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Abstract.

Gasdynamic nozzles with supersonic outflow are used in many applications, such as
propulsion systems, turbines, supersonic wind tunnels and mixing devices. The standard
procedure to design supersonic nozzles which produces uniform outlet flows is based on
the Method Of Characteristics (MOC). This study aims to gain understanding on how
a reduction in nozzle length with respect to that obtained with the MOC procedure de-
teriorates the outflow uniformity for a given discharge Mach number. To achieve this
purpose, a global optimization method based on a Genetic Algorithm and a Computational
Fluid Dynamic solver is adopted. The optimization problem is formulated in terms of
three objective functions, namely, nozzle length minimization and uniform Mach num-
ber and zero velocity angle at the exit section. The flow is modelled as an inviscid flow
of nitrogen expanding in a two-dimensional planar nozzle. The results include two- and
three-dimensional Pareto-fronts and selected examples of Pareto-optimal nozzle designs
which are compared to the MOC geometry.
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1 INTRODUCTION

Gasdynamic subsonic-supersonic nozzles are used in e.g. rockets,1 turbines,2 supersonic
wind tunnels,3 mixing devices and molecular beams. Small nozzle lengths with rapid
expansion are preferred for rockets in order to minimize weight; these are e.g. minimum
length or spike nozzles. In contrast, supersonic nozzles with gently curved expansion
sections are normally used in wind tunnels where high quality uniform flow is desired in the
test section. Hence, wind tunnel nozzles are usually long with a relatively slow expansion.
The boundary layer can therefore represent a limiting issue for these applications. This
paper is concerned with supersonic nozzles that produce uniform outflow. In particular,
it is motivated by the design of an organic-fluid wind tunnel that is being designed and
built at the Politecnico di Milano in Italy to test total pressure probes and blade cascades.

The design of subsonic-supersonic nozzles is usually carried out using the well-known
Method Of Characteristics (MOC).4 In this method, the hyperbolic partial differential
equations that govern isentropic supersonic flow are reduced to ordinary differential equa-
tions along so-called characteristic lines that emanate from a given initial line.5 The MOC
method is available for both ideal and real gas flows governed by arbitrary equations of
state.6,7

One of the limitations of the MOC is that characteristic lines only exist in supersonic
flow regimes and the method can therefore only be used for the design of the supersonic
nozzle section downstream of the throat. This is not a serious problem for the design of
uniform outflow nozzles, because the uniformity of the outlet flow is much more sensitive to
the shape of the supersonic part rather than to the subsonic part upstream of the throat
section. A second drawback is that this method reveals no information regarding the
trade-off between the two design objectives uniform outflow and minimal nozzle length,
and the latter strongly affects the boundary layer thickness and, therefore, the quality of
nozzle outflow. A further limitation of the MOC is that it cannot be extended to viscous
flows.

The present work aims at understanding the trade-off between the reduction in length
of the nozzle and the outflow uniformity, in terms of magnitude and direction of the
flow, for a given discharge Mach number. To this purpose, a global optimization method
based on a Genetic Algorithm (GA) and a Computational Fluid Dynamic (CFD) solver
is used. GAs have proven to be robust methods for global optimization of numerous
fluid dynamic designs, as well as other applications. The major advantage over the MOC
is that Genetic Algorithms allow for multiple objectives to be taken into consideration,
and that, moreover, they also produce information regarding the trade-off between the
objectives, which is effectively represented by means of a Pareto front. Furthermore, such
optimization methods allow for the design of the subsonic nozzle section as well and can
be easily extended to viscous flows with accurate thermodynamic and transport property
models. In the present work, viscous effect are not taken into account and the Euler
equations have therefore been used to compute the flow field. The reference design Mach
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number of the experiment is 2, and a preliminary design using the MOC has been carried
out for comparisons and for providing the initial guess to the optimization process.

The organization of the paper is as follows. Section 2 describes the methodology used
for the nozzle shape parametrization, the formulation of the optimization problem and
gives some details of the flow solver and grid generator used. Section 3 present results on
the trade-off between design objectives for a given discharge Mach number and Section 4
contains the conclusions of the work.

