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Abstract

An optimization approach, based on computational fluid dynamics methodology, is investigated for the performance prediction and optimiza-
tion of liquid rocket engine nozzle. The CFD code employs implicit Lower-Upper decomposition (LU) scheme for solving the two-dimensional
axisymmetric Navier–Stokes (NS) equations and species transport equations in an efficient manner. The validity of the code is demonstrated by
comparing the numerical calculations with both the experimental data and previous calculations. Then the code, called by three optimization algo-
rithms (i.e. successive quadratic programming method, genetic algorithm and interdigitation strategy) respectively, is used to design axisymmetric
optimum-thrust nozzle. Results show that improvement on nozzle thrust can be obtained over that of the baseline case.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

With an increasing demand for reducing the cost of space
missions, researchers are forced to investigate new technolo-
gies, such as designing and optimizing the contoured nozzles.
In the early years of rocket nozzle design, conical nozzles were
used because the methodology for the design of efficient con-
toured nozzles was not available. Classical optimization pro-
cedures usually begin with an inviscid design (such as the
Rao’s method of design [7]), then a boundary-layer correction
is added to compensate for the viscous effects. More recent ad-
vances in computational technology have allowed researchers
to integrate the full NS equations, which previously had to be
simplified for computation. Such advances have given rise to
efficient CFD codes that have eliminated approximation in sim-
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ulating the viscous effects in traditional nozzle contour design
[1,4].

In this study, a liquid rocket engine nozzle is designed by us-
ing a CFD-based optimization procedure which links the well-
tested CFD code to three optimization codes. Different from
previous work, the investigation takes the viscous effect into ac-
count as well as the chemical reactions occurring in the nozzle.
Different optimization methods get similar results. Compared
with the baseline nozzle, the optimized design achieves im-
provements in nozzle performance.

2. Governing equations

The governing equations for a compressible viscous fluid
in the absence of body forces consist of the unsteady Navier–
Stocks equations. These equations can be written in conserva-
tive form as follows:
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where j0 = 0 or 1 for either two-dimensional or axisymmetric
flow respectively, and
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Nomenclature

A,B,Z Jacobian matrix
Af i,Bf i,Cf i Reaction rate coefficients
At Area of nozzle throat
Cf Thrust coefficient
Cp Constant-pressure specific heat
D Diagonal matrices
e Specific energy
F,G Fluxes of mass, momentum, energy
F Thrust
h Specific enthalpy
I Identity matrix
k Chemical reaction rate
L Lower triangular matrix
M Molecular weight
nr Number of chemical reaction
ns Number of species
p Pressure
qx, qy Heat flux
R Molar concentration
rA, rB Eigenvalues of Jacobian
S Source terms
T Temperature
t Time
U Conserved variables, upper triangular matrix
u,v Cartesian velocities
x, y Cartesian coordinates
X Molar fraction

Greek symbols

β Coefficient of LU scheme

ζ Performance loss coefficient
λ Thermal conductivity
μ Dynamic viscosity
ν Stoichiometric coefficient
ρ Density
τ Stress
ω̇ Rate of production

Subscripts

c Combustor
E Euler equations
f Friction
i Species i
m Mixing
N Navier–Stokes equations
n Chemically frozen
o One dimensional
r Chemical reaction
stg Stagnation value
t Two dimensional
x Axial
η, ξ Computation coordinates
ν Viscous

Superscripts

f Forward reaction
b Backward reaction
n Time level
± Eigenvalues of matrices are non-negative or non-

positive
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The stress and heat-transfer components are given as:
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where Dim = (1 − Xi)/
∑N

j �=i (Xj/Dij ) is the effective binary
diffusivity of species i in the gas mixture, obtained by treating
the species i and the surrounding gas as a binary mixture, and
Xi is the molar fraction of species i. The binary mass diffusivity
Dij between species i and j is obtained using the Chapman–
Enskog’s theory.

hi is the specific enthalpy

hi = hf i +
T∫

cpi dT
Tref
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where hf i is the specific heat of formation, and cpi is the con-
stant pressure specific heat of species i.

Assuming that ideal gas equation is applicable to all of the
species, the equation of state becomes

p =
N∑

i=1

ρiRiT

The temperature is calculated from the conservative vari-
ables using the Newton’s iteration method.

The above equations can be easily applied to different com-
putational cases. For chemically frozen flow, the S is set to zero.
For inviscid computation, the Fv is set to zero, as is Gv .

The Baldwin–Lomax model and the body-fitted grid system
are adopted here to achieve the accurate and robust results.

