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A one-dimensional mathematical model is presented for flows in a rocket engine that has a

regenerative cooling system. The problem involves the flow of a gas in a converging-

diverging nozzle, the flow of a coolant in channels distributed around the engine, and the

heat conduction through a wall between the gas and the coolant. The numerical model

adopted is based on the finite-volume method with a second-order scheme. It was noted that

it is important to use variable properties in order to predict the maximum wall temperature

in the rocket engine and the drop in pressure of the coolant as it moves along the channels,

whereas the thrust of the engine can be calculated with constant properties.

INTRODUCTION

Many types of rockets having large dimensions use engines fueled by a liquid
propellant and have a regenerative cooling system (Figure 1). For projects involv-
ing these engines, the key parameters of interest in this present work are the thrust (F )
produced by the engine, the maximum temperature (TMAX) reached in the wall, and
the drop in pressure (Dp) of the coolant during its flow along the channels (Figure 2).
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Determining the engine’s thrust is of utmost importance in order to fulfill a
rocket’s mission: the payload mass, e.g., a satellite, and its orbit. Determining the
distribution of temperatures along the wall and its maximum value is essential for
one to predict an engine’s lifetime and structural failure. Finally, determining the
drop in pressure of the coolant along the channels is important in order to define the
dimensions of its pumping system.

Many different phenomena are involved in the operations of rocket engines
fueled by a liquid propellant [1–4]. Speaking in general terms, the fuel and the
oxidizing agent, in a liquid state, are injected with a specific mass flow rate into
the combustion chamber (Figure 1). After that, the propellant and oxidizing agent

NOMENCLATURE

A cross-sectional area

cp specific heat at constant

pressure

D diameter

F thrust engine

h convective heat transfer

coefficient

M
�

mass flow rate

p pressure

q heat transfer rate

q00 heat flux

R gas constant

s length of the flow along the center of a

channel

T temperature

u velocity

x length of flow along the center of the

nozzle

Dp drop in pressure of the coolant

r density

Subscripts

c coolant

g gas

MAX maximum

w wall

wc coolant side wall

wh gas side wall

Figure 1. A liquid-propellant rocket engine with a regenerative cooling system.
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are atomized, mixed, and undergo chemical reactions, reaching high levels of pres-
sure and temperature, and producing gases that flow through a converging-diverging
nozzle. Due to the high thermal load imposed on the internal wall of the engine
(Figure 2), this wall must be actively cooled for its temperature to be maintained
within acceptable limits. Generally speaking, the fuel itself is used as a coolant before
being injected into the combustion chamber. The gases start off at subsonic speeds
while they are in the chamber, reach transonic speeds in the region where the nozzle
narrows (the neck), and attain supersonic speeds as they leave the nozzle.

In the Vulcain engine [5, 6] of the Ariane 5 rocket, for example, the oxidizing
agent is liquid oxygen and the fuel=coolant is liquid hydrogen. The internal wall of
the engine as well as the fins of the channels (Figure 2) are made of copper, and the
external wall is made of nickel. The thrust, at sea level, is 1,007 kN, the maximum
temperature of the wall reaches 750 K, and the drop in pressure of the coolant is
23 bar. The values for the pressure and temperature of the gases in the combustion
chamber are approximately 100 bar and 3,500 K, and the flow of mass of the gases is
232.3 kg=s. The heat flux in the internal wall next to the gases reaches 60 MW=m2 in
the region of the neck of the nozzle. The height (b) and the width (a) of the channels
(Figure 2) range from 9.5 to 12 mm and from 1.3 to 2.6 mm, respectively, with the
mass flow rate of the coolant being 33.7 kg=s when adding up all of the 360 channels
of this engine. The diameter of the chamber and of the neck of the nozzle are 0.415
and 0.262 m, and the total length of the engine with refrigeration running coun-
tercurrent is 0.75 m.

In the real problem posed, the processes for determining F, TMAX, and Dp may
be divided up into three coupled subproblems, defined as follows [4, 5]:

1. The turbulent reactive flow of a mixture of gases in a rocket engine (Figure 1)
made up of a combustion chamber and a converging-diverging nozzle

Figure 2. Geometric parameters for the cooling channels.
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2. The heat conduction through the wall of the rocket engine between the gases
it holds inside and the liquid coolant (Figure 2)

3. The turbulent flow of the liquid coolant in the channels located around the
rocket engine (Figure 2)

One of the conclusions reached in the work carried out by Habiballah et al. [4]
is that more progress is required in validation through experimentation, in modeling
the phenomena involved in determining F, TMAX, and Dp, and in developing
numerical methods that will take less time to compute. For example, in the case of
the three-dimensional numerical solution for the flow of liquid hydrogen in the
channels of the Vulcain engine, it takes tens of hours to compute on an IBM 350
workstation with a relatively coarse grid [5]. Due to the amount of time required
to carry out this computation, even nowadays, projects involving rocket engines
have essentially been built using one-dimensional models and empirical correction
factors [5].

