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Abstract—The re-examination of the classical droplet vaporization model is made in order to develop the
simple but sufficiently accurate calculation algorithm which can be used in spray combustion calculations.
The new model includes the effects of variable thermophysical properties, non-unitary Lewis number in
the gas film, the effect of the Stefan flow on heat and mass transfer between the droplet and the gas, and
the effect of internal circulation and transient liquid heating. To evaluate the competing simplified models
of the droplet heating, the more-refined, extended model of heat transfer within a moving circulating
droplet is considered. A simplified, one-dimensional ‘effective conductivity’ model is formulated for the
transient liquid heating with internal circulation. As an illustration, the dynamic and vaporization histories
of the droplets injected into the steady and fluctuating hot air streams are analyzed.

INTRODUCTION

THE THEORETICAL analyses of spray combustion in
liquid-fueled engines often use the deterministic
approach [1] which requires the simultaneous cal-
culations of trajectories and vaporization rates of
many individual droplets. These droplets are injected
into the combustion chamber at different times, and
have various initial sizes and velocities. The prediction
of such important characteristics as the geometry of
the spray or an ignition position depends significantly
on the model selected for the single droplet vapor-
ization/combustion analysis.

The theory of fuel droplet vaporization/combustion
has been intensively developed during the past several
decades. Detailed discussions of state-of-the-art on
the subject until 1986 may be found in the reviews by
Sirignano [1-4], Faeth [5], Law [6] and Williams [7].
The classical droplet vaporization model is described
in many textbooks on combustion (see, e.g. Kuo [8]
and Williams [9]). This model is based on many over-
simplified assumptions, such as a unit Lewis number
in the gas phase near the droplet. To account for
the effect of forced convection in the gas phase, the
vaporization rate of the droplet in a stagnant environ-
ment is simply multiplied by an empirical correction
factor 0.5Nu,, where Nu, = Nuy(Re, Pr) is the Nusselt
number for a solid non-vaporizing sphere. Variations
in physical properties are neglected ; average prop-
erties and unitary Lewis number are employed. The
effect of the Stefan flow (blowing) on heat and mass
transfer between the moving droplet and the gas flow
is assumed to be the same as in the case of the stag-
nant droplet. The droplet surface is postulated to
be at the normal boiling temperature, and transient
liquid heating is neglected. In reality, however, the
Lewis number may vary considerably (in the range
of 1-4) during the vaporization period; the Stefan
flow effect may depend on the droplet Reynolds

number; and the transient liquid heating appears to
be a controlling factor of the droplet vaporization
rate [1].

The importance of the process of transient liquid
heating has been demonstrated in ref. [10] for the case
of a stagnant vaporizing droplet (Re = 0). In typical
combustion situations, the duration of the transient
droplet heating is comparable with the droplet vapor-
ization time. Therefore, the adequate description of
the heat transfer inside the droplet is the important
part of the vaporization model. References [25, 26]
found that the liquid circulation inside the moving
droplet may considerably change the time scale of the
internal heating process. Several approximate models
have been suggested in the literature to describe the
different regimes of heat transfer inside the droplets.
More detailed discussion of these models will be given
in the next section.

Recently, the comprehensive computational studies
of the dynamics of a single vaporizing droplet inserted
into a hot gas flow have been undertaken by several
authors [11-16]. Renksizbulut and Yuen [11] pre-
sented the finite-difference analysis of flow and heat
and mass transfer around the vaporizing heptane
sphere including the effects of blowing and variable
physical properties. However, the specific heat of fuel
vapor and air were treated as equal and constant.
Unfortunately, the latter assumption is invalid for
the hydrocarbon fuels where, for example, the ratio
Cor/Car = 3 at T =600°C. Patnaik er al. [12] and
Dwyer and Sanders [13, 14] analyzed the dynamics
of the evaporating droplet including the effects of
transient convection, Stefan flow, internal circulation
and liquid heating. The viscosity of the fuel vapor/
air mixture was variable and other thermophysical
properties were calculated assuming the constant
values of the Schmidt and Prandtl numbers: Sc = 2,
Pr =0.7. Haywood and Renksizbulut (15, 16] pre-
sented the finite-difference calculations of the life his-

1605



1606

B. ABRAMZON and W, A. SIRIGNANO

NOMENCLATURE

A, averaging parameter W, molecular weight of ith component
By mass transfer number X distance travelled by the droplet
By heat transfer number x molar fraction
Cp droplet drag coefficient Y mass fraction.
Cr friction drag coefficient
Cor fuel vapor specific heat
D vapor/air binary diffusion coefficient Greek symbols |
F relative change of film thickness o thermal diffusivity
J iteration number é film thickness
k thermal conductivity M dynamic viscosity
Le Lewis number, k,/(p,DC,,) P density
m vaporization rate [gs™'] ¢ non-dimensional parameter defined by
My initial droplet mass [g] equation (22)
Nu Nusselt number % effective conductivity parameter.
P pressure
Pe Peclet number, Re Pr Subscri
Pr Prandtl number v 'scrlpts .
oL heat transferred into the droplet ?lr gllr

[cal s~ m

. F fuel vapor

¥ radius [cm]
7o initial droplet radius g gas

. ., L liquid
I instantaneous droplet radius; r; = ry/r, M diffusi bl
Re Reynolds number ma?s tiusion probierm
Sc Schmidt number §I‘ sﬁr acel
Sh Sherwood number thermal problem
T temperature [K] 0 fa.r from a droplet -

perature

; time 0 initial state (also without the Stefan
U droplet velocity flow).
U, maximum velocity on the droplet

surface Superscripts and overscore
U, gas flow velocity — average (reference) value
V,..Vs radial and angular components of * modified value

liquid velocity non-dimensional value.

tory of an n-heptane droplet moving and evaporating
in its own super-heating vapor. Both the effects of
variable properties and internal circulation and heat-
ing were taken into consideration. It is unclear, how-
ever, if their results are applicable to the practical case
of a non-vapor environment where the diffusion may
be one of the controlling factors in the vaporization
process.

