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Abstract

A strategy is proposed and analyzed for the aerodynamic
design of optimally contoured, high-enthalpy, hypersonic
nozzles. The approach involves expressing the desired
contour as an optimal convex combination of trial
configurations. The methods used are given a firm
theoretical foundation. This includes mathematical
uniqueness results that show what exit conditions guarantee
uniform flow in a neighborhood of the nozzle exit. Also,
convergence results are verified for the design scheme.
Based upon this theoretical foundation, a modular, robust,
axisymmetric nozzle design code is implemented. This
design package is used successfully to design a nozzle that
accelerates a turbulent, viscous perfect gas to a uniform
Mach Number 4.0 flow in a neighborhood of the exit
plane.
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A Matrix defined for the quadratic
programming problem in Eq. (6)
b Vector defined for the quadratic
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Trial configuration or basis function used to
define a nozzle contour

Total enthalpy per unit mass and its constant
value at a nozzle exit

Lagrangian function defined in Eq. (8)
Lagrangian function defined in Eq. (11)

Mach Number and its constant value at a
nozzle exit

Mach Number distribution for a given
contour

Component of M for the ith grid cell

(Fréchet) derivative of the Mach Number
distribution with respect to contour

Component of M for the ith grid cell

Local static, stagnation, and free-stream
static pressure

Vector of conservation variables

Entropy per unit mass and its'constant value
at a nozzle exit

Local static, stagnation, free-stream_slatic,
and wall temperature

Cartesian velocity components and [ree-
stream velocity

Matrices used for the singular value
decomposition of Eq. (9)

Cartesian coordinates

Vector defined for the quadratic

programming problem in Eq. (6)
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Xexitr Xnr¢  X-coordinates of the exit and throat planes
Yor 20 (7,z)-coordinates of the centerline of an
arbitrary cone in a 3D nozzle
Yexit Half the width of the inviscid flow region

: in the exit plane of a planar nozzle

r 2D vector-valued function defining a grid

Foit Radius of the inviscid flow region in the exit
plane of an axisymmetric nozzle

it Radius in the throat plane of an
axisymmetric nozzle

1o Distance from (y,, zg) to the inviscid flow
region edge in a 3D nozzle exit plane

o Computational coordinate in the radial
direction and its maximum

Ao Lagrange multiplier defined in Eqs. (8)
and (11)

A Vector of Lagrange multipliers defined in
Eq. (11)

b Computational coordinate in the streamwise
direction and its maximum

(5 Local and free-stream density

®0, 1> Yoo ¥y Blending functions used to define r
1 Introduction

This paper is concerned with the aerodynamic design of
optimally contoured hypersonic nozzles. The focus is
primarily on axisymmetric nozzles, but the approach has
been extended for other nozzle types. Typically, the
challenge in the optimal design of nozzles consists in the
following. Usually, the nozzle length and exit dimensions
are specified. Then, the optimization problem is to
determine the nozzle contour which minimizes the
deviation of exit flow quantities from desired values. In
particular, the present paper is focussed on the design of
nozzles which produce a uniform exit flow at a specified
Mach Number.

Sivells! has implemented a classical nozzle design
strategy which can be described as follows. First, an
inviscid flow contour is determined using the method of
characteristics. Then this contour is corrected with a
displacement thickness obtained from a boundary-layer
calculation. Unfortunately, the flow quality in nozzles
designed by Sivells’ technique can be inadequate for high
Mach Number, high-enthalpy flows. Also, such flows must

be modeled more accurately, for example, by accounting
for nonequilibrium effects. Therefore, more recently
developed design approaches involve an iterative procedure
in which adjustments are made to a prospective contour
based on an accurate CFD (computational fluid dynamics)
calculation of the nozzle flow [field for that contour.