Therefore, the main objective of the present study is to put forward a one-
dimensional mathematical model, and the numerical model needed to solve it, in
order to determine F, TMAX, and Dp. These models are applied to a hypothetical
problem. Numerical results are shown, along with their estimated numerical errors.
How these results are affected is also compared when properties maintaining con-
stant values or properties holding variables are adopted for the gas, the coolant, and
the wall.

Great difficulties are faced when trying to find in relevant literature enough
data to enable comparisons to be made of experimental or numerical results for
the problem considered in this present study. Hence, due care has been taken in
this work to define clearly all the data deemed necessary to enable future
comparisons by other authors, so that they may analyze the mathematical and
numerical models adopted in this study. Furthermore, estimates have been provided
regarding the numerical errors in the results presented, to further facilitate future
comparisons.

The following will be presented in subsequent sections: the mathematical model
used, which takes into account, among other factors, the effects of area and variable
properties; the shearing stress produced by viscous forces, and the heat transfer to
the wall by convection and radiation; the numerical model, which uses the finite-
volume method to solve the problems related not only to the flow of gases but also to
the flow of the liquid coolant; the definition of the problem; the numerical results and
the discussion of these results; and the conclusion of the study.

MATHEMATICAL MODEL

The mathematical model of the problem is divided up into three submodels.
The first submodel is related to the flow of the mixture of gases inside the chamber-
nozzle. The second one is for the flow of coolant within the channels. The third is
related to the heat conduction through the wall of the rocket engine. The mathe-
matical models put to use in these latter two subproblems are quite similar to those
used by Rubin and Hinckel [7] and Rubin [8], and the mathematical model used for
the flow of gases is basically the one adopted by Laroca et al. [9].
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Gas Flow

The main simplifications made regarding the real problem are: the flow is one-
dimensional and nonreactive; and the fluid which flows is a gas holding a constant
composition, being of one single species and thermally perfect. The flow of this gas in
the interior of the rocket engine is modeled through the mass conservation equation,
the momentum equation, and the energy equation, as well as by the perfect gas law.
These equations are represented respectively as follows:

d

dx
ðrgugAÞ ¼ 0 ð1Þ

d

dx
ðrgu2gAÞ ¼ �A

dpg
dx

þ F 0 ð2Þ

cpg
d

dx
ðrgugATgÞ ¼ ugA

dpg
dx

þ q0 ð3Þ

pg ¼ rgRTg ð4Þ

In the momentum equation, Eq. (2), the mathematical model takes into ac-
count the effects of advection, pressure, and friction (the shearing stress produced by
viscous forces). On the other hand, in the energy equation, Eq. (3), the effects
considered are those related to advection, compressibility, kinetic heating due to
friction, and the loss of heat to the wall through convection and radiation.

In Eqs. (1)–(4), rg; ug; pg, and Tg are the four dependent variables that re-
present density, velocity, pressure, and temperature of the gas; x is the independent
variable and it represents the rocket engine’s coordinated direction along the long-
itudinal axis (Figure 1); A is the cross-sectional area to the x axis along which the gas
flow occurs; cpg and R represent the specific heat at constant pressure and a gas
constant; and F 0 and q0 model the effects of the shearing stress produced by viscous
forces and of the gain or loss of heat, whose values are given by

F 0 ¼ � p
8
fgrgug ug

�� ��D ð5Þ

q0 ¼ ugF
0�� ��þ A

0

whðq00h þ q00r Þ ð6Þ

where fg and D represent the friction factor defined by Darcy and the diameter of the
circular section that lies transversal to the x axis along which the gas flows; A0

wh is the
area of the internal wall (Awh) by the unit of length along x (Figure 2), which is in
contact with the gas; q00h and q00r represent the heat fluxes by convection and radiation
to the wall which, according to Huzel and Huang [2] and Bejan [10], are modeled as
follows:

q00h ¼ hgðTwh � TawÞ ð7Þ

q00r ¼ �eesðT4
wh � T4

gÞ ð8Þ
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where hg, Twh, and s represent, respectively, the convective heat transfer coefficient
between the gas and the wall, the temperature of the wall next to the gas, and the
Stefan-Boltzmann constant (5:67051� 10�8 W=m2K4); Taw and �ee represent the
adiabatic wall temperature [2] and the emissivity [10] between the gas and the wall,
which are calculated according to

Taw ¼ Tg 1þ g
ðg� 1Þ

2
M2

� �
ð9Þ

�ee ¼ 1

ew
þ 1

eg
� 1

� ��1

ð10Þ

where g and g represent the recovery factor and the specific heat ratio; ew and eg
represent the emissivity of the wall and of the gas; and M is the Mach number of the
flow, given by

M ¼ ugffiffiffiffiffiffiffiffiffiffiffi
gRTg

p ð11Þ

It is acknowledged that the model used to consider the effect of thermal
radiation according to Eqs. (8) and (10) is highly simplified. Nonetheless, it
represents a way in which to study this effect of the real problem, where thermal
radiation is of great importance due to the high temperatures involved [1].

