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Abstract

A Mach-uniform algorithm is an algorithm with a good convergence rate for any level of the Mach number. In this
paper, the severe time step restriction for low speed flows is removed by treating the acoustic and diffusive terms implicitly.
After identification of these terms in the conservative set, we end up with a semi-implicit system. The way to solve this
system can be chosen. Three different solution techniques are presented: a fully coupled algorithm, the coupled pressure
and temperature correction algorithm [K. Nerinckx, J. Vierendeels, E. Dick, Mach-uniformity through the coupled pres-
sure and temperature correction algorithm, Journal of Computational Physics 206 (2005) 597–623], and a fully segregated
pressure-correction algorithm. We analyse the convergence behavior of the considered algorithms for some typical flow
problems. Moreover, a Fourier stability analysis is done. For inviscid flow, the fully segregated and the fully coupled algo-
rithm need about as much time steps to reach steady state. Therefore, the more segregation is introduced, the faster the
calculation can be done. In case of heat transfer, the fully segregated pressure-correction algorithm suffers from a diffusive
time step limit. This is not the case for the semi-segregated coupled pressure and temperature correction algorithm. Finally,
when the gravity terms play an important role, only the fully coupled algorithm can avoid an additional time step
restriction.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Historically, algorithms for CFD have been grouped into two classes: density-based methods and pressure-

based methods. The first class refers to algorithms originally developed for high speed calculations, which treat
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the set of flow equations in a coupled way. The latter class, in which the pressure-correction algorithm [2] is
situated, refers to segregated algorithms, originally developed for low speed and incompressible flows. Both
types of algorithms have been adapted to make them Mach-uniform, i.e. applicable for all speeds.

With preconditioning, the density-based algorithms were extended towards the low Mach number regime
[3,4]. The solution technique is then coupled and time accuracy can only be recovered through an expensive
dual time stepping. The other way to obtain a Mach-uniform algorithm is to extend the segregated pressure-
correction method towards the high Mach number compressible regime. In the literature, two subclasses can
be distinguished, based on how the pressure-correction equation is constructed. In the first class, the pressure-
correction equation is derived from the continuity equation [5–11]; in the second class, the energy equation is
used for this purpose. As we analysed in [1], deriving the pressure-correction equation from the continuity
equation is the right approach for an incompressible and a barotropic fluid. For a perfect gas however, the
energy equation should be used, in order to obtain an efficient algorithm. Professor Wesseling and his group
were amongst the first to present the latter idea, for adiabatic perfect gas flow (see for example [12–14]).

In this paper, we present the idea that only a classification with regard to the solution technique (coupled
versus segregated) is valuable: three different types of algorithms are constructed, each of them based on
the same principle to reach Mach-uniformity, but applying a different solution technique.
2. Semi-implicit system

Mach-uniform efficiency implies a good convergence rate for any level of the Mach number. In [1] we
explain how Mach-uniformity can be reached by treating the acoustic and diffusive terms (friction, heat con-
duction) implicitly. The convective terms, on the other hand, can be treated explicitly. A finite volume method
for the two-dimensional Navier–Stokes equations therefore results in the following semi-implicit system
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with q the density, p the pressure, T the temperature, E the specific total energy, H the specific total enthalpy,
�g ¼ �g�1y the gravitational acceleration vector, ~s the viscous stress tensor, j the heat conduction coefficient
and Vi the cell volume. The summation runs over all faces f of the control volume around node i. dsf is
the length of the face f and wf represents the projection of the velocity vector �w ¼ u�1x þ v�1y on the outward
normal �n of the face f. The equations are given in non-dimensional form. They were non-dimensionalized
by choosing three reference quantities for pressure, temperature and length scale, respectively, p̂ref , bT ref

and bLref . The hat-sign r̂efers to dimensional quantities. Other reference quantities are calculated from these
quantities, for example q̂ref ¼ qðp̂ref ; bT refÞ with q ¼ qðp; T Þ the equation of state, and v̂ref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ref=q̂ref

p
.

A multistage time stepping with k stages is used,
Q½0� ¼ Qn
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where n and nþ 1 represent, respectively, the old and the new time level, while ½m� and ½mþ 1� represent stage

levels. Q is the state vector ½puvT �T and Dt ¼ tnþ1 � tn the time step. The slope oQ
ot

½m�
is determined as
oQ½m�

ot
¼ DQ½m�

DtI
¼ Qðmþ1Þ � Q½m�

DtI
; ð6Þ
with Qðmþ1Þ some unknown state, Q½m� the known state at level ½m�, and DtI a chosen internal time step which is
only used to define the slope (6). The unknown state Qðmþ1Þ is determined from the semi-implicit systems
(1)–(4), in which explicit terms are written at level ½m�, whereas implicit terms are written at level ðmþ 1Þ. Once
Qðmþ1Þ has been solved from the semi-implicit system, we calculate DQ½m� ¼ Qðmþ1Þ � Q½m�, and insert it into the
multistage time stepping,
Q½mþ1� ¼ Q½0� þ amþ1Dt
DQ
DtI

½m�
¼ Q½0� þ amþ1xDQ½m�; ð7Þ
with x ¼ Dt=DtI .
In the convective fluxes, the transported quantities u; v;H are upwinded using a higher order method. Like

in [15], we use for the mass flux and the pressure at a face a blending of the high speed AUSM+ flux [16] and a
low-speed central flux, ðqwÞf ¼ ð1� af ÞðqwÞAUSMþ

f þ af ðqwÞCf þ af pdiss, pf ¼ ð1� af ÞpAUSMþ
f þ af pC

f . A pres-
sure dissipation term pdiss is added to the mass flux to prevent pressure–velocity decoupling at low Mach num-
bers. af is a blending function which varies between 1 for jMaf j < 0:3 and 0 for jMaf j > 0:5, with Maf the
Mach number at the face f. The diffusive terms (heat conduction and friction) are discretized centrally.