Korte, et al.2 have successfully developed a CFD-based
optimization code for the optimal design of nozzles sup-
porting 2D hypersonic viscous flow. In Korte’s approach
the nozzle contour is determined by a smooth combina-
tion of cubic splines defined over a pre-established set of
nodes. The nodal slopes of these piecewise polynomials are
calculated iteratively by minimizing a certain objective
function. Specifically, this function quantifies the deviation
of the Mach Number from a specified value along part of
the centerline and part of the exit plane. In addition, it

“is defined in terms of crossflow velocity profiles to mini-

mize nonaxial velocity components near the exit. To com-
pute these flow variables for the objective function, a CFD
code is used which solves the parabolized Navier-Stokes
equations. However, note that Korte’s procedure requires
a flow-field calculation for each entry in the Jacobian of
the objective function with respect to design parameters.
As explained in Section 4, such calculations are not
required for the approach presented in this paper.

The present approach is related to that used by Barger
and Moitra3 to design aerodynamic bodies which closely
match specified performance indices. In their work, the
body shape is determined by a linear combination of trial
configurations, each expected to be close to the optimal
design. Then the optimal Fourier coefficients of this
combination are calculated in a direct fashion. Specifically,
this noniterative method involves a Gram-Schmidt ortho-
gonalization procedure which minimizes the deviation of
performance indices from specified values. It is intended
that greater accuracy be achieved by increasing the number
of trial configurations involved in the design. However,
the stability of such a sequence of calculations cannot
generally be guaranteed. As discussed in Section 6, such
instabilities are guaranteed not to occur for the approach
presented in this paper.

In the approach presented here, a hypersonic nozzle
contour is designed as an optimal convex combination of
prospective contours or basis functions. Specifically, a
convex combination is defined as a linear combination in
which the coefficients are non-negative and sum to one.
As discussed in Sections 4 and 6, the consequences of
constraining the combination to be convex are extremely
significant.




The basis lunctions used to form possible contours are
determined as follows. First, endpoint conditions and
derivative bounds are specified for any possible contour.
This defines a solution set which is convex; i.e., given any
collection of curves in the set, every convex combination
of the curves is also in the set. Also, there are extreme
curves in the set which cannot be written as a convex
combination of any other curves in the set. These are
important since every possible solution curve can be
approximated arbitrarily well with a convex combination
of the extreme curves. Therefore, the basis functions are
chosen from the collection of these extreme curves. In a
similar fashion, basis functions can be chosen as
perturbations of a baseline contour.

Once a set of basis functions is generated as described
above, the associated nozzle flow field is computed for
each. To be accepted, the set of contours must have the
following properties. First, among the associated flow
fields, there must be at least one Mach Number distribution
that exceeds the specified value at every point in an inviscid
flow neighborhood of the exit plane. Also, there must be
at lcast one that is exceeded by the specified value. Finally,
all flow fields must be smooth and, in particular,
shock-free.

Once these preparations are completed, an iterative
process begins with the selection of a random initial convex
combination of the basis functions. After the flow field
associated with this initial contour is computed, the next
iterate must be determined. The intention is to choose the
next iterate to minimize the deviation of the Mach Number
from a specified value at certain points. These points can
be chosen to drive the Mach Number to a constant along
part of the centerline and part of the exit plane.
Alternatively, the Mach Number can be driven to a
constant, and its axial derivative to zero in part of the exit
plane. As explained in Section 5, such conditions lead to
uniform flow in a certain neighborhood of the nozzle exit.

The subsequent iterate is determined explicitly as
follows. First, consider the nonlinear map which, for a
given nozzle contour, gives the Mach Number at points
situated near the exit plane as described above. This map
is linearized with respect to the current iterate. As shown
in Section 4, it is remarkable that the linearization can be
approximated without referring explicitly to the (Frechet)
derivative? of the map. This is a consequence of the fact
that the Fourier coefficients of each iterate must sum to
one. Finally, the coefficients of the next iterate are
determined by minimizing, in a least-squares sense, the
difference between the linearized Mach Number distri-

bution and the desired Mach Number. Unfortunately, it
has been found that if this least-squares problem is solved
without constraining the new coefficients to be non-
negative, the sequence of iterates can diverge. On the other
hand, if the convexity condition is enforced, the iterates
converge rapidly. Thus, the coefficients of each new iterate
are determined not as the solution to an unconstrained
least-squares problem, but as the solution to a quadratic
programming problem.,