The mathematical model shown above, in Eqs. (1)–(11), enables the problems
of flow to be solved with A, cpg, fg, hg, g, �ee, and Twh variables with x, in addition to
the unknowns ug, pg, Tg, and rg.

Coolant Flow

The main simplification used with respect to the real problem was to consider
the flow to be one-dimensional. The coolant flow inside the channels is modeled
through the mass conservation equation, the momentum equation, the energy
equation, and also by a polynomial constitutive equation, which are provided
respectively by

d

ds
ðrcucAÞ ¼ 0 ð12Þ

d

ds
ðrcu2cAÞ ¼ �A

dpc
ds

þ F 0 ð13Þ

cpc
d

ds
ðrcucATcÞ ¼ bTcucA

dpc
ds

þ q0 ð14Þ

rc ¼ r1 þ r2Tc þ r3T
2
c ð15Þ

In the momentum equation, Eq. (13), the mathematical model takes into
consideration the effects of advection, pressure, and friction (the shearing stress
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produced by viscous forces). On the other hand, in the energy equation, Eq. (14), the
effects considered are those related to advection, expansion, and the gain of heat in
the wall due to the kinetic heating caused by friction.

In Eqs. (12)–(15), rc, uc, pc, and Tc, are the four dependent variables that
represent density, velocity, pressure, and temperature of the coolant; s is the
independent variable that represents the length of the flow along the center of a
channel (Figure 1), this being measured from the point at which the coolant leaves
the channels; A is the cross-sectional area to the s direction along which the coolant
flow occurs; cpc and b represent the specific heat at constant pressure and the
volumetric thermal expansion coefficient; r1, r2, and r3 are constants linked to each
type of coolant, assuming that its density may be represented by a squared poly-
nomial; F 0 is given by Eq. (5), only considering D as the hydraulic diameter of the
channel; and q0 is given by

q0 ¼ ucF
0j j þ A

0

wcq
00
c ð16Þ

where A0
wc represents Awc by the unit of length along s; Awc is the area of the heat

transfer between the coolant and the walls which constrain it, defined in Eq. (22).
The heat flux q00c is provided by [10]

q00c ¼ hcðTwc � TcÞ ð17Þ

where hc and Twc represent the convective heat transfer coefficient between the
coolant and the wall, and the temperature of the internal wall next to the coolant.

The mathematical model displayed above, in Eqs. (12)–(17), enables the pro-
blems of flow to be solved with A, cpc, fc, hc, b, and Twh variables with s, in addition
to the unknowns uc, pc, Tc, and rc.

Heat Conduction Through the Wall

The gas heat fluxes by convection and radiation affect the wall and are
transmitted by conduction through the wall until they are transported by convection
to the coolant. This process is modeled by

q ¼ ðq00h þ q00r ÞAwh ¼ q00wAwh ¼ q00cAwc ð18Þ

where q is the heat transfer rate through the wall; Awh is the area of the rocket en-
gine’s internal wall (Figure 2) in contact with the gas; Awc represents the effective
area of heat transfer between the wall and the coolant; and q00w represents the heat
flux through the wall obtained by

q00w ¼
�kkw
e
ðTwh � TwcÞ ð19Þ

with

�kkw ¼ k1 þ
k2
2
ðTwc þ TwhÞ þ

k3
3

ðT 3
wh � T 3

wcÞ
ðTwh � TwcÞ

ð20Þ
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where

kw ¼ k1 þ k2Tw þ k3T
2
w ð21Þ

In Eq. (21), Tw is the wall temperature, which varies along its thickness e; and k1, k2,
and k3 are constants that define the material of which the wall is made, assuming that
its thermal conductivity may be described by a squared polynomial. Equations (19)
and (20) represent the analytical solution of the one-dimensional heat conduction in
a radial direction, for kw given by Eq. (21) and without the effect of the radius, that
is, the heat conduction is considered to occur in a one-dimensional manner along a
plane wall.