3. Solution technique: coupled versus segregated approach

The way to solve the semi-implicit systems (1)–(4) for the updated values ðmþ 1Þ can now be chosen: three
different solution techniques are considered, varying between a fully coupled and a fully segregated approach.

3.1. Fully coupled method

Eqs. (1)–(4) are written in D-form, Dð:Þ ¼ ð:Þðmþ1Þ � ð:Þ½m�, and the time derivative terms are expanded with
respect to the primitive variables p; u; v; T , for example Dq ¼ qpDp þ qT DT . The semi-implicit systems (1)–(4)
can therefore be written as ½A�½DQ� ¼ ½B�, where ½A� consists of ðN � NÞ blocks of size ð4� 4Þ (in two-dimen-
sional flow), with N the number of nodes. This ð4N � 4NÞ-system is solved in a coupled way, in each step of
the multistage time stepping.

Remark that in the continuity equation (1) and the energy equation (4) the mass flux contains acoustic
information, which is treated implicitly. However, only in the low speed part ðqwÞCf , which is linear, we put
the acoustic part wf at the new level ðmþ 1Þ. The high speed part is defined by the AUSM-interpolation,
which is non-linear. A linearization would therefore be necessary to put it at the implicit level. However,
the absence of an acoustic time step restriction is only essential for low speed. Therefore, only in the low speed
case the acoustic terms have to be treated implicitly. The latter implies that if jMaf j > 0:5 for all faces f, the
scheme becomes fully explicit with respect to the acoustic terms. Remark that af is defined locally, so that even
one cell can have different schemes at its various faces. In the momentum equations, the convective terms are
treated explicitly. However, the pressure diffusion term that appears in the low speed part of the mass flux is
treated implicitly.
3.2. Coupled pressure and temperature correction algorithm

The coupled pressure and temperature algorithm, which finds its place in between the fully coupled and the
fully segregated approach, has been presented in [1]. A convective predictor step is followed by an acoustic/
diffusive corrector step.

Predictor values (indicated with *) for density and momenta are determined from the continuity and
momentum equations, where old values for the pressure are used. Different from [1], the convective terms
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are treated explicitly here. Next, corrections for the pressure p0 and the temperature T 0 are determined by solv-
ing a system of ð2N � 2NÞ correction equations. These are derived from the continuity and energy equation.
From this, the pressure and temperature can be updated, while the momentum equations are used to update
the velocity. We refer to [1] for a detailed explanation. Notice that each stage of (5) consists of a predictor–
corrector procedure, so that a ð2N � 2NÞ system has to be solved in each stage of the multistage time stepping.

3.3. Fully segregated method: pressure-correction algorithm

As explained in [1], for a perfect gas flow without heat transfer, a further segregation in the solution pro-
cedure is possible. Indeed, the two ðp0; T 0Þ-correction equations decouple, and the energy equation becomes a
pure pressure-correction equation (without temperature corrections). Therefore, a fully segregated algorithm
can be defined, where after the predictor step, pressure corrections are determined from the energy equation.
In this fully segregated solution technique, the dimension of the system to be solved in each multistage step is
ðN � NÞ only.

4. Fourier stability analysis

The presented algorithms are analysed with the Fourier method. We assume a rectangular grid without
stretching and with periodic boundary conditions. The state vector Q ¼ ½p; u; v; T �T is written as the sum of
the steady-state solution Qðx; yÞ and an error dQðx; y; tÞ which is function of the time t. For simplicity, we
assume a uniform steady-state solution, Qðx; yÞ ¼ Q ¼ constant. The error dQðx; y; tÞ can be written as a
sum of Fourier waves with wave number xx in the x-direction and wave number xy in the y-direction. For
example, the pressure is written as
pðx; y; tÞ ¼ �p þ dpðx; y; tÞ ¼ �p þ /pðtÞejðxxxþxy yÞ; ð8Þ
with j the imaginary unit, and analogously for u, v, T.
We consider two representative flow problems:

� low Mach number flow: af ¼ 1, central discretization for wf and pf, addition of a pressure dissipation term;
� high Mach number flow: af ¼ 0, upwind discretization for wf and pf, no pressure dissipation term.

As an example, consider a convective term in the u-momentum equation for low speed flow,
uiqi
ui þ uiþ1

2Dx
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u e
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with e ¼ ejðxxxþxy yÞ, /q ¼ qp/p þ qT /T and hx ¼ xxDx. Products of d-variables are omitted: only linear pertur-
bations are taken into account. We obtain
1
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2
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Other terms are treated in a similar way. The factor e and the sum of steady-state terms cancel out in the ob-
tained equation.

Remark that, due to the assumption of a constant background state and the neglect of higher order per-
turbations, the stability results of the Fourier analysis have to be interpreted as minimum requirements. There-
fore, we will add numerical simulations of flow problems to the stability results.

For each of the presented algorithms, the analysis results in a Fourier symbol F ¼ F ðhx; hy ;DtI ;Dx;Dy;QÞ,
which is defined as DU½m� ¼ Uðmþ1Þ � U½m� ¼ F U½m� with U ¼ ½/p;/u;/v;/T �. The Fourier symbol F is associated
with an update ½m� to ðmþ 1Þ from the semi-implicit system in one stage of the multistage stepping.

For the fully coupled method, the Fourier analysis results in a system of the form CdDU ¼ CmU½m�, so that
F ¼ C�1

d Cm. For the predictor–corrector algorithms, separate amplification matrices for the predictor step and
for the corrector step are constructed. The predictor step consists of the continuity and momentum equations,
and p� ¼ p½m�, leading to a system of the form P �U� ¼ P mU½m�. The corrector step consists of the momentum
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equations and either the two p0T 0-equations (coupled pressure and temperature correction algorithm), or the
p0-equation and qðmþ1Þ ¼ q� (pressure correction algorithm). In the corrector step we have Cmþ1Uðmþ1Þ ¼
C�U� þ CmU½m�. We obtain F ¼ ðCðmþ1ÞÞ�1½C�ðP �Þ�1P m þ Cm� � I , with I the unity matrix.