3. Numerical scheme

Various numerical techniques have been used to solve the
set of equations governing chemically reacting flows. Among
these techniques, explicit schemes are generally slow to con-
verge when the flow involves violent chemical reactions and
heat release. Most implicit schemes, on the other hand, require
the inversion of banded block matrices and become exceed-
ingly expensive when the chemical system involves a large
number of species. In the present study, the LU [8,9] scheme
is adopted to solve the two-dimensional axisymmetric Navier–
Stokes and species transport equations. In this scheme, the
convective flux and chemical source terms are treated implic-
itly, whereas the viscous terms are treated explicitly. The LU
scheme only requires the scalar diagonal inversion for the flow
equations (i.e. momentum equations and energy equations) and
the diagonal block inversion for the species equations. As a re-
sult, the LU scheme has the advantage of a fast convergence
rate while requiring the computational cost similar to that of an
explicit scheme, and therefore is particularly attractive for re-
acting flows with large chemical species systems.

In the following, for simplicity, the derivation of the LU
will be presented for the Euler equations. A prototype implicit
scheme for a system of nonlinear hyperbolic equations such as
the Euler equations can be formulated as:
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Let the Jacobian matrices are
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Ũn

) + ÃδŨ
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S̃
(
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which can be symbolically expressed as
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The left-hand side of Eq. (1) can be approximately factored

into the product of two operators:

(D + L)D−1(D + U)δŨ = −�tRHS

So, this scheme can be implemented in the following se-
quence:

(D + L)δŨ∗ = −�tRHS

(D + U)δŨ = DδŨ∗

Ũn+1 = Ũn + δŨ

4. Chemistry kinetic model

In the present study, three different chemical reaction mod-
els, including Hydrogen/Oxygen, Kerosene/Oxygen and
CH3N2H3/N2O4 reactions, are developed for the nozzle flow
computations. In different cases, the species and the reactions
in the computational code are specified according to the oxi-
dizer and the fuel used. The follows are the C–H–O–N reaction
model, which has 12 species and all the 14 reactions, and the
model of Kerosene/Oxygen reaction has the first 9 reactions
(marked with ∗ and ∗∗), and the first 8 reactions (marked
with ∗) for the Hydrogen/Oxygen reaction model.

H2 + M ⇔ 2H + M ∗
O2 + M ⇔ 2O + M ∗
H2O + M ⇔ H + OH + M ∗
OH + M ⇔ O + H + M ∗
H2O + O ⇔ 2OH ∗
H2O + H ⇔ OH + H2 ∗
O2 + H ⇔ OH + O ∗
H2 + O ⇔ OH + H ∗
CO + OH ⇔ CO2 + H ∗∗
O + N2 ⇔ N + NO ∗ ∗ ∗
H + NO ⇔ N + OH ∗ ∗ ∗
O + NO ⇔ N + O2 ∗ ∗ ∗
NO + OH ⇔ H + NO2 ∗ ∗ ∗
NO + O2 ⇔ O + NO2 ∗ ∗ ∗
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A set of nr reactions between ns species can be described by
ns∑

i=1

V
f
ij Ri ⇔

ns∑
i=1

Ri, j = 1,2, . . . , nr

where v
f
ij and vb

ij are the stoichiometric coefficients of species i

for the forward and backward reaction j respectively, and Ri is
the molar concentration of species i. The reaction rate constant
for the forward and backward reaction is given by the Arrhenius
formular:
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where the values of coefficients of reaction rates are listed in
Ref. [2].

The rate of production for species i is:
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5. CFD-based optimization

In this work, an existing nozzle design that has been used in
practical activity is chosen, which is then optimized using the
CFD code coupled with an optimizer to look for improvements
in the thrust.

The objective function is:

Obj(X) =
Aexit∫
0

(ρu2 + p)dA

where ρ,u,p and A are local density, axial velocity, pres-
sure, and cross-sectional area respectively. For a rocket nozzle,
Obj(X) is defined as the vacuum thrust which is to be maxi-
mized to obtain an optimum nozzle design.

The design variables X are usually coefficients used to de-
fine a wall boundary or quantities that specify the flow-field
conditions. For a nozzle design, the flow conditions are usually
given, and the wall contour must be determined. In this work,
the length and area ratio are specified, and the cubic function is
used to describe nozzle wall contour downstream of the throat.
There are 7 controlling points to determine the shape of nozzle
wall, whose positions are shown in Fig. 1. And the X are the
wall radii at these points. The cubic spline interpolation is used
in each of the intervals of these points as well as the other two
fixed points of the wall at throat and nozzle exit. So, the result-
ing function to describe nozzle wall contour downstream of the
throat is twice continuously differentiable.