The effective area of heat transfer between the wall and the coolant, Awc, is
given by

Awc ¼ Ab þ AaZ ð22Þ

where Ab is the area at the base of the channel (Figure 2) that is in contact with the
coolant; Aa is the area of the fins in contact with the coolant; and Z represents the fin
efficiency. The area of the rocket engine’s external wall (Figure 2) in contact with the
coolant is considered adiabatic, and has thus not been taken into consideration in
Eq. (22).

The coupling of the three subproblems, whose mathematical models were
presented above, will be explained in the following section.

NUMERICAL MODEL

The numerical model used to solve the gas and coolant flows is based on the
finite-volume method [11]. The solution domains through which the gas and coolant
flows occur (Figure 1) are divided up into n control volumes in the x and s directions.
These control volumes may have constant or variable length along each of the two
solution domains.

The conservation equations of the mathematical model, Eqs. (1)–(3) and (12)–
(14), are integrated based on each control volume basically following the procedure
defined by Marchi and Maliska [12]. An alteration is made in the present work in
that linear interpolation (second-order scheme) is used with deferred correction in
the manner presented in the work carried out by Lilek et al. [13]. This integrating
process results in a system of algebraic equations for each conservation equation,
which is solved using the tri-diagonal matrix method (TDMA) [11, 14]. The mass
conservation equation, Eq. (1) or (12), is adopted to obtain the pressure p. The
momentum equation, Eq. (2) or (13), is used to obtain the velocity u. The energy
equation, Eq. (3) or (14), is used to determine temperature T. The density r is
obtained through Eq. (4) or Eq. (15).

The iteration process used to solve the mathematical model provided by
Eqs. (1)–(4) or (12)–(15) goes, along general lines, as follows:

1. The data are read.
2. Initial estimates for the solutions for u, p, T, and r are made.
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3. The thermophysical properties and other parameters (cp, k, f, h, etc.) are
calculated.

4. The coefficients of the system of algebraic equations are calculated for the
momentum equation and the solution to u is obtained.

5. The coefficients of the system of algebraic equations are calculated for the
energy equation and the solution to T is obtained.

6. The value of r is calculated.
7. The coefficients of the system of algebraic equations are calculated for the

mass conservation equation and the solution to p is obtained.
8. One must return to step 3 until the desired number of iterations is

reached.

Boundary Conditions for the Gas Flow

The boundary conditions applied to solve the mathematical model made up of
Eqs. (1)–(4) are defined as follows at the inlet of the combustion chamber: Tg and pg
are fixed and are designated by the symbols To and po; ug is extrapolated linearly
starting from the two control volumes adjacent to the boundary; and rg is obtained
from Eq. (4) with To and po. At the outlet of the nozzle, the boundary conditions are:
pg, Tg, and ug are extrapolated linearly starting from the two control volumes ad-
jacent to the boundary; and rg is obtained from Eq. (4) with extrapolated pg and Tg.

Boundary Conditions for the Coolant Flow

The boundary conditions applied to solve the mathematical model made up of
Eqs. (12)–(15) are defined as follows at the inlet of the channels: Tc and uc are fixed
and are designated by the symbols Tin and uin; pc is extrapolated linearly starting
from the two control volumes adjacent to the boundary; and rc is obtained from
Eq. (15) and is designated as rin. At the outlet of the channels, the boundary
conditions are: Tc and uc are extrapolated linearly starting from the two control
volumes adjacent to the boundary; pc is defined as being equal to zero; and rc is
obtained from Eq. (15).

Coupling of the Gas and Coolant Flows with Heat Conduction
Through the Wall

The algorithm adopted to solve the mathematical model, which involves
Eqs. (1)–(22), using the numerical model described above, is, along general lines, as
follows.

1. The temperature distribution of the wall next to the gas of the rocket engine
(Figure 2) is estimated. It is designated as Twh.

2. The gas flow is solved with Eqs. (1)–(4) obtaining the values of ug, pg, Tg, rg,
and qg, where

qg ¼ ðq00h þ q00r ÞAwh ð23Þ

with the values for q00h and q00r provided by Eqs. (7) and (8).
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3. The coolant flow is solved with Eqs. (12)–(15) obtaining the values of uc, pc,
Tc and rc.

4. The heat transfer rate between the gas and the coolant (qT) is calculated
through the equation

qT ¼ ðTaw � TcÞ
RT

ð24Þ

where RT represents total thermal resistance, whose value is determined by

RT ¼ Rg þ Rw þ Rc ð25Þ

with

Rg ¼
ðTaw � TwhÞ

½hgðTaw � TwhÞ þ �eesðT 4
g � T 4

whÞ�Awh

ð26Þ

Rw ¼ e
�kkwAwh

ð27Þ

Rc ¼
1

hcAwc
ð28Þ

5. Twh and Twc are found through the equations

Twh ¼ Taw � qTRg ð29Þ

Twc ¼ Twh � qTRw ð30Þ

and then, one must go back to step 3 until the variation in Dp can meet some
criterion of convergence or until the number of iterations specified is reached.
Equations (29) and (30) are obtained from Eq. (18) and their respective gradients of
temperature and thermal resistance.