Finally, as discussed in Section 6, it is an important
consequence of the convexity constraint that certain
theoretical convergence results can be verified. Specifically,
for a fixed number of basis functions, the iterative approxi-
mations are guaranteed to converge to a contour in the
solution set. Also, any solution is guaranteed to be
approximated arbitrarily well with a convex combination
of a sufficiently large number of basis functions. Further,
a sequence of optimal contours obtained with an ever-
increasing number of basis functions is guaranteed to
converge to a contour in the solution set.

The procedure outlined above is implemented in a
modular fashion with three major modules at the highest
level. First, for a given prospective contour, a nozzle grid
is generated algebraically using Hermite transfinite inter-
olation. This grid generator is discussed in Section 2. Next,
the nozzle flow is calculated with a space-marching code
due to Molvik and Merkle.5 This is described in Section
3. After the Mach Number distribution is obtained from
the flow solver, it is used in an optimization module to
determine an improved contour. The quadratic program-
ming techniques used in this module are explained in Sec-
tion 4. Finally, computational results obtained using the
complete nozzle design package are reported in Section 7.

2 Grid Generation

The requirements for the grid generation component of
the nozzle design package are as follows. First, it is
necessary to generate a grid for every prospective nozzle
determined during a potentially lengthy iterative procedure.
Therefore, these grids must be generated quickly. This need
for speed suggests the use of an algebraic, as opposed to
an elliptic approach. Also, the grid generator must operate
robustly so that inputs need not be changed between
iterations. Next, for the sake of modularity it is required
that the grid generator interface smoothly with other codes,
particularly flow solvers. Thus, a particular requirement
is specified since many flow solvers use a conditionally
correct method for imposing inviscid solid wall boundary
conditions. Specifically, a method involving contravariant



velocity components has been found to give correct results
only in case grid lines are orthogonal at the wall. (The
details of this finding are omitted to limit the scope of this
paper.) Thus, for inviscid flows, this orthogonality
condition is a requirement for the grid generator. The
orthogonality condition is also a requirement for viscous
flows since certain turbulence models are formulated in
terms of the distance from a solid wall. In addition, it is
useful to have grid lines oriented normal to solid walls for
convenient a posteriori boundary-layer analysis.

Well-established grid generation codes, such as the
GRAPE codeb and the EAGLE code’ were options for the
nozzle design package. However, to meet the requirements
discussed above, it was necessary to implement an algebraic
grid generation method based on Hermite transfinite
interpolation.8 Specifically, the grid is given by setting
integer arguments in the vector-valued function:

r,9) = do(OrE1) + Yo (&, 1)
+ (&%) + Y (Ore(€,8%)
1 = £ < & =i = %
Here, £ and ¢ are computational coordinates increasing

in the streamwise and radial directions, respectively. Also,
the blending functions, ¢, ¢, ¥, ¥, are defined so that

do() =1 dg§*) = 0 ¢o(1) = 0 Gp(¢*) = 0
di() =0 ¢;6*) =1 ¢(1) =0 ¢(% =0
Vo) = 0 Yo(i®) =0 Yo(l) = 1 ¢o*) = 0
Y1) = 0 &%) =0 (1) =0 ¢ =1

Thus, (£, 1) is a boundary condition specifying the nozzle
centerline, and r(£, ¢*) specifies the nozzle contour. Also,
rg,(E,l) and r;.(E, ¢*) are specified so that grid lines are
orthogonal at the nozzle wall and centerline.

Finally, grid spacing is specified in the radial direction
by defining the blending functions in terms of a certain
distribution function, s(¢), 0 = ¢t = 1. Specifically, sis a
smooth monotone function satisfying a power law at one
extreme and increasing linearly at the other. Also, spacing
is specified in the streamwise direction by setting r(£,1) and
r(£,¢*) in terms of a similar distribution function.

