A Transformation System for Interactive Reformulation of
Design Optimization Strategies®

Thomas Ellman John Keane Arunava Banerjee George Armhold
Department of Computer Science, Hill Center for Mathematical Sciences
Rutgers University, Piscataway, New Jersey 08855
{ellman keane,arunava,armhold } @cs.rutgers.edu

Abstract

Automatic design optimization is highly sensitive to problem formulation. The choice of
objective function, constraints and design parameters can dramatically impact the compu-
tational cost of optimization and the quality of the resulting design. The best formulation
varies from one application to another. A design engineer will usually not know the best
formulation in advance. In order to address this problem, we have developed a system that
supports interactive formulation, testing and reformulation of design optimization strategies.
Our system includes an executable, data-flow language for representing optimization strate-
gies. The language allows an engineer to define multiple stages of optimization, each using
different approximations of the objective and constraints or different abstractions of the design
space. We have also developed a set of transformations that reformulate strategies represented
in our language. The transformations can approximate objective and constraint functions, ab-
stract or reparameterize search spaces, or divide an optimization process into multiple stages.
The system is applicable in principle to any design problem that can be expressed in terms
of constrained optimization; however, we expect the system to be most useful when the de-
sign artifact is governed by algebraic and ordinary differential equations. We have tested the
system on problems of racing yacht design and jet engine nozzle design. We report experi-
mental results demonstrating that our reformulation techniques can significantly improve the
performance of automatic design optimization. Our research demonstrates the viability of a
reformulation methodology that combines symbolic program transformation with numerical
experimentation. It is an important first step in a research program aimed at automating the
entire strategy formulation process.

*Fully accepted to Research in Engineering Design.

1 Introduction

Numerical design optimization is a notoriously unreliable process. Optimization programs often
take excessive time to reach termination. Furthermore, upon termination, optimization programs
often fail even to reach locally optimal designs. These difficulties typically arise if the constraints or
objective functions are expensive to evaluate; the problem contains many design parameters; or the
search space contains pathologies, such as ridges, discontinuities, plateaus or non-evaluable regions.
Design engineers can in principle overcome these difficulties, by carefully formulating the inputs to
numerical optimization codes. In particular, by carefully choosing search spaces, design parameters,
and approximations of the objective and constraint functions, a design engineer can dramatically
reduce the duration of the optimization process, and improve the quality of the resulting design.
Unfortunately, a design engineer may not know the best formulation in advance of attempting to
set up and run a design optimization process. The best formulation may vary from one application
domain to another, and from one problem to another within a given application domain.

Design problems can often be cast in the form of constrained optimization, defined formally in
Figure 1. Given a set of problem instance parameters, and a set of design parameters to be varied,
one seeks to optimize an objective function, while satisfying equality and inequality constraints
[Peressini et al., 1988]. A variety of numerical algorithms have been developed for attacking con-
strained optimization problems [Press et al., 1986]. These numerical tools unfortunately provide
only limited means of overcoming the difficulties described above. In particular, they take the ob-
jectives, constraints and design parameters as givens, provided in advance by a human user, and
remaining fixed during solution of the problem. Furthermore, they treat objective and constraint
functions as “black boxes”. They can be evaluated; however, their internal structure can neither be
seen nor modified by the numerical optimization algorithm. Our research is based on the hypothesis
that more robust design optimization methods can be constructed by combining existing numerical
algorithms with techniques for reasoning about and manipulating the mathematical structure of
the objective and constraint functions.

In order to illustrate our hypothesis, let us consider how approximations are used in numerical
optimization algorithms. An illustrative example is CFSQP, a state of the art code for sequential
quadratic programming [Lawrence et al., 1995]. CFSQP is a “Quasi-Newton” method. Taking a
seed design as input, it approximates the objective function at the seed point using a quadratic
function. It solves the resulting quadratic program to find a new design. CFSP(Q) repeats the
approximation-solution process until satisfying convergence criteria. CFSQP uses purely numerical
methods to approximate the objective function. The quadratic approximation results from eval-
uating the objective function, treated as a black box, at a series of points along the search path.
We believe that better approximations can be constructed by exploiting the internal structure of
the objective and constraint functions. An important type of approximation involves intermediate
quantities that are computed inside the objective and constraint functions, but which do not ap-
pear as final results. For example, if the value or gradient of an intermediate quantity does not
change much during the optimization process, the quantity may be replaced by a constant or linear
approximation. In general, we expect that such internal approzimations can be more cost-effective
than approximations constructed by treating objective and constraint functions as black boxes.

As another illustration of our hypothesis, consider how design parameter coordinate systems
are chosen by numerical optimization algorithms. An illustrative example is Powell’s direction set
method [Press et al., 1986]. Powell’s method operates by computing a linear transformation of the

Given:

Problem Instance Parameters: = (p1,...,pm)

Design Parameters to be Varied: d = (dy, ..., d,)
Optimize an Objective Function: f(d, p)

Subject to Constraints:

0

IA

Inequality Constraints: g(d, p)
15) =0

Equality Constraints: (d,p
Figure 1: The Constrained Optimization Problem

design parameters to find a set of conjugate directions. It then uses the transformed parameters
to find an optimum. The transformation-solution process is repeated until convergence criteria are
satisfied. Powell’s method uses purely numerical methods to change the coordinates of the design
parameters, i.e., the transformation of coordinates is computed by evaluations of the objective func-
tion, treated as a black box. We believe that better changes of parameters can be constructed by
exploiting the internal structure of the objective and constraint functions. For example, interme-
diate quantities may be used to construct non-linear changes of coordinates that align the design
parameters with ridges or discontinuities that create problems for numerical optimization. These
observations suggest a methodology of simultaneously formulating search spaces, objective functions
and constraint functions in combination with the design optimization strategies that use them.

Stochastic techniques are sometimes useful for optimizing pathological objective functions. Ex-
amples of stochastic techniques include simulated annealing [Kirkpatrick et al., 1983] and genetic
algorithms [Mitchell, 1996]. Stochastic methods usually require a large number of evaluations of
the objective and constraint functions in order to generate reliable results. They are often im-
practical if these functions are computationally expensive to evaluate. This situation arises quite
often in engineering design problems, for example, when the functions exercise computational fluid
dynamics (CFD) codes. Stochastic methods may also be impractical even when the objective and
constraint functions require fairly small amounts of CPU time. For example, during the early phases
of a design process, an engineer may wish to use a fast approximation of the objective function to
carry out a large number of optimizations, each under a different set of assumptions about the
operating environment of the artifact. The time available for each optimization may be too small
for the large number of function evaluations needed for stochastic optimization, even though each
evaluation itself requires only a small amount of CPU time. Both of these considerations suggest
a need for reliable optimization techniques that use fewer function evaluations than are typically
required by stochastic methods. Our work is based on the belief that fast and reliable optimiza-
tion techniques can be constructed from gradient-based algorithms, such as CFSQP, by carefully
formulating search spaces, objective functions and constraints. We also expect that careful formu-
lation can improve the performance of stochastic optimization methods like simulated annealing
and genetic algorithms; however, we have not investigated this possibility.

An effective optimization strategy must often include multiple stages, each using a different
search space, a different objective function or different constraints. There are several reasons for
this. First, suppose the design space includes pathologies such as ridges or discontinuities. Such
pathologies can sometimes be removed by abstracting the original space. Abstraction replaces the
original design space by a new space with lower dimension and fewer pathologies. Optimization
proceeds in stages: first in the abstract space, to find an approximate solution, and then in the
original space, to find a true solution. Now suppose that the objective or constraint functions are
expensive to evaluate. In principle the exact functions need only be used in the neighborhood of a
final solution, to verify local optimality and satisfaction of constraints. The search for a solution
may be guided by approximations of the objective function and constraints. The optimization
process may therefore be divided into stages. Early stages use approximations. Exact objective and
constraint functions are used only at the end.

2 The DA-MSA Architecture

We have developed a system called the “Design and Modeling/Simulation Associate” (DA-MSA).
The DA-MSA is an environment that supports interactive formulation, testing and reformulation
of design optimization strategies. A “strategy” is a description of a process for solving a design
optimization problem. A strategy may use multiple search spaces, each at a different level of
abstraction. A strategy may also use multiple versions of objective and constraint functions, each
at a different level of approximation. Finally, a strategy may involve multiple stages of optimization,
using different search spaces, different objective functions or different constraints at each stage.

The architecture of the DA-MSA is shown in Figure 2. A human engineer uses a graphical
interface to build a constraint network that represents a specification of a design problem. The
specification includes a description of the physics of the design domain, in terms of algebraic and
ordinary differential equations. It also includes a description of an optimization problem (design
parameters, objective, constraints) that represents the ultimate, true problem the engineer wishes to
solve. In the first phase of operation, the DA-MSA uses a technique known as “deductive program
synthesis” to create an initial, default optimization strategy. Our research on this portion of the
system is reported in [Ellman and Murata, 1996].

In the second phase of operation, the user interacts with the DA-MSA to reformulate the initial
strategy into a more robust and efficient one. He does so by using the interface illustrated in Figure 3.
Optimization strategies are represented visually to the user as data-flow graphs. A portion of a data-
flow graph appears on the right side of Figure 3. Nodes in data-flow graphs represent operations on
data. Arcs represent flow of data from one operation to another. Our data-flow graphs represent
“second-order” programs, i.e., they include second-order operations like optimization, integration
and root extraction, which take functions as arguments. The user reformulates his optimization
strategy by drawing upon a catalog of transformations. Each transformation converts one data-
flow graph into another. The transformations can approximate objective and constraint functions,
abstract or reparameterize the search space, or divide an optimization into multiple stages, among
other things. By applying various combinations of transformations the user can explore a large
space of strategies.

As the user explores the strategy space, the system maintains a record of the strategies he has
generated. A portion of such a record appears on the left side of Figure 3. The record is organized

Inputs, Outputs c N
and Equations onstraint Net

0)
g
Deductive Synthesis 8 . o
2
ot
Simulation and)
Optimization Program Data Flow Graph ®
Program
Compilation Transformation
Linked Program and Run Time
Numerical Library Environment

Figure 2: Architecture of the DA-MSA

as a tree. Each node in the tree holds a description of an optimization strategy. The user can move
around in the tree to backtrack to previous strategies and try new alternatives. He can run the
strategy in any tree node on a set of test problems and store the results in a database associated
with that node. He can also generate plots that describe the behavior of strategies on test problems,
e.g., a plot of the path through a design space, or a plot of the evolution of an objective, constraint,
or intermediate quantity. Finally, the user can annotate the current strategy node with his own
observations and conclusions about the behavior of the strategy.

The DA-MSA provides several different kinds of support to an engineer who is attempting
to develop an effective design optimization strategy. To begin with, it frees him from the time-
consuming process of writing in a conventional programming language each time he wants to change
the current strategy. It does so by allowing him to specify a new strategy as a transformation
applied to an existing strategy. In addition, the system provides some conditional guarantees about
the behavior of strategies that are derived using the catalog of transformations. In particular,
under certain clearly identifiable conditions, derivations constructed in our system are guaranteed
to preserve the correctness and convergence properties of the initial strategy. This stands in contrast
to the situation that obtains when programs written in a conventional language are modified in an
unrestricted manner. Furthermore, the tree structured record of the derivation serves as a kind
of documentation. It does so by indicating the sequence of transformations used to derive the
final strategy. In addition, the record may facilitate maintenance and modification of optimization
strategies. When the initial strategy is modified to suit changing circumstances, it may be possible
to replay the sequence of transformations in order to modify the derived strategy accordingly;

® © RECORD-TREE : nozzle-demmo

L
Solve LAMBDA SI|JBST OPTIMIZE
ol L]
- - - _’Iil\—'@ INPVLIST
Fold Reduce Constrain Solve
o /
INPUT
/
ol
weor

@ & Status

Current Expression:

#’ (LAMBDA (&KEY CONVERGENT-LENGTH DIVERGENT-LENGTH EXTERNAL-LENGTH)
(TAKEOFF-MASS CONVERGENT-LENGTH DIVERGENT-LENGTH EXTERNAL-LENGTH AL
INTEGRATION-NSTEPS ROOT-FINDING-NSTEPS))

Figure 3: User Interface of the DA-MSA

however, we have not experimentally investigated this possibility. Our system thus provides the
standard benefits of transformational programming [Partsch and Steinbruggen, 1983], [Mostow,
1989] to engineers developing design optimization strategies.

We shall begin by describing two design applications on which we have tested our system: sail-
ing yachts and jet engine nozzles (Section 3). Next, we shall describe our language for representing
design optimization strategies (Section 4). After that, we shall describe the catalog of transforma-
tions that convert one strategy into another (Section 5). Next, we shall investigate the degree to
which our transformations preserve the correctness and convergence properties of the initial strat-
egy supplied to the system (Section 6). In the following section, we shall describe derivations of
several strategies for optimizing sailing yacht designs and jet engine nozzle designs (Section 7).
Next, we present results of experimentally testing yacht and nozzle strategies generated using our
system (Section 8). Finally, we shall discuss related work (Section 10), summarize our contributions
(Section 11), and outline our plans for future work (Section 12).

3 Testbed Domains

3.1 Design of Sailing Yachts

Our research on yacht design has attempted to reconstruct the design process that led to the “Stars
and Stripes '87”, the sailing yacht that won the America’s Cup race in 1987 [Letcher et al., 1987].
The yacht design problem involves determining values of the major dimensions of the hull of a
racing sailboat. These include the length I, beam b and depth d of the “canoce-body”, the height h
of the “keel”, and the span s of “winglets” attached to the keel. These dimensions must be chosen
to maximize the steady-state velocity the yacht achieves under racing conditions specified by the
velocity w of the wind and the angular heading 3 at which the yacht sails relative to the wind. The
steady state velocity is computed by solving simultaneous balance of force and torque equations
for the velocity v and the heel angle ¢ at which the yacht will be in steady state motion. The
equation f(v,¢,w,B,1,b,d,h,s) = 0 specifies that the thrust generated by the wind is balanced
by the air and water resistance on the yacht. Likewise, the equation 7(v,¢,w,3,1,b,d,h,s) = 0
specifies that the heeling torque generated by the wind and water is balanced by the gravitational
and buoyant torques acting on the yacht. The functions f and 7 are specified by explicit algebraic
formulae in combination with functions that interpolate tabular data describing the aerodynamic
properties of the sail and the hydrodynamic properties of the hull. A yacht design problem instance
is defined by the heading 3 and windspeed w in which the yacht sails. The yacht problem class is
thus parameterized by 0 and w. A real yacht race course includes a series of “legs” each defined by a
heading and a distance. We are dealing with a simplified version of the racing yacht design problem.
For the experiments reported in this paper, we used an implementation of the velocity objective
function that requires about 1.0 CPU seconds per evaluation, on a Sun Microsystems Sparc 5
workstation. We intend this version of the objective function to be representative of the sort of fast
approximation that an engineer might use during early phases of a yacht design process. In related
work [Ellman et al., 1997] we used a more accurate and computationally expensive implementation,
requiring about 1.0 CPU hours per evaluation. This implementation represents the sort of high
fidelity code that an engineer might use during later stages of a yacht design process.