It should be noted that the studies [12-16] lead
to some partially conflicting conclusions about the
droplet drag coefficient, Cp. Dwyer and Sanders [13,
14] found that Cp, decreases significantly as the droplet
vaporizes and the relative velocity between the droplet
and gas decreases. In contrast, Haywood and Renk-
sizbulut [15, 16] observed that the drag coefficient
increases in the course of droplet motion and vapor-
ization, and the ‘standard drag curve’, Cp, = Cp(Re),
of a solid sphere may be used for a vaporizing droplet
provided the thermophysical properties in the gas film
are evaluated at some average temperature and the

appropriate correction is made to account for the
blowing effect. Note, however, all investigators are
making calculations in different parameter regimes.
The above discussion shows that additional efforts are
required in order to obtain a better understanding of
the droplet dynamics and the vaporization/com-
bustion process.

It is emphasized that the advanced numerical
models cannot be directly adopted for the spray
combustion calculations, primarily due to the great
amount of computer time needed for a single droplet
analysis. (However, the exact numerical solutions may
be very useful for improvement of the approximate
models currently used in spray combustion calcu-
lations.) In the present study, we have formulated a
new approximate droplet vaporization model which
can be suitable for the spray combustion calculations.
In spite of its simplified character, the new model
accounts for many important physical effects men-
tioned above.
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THEORY

Droplet dynamics

For simplicity, we consider a case where the gas
flow is one-dimensional and the initial droplet velocity
is parallel to the gas flow direction. The droplet
motion and radius reduction are governed by the fol-
lowing equations:

dx
T =v M
AU 3Cp (P
FTRRT (pL)lUw"Ul(Uw 9] @
dr, m
dr 7 dmpur? @

The drag coefficient is usually expressed as a func-
tion of the Reynolds number, Cp = Cp(Re), where
Re = 2p,|U,, — Ulr,/tig. Since the Reynolds number
is interpreted as a ratio of inertia to viscous forces,
the definition of Re uses the free-stream density, o,
and some average viscosity, i, of the air/vapor mix-
ture in the boundary layer near the droplet surface.
As experimentally shown by Yuen and Chen [17], the
drag coefficient of evaporating droplets may be well
approximated by the ‘standard drag curve’ provided
the gas viscosity, i, is evaluated at some reference
temperature and fuel concentration

T= Tn+Ar(Tco _Tu); YF = YF|+Ar(YFoo_ YFl)
@

where 4, is the averaging parameter. Yuen and Chen
[17] recommended the value 4,=1/3 (‘1/3 rule’).
However, the experiments in ref. [17] were conducted
at relatively low gas temperatures with the transfer
number B = C,(T,,—T)/L < 3. Additional research
is required to determine properly the values of Cy, for
larger vaporization rates.

In the present study we used the above recom-
mendation [17] along with the following correla-
tion for the ‘standard drag curve’ [5]:

24[  Re¥
Cﬁﬁ;[” . :l ®)

For dense spray regions, where the distance between
droplets is comparable with the droplet’s diameter,
the drag coefficient should also depend on the local
droplet concentration in the gas flow. As new cor-
relations including these effects become available, they
can replace equation (5) in the present droplet vapor-
ization model. Note that Haywood and Renksizbulut
[15, 16] has recommended a mass transfer correction
to equation (5).

Gas-phase analysis

The analysis of heat and mass transfer processes
in the gas phase near the droplet surface allows the
determination of the instantaneous vaporization rate,
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m, and the amount of heat penetrating into the droplet
interior, Q,. In this study we use the gas-phase model
which has been recently developed by the present
authors [18]. Below is a discussion of the general
assumptions of the model and the final computational
algorithm.

We assume that the gas phase heat and mass trans-
fer may be considered as quasi-steady, the pressure
drop in the gas is negligible, and the thermophysical
properties may be treated as a constant provided they
are evaluated at some reference conditions (see equa-
tion (4)). These assumptions supported, in particular,
by the results of Hubbard et al’s [19] study that
analyzed the stagnant droplet (Re = () vaporization
at P < 10 atm including transients and variable prop-
erties effects. They also recommended the use of the
‘1/3 rule’ (4, = 1/3) for the thermophysical properties
averaging procedure. Note that as Reynolds number
increases, the quasi-steady assumption becomes even
more justified since the relaxation time for the trans-
port processes in the gas boundary layer decreases as
by ~ /AU, = r*{(vy Re), while the droplet vapor-
ization time varies approximately as 1/Re®™* at high
Re.

To take into account the effect of the convective
transport caused by the droplet motion relative to the
gas, we employ the so-called ‘film theory’ [20, 21]. The
film theory assumes that the resistance to heat or mass
exchange between a surface and a gas flow may be
modelled by introducing the concept of gas films of
constant thicknesses: o1, dy. Thus, for the non-vapor-
izing spherical particle, the thicknesses of the thermal
and diffusional films are calculated as

2r, 2r,
5T0"ﬁuo___2'a Mo =S5 6
where Nuy, = Nuo(Re, Pr) and Shy = Sho(Re, Sc) are
the Nusselt and Sherwood numbers, respectively.
Expressions (6) are derived from the requirement that
the rates of a purely molecular transport by thermal
conduction or diffusion through the film must be
equal to the actual intensity of the convective heat or
mass transfer between the surface and the external
flow. The classical film model uses the same ex-
pressions (6) for an evaporating droplet. However,
the presence of the Stefan flow will influence the values
of dr and Jy, since a surface blowing results in the
thickening of the laminar boundary layer [22]. To
take into consideration this effect, we introduce the
correction factors

Fr = 01/01g; Fm = Om/Omo ™

which represent the relative change of the film thick-
nesses due to the Stefan flow. The expressions for F;
and F, will be considered below.

As in other approximate models, the film model
assumes that the distribution of the temperature and
fuel vapor concentrations along the droplet surface
are uniform. This assumption may cause some under-
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estimation of the droplet vaporization rate since the
nonlinearity of the relationship between the local sur-
face temperature and fuel vapor pressure (Clausius—
Clapeyron equation) does not justify the usage of the
same relation for the surface-averaged values.