3 Flow Calculation

The requirements for the flow-solving component of the
nozzle design package are as follows. First, it is necessary
to compute the steady-state flow through every prospective
nozzle determined during a potentially lengthy iterative
procedure. Therefore, a time-iterative or pseudotime-
iterative procedure is prohibitively time-consuming. Thus,
it is necessary to space march through supersonic flow.
Next, the flow solver must be able to compute complex
flows through general 3D nozzles to solve design problems
outside the scope of the present paper. In particular, the
option must be available to compute the flow of a gas
which is inviseid or viscous, laminar or turbulent. Also,
it should be possible to model the fluid as a perfect gas,
a gas in thermodynamic equilibrium, or a gas in chemical

- nonequilibrium. The flow solver must allow the specifica-

tion of a range of boundary conditions. These include arbi-
trary supersonic inflow conditions, extrapolated outflow
conditions, and tangent flow conditions at the centerline.
At the nozzle wall, it must permit tangent flow or no-slip
conditions and isothermal or adiabatic conditions. Further-
more, the code must operate robustly so that inputs need
not be changed between iterations.

The requirements described above are met by the flow
solver due to Molvik and Merkle.’ Their code uses a con-
servative finite-volume space-marching technique to solve
the chemically reacting parabolized Navier-Stokes equa-
tions. The difference scheme augments a first-order upwind
Roe scheme? with higher-order terms which are inactivated
in nonsmooth regions of flow. This numerical technique
is due to Chakravarthy and Osher!? and is designed to
make the scheme total variation diminishing. Also, the
code space marches the species continuity equations and
the fluid dynamics equations, simultaneously, in strongly
coupled form. The numerical method is fully implicit, so
the nonlinear algebraic space-stepping equations are solved
iteratively at each step. Specifically, the solution is obtained
using a quasi-Newton iteration, due to Rai,!! in which the
Jacobian of the residual is simplified by approximate fac-
torization. Continued quasi-Newton iterations eliminate
linearization and factorization errors. Finally, stable
marching through the subsonic boundary layer is accom-
plished by an approximation, due to Vigneron, et al.,!2
where the pressure in the streamwise flux is scaled so that
streamwise growth modes admitted by the parabolic
equations are eliminated.
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Fig. 1. Cells targeted for constant Mach Number to achieve uniform exit flow.

After the nozzle flow is computed, Mach Number values
are extracted for use in the optimization scheme. As
explained in Section 5, there are two natural approaches
for achieving uniform exit flow at a specified Mach
Number. Both methods are illustrated in Fig. 1. One
method is to drive the Mach Number to a constant and
its axial derivative to zero in an inviscid flow portion of
the exit plane. To impose these conditions, Mach Number
values are calculated for the two layers of cells nearest the
nozzle exit, but within the inviscid flow region.
Alternatively, the Mach Number can be driven to a
constant in an inviscid flow portion of the exit plane and
upstream from the exit along part of the centerline.
Specifically, the ratio of the length of the centerline
segment to the radius of the exit plane region is \{Mg -1,
where M, is the desired Mach Number. To impose these
conditions, Mach Number values are calculated for
appropriate cells along the exit plane and along the
centerline.

4 Optimization

The purpose of the optimization procedure is to
determine a nozzle contour for which the exit flow is
uniform at a specified Mach Number, say M. For this,
let M(f) refer to the exit Mach Number distribution for
a given nozzle contour, f. Specifically, let M{(/) denote the
Mach Number in the ith grid cell taken from a collection
of cells as discussed in the last section. Thus, the goal is
to find a contour, f, from some set of functions, which
minimizes the residual,

Y IM) - My|> )

1

This nonlinear optimization problem is solved by an
iterative procedure described below.