6. An error is calculated between the solutions for qg and qT, and given as a
percentage. This error should be equal to zero when the iteration process
has become fully converged. This error is represented by the symbol Dq, and
its mathematical expression is as follows:

Dq ¼ 100

Pn
i¼1

ðqgÞi � ðqTÞi
� �	 


Pn
i¼1

ðqTÞi
ð31Þ

with the values for qg and qT being given by the Eqs. (23) and (24); i represents each
control volume and n represents the total number of control volumes used to

708 C. H. MARCHI ET AL.



determine each of the two solution domains, one being that of the gas flow and the
other that of the coolant flow.

7. At this point, one must return to step 2 above, until Dq reaches any level of
tolerance previously defined or until the desired number of iterations is
reached.

Step 2. forms the iteration cycle for obtaining the solution for the gas flow, and
steps 3–5 form the cycle for the coolant flow together with the heat conduction
through the wall. Finally, steps 1–7 represent the overall iteration cycle of the pro-
blem, which incorporates both the solution for the gas and coolant flows as well as
for the heat conduction through the wall.

DEFINING THE PROBLEM

The specific problem that is being dwelt upon in this study is defined below. It is
a totally hypothetical problem which nonetheless involves real typical data for liquid-
propellant rocket engines of large dimensions with a regenerative cooling system.

The geometric parameters of the rocket engine are shown in Figure 3. It is
made up of a combustion chamber, which is a cylindrical section having a radius rin
and length Lc, and of a nozzle having length Ln, which is defined by a cosine curve.
The radius r of the nozzle for x5Lc is given by the equation

r ¼ rg þ
ðrin � rgÞ

2
1þ cos 2p

ðx� LcÞ
Ln

� �	 

ð32Þ

where rg is the radius at the neck of the nozzle. The values used are rin ¼ 0:3 m;
rg ¼ 0:1 m; Lc ¼ 0:1 m; and Ln ¼ 0:4 m. Therefore, the rocket engine has a total
length of LT ¼ 0:5 m, the contraction and expansion ratios in the convergent and
divergent areas of the nozzle are equal to 9; and the radius of curvature of the neck is

Figure 3. Geometric parameters for the rocket engine.
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rc ¼ 4:053� 10�2 m. For engines having large dimensions, the contraction ratio of
areas is generally below 2 and the expansion ratio is over 50.

The number (m) of channels used placed around the rocket engine to flow the
coolant is m ¼ 200. Each one of these channels is defined by the parameters e, b, and
t, shown in Figure 2. These letters mean: e, the thickness of the internal wall of the
rocket engine; b, the height of each channel through which coolant is flowed; and t,
the thickness of the wall that divides each channel, that is, the thickness of the
fins of the channel. The values used are: e ¼ 2 mm; b ¼ 5 mm; and t ¼ 1:5 mm.
The parameter �aa, shown in Figure 2, represents the average width of each channel; its
value is a function of the previous parameters:

�aa ¼ p
mb

ðrþ eþ bÞ2 � ðrþ eÞ2
h i

� t ð33Þ

when m > 1. Even when e, b, and t remain constant, �aa is not constant, due
to the variations in the radius r of the nozzle. For the data above, the ratio
between the height and the average width of the channel results in roughly
b=�aa ¼ 0:62� 2:8.

The channels cover the whole length of the rocket engine (LT), accompanying
the variable radius of the nozzle. Copper for commercial uses was considered as the
material used in the walls of the rocket engine. The gas flow moves along the x axis in
a positive direction, whereas the coolant flow moves in a negative direction.

Given the data above, some key geometric parameters, to four significant
figures are: Awh ¼ 9:242� 10�1 m2, Ab ¼ 7:272� 10�1 m2, Aa ¼ 1:371 m2, and the
ratio between the total length of flow covered by the coolant in the center of a
channel and LT is 1.371.

The liquid which flows in the combustion chamber and the nozzle is H2O. The
conditions at the inlet of the combustion chamber are: pressure, po ¼ 20 bar; tem-
perature, To ¼ 3; 424:2 K; specific heat ratio, go ¼ 1:16695; and the gas constant,
R ¼ 461:525 J=kg K.

The coolant which flows in the channels is water, having a temperature of
Tin ¼ 300 K at the inlet of the channels, and the total mass flow rate in the 200
channels is 200 kg=s. This situation applies to an engine that is to be tested on the
ground with an independent cooling system. In real engines an additional restriction
exists, that is, the availability of liquid coolant is limited according to the amount of
fuel consumed by the engine and used as liquid coolant. This limitation has a great
impact on the engine’s scalability because the ratio of the cooling area to the volume
of the chamber can vary greatly according to the size of the engine.