Finally, the extended film model yields the follow-
ing expressions for the instantaneous droplet vapor-
ization rate:

m = 2np,Dyr  Sh* In (1+ By,) (8)
and
. ky
m = 2n==r, Nu*In (1 + By) ®
Cor

where j,, D,, and k, are the average density, binary
diffusion coefficient and thermal conductivity of the
gas mixture in the film, respectively ; C, is the average
vapor specific heat in the film; SA* and Nu* are the
non-dimensional parameters which are expressed as

Sh* =24 (Sho—2)/Fyu (10)
Nu* = 24 (Nuo—2)/Fy. (11

The values By, and B; are called the Spalding mass
and heat transfer numbers, and they are calculated as

YFs YF:L
Bu=—"" (12)
. CpF(Tm_Ts) (13)

TOLT)+ O

Here Yr is the fuel mass fraction, L(T,) the latent heat
of vaporization at temperature 7 ; subscripts s and
oo refer to the conditions at the droplet surface and
external gas flow, respectively.

Equations (8) and (9) resemble very closely the
corresponding expressions for the droplet vapor-
ization rate predicted by the classical model. The only
difference is that the values of Nu, and Sk, in the
classical formulas are substituted by Nu* amd Sh*,
respectively. Note also that Nu* —» Nu, and Sh* —
Shy as Fr— 1 and Fy — 1. For these reasons, the
parameters Nu* and Sh* may be termed as ‘modified’
Nusselt and Sherwood numbers. Note, however, that
these parameters should not be confused with the
actual Nusselt and Sherwood numbers which are
defined as non-dimensional heat and mass transfer
coefficients

(14)

Thus, for example, the actual Sherwood number is
expressed in the present model as

In(1+Bu)
B .

M

Sh = Sh* (15)

To find the correction factors Fy and Fp for the
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film thickness, we considered a model problem of the
laminar boundary layer flow past a vaporizing wedge.
The range of parameters was: 0 < (By, By) < 20;
1< (Se, Pr)<3; 0< < 2n (here § is the wedge
angle). In the case of an isothermal surface and con-
stant physical properties of the fluid, the problem has
a self-similar solution and the correction factors Fy,
and F; do not depend on the local Reynolds number.
It was found that the values Fy, and F; are practically
insensitive to the Schmidt and Prandtl numbers and
the wedge angle variations, and can be approximated as

Fu = F(Bu), Fr = F(By) (16)
where F(B) is the universal function

In(1+ B)
_ 0.7 7% .
F(B) = (1+B) Pt

(7
Note that F(B) increases from 1 to 1.285 as B grows
from 0 to 8. In the interval 8 < B < 20, the values of
F(B) remain practically constant.

We assume that equations (16) and (17) may also
be used for the case of the evaporating droplet. At
high Reynolds numbers, when Nu, > 2, equations (8),
(10), and (17) predict that the vaporization rate varies
as M ~ By(1+By) %7, The latter result is in quali-
tative agreement with the experimental data of Renk-
sizbulut and Yuen [23] for water, methanol and hep-
tane droplets in the range of 25 < Re < 2000 and
B < 2.8.

Consider now the practical step-by-step procedure
of determination of the vaporization rate s and the
heat transferred into the droplet interior, Q. Assume
that we know the droplet surface temperature T, vel-
ocity U, and the conditions of the free-stream flow:
Uy, T, Yes. The solution algorithm is given below.

(1) Calculate the molar and mass fuel vapor frac-
tions at the droplet surface

Xpg = Prg/ Py Yig = Xy Wvl«"yﬁzxx W. (18)
Here Pg, is the fuel vapor saturated pressure which
is evaluated using the appropriate experimental or
theoretical correlations (Clasius—Clapeyron)

Py = P (T)). (19)

(2) Calculate the average physical properties
7, Cops s Ko fis D, Le = K, [(5,DC,,), Pr. Sc
in the gas film using the reference conditions given by
equation (4).

(3) Calculate the Reynolds number, Re =
2p,{U~Uglry/p,, and the Nusselt and Sherwood
number for a non-vaporizing droplet. The well-known
Frossling correlations may be used for Nu, and
Sh, evaluations

Nug = 2+0.552Re"? Pr''*;
Shy = 24+0.552Re'? Sc'. (20)

Note that equations (20) overestimate the transfer
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rate at low Reynolds numbers (Re < 10). Particularly,
they predict the physically incorrect supersensitivity
of the transfer rate to the small velocity fluctuations
near Re = 0, since (ONuo/0Re)g, .o = 0. As noted by
Crocco [43], this fact may result in erroneous con-
clusions during a combustion instability analysis.

As an alternative to equations (20), the following
correlations by Clift ez al. [24] may be recommended :

Nuy = 14 (1+Re Pr)"* f(Re)
Shy = 14 (14 Re S&)" f(Re) @1)

where f(Re) =1 at Re< 1 and f(Re) = Re®°"7 at
Re < 400. Equations (21) approximate the numerical
results by different authors in the range of 0.25 < (Pr,
Sc) < 100 with an error less than 3%.

(4) Calculate the Spalding mass transfer number,
By, diffusional film correction factor, F, modified
Sherwood number, S4*, and the mass vaporization
rate, m (equations (12), (17), (10) and (8)).

(5) Calculate the correction factor for the thermal
film thickness, F; = F(B7), using the value of the heat
transfer number, B3¢, from the previous iteration or
previous time step (equation (17)).

(6) Calculate the modified Nusselt number, Nu*
(equation (11)), the parameter

Cor\ [ Sh*\ 1
¢= (z**) (zv—)r

and the corrected value of the heat transfer number
Br = (1+By)?—1. (23)

Return to step (5) if |By— B3| < &5, where &g is the
desired accuracy of the B-number evaluation.

