
ψ min −1.12946405E −01 −1.12033208E −01 −1.13988870E −01 −1.18950978E −01 −1.18936708E −01 

x( ψ min ) 0.5625 0.5625 0.55371 0.53125 0.53125 

y( ψ min ) 0.59375 0.609375 0.60547 0.5625 0.56543 

ū min −3.10420215E −01 −3.20310 0 09E −01 −3.28729500E −01 −3.88433359E −01 −3.88572100E −01 

y( ̄u min ) 0.25 0.28125 0.27979 0.171875 0.17139 

v̄ min −4.49943256E −01 −4.40397416E −01 −4.540580 0 0E −01 −5.28810267E −01 −5.270560 0 0E −01 

x( ̄v min ) 0.90625 0.859375 0.86182 0.90625 0.90967 

v̄ max 2.92993385E −01 2.95306638E −01 3.03832310E −01 3.77733810E −01 3.76947100E −01 

x( ̄v max ) 0.21875 0.234375 0.2251 0.171875 0.15771 

CPU time 1.18 h 4.31 h 5 d16 h 8.07 h 60 h 

Table 10 

Results of ψ min and its locations by our approach at j = 6 and other authors for the classical problem when Re = 10 0 , 40 0 . 

Authors(Method, Time) Re = 100 Re = 400 

−ψ min x( ψ min ) y( ψ min ) −ψ min x( ψ min ) y( ψ min ) 

Burggraf (FDM,1966) [43] 0.1022 − − 0.1017 − −
Rubin and Khosla (FDM,1977) [23] 0.1034 − − − − −
Ghia et al. (FDM,1982) [37] 0.103423 0.6172 0.7344 0.113909 0.5547 0.6055 

Schreiber and Keller (FDM,1983) [44] 0.10330 0.61667 0.74167 0.11399 0.55714 0.60714 

Vanka (FDM,1986) [45] 0.1034 0.6188 0.7375 0.1136 0.5563 0.60 0 0 

Nishida and Satofuka (FDM,1992) [46] 0.103506 0.6094 0.7344 − − −
Liao (BEM,1992) [30] 0.1054 0.633 0.748 0.1089 0.556 0.633 

Hou et al. (LBM,1995) [29] 0.1030 0.6196 0.7373 0.1121 0.5608 0.6078 

Wright and Gaskell (FVM,1995) [47] 0.103519 0.6157 0.7378 − − −
Barragy and Carey (FEM,1997) [49] 0.10330 − − 0.11389 − −
Zhang (FDM,2003) [50] 0.103511 0.617187 0.734375 − − −
Gupta and Kalita (FDM,2005) [51] 0.103 0.6125 0.7375 0.113 0.5500 0.6125 

Marchi et al. (FVM,2008) [40] 0.1035212 0.61621 0.7373 0.11398887 0.55371 0.60547 

This work( j = 6 ) 0.1033962151 0.609375 0.734375 0.1123978384 0.5625 0.609375 

Table 11 

Results of ψ min and its locations by our approach at j = 6 and other authors for the classical problem when Re = 10 0 0 . 

Ref. Re = 10 0 0 

−ψ min x( ψ min ) y( ψ min ) 

Rubin and Khosla (FDM,1977) [23] 0.114 − −
Benjamin and Denny (FDM,1979) [24] 0.1193 − −
Ghia et al. (FDM,1982) [37] 0.117929 0.5313 0.5625 

Schreiber and Keller (FDM,1983) [44] 0.11894 0.52857 0.56429 

Vanka (FDM,1986) [45] 0.1173 0.5438 0.5625 

Nishida and Satofuka (FDM,1992) [46] 0.119004 0.5313 0.5625 

Liao (BEM,1992) [30] 0.1092 0.556 0.595 

Hou et al. (LBM,1995) [29] 0.1178 0.5333 0.5647 

Wright and Gaskell (FVM,1995) [47] 0.118821 0.5308 0.5659 

Goyon(FDM,1996) [48] 0.1157 − −
Barragy and Carey (FEM,1997) [49] 0.118930 − −
Botella and Peyret (Spectral,1998) [38] 0.1189366 0.5308 0.5652 

Zhang (FDM,2003) [50] 0.118806 0.531250 0.562500 

Gupta and Kalita (FDM,2005) [51] 0.117 0.5250 0.5625 

Erturk et al. (FDM,2005) [52] 0.118942 0.5300 0.5650 

Bruneau and Saad (FDM,2006) [39] 0.11892 0.53125 0.56543 

Marchi et al. (FDM,2008) [40] 0.118936708 0.53125 0.56543 

This work( j = 6 ) 0.118950977790111 0.53125 0.5625 

 

 

 

 

As the Reynolds number increases illustrated in Fig. 9 (a), the convergent rate gradually becomes slow, owing to the de-

crease of the optimal convergence control parameter c 0 decreases. More iterations are needed to obtain the exact results. The

velocity vectors at Re = 20 0 0 is illustrated in Fig. 9 (b) well demonstrating two secondary vorticity at the bottom corners. Be-

sides, in Figs. 10 –12 , velocity profiles in middle section x = 0 . 5 and y = 0 . 5 of our results at j = 6 agree well with benchmark

of FVM by Marchi et al. [40] , FDM by Ghia et al. [37] and wavelet BEM-FEM by Ravnik et al. [34] with excellent accuracies. 
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Fig. 9. Iterating process when Re = 0 . 01 ∼ 20 0 0 and velocity vector at Re = 20 0 0 . 