Three optimization algorithms are used in the present study:
one is the successive quadratic programming (SQP) method.
Another is the genetic algorithm (GA). The third algorithm is
the interdigitation strategy, which combines multiple optimiza-
tion algorithms to explore their desirable aspects for solving
Fig. 1. Positions of controlling points of nozzle contour.

complex problems. For this problem with a high degree of non-
linearity and expected numerous local optima, an exploratory
technique such as the genetic algorithm is initially applied to
conduct a global search of the design space to identify regions
in which the best solutions may lie. Then a sequential quadratic
programming technique is applied, starting from the solutions
obtained from the exploratory search, to conduct a more local
search to identify the best solution in the region of interest. This
so-called interdigitation of optimization techniques can be fully
automated with the engineering software of iSIGHT [6].

6. Results and discussions

The ability of the code to compute nozzle flows is assessed
by computing three nozzles, namely nozzles A, B and C, for
which both experimental data and previous numerical results
are available for comparison.

Results of nozzle A are presented as planar nozzle reported
by Mason et al. [5]. The geometrical details for this test case are
given in Fig. 2. Computations have been performed using both
the Navier–Stokes equations and the Euler equations. The pres-
sure distribution on the centerline and the wall are compared
with the experimental data. Figs. 3 and 4 show the solution
of the Euler equations. The numerical results and the experi-
mental data are in a good agreement either on the centerline
positions and on the nozzle wall. Figs. 5 and 6 show the solution
to the Navier–Stokes equations. Again, the agreement between
the numerical results and the experimental data is very good,
and better than what is presented in Ref. [3]. By comparing

Fig. 2. Planar converging-diverging nozzle (dimensions in mm).
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Figs. 4 and 6, it can be seen that the NS solution gives slightly
better pressure distributions on the centerline and the wall.

Fig. 7 shows the pressure and temperature contours of noz-
zle B which is relatively large in size. The fuel of nozzle B is
Kerosene, and the oxidizer is Oxygen. Fig. 8 shows the contours
of nozzle C which is small in size. The propellants of nozzle C
are CH3N2H3 and N2O4. Table 1 shows the comparison of noz-
zle performance predicted by CFD code and the experimental

Fig. 3. Isomach lines for the inviscid case.

(a)

(b)

Fig. 4. Pressure distribution predicted by Euler equations. (a) On the centerline.
(b) On the wall.

Fig. 5. Isomach lines for the viscous case.
data. Both of the calculations are performed with chemical non-
equilibrium Navier–Stokes equations.

From these test cases, it can be concluded that the CFD code
used in this work is an eligible flow solver and applicable for
the analysis and optimization of liquid rocket engine nozzle,
whether it is a small nozzle or a large one.

(a)

(b)

Fig. 6. Pressure distribution predicted by NS equations. (a) On the centerline.
(b) On the wall.

(a)

(b)

Fig. 7. Numerical computational contours of nozzle B. (a) Pressure contour.
(b) Temperature contour.
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(a)

(b)

Fig. 8. Numerical computational contours of nozzle C. (a) Pressure contour.
(b) Temperature contour.

Thus, the CFD code, considering the axisymmetric N–S
equations and chemical reactions, is then applied to design ax-
isymmetric rocket engine nozzle. The results obtained by three
different optimization algorithms are shown in Table 2. The ge-
netic algorithm and interdigitation method generated almost the
same optimization results, while the successive quadratic pro-
gramming method failed to find the global maximum value and
only a local optimal result is obtained.

Fig. 9 shows the evolution history of interdigitation strategy.
The optimization process began from a global search in order
to explore the solution space in a more efficient manner. The
global search lasted until the whole solution space had been
examined and a sub-zone, the optimal solution might lie, had
been located. Then a local search was started in the sub-zone
until the optimal solution had been found. Wild oscillation can
be observed in the optimization process, especially in the global
searching phase. According to the demand of genetic algorithm,
used for global optimization, only the individuals better than the
previous ones are preserved and the worse ones are discarded.
The results of interdigitation strategy will be used for further
discussions in the following context.

Table 1
Comparisons of vacuum thrust coefficient

Numerical result Experimental data Error

Nozzle B 1.88 1.92 2.08%
Nozzle C 1.81 1.77 2.26%
Fig. 9. Evolution history of interdigitation strategy.

The computed pressure contour for the initial nozzle and op-
timized nozzle are shown in Fig. 10. For the optimized nozzle,
a more weak compression wave (induced by the not-smooth-
enough connection of contour) and a more uniform parameter
distribution on the nozzle exit plane can be observed, which are
favorable for the performance improvement.