(7) Calculate the heat penetrating into the liquid
phase

22)

O, =nm {_Ciw —L(Ts)}. (24)
Br

Liguid phase analysis

A knowledge of the instantaneous heat transferred
into the liquid phase (equation (24)) allows us to
predict the temperature inside the droplet as a func-
tion of time. The transient droplet temperature is
often calculated using the following simplified models
[1,6]:

(a) the ‘rapid mixing limit’ or ‘infinite conductivity
model’ which postulates that the temperature within
the droplet is spatially uniform although time vary-
mg,

(b) the ‘conduction limit’ model which assumes
that the heat is transferred within the liquid solely by
the thermal conduction and the surface temperature
is uniform.

These models are usually considered as two extremes
bounding the possible range of real conditions. Ref-
erences [25, 26] demonstrated that heat transfer within
moving droplets is of the pronounced convective type
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due to the intensive liquid circulation caused by the
surface friction. The Reynolds and Peclet numbers for
the droplet interior, which can be defined as

Us dP L

Rey = ; Pey = Rey Pry 25)
appear to be very large compared to unity. In equations
(25), U, is the maximum velocity at the droplet surface
(in the coordinate system related to the droplet), and
subscript ‘L’ refers to the liquid phase. References
[27-29] developed the ‘vortex model” which assumes
that the internal circulation in the droplet is rep-
resented by the well-known Hill vortex and, due to
the high liquid Peclet number, Pe;, the isotherms
inside the droplet coincide with the streamlines.

Comparisons between different simplified models
in spray calculations were made by Aggarwal et al.
[30]. It was found that the instantaneous droplet
radius as a function of time predicted by the vortex
model falls between those given by the rapid mixing
and conduction limit models.

The instantaneous vaporization rate is extremely
sensitive to the selection of the liquid heating model.
To compare amongst different simplified models, we
undertake first a more detailed analysis of the heat
transfer inside the moving droplet. The general
assumptions of the extended model are given below.

(a) Temperature distribution along the droplet sur-
face is uniform but time varying.

(b) Instantaneous velocity field inside the moving
evaporating droplet may be approximated by the Hill
spherical vortex solution

V, = U,(1—r*/r2) cosd (26)

Vo= U,(1-2r*/r}sin0 27

where V] and Vj are the radial and angular compo-
nents of liquid velocity in the spherical coordinate
system (r, 6). The maximum surface velocity varies as
a function of time.

The first assumption is made in order to be con-
sistent with the one-dimensional gas-phase model
which operates with the average surface temperature
and cannot predict the local distribution of the surface
temperature or heat flux. The second assumption is
based on the numerical results of Rivkind and Ryskin
[34], Oliver and Chung [35], and other authors (see,
ref. [24]) who analyzed the flow structures inside and
outside the droplet moving at terminal velocity in
another viscous fluid. For a wide range of conditions
(Reynolds numbers, ratios of fluid viscosities and den-
sities), their internal streamline patterns were insen-
sitive to the internal Reynolds number and resemble
very closely the Hill vortex. We assume that the same
Hill vortex solution, equations (26) and (27), is also
applicable to the unsteady situation when the droplet
vaporizes and its velocity relative to the gas varies
with time. The characteristic time of stabilization of
the velocity field inside the droplet, fyq,, depends on
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the liquid Reynolds number. At Re; <1 (viscous
regime), this time may be estimated at fyy,, ~ rZ/v..
At high liquid Reynolds number (Re_ >» 1), the vor-
ticity disturbance is transferred from the surface into
the droplet depth by convection and #y4, ~ r/U, =
r2/(v. Rey). Since the Prandtl number for liquid fuel
is about 10, the value of #,,4, appears to be much
shorter than the characteristic heating time : tj,em ~
rZjo.. Therefore, the use of velocity profiles (26) and
(27) in the transient heating analysis is justified.

To find the maximum liquid velocity at the surface,
U,, we recall that the friction component of the droplet
drag force is calculated as

Frier = 2772 f (T,0)g sin* 0d6 (28)

0
where (1,4), is the shear stress on the droplet surface
from the gas side [20]. Since the shear stresses are
continuous through the interface between the gas and
liquid
(29)

the value of 7, may be evaluated using the known
velocity distributions, equations (26) and (27). on the
liquid side. Finally, the maximum surface velocity is
expressed as

(Tro)g = (Toudo.

1

U = AU, (“g> Re, C, (30)
Hy

T 32
where Cr is the friction drag coeflicient, and AU, =
U..— U is the relative gas/droplet velocity.

In general, Ciis a function of the Reynolds number,
fluid viscosity ratio u, /u,, density ratio p,/p, and the
transfer number B. The data on the friction drag
coefficient of a moving evaporating droplet are absent
in the literature. For a solid non-vaporizing sphere,
the available numerical data on C; [24] can be cor-
related as

Cr = 12.69Re™ %" (10 < Re < 100). (31)

Upon substitution into equation (30), the latter cor-
relation produces a satisfactory prediction of the
maximum surface velocity of a non-vaporizing drop-
let at p;/p, 2 10. Thus, for example, at Re. = 100
and viscosities ratios y;/p, = 10 and 55, equations
(30) and (31) yield: UJAU, =0.184 and 0.0335,
respectively. The numerical solutions by Rivkind and
Ryskin [34] and LeClair et al. [36] give for the same
conditions U,/AU,, = 0.2 and 0.036, respectively.

For the case of an evaporating sphere, Renksizbulut
and Yuen [11] found that the Stefan flow reduces the
friction drag coefficient by a factor (1 4+ B). This results
in the correlation

12.69

= 2
E R62/3(1+BM) (3 )

which has been used as a first approximation in the
present model. It should be noted, however, that the
computational study [11] considered only small trans-
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fer numbers (B < 0.78). The analysis by Emmons [37]
for the boundary layer flow over the evaporating plate
shows that the friction drag is reduced approximately
by a factor (1+B)®"® at B < 20. Obviously, ad-
ditional efforts are required to determine Cy for an
evaporating droplet at high values of B.