An update from the semi-implicit system is used in the multistage time stepping (7). We get for an update in
time (n to nþ 1) with a k stage stepping Unþ1 ¼ GMSkUn, with
Table
Used n

COUP
PE
PT
PC

U1,U2
K3
MS1,

expl, i
GMSk ¼ I þ akxF þ akak�1ðxF Þ2 þ � � � þ ðakak�1 . . . a2a1ÞðxF Þk; ð11Þ

where GMSk is the amplification matrix associated with an update in time, n to nþ 1, from the k stage time
stepping. It is a function of the Fourier symbol F, which is characteristic for the scheme that is used to solve
the semi-implicit system in each stage of the stepping.

The time stepping is stable if all eigenvalues of GMSk have a norm smaller than unity. The condition
kkðGMSkÞk ¼ 1 results in a polynomial equation in fRe½kðxF Þ�; Im½kðxF Þ�g. The solution of the latter is plotted
in the fRe½kðxF Þ�; Im½kðxF Þ�g-plane. Furthermore, the eigenvalues kðxF Þ are plotted in the same plane, for a
number of combinations ðhx; hyÞ, and chosen values for Q, Dx, Dy, DtI and x. Remark that the choice of DtI

determines the shape of the eigenvalue curve, while x acts as a scaling factor for this curve. In order to obtain
a stable time stepping scheme, the eigenvalue curve kðxF ðhx; hyÞÞ should be situated completely within the cor-
responding MSk-time stepping curve.

5. Coupled versus segregated approach: behavior in some typical flow problems

We study the behavior of the presented algorithms with regard to three typical flow aspects: inviscid flow,
heat transfer and gravity. We focus on stability conditions and convergence behavior. In all simulations a per-
fect gas is considered.

The used notations concerning the algorithms are given in Table 1. For the exact implementation of all
tests, with technical details and remarks, we refer to Appendix A.

5.1. Inviscid flow

As a first flow problem, we consider inviscid flow, described by the Euler equations. In order to keep the
overview, all results are presented in Table 2 and Fig. 1.

5.1.1. Fourier stability analysis
First, we consider low Mach number flow ðMa ¼ 0:001Þ. For the COUP algorithm, cflI has to be decreased

down to 0.5 to obtain an eigenvalue curve which does not enter the right half plane. Next, the curve can be
scaled up with x ¼ 2:7 before it crosses the time stepping curve. Amongst the segregated algorithms, the PE
algorithm can use the highest global CFL number (i.e. cflI � xÞ. For the PT algorithm the global CFL num-
ber is somewhat lower. For the PC algorithm the global CFL number is the lowest. This confirms that, for a
perfect gas without heat transfer, the corrections should by determined from the energy equation, which
imposes the pressure in a direct way for this case [1]. The coupled pressure and temperature algorithm can

be applied as well, but, due to the influence of the continuity equation in the determination of the corrections,
1
otations concerning the algorithms

Fully coupled algorithm
Fully segregated pressure-correction algorithm, with pressure corrections form the energy equation
Coupled pressure and temperature correction algorithm
Fully segregated pressure-correction algorithm, with pressure corrections from the continuity equation (classical
approach)

Upwind discretization of first/second-order
Van Leer-j scheme with j ¼ 1=3

MS4, MS5 Multistage time stepping with 1/4/5 stages (MS4: standard coefficients, MS5: coefficients from [17])

mpl Explicit/implicit convective terms



Table 2
Inviscid flow: results

Inviscid flow
M Algorithm Convective terms Discretization cflI x Figure

Fourier stability analysis

Low ðMa ¼ 0:001Þ COUP expl K3/MS4 0.5 2.7 1a
PE expl K3/MS4 0.6 2.7 1b
PT expl K3/MS4 0.6 2.4 1c
PC expl K3/MS4 0.2 2.7 1d
PE impl U1/MS1 100 1 1e
PT impl U1/MS1 1.1 1 1f

High ðMa ¼ 2Þ COUP expl U2/MS5 0.6 1.7 1g
PE expl U2/MS5 0.2 7.5 1h

Test case: inviscid flow past a bump in a channel

Low COUP expl K3/MS4 0.7 2.2 2, 3
PE expl K3/MS4 0.7 2.9 2, 3
PT expl K3/MS4 0.7 1.9 2, 3
PC expl K3/MS4 0.5 1.8 3

High ðMa ¼ 0:85Þ COUP expl minmod/MS5 1 1.2 4a
PE expl minmod/MS5 0.5 5 4a
PT expl minmod/MS5 0.2 6 4a

High ðMa ¼ 2Þ COUP expl minmod/MS5 0.7 2.1 4b
PE expl minmod/MS5 0.2 10 4b
PT expl minmod/MS5 0.1 12 4b
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it is not optimal. Indeed, the PT algorithm was in fact not developed for this type of flow: only if (enough) heat
conduction is present, the PT algorithm is advantageous (see also Section 5.2).

When the convective terms are treated implicitly, the PE algorithm does not suffer from a convective CFL
limit: the algorithm is unconditionally stable, at least for small perturbations. For the PT algorithm, however,
the CFL number can be taken at most 1.1. In Section 5.2, we will show that its behavior improves considerably
in the presence of (enough) heat transfer. For high Mach number flow ðMa ¼ 2Þ, cflI can be taken at most 0.6
for the fully coupled algorithm. Then, the curve can be scaled up with a factor x ¼ 1:7. Remark that we cal-
culate the convective CFL number cflI ¼ ½u=Dxþ v=Dy�Dt. However, since the scheme becomes explicit in the
x-direction (see Section 3.1), the stability is in fact determined by cfl ¼ ½ðuþ cÞ=Dxþ v=Dy�Dt. For the fully
segregated PE algorithm, the internal CFL number has to be taken very low to obtain a good shaped curve:
cflI ¼ 0:2. However, afterwards a large scaling factor can be applied: x ¼ 7:5.