The aim of the numerical simulations is to obtain the solution to the mathe-
matical model described for the following parameters of interest:

1. The nozzle discharge coefficient (Cd): the ratio between the numerical ( _MMn)
and analytical ( _MMa) solutions regarding the mass flow rate flowing in the
nozzle, that is,

Cd ¼
_MMn

_MMa

ð34Þ
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2. The nondimensional momentum thrust (F *): the ratio between the numerical
(Fn) and analytical (Fa) solutions regarding the momentum thrust produced
by the nozzle, or rather,

F � ¼ Fn

Fa
ð35Þ

where

F ¼ _MMuex ð36Þ

and uex represents the velocity at which the gas comes out of the nozzle.

3. The maximum wall temperature (TMAX), obtained from the distribution of
temperature Twh.

4. The drop in pressure of the coolant (Dp) from when it enters to when it leaves
the channels.

5. The temperature of the coolant when it leaves the channels (Tex).

The analytical solution [15] of the one-dimensional isentropic flow in the
nozzle for the rocket engine defined above results in _MMa ¼ 3:208932 � 101 kg=s,
Fa ¼ 1:009365� 105 N, uex ¼ 3:145486� 103 m=s, c� ¼ 1:958030� 103 m=s,
CF ¼ 1:606454, Is ¼ 3:207503� 102 s, Mg ¼ 1, and Mex ¼ 3:117115. Here, c*, CF,
and Is represent, respectively, the characteristic velocity, the thrust coefficient,
and the thrust-chamber specific impulse, as defined by Sutton [1], and Mg and
Mex represent the Mach number at the neck and at the exit of the nozzle,
respectively.

NUMERICAL RESULTS

Results are shown as follows for the two types of numerical simulations that
were carried out: (1) using constant properties for the gas, the coolant, and the wall;
and (2) using variable properties.

Constant Properties

In addition to the data presented in the previous section, the numerical solu-
tions for constant properties were obtained using the following additional data:

1. For the gas flow: fg ¼ 2:40� 10�3; hg ¼ 1:60� 103 W=m2 K; g ¼ 1;
�ee ¼ 0:25; cpg ¼ goR=ðgo�1).

2. For the coolant flow: fc ¼ 3:90� 10�3; hc ¼ 3:10� 104 W=m2 K; Z ¼ 0:50;
b ¼ 0; r1 ¼ 996:10 kg=m3; r2 ¼ r3 ¼ 0; cpc ¼ 4:180� 103 J=kg K.

3. For the wall: k1 ¼ 376:50 W=m K; k2 ¼ k3 ¼ 0.

The values above were obtained from the results of the simulations using
variable properties, which are reported below. These values are the conditions at the
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inlet of the combustion chamber for the gas flow and the conditions at the inlet of the
channels for the coolant flow. These values are considered the natural choice for
simulations with constant properties, except with regard to the efficiency of the
fins, for which an average value was assumed between the minimum (0) and
maximum (1) values possible. Another exception is that of �ee, for which a value was
simply fixed.

Aiming to take into consideration the two-dimensional effect of the nozzle on
the one-dimensional gas flow, the value established for the pressure at the inlet of the
combustion chamber, po ¼ 20 bar, was altered to the product of poc. The correction
factor c is the theoretical discharge coefficient, according to Kliegel and Levine [16],
calculated based on g0 and the ratio between rc and rg. For the nozzle under analysis,
shown in Figure 3, the result was c ¼ 0:9750. Hence, in the simulations,
po ¼ 19:50 bar was used, but the value of 20 bar was maintained to calculate the
analytical solution already presented.

The results obtained for the five parameters of interest (Cd, F *, TMAX, Dp, and
Tex) and their respective estimated numerical errors are presented in Table 1, for
each solution domain defined by n ¼ 1; 280 control volumes. These errors refer only
to the discretization errors [11] that exist in the numerical solution of the mathe-
matical model of the problem. These errors do not consider so-called modeling
errors, that is, errors related to the mathematical model taken up to depict the real
problem.

Variable Properties

To obtain the numerical solutions using variable properties, the data presented
in the previous section were used, and the following additional data were included:

1. For the gas flow:
1. fg: Miller’s equation [17] with the absolute rugosity of the wall equal to

5� 10�6 m
1. hg: Bartz’s equation [18]
1. g ¼ Pr1=3

1. �ee ¼ 0:250
1. g ¼ cpg=ðcpg � RÞ
1. where the Prandtl number is Pr ¼ cpgm=k, and m and k represent,

respectively, dynamic viscosity and thermal conductivity.