The transient heat transfer inside the circulating
and evaporating droplet is governed by the following
dimensionless energy equation :

L0Z , A
(r)” 5= +(0.5Pe, Viri—fn) -
ot n

Ver,0Z 1 & [ Loz
0.5Pey —= —o = — ——{n*
O T ‘c"’r7<" 017)

*orsing a0\ ) BV

Here r, = r/ry is the non-dimensional radius of the
droplet; # = r/r, is the non-dimensional radial coor-
dinate; ¥V, =V,/U, and V, = V,/U, are the non-
dimensional radial and tangential velocity com-
ponents; Z = (T—T,)/T, is the non-dimensional
temperature ; T = a, ¢/r; is the non-dimensional time ;
B = 0.5d(r))*/dt is the non-dimensional parameter
proportional to the surface regression rate of the drop-
let. The initial and boundary conditions are given
below.

(a) Uniform initial temperature

1=0, Z=0. (34)

(b) Uniform temperature and given total heat flux
at the surface

n=1; éZ2/60=0 (35)

f” (g-f) sinfdf = Q/Q2nri, T,). (36)

0
(¢) Symmetry condition along the axis

0=0,m 0Z/60=0. 37

It is easily seen that the extended model, equations
(33)-(37), includes the previous simplified models as
the limiting cases. For example, at Pe; —» 0 the
extended model reduces to the ‘conduction limit’
model. In the opposite limiting case of very high Pe,
the convective transport inside the droplet is much
stronger than thermal diffusion transfer, and hence
the isotherms may be expected to coincide with the
streamlines (‘vortex’ model). The third limiting case of
k_ — o0 represents the ‘infinite conductivity’ model.

Recently, an alternative approach has been sug-
gested [31, 32] in order to simplify the calculation
procedure for internally circulating droplets. This
approach is equivalent to the conduction limit model
for the use of the ‘effective’ value of the thermal con-
ductivity coefficient inside the droplet: kg = ykL
(x = 1). Such an idea was first introduced by Kronig
and Brink [33] who studied mass transfer inside the
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3 7
2.72 (Kronig & Brink)
x - e e - - -
2
1 ——
1 10 100 1000

Liquid Peclet number, Pe = 2U,r/oc,

FiG. 1. Effective thermal conductivity factor vs liquid Peclet
number. Approximate results of equation (39).

droplets for Hill’s type of internal circulation at high
Peclet numbers. They found that in the asymptotic
regime (t — o0), the overall heat or mass transfer rate
between the droplet interior and the surface is 2.72
times higher than in the case of the solid sphere. This
fact may be formally interpreted as an increasing of
the sphere thermal conductivity by a factor y, = 2.72.
Such an approach can be called the ‘effective con-
ductivity model’.

Jin and Borman [32] approximated the results by
Kronig and Brink to find the coefficient y as a function
of time. Talley and Yao [31] found that using the
constant factor y = 2.25 may well fit the vortex model
results. Theoretically, the factor i should also depend
on the liquid Peclet number, Pe,.

In the present study, we considered the ‘effective
conductivity model’ where the factor y = y(Pe.) was
found based on the numerical results by Johns and
Beckmann [38] for mass transfer inside a circulating
droplet at intermediate Pe;. Johns and Beckmann
calculated the asymptotic Nusselt number for the
internal problem, Nu;, = Nu,,(Pe.). The value of Nu;,
varies between Nu;,(0) = 6.58 for a solid sphere and
Nu(0) = 17.9 for Pe, - oo. The factor yx is cal-
culated as

X = Nuy,(Pe)/Nui(0) (38)

and varies over the range of 1-2.72. We found the
following approximation which fits the Johns and
Beckmann data within +2%:

%, = 1.86+0.86 tanh [2.245log, o (Pe./30)]. (39)

This curve is shown in Fig. 1.

Numerical method

The ordinary differential equations (1)-(3) were
solved by the implicit iterative method of second-
order accuracy with respect to time [39]. The right-
hand sides of equations (1)—(3) are calculated using
the arithmetic mean values of variables r,, T,, U, X at
time levels ¢ and (z+ A?), as for instance

T, = 0.5[T () + Ti(t+AD)].

Here j is the iteration number. An initial estimation
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for T,(t+ Ar) is taken to be equal to T,(s). The iter-
ations are terminated when the following conditions
are satisfied ;

[T/+1—T] <0.01 K
[+ ! —ri))jm’| < 0.01.

The internal droplet temperature for the conduction
limit or effective conductivity models was calculated
using the Crank—Nicolson scheme. The number of
grid intervals in the radial direction inside the droplet
was usually 100, the time step was about 0.01 ms. In
most cases, no more than three iterations were needed
for the convergence. When the above global iteration
process is employed, and the time step Az is sufficiently
small (say, of the order of 10~2 ms), the internal
iteration loop (steps 5 and 6) becomes unnecessary.
Note that reasonable accuracy can be obtained with
only 20 grid intervals inside the droplet. In such a
case, the total CPU time required for a single droplet
analysis is about 5 s on a VAX-780.

The energy equation (33) for the extended model is
solved by the fully implicit iterative finite difference
method. The space derivatives are approximated by cen-
tral differences and the finite-difference grid spacings
(An, AQ) are uniform. The difficulties associated with
integral boundary condition (36) can be overcome
by taking advantage of the linearity of the problem.
Assume that the temperature distribution inside
the droplet is known at some time level 1: Z = Z..
Then, the temperature at the new time level (t +Ar)

is represented as a linear combination of two functions
Z=1Z(n,0,1)+AZy(n,6,1) (40

where Z, and Z, are the partial solutions of equation
(33). Both functions Z, and Z, satisfy the symmetry
conditions (37). At time 7, the values of functions Z,
and Z, are prescribed as

Zl(na B’ T) = Z(’7, 0, T)
22(77, 05 T) = 0

(41
(42)

The surface values of functions Z, and Z, at time
(t+Arz) are given as

21(1’6’T+A1) = 21(1’991)
Z,(1,0,1+A7) = 1.

43)
(44)

It is easily seen that the solutions Z,(#, 6, T+ At) and
Z,(n, 8, T+ A1) at the new time level (r+4 A1) can
be found independently of one another. Then, the
constant 4 in equation (40) is determined using
boundary condition (36). Note that A will vary with
time.