The yacht problem presents a challenge to automated design optimization technology for two
reasons: the presence of pathologies in the design space and the computational expense of eval-
uating some versions of the objective function. Pathologies arise in the yacht domain due to the
mathematical properties of the balance of force equations. In particular, the net force f is not a
smooth function of the design parameters. Non-smoothness results from the fact that the sizes of
the yacht sails are computed dynamically, inside the net force function, to be as large as possible
while satisfying a “rating rule” imposed by a yacht racing association. The rating rule provides a
formula giving the largest legal sail area as a function of the major dimensions of the hull. The
formula includes conditional expressions that cause the sail area, and therefore the net force, to
be a non-smooth function of the design parameters. The non-smoothness in net force presents a
potential problem for design optimization by generating ridges in the velocity objective function.
Non-smoothness provides a motivation for reformulating the search space, as described below. The
computational expense of evaluation is potentially an important issue when using high fidelity ver-
sions of the velocity objective function, or when running a large number of optimizations, each
using different assumptions about the operating conditions of the yacht. The cost of evaluation

provides a motivation for constructing and utilizing approximate versions of objective functions or
constraints, as described below.

3.2 Design of Jet Engine Nozzles

The nozzle design problem involves determining the lengths of three flaps that regulate the jet-
engine exhaust flow in a supersonic aircraft: the convergent flap [., the divergent flap l;, and
the external flap I.. These flap lengths must be chosen to minimize the total fuel consumption
over a specified flight mission. A mission is specified by an altitude h, a velocity v at which
the aircraft flies, and the duration d of the flight. Fuel consumption is computed by integrating
a differential equation governing instantaneous fuel mass m flow: m = f(m,h,v,l.,1;,1.). The
equation is integrated backwards in time, starting with the empty mass of the aircraft at the end
of the mission, and ending with the “takeoff mass” of the fully fueled aircraft at the start of the
mission. This differential equation cannot be solved in closed-form. It must be solved numerically.
Furthermore, the derivative function f is not given explicitly. Instead it must be computed by
solving three simultaneous equations for the instantaneous values of three control parameters that
are continuously varied by the aircraft control systems: the angle of attack «, the throttle setting
t, and the nozzle convergent flap angle 4. The three equations specify that vertical and horizontal
forces on the aircraft be in balance (for steady state motion) and that the air/fuel mixture have a
velocity of mach 1.0 at the narrowest point in the nozzle — a setting known to achieve maximum fuel
efficiency. One of these equations can be solved in closed form. The other two can be decomposed
yielding the equations: a,(a, m,h,v,l.,1z,1.) = 0 and ap(t, @, m,h,v,l.,14,l.) = 0 asserting that
vertical and horizontal acceleration are each zero. Each must then be solved numerically. These
equations are specified by explicit algebraic formulae in combination with functions that interpolate
tabular data describing the flight characteristics of the aircraft and the engine(s). A nozzle design
problem instance is defined by the altitude h, velocity v and duration d of the mission. The nozzle
problem class is thus parameterized by h, v and d. Our research on jet engine nozzle design is
described more fully in [Gelsey et al., 1996]. For the experiments reported in this paper, we used
an implementation of the takeoff mass objective function that requires about 23.1 CPU seconds per
evaluation, on a Sun Microsystems Sparc 5 workstation. We intend this version of the objective
function to be representative of the sort of fast approximation that an engineer might use during
early phases of an aircraft design process. In related work on aircraft design [Shukla et al., 1997,
our colleagues have used objective functions requiring 1 — 2 CPU hours per evaluation. These
represent the sort of high fidelity codes that an engineer might use during later stages of an aircraft
design process.

The nozzle problem presents a challenge to automated design optimization technology for two
reasons: the presence of pathologies in the design space and the computational expense of evaluating
the objective function. Pathologies arise in the nozzle domain because the evaluation code fails
entirely for many points in the design space. Crashes result from table lookups going out of bounds,
failure of numerical root extractors to find roots, and violation of geometric constraints on the flap
lengths, among other things. The design optimization process is protected from crashes of the
objective function by wrapping the objective function with a routine that gains control in the event
of such failures. The wrapper keeps the optimization process running by returning an extremely
bad value for the objective function. Unfortunately, the wrapper also introduces discontinuities and
plateaus into the objective function. These pathologies often cause gradient-based optimization

to get stuck at points that are not even locally optimal. Discontinuities and plateaus provide a
motivation for reformulating the search space, as described below. The computational expense
of evaluation is potentially an important issue when using high fidelity versions of the takeoff
mass objective function, or when running a large number of optimizations, each using different
assumptions about the operating conditions of the aircraft. The cost of evaluation provides a
motivation for constructing and utilizing approximate versions of objective functions or constraints,
as described below.

4 Specification of Optimization Strategies

Our language of optimization strategies is presented in Figure 4. The language is described by a
BNF grammar. Each sentence generated by the grammar is a LISP expression that represents an
optimization strategy. The language enables a design engineer to specify strategies that involve
multiple stages of optimization. Stages may involve different approximations for objective and
constraint functions, different search spaces, different coordinate systems or different optimization
algorithms. The language also enables an engineer to specify decompositions of search spaces,
methods of using and periodically re-calibrating approximate objective and constraint functions,
and methods of generating starting points for optimization algorithms based on local search.

A single-stage optimization strategy may be generated by using rule (1) to expand the start
symbol S. The resulting expression describes a strategy that starts with a “seed” design (5),
and optimizes a real-valued objective function (OB.J) over a hyper-rectangular region subject to
inequality constraints and equality constraints. The hyper-rectangle is specified by lists of upper
(UBs) and lower (LBs) bounds. The equality constraints (EQNs) are designated by a list of real-
valued functions whose values must be zero. The inequality constraints (INEQNs) are designated
by a list of real-valued functions whose values must be zero or less. The strategy expression also
includes a symbol (Opt M ET H) designating a numerical optimization method, which may be any
one of a variety of gradient-based or stochastic algorithms. The seed (S) may be generated by an
expression described by any of the rules for expanding the non-terminal symbol S. For example,
the seed may be simply a list of design parameters — expanding S using rule (7). It may also be
a design that is randomly generated within a hyper-rectangle specified by lists of upper and lower
bounds — expanding S using rule (6). In addition, the seed may itself be generated by a complex
optimization strategy — expanding S using any of rules (1) through (5). Nested strategies, involving
multiple stages of optimization, may thus be specified by exploiting the recursive structure of the
graminar.

A simple multi-stage strategy results from using rule (1) twice to construct a strategy with
two stages of optimization, perhaps using different objectives, constraints, design parameters or
optimization methods in each stage. Strategies based on multiple starting points are generated
using rule (2). This rule generates an expression describing a process that applies an optimization
strategy function (A(d)S) to each of several seed designs (list S*). It compares the results, using
a boolean-valued function BF', and selects the best. Each of the starting points in (list S*) may
be generated using a different strategy. Strategies involving decomposition are generated using rule
(3). This rule generates an expression describing a design composed of several partial designs. Each
partial design may be found using a different strategy.

Strategies involving approximation of constraints or objective functions may be generated by

(Strategy) S — (optimize S OBJ EQNs INEQNs LBs UBs OptMETH) (1)

S — (select (list S§*) (A(d)S) BF) (2)

S — (compose (list S™)) (3)

S — (let (SYMBOL RV)') S) (4)

S — (converge S (A(d)S) BF) (5)

S — (randomize (list RV™) (list RV™)) (6)

S — (list RVY) (7)

S — (insert S INDEX RYV) (8)

S — (delete S INDEX) (9)

OBJ — RF (10)

EQNs — (list RF") (11)

INEQNs — (list RF") (12)
(LowerBounds) LBs — (list RV™) (13)
(UpperBounds) UBs — (list RV™) (14)
(Real Function) RF — (A (d) RV) (15)
(Real Value) RV — 18T | 2ND| (BLACKBOX RV*) (16)
(Boolean Function) BF — (A (didz) BV) (17)
(Boolean Value) BV — (RELATION RV RYV) (18)
(First Order Real) 18T — ARITHMETIC|CONDITIONAL |INTERPOLATION (19)
(Second Order Real) 2ND — ROOT | INTEGRAL (20)
ROOT — (root (list RF*) (list RV*) RtMETH) (21)

INTEGRAL — (integrate (list RF*) (list RV*) RV RV IntMETH) (22)

RtMETH — newtonraphson | bisection | (23)

IntMETH — rungekutta | (24)

OptMETH — cfsqp | dfp | simplex | genetic | annealing | (25)

Figure 4: Design Optimization Strategy Grammar

using rule (4). This rule allows placing an optimization strategy inside the scope of variables that
hold fitting coefficients that are computed prior to the start of the strategy. Iterative strategies
are generated using rule (5). This rule generates an expression specifying a convergence process.
The process starts with a seed design and repeatedly applies a strategy function (A(d)S) until a
boolean-valued comparison function BF' applied to successive iterates indicates that a convergence
criterion has been reached. When rules (4) and (5) are used in combination, the result is a strategy
that periodically re-calibrates approximate objective or constraint functions as it moves through a
design space.

The remaining rules are used to express objective and constraint functions in terms of first-order
operations (arithmetic, interpolation, conditionals) as well as second-order operations (integration
and root extraction). The grammar rules also allow for domain-specific “black box” codes to be
included in optimization strategies. Black boxes can be used to evaluate objective or constraint
functions, or portions thereof. The strategy expressions generated by our grammar are all executable

10

in the DA-MSA runtime environment. Complex numerical operations, such as optimize, integral
and root are actually implemented by C routines taken from [Press et al., 1986], or public domain
sources [Lawrence et al., 1995]. The C routines are wrapped by LISP functions that provide the
interfaces described here [Keane, 1996].

Each construct in the strategy language plays an important role in design optimization. Nested
strategies are useful for applying a sequence of optimization methods (e.g., downhill simplex followed
by sequential quadratic programming) in succession, because neither one alone is expected to reliably
reach an optimum. Nested strategies are also useful when an early stage of optimization is expected
to produce a sub-optimal result, perhaps because it uses an approximate objective or constraint
function, or searches only an abstract version of the original design space. The early stage serves to
generate a seed design for later stages of optimization. Decomposition is useful when the objective
and constraint functions are decomposable (e.g., a sum of functions defined on the factor spaces)
or nearly decomposable. It is also useful when the best strategy for one factor space is different
from the best strategy for another (e.g., when approximations suitable for one factor space differ
from approximations suitable for another factor space). Multiple starting points are useful because
many search methods get stuck on local optima, plateaus, ridges or discontinuities. By using
multiple starting points, one increases the likelihood of finding a true local, or even global, optimum.
Approximation is useful when most of the values computed internally by an objective or constraint
function are not expected to change much when moving from point to point in the design space.
Such quantities can be approximated by constants or linear functions prior to the start of an
optimization strategy. The constants or linear functions may be periodically re-calibrated as the
strategy 1s iterated to a fixed point.

Several aspects of our strategy language are worth emphasizing. To begin with, notice that
the language is highly orthogonal. It allows primitives like optimize, select, compose and converge
to be combined with each other systematically. In addition, notice that the language includes
constructs for defining optimization processes (in the first nine rules) along with constructs for
defining simulation and analysis processes (in the remaining sixteen rules). Both optimization and
simulation/analysis are described within the same language. This feature is important when it
comes to writing transformations that operate on expressions in our language. In particular, many
important types of transformation work by simultaneously changing simulation/analysis functions
and the optimization process in which they are embedded. Our strategy language provides a uniform
level of representation in terms of which such transformations can be defined.

5 Transformation of Optimization Strategies

The reformulation process begins with an initial, default strategy. The initial strategy may be
constructed by the deductive-synthesis component of the DA-MSA. It may also be hand-coded
directly by the user. (The initial strategies used in the experiments reported in this paper were all
coded by hand.) The strategy is represented visually on the screen as a data-flow graph. It is also
represented internally as an expression of the form:

(A(d) (optimize d OBJ EQNs INEQNs LBs UBs OptMETH))

This expression describes a function that takes a seed design d and uses a numerical algorithm
OptMETH to optimize an objective function OBJ over a hyper-rectangular region defined by

11

lower LBs and upper UBs bounds, subject to sets of equality constraints EQ Ns and inequality
constraints I N E(Q Ns. The initial strategy normally includes all potentially relevant design param-
eters, and the “exact” versions of the objective and constraint functions. The user modifies the
current strategy by drawing upon a catalog of transformations. First, he selects a transformation
from the catalog. In many cases, the transformation can be applied to the current strategy in more
than one way. In such cases, the system asks the user which instantiation of the transformation
he wants to apply. Then the system applies the selected transformation and displays the revised
strategy to the user, symbolically as a LISP expression and visually as a data-flow graph. The
revised strategy then becomes the current strategy. The user may proceed to transform the current
strategy once again, or he may back up and try alternative transformations.

Our system includes five groups of transformations. Transformations that reformulate the search
space are described in Figure 5. Transformations that introduce approximations into objective and
constraint functions are described in Figure 6. Transformations that construct nested optimization
strategies are described in Figure 7. A fourth group includes transformations that insert wrappers
that catch error conditions and allow optimization to continue. These are described in Figure 10. A
fifth group includes equivalence preserving transformations that improve efficiency (e.g. transforms
that remove duplicate or unreferenced sub-expressions) or that control the granularity of the user’s
view of strategies (e.g., transforms that fold or unfold function definitions).

5.1 Reformulating Search Spaces

Transforms that reformulate search spaces are described in Figure 5. These transforms are de-
signed to use intermediate quantities appearing in the objective or constraint functions as a basis
for reparameterizing or reducing the dimension of design spaces. Consider first how an interme-
diate quantity may be used to reparameterize a search space. The engineer begins by identifying
an intermediate quantity Q(zq,...,z,). He then uses the transform “Parameterize Intermediate
Quantity” to define a new design parameter y. The new parameter is made to equal the interme-
diate quantity by inserting an equality constraint: y = Q(z1,...,%,). The engineer then uses the
transform “Solve Equality Constraint” to remove one of the original parameters x; from the design
space. This transform will solve y = Q(z1,...,%;, ..., z,) for z; symbolically (using Maple [Char et
al., 1992]) if possible. Otherwise, it will insert an expression that solves y = Q(%1,...,%i, ..., Ty)
for #; numerically (e.g., using Newton-Raphson) at the time the strategy is executed. The overall
effect of these two transforms is to change the set of parameters that describe points in the de-
sign space. Now consider how an intermediate quantity may be used to reduce the dimension of a
design space. The engineer first uses the transform “Constrain Intermediate Quantity” to install
an equality constraint Q(zi,...,z,) = K on an intermediate quantity. He then uses the trans-
form “Solve Equality Constraint” to remove one of the design parameters, z;, by solving for #; in
Q(z1,... @iy .., x,) = K.