2 METHODOLOGY

2.1 Geometry Parametrization

A nozzle with a rectangular cross-sectional area is considered, so that the flow field is
symmetric with respect to the x-axis. The geometry of the upper-half of the nozzle is
shown in Figure 1. The fluid enters from the left boundary and exits from the right one.
The lower boundary is the axis of symmetry, and the upper curved boundary is the solid
wall. The constrained optimization problem of interest here can be formulated either as a
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Figure 1: Upper-half of the nozzle with a rectangular cross-sectional area. The flow field is symmetric
with respect to the x-axis.

minimization problem for the nozzle length at constant throat area, or equivalently as a
throat area maximization problem for a constant nozzle length. Herein, the nozzle length
is fixed to unity, and all important quantities that are needed to parametrize the shape,
e.g., inflow span Si and throat location Lc, are made dimensionless with respect to the
throat span St.

The converging-diverging wall shape of the nozzle is represented by cubic B-spline
curves, which are briefly presented in the following.

A B-spline curve B(u) of degree p can in general be written as

B(u) =

n
∑

i=0

Ni,p(u)Pi ,
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where Pi is one of the n + 1 control points and n ≥ p, Ni,p are basis function. The
parameter u varies on the interval [u0, um]; u0 and um are the first and the last elements
of a strictly increasing sequence of m + 1 so-called knots, respectively. The number of
control points, the degree of the curve and the number of knots are related to one another
by the relation

m = n + p + 1 .

For example, for a cubic B-spline, i.e. p = 3, the minimum number of control points is
n + 1 = 4, and the corresponding number of knots is m = n + p + 1 = 8.

To completely define a curve, the knot sequence also has to be fixed. In general, for a
given set of control points, it is difficult to judge which knot sequence is the best choice.
The easiest option is to choose a uniform spacing, which is however too rigid in many
cases. As a rule of thumb, better results in terms of curve smoothness are obtained if
the control point location is somehow reflected in the knot sequence. In this work the
knot sequence is computed by a chordal parametrization. A full account of the theory of
B-spline curves and of the problem of parametrization can be found in many references,
e.g.8–10

In this work, the solid wall of the nozzle is represented as a composition of two consec-
utive cubic B-spline curves. The first curve, Bc(u), is used for the converging part and
it ends at the throat area location T = (Lc, St). The other curve, Bd(u), represents the
diverging part. These curves are defined by nc + 1 and nd + 1 number of points, respec-
tively, and the shape of the upper wall is controlled by the position of the control points
for both curves. Moreover, at the throat location, a fixed curvature value can be imposed
preserving the C2 continuity between the two curves if some additional constraints around
the junction point are satisfied. In the case of cubic curves, these conditions concern only
the two adjacent control points and the spacing of the first two different knots for both
curves. As shown in Figure 3, in order to avoid any influence by the inflow boundary
condition on the computed flow field, an additional straight part of the same length of
the inflow span Si has been added upstream of the nozzle inlet.

Up to the throat section, the shape of the nozzle does not change during the opti-
mization process and a reasonable shape has been chosen which guarantees a smooth and
gradual acceleration of the flow. The area ratio between the inflow and the throat has
been chosen such that the inlet Mach number has a value of 0.3. All the quantities re-
quired to define the converging portion of the nozzle have been chosen as a fixed multiple
of the throat span St, i.e., Lc = 3St and Si = 2.69St. Therefore, the convergent section is
fixed in all computations.

The shape of the diverging part of the nozzle is controlled by the position of the
unconstrained control points Pi = (xi, yi). whose, only the y-components yi are used as
design variables during the optimization process. The x-components xi are instead fixed
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along the diverging part of the nozzle according to two possible relations, i.e.,

xi+3 = Lt +

(

1 − Lc

nd − 2
i

)

, (1)

xi+3 = Lt + (1 − Lc) cos

(

90

nd − 2
i

)

, (2)

where 0 ≤ i ≤ nd − 2.
In Figure 2 the root mean square difference σ between the diverging B-spline curve and

the geometry generated by the method of characteristics is plotted. For the prescribed
outflow Mach number of 2, the influence of the number of control points and the type
of distribution is shown. As shown in Figure 2, for both distributions, using more than
4 control points does not give substantially better results. Consequently, to limit the
number of optimization parameters, the y-coordinates of four control points are chosen
to represent the diverging part of the nozzle geometry and the trigonometric distribution
of x-coordinates is adopted.
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Figure 2: Root mean square difference σ between B-splines curves generated with increasing number
of control points and the geometry provided by the MOC. The linear and trigonometric distributions
correspond to Eq. 1 and 2 respectively.