5.1.2. Test case: inviscid flow past a bump in a channel

Each of the presented algorithms only has a time step restriction based on a convective CFL number, since
the acoustic and diffusive terms have been treated implicitly. They differ, however, in the cost to solve one time
step, since the dimension of the system that has to be solved per multistage step is different. In the fully cou-
pled method this is ð4N � 4NÞ, in the PT algorithm the system is of dimension ð2N � 2NÞ, and in the fully
segregated pressure-correction algorithms (PE, PC) this is ðN � NÞ. Hereafter, we will compare their conver-
gence behavior, i.e. the number of time steps needed to reach steady state.

As a numerical test case, we take the inviscid flow past a bump in a channel. First, we focus on very low
speed flow. We did simulations for an inlet Mach number Main equal to 10�5, 10�3 and 10�2. In Fig. 2 con-
vergence results are presented. Each plot shows an exact scaling with the Mach number. A Mach-uniform con-
vergence rate is therefore obtained. Table 2 shows the values that could be used for the internal convective
CFL number cflI and the scaling factor x in order to keep the computation stable. First, the maximum value
for cflI was determined to keep the computation stable with x ¼ 1. Next, this maximum value for cflI was
kept constant and x was increased as much as possible. The same values hold for the three inlet Mach num-
bers. The same trends are visible from both the stability analysis and the numerical test cases.
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Fig. 1. Inviscid flow: results (see also Table 2).
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Fig. 3 compares the convergence plots of the different algorithms for the case Main ¼ 10�5. For the predic-
tor–corrector algorithms (PE, PT, PC), the PE algorithm converges the fastest: it is the optimal method for
the inviscid flow of a perfect gas. The PC algorithm needs the most time to converge, due to the use of the



100 200 300 400 500 600

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

Min=1E-5
Min=1E-3
Min=1E-2

COUP

Number of time steps Number of time steps

lo
g

 (
 |R

es
 M

o
m

| )

lo
g

 (
 |R

es
 M

o
m

| )

Number of time steps

100 200 300 400 500 600

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

Min=1E-5
Min=1E-3
Min=1E-2

PE

200 400 600

-14

-12

-10

-8

-6

Min=1E-5
Min=1E-3
Min=1E-2

PT

lo
g

 (
 |R

es
 M

o
m

| )

Fig. 2. Channel test case. qv-momentum residual as a function of the number of time steps.
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continuity equation to determine the pressure (see [1]). The PT algorithm has a convergence rate in between
the PE and the PC algorithm. Indeed, due to the influence of the continuity equation in the corrector step, the
convergence slows down compared to the PE algorithm. Finally, Fig. 3 shows that the PE algorithm has the
same convergence behavior as the fully coupled algorithm. However, the cost to solve one time step is lower
for the PE algorithm: only a ðN � NÞ-system has to be solved per time step, opposed to a ð4N � 4NÞ-system
for the fully coupled method. Therefore, the more segregation is introduced, the cheaper the simulation can be
done. For the case of inviscid flow, complete segregation is possible.

Next, transonic ðMain ¼ 0:85Þ and supersonic ðMain ¼ 2Þ flow conditions are considered. Table 2 shows the
values for the maximum cflI and x. A comparison of the convergence plots is given in Fig. 4. Differently from
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the low speed case, the coupled algorithm converges slower than the PE algorithm. Indeed, in the coupled
algorithm, only the low speed part of the acoustic terms is treated implicitly, because of the non-linearity
of the high speed AUSM+ definition. Therefore, the scheme becomes explicit for faces where jMaf j > 0:5. This
happens for faces (almost) perpendicular to the flow direction, but not for the faces (almost) aligned with the
flow direction. The stability for high speed flow is therefore determined by an acoustic CFL number
ðuþ cÞDx=Dt. On the other hand, for the predictor–corrector algorithms, acoustic corrections are introduced
in both the x and the y direction. Therefore, the acoustic terms are treated implicitly in both the low speed and
the high speed direction. The stability is therefore determined by a convective CFL number. Remark that the
CFL numbers given in Table 2 are all convective values, also for the fully coupled algorithm. Finally, Fig. 4
shows that the PT algorithm converges slower than the PE algorithm. This is probably due to the terms in the
vertical direction. For that direction, the algorithm behaves as for the low speed case, resulting in a slower
convergence for the PT algorithm.

5.1.3. Inviscid flow: conclusion

We conclude that for inviscid flow, complete segregation is possible. The more segregation is introduced,
the cheaper the simulation can be done. Therefore, for inviscid flow, the fully segregated algorithm with pres-
sure corrections form the energy equation is the cheapest way to simulate the whole Mach number range.

5.2. Heat transfer

For an adiabatic perfect gas flow, the PE algorithm is the cheapest option. When heat conduction is pres-
ent, however, conductive terms are added in the right-hand side of the pressure-correction equation. They are
calculated with T* values available from the predictor step. This implies that the conductive terms cannot be
treated implicitly in this type of algorithm. Therefore, it suffers from a diffusive time step limit. For the coupled
pressure and temperature correction algorithm, however, such a limit is absent. The former has already been
shown in [1], by means of simulations on a one-dimensional nozzle flow and a thermally driven cavity. We do
not repeat these test cases here, and restrict ourselves to the Fourier analysis.

5.2.1. Fourier stability analysis

Results are presented in Table 3 and Fig. 5. j is the heat conduction coefficient and Ne the Von Neumann
number. The values of j are chosen at random. We only want to illustrate the effect of the conductive terms on
the stability results; no physical problem is modeled here.