The choice of the intermediate quantity () is obviously important for the success of the derived
optimization strategy. We are investigating the following heuristic for choosing intermediate quan-
tities. We define a “critical quantity” to be one that appears inside a conditional expression of
the form (if (> @ K) e1 es). The value of the critical quantity @ governs which of e; and e,
is returned. The conditional expression is potentially non-smooth or discontinuous when) = K,
resulting in a ridge or discontinuity in the objective or constraint function. When @ is used to
reparameterize the search space, the coordinate axies of the new space are aligned with the ridge

12

Parameterize Intermediate Quantity: Given an optimization over parameters
(1,...,%,) and any expression Q(@1,...,%,) appearing as an intermediate quantity in an
objective or constraint function: (1) Introduce a new design parameter y and add y to
the argument list of each objective or constraint function; (2) Replace each appearance of
Q(z1,...,o,) in a constraint or objective function with a reference to y; (3) Install an equal-
ity constraint requiring that y = Q(&1,...,®,); (4) Insert code mapping the seed (z1,...,z,)
of the optimization to the point (z1,...,%,, Q(21,...,#,)) in the expanded search space; (5)
Insert code mapping the result (z1,...,2,,y) of the optimization to the point (z1,...,z,) in
the original search space.

Solve Equality Constraint: Given an optimization over parameters (z1,...,%;,...,%,),
and some constraint of the form Q(zq,...,2;,...,2,) = 0: (1) Remove z; from the set
of design parameters and drop z; from the argument list of each constraint or objective
function; (2) Arrange for each constraint or objective function to symbolically or numer-
ically solve Q(z1,...,24...,2,) = 0 for ; in terms of (z1,..., %1, ®it1, ..., ¢,); (3) In-
sert code mapping the seed (z1,...,2;-1,%;, Tit1,...,&,) of the optimization to the point
(%1,...,®i—1, Tit1,...,oy) in the contracted search space; (4) Insert code mapping the result
(Z1,...,®i—1, Tit1,...,&y) of the optimization to the point (w1,..., @1, 2, Tip1,...,2,) i
the original search space by solving for ; in the equation Q(z1,...,2;, ..., ¢,) = 0.

Constrain Intermediate Quantity: Given an optimization over parameters (zq,...,%,),
and any expression (Q(z1,...,%,) appearing as an intermediate quantity computed by some
constraint or objective function: Introduce a new constraint asserting that Q(z1,...,z,) < K,
Q(z1,...,2,) = K, or Q(21,...,2,) > K, etc., for some specified bound K.

Figure 5: Transforms to Reformulate Search Space

or discontinuity — an arrangement we expect will prevent optimization codes from getting stuck
on the ridge or discontinuity. When () is used to reduce the dimension of the search space, the
discontinuity or non-smoothness is removed entirely. Furthermore, topological considerations sug-
gest that optimal designs are likely to lie on the non-smooth or discontinuous subspace defined by
Q(z1,...,2,) = K. Thus our heuristic recommends using critical quantities to reparameterize or
reduce the dimension of search spaces.

13

Expand Root Expression: Replace an expression for numerically finding the root of a
vector-valued function f(Z) starting at a seed s with the result of applying the Newton-
Raphson iteration formula ;11 = #; — (Vf(Z;)) "' f(Z;) a fixed number of times with Z, = 5.

Expand Integral Expression: Replace an expression for numerically integrating a system
of differential equations specified by a vector-valued derivative function f(%,t), with the result
of using the fourth-order Runge-Kutta formula to compute the integral using four separate
evaluations of f(z,t).

Freeze Intermediate Quantity: Given an optimization over design parameters x1,...,%,,
starting from the seed point (si,...,s,), and given any expression Q(&1,...,®,) appearing
as an intermediate quantity computed by some constraint or objective function: Replace the
expression Q(z1,...,z,) with a fixed constant K = Q(s1,...,s,) where K is computed prior
to the start of the optimization.

Linearize Intermediate Quantity: Given an optimization over design parameters

T1,...,%,, starting from the seed point (s1,...,s,), and given any expression Q(z1,...,%,)
appearing as an intermediate quantity computed by some constraint or objective function:
Replace the expression Q(1,...,%,) with a linear function L(zq,...,2,) = Q(S1,...,8,) +

2 (x; — 8,)0Q/0xi(81,. .., 8n), where Q(s1,...,8,) and each 0Q/0z;(s1,...,s,) are com-

puted prior to the start of the optimization.

Figure 6: Transforms to Approximate Objective and Constraint Functions

5.2 Approximating Objective and Constraint Functions

Transforms that approximate objective and constraint functions are described in Figure 6. These
transforms are designed to exploit the internal structure of objective and constraint functions. They
may be used to construct internal approximations that are more cost-effective than purely numer-
ical approximations that treat objective and constraint functions as black boxes. The transforms
“Expand Root Expression” and “Expand Integral Expression” are used to replace calls to numeri-
cal root extraction and integration routines with simple algebraic expressions approximating their
behavior. Aside from speeding up the evaluation of constraint and objective functions (with some
loss of accuracy) these transforms serve to convert second order expressions (roots and integrals)
into first-order expressions. The transform “Freeze Intermediate Quantity” can then be used to ap-
proximate first-order sub-expressions with constants. The constants are calibrated to exact values
before the optimization process begins and remain fixed during optimization. Likewise, the trans-
form “Linearize Intermediate Quantity” can be used to approximate first-order sub-expressions with
linear functions whose coefficients are calibrated when the optimization process begins and remain
fixed during optimization.

14

Introduce Multi-Stage Optimization: Replace a single-stage optimization strategy with
a nested series of two copies of the strategy, in which the first stage generates a seed design
for the second stage.

(optimize S OBJ EQNs INEQNs ...) =
(optimize (optimize S OBJ EQNs INEQNs ...) OBJ EQNs INEQNs ...)

Introduce Multi-Start Optimization: Replace a strategy starting from a single seed design with
a new strategy that applies the original strategy to multiple randomly generated seeds and selects
the best result.

(optimize S OBJ EQNs INEQNs ...) =
(select (list (random ...)*) (A(d)(optimize d OBJ EQNs INEQNs ...)) BF)

Introduce Convergence: Replace a single strategy with a convergence process that iteratively
applies the original strategy to its own result until a convergence criterion is met.

(optimize S OBJ EQNs INEQNs ...) =
(converge S (A(d)(optimize d OBJ EQNs INEQNs ...)) BF)

Introduce Decomposition: Replace a strategy working in a single design space with a combination
of two or more strategies that work in factors of the original space, yielding partial designs that are
composed to construct a complete design.

(optimize S OBJ EQNs INEQNs ...) =

(compose (list (optimize S OBJ; EQNs; ...) ... (optimize S, OBJ, EQNs, ...)))
Figure 7: Transforms to Nest Optimization Strategies

5.3 Nesting Optimization Strategies

Our transforms for constructing nested optimization strategies are described in Figure 7. These
transforms are based on our belief that strategies involving multiple search spaces, multiple levels
of approximation and multiple stages of optimization are an effective means of attacking complex
design optimization problems. Considerations motivating the use of these transforms were presented
above, in Section 4, in the context of the discussion of our strategy language grammar.

6 Preserving Correctness and Convergence

Problems of correctness and convergence may arise if our transforms are used in an unrestricted
fashion. Notice that many of our transforms can change the mathematical model defining the user’s
optimization problem. Approximating transforms can modify the objective function or constraint
functions that are specified in the initial strategy. Reformulating transforms can restrict the search

15

space that i1s specified in the original strategy. Both types of transform can be used to derive a
new strategy that purports to solve an optimization problem that is quite different from the one
solved by the initial strategy. A derived strategy may therefore return a design that is neither
a local nor global optimum with respect to the original mathematical model. Furthermore, our
reformulating transforms might introduce root extraction routines that fail to converge, causing
objective or constraint functions to loop forever. Likewise, our approximating transforms might
convert a bounded objective function into an unbounded one, causing the optimization code to
go into an infinite loop. In the absence of any guidelines regarding safe and unsafe uses of our
transforms, the user may derive strategies that return incorrect answers, or that fail to return at
all!

We shall address these issues in two ways. First we shall examine the transformations in our
catalog, one by one. For each transform, we shall ask whether an application of the transform is
guaranteed preserve the correctness and convergence of the original strategy. This analysis will
enable us to classify our transforms along several different dimensions. We shall subsequently
present a set of guidelines for using our catalog of transformations. We shall show that any strategy
derived in accordance with the guidelines will have the same correctness and convergence properties
as the original strategy.

6.1 Impact of Individual Transforms

We distinguish between two separate but related notions of correctness. One the one hand, we
would like our analysis to help us determine when a derivation preserves the solution set of the
mathematical model encoded in the initial strategy. In order to make this notion precise, we
shall assume that each occurrence of the optimize primitive, in any strategy S, is implemented
by an idealized numerical optimization code. When given an objective function f(d), inequality
constraints ¢g(d) < 0 and equality constraints h(d) = 0, as inputs, each occurrence of this idealized
optimize primitive is guaranteed to return a solution satisfying the Karush-Kuhn-Tucker conditions
[Peressini et al., 1988] for local optimality with respect to the objective function f(d) and constraint
functions g(d) and h(d). If more than one such solution exists, the optimize primitive makes a non-
deterministic choice. If no such solution exists, the optimize primitive returns no value at all. Using
this idealization, we define the “mathematical solution set” encoded in a given strategy S to be
the set of all possible values that may be non-deterministically returned by S when the strategy is
implemented using the idealized optimize primitive. Using this definition, a transform that converts
a current strategy S into a revised strategy S’ will be said to “preserve the mathematical solution
set”, whenever the set of possible return values of the revised strategy S’ is equal to the set of
possible return values of the current strategy S.

On the other hand, we would like our analysis to help us determine when a derivation preserves
the actual behavior of the initial strategy. In this context, we shall take into account the fact that
changes in the search space, objectives or constraints may impact the reliability of an occurrence
of the optimize primitive, even when the mathematical solution set remains the same. In order to
address this issue, we shall not assume that every occurrence of the optimize primitive behaves in
an ideal fashion. We shall assume only that the particular formulation of the search space, objective
function and constraints appearing in the initial strategy behaves in an ideal fashion. In order to
make this notion precise, we must say what it means for a strategy to behave in an ideal fashion.
Assume that the initial strategy optimizes the objective function f(d) with respect to inequality

16

constraints g(d) < 0 and equality constraints h(d) = 0. We shall say that a strategy S has ideal
behavior if the following condition is satisfied: Given any input seed design d, the strategy S returns
a design d' satisfying the Karush-Kuhn-Tucker conditions with respect to the objective f(d) and
constraints g(d) and h(d) appearing in the initial strategy, whenever some such design exists. With
this definition in hand, we can now say what it means for a transform to preserve ideal behavior.
Suppose a transform converts a current strategy S into a revised strategy S’. Suppose further that
S has ideal behavior. If this assumption logically implies ideal behavior for S’, then the transform
“preserves ideal strategy behavior”.

The convergence properties of our strategies will depend, in part, on the underlying numerical
algorithm that is used to implement the optimize primitive. Different algorithms have different
conditions on the objective and constraint functions that provide guarantees about when the algo-
rithm will converge. Instead of considering the convergence conditions of specific algorithms, we
focus instead on several properties of objective and constraint functions that influence convergence:
convexity, boundedness, continuity and smoothness [Peressini et al., 1988], [Gill et al., 1981]. When
considering a transform that converts a current strategy S into a revised strategy S’, we assume that
each occurrence of the optimize primitive appearing in .S is well-behaved in terms of these proper-
ties, i.e., the objective function is bounded (from above/below for maximization/minimization), the
constraint functions are bounded from above, and all of the functions are continuous and smooth
throughout the (closed) bounding hyper-rectangle defined by the LBs and UBs parameters sup-
plied to the optimize primitive. We also assume that these functions define a convex programming
problem, i.e., optimization of a convex function subject to convex constraints. This means that
the objective function is convex/concave for minimization/maximization, the inequality constraint
functions are convex, and the equality constraints are linear. We then consider which of these
properties must remain satisfied in the revised strategy S’ that results from applying the transform
under consideration.

The results of our correctness analysis are shown in Figure 8. The results of our convergence
analysis are shown in Figure 9. The reasoning behind these results is outlined in detail in the
Appendix. In most cases our analysis provides a clear “yes” or “no” answer for each transform.
In some cases we identify a few potentially important exceptions. Such cases are marked with an
asterisk. An entry of “Yes™”
except for situations that we explicitly enumerate in our analysis. An entry of “No*” means that
preservation of the property is not guaranteed in general, except for situations that we explicitly
enumerate in our analysis.

means that preservation of the property is guaranteed in general,

Special issues of correctness and convergence arise in the context of strategies involving the “con-
verge” primitive, shown in Figure 4. This primitive is useful for specifying strategies that iteratively
calibrate and optimize an approximate objective function. In the most general case, the user has no
guarantee that the iteration process will actually converge. When it does converge, the user has no
general guarantee that the answer returned is in fact a solution to the original problem. We examine
these questions in detail for problems of unconstrained optimization in our paper [Ellman et al.,
1997]. Under suitable assumptions of convexity, continuity and smoothness of the objective func-
tion, and assumptions about the approximation technique, we are able to make some conditional
guarantees. Let the function I(s) represent the inner-loop of the calibration/optimization process.
This function takes a seed point s as input. It calibrates an approximate objective function at the
seed point s. Then it optimizes the approximate objective function to find a new point I(s). Our
analysis shows that convergence is guaranteed when the function I(s) is a contraction mapping. Our

17

Guaranteed to Preserve

Transform Mathematical Solution Set Ideal Strategy Behavior
Introduce Multi-Stage Yes Yes
Introduce Multi-Start Yes Yes
Introduce Convergence Yes Yes
Introduce Decomposition No* No
Parameterize Intermediate Quantity Yes No
Solve Equality Constraint No* No
Constrain Intermediate Quantity No* No
Expand Root Expression No No
Expand Integral Expression No No
Freeze Intermediate Quantity No No
Linearize Intermediate Quantity No No

Figure 8: Impact of Transforms on Mathematical Model and Strategy Behavior

Guaranteed to Preserve

Transform Convexity Boundedness Continuity Smoothness
Introduce Multi-Stage Yes Yes Yes Yes
Introduce Multi-Start Yes Yes Yes Yes
Introduce Convergence Yes Yes Yes Yes
Introduce Decomposition Yes Yes Yes Yes
Parameterize Intermediate Quantity No* Yes* Yes* Yes*
Solve Equality Constraint Yes No* No* No*
Constrain Intermediate Quantity No* Yes* Yes* Yes*
Expand Root Expression No No No No
Expand Integral Expression No No No No
Freeze Intermediate Quantity No No No No
Linearize Intermediate Quantity No No No No

Figure 9: Impact of Transforms on Properties Governing Convergence

analysis also identifies a condition on the approximation technique that guarantees that I(s) will
have the contraction property, and we identify some specific approximation techniques that satisfy
the condition. Finally, our analysis shows that correctness is guaranteed when I(s) uses a first-order
approximation of the objective function, i.e., the approximation and its derivative are equal to the
exact function and its derivative at the calibration point. Under these assumptions, we prove that
any fixed point of I(s) is a true local optimum of the exact objective function. Unfortunately, for
complex engineering design problems, these conditions are often difficult to verify in advance.