2.2 Optimization process

The aim of the optimization process is to quantify the influence of a nozzle length
reduction on a) the uniformity of the Mach number and b) the flow angle, both along the
nozzle outlet boundary. This is quantified by means of three different objective functions
ϕ. The first function ϕL is simply the inverse of the throat span since it is related to the
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nozzle length. The other two functions are a measure of the uniformity of the discharge
flow. In particular, ϕM and ϕα are the root mean square deviation of the local Mach
number with respect to the design one and the root mean square of the local discharge
flow angle, respectively. All objective functions have to be minimized. To summarize, the
multi-objective optimization problem statement reads

min ϕL =
1

St

,

min ϕM =

√

√

√

√

1

q

q
∑

j=1

(Mj − Mreq)
2
,

min ϕα =

√

√

√

√

1

q

q
∑

j=1

arctan2 (
My,j

Mx,j

) ,

(3)

where Mj is the Mach number of the j-th cell and Mx,j and My,i are the Mach numbers
obtained by considering only the x and y component of the velocity vector, respectively.
All these quantities are evaluated at the outlet boundary discretized by q nodes; Mreq is
the prescribed discharge Mach number and St is the throat span.

Evolutionary algorithms and gradient-based methods are the most widely used strate-
gies to solve optimization problems. If the objective is single, gradient-based methods are
very efficient; however, they can converge to local minima. In the case of multi-objective
optimization, moreover, due to the complexity of the problem, gradient-based methods
are often impossible to be used. Differently, evolutionary algorithms such as evolution
strategies and Genetic Algorithms11,12 (GAs) are robust, flexible and easy to implement
because they require only the evaluation of the objective functions for a given set of design
variables. GAs are global optimization methods able to find the proximity of the global
optimum even if the objective function features local optima. Due to the population-
based approach, however, GAs require a large number of objective function evaluations,
which is a drawback particularly if the evaluations require computationally intensive fluid
dynamic simulations.

In this work, the optimization problem is performed by the Multi-objective Genetic
Algorithm (MOGA-II),13,14 which is implemented in the modeFRONTIER15 optimization
environment. The algorithm requires a very limited number of user-defined parameters,
which in this study have been set to their default values.

2.3 Grid generation and flow-field computation

An automated 2D structured mesh generator based on the solution of an elliptic partial
differential problem has been used to build the computational grids for all the geometries
tested during the optimization process. An example of a mesh is shown in Figure 3. Two
conflicting requirements must be considered when deciding the number of grid points.
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Figure 3: Example of grid generated during the optimization process (150x50 cells).

On one hand, since the optimization technique requires a large number of simulations
(in the order of hundreds), it is recommended to keep the number of grid nodes low to
reduce the computational cost for each simulation. On the other hand, the accuracy of
the computed flow field is proportional to the number of grid cells. Therefore, in order
to achieve a compromise between accuracy and computational speed, a grid convergence
study has been performed. Figure 4, shows the results obtained by meshes with increasing
number of grid nodes. The considered geometry is that obtained by the MOC. Note that
due to discretization errors in MOC computations, the exit Mach number Mx and My are
not identically 2 and 0, respectively, as required by the design constraints. According to
these results, a grid of 150x50 nodes in the axial and span-wise direction is adopted in the
following since no significant improvement in accuracy is obtained by using finer grids.
The numerical solutions of the two-dimensional Euler equations are computed with the
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Figure 4: Influence of the number of cell nodes on the Mach number at the discharge section. The
distribution of the Mx and My components are shown in the left and right plot respectively.