For the case of Euler equations, the cflI number can be taken 0.7 when the PE algorithm (with explicit
convective terms) is used. This cflI number is now kept constant, while the value of j is increased. Fig. 5b
shows that the algorithm becomes unstable if j is taken too high: if the heat conduction terms become impor-
tant, they impose the stability condition, and the time step is not determined anymore by the convective CFL
number.



Table 3
Heat transfer: results

Heat transfer
Fourier stability analysis (convective terms: expl, discretization: U1/MS1, x ¼ 1Þ
M-regime Algorithm cflI j Ne Figure

Low ðMa ¼ 0:001Þ PE 0.7 0 0 5a
0.002 0.68 5b

PT 0.5 0 0 5c
106 2:4 � 108 5d

Test case: nozzle flow, thermally driven cavity (see [1])
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Fig. 5. Heat transfer: results (see also Table 3).
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The PT algorithm, however, does not suffer from a diffusive time step limit. The convective CFL number is
chosen as the maximum value for the Euler case: cflI ¼ 0:5. j can be taken infinitely high: there is no diffusive
time step limit.

5.2.2. The coupled pressure and temperature correction algorithm

Next, we focus on the PT algorithm. Implicit convective terms are used. We already know:

� Inviscid flow: the convective CFL number can be taken at most 1.1 (Fig. 1f);
� Heat transfer: there is no diffusive time step limit imposed by the conduction terms.

Thus, the PT algorithm is advantageous for those cases where the heat conduction is important. What is
more, we will now show that for such a case the behavior of the PT algorithm improves: if the diffusive terms
dominate, the convective CFL restriction – present in the inviscid case – is weakened, and even can disappear
completely.
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To express the relative importance of convective and diffusive stability conditions, we define a cell-Peclet
number,
Table
PT alg

M

0.001
Pe ¼ 2
cflu

Ne
; ð12Þ
with cflu the convective CFL number. With Dx ¼ Dy and a the thermal diffusivity we have Ne ¼ 2aDt
Dx2 and

Pe ¼ 2 uDt
Dx

Dx2

2aDt ¼ uDx
a . Finally, we calculate the time step DtPE, which could be used in the fully segregated pres-

sure-correction algorithm (PE). The latter suffers from a diffusive time step restriction, Ne 6 1=2, so that
DtPE 6

1
2

Dx2

2a . The maximum value of the corresponding CFL number is
cflu;PE ¼
1

2

Dx2

2a

	 

u
Dx
¼ 1

4
Pe: ð13Þ
In the stability analysis of the PT algorithm, several values for j are chosen. The results are given in Table 4.
For each case, the highest value of cflu is given for which the eigenvalue curve does not cross the first-order
time stepping curve. Also the values of Pe and cflu;PE are given. The latter does not follow from a stability
analysis, but is calculated with (13). The last column indicates the algorithm (either PE or PT) with the highest
convective CFL number.

For the case with Pe ¼ 4:14, the PE and the PT algorithm give about the same stability restriction. For
higher values of Pe, it is advantageous to use the fully segregated pressure-correction algorithm, since the
restriction imposed by the diffusive terms is not severe. For lower values of Pe, the PT algorithm has the weak-
est restriction, which disappears completely for Pe ¼ 0:0414.

5.3. Heat transfer: conclusion

We conclude that for flow with heat transfer, the fully segregated algorithm suffers from a diffusive time
step limit. The PT algorithm does not suffer from such a limit, and its behavior even improves when (enough)
heat transfer is present.

5.4. The role of gravity

The gravity terms in the y-momentum and the energy equation act as source terms. Therefore, they may
introduce an additional time step restriction.

5.4.1. Coupled algorithm versus segregated predictor–corrector algorithm
First, we try to find out how the different type of algorithms – coupled opposed to segregated - behave in

the presence of gravity. We add gravity terms to the Euler equations (i.e. viscosity and heat transfer are
neglected), and analyse the results of the Fourier stability analysis. This approach allows us to isolate the role
of the gravity terms. Results are presented in Table 5 and Fig. 6.

In the fully coupled algorithm, the gravity terms can be treated implicitly without difficulties. For the Euler
equations, i.e. g ¼ 0, the maximum value of the convective CFL number cflv is 0.6 when a first-order upwind
discretisation is used for the transported quantities. We take cflv ¼ 0:6 throughout the analysis and increase
the value of g – which represents some non-dimensional number – to see the effect on the plotted eigenvalues.
We conclude that, even with an extreme high value for g, the fully coupled algorithm remains stable (Fig. 6b).

In a segregated predictor–corrector algorithm, however, it is no longer possible to treat the gravity terms in
a fully implicit way. Indeed, consider the y-momentum equation of the predictor step. Predictor values q* are
4
orithm: stability results. (convective terms: impl, discretization: U1/MS1, x ¼ 1, cflI ¼ cfluÞ

j Pe cflu cflu;PE PE or PT

0 1 1.1 1 PE
0.001 4.14 2.1 1.04 PT
0.1 0.0414 1 0.0104 PT



Table 5
Gravity: results

Fourier stability analysis (discretization: U1/MS1, x ¼ 1, cflI ¼ cflvÞ
M-regime Algorithm Conv terms Grav terms cflv g cflg Figure

Low ðMa ¼ 0:001Þ COUP expl impl 0.6 0 6a
expl impl 0.6 106 6b

PT impl expl 1 10�7 0.071 6c
impl expl 1 10�5 7.1 6d

Test case: thermally driven cavity (see Section 5.4.2)
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Fig. 6. Gravity: results (see also Table 5).
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available from the continuity equation. Those values can be used in the gravity term of the y-momentum equa-
tion, i.e. �q�g is used in the right-hand side of the latter equation. Since the pressure is frozen in this step
ðp� ¼ p½m�Þ, only a part of q ¼ qðp; T Þ is therefore put at the intermediate level *. Also remark that the intro-
duction of pressure and temperature corrections into q ¼ qðp; T Þ would lead to a fully coupled algorithm.