6.2 Guidelines for Preserving Correctness and Convergence

We now present a set of guidelines that guarantee preservation of the correctness and convergence
properties of the initial strategy. Our guidelines require the user to begin each derivation by creating
a two-stage strategy consisting of two successive copies of the original strategy. For this purpose,

18

the user must apply the transform “Introduce Multi-Stage Optimization” to the initial strategy,
which generates an expression of the following form:

(A(d) (optimize (optimize d OBJ EQNs INEQNs ...) OBJ EQNs INEQNs ...))

This expression describes two stages of optimization. The inner optimization expression represents
the first stage. The outer optimization expression represents the second stage. The design resulting
from the first stage is the seed for the second stage. After constructing this two-stage strategy,
the user may apply transforms only to the first stage of optimization, i.e., the inner optimization
expression. The transforms may expand the first stage into several new ones, approximate ob-
jectives and constraints, or reformulate search spaces. Throughout the subsequent derivation the
user must not modify the final stage, i.e., the outer optimization expression. Our guidelines also
require the user to put a “wrapper” around the first stage of optimization, represented by the inner
optimization expression above. (Transforms that install such wrappers are described informally in
Figure 10.) The wrapper detects infinite loops by running the optimization stage in a separate
thread, periodically checking the system clock. When a time limit expires, the wrapper aborts the
optimization stage, and returns the seed design as the result value. The derivation will end with a
strategy in the following form:

(A(d) (optimize (wrap InitialStages ...) OBJ EQNs INEQNs ...))

The expression (wrap InitialStages ...) represents the result of wrapping and transforming the
inner optimization expression. Notice that every derived strategy will include the original strategy
as the final stage of optimization.

Our guidelines guarantee preservation of correctness in both senses defined above: They preserve
the mathematical solution set encoded in the initial strategy. They also preserve the ideal behavior
of the initial strategy. In both cases, the reasoning hinges on the fact that every derived strategy
uses the initial strategy itself as the final stage of optimization. First consider preservation of the
mathematical solution set: The solution set of the initial strategy depends only on the search space,
objective function and constraints appearing in the initial strategy. It does not depend on the
seed. Since the same search space, objective function and constraints appear in the final stage
of the derived strategy, the solution set of the derived strategy is the solution set of the initial
strategy. Now consider preservation of ideal strategy behavior: If we assume the initial strategy has
ideal behavior, then it returns a design satisfying the Karush-Kuhn-Tucker conditions with respect
to the search space, objective function and constraints appearing in the initial strategy. It does
so regardless of the seed given to the initial strategy. The same space, objective and constraints
appear in the final stage of the derived strategy. Therefore the derived strategy returns a design
satisfying the same Karush-Kuhn-Tucker conditions, even though it uses a potentially different seed.
Therefore the derived strategy has ideal behavior as well.

Now consider preservation of convergence. In this analysis, we take “convergence” to mean
“termination for any seed”. The reasoning hinges on the guideline requiring placement of a wrapper
around the initial stages of optimization, as well as the fact that every derived strategy uses the
initial strategy itself as the final stage of optimization. Suppose we assume that the initial strategy
terminates, regardless of the seed it receives as input. We reason about the derived strategy as
follows: The initial stages are guaranteed to terminate because they are surrounded by a wrapper
with a timeout mechanism. The final stage is guaranteed to terminate regardless of the seed it

19

Wrap Optimization: Place an optimization expression inside a wrapper that acquires con-
trol in the event of errors and infinite loops and returns the optimization seed as a result
value.

Wrap Root Extraction: Place a root extraction expression inside a wrapper that acquires
control in the event of errors and infinite loops, and transfers control to the wrapper of the
innermost surrounding optimization expression.

Figure 10: Transforms That Introduce Wrappers

receives from the initial stages, because the final stage is the same as the initial strategy, and
because the initial strategy terminates for any seed. Therefore the derived strategy terminates for
any seed.

Our system could easily be modified to enforce the guidelines outlined above. For this purpose,
we would automatically transform the initial strategy into a two-stage strategy, at the start of the
derivation. We would also modify the preconditions of all transformations to prevent modification of
the final stage. We would also modify the multi-staging transforms to automatically insert suitable
wrappers to detect and abort infinite loops. Nevertheless, we have refrained from making such
modifications. A user may not always want to follow the guidelines, in practice. For example, in
some situations, strategies that violate the guidelines will give good results. Our experiments in the
yacht and nozzle domains will provide some evidence of this fact. The guidelines are therefore not
enforced by our system. This approach is true to the spirit of our research. We have not focused
on providing a priori guarantees about the performance of strategies generated by our system. We
have focused on developing tools that enable an engineer to easily develop complex strategies, test
them on sample problems, and determine which strategies perform well in practice.

7 Derivations of Yacht and Nozzle Design Strategies

Derivations of strategies for yacht optimization are presented pictorially in Figure 11. The initial
yacht design strategy specifies an optimization of the five design parameters (I,b,d, h,s) (length,
beam, draft, keel-height and winglet-span described in Section 3) to maximize the velocity objective
function, subject to one inequality constraint requiring the yacht to be stable. Strategy Y7 is
constructed by applying the transform “Introduce Multi-Start” to the initial strategy. Strategy Y;
operates by generating a set of random seed designs, optimizing each with the initial strategy, and
selecting the best result. Strategies Y, Y3 and Y, are derived directly or indirectly from strategy
Y1, and thus inherit the multi-start process.

Strategy Y is derived from strategy Y;, by reparameterizing the design space. Reparame-
terization results from identifying four critical quantities, and using “Parameterize Intermediate
Quantity” and “Solve Equality Constraint” to convert them into new design parameters, dy, ds, ds
and d4, replacing the original parameters b, d, h, and s. The four critical quantities are non-linear
functions of the original design parameters. All four quantities appear in the portion of the velocity
objective function devoted to computing maximum sail area, based on the limits imposed by the
“rating rule” described above. Thus strategy Y, operates with design parameters obtained by a

20

non-linear transformation on the original parameters.

Strategies Y3 and Y, result from using “Expand Root” and “Freeze Intermediate Quantity” to
form an approximation of the series that defines the Newton-Raphson root extraction algorithm for
solving the balance of force and torque equations governing the motion of the yacht. The transform
“Introduce Convergence” is used to set up a process that periodically recalibrates the coefficients of
the series expansion. Strategy Y3 involves a process that repeatedly calibrates the approximation to
fit the exact values of velocity v and heel ¢ of the seed design. The calibrated values are used for z
in the Newton-Raphson expansion inside the optimization process. Strategy Y, involves a process
that repeatedly calibrates the approximation to fit the exact values of velocity v and heel ¢ of the
seed design, and the equilibrium values of the Jacobians of net force and net torque functions of v
and ¢. The precomputed values are then used for Zo and V f(Z,) in the Newton-Raphson expansion
inside the objective function.

All of the remaining strategies, Y5, Ys, Y7, Y and Yy, are constructed in a derivation that begins
as follows: First the transform “Introduce Multi-Stage” i1s used to construct a two-stage strategy,
consisting of two successive copies of initial strategy. Next the transform “Introduce Multi-Start” is
applied to the first of these two stages. Finally, the transforms “Constrain Intermediate Quantity”
and “Solve Equality Constraint” are used to reduce the dimension of the search space used in the
first stage of optimization. The transform “Constrain Intermediate Quantity” is used to assert
four equality constraints that force the critical quantities to lie at points of non-smoothness. The
transform “Solve Equality Constraint” is used to remove the four equality constraints and the
parameters b, d, h, and s from the set of design parameters. As a result, strategies Y5, Ys, Y7,
Ys and Yy each operate in a non-linear one-dimensional subspace of the original space, including
only the length [of the yacht. This reduced space does not exhibit the non-smoothness present
in the original space. Strategies Y5, Y5, Y7, Y5 and Y, all inherit the multi-start process and the
reduced-dimension search space in the first stage of optimization.

Strategy Ys results from deleting the second stage of optimization. This strategy carries out a
single stage of optimization in a one-dimensional design space. Strategies Ys and Ys use the same
approximation and recalibration techniques as used in strategies Y3 and Yj,; however, strategies Ys
and Yg include two stages of optimization. They use a one-dimensional space and the approxi-
mation/calibration process in the first stage of optimization. They use the initial strategy in the
second stage of optimization. Finally, strategies Y7 and Y, are respectively derived from strategies
Ys and Ys by deleting the second stage of optimization.

Derivations of strategies for nozzle optimization are presented pictorially in Figure 12. The initial
nozzle design strategy specifies an optimization of the three flap lengths (I, 14, l.) (convergent length,
divergent length and external length described in Section 3) to minimize fuel consumption over a
prescribed mission. The transform “Introduce Multi-Start” is used to construct the strategy Nj.
Strategy N; operates by generating a set of random seed designs, optimizing each, and selecting
the best. Strategies N,, N3 and N, are derived directly or indirectly from strategy N;, and thus
inherit the multi-start process.

Strategy N, is derived from Nj by identifying a critical quantity g(l.,4,[.) and using “Param-
eterize Intermediate Quantity” and “Solve Equality Constraint” to convert it into a new design
parameter, replacing the original design parameter [., the external flap length. The intermediate
quantity appears in a conditional expression testing whether the flaps are geometrically connectable.
When g goes negative, the nozzle is unrealizable, evaluation fails, and an extremely bad value is
returned, causing a discontinuity in the evaluation function. Since g is a non-linear function of the

21

design parameters, strategy N, operates with design parameters obtained by a non-linear transfor-
mation on the original parameters.

Strategies N3 and N4 are derived from N; using the approximating transform “Expand Integral
Expression” to remove the call to a numerical integration routine and using the approximating
transform “Expand Root Expression” to remove calls to numerical root extractors. Strategy Nj
results from using “Freeze Intermediate Quantity” and “Introduce Convergence” to set up a pro-
cess of periodically re-calibrating the seeds in the expanded root expressions. Strategy N, results
from using “Freeze Intermediate Quantity” and “Introduce Convergence” to set up a process of
periodically re-calibrating the seeds and Jacobians in the expanded root expressions.

All of the remaining strategies, N5, Ng and N; are constructed in a derivation that begins
as follows: First the transform “Constrain Intermediate Quantity” is used to assert an inequality
constraint placing a lower bound (zero) on g(l.,l4,1.). Then the transform “Introduce Multi-Stage”
1s used to construct a two-stage strategy, consisting of two successive copies of the initial strategy
along with the new lower bound constraint. Finally, the transform “Introduce Multi-Start” is
applied to the first stage of optimization. Strategies N5, Ng and N; are all derived directly or
indirectly from this point, and thus inherit the two stages of optimization, the multi-start process
in the first stage, and the new lower bound constraint in both stages. Strategy N5 then results from
deleting the second stage of optimization entirely. Strategy Ng is derived by retaining the second
stage, and instead applying the transform “Constrain Intermediate Quantity” to the first stage of
optimization. This transform asserts an equality constraint forcing g(l., 14, 1.) to have a fixed, small,
positive value. The transform “Solve Equality Constraint” is then used to remove the equality
constraint and the parameter [, (external length) from the design space. Strategy Ng thus operates
in a two-dimensional non-linear subspace, including only I. (convergent length) and Iy (divergent
length) during the first stage of optimization. It operates in the full three-dimensional design
space and enforces a lower bound constraint on g(I., 4, l.), during the second stage of optimization.
Strategy N7 is derived from Ng by deleting the final stage of optimization.

8 Experimental Results

Results of testing yacht and nozzle design strategies are presented in Figures 13 and 14. Each
yacht strategy was tested on a set of 9 design problems, characterized by all combinations of
three different headings (60, 120 and 180 degrees) and three different windspeeds (8, 12 and 16
knots). Each nozzle strategy was tested on a set of 6 test problems, with various combinations of
mission altitude (60,000 feet and 30,000 feet), velocity (mach 2.0 and mach 1.414), and duration
(2 hours and 1/2 hour). Each strategy used five randomly selected seed designs as starting points
for optimization. CFSQP was used to implement each occurrence of the optimize primitive in each
strategy. For each (problem, strategy) combination we recorded the CPU time used in the run and
the value of the objective function (yacht velocity or nozzle takeoff mass) of the resulting design. We
normalized CPU time for each (problem, strategy) combination, dividing by the average CPU time
for the default strategy, yielding “Average Relative CPU Time” shown in the tables: Y; required
an average of 5:15 CPU minutes, carrying out an average of 308 objective function evaluations per
problem; N; required an average of 55:17 CPU minutes, carrying out an average of 144 objective
function evaluations per problem — all on a Sun Microsystems Sparc 5 workstation. We normalized
the objective value for each (problem, strategy) combination, dividing by the objective value of the

22

Introduce Multi-Start Introduce Multi-Stage

Freeze Seed
& Recalibrate

Reparameterize Introduce Multi-Start

]

Freeze Jacobian Reduce Dimension
& Recalibrate

@

Freeze Seed

Delete Final Stage & Recalibrate

Freeze Jacobian

Delete Final Stage & Recalibrate

Delete Fina Stage
Y9

Figure 11: Derivation Relations among Yacht Optimization Strategies

“optimal” design for that problem, i.e., the best design found by any strategy, yielding “Average
Relative Objective” shown in the table. Finally, for each strategy, we recorded the best and worst
relative objective over all problems in the test set. A typical yacht velocity is about 10 knots, so
a 1% variation in the objective function amounts to about a tenth of a knot. A typical value for
takeoff mass is about 175000 kilograms. A 1% variation in the objective function amounts to 1750
kilograms of fuel.

The effect of approximation and re-calibration can be seen in the yacht domain by comparing
Y; with Y; and Yj, and in the nozzle domain by comparing N; with N3 and N4. Approximation
speeds optimization by as much as a factor of three in the yacht domain with only a small (less
than 0.4%) loss in average quality. Approximation speeds optimization by a factor of more than
two in the nozzle domain, but with a larger (nearly 4.0%) loss in average quality. We believe that
additional speedup is possible by approximating, and re-calibrating the net-torque functions used
in strategies Y3 and Y, and the net-vertical-acceleration and net-horizontal-acceleration functions
used in strategies N3 and N4. The loss of quality may be remedied by adding additional stages of
optimization.