Table 1. Results for constant properties with 1,280 control volumes

Parameter Numerical result and its estimated error

Cd 0:980260� 3� 10�6 (nondimensional)

F* 0:974764� 5� 10�6 (nondimensional)

TMAX 497:148� 6� 10�3 K

Dp 7:61096� 7� 10�5 bar

Tex 306:778� 1� 10�3 K
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1. cpgðTgÞ, m; ðTgÞ, and kðTgÞ: equations by McBride et al. [19] for H2O(g) are
given by

cpðTÞ ¼ Rðcp1 þ cp2Tþ cp3T
2 þ cp4T

3 þ cp5T
4Þ ð37Þ

mðTÞ ¼ 10�7 expðm1 lnTþ m2
T

þ m3
T2

þ m4Þ ð38Þ

kðTÞ ¼ 10�4 exp k1 lnTþ k2
T

þ k3
T2

þ k4

� �
ð39Þ

1. where cpi, mi and ki are constants.
2. For the coolant flow:
1. fc: Miller’s equation [17] with the absolute rugosity of the wall equal to

5� 10�6 m
1. hc: Gnielinski’s equation [20]
1. Z: Bejan’s equation [10] for rectangular fins with isolated tips
1. b ¼ �ðr2 þ 2r3TcÞ=rc, according to the definition for b provided by Bejan

[10] and rc provided by Eq. (15)
1. rcðTcÞ: Eq. (15) with r1 ¼ 751:5644 kg=m3, r2 ¼ 1:891228 kg=m3 K, and

r3 ¼ �3:5873915� 10�3 kg=m3 K2, for the polynomial as adjusted to the
data listed [10] for H2O(l)

1. cpcðTcÞ: equation by McBride et al. [19] for H2O(l) provided by Eq. (37)
1. mðTcÞ and kðTcÞ: equations by Reid et al. [21] for H2O(l); kðTcÞ is given by

Eq. (21) and mðTcÞ by

mðTÞ ¼ 10�3 exp m1 þ
m2
T

þ m3Tþ m4T
2

� �
ð40Þ

3. For the wall: kwðTwÞ: Eq. (21) with k1 ¼ 385:875 W=m K,
k2 ¼ �2:600� 10�3 W=m K2, and k3 ¼ �5:006� 10�5 W=m K3, accord-
ing to Rubin [8] for the data listed by Sutton [1]

The same consideration made above regarding po for constant properties was
also made here, that is, the value po ¼ 19:50 bar was used. The results obtained for
the five parameters of interest (Cd, F*, TMAX, Dp, and Tex) and their respective
estimated numerical errors are presented in Table 2. The estimates of the numerical
(discretization) errors shown in Tables 1 and 2 were reached based on the GCI (Grid
Convergence Index) estimator [22], which can be expressed as

GCIðf1Þ ¼ 3
f1 � f2j j
ðrp � 1Þ ð41Þ

Table 2. Numerical results and their estimated errors for variable properties

Parameter 80 control volumes 1,280 control volumes

Cd 0.985 � 361073 (nondimensional) 0.984457 � 461076 (nondimensional)

F* 0.975 � 561073 (nondimensional) 0.973851 � 661076 (nondimensional)

TMAX 615.1 � 361071 K 615.331 � 261073 K

Dp 8.4 � 361071 bar 8.37897 � 661075 bar

Tex 311.2 � 161071 K 311.200 � 161073 K
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where f is each parameter of interest; f1 and f2 indicate two numerical solutions
obtained on two different grids, fine (h1) and coarse (h2); r is the grid refinement ratio
(r ¼ h2=h1); h is the grid spacing or distance between two successive grid points; and
p is the order of the numerical model truncation error. In this work, p ¼ 2 because
the numerical model adopted is a second-order scheme. We employed grids with 10,
20, 40, 80, 160, 320, 640, and 1,280 control volumes, that is, r ¼ 2.

The temperature distribution of the wall next to the gas (Twh), of the wall next
to the coolant (Twc), and of the coolant (Tc) are shown in Figure 4, along with the
profile of the rocket engine. Tables 3 and 4 show the variation ranges seen along x of
the several properties of the gas, the coolant, and the wall, where the x coordinate is
indicated when it hits its minimum and maximum values. It must be recalled that the
point where x ¼ 0 represents the beginning point in the combustion chamber
(Figure 3), the point at which the gas starts to be flowed, and that x ¼ 0:5 indicates
the total length of the engine, the coordinate at which point the coolant enters the
channels. The coordinate for the neck of the nozzle is xg ¼ 0:3.