The number of mesh intervals within the droplet
was 70x 60 in the radial and angular directions,
respectively. The time step was about 10~ > ms. The
mesh independence of computations has been con-
firmed using the more dense mesh 100 x 70. The total
CPU time for a typical run is 5-6 h on a VAX-780.
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RESULTS AND DISCUSSION

The applicability of the simplified models should be
checked by comparison with more advanced numeri-
cal solutions. Unfortunately, such a verification is still
possible only for the stagnant droplet case (Re = 0).
We compared the simplified gas-phase model with the
steady-state calculations by Kent [41] for n-heptane
and the transient analysis by Hubbard er al. {19]
for n-octane. In both of these studies, the spatial
variation of gas properties has been taken into
account. The detailed discussion of this comparison
is presented in the previous publication [18]. The
vaporization rate of a droplet is extremely sensitive
to the method used for the evaluation of physical
properties. A very good agreement with the exact
variable properties calculations is achieved by apply-
ing the ‘1/3 rule’ for averaging of the gas mixture
properties.

The following results refer to the standard cases of
n-decane droplets of initial radius 7, = 50 gm and
temperature T, = 300 K which are injected into an
airstreamat 7, = 1500K, P, = 10 atm. The physical
properties used in the computations are given in the
Appendix. In Figs. 2 and 3, the dynamic and vapor-
ization history of the droplet is illustrated for the
case when the droplet with the initial velocity U = 15
m s~ ' is inserted into a quiescent air environment.
The initial Reynolds number for the gas phase is 105.
The calculations were made using the extended liquid
heating model with the internal circulation. In some
figures, the comparison is made with the simplified
models of liquid heating, and there curve | denotes
the extended model while curves 2 and 3 refer to the
‘infinite conductivity’ and ‘conduction limit’ models,
respectively. Curve 4 represents the ‘effective con-
ductivity’ model with the factor y calculated as a
function of the liquid Peclet number using equation
(39). Figures 2(a)—(c) show the temporary variation
of the non-dimensional droplet radius, (r./r,), surface
temperature, T, and the instantaneous vaporization
rate, (m/m,), respectively. Here, m, is the initial drop-
let mass. The results for the extended liquid heating
model fall, in general, between those for the ‘infinite
conductivity’ and ‘conduction limit’ model. Inter-
estingly, the curves of the ‘effective diffusivity’ model
almost coincide with those of the extended model.

Figure 2(d) shows the history of the average Lewis
number Le = k,/(p,D,C,,), and the parameter ¢ (see
equation (22)) in the gas film. Initially, when the drop-
let surface is cold and the vapor concentration in the
film is low, the Lewis number is very high because the
diffusion coefficient of heavy hydrocarbon vapor in
air is much lower than the thermal diffusivity of air.
As fuel concentration in the gas film grows, the Lewis
number decreases, remaining, however, larger than 1.
The parameter ¢ varies from 1.05 to 1.2 in the course
of vaporization. However, even its small deviation
from 1.0 (value assumed by the classical theory)
results in the considerable difference between the
values of By, and By (Fig. 2(e)).

B. ABrRaMzON and W. A. SIRIGNANO

R S

S S

NONDIMENSIONAL RADIUS
ERN TN

W S

L L i i
7 8 9 10 1 1

2 TR L L -
B

o i 2 3 4 5

o

TIME, ms

Fi1G. 2(a). Non-dimensional dropiet radius vs time : extended

model (curve 1), infinite conductivity model (curve 2), con-

duction limit model (curve 3), and effective conductivity
model (curve 4).

SURFACE TEMPERATURE, K

s PR L L
[+] 1 2 3 q 5 -1 7 8 s 10 (B} 12

TIME, ms

F1G. 2(b). Surface temperature (K) vs time : various models.

P SO B I I PRSI -

VAPORIZATION RATE (m/m),s!

[y R H

TIME, ms

FiG. 2(c). Vaporization rate vs time: various models.

Figure 2(f) illustrates the time variations of the gas
phase and liquid phase Reynolds numbers. Gas phase
Reynolds number, Re, decreases monotonically as the
droplet decelerates and its diameter diminishes. Dur-
ing the first half of the droplet life, the Reynolds
number for the liquid interior appears to be con-
siderably higher than Re for the gas. This fact was
first predicted in refs. [25, 26] based on the scale analy-
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sis. The maximum on the curve Re; = Re, () at small
times is related to the variation of the liquid dynamic
viscosity (see equation (30)), which was evaluated at
the surface temperature.

The liquid Peclet number behavior is qualitatively
similar to that of Re; (Fig. 2(g)). During the con-
siderable part of the droplet vaporization period, the
Peclet number inside the droplet remains very high
(Pe » 1) indicating that the heat transfer within the
droplet should be of the convection-dominated type.

Figure 3 illustrates the isotherms inside the droplet

TIME, ms

FiG. 2(g). Liquid Peclet number vs time.

at different times. Here, gas flows toward the right
relative to the droplet center. The isotherms are plot-
ted for the temperature levels: T;= T+ (Tmax
—Toin)i/10 where (i=1,2,...,10), and T, and
Tmax Tepresent the minimum and maximum tem-
perature inside the droplet at a given time. The
values of T, and T,,,, are also shown.

At very short times ¢ < 0.025 ms, the heat is trans-
ferred from the surface primarily by thermal conduc-
tion. At ¢ = 0.05 ms, the convective effects become
very important and cause the distortion of the spheri-

0.025ms
3516 K

300K

0.1ms

F1G. 3(a). Liquid isotherms: 0.025, 0.05, and 0.1 s.
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ims

FiG. 3(b). Liquid isotherms: 1, 2, and 3 ms.

cal symmetry of the temperature field inside the drop-
let. During the time interval ¢ = 0.1-4.0, the isotherm
patterns within the droplet are very similar to those
of the streamlines. This fact provides the qualitative
confirmation of the ‘vortex model’ at high Pe,. How-
ever, as liquid phase Peclet number, Pe;, decreases
below 100 (# = 5 ms), the reverse transition from con-
vection- to conduction-dominated heat transfer is
observed.