The effect of reparameterization can be seen by comparing Y; with Y5 in the yacht domain and
by comparing N; with N, in the nozzle domain. We had expected reparameterization to improve
design quality, by aligning coordinate axies with ridges or discontinuities and preventing CFSQP
from getting stuck. Our expectation was not borne out in the yacht domain: Y, does not improve

23

Introduce Multi-Start Constrain Quantity

Freeze Seed

& Recadlibrate Introduce Multi-Stage

Reparameterize

Freeze Jacobian Introduce Multi-Start
& Recalibrate

@

Delete Final Stage Reduce Dimension

N5 N6

Delete Final Stage
N7

Figure 12: Derivation Relations among Nozzle Optimization Strategies

the average quality compared to Y;. Our expectation did hold up in the nozzle domain: N, does
improve quality compared to Ny, with a modest penalty in CPU time. The additional CPU time
apparently results from the fact that CFSQP does not terminate prematurely but continues to
improve design quality.

24

Strategy Rel. CPU Time Avg. Rel. Objective Best Rel. Objective Worst Rel. Objective

Y1 100.00% 99.90% 100.00% 99.73%
Y, 93.36% 99.81% 100.00% 98.70%
Ys 49.15% 99.68% 99.88% 99.38%
Y, 33.45% 99.63% 99.88% 98.65%
Ys 28.31% 99.36% 100.00% 97.60%
Ys 37.73% 99.75% 100.00% 99.27%
Y 24.44% 99.36% 100.00% 97.60%
Ys 30.37% 99.50% 99.98% 97.53%
Yo 17.72% 99.01% 100.00% 97.42%

Figure 13: Performance of Yacht Optimization Strategies

Strategy Rel. CPU Time Avg. Rel. Objective Best Rel. Objective Worst Rel. Objective

Ny 100.00% 102.90% 100.23% 108.77%
N» 112.04% 101.95% 100.47% 104.18%
N3 84.85% 103.81% 101.69% 108.77%
Ny 42.65% 103.81% 101.69% 108.77%
N5 99.31% 102.16% 100.47% 104.69%
Ng 116.83% 100.00% 100.00% 100.00%
N7 84.98% 100.65% 100.00% 102.95%

Figure 14: Performance of Nozzle Optimization Strategies

The effect of dimension reduction can be seen by comparing Y; with Yy in the yacht domain.
Strategy Y5 runs considerably faster than strategy Y; while suffering a small (less than 0.7%) loss
in average quality. On at least one problem, Y found an “optimal” design; however on at least one
other problem, Y5 found a design that was significantly below optimal. These results demonstrate
that our dimension reducing transformations can significantly speed up optimization; however, they
are not guaranteed to preserve optimality. It would be useful to develop methods for predicting
which problems within a problem class have their solutions in reduced dimension subspaces.

The effect of dimension reduction can also be seen in the nozzle domain by comparing N; with
N7. Strategy Ny speeds optimization by a small amount, compared to N;. In addition N; achieves
a dramatic improvement (2.25%) in design quality. We believe this improvement results from the
fact that N, gets stuck on ridges or discontinuities that are removed in the reduced dimension space
searched by N7. Notice that merely imposing an inequality constraint on the critical quantity (as
in strategy Ns) does not work as well. Strategy N5 does improve design quality in comparison to
Ni; however, the improvement is much smaller than that achieved by N-.

Finally the effect of multi-stage optimization may be seen in the yacht domain by comparing
Y; with Ys and comparing Yy with Ys. Strategies Ys and Ys include a final optimization stage, in
the full search space, using the exact objective function to remedy possible ill effects of dimension
reduction and approximation. These multi-stage strategies improve average quality while incurring
a small additional computational cost. Likewise, the effect of multi-stage optimization may be seen

25

in the nozzle domain by comparing N7 with Ng (and with all the other strategies). Strategy Ng is
the same as Ny, but includes a final stage of optimization in the full search space, using the exact
objective function, and one inequality constraint. It finds the best design on all six test problems.
We expect that further improvements can be attained by combining dimension reduction (strategies
N7 and Ng) with approximation (N3 and Ny).

Some of our yacht strategies perform quite well, despite violating our guidelines for deriving
strategies that are guaranteed to terminate and return correct solutions. In particular, strategies
Y>, Y5, Y, Y5, Y7 and Yy all violate the guidelines. Each of these strategies involves a final stage
of optimization that is different from the initial strategy, either by using an approximation of the
objective function, a reparameterized search space, or a reduced-dimension search space. Neverthe-
less, in our experiments these strategies always terminated and returned designs whose quality is
nearly identical to the designs found by the initial strategy. Our results thus provide some support
for our decision to refrain from strictly enforcing the guidelines in our system.

After reviewing our yacht and nozzle domain results, the reader will naturally ask whether any of
the derived strategies can be said to exhibit better overall performance than the default strategies.
The answer 1s fairly clear for the yacht domain. The data in Figure 13 show that several derived
yacht strategies (Yy, Y3, Ys, Y7, Y3 and Yy) lead to a significant speedup (i.e., factors of three to five)
in comparison to the default strategy (Y1). Furthermore, these derived strategies suffer very little
(less than 1%) loss in average design quality. From these results, we conclude that our transforms
can significantly improve performance in the yacht domain. The answer is less clear for the nozzle
domain. The data in Figure 14 shows significant variations in both running time and design quality.
Some strategies are faster than the default strategy (N;) but lead to lower average quality (e.g.,
Ny). Others are slower but result in better average quality (e.g., Ng). Further analysis is needed
to determine whether any of the derived nozzle strategies represents an overall improvement, in
comparison to the default.

CPU time and design quality are somewhat interchangeable. For a given strategy, one may
convert low CPU time into high design quality by running the strategy with a larger number of
starting points. Likewise one may convert high design quality into low CPU time by running the
strategy with a smaller number of starting points. These observations suggest a statistical method
of comparing strategies on a common scale. We run each strategy from m randomly selected starting
points. We keep track of the design quality of each result, along with the average CPU time per
starting point. Let ¢(¢) be the quality of the ith best result obtained using this procedure. Let
p(i,n, m) represent the probability that a random selection (with replacement) of n values from
{q(@)]i = 1...m} will yield q(¢) as the best quality value. We can then compute a statistic EQ(n)
that represents the expected quality of the best design found after running the strategy with n
randomly selected starting points. Using elementary probability theory:

m

EQ(n) = i;p(i, n,m)q(i)
- El(- o

We can also compute a statistic ET'(n) representing the expected CPU time needed to run the
strategy using n starting points: ET(n) = nC, where C is the average CPU time per starting

point.

26

1e+08 T T T T T T T T T]

L Default Strategy (N1) ——]

Two-Stage Strategy (N6) -+--

Simulated Annealing O 1

—~ 1le+07 -

[%2] r 4

3 [

c
o
o
(5]
D
E
()
£
'_
o)
o

© 1e+06 | .

100000 1 1 1 1 1 1 1 1 1
1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

Expected Relative Value of Objective Function

Figure 15: Comparison of Nozzle Design Strategies (Problem P1)

Tradeofts between CPU time and design quality are shown in Figures 15-20 for two of the
nozzle design strategies: Ny, the default strategy, and Ng, the two-stage strategy using dimension
reduction in the first stage. These data were generated using the procedure outlined above with
m = 100 starting points and plotting EQ(n) versus ET(n) for n = 1...25. These graphs allow
one to compare strategies in two different ways: For a given amount of CPU time, the graphs
show that strategy Ng yields a better expected value for design quality than strategy N;. On the
other hand, for a given level of design quality, the graphs show that strategy Ng requires less CPU
time than strategy N;. In particular, for most levels of quality, strategy Ng is faster by almost an
order of magnitude. From these results, we conclude that our transforms can significantly improve
performance in the nozzle domain, as well as the yacht domain.

We also carried out a series of experiments comparing our nozzle design strategies to a stochastic
algorithm. In particular, we compared nozzle strategies N; and Ny to the Amebsa algorithm taken
from [Press et al., 1986]. Amebsa is a combination of simulated annealing and the downhill-simplex
algorithm. It uses the simplex method for defining the kinds of changes to the current design(s)
that can be made when moving through the design space. It uses the simulated annealing as the
control structure for deciding what changes to make and when to make them. In order to use
this algorithm, the user must supply a “cooling schedule”. i.e., an algorithm for initializing and
decreasing the “temperature” used by the Amebsa algorithm. We experimented with a variety of
different cooling schedules. In particular, we varied the initial temperatures (ranging from 100°K to
800° K') and the number of different temperature levels (ranging from 4 to 16). The final temperature
for each schedule was 12.5°K. We ran the Amebsa algorithm multiple times with each schedule.

27

1e+08 T T T T T T]

L Default Strategy (N1) ——]

Two-Stage Strategy (N6) -+--

Simulated Annealing O 1

—~ 1le+07 -

[%2] r 4

3 [

c
o
o
(5]
D
E
()
£
|_
o)
o

© 1e+06 | .

100000 L L L L L 1
1 1.01 1.02 1.03 1.04 1.05 1.06 1.07

Expected Relative Value of Objective Function

Figure 16: Comparison of Nozzle Design Strategies (Problem P2)

The number of runs ranged from 6 times for the slowest schedule to 50 times for the fastest schedule.
Averaging the results over each run, we obtained expected values of design quality and CPU time
for each schedule. These results are shown in Figures 15-20. Notice that the two-stage nozzle
strategy Ng outperforms Amebsa regardless of the cooling schedule, i.e., Ng achieves better design
quality for a given amount of CPU time, or uses less CPU time to achieve a given level of design
quality. Of course we cannot rule out the possibility that a better cooling schedule would change this
result. The difficulty of finding the best cooling schedule is a major limitation of simulated annealing
algorithms. In the absence of an effective method for finding a better schedule, we conclude that our
derived nozzle strategies are more cost-effective in the nozzle domain than the Amebsa simulated
annealing algorithm.

The choice of an optimization strategy will ultimately depend on context. During preliminary
stages of the design process, an engineer may want to use a strategy that is fast but possibly
unreliable. On the other hand, during later stages of the design process, an engineer may want
to use a more reliable optimization strategy that requires greater CPU time. Before making the
commitment to invest a large sum of money in construction of an artifact, an engineer will likely
want to obtain the greatest possible reliability, perhaps by using a combination of several different
deterministic or stochastic strategies. The choice of an appropriate optimization strategy will
therefore vary over the product design cycle.

28

1e+08 T T T T T T T T T]

[Default Strategy (N1) ——]

Two-Stage Strategy (N6) -+-- A

Simulated Annealing ©
— 1le+07 |]
5 r]
3 [

c
o
o
(3]
D
E
(5]
£
'_
)
o

O 1e+06 - -

100000 1 1 1 1 1 1 1 1 1
1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

Expected Relative Value of Objective Function

Figure 17: Comparison of Nozzle Design Strategies (Problem P3)

9 Domain Independence of Results

Our strategy language and transformation system were developed with the intention of handling
any engineering design problem that can be formulated in terms of constrained optimization, as
outlined in Figure 1. We have now demonstrated useful capabilities of our system in the domains of
yacht and nozzle design. Nevertheless, the reader will naturally wonder whether our system would
really be useful in practice in other engineering design applications. Two different questions should
be considered in this connection: (1) What types of design optimization problems can actually be
implemented in our system? (2) What types of optimization problems are most amenable to the
kinds of optimization strategies (using approximation, recalibration, reparameterization, dimension
reduction and multi-stage optimization) which our system is able to construct? We shall consider
each of these issues in turn.

In order to use our transformation system, an engineer must encode an initial strategy in terms
of the functional, data-flow language defined by the grammar shown in Figure 4. The language
includes primitives for root extraction and integration that make it especially well-suited to design
of artifacts that are governed by algebraic and ordinary differential equations. In addition, the lan-
guage includes hooks for interfacing black boxes that implement arbitrary functionality. Therefore
in principle any constrained optimization problem can be implemented as an initial strategy for use
in our system. On the other hand, many of our transforms require access to intermediate quantities
appearing in the objective or constraint functions. Expressions representing such quantities are
manipulated by transforms that introduce approximations and transforms that reformulate search

29

1e+08 T T T T T T]

L Default Strategy (N1) ——]

Two-Stage Strategy (N6) -+-- A

Simulated Annealing ©
—~ 1le+07]
5 r]
3 [

c
o
o
(3]
D
E
(5]
£
'_
)
o

O 1e+06 - -

100000 1 1 1 1 1 1
1 1.01 1.02 1.03 1.04 1.05 1.06 1.07

Expected Relative Value of Objective Function

Figure 18: Comparison of Nozzle Design Strategies (Problem P4)

spaces. In order for our full catalog of transforms to be applicable to a design optimization problem,
the initial strategy must provide access to intermediate quantities. This may present a problem
when objective and constraint functions are implemented by legacy codes written in conventional
programming languages, e.g., C or Fortran. When such legacy codes are interfaced with our system
as monolithic black boxes, the intermediate quantities generated inside them cannot be manip-
ulated by our transforms. Nevertheless, this problem is substantially mitigated by the following
considerations: Many or most numerical codes can be decomposed into modules with identifiable
inputs and outputs. The modules can be encoded as separate black boxes in the initial strategy.
Quantities passed between modules can be manipulated by our system and exploited for purposes
of approximation or reformulation. In a related body of work [Keane and Ellman, 1996], we have
developed a suite of techniques and tools that facilitate integration of modular legacy codes into
our system.

One portion of our transform catalog is aimed at developing optimization strategies that use
approximation and periodic recalibration of objective or constraint functions. Strategies based
on approximation and recalibration are potentially useful when portions of the objective or con-
straint functions are expensive to compute, or when running a large number of optimizations,
each under different assumptions about the operating environment of the artifact. Our approxi-
mating transforms allow an engineer to construct internal approzimations of selected portions of
objective or constraint functions, while leaving the rest of each function intact. We now con-
sider when such approximations will likely result in strategies with superior performance. Precise
predictions are difficult to make. Instead, we shall try to identify the factors that tend to favor

30

1e+08 T T T T T]

L Default Strategy (N1) ——]

Two-Stage Strategy (N6) -+--

Simulated Annealing O 1

—~ 1le+07 -

[%2] r 4

3 [

c
o
o
(5]
D
=
()
£
'_
o)
o

© 1e+06 | .