In order to compare the performance of the optimized noz-
zle with the initial one, different computational cases are per-
formed to demonstrate the reason for the performance improve-
ment by using different computational models, which include
one-dimensional reaction flow, two-dimensional inviscid frozen
flow, two-dimensional viscous frozen flow, two-dimensional in-
viscid reaction flow and two-dimensional viscous of reaction
flow. Performances predicted by different models indicate dif-
ferent mechanism of losses. For example, the difference be-
tween the performances obtained by Euler and NS models indi-
cates the viscous (friction) loss in the nozzle.

For the optimized nozzle and initial nozzle, different com-
putations are performed. The comparison of vacuum thrust co-
efficients of different computational cases are shown in Fig. 11.
In the present work, the thrust coefficient is defined by

Cf = F

PcAt

where Pc is the combustor pressure and At is the nozzle throat
area.

In Fig. 11, the nozzle performances predicted by different
computational models are given in order to illustrate effects of
the models on the performances. It can be seen that the perfor-
mances of the optimized nozzle predicted by different models
Table 2
Results of different optimization methods

Method Initial vacuum thrust coefficient Optimized vacuum thrust coefficient Improvement

Successive quadratic programming 1.865 1.880 0.804
Genetic algorithm 1.865 1.893 1.501
Interdigitation strategy 1.865 1.892 1.448
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(a)

(b)

Fig. 10. Pressure contours in nozzles obtained by NS solver (unit: Pa). (a) Initial
nozzle. (b) Optimized nozzle.

Fig. 11. Comparison of vacuum thrust coefficients of different cases.

are better than that of the original one. In addition, the results of
one-dimensional case is better than that of the two-dimensional
case, inviscid case better than viscous case, reaction case better
than mixing case when other factors keeps the same.

Several different performance losses are defined to analyze
the detail of performance improvement of the optimized nozzle.
They are friction loss, chemically frozen loss and axial loss.

Friction Loss coefficient is defined as

ζf = Cf E − Cf N

Cf E

= �Cf

Cf E

where Cf N and Cf E are the vacuum thrust coefficients ob-
tained by solving the N–S and Euler equations respectively. The
comparisons of friction losses are shown in Table 3. For the op-
timized nozzle, the friction loss is less than that of initial nozzle
in both mixing (non-reaction) and reaction cases.

In this paper, the Chemically Frozen Loss is defined as:

ζn = Cf r − Cf m

C
= �Cf

C
f m f m
Table 3
Comparisons of friction losses

Initial nozzle Optimized nozzle

Cf E Cf N ζf Cf E Cf N ζf

Friction Mixing 1.932 1.847 4.4% 1.950 1.871 4.0%
losses Reaction 1.956 1.865 4.7% 1.974 1.893 4.1%

Table 4
Comparisons of chemically frozen losses

Initial nozzle Optimized nozzle

Cf m Cf r ξn Cf m Cf r ξn

Chemically frozen Euler 1.932 1.956 1.2% 1.950 1.974 1.2%
losses N–S 1.847 1.865 1.0% 1.871 1.893 1.2%

Table 5
Comparisons of axial losses

Initial nozzle Optimized nozzle

Cf o Cf t ξx Cf o Cf t ξx

Axial losses 2.074 1.956 5.7% 2.076 1.974 4.9%

where Cf r is the vacuum thrust coefficient obtained by con-
sidering the chemical reaction in the nozzle, and Cf m is the
vacuum thrust coefficient if the flow in the nozzle is frozen.
The comparisons of chemically frozen losses are shown in Ta-
ble 4. It seems that the contour optimization does not generate
obvious performance improvement on the chemical reaction as-
pect.

Axial Loss coefficient is defined as:

ζx = Cf o − Cf t

Cf o

= �Cf

Cf o

where Cf o is the vacuum thrust coefficient obtained by solv-
ing the one-dimensional Euler equations, and Cf t is the vac-
uum thrust coefficient obtained by solving the two-dimensional
Euler equations. The comparison of axial losses is shown in Ta-
ble 5. It can be seen that by nozzle contour optimization, the
axial loss is obviously reduced.

7. Conclusion

The computational fluid dynamics method is coupled with
the optimization process in order to predict the nozzle perfor-
mance more accurately. The CFD-based optimization proce-
dure achieved better nozzle performance than the initial one.
Although the chemically frozen loss does not show promotion
obviously before and after optimization, friction loss and axial
loss decrease. The optimization generates nearly 1.5% perfor-
mance improvement over the initial one, approximately half of
which is attributed to the decrease of friction loss, and the other
half to the decrease of axial loss.
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