The mechanism of the internal heat transfer may
change considerably in the course of the droplet vapor-
ization. In the above example, during the first 30~
40% of the droplet lifetime, when the liquid Peclet
number exceeds ~ 100, the heat is transferred in
accordance with the prediction of the ‘vortex model’.
During the last third of the droplet life, when
Pe; < 10, the heat transfer mechanism is more similar
to that of the ‘conduction limit model’. A smooth
transition between these two regimes occurs in the
range 100 > Pe; = 10. From the computational point
of view, it may be suggested that the switch between
the ‘vortex’ and ‘conduction limit’ models should be
made at some ‘critical’ liquid Peclet number, say
Pe, = 20. However, the more convenient approach
seems to use the ‘effective conductivity model’ with
the x-factor given by equation (39).

It should be recognized that the ‘effective con-
ductivity model’ does not detail the important physi-
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FIG. 3(c). Liquid isotherms: 4, 5, and 6 ms.

cal features of the problem associated with the internal
circulation. However, this model reflects properly the
global effect of the internal liquid motion and mixing
on heat transfer within droplets. The important
advantage of the ‘effective conductivity model’ is that
the same computational scheme may be applied for
all droplet groups in the spray in the wide range of
Reynolds and Peclet numbers.

In order to test the ‘effective conductivity model’
in more complicated situations, we considered the
thermal and vaporization history of a droplet in a
fluctuating flow field. Such a problem is very relevant
to the analysis of combustion instability in liquid-
fueled ramjets or liquid propellant rockets where the
pressure, velocity and gas flow temperature may oscil-
late in the frequency range of 100-15000 Hz [42]. In
the following example, we consider a simple case in
which the gas flow velocity varies as a prescribed
harmonic function of time

U, =U,+A4,cos2znft. (45)
This might occur at a pressure node of the oscillation,
for example. We assume, however, that the pressure
and temperature of the gas remain constant. The vel-
ocity amplitude is set as 4, = 15 m s~ ', the frequency
is f = 500 Hz, and the initial droplet velocity is equal
to the average gas velocity U, = U_. All other par-
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ameters are selected to be the same as in the previous
example.

The results of the calculations are shown in Figs.
4(a)—(c). Figure 4(a) shows the gas flow and droplet
velocities as functions of time. Figures 4(b) and (c)
show the instantaneous droplet radius and vapor-
ization rate, respectively. Curves 1 and 4 refer to the
extended model of liquid heating and to the ‘effective
conductivity model’, respectively. The vaporization
rate is considerably affected by the gas velocity oscil-
lations. The sharp minima in Fig. 4(c) correspond
to times when the relative gas-to-droplet velocity
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Fi1G. 4(c). Vaporization rate vs time.

become zero (interception points at Fig. 4(a)). Again,
the simplified ‘effective conductivity model’ agrees
very well with the extended model of internal liquid
heating. Certain details in the behavior are, however,
not captured by the effective diffusivity model.

The above results indicate that the ‘effective con-
ductivity’ approach may be recommended for use in
the droplet vaporization model. The advantages of
this new vaporization model are its simplicity, appli-
cability to the wide range of parameters (Re, B, etc.),
and a low amount of computer time required per
single droplet life calculation. The proposed model
agrees very well with the existing exact numerical sol-
utions at Re = 0, and reasonably predicts the droplet
vaporization rate at high Reynolds numbers, The
model uses the available state-of-the-art semi-empiri-
cal correlations for the total droplet drag coefficient,
Cp, friction drag coefficient, Cp, Nusselt and Sher-
wood numbers, Nu, and Sh,, as well as the
theoretically-predicted relationships for the relative
changes of the film thickness, Fr(By) and F{By), and
for the effective conductivity factor, y(Pe.). Some of
these correlations, however, have been established for
the limited range of the working parameters (Re, By,
By or for the different geometrical configurations
(wedge, stagnation point, etc.). Therefore, the exten-
sion and improvement of the above correlations are
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desirable. The further refinements of the present sim-
plified model can be made by comparison with the
advanced numerical models when they become avail-
able.

CONCLUSION

A new approximate model of vaporization of a
moving fuel droplet has been formulated. This model
represents the extension of the classical droplet vapor-
ization model and includes such important effects as
variable physical properties and non-unitary Lewis
number in the gas phase, influence of the Stefan flow
(blowing) on heat and mass transfer, and the effect
of the transient liquid heating inside the internally
circulating droplet. The gas phase calculations are
based on the one-dimensional ‘stagnant film theory’
which has been extended to incorporate the Stefan
flow effect on the thicknesses of the thermal and diffu-
sional films. The transient liquid heating inside the
droplet is calculated using the spherically symmetric
‘effective conductivity model’. The ‘effective’ thermal
conductivity of the liquid fuel, k., is introduced to
account for the heat enhancement due to the internal
liquid circulation. The factor y = k.q4/k, depends on
the instantaneous Peclet number in the liquid phase.
The relationship yx = y{Pe.) has been found from the
Johns and Beckmann study [38] on mass transfer
within circulating droplets. The results of calculations
with the ‘effective conductivity model’” appear to be in
a very good agreement with those predicted by the
extended liquid heating model that includes the sol-
ution of the two-dimensional equation of convective
heat transfer within a circulating vaporizing droplet.