100000 L L L L !
1 1.005 1.01 1.015 1.02 1.025 1.03

Expected Relative Value of Objective Function

Figure 19: Comparison of Nozzle Design Strategies (Problem P5)

strategies of approximation and recalibration. As an extreme example, consider an objective func-
tion f(z1,...,2,) = e(x1,..., 2y, Q(21,...,2,)) involving an intermediate quantity Q(zq,...,z,).
Suppose that the computation of () 1s expensive in comparison to the computation of the rest of
the objective function. Suppose further that the value of () changes slowly from point to point in
the design space. Finally, suppose that the objective function f is relatively insensitive to the value
of @, i.e., the partial derivative de/0Q) is small in magnitude. A linear approximation of ¢ could
be calibrated at the cost of only n 4 1 evaluations of (), i.e., roughly the cost of computing one
gradient of the objective function. The linear approximation of) would be much less expensive
to evaluate than () itself. The approximation would be accurate over a wide region. Errors in
() would have only a small effect on the location of the optimum of the objective function. In
this extreme case, we would expect that a strategy of repeated approximation, optimization and
recalibration would perform better than direct optimization with the exact objective function. This
example suggests that an engineer should consider the following factors in deciding whether to use
a strategy of approximating and recalibrating an intermediate quantity: the cost of computing the
intermediate quantity in comparison to the cost of the rest of the objective or constraint function;
the cost savings that result from using the approximation; the cost of calibrating the approximation;
the range of the design space over which a calibrated approximation is accurate; and the sensitivity
of the overall objective or constraint function to errors in the approximated intermediate quantity.
A more comprehensive discussion of these issues is contained in our paper [Ellman et al., 1997].
Another portion of our transform catalog is aimed at developing optimization strategies that use
dimension reduction and multi-stage optimization. Strategies based on dimension reduction and

31

1e+08 T T T T T]

L Default Strategy (N1) ——]

Two-Stage Strategy (N6) -+-- A

Simulated Annealing ©
—~ 1le+07]
5 r]
3 [

c
o
o
(3]
D
E
(5]
£
'_
)
o

O 1e+06 - -

100000 L L L L L
1 1.005 1.01 1.015 1.02 1.025 1.03

Expected Relative Value of Objective Function

Figure 20: Comparison of Nozzle Design Strategies (Problem P6)

multi-stage optimization are potentially useful for dealing with pathological objective or constraint
functions. For example, in the nozzle domain, this type of strategy overcame problems that resulted
from the presence of a region of the design space in which the objective function was not evaluable.
In general, one may ask what sorts of pathologies are amenable to this approach. In order to address
this question, we defined a family of synthetic, pathological objective functions. We then ran a series
of experiments comparing the behavior of single-stage strategies to the behavior of multi-stage,
dimension reduction strategies, on these pathological problems. We considered the following types
of pathologies: ridges, unevaluable regions and broken ridges (described below). Our investigation
of ridges was motivated in part by our experience in the yacht domain. Ridges appeared in the
velocity objective function as a result of non-smoothness in the “rating rule”. Unevaluable regions
were motivated in part by our experience in the nozzle domain. Failures occurred in the takeoff
mass objective function in regions of the design space where the nozzle design was not geometrically
realizable. Broken ridges were motivated by a desire to find a type of pathology that would present
a challenge to strategies involving dimension reduction and two-stage optimization.

Our family of pathological objective functions was constructed in the following way. We began
with a well-behaved objective function, i.e., a simple convex quadratic function of two variables:
e(z,y) = az® + by®> + cxy + dz + ey + f. We then defined a pathological objective function:
flz,y) = e(z,y) + p(x,y), in which p(z,y) represents a pathology. Ridges were constructed by
defining p(z,y) = K|b(z,y)|, where K is a large positive constant. Points on the ridge satisfy the
condition b(z,y) = 0. Points off the ridge satisfy the condition b(z,y) > 0. Broken ridges were
constructed by defining p(z,y) = K|b(z,y)|,if b(z,y) < 0and p(z,y) = K|b(z,y)|+ L, if b(z,y) > 0,

32

where L is another large positive constant. In one set of experiments we chose b(z, y) to be linear in
z and y resulting in a “linear ridge” or “linear broken ridge”. In another set of experiments, we chose
b(z,y) to be quadratic, resulting in “non-linear ridge” or “non-linear broken ridge”. In all cases
we arranged for the ridge or broken ridge to pass through the optimum of the non-pathological
objective function e(z,y). Unevaluable regions were constructed by defining f(z,y) = e(z,y) if
b(z,y) < 0 and f(z,y) = K if b(z,y) > 0 where K is a large positive constant. This definition
creates a discontinuous function in which the non-pathological function remains unchanged on one
side of the discontinuity, and a plateau is present on the other side of the discontinuity. In one set
of experiments we chose b(z,y) to be linear in « and y resulting in a “linear unevaluable” region. In
another set of experiments, we chose b(z,y) to be quadratic, resulting in a “non-linear unevaluable”
region. We also varied the location of the boundary relative to the optimum of the non-pathological
objective function e(z,y). In one set of experiments, the optimum (2.p¢, Yopt) of e(, y) was chosen to
satisfy b(@opt, Yopt) = 0, so that the pathological function f(z,y) and the non-pathological function
e(z,y) had the same optimum point. In another set, the optimum (2.pt, Yopt) of e(2, y) was chosen to
satisfy b(@opt, Yopt) > 0, so that the pathological function f(z,y) and the non-pathological function
e(z,y) had different optimum points, and so that the non-pathological optimum was located well
within the plateau defined by the pathological objective function.

We used our interactive transformation system to construct two strategies for optimizing these
pathological objective functions: a one-stage strategy and a two-stage strategy. The one-stage
strategy operates by generating a random (evaluable) seed inside the bounding hyper-rectangle,
and then using CFSQP to optimize the pathological objective function f(z,y) starting from that
seed point. The two-stage strategy operates by generating a random (evaluable) seed (zo, o) inside
the bounding hyper-rectangle, and solving the equation b(zo,y) = 0 numerically for y to find a
new point (zo,ys) lying on the ridge or the boundary the evaluable region. It then uses CFSQP to
optimize f(z,y) along the ridge or boundary, starting at the point (zo,¥s), resulting in the point
(z1,y1). Finally, it uses CFSQP to optimize f(z,y) in the full two-dimensional space, starting at
the point (z1,y1).

Results of our experiments on these synthetic pathological problems are shown in Figure 21. We
ran each of the two strategies 100 times on each pathological problem. We recorded the optimum
quality level found by each of the 100 runs, along with the number of evaluations of f(z,y) used
by the strategy in each run. We then computed a statistic N(p,€) that represents the number of
seed points the strategy requires in order to have probability p of finding a solution whose quality
1s within a fraction € of the best solution found. Using elementary probability theory:

log(1 —p)
log(1 —r(e))
where 7(€) is the probability that an optimization from a single seed results in a solution within € of

the best solution. We estimated the value of r(¢) from the empirical histogram of solution quality
levels. Finally, we obtained an estimate of the required CPU time, T'(p, €), by forming the product

N(p,e)

of N(p,¢€) and the average number of objective function evaluations per seed used by the strategy.
In some cases, the strategy required only one run from a single seed to achieve the designated level
of reliability. Such cases are marked with an asterisk.

Our results show that the one-stage strategy was mildly unreliable in solving the “Linear Ridge”
problem. On the other hand, it was extremely unreliable in solving the “Non-Linear Ridge” prob-
lem. It appears that CFSQP can determine the direction of a linear ridge and then move in a fixed

33

Pathology One-Stage Strategy Two-Stage Strategy

T(0.99,0.01) T(0.99,0.01)
Linear Ridge 136 20*
Non-Linear Ridge 17110 24*
Linear Unevaluable (Same Optimum) 38* 21*
Non-Linear Unevaluable (Same Optimum) 41* 26*
Linear Unevaluable (Different Optima) 597 Tr*
Non-Linear Unevaluable (Different Optima) 961 90*
Linear Broken Ridge 9253 224
Non-Linear Broken Ridge 32138 476

Figure 21: Performance of Single and Multi-Stage Strategies on Pathological Problems

direction along the ridge to find the optimum; however, CFSQP apparently cannot move along a
ridge that constantly changes its direction. In contrast to this, the two-stage strategy was quite
reliable in solving problems with either linear or non-linear ridges. The one-stage strategy was quite
reliable in solving the “Linear Unevaluable (Same Optimum)” and “Non-Linear Unevaluable (Same
Optimum)” problems, i.e., problems in which the optimum of the non-pathological function is the
optimum of the pathological function. On the other hand, the one-stage strategy was somewhat
less reliable in solving the “Linear Unevaluable (Different Optima)” and “Non-Linear Unevaluable
(Different Optima)” problems, i.e., problems in which the optimum of the non-pathological function
1s different from the optimum of the pathological function, and lies within the plateau defined by the
pathological function. It appears that the separation between the pathological and non-pathological
optima causes CFSQP to be misled about the location of the true optimum. In contrast to this, the
two-stage strategy was quite reliable in solving the “Linear Unevaluable” and “Non-Linear Unevalu-
able” problems, regardless of whether the pathological and non-pathological objective functions had
the same optimum points. Finally, both the one-stage and two-stage strategies had some difficulty
handling “Linear Broken Ridge” and “Non-Linear Broken Ridge” problems; however, the two-stage
strategy performed much better on these problems than the one-stage strategy.

We have not undertaken an exhaustive experimental study of the performance of single-stage
and multi-stage strategies in the presence of pathological objective and constraint functions. In
particular, there are many more ways we could vary the mathematical properties of the pathologies
and objective functions in the examples described above. These variations might well influence
the behavior of either the single-stage or multi-stage strategies. For this reason, we shall refrain
from attempting to draw general conclusions about the relative performance of single and multi-
stage strategies on pathological problems. Nevertheless, we believe our results demonstrate the
potential for obtaining significant performance improvements from using our strategy language and
transformation system on problems with ridges, discontinuities or other pathologies.

34

10 Related Work

Several other investigators have used knowledge-based techniques to improve the performance of
automatic design algorithms. The DOMINIC-II system is one example [Orelup et al., 1988].
DOMINIC-IT was motivated by the observation that hill-climbing search does not reliably solve
design problems — a motivation similar to our own. In DOMINIC-II, this problem was addressed by
using a meta-level controller to dynamically switch between different hill-climbing search strategies.
The meta-level controller would monitor the hill-climbing process. Upon detecting an impasse, it
would switch to a new strategy. DOMINIC-II is similar to our system in the sense that it uses
a multi-stage, multi-strategy design process. Nevertheless, our concepts of “strategy” are rather
different from each other. In DOMINIC-IL, a strategy is a search control method. A choice of strat-
egy in DOMINIC-IT is analogous to a choice of a numerical optimization algorithm (e.g., CFSQP)
in our system. In contrast to this, a strategy in our system includes definitions of search spaces,
objective functions and constraints, among other things. These problem formulation issues are not
addressed in the DOMINIC-II research. It might be useful to use some ideas from the DOMINIC-II
research in our system. For example, our system might benefit from methods used in DOMINIC-II
for monitoring and diagnosing problems with hill-climbing search.

The ENGINEOUS [Tong, 1990] and INTERGEN [Powell, 1990] systems also use knowledge-
based methods to improve the performance of design optimization. This work was motivated, in
part, by the problem of dealing with failures and other pathological features of complex objective
and constraint functions — a motivation that is similar to our own. ENGINEOUS and INTERGEN
both combine numerical methods (e.g., hill-climbing, simulated annealing, genetic algorithms) with
symbolic reasoning techniques. These systems include knowledge-bases with rules that recommend
design modifications and rules that switch between numerical optimization methods. Both systems
adhere to a paradigm in which the design parameters, objective functions and constraint functions
are provided in advance and are treated as fixed “black boxes” during the design process. In contrast
to this, our work has focused on methods of reformulating the design parameters, constraints and
objective functions themselves.

A symbolic reasoning technique called “activity analysis” is presented in [Williams and Cagan,
1994]. Activity analysis reasons about algebraic properties of constraints and objective functions
in order to identify opportunities for dimension reduction. Activity analysis is a generalization of a
previous technique, called “monotonicity analysis”, that also reduced the dimension of design spaces
[Choy and Agogino, 1986], [Papalambros and Wilde, 1988]. This line of research applies to situations
in which dimension reduction is provably locally optimal. In contrast to this, we have focused on
engineering applications in which the complexity of the constraint and objective functions precludes
such proof. In such complex domains, computational experiments appear to provide the best means
of identifying opportunities for dimension reduction. We have therefore developed a framework in
which engineers can quickly and easily formulate, test and reformulate reduced design spaces. In
any case, activity analysis and monotonicity analysis do immediately apply to our domains, because
reduced subspaces are defined by critical quantities, rather than active constraints. Furthermore,
in our domains, optimal solutions do not always lie in the reduced-dimension subspaces. Dimension
reduction by itself would sometimes lead to solutions that are not locally optimal. It is therefore
useful mainly as the first stage of a multi-stage design process.

Methods of intelligently constructing and selecting approximate models of physical systems have
been presented in [Falkenhainer and Forbus, 1991], [Nayak, 1994]. Most of these methods reason

35

qualitatively about the behavior of models in order to choose a suitable one. Considerations of
relevance, causality and monotonicity are used to decide which models might solve the problem at
hand. They do not provide a framework for choosing among models that are qualitatively similar
but have differing degrees of numerical accuracy. In contrast, our system provides a framework
in which an engineer can carry out experiments that support a cost/benefit analysis of alternative
approximations.

11 Contributions

We consider our work to be the first step in a research program aimed at automating the entire
strategy formulation process. We have developed a language for expressing a wide variety of op-
timization strategies. We have also developed a catalog of transforms that map one strategy into
another. The strategy language and transform catalog include many features that will seem familiar
to design engineers. Approximation, re-calibration, dimension-reduction, and multi-stage optimiza-
tion are common techniques that appear in the repertoire of most experienced engineers. The
strategy primitives and transformations are therefore not new contributions in and of themselves.
Nevertheless, our system does help to automate the use of these primitives and transformations in
constructing optimization strategies. The strategy primitives provide the engineer with a special-
ized, high-level programming language. The transformations relieve the engineer from the burden
of rewriting programs each time he modifies an optimization strategy. The transformations also
enforce a discipline on the engineer. They encourage him to be more systematic in exploring the
strategy space than he might otherwise be. In addition, the transformations come with guaran-
tees regarding conditions under which they preserve the correctness and convergence properties of
the initial strategy. We also believe that our system facilitates maintenance and modification of
optimization strategies by maintaining a record of the derivation process; however, we have not
experimentally tested this possibility.

Our work also contributes to the theory and methodology of engineering design. To begin
with, our strategy language formalizes the hitherto informal notion of an optimization strategy.
It specifies exactly what strategies are syntactically meaningful. It clarifies how distinct stages of
optimization may differ from each other (i.e., different design spaces, different design parameters,
different approximations of objective and constraint functions). It clarifies how distinct stages of
optimization may be combined with each other (i.e., using the primitives optimize, select, compose
and converge). In addition, our transform catalog enables one to understand how complex, multi-
stage strategies may be seen as transformations on simpler strategies. Finally, our experiments
demonstrate that the strategy language and transform catalog can be used to derive strategies that
significantly improve the efficiency and robustness of the design optimization process in two realistic
application domains. Nevertheless, we do not consider our current strategy language or transform
catalog to be complete. Research on different types of design problems will likely reveal the need
to add new primitives to our strategy language and new transforms to our catalog.

Finally, we also believe that our work provides a framework for organizing and codifying the
results of future research. For example, consider an expression E generated by the grammar of
our strategy language. If E contains non-terminal symbols, it describes a whole class of strategies
sharing a common structure. One may use expressions of this sort to define research problems:
“Are strategies of class E ever useful in practice?”; “Is a class E; strategy always better than a

36

class E; strategy?”; “Does the efficacy of a class E strategy depend on the application domain?”.
Once a strategy class is determined to be useful, one may seek to determine the reason for success:
“What difficulties does a strategy of class E overcome?”; “What features of the design problem
predict the success of a class E strategy?”. Our system may thus serve as a framework for posing
research questions and stating experimental or theoretical results.