To get insight in the effect of the gravity term, we analyse the eigenvalues of the predictor amplification
matrix. We find that the eigenvalues are completely determined by two non-dimensional groups: the convec-
tive CFL number cflv, cflv ¼ vDt

Dy , and a CFL number associated with the gravity force, cflg,
cflg ¼
gDt2

Dy
: ð14Þ
Next, we analyse the stability of the full predictor–corrector scheme as a function of the latter parameter, for
the PT algorithm with implicit convective terms. For g ¼ 10�7 ðcflg ¼ 0:071Þ the eigenvalues are situated with-
in the first-order time stepping curve. For g ¼ 10�5 ðcflg ¼ 7:1Þ, however, a part of the eigenvalue curve is
situated in the right half plane (Fig. 6d).
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Remark that the relative importance of the time step restrictions due to cflv and cflg can be expressed by a
cell-Froude number Fr. Indeed,
Table
Therm

Ra

1E2
1E2
1E6
1E6

Result
(PT al
cflvffiffiffiffiffiffiffiffi
cflg

p ¼ vDt
Dy

ffiffiffiffiffiffiffiffiffi
Dy

gDt2

s
¼ vffiffiffiffiffiffiffiffi

gDy
p ¼ Fr: ð15Þ
We conclude that a fully coupled algorithm does not suffer from a gravitational time step restriction, if the
gravity terms are treated implicitly. For a segregated predictor–corrector algorithm, an additional time step
restriction appears. The latter is a consequence of the segregation, i.e. the coupling between certain terms is
broken up. This can be understood as follows:

Consider the gravity term �qg in the right-hand side of the y-momentum equation. In a fully coupled algo-
rithm, a perturbation of this term will provoke a response of the pressure: an equilibrium is created between
the gravity force and the pressure gradient. In a segregated algorithm, however, the pressure is frozen in the
predictor step, and therefore cannot respond directly to the gravity term. Consequently, a disturbance of the
velocity field v occurs. In the corrector step, the latter disturbance is transferred to the pressure field. In this
way, the pressure responds to the gravity term in an indirect way. In order to prevent that the imbalance in the
predictor step between pressure field and gravity force generates an excessively perturbed velocity field, the
time step has to be chosen small enough. This explains the time step restriction due to gravity in a segregated
algorithm.

5.4.2. Test case: thermally driven cavity

As a test case, we take the thermally driven cavity [18], which we also used in [1]. We consider a number of
combinations for the Rayleigh number Ra and the non-dimensional temperature difference �. The PT algo-
rithm is used, with implicit convective terms. First, the effect of the gravity terms is studied by means of
the Fourier stability analysis. Viscous and heat conduction terms are now taken into account. Afterwards,
the results of this analysis are compared with results from a numerical simulation.

5.4.3. Fourier stability analysis

Table 6 shows the results of the stability analysis. The values of Pe and Fr are given. As convection dom-
inates in the vertical direction and diffusion in the horizontal direction, Pe is calculated as Pe ¼ cflv

Nex
¼ v

a
Dx2

Dy .
A low value of Pe indicates that the diffusive terms are important, a low value of Fr ¼ v=

ffiffiffiffiffiffiffiffi
gDy

p
indicates that

the gravity terms are important.
By means of the stability analysis, the maximum allowable time step DtI ¼ Dtmax is determined for which the

Fourier symbol does not cross the first-order time stepping curve. Table 6 gives values of Dtmax for a number of
combinations of Ra and �. First, the analysis is done with g ¼ 0. This illustrates whether a time step limit
occurs for the case of Navier–Stokes equations, but without influence of the gravity terms. Next, g is given
the value as used in the numerical simulation (i.e. calculated from (A.2), see Appendix, Section A.3). This illus-
trates the effect of the gravity terms on the stability conditions. The two last columns give the corresponding
convective CFL number, cflv ¼ vDt=Dy.

For the case Ra ¼ 102, � ¼ 0:6 we have Pe � Oð10�3Þ, so that the diffusive terms are important. Indeed, for
the case g ¼ 0 no time step limit occurs. For g 6¼ 0, however, a time step restriction is imposed by the gravity
6
ally driven cavity

� Pe Fr Dtmax cflv;max

g ¼ 0 g 6¼ 0 g ¼ 0 g 6¼ 0

0.6 0.0024 0.23 1 550000 1 0.65
0.01 0.0038 0.027 1 45000 1 0.047
0.6 0.11 1.07 2400 1500 1.30 0.81
0.01 0.12 0.14 2500 280 1.40 0.16

s of the Fourier stability analysis.
gorithm, implicit convective terms, U1/MS1, x ¼ 1Þ.



Table 7
Thermally driven cavity

Ra � Dtmax, stability analysis, g 6¼ 0 Dtmax, simulation

1E2 0.6 550,000 66,000
1E2 0.01 45,000 52,000
1E6 0.6 1500 200
1E6 0.01 280 200

Comparison of the stability results following from the Fourier stability analysis and from the numerical simulation of the test case.
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terms. When the temperature difference � decreases ðRa ¼ 102, � ¼ 0:01Þ, the value of g increases proportional
with it (see (A.2)). On the other hand, the velocity level remains the same. This means that Fr diminishes, and
the importance of the gravity terms increases. Indeed, for the case g 6¼ 0, a more severe restriction is obtained
than for � ¼ 0:6. When the Rayleigh number increases ðRa ¼ 106, � ¼ 0:6Þ, the velocity level and thus Pe

increase: Pe � Oð10�1Þ. This implies that the diffusive terms lose importance. Indeed, for the case g ¼ 0, the
unconditional stability is lost; a convective CFL number of order 1 is obtained. For g 6¼ 0, this time step
restriction remains of the same order, since the importance of the gravity terms is not very pronounced:
Fr � Oð1Þ.