 

 

 

 

 

 

 

The vortex induced by the stream-function Eq. (60) near the rigid points (0,1) and (1,1) is unable to be given by the finite

difference method due to the discontinuity of velocity on the boundaries. While, we are able to give its distribution near

the boundaries, which perfectly matches the results at Re = 10 0 , 40 0 , 10 0 0 given by Ghia et al. [37] , as shown in Fig. 13 .

We also notice the accuracies for the vortex distribution at (0,1) and (1,1) can be improved on dramatically by enlarging j . 

Actually it is true that the Coiflets applied in our approach possess finite regularity N = 6 because of the vanishing

moment. Therefore, we are able to approach a function which regularity is less than 6. In this problem, ψ ∈ [0, 1] 2 is

continuous in the whole domain but is not derivable on the rigid points. Gibb’s phenomenon is inevitable for approaching

the velocity field by applying the Coiflets as basis in our method. Finally, we capture more details of vortex on the bound-
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Fig. 10. Comparison of ū at x = 1 / 2 and v̄ at y = 1 / 2 when Re = 100 with benchmark by FDM (Ghia et al. [37] ) and FVM (Marchi et al. [40] ). 

 

 

 

 

 

 

 

 

 

 

aries, which show superiority of our approach in application of problems subjected to the incompatible nonhomogeneous

boundary conditions. 

Certainly, our method is not universal and has its weakness. Theoretically, the increase of the wavelet resolution level

can improve on the accuracy of the wavelet solutions. But the larger Reynolds for lid cavity flow needs larger resolution

level j since that Re = 0 . 01 − 100 for j ≥ 3, Re = 400 for j ≥ 5, and Re = 10 0 0 − 20 0 0 for j ≥ 6. Meanwhile, the convergence

rate is gradually reduced in Fig. 9 (a) for larger Re . The convergence control parameter is adjusted from −93 / 100 at Re = 0 . 01

to −8 / 10 0 0 0 at Re = 20 0 0 to give convergent solutions. To obtain solution for larger Re > 20 0 0, we should add j and more

iterations. But the calculation condition is not adequate in a desktop with only 8 GB memory, due to the restriction of

current computing conditions since it is very time-consuming in Fig. 9 (a) (For Re = 20 0 0 , about 80 h is needed). 

In our previous work of solving the same problem by BEM in [30] for Re = 1 ∼ 20 0 0 . By employing the parallel compu-

tation in [31] , the convergent numerical results for high Reynolds number at Re = 1 ∼ 10 0 0 0 are obtained. Similar to the

above, further research is needed by applying the parallel computation [31] and introduce new algorithm to accelerate the

convergence. 
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Fig. 11. Comparison of ū at x = 1 / 2 and v̄ at y = 1 / 2 when Re = 400 with benchmark by FDM (Ghia et al. [37] ), Wavelet BEM-FEM (Ravnik et al. [32] ) and 

FVM (Marchi et al. [40] ). 

 

 

 

 

 

 

 

 

 

5. Conclusions 

In the paper, the homotopy-wavelet approach is developed for solving nonhomogeneous boundary value problems, es-

pecially for solving the classical laminar flow inside a square cavity. We modify Coiflets by interpolating on the boundaries

to construct the boundary Coiflets for linear boundary conditions of Dirichlet, Neumann, and Robin. Further to check the

validity and correctness of our proposed technique, we solve the lid-driven cavity flow problem in two cases. One is a

validation case with a known analytical solution, another is a case with the up lid moving at a constant velocity with

unknown analytical solution in Re = 0 . 01 ∼ 20 0 0 . Here are the advantages of our approach, 

• By introducing boundary wavelets, our approach successfully overcomes the weakness of Liu’s wavelet approach [8] and

shows great priority. Our approach performs better precision without finding optimal auxiliary homogeneous functions

in 1-D linear boundary value problem(BVP). For 2-D BVPs with nonhomogeneous Neumann boundary conditions, our

technique also goes well without introducing homogeneous functions. Because it is hardly to find or nonexistent, and

Liu’s approach does not work in the case. 
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Fig. 12. Comparison of ū at x = 1 / 2 and v̄ at y = 1 / 2 when Re = 10 0 0 with benchmark by FDM (Ghia et al. [37] ), Spectral method (Botella and Peyret [38] ), 

FDM (Bruneau and Saad [39] ) and FVM (Marchi et al. [40] ). 