zFlow program.16–19 The solver uses a hybrid Finite Element (FE)/Finite Volume (FV)
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approach in which the finite volume metric quantities are computed using the standard
linear Lagrange polynomials basis functions of the finite element method.20 The spatial
approximation of the inviscid flow equations is constructed with a high resolution finite
volume method suitable for general unstructured and hybrid grids; the first order scheme
is the well-known Roe approximate Riemann solver.21 This class of discretization schemes
is particularly well suited to the computation of high Mach number flows.

zFlow adopts an implicit time integration scheme, which computes steady state so-
lutions in a much more efficient way with respect to conventional explicit schemes. The
zFlow solver has been successfully validated for ideal-gas simulations.16,17 zFlow is
linked to a fluid property library containing several thermodynamic models22 and a large
set of fluid data. In this study, the thermodynamic properties of nitrogen are calculated
using the polytropic ideal gas law with ratio of specific heats γ = 1.39.

At the inflow, the stagnation state and the flow angle are prescribed. At the outlet no
boundary conditions are needed for a supersonic flow. Slip and symmetry conditions are
applied for the nozzle wall and nozzle centerline, respectively.

The solutions are advance in time until the L2-norm of the residuals are reduced to
10−6 times with respect to the first iteration.

3 RESULTS

A Multi-objective Optimization Problem (MOP) can be defined as the problem of find-
ing a vector of design variables vi which satisfies a given set of constraints and optimizes
a vector of functions whose elements represent the objective functions ϕi. A vector vi is
considered Pareto optimal if there exists no other feasible vector of design variables which
would decrease any of the objective functions, without causing a simultaneous increase
in at least another one. Since objective functions are very often competitive, the solution
of a MOP is a set of vectors called the Pareto optimal set which represent a trade-off
between of the objectives. The plot of the objective functions, whose vectors vi are in the
Pareto optimal set, is called the Pareto front. In the present work, a set of control points
which determines a diverging nozzle shape as defined in Section 2.1 represent a vector
of design variables and the objective functions ϕ are described in Eq. 3. Furthermore,
thanks to the scale independence of the present inviscid computations, the nozzle length
is expressed in throat span units.

In Figure 5(a), all CFD computations generated by the GA are plotted in a three-
dimensional space spanned by the objective functions. In Figure 5(b) only the solutions
constituting the Pareto optimal set, which represents a trade-off between nozzle length
and flow uniformity, are shown. In these figures, the numerical solution computed over
the geometry provided by the MOC procedure (red diamond) is also shown. As mentioned
above, due to discretization errors during the MOC computations, this solution lies behind
the Pareto front and, for approximatively the same nozzle length, there are better shapes
in both flow uniformity terms ϕM and ϕα. Moreover, since the MOC procedure can be
adopted to design only the diverging part of the nozzle, the assumptions made for the
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sonic line shape are no longer valid because in a CFD computation the flow solution
depends on the entire geometry, thus explaining the differences between the CFD and the
MOC results.
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Figure 5: a) All CFD computations generated by the genetic algorithm plotted into a three-dimensional
space spanned by the objective functions. b)Discrete surface build by Pareto optimal solutions. The red
diamond represents the CFD solution computed over the MOC geometry.

The influence of the length on the discharge Mach number and flow angle are now
discussed separately. For this purpose, a two-dimensional Pareto front relating two ob-
jective functions is extracted by selecting a suitable constant value for the third objective
function. This Pareto front corresponds to the trade-off between the remaining objective
functions. Since the Pareto front is build by discrete points, one objective function has to
be fixed to a small range centered on the desired value to include a group of points which
lie in the proximity.

In Figure 7(a), four trade-off between Mach number deviation and nozzle length for
different values of discharge angle are shown. Similarly, Figure 7(b) shows the trade-off
between the outlet flow angle and the nozzle length for fixed values of the Mach number
deviation.

In Table 1 different values of the objective functions for the MOC shape and Pareto
optimal designs, i.e., D1, D2 and D3, are compared. The first design, D1, is an optimal
solution with approximatively the same nozzle length of the MOC Geometry. The second
and third solutions, D2 and D3 , minimizing the nozzle length, are opposite trade-off in
terms of ϕM and ϕα respectively.