12 Future Work

Further progress will require developing tools that help an engineer to select suitable transformations
from among the many that are applicable. We are currently engaged in two approaches to this
problem. In our first approach, we are developing techniques for producing graphical visualizations
that will assist engineers in diagnosing problems with the optimization process. For example, one
visualization technique would animate the series of gradient computations and line searches that
1s invoked by a sequential quadratic programming code, in the course of an optimization. This
sort of animation may help engineers to recognize situations when the search process is getting
stuck on a ridge or discontinuity. Another visualization technique would illustrate the evolution of
intermediate quantities over the course of an optimization. This may help engineers to decide what
parts of objective and constraint functions are nearly invariant and might therefore be approximated
during early stages of an optimization process.

Our second approach aims to automate the sort of imagistic reasoning that takes place in the
eye and mind of an engineer examining graphical visualizations like the ones described above. This
work is inspired by research using Artificial Intelligence and Machine Vision techniques to extract
information from simulations of physical systems [Abelson et al., 1989], [Sacks, 1991], [Yip and Zhao,
1996]. We are developing a suite of tools for automatically observing and analyzing the behavior of
trial optimizations. Each tool will be designed to extract information that can in principle be used
to decide whether and how to apply a particular type of transformation. For example, in order to
automate the decision of whether to apply a transform that reparameterizes the search space, it
would help to have a tool that can automatically detect ridges or discontinuities. Omne such tool
would run a trial optimization to obtain the stopping point and then find the eigenvalues of the
Hessian of the objective function. A wide range of eigenvalues would suggest the presence of a ridge.
An alternative tool would run multiple optimizations to obtain a set of stopping points and compute
the fractal dimension of this set. A low fractal dimension would again suggest the presence of a
ridge. Likewise, in order to automate the decision of whether to apply transforms that approximate
objective or constraint functions, it would help to have tools that automatically measure the cost-
effectiveness of various approximations. One such tool would run a trial optimization and measure
the sensitivity of the final design with respect to errors in intermediate quantities. Notice that our
strategy language and transform catalog play an important role in focusing this research. They
define the decisions that must be made in the course of formulating a strategy. Once the decisions
are defined, it becomes possible to think concretely about the types of experiments and data analysis
tools that would help to automate the decision. For this reason, we believe that our work to date
provides a useful framework for organizing future research.

37

13 Acknowledgments

Our research is supported by the National Aeronautics and Space Administration through NASA
Grants NCC-2-802 and NAG2-817 and by the Hypercomputing and Design Project (HPCD), spon-
sored by the Advanced Research Projects Agency of the Department of Defense through contract
ARPA-DABT 63-93-C-0064. It has benefited from discussions with Saul Amarel, Gene Bouchard,
Andrew Gelsey, Haym Hirsh, Rich Keller, John Letcher, Takahiro Murata, Gerry Richter, Mark

Schwabacher, Don Smith and Lou Steinberg, and the advice of the anonymous referees of this paper.

A Analysis of Individual Transforms

A.1 Preservation of Correctness
A.1.1 Transforms that Nest Optimization Strategies

Introduce Multi-Stage Optimization: This transform converts a current strategy .S, contain-
ing a subexpression e = (optimize SEED OBJ EQNS INEQNS...), into a revised strategy
S’. In the revised strategy S’, the expression e is replaced by a revised expression ¢’, where
e/ = (optimize (optimize SEED OBJ EQNS INEQNS...) OBJ EQNS INEQNS...).
The expression ¢’ defines two stages of optimization. Each stage in ¢’ is a copy of e. The re-
sult of the first stage in ¢’ is the seed of the second stage in ¢'.

o Preservation of Mathematical Solution Set: The second stage of the revised expression e’ has
exactly the same search space, objective function and constraints as the original expression e.
Only the seeds are different. The possible return values of our idealized optimize primitive
depend only on the search space, objective function and constraints. They do not depend on
the seed. Therefore the revised expression ¢’ has the same set of possible return values as the
original expression e. Therefore this transform is guaranteed to preserve the mathematical
solution set.

o Preservation of Ideal Strategy Behavior: Suppose that the current strategy S has ideal
behavior. Then every outermost optimization expression (i.e., an expression of the form
(optimize...)) must also have ideal behavior. Let a be the unique outermost optimization
expression containing e. If e = «, then the expression e has ideal behavior. Then e returns
a design satisfying the Karush-Kuhn-Tucker conditions, regardless of the value of SEED.
Since the second stage of ¢’ simply executes e on a potentially different seed, the expression €’
also returns a design satisfying the Karush-Kuhn-Tucker conditions. Therefore the expression
e’ also has ideal behavior. On the other hand, if e # «, then replacing e with ¢’ changes
only the seed of a, which preserves the ideal behavior of «. Therefore, in either case, this
transform preserves the ideal behavior of every outermost optimization expression. Therefore
this transform is guaranteed to preserve ideal strategy behavior.

Introduce Multi-Start Optimization: This transform converts a current strategy S, containing
a subexpression e = (optimize SEED ...)into a revised strategy S’ in which e is replaced by ¢’ =
(select (list (random ...)*) (A(d)(optimize d...)) ...). The revised expression €’ generates a
random set of seeds, applies ¢ to each of them, and returns the best result.

38

e Preservation of Mathematical Solution Set: The revised expression ¢’ uses the same search
space, objective function and constraints as the original expression e. The only difference is
that ¢’ runs the optimization multiple times from multiple seeds, whereas e runs the optimiza-
tion once, from single seed. The possible return values of our idealized optimize primitive
depend only on the search space, objective function and constraints. They do not depend on
the seed. Therefore the revised expression ¢’ has the same set of possible return values as the
original expression e. Therefore this transform is guaranteed to preserve the mathematical
solution set.

o Preservation of Ideal Strategy Behavior: Suppose that the current strategy S has ideal
behavior. Then every outermost optimization expression (i.e., an expression of the form
(optimize...)) must also have ideal behavior. Let a be the unique outermost optimization
expression containing e. If e = «, then the expression ¢ has ideal behavior. Then each time ¢’
invokes e, it returns a design satisfying the Karush-Kuhn-Tucker conditions, provided such a
design exists. Since ¢’ simply returns the best result from all invocations of e, the expression
¢’ will return a design satisfying the Karush-Kuhn-Tucker conditions, provided such a design
exists. Therefore expression e’ has ideal behavior. On the other hand, if e # «, then replacing
e with ¢’ changes only the seed of «, which preserves the ideal behavior of «. Therefore,
in either case, this transform preserves the ideal behavior of every outermost optimization
expression. Therefore this transform is guaranteed to preserve ideal strategy behavior.

Introduce Convergence: This transform converts a current strategy .S, containing a subex-
pression e = (optimize SEED...) into a revised strategy S’ in which e is replaced by ¢ =
(converge SEED (A(d)(optimize d...))...). The revised expression €' starts with a seed de-
sign dy = SEED and repeatedly generates a new design d;, where d; results from applying e to
d;_1. The revised expression ¢’ terminates when successive designs d;_; and d; satisfy a convergence
condition.

e Preservation of Mathematical Solution Set: Each iteration of the revised expression ¢’ uses the
same search space, objective function and constraints as the original expression e. The only
difference is that e obtains its seed as an input, whereas in ¢’ each iteration other than the first
one obtains its seed from the previous iteration. The possible return values of our idealized
optimzize primitive depend only on the search space, objective function and constraints. They
do not depend on the seed. Therefore each iteration of the revised expression ¢’ has the same
set of possible return values as the original expression e. Therefore if the revised strategy ¢’
terminates, it must return a value that is a possible return value of the original expression e.
Furthermore if we assume that d; = d, satisfies the convergence test of the revised expression
¢', then each possible return value of e is a possible return value of ¢’ after two iterations.
Therefore this transform is guaranteed to preserve the mathematical solution set.

o Preservation of Ideal Strategy Behavior: Suppose that the current strategy S has ideal
behavior. Then every outermost optimization expression (i.e., an expression of the form
(optimize...)) must also have ideal behavior. Let a be the unique outermost optimization
expression containing e. If e = «, then the expression e has ideal behavior. Then e returns
a design satisfying the Karush-Kuhn-Tucker conditions, regardless of the value of SEED.
Since the last iteration of ¢’ simply executes e on a potentially different seed, the expression ¢’

39

also returns a design satisfying the Karush-Kuhn-Tucker conditions. Therefore the expression
¢’ also has ideal behavior. On the other hand, if ¢ # «, then replacing e with ¢’ changes
only the seed of a, which preserves the ideal behavior of «. Therefore, in either case, this
transform preserves the ideal behavior of every outermost optimization expression. Therefore
this transform is guaranteed to preserve ideal strategy behavior.

Introduce Decomposition: This transform converts a current strategy S, containing a subex-
pression e = (optimize SEED...) into a revised strategy S’ in which e is replaced by ¢ =
(compose (list...(optimize Si...)...(optimize S, ...))). The revised expression ¢’ operates by
solving several optimization problems, each in a factor of the search space of the original expression
¢', and composing the results.

e Preservation of Mathematical Solution Set: The revised expression ¢’ uses search spaces that
are subspaces of the search space used in the original expression e. It uses objective and
constraint functions that are restrictions of the objective and constraints used in e. Therefore
this transform does not generally preserve the mathematical solution set. Nevertheless, in
some special situations, syntactic analysis of the objective and constraint functions may be
used to determine that the mathematical solution set is preserved after all. For example, the
solution set will be preserved if the objective function is a sum of several terms, and no term or
constraint references design variables in two different factor spaces. Therefore in the general
case, this transform is not guaranteed to preserve the mathematical solution set; however, a
guarantee may be obtained from syntactic analysis of the objectives and constraints in some
special circumstances.

e Preservation of Ideal Strategy Behavior: In the revised strategy S’, the underlying numerical
optimization code is supplied with objective and constraint functions that are restrictions of
the ones used in the initial strategy S. Even when the solution set is preserved, the different
objective and constraint functions may result in different strategy behavior, since the reliability
of the numerical optimization code may be sensitive to such details. Therefore this transform
1s not guaranteed to preserve ideal strategy behavior.

A.1.2 Transforms that Reformulate Search Spaces

Parameterize Intermediate Quantity: This transform converts a current strategy S, contain-
ing a subexpression e = (optimize SEED OBJ EQNS INEQNS...) into a revised strategy
S" in which e is replaced by e = (optimize SEED'" OBJ EQNS INEQNS'...). The re-
vised expression €’ has a new design parameter y and a new constraint, y = Q(z4,...,x,), where
Q(z1,...,@,) is an intermediate quantity appearing in an objective or constraint function of the
original expression e. The objective and constraint functions of ¢’ are obtained from those of ¢ by
replacing each occurrence of Q(z1, ..., ®,) with the new variable y.

o Preservation of Mathematical Solution Set: The feasible points in the search space of e may
be placed in one-to-one correspondence with the feasible points of the search space of €', by
the mappings (#1,...,%,) < (®1,...,%n, Q(21,...,2,)). Furthermore, the objective function
of e agrees with the objective function of ¢’ at corresponding feasible points. Therefore this
transform is guaranteed to preserve the mathematical solution set.

40

o Preservation of Ideal Strategy Behavior: The performance of the numerical optimization
code may be sensitive to the difference between incorporating the expression Q(z1,...,z,)
directly into the objective and constraint functions (as in S) and handling the equation y =
Q(z1,...,@,) as an explicit equality constraint (as in S’). Therefore this transform is not
guaranteed to preserve ideal strategy behavior.

Solve Equality Constraint: This transform converts a current strategy S, containing a subexpres-
sion e = (optimize SEED OBJ EQNS INEQNS...)into a revised strategy S’ in which e is
replaced by €' = (optimize SEED' OBJ' EQNS' INEQNS'...). The original expression e has

an equality constraint Q(&1,...,®;,...,2,) = 0. In the revised expression €', a variable z; has been
removed from the set of design parameters, and the equality constraint has been dropped. The trans-
form constructs a function F'(zq,..., %1, ®it1, ..., ¢,) that solves Q (@1, ..., %1, &5, Tig1, ..., Ty) =
0 for «; in terms of (1,...,®i—1,%i41,...,%,). The objective and constraint functions of e’ are ob-
tained by composing F(x1,...,%i—1, Tit1,...,L,) with the objective and constraint functions of
e.

o Preservation of Mathematical Solution Set: We distinguish between cases in which the equality
constraint has a unique solution for z; in terms of (#1,...,%;-1,®it1,...,2,) and cases in
which no unique solution exists. When a unique solution exists, F(21,..., &1, Tit1, ..., Tn)
i1s well defined. The feasible points in the search space of the original expression e can be
placed in one-to-one correspondence with the feasible points in the search space of the revised
expression €', by the mappings (#1,..., %1, F(Z1,.. ., Bic1, Tig1ye oy Bn)y Tigly -y Bn)
(%1,...,®i—1, Tit1,...,&y). The objective function of e agrees with the objective function of
e at corresponding feasible points. In this case, the transform is guaranteed to preserve the
mathematical solution set. When the solution to the equality constraint is not unique, there

exist points (&1, ..., ®i—1, Tit1,...,%,), @ and B, such that Q(zq,...,x_1, @, @iy1,...,2,) =0,
Q(z1,...,2i—1,0,%i41,...,2,) = 0, and a # [. Either F(xq,..., %1, %i41,...,&,) = @ OF
F(z1,...,2i—1,%i41,...,%,) = [, but not both. The transform must therefore remove either
(T1,.. o @ic1, O, Tig1, ... &) OF (Z1,..., 21,0, @iy1,...,%,) from the search space, one of

which may be a solution to the optimization problem. In this case, the transform is not
guaranteed to preserve the mathematical solution set. Therefore in the general case, this
transform is not guaranteed to preserve the mathematical solution set; however, a guarantee
may be obtained from syntactic analysis of the objectives and constraints in some special
circumstances.

o Preservation of Ideal Strategy Behavior: This transform changes the search space, objective
function and constraints that are supplied to the numerical optimization code, regardless of
whether the equality constraint has a unique solution. The behavior of the code may be
sensitive to these changes, even if the mathematical solution set is preserved. Therefore this
transform is not guaranteed to preserve ideal strategy behavior.

Constrain Intermediate Quantity: This transform converts a current strategy S, containing
a subexpression e = (optimize SEED OBJ EQNS INEQNS...) into a revised strategy S’
in which e is replaced by ¢’ = (optimize SEED OBJ EQNS" INEQNS'...). The expression
Q(z1,...,o,) appears as an intermediate quantity in an objective or constraint function of the
original expression e. The revised expression has a new constraint of the form Q(z4,...,z,) < K,

Q(z1,...,2,) = K, or Q(z1,...,2,) > K, for some specified bound K.