 

 

 

 

 

 

• For both linear differential equations governed by either Laplace or biharmonic operators, our directly expanded tech-

nique via modifying the Coiflets shows good precision and works well for both Cauchy and Neumann boundary condi-

tions. 
• We first conduct a preliminary study applying our method in fluid mechanics. In the problem of classical lid driven cavity

flow, with very few wavelet basis (64 × 64) in Table 3 , accurate wavelet solutions are obtained with good computing

efficiency in comparison with analytical solutions and benchmark by other numerical methods such as FVM, FEM, FDM,

LBM, Spectral, Wavelet BEM-FEM. A special strategy is proposed to overcome the singularities on rigid points. 
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Fig. 13. Vortex distribution near up moving lid ( y = 1 ) when Re = 10 0 , 40 0 , 10 0 0 at j = 6 compared with FDM (Ghia et al. [37] ) results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A. Some symbolic definitions 

Definition 1 (Straight Vector) If Matrix A = { a k,l } m ×n ∈ R 

m ×n , then its horizontal straight vector ˆ A and vertical straight

vector Ǎ are defined 

ˆ A = { c r } mn ×1 a k,l = c l+(k −1) m 

, (A.1)

Ǎ = { c r } mn ×1 a k,l = c k +(l−1) m 

. (A.2)

Definition 2 (Hadamard/Schur Product) If Matrix A = { a k,l } m ×n and B = { b k,l } m ×n ∈ R 

m ×n (vectors when m = 1 and

n = 1 ), then their Hadamard/Schur Product 
⊙ 

is defined 

A 

⊙ 

B = { c k,l = a k,l b k,l } m ×n . (A.3)

Definition 3 (Kronecker Tensor Product) If Matrix A = { a k,l } m ×n and B = { b k,l } p×q ∈ R 

p×q (vectors when m = 1 and

n = 1 ), then their Kronecker Tensor Product 
⊗ 

is defined 

A 

⊗ 

B = { a k,l B } mp×nq . (A.4)

Definition 4 (Dot Product) If Matrix A = { a k,l } m ×n ∈ R 

m ×n is a tensor product, as expressed 

˜ A . ˆ B = { b k } n ×1 ∈ R 

n ×1 is

straight vector of matrix B = { b k,l } p×q ∈ R 

p×q while n = pq, then their matrix product • is emphasized 

˜ A • ˆ B = { a k,l b k } m ×1 . (A.5)

Lemma. If an arbitrary binary G (x, y ) ∈ L 2 ([0 , 1] × [0 , 1]) 
⋂ 

C N ([0 , 1] × [0 , 1]) , then the resolution and reconstitution

accuracy [4] of Eqs. (73) –( 77 ) are estimated as ∥∥∥∥∂ u + v G (x, y ) 

∂ x u ∂ y v 
− ∂ u + v P j G (x, y ) 

∂ x u ∂ y v 

∥∥∥∥
L 2 

≤ C p 2 

− j(N−u −v ) , (A.6)∥∥∥∥∂ u + v G (x, y ) 

∂ x u ∂ y v 
− ∂ u + v S J G (x, y ) 

∂ x u ∂ y v 

∥∥∥∥
L 2 

≤ C s 2 

−J (N −u −v ) , (A.7)

where C p and C s are positive constants that depend only on the function f ( x ) and wavelets, and 0 ≤ u + v < N. 

In the generalized orthogonal Coiflets system, the resolution wavelet h j, k and the reconstitution wavelet h J, k are

identical. ˆ G is the straight vector of the point value of G ( x, y ) and the elements are coefficients of the Coiflets series used

for estimation of its derivatives’ vector ˆ G 

j 
u, v via Eq. (A.8) with the tensors expressed by resolution wavelet h j, k . 

Besides, the physical quantities expressed by G ( x, y ) and its derivatives are reconstituted via Eq. (A.9) with the tensors

expressed by reconstitution wavelet h J, k . 

ˆ G 

j 
u, v = 

˜ � j 
u, v • ˆ G = 

(˜ � j 
u 

⊗ ˜ � j 
v 
)T • ˆ G , (A.8)

ˆ G 

J 
u, v = 

˜ �J 
u, v • ˆ G = 

(˜ �J 
u 

⊗ ˜ �J 
v 
)T • ˆ G . (A.9)
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where the straight vectors of the point value and the tensors are 

˜ � j 
u = 

˜ �J 
u = 

{
a j 

k,s 
= a J 

k,s 
= h 

(u ) 
j,k 

(
s 

2 

j 

)}
, ˆ G = 

{
g o = G 

(
k 

2 

j 
, 

l 

2 

j 

)}
, 

ˆ G 

j 
u, v = 

ˆ G 

J 
u, v = 

{
g j p = g J p = 

∂ u + v 

∂ x u ∂ y v 
G 

(
s 

2 

J 
, 

t 

2 

J 

)}
, 

o = 2 

j k + l + 1 , p = 2 

j s + t + 1 , k, l, s, t = 0 ∼ 2 

j . 
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