5.4.4. Comparison with results from the numerical simulations
In Table 7, we repeat the Dtmax values from the stability analysis, for the case g 6¼ 0. The last column gives

the maximum time step that could be applied in the numerical simulation of the test case. This time step is
fixed during the computation, and the same value is used in the whole domain.

For the cases with � ¼ 0:01, apparently, a good correspondence is obtained. For � ¼ 0:6, the simulation
gives a more severe restriction than the stability analysis. This might be due to non-linear effects. Indeed,
in the stability analysis, perturbations with respect to a (uniform) steady solution are considered. However,
products of perturbations are omitted, which implies that perturbations are small. Therefore, also the changes
in the density are assumed to be small. In Section 5.4.1, we have explained the origin of the time step restric-
tion imposed by the gravity terms: when the density changes, an imbalance is created between the gravity force
and the pressure gradient. This imbalance should be not too large, so that it can be compensated afterwards in
the corrector step. If the stability analysis assumes small density changes, this implies that only small imbal-
ances occur. Thus, the time step restriction following from this analysis is not too severe. In the numerical
simulation, however, the assumption of small density changes is only valid for cases with small �.

5.5. Gravity: conclusion

We conclude that for a predictor–corrector algorithm, a time step restriction associated with the gravity
terms exists. The impact depends on the relative importance with respect to convective and diffusive terms.
If the additional time step restriction appears not to be too severe, the predictor–corrector algorithm can
be used. Otherwise, the fully coupled approach is the only option.

6. Conclusion

We presented a Mach-uniform algorithm, using a semi-implicit approach. Three different solution tech-
niques were considered to solve the semi-implicit system. Naturally, the fully coupled algorithm can do every
flow problem without time step restrictions if everything is treated implicitly. However, thinking of the com-
putational cost to solve a large system, this is not beneficial. Indeed, the more segregation can be introduced,
the cheaper the calculation can be done. Therefore, the appropriate algorithm has to be chosen depending on
the considered application. We conclude for a perfect gas flow:

� Inviscid flow (Euler) : the fully segregated algorithm with pressure corrections form the energy equation is
the cheapest way to simulate the whole Mach number range;
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� Heat conduction: if a diffusive time step limit does not harm, the fully segregated algorithm still can be
applied. Otherwise the coupled pressure and temperature algorithm can be used;
� Gravity: if the time step restriction due to the gravity terms is not too severe (i.e. the gravity does not really

dominate the other terms), one of the predictor–corrector algorithms can be applied. Otherwise, the fully
coupled method is the only option.

Appendix A. Results: technical details and remarks

A.1. Inviscid flow

A.1.1. Fourier stability analysis (Section 5.1.1)
We consider a Cartesian grid, uniformly spaced, with Dx ¼ Dy ¼ 1. The flow is aligned with the grid

ðv ¼ 0Þ, the horizontal velocity component u is calculated from a chosen Mach number Ma. We take
p ¼ 1, T ¼ 1 and hx;y ¼ 2pix;y=N x;y with ix;y ¼ ½0; 1; . . . ;N x;y � 1�, Nx ¼ 40, N y ¼ 4. The time step DtI is calcu-
lated from a chosen convective CFL number, DtI ¼ cflIDx=u and the scaling factor x is chosen.

A.1.2. Test case: inviscid flow past a bump in a channel (Section 5.1.2)

The grid has 48 · 16 cells. In each stage of the multistage stepping, the updates obtained from the semi-
implicit system are multiplied with a factor x before they are inserted in the time stepping. The time step used
in the semi-implicit system is derived from a chosen convective CFL number cflI ,
DtI ¼ cflI

maxi;j
jw dsjfrþjw dsjfu

V ij

h i ; ðA:1Þ
with V ij the volume of the cell around node ði; jÞ, fr the right cell face and fu the upper cell face. The time step
value is calculated at the beginning of each time step. It is kept constant during the stages of the multistage
stepping, and the same value is used for all cells (though a local time stepping could be used as well).

In each of the convergence plots, we consider the flux balance
P
½ðqvwÞf dsf þ pf dxf � of the ðqvÞ-momen-

tum equation. The shown residual is the L1-norm of the vector composed of the ðqvÞ-flux balances for each
cell. The other equations (continuity, ðquÞ-momentum, and energy) have a similar convergence behavior; the
ðqvÞ-momentum equation needs the most time steps to converge.

We stress that we only want to compare the convergence behavior of the presented algorithms. A lot of
aspects can be optimized, but this can be done for each method in the same manner. Firstly, a fixed time step
for all cells is used. In a steady-state problem, this can be altered to local time stepping, i.e. stepping with the
highest allowable time step for each cell. Secondly, we used a direct solver for the system in each multistage
step. This is of course very costly, but does not influence a comparison of the number of time steps to steady
state. More optimized solvers, like iterative methods or multigrid, should be used in practice. In the choice of
such a solver, the structure of the considered system should be taken into account. Remark that also the mul-
tistage stepping as a whole can be inserted in a multigrid procedure. Finally, also the implementation of the
boundary conditions is quite primitive. At the inlet total pressure, total temperature and horizontal flow direc-
tion are imposed, while the Mach number is extrapolated; at the outlet the Mach number is imposed and total
pressure, total temperature and flow direction are extrapolated. Such boundary conditions are very reflective.
This will influence the convergence results in some cases, but, again, this happens for each of the considered
methods, so that an honest comparison is still possible. Because of the presence of a shock in the high Mach
number cases, a limiter (minmod) is used. For the time stepping, the five stage scheme of [17] with coefficients
f0:066; 0:16; 0:307; 0:576; 1g is used. Remark that for the transonic case, the number of time steps needed to
reach steady state is much larger than for the low speed flows. The stiffness at the sonic point is a possible
explanation of this behavior. Also the boundary conditions can cause this slowdown, because of their reflec-
tive character. The premature off-leveling of the residuals in the transonic case, is caused by fluctuations of the
minmod-limiter in the presence of the (normal) shock. It can be remedied by freezing the limiter after some
orders of convergence.
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A.2. Heat transfer