The proposed model may be used in the wide range
of droplet sizes and Reynolds numbers. It requires a
relatively small amount of computational time per
single droplet life history. Therefore, this model is
suitable for the spray combustion calculations which
simultaneously trace the life histories of many indi-
vidual droplets.
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APPENDIX. PHYSICAL PROPERTIES

Physical properties of vapor/air mixture were calculated at
reference film conditions (equations (4)) using the standard
additive rules for an ideal gas

ﬁg = [(YF/pF)+ (1 - YF)/pair]_ !
cpg = C[,F 7F+Cpalr(1 - Y}:)

The Wilke rule was used for the dynamic viscosity and ther-
mal conductivity [40]. Fuel properties were extracted from
the various sources and approximated as a function of the
temperature [18). Thus, for n-decane, the following cor-
relations were used :

saturated vapor pressure :
Pr, = exp [11.495 —5141.36/T}] [atm]
latent heat of vaporization :
L(T,) = 9.453(619.0 — T.)"* [kealkg"']
binary diffusion coefficient :
D =5.46x 10" (T/300)"°% P~ ' [m?s~]
vapor thermal conductivity :
kp=29%107%(7/300)"® [kcalm~'s~ ' K]
vapor dynamic viscosity :
e = [0.564+1.75 x 10~ 3(T—300)] x 10~ [kgm~"'s]
vapor specific heat :
C,r = 0.02547+1.377T,—04T3 +0.113T} at T, < 0.8
and
C,r = 0.0982+1.304T, —0.593T3 +0.101 T} at
T, > 0.8.

Here T, = T/1000 K and C, is expressed in kcal kg~ ' K~".

Liquid fuel properties (except viscosity) were assumed to
be constant and evaluated at some average temperature
T, = 0.5 (Ty+ T\.i) where Ty is the boiling temperature at
a given pressure. Thus, for example, at T = 400 K

pL=642x10"*kgm?;
C,. =0.602 kcal kg=' K~';
ky =252x10 % kcalm™ ! K-,

The liquid dynamic viscosity which appears in equation (30)
was calculated at the surface temperature using the following
approximation :

u=90x10"*exp(7,/300—1) kgm~"'s™".

MODELE DE VAPORISATION DE GOUTTELETTE POUR LES CALCULS DE LA
COMBUSTION

Résumé—On réexamine le modéle classique de la vaporisation de gouttelettes pour développer I’algorithme
de calcul simple mais suffisamment prégis qui peut étre utilisé dans les calculs de combustion de liquide
pulvérise. Le nouveau modéle inclut les effets des propriétés thermophysiques variables, d’un nombre de
Lewis différent de I'unité dans le film gazeux, de ’effet de I"écoulement de Stefan sur le transfert de chaleur
et de masse entre la gouttelette et le gaz et celui de la circulation interne et du chauffage variable du liquide.
Pour évaluer les modéles simplifés concurrents du chauffage de la goutte, on considére le transfert de
chaleur dans une goutte avec circulation; une “conductivité effective” monodimensionnelle est alors
formulée. Pour illustration, on analyse I'histoire dynamique de la vaporisation des gouttelettes injectées
dans des courants d’air au repos ou fluctuants.
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EIN TROPFENVERDAMPFUNGSMODELL FUR DIE BERECHNUNG DER
VERBRENNUNG VON BRENNSTOFFNEBEL

Zusammenfassung—Das klassische Tropfenverdampfungsmodell wird angepaft, um einen einfachen, aber
hinreichend genauen Algorithmus fiir die Berechnung der Verbrennung von Brennstoffnebel zu entwickeln.
Das neue Modell beriicksichtigt folgende Effekte : die Auswirkungen verdnderlicher thermophysikalischer
Stoffeigenschaften, die Abweichung der Lewis-Zahl fiir den Gasfilm vom Wert “eins”, die Auswirkung des
Stefan—Stroms auf den Wirme- und Stoffiibergang zwischen Tropfen und Gas, die Einfliisse einer internen
Zirkulationsstrdmung und einer Aufheizung der Fliissigkeit. Um die in Konkurrenz befindlichen
vereinfachten Modelle fiir die Tropfenaufheizung einschidtzen zu kdnnen, wurde ein verbessertes und
erweitertes Modell der Wérmetibertragung in einem sich bewegenden und zirkulierenden Tropfen
betrachtet. Ein vereinfachtes eindimensionales Modell fiir die “effektive Leitfahigkeit” wird fiir den Fall
der instationdren Aufheizung der Fliissigkeit mit interner Zirkulationsstrémung formuliert. Zur Hlustration
werden die Bewegungs- und Verdampfungsverldufe von Tropfen analysiert, die in einen stetigen und
fluktuierenden HeiBluftstrom eingespritzt werden.

HUCNOJIB30BAHUE MOJIEJIM KATIEJIBHOT'O UCITAPEHUA J14 PACYETA 'OPEHUSA
PACTIBLJIA

Amsoramus—IIepecMOTpeHa KIacCHYecCKas Moledb MCIApeHHs Kaneib Ui pa3pabGoTké mpocroro, HO
JOCTATOYHO TOYHOI'O PACYETHOTO AITOPHTMA, KOTOPHI MOXKET HCIIO/Ib3OBATLCH MU pacueTa mpolecca
ropenns pacnbuia. Hosas Mopens yunThIBaeT paijimuMe TeILIO(PH3MYeCKHX CBOHCTB, OTJIHYHE YHCHA
JIsloBCa OT eIHHHILI B ra30BOll IUICHKe, BIMSHAS NOTOka CTedaHa Ha TEILIO-H MacCONEPEHOC MEXIY
Kamwie# ¥ ra3oM M BIHSHAC BHYTPEHHel LMPKYJIALMH H HeCTAIIHOHAPDHOTO Harpepa XBIXOCTH. s
OIEHKH AHAJIOTHYHBIX YNPOIUEHHBIX MOZeNell HarpeBa kamedb paccMoTpeHa Gonee cOBeplIeHHAs
MoOZeJb TeIUIONEPEHOCa BEYTPH ABHAYIIeiics IupKyapytomel kawm. ChopMymuposana ynpoleHHas
omHOMepHas MoIens ‘“OpdexTHBHON NPOBONMMOCTH”, OMECHBAIOIIAA HECTAUMOHAPHBIA MOpoINece
Harpesa XHOKOCTH C BHyTpeHHell mupxynsumeli. B xadecTBe HIMOCTPAllHE NPOAHAIM3HPOBAHBI OMHA-
MHKa ¥ Opolece HCHAPEHRs Kaneib, BAYBAEMbIX B CTAlIHOHADHBI M NMYJLCHPYIOWHEHA NOTOKH ropsvero
BO3IyXa.