41

o Preservation of Mathematical Solution Set: The feasible points defined by the revised expres-
sion ¢’ may be a proper subset of the feasible points defined by the original expression e,
resulting in a mathematical model with a solution set different from the original one. Never-
theless, in some situations, it may be possible to ascertain in advance that the solution set will
be preserved. For example, if the new constraint simply enforces a condition that is necessary
for the objective function to evaluate without failure, the solution set will be preserved. Like-
wise, if the new constraint is merely a necessary condition on another more computationally
expensive constraint, the solution set will also be preserved. Therefore in the general case, this
transform is not guaranteed to preserve the mathematical solution set; however, a guarantee
may be obtained from syntactic analysis of the objectives and constraints in some special
circumstances.

o Preservation of Ideal Strategy Behavior: The behavior of the numerical optimization code
may be sensitive to the presence of the new constraint, even when the new constraint does
not change the set of feasible points. Therefore this transform is not guaranteed to preserve
ideal strategy behavior.

A.1.3 Transforms that Approximate Objective and Constraint Functions

The approximating transforms “Expand Root Expression”, “Expand Integral Expression”, “Freeze
Intermediate Quantity” and “Linearize Intermediate Quantity” have the potential to make arbitrar-
ily large changes to the objective and constraint functions. These changes may move the location
of a local optimum or change the number of local optima. Therefore these transforms are not
guaranteed to preserve either the mathematical solution set or ideal strategy behavior.

A.2 Preservation of Convergence

A.2.1 Transforms that Nest Optimization Strategies

The transforms “Introduce Multi-Stage Optimization”, “Introduce Multi-Start Optimization” and
“Introduce Convergence” merely make copies of the current strategy, including its objective and
constraint functions, or merely invoke the current strategy repeatedly with different seeds. Since
the objective and constraint functions are not modified at all, the properties of convexity, bound-
edness, continuity and smoothness are trivially preserved by these three transforms. The transform
“Introduce Decomposition” does change the objective and constraint functions; however, it merely
restricts them to various linear, axis-parallel, subspaces of the original design space. The restricted
functions will be convex, bounded, continuous and smooth if the original, unrestricted functions
have the corresponding properties. These properties are therefore preserved by the decomposition
transform as well.

A.2.2 Transforms that Reformulate Search Spaces

Parameterize Intermediate Quantity: This transform converts a current strategy S, contain-
ing a subexpression e = (optimize SEED OBJ EQNS INEQNS...) into a revised strategy
S" in which e is replaced by e = (optimize SEED'" OBJ EQNS INEQNS'...). The re-

vised expression €’ has a new design parameter y and a new constraint, y = Q(z4,...,x,), where

42

Q(z1,...,@,) is an intermediate quantity appearing in an objective or constraint function of the
original expression e. The objective and constraint functions of ¢’ are obtained from those of e by
replacing each occurrence of Q(z1, ..., ®,) with the new variable y.

o Preservation of Convexity: This transform preserves convexity whenever the intermediate
quantity @) is a linear function of the design parameters (z1,...,%,). Whenever the inter-
mediate quantity is a non-linear function of the design parameters, the transform will not
preserve convexity. Therefore in the general case, this transform is not guaranteed to preserve
convexity; however, a guarantee may be obtained from syntactic analysis of the objectives
and constraints in some special circumstances.

o Preservation of Boundedness, Continuity and Smoothness: In general, the boundedness, conti-
nuity and smoothness of the original objective or constraint function, from which Q(z1, ..., z,)
is extracted, implies the corresponding property in Q(z1,...,z,) itself. Exceptions may oc-
cur in special cases. For example, original objective or constraint function may actually be
invariant with respect to changes in the value of Q(z4,...,2,). In addition, a discontinu-
ity or non-smoothness in Q(z1,...,%,) may fortuitously be removed by a discontinuity or
non-smoothness in another portion of the original objective or constraint function. Finally,
when Q(z1,...,®,) is extracted from a branch of a conditional expression, the region of the
design space over which Q(#1,...,%,) is evaluated may be enlarged. This may activate an
unbounded, discontinuous or nonsmooth feature in Q(z1,...,z,) that was previously never
evaluated. Nevertheless, we consider these exceptions to be rare events. Therefore in the
general case, this transform is guaranteed to preserve boundedness, continuity and smooth-
ness; however, in some special cases syntactic analysis of the objectives and constraints can
determine that the guarantee does not apply.

Solve Equality Constraint: This transform converts a current strategy S, containing a subex-
pression e = (optimize SEED OBJ EQNS INEQNS...)into a revised strategy S’ in which e
is replaced by e’ = (optimize SEED' OBJ' EQNS' INEQNS'...). The original expression e

has an equality constraint Q(zq,...,2;,...,#,) = 0. In the revised expression €', a variable z; has
been removed from the set of design parameters, and the equality constraint has been dropped. The
transform constructs a function F(&1,...,®i—1, €41, ..., 2,) that solves Q(z1,... @, ..., 2,) = 0 for
x; in terms of (z1,...,®i_1, &iy1,...,%,). The objective and constraint functions of ¢’ are obtained
by composing F(z1,...,%;—1, &it1,. .., 2L,) with the objective and constraint functions appearing in
e.

o Preservation of Convexity: The convexity of the original problem implies that the equality
constraint is linear. The inverse is also linear. The composition of the linear inverse with any
convex function is also convex. Therefore this transform is guaranteed to preserve convexity.

o Preservation of Boundedness, Continuity and Smoothness: We distinguish between cases
in which the equality constraint has a unique solution, and cases in which no unique so-
lution exists. Suppose that a unique solution exists. Suppose further that the function
F(z1,...,i_1,%iy1,...,%,) maps the bounding hyper-rectangle (defined by the LBs and
U Bs parameters supplied to the optimize primitive) into itself. Then the transform preserves

43

all three of the properties. Boundedness is preserved because the overall effect of this trans-
form is simply to restrict each objective or constraint function to the subspace of the original
space over which the equality constraint is satisfied. Continuity and smoothness are preserved
because the function F(z1,...,2;-1,%it1,...,¢,) inherits these properties from the original
function, and because composition preserves continuity and smoothness of the components
[Rudin, 1964]. On the other hand, suppose the inverse fails to exist, is not unique, or has
a range lying outside the bounding hyper-rectangle. In this case, the transform may fail to
preserve any of the three properties. For example, continuity and smoothness may be lost if a
numerical root extraction method is used to implement the inverse function. When multiple
solutions are present, the numerical root extractor may unpredictably switch from one root
to another. The function F(#1,...,®i_1,&iy1,...,%,) may therefore be discontinuous and
non-smooth. Furthermore, boundedness may be lost if the range of the inverse lies outside
the bounding hyper-rectangle. In this case, when the remaining functions are composed with
the inverse, they will be evaluated at points outside the region where they were assumed to be
bounded. Therefore in the general case, this transform is not guaranteed to preserve bound-
edness, continuity and smoothness; however, a guarantee may be obtained from syntactic
analysis of the objectives and constraints in some special circumstances.

Constrain Intermediate Quantity: This transform converts a current strategy S, containing
a subexpression e = (optimize SEED OBJ EQNS INEQNS...) into a revised strategy S’
in which e is replaced by ¢’ = (optimize SEED OBJ EQNS" INEQNS'...). The expression
Q(z1,...,o,) appears as an intermediate quantity in an objective or constraint function of the
original expression e. The revised expression has a new constraint of the form Q(z4,...,z,) < K,

Q(z1,...,2,) = K, or Q(z1,...,2,) > K, for some specified bound K.

o Preservation of Convexity: The three types of new constraint may be respectively rewritten
in the forms @ < 0, Q@ = 0 and @ > 0. The new problem will be convex if and only if the
function Q(x1,...,x,) is respectively convex, linear or concave. Therefore in the general case,
this transform is not guaranteed to preserve convexity; however, a guarantee may be obtained
from syntactic analysis of the objectives and constraints in some special circumstances.

o Preservation of Boundedness, Continuity and Smoothness: In general, the boundedness, conti-
nuity and smoothness of the original objective or constraint function, from which Q(z1, ..., z,)
is extracted, implies the corresponding property in Q(z1, ..., z,) itself. Exceptions may occur
in special cases. For example, the original objective or constraint function may actually be
invariant with respect to changes in the value of Q(z4,...,2,). In addition, a discontinu-
ity or non-smoothness in Q(z1,...,%,) may fortuitously be removed by a discontinuity or
non-smoothness in another portion of the original objective or constraint function. Finally,
when Q(z1,...,®,) is extracted from a branch of a conditional expression, the region of the
design space over which Q(#1,...,%,) is evaluated may be enlarged. This may activate an
unbounded, discontinuous or nonsmooth feature in Q(z1,...,z,) that was previously never
evaluated. Nevertheless, we consider these exceptions to be rare events. Therefore in the
general case, this transform is guaranteed to preserve boundedness, continuity and smooth-
ness; however, in some special cases syntactic analysis of the objectives and constraints can
determine that the guarantee does not apply.

44

A.2.3 Transforms that Approximate Objective and Constraint Functions

The approximating transforms “Expand Root Expression” “Expand Integral Expression” “Freeze
Intermediate Quantity” and “Linearize Intermediate Quantity”, have the potential to make arbi-
trarily large changes to intermediate quantities appearing in the objective and constraint functions.
These changes may convert a convex objective or constraint function into a non-convex function.
They may also have the effect of moving singularities, discontinuities or nonsmoothness into the
bounding hyper-rectangle, where such pathologies previously lay entirely outside. These transforms
therefore are not guaranteed to preserve any of the properties of convexity, boundedness, continuity
or smoothness.

References

[Abelson et al., 1989] H. Abelson, M. Eisenberg, M. Halfant, J. Katzenelson, E. Sacks, Sussman J.,
J. Wisdom, and K. Yip. Intelligence in scientific computing. Communications of the ACM, 32,
1989.

[Char et al., 1992] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M.
Watt. First Leaves: A Tutorial Introduction to Maple V. Springer-Verlag and Waterloo Maple
Publishing, 1992.

[Choy and Agogino, 1986] J. Choy and A. Agogino. Symon: Automated symbolic monotonicity
analysis system for qualitative design optimization. In Proceedings ASME International Com-
puters in Engineering Conference, 1986.

[Ellman and Murata, 1996] T. Ellman and T. Murata. Deductive synthesis of numerical simulation
programs from networks of algebraic and ordinary differential equations. In Proceedings of the
Eleventh Knowledge-Based Software Engineering Conference, Syracuse, NY, 1996.

[Ellman et al., 1997] T. Ellman, J. Keane, M. Schwabacher, and K. Yao. Multi-level modeling for
engineering design optimization. Artificial Intelligence for Engineering Design, Analysis, and

Manufacturing, 11(5), 1997.

[Falkenhainer and Forbus, 1991] B. Falkenhainer and K. Forbus. Compositional modeling: Finding
the right model for the job. Artificial Intelligence, 51:95-144, 1991.

[Gelsey et al., 1996] Andrew Gelsey, Don Smith, Mark Schwabacher, Khaled Rasheed, and Keith
Miyake. A search space toolkit. Deciston Support Systems, special issue on Unification of Artificial
Intelligence with Optimization, 1996.

[Gill et al., 1981] P. Gill, W. Murray, and M. Wright. Practical Optimization. Academic Press,
London, England, 1981.

[Keane and Ellman, 1996] J. Keane and T. Ellman. Knowledge-based re-engineering of legacy pro-
grams for robustness in automated design. In Proceedings of the Eleventh Knowledge-Based
Software Engineering Conference, Syracuse, NY, 1996.

45

[Keane, 1996] J. Keane. Extensions to Franz, Inc.’s Allegro Common Lisp foreign function interface.
Technical Report HPCD-TR-41, Department of Computer Science, Rutgers University, 1996.

[Kirkpatrick et al., 1983] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated
annealing. Science, 220:671-680, 1983.

[Lawrence et al., 1995] C. Lawrence, J. Zhou, and A. Tits. User’s guide for CFSQP version 2.3: A C
code for solving (large scale) constrained nonlinear (minimax) optimization problems, generating
iterates satisfying all inequality constraints. Technical Report TR-94-16r1, Institute for Systems
Research, University of Maryland, August 1995.

[Letcher et al., 1987] J. Letcher, J. Marshall, J. Oliver, and N. Salvesen. Stars and Stripes. Scientific
American, 257(2):24-32, August 1987.

[Mitchell, 1996] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
1996.

[Mostow, 1989] J. Mostow. Design by derivational analogy: Issues in the automated replay of design
plans. Artificial Intelligence, 40:119-184, 1989.

[Nayak, 1994] P. Nayak. Causal approximations. Artificial Intelligence, 70:277-334, 1994.

[Orelup et al., 1988] M. F. Orelup, J. R. Dixon, P. R. Cohen, and M. K. Simmons. Dominic ii:
Meta-level control in iterative redesign. In Proceedings of the National Conference on Artificial

Intelligence, pages 25-30, St. Paul, MN, 1988. MIT Press.

[Papalambros and Wilde, 1988] P. Papalambros and J. Wilde. Principles of Optimal Design. Cam-
bridge University Press, New York, NY, 1988.

[Partsch and Steinbruggen, 1983] H. Partsch and R. Steinbruggen. Program transformation sys-
tems. Computing Surveys, 15(3), 1983.

[Peressini et al., 1988] A. Peressini, F. Sullivan, and J. Uhl. The Mathematics of Nonlinear Pro-
grammang. Springer-Verlag, New York, NY, 1988.

[Powell, 1990] D. Powell. Inter-gen: A hybrid approach to engineering design optimization. Tech-
nical report, Rensselaer Polytechnic Institute, Department of Computer Science, December 1990.

Ph.D. Thesis.

[Press et al., 1986] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes.
Cambridge University Press, New York, NY, 1986.

[Rudin, 1964] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1964.

[Sacks, 1991] E. Sacks. Automatic analysis of one parameter planar ordinary differential equations
by intelligent numeric simulation. Artificial Intelligence, 48, 1991.

[Shukla et al., 1997] V. Shukla, A. Gelsey, M. Schwabacher, D. Smith, and Knight D. Automated
design optimization for the p2 and p8 hypersonic inlets. Journal of Aircraft, 34(2), 1997.

46

[Tong, 1990] S. S. Tong. Coupling symbolic manipulation and numerical simulation for complex

engineering designs. In Intelligent Mathematical Software Systems, pages 241-252. North-Holland,
New York, NY, 1990.

[Williams and Cagan, 1994] B. Williams and J. Cagan. Activity analysis: The qualitative analysis

of stationary points for optimal reasoning. In Proceedings of the Twelfth National Conference on
Artificial Intelligence, Seattle, Washington., 1994.

[Yip and Zhao, 1996] K. Yip and F. Zhao. Spatial aggregation: Theory and applications. Journal
of Artificial Intelligence Research, 5, 1996.

47