A.2.1. Fourier stability analysis (Section 5.2.1)

Heat conduction is present in both the x and y direction. The Von Neumann number reads

Ne ¼ aDt 1
Dx2 þ 1

Dy2

� �
, with a ¼ j=ðqcpÞ the thermal diffusivity. We take Dx ¼ Dy ¼ 1, p ¼ T ¼ 1 and v ¼ 0.

The time step is calculated from a chosen convective CFL number cflI . The heat conduction terms are added
to the Euler equations, i.e. viscosity and gravity are omitted.

A.2.2. The coupled pressure and temperature correction algorithm (Section 5.2.2)

We take l ¼ 0 and v ¼ 0, but heat conduction is present in both the x and y direction. The velocity u is
calculated from a chosen Mach number Ma and we take Dx ¼ Dy and p ¼ T ¼ 1. The time step is calculated
from a chosen convective CFL number cflu.

A.3. The role of gravity

A.3.1. Coupled algorithm versus segregated predictor–corrector algorithm (Section 5.4.1)

The horizontal velocity component is taken zero ðu ¼ 0Þ, and the vertical component v is calculated from
the given Mach number. We take Dy ¼ Dx ¼ 1, u ¼ 0 and the time step is derived from a chosen convective
CFL number.

A.3.2. Thermally driven cavity (Section 5.4.2)

This test case concerns a squared cavity of dimension L� L filled with a perfect gas. The upper and lower
walls are isolated (adiabatic). The left-hand side is heated (temperature Th) and the right-hand side is cooled
(temperature Tc), which causes a very slow circular movement of the gas due to natural convection. The driv-
ing force is expressed by the Rayleigh number,
Table
Therm

Ra

1E2
1E2
1E6
1E6

Param
Ra ¼ Pr
ĝq̂2

refð2�ÞbL3

½l̂ðbT refÞ�2
; with � ¼

bT h � bT c

2bT ref

ðA:2Þ
the non-dimensional temperature difference and Pr the Prandl number. The hat refers to dimensional quan-
tities. Chosen reference values are p̂ref ¼ 101; 325 Pa, bT ref ¼ 600 K and bLref ¼ bL ¼ 1 m.

All technical details concerning this test case can be found in [19,20] or [1]. The dynamic viscosity l̂ ¼ l̂ðbT Þ
is given by Sutherland’s law and is non-dimensionalised using the reference value l̂ref ¼ q̂ref v̂ref

bLref . The Prandl
number Pr is assumed to remain constant, equal to 0.71. The heat conduction coefficient is calculated as
j ¼ cpl=Pr. The non-dimensional value for g is determined as g ¼ ĝbLref=v̂2

ref and ĝ is calculated from the Ray-
leigh number (A.2).

A.3.3. Fourier stability analysis

In the stability analysis the following parameters are used:

� Positions are given in non-dimensional coordinates. y ¼ 0 represents the bottom of the cavity, y ¼ 1 is the
upper wall, x ¼ 0 is the left (hot) wall, and x ¼ 1 is the right (cold) wall. The analysis is done for the point A
where the vertical velocity v has its maximum size. It is found at half height ðyA ¼ 0:5Þ and close to the cold
wall. The position xA depends on the considered case ðRa; �Þ and is given in Table A.1.
A.1
ally driven cavity

� �p xA Dx Dy juj jvj
0.6 0.95736 0.903 0.0142 0.067 5.79E � 10 7.93E � 8
0.01 0.99999 0.818 0.0247 0.067 5.27E � 10 6.97E � 8
0.6 0.92449 0.976 0.00455 0.067 1.33E � 7 3.63E � 5
0.01 0.99998 0.963 0.00607 0.067 1.03E � 6 3.76E � 5

eters used in the Fourier stability analysis.
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� The corresponding grid dimensions are given in Table A.1, and are determined from the grid that was used
in the numerical simulation of the test case (stretched grid).
� Table A.1 also gives the (non-dimensional) velocity components. They were determined from a converged

solution. Only positive velocity values are used in the stability analysis.
� The pressure is taken as �p, which is the mean pressure in the cavity. The values were taken from [19] and are

given in Table A.1. The temperature is taken as T A � 1� �=2.
� The analysis is done for a first-order upwind discretisation of the transported quantities. The scaling factor

x is taken unity.

A.3.4. Comparison with results from the numerical simulations

All the numerical simulations of the test case are done with a first-order upwind discretisation and a first-
order time stepping. A stretched grid with 65 · 65 nodes and a maximum aspect ratio of 80 is used. Remark
that this is quite a coarse grid. However, it is not our goal to illustrate accuracy here; the tests are only used to
illustrate stability conditions. The initial state is taken as zero velocities, a hydrostatic pressure field, and a
linearly varying temperature field between the hot and the cold wall.

Finally some remarks:

� A measure to weaken the stability condition imposed by the gravity terms, is to start from a better initial
state, for example from a converged solution at a Rayleigh number that is one order lower. Another pos-
sibility is to increase the time step once some orders of convergence are obtained.
� The linear stability analysis showed that the fully coupled algorithm does not suffer from a gravitational

stability restriction. However, non-linear effects, which are not visible in the stability analysis, may cause
stability problems in the first, non-linear part of the convergence. Also for a fully coupled algorithm, the
start from a good initial state can therefore be of great importance.
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