For these four selected design, Figures 7(a) and 7(b) show the local distributions of the
Mach number deviation and local flow angle along the discharge section. For the same

9



D. Pasquale, J. Harinck, A. Guardone and S. Rebay

Ld ϕL

ϕ M

2.5 3 3.5 4 4.5 5 5.5
0.00

0.05

0.10

0.15

0.20

0.25

0.25
0.50
1.00
2.50
MOC

(a)

Ld ϕL
ϕ α

[°
]

2.5 3 3.5 4 4.5 5 5.5
0.0

1.0

2.0

3.0

4.0

5.0

6.0

2.5E-2
5.0E-2
1.0E-1
2.5E-1
MOC

(b)

Figure 6: a) Trade-off between the deviation of the Mach number ϕM and nozzle length LdϕL for different
values of the discharge flow angle, i.e., ϕα

∼= 2.5 · 10−2, 5.0 · 10−2, 1.0 · 10−1 and 2.5 · 10−1. b) Trade-off
between flow angle ϕα and nozzle length LdϕL for different values of the of the Mach number deviation,
i.e., ϕM

∼= 2.5 · 10−1, 5.0 · 10−1, 1 and 5 degrees. For each trade-off an interpolating line is show.

geometries, Mach number contours and nozzle shapes are shown in Figure 8.
Among the four considered designs, design D1 is that closer to the MOC design and

indeed it presents the smallest deviation from design constraints in terms of Mach unifor-
mity and zero velocity angle at the exit section. The length is very close to the MOC one.
In design D2, instead, the shortest nozzle among the four considered is obtained. The
Mach number is almost uniform at the exit by the average velocity angle is as large as
5◦. The nozzle length is about 77% of the reference one. In design D3, trade-off between
Mach number uniformity and nozzle length is more clear. A reduction of about 16% of the
nozzle length is achieved by letting the average Mach number at the exit section depart
as much as 5% from the design value.

Table 1: Comparison between MOC geometry and selected examples of reduced length nozzles in terms
of objective function values.

Design LdϕL ϕM ϕα [ ◦ ]

MOC 4.961 2.279 · 10−2 4.433 · 10−1

D1 4.467 2.215 · 10−2 4.406 · 10−1

D2 3.802 3.523 · 10−2 2.022
D3 4.143 5.161 · 10−2 4.916 · 10−1
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Figure 7: Distributions of the Mach number deviation with respect to the requested one (a) and local
flow angle (b) along the discharge section corresponding to the solutions of Table 1.

4 CONCLUSIONS

For a supersonic nozzle of rectangular cross-sectional area, the influence of a nozzle
length reduction on the uniformity of the Mach number and the flow angle, both along
the nozzle outlet boundary, is investigated. In contrast to the results obtained from
the standard Method of Characteristics (MOC), which yields only one single design and
no information regarding sensitivities, the investigation presented is based on a multi-
objective optimization procedure employing a Genetic Algorithm and a parameterization
of the shape of the diverging part of the nozzle wall using cubic B-spline curves. The grid
is generated using an automated 2D mesh generator and the numerical solutions of the
two-dimensional Euler equations are computed with the zFlow flow solver.

The resulting Pareto set of optimal nozzle shapes shows that, for approximatively the
same nozzle length of the design obtained using the MOC approach, there exist better
nozzle shapes in terms of flow uniformity at the required discharge Mach number. This
improvement is possibly due to discretization errors in MOC computations and to the
possibility of changing the nozzle curvature at the nozzle throat section, whereas in MOC
computations this quantity is fixed. Many optimal solutions show also interesting trade-
off between nozzle length and flow uniformity. For the design of high-quality supersonic
nozzles, the optimization approach is the preferred method as opposed to the MOC ap-
proach. Moreover, the optimization approach can be easily extended to allow for the
complete viscous design of nozzles, taking into account viscous effect such as boundary
layers growth and the influence of the converging nozzle section upstream of the throat
that features subsonic flow.
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Figure 8: Difference in terms of nozzle shape and Mach number contours between the solution obtained
by the MOC procedure and three examples of Pareto optimal designs, i.e., D1, D2 and D3.
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