The iteration cycle used to solve the problems of the gas and coolant flows was
carried out until round-off error was reached. In this case, the iteration and the
round-off errors do not affect the first 12 significant figures in any of the variables of
interest in any one of the simulations made. The number of iterations required to
ensure this, for variable properties, fluctuates from 2,000 to 35,000 in the case of the
gas flow, and from 1,000 to 3,000 in the case of the coolant flow, with the number of
control volumes ranging from 10 to 1,280.

On the other hand, the iteration cycle upon coupling of the gas and the coolant
flows with heat conduction through the wall requires only 10–20 iterations for it to

Figure 4. Wall and coolant temperatures for variable properties.
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reach round-off error in the case of simulations using variable properties. However,
five iterations alone are enough for the iteration error to be more than 1,000 times
smaller than the errors mentioned in Table 2 that refer to discretization errors for
1,280 control volumes.

Using a Pentium IV PC of 1.6 GHz and Fortran 90 language in the im-
plementation of the computational code, the time required to compute the results
mentioned in Tables 1 and 2, with n ¼ 1; 280 control volumes, was 1.5 min and
18.3 min for constant and variable properties, respectively. When only n ¼ 80
control volumes were used, the time required to compute the results for variable
properties was reduced to 8 s. These results are shown in Table 2. In this case, it
should be noted that the estimated numerical error for Cd, for example, is of the
same order as the errors obtained through experimentation. In three similar nozzles,
Back et al. [23] estimated the error in Cd obtained through experimentation to be in
the range � 0.005 to � 0.008. Hence, for the nozzle chosen in the present study,
each simulation of the problem, targeting the project of the nozzle and its cooling
system, could be carried out using the value of n ¼ 80 control volumes.

Comparing the results obtained for constant properties (Table 1) to those
obtained for variable properties (Table 2), it can be seen that the differences in Cd

and F* are smaller than the estimated experimental errors [23]. Nonetheless, the
difference in the result of Dp is considerable, and the difference in TMAX is very large
(118 K). According to relevant literature [3, 5], an error of 40–50 K in the tem-
perature of the wall will lead to a forecast which is 50% shorter for an engine’s

Table 3. Gas flow results for variable properties with 1,280 control volumes

Property Minimum value (x) Maximum value (x)

fg (nondimensional) 2.10461073 (0.330) 2.39661073 (zero)

hg (W=m2 K) 1.3766103 (0.500) 1.1026104 (0.299)

cpg (J=kg K) 2.7516103 (0.500) 3.2266103 (zero)

g (nondimensional) 1.167 (zero) 1.202 (0.500)

m (Pa s) 6.27861075 (0.500) 1.05661074 (zero)

k (W=m K) 2.06761071 (0.500) 4.71961071 (zero)

g (nondimensional) 8.96961071 (zero) 9.41961071 (0.500)

jq00whj (W=m2) 4.2216106 (0.500) 3.1466107 (0.297)

jq00r =ðq00r þ q00hÞj (nondimensional) 3.02561072 (0.500) 2.94261071 (zero)

Table 4. Coolant flow results for variable properties with 1,280 control volumes

Property Minimum value (x) Maximum value (x)

fc (nondimensional) 3.82461073 (zero) 4.48061073 (0.300)

hc (W=m2 K) 3.0666104 (0.500) 1.6196105 (0.299)

cp (J=kg K) 4.1686103 (zero) 4.1796103 (0.500)

m (Pa s) 6.93261074 (zero) 8.71661074 (0.500)

k (W=m K) 6.19261071 (0.500) 6.34461071 (zero)

Z (nondimensional) 2.63361071 (0.299) 5.63961071 (0.500)

b (K71) 2.62361074 (0.500) 3.44161074 (zero)

q00c (W=m2) 2.9206106 (0.500) 2.2786107 (0.297)

kw (W=m K) 3.7036102 (0.293) 3.7656102 (0.500)
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lifetime. Differences have been reported of 100–200 K between experimental results
and one-dimensional numerical results for the wall temperature in the chamber and
in the divergent area of the nozzle, respectively.

CONCLUSION

A one-dimensional mathematical model was put forth for the gas flow in a
liquid-propellant rocket engine coupled with the heat conduction in its wall and for
the coolant flow on this wall inside the channels.

The numerical model implemented to solve the mathematical model is quick
and accurate from the project’s point of view. It is able to produce results with an
estimated numerical error equivalent to the errors found through experimentation
when the value of 80 control volumes was used. In this case, the time required to
compute the results was 8 s when using a Pentium IV PC with 1.6 GHz.

It was noted that it is important to use variable properties in order to predict
the maximum wall temperature in the rocket engine and the drop in pressure of the
coolant as it moves along the channels, whereas the thrust of the engine can be
calculated with constant properties.
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