First, consider the set of admissible contours, or solution
set. It is defined in terms of physically intuitive constraints.
For example, a solution must be increasing and hence have
a non-negative derivative. Also, a solution must have

continuous curvature, and a certain number of its
derivatives should be bounded. As explained in Section 1,
such constraints lead to a convex solution set. Also, as
discussed earlier, a curve in a convex solution set can be
approximated with a convex combination of extreme
curves, i.e., curves which cannot be written as a convex
combination of any other curves in the set. Therefore, in
the optimization scheme, a prospective contour, f, is a
convex combination,

o) = Yoeif; (0 Ye=1, ¢=0, (2
J

J

where each basis function fj is extreme with respect to the
specified solution set. Note that if each basis function
satisfies a certain equality or inequality constraint, the same
holds for f. For example, if each Jj is increasing, so is /
since

¢ = 0, fj(x) = 0 imply that f'(x) = Y c;f;(0) = 0.
i

Now consider the explicit calculation of the basis
functions. For example, suppose that the solution set is
defined as follows. Let an exit radius and a range of throat
radii be specified. Say that each permissible contour is
required to have two continuous derivatives, and that the
first derivative is non-negative. Assume that certain
derivatives are specified at the exit and at the throat.
Finally, suppose the third derivative (not necessarily
continuqus) is increasing between specified bounds. Then
the extreme elements of the solution set happen to coincide
with certain cubic spline functions described  below.
Therefore, these spline functions are used as basis
functions. If a similar solution set is defined to require four
continuous derivatives, the extreme elements are certain
quintic spline functions.

There are many optional functional constraints to
impose. The important point here is that these functional
constraints translate to linear algebraic constraints on the
coefficients of the piecewise polynomials defining a given



basis function. Now, suppose the number of spline nodes
to be fixed and that the total number of independent
polynomial coefficients is N. Each linear algebraic
constraint determines a subset of the N-dimensional
coefficient space, and only the points in the intersection
of these subsets correspond to coefficients satisfying all
constraints. Note that the intersection set is a convex
hyperpolyhedron whose vertices cannot be expressed as a
convex combination of any other points in the set. Also,
every point in the set can be written as a convex combina-
tion of the vertices, i.e., the extreme points. The collection
of spline functions corresponding to the points in this
hyperpolyhedron is a discrete approximation to the com-
plete solution set; however, the vertices correspond to
functions which are actually extreme with respect to the
solution set. Therefore, the basis functions are determined
by choosing their polynomial coefficients to correspond
to the vertices. These coefficients are calculated explicitly
using a linear programming technique to find the active
constraints on the boundary of the hyperpolyhedron. To
limit the scope of this paper, the specifics of the linear
programming technique are not given here, except for a
reference to the basics appearing in Ref. 13.

It is remarkable that the representation shown in Eq.
(2) allows the optimization to be formulated without
explicit reference to the (Frechet) derivative* of M(Y).
Specifically, let the nozzle contour calculated at the /th
iteration be denoted by

10 = Xelf; 0.
J

Then, £+ is computed from f/ by minimizing the linear
approximation,

_M,_fml) - My = M{(f")

F MO - 11 - M ©)
in a least-squares sense. Here, M,-'is the (Fréchet} derivative
of M. Its existence depends crucially upon the assumption
that for every permissible contour, there is a well-defined,
smooth flow field that depends smoothly upon the choice
of contour.!415 Since M(f) is a linear operation on the
bracketed expression,

Mig' =o' = Dl - Wiy,
- Tl - M0 - ')

6

: - +1 !
The last equality follows since both {cj } and {Cj }

sum to one, and the added term, M,,'(f")f’, does not
depend upon j. Next, using the linear approximation,

M;(;) =~ M (') + M) - /']

it follows that

T+ - ¢ PO - 1)

u

Xl - G IME) - MO

I

Ll - ¢/ 10

Again, the last equality follows since both sets of
coefficients sum to one, and the extra term, M;(f*' ), does
not depend upon j. Now, combining Eqgs. (3), (4) and (5)
gives

MY = My = M(f") - M,
+ Z[C;“' - ¢/ IM; ()

which does not depend explicitly upon the (Fréchet)
derivative of M(f). Thus, f/*! is obtained by solving the
qu_adratic programming problem

minimize |Ax — b]?

(6)
subject to Exj =1 x=0
J
where
AU = M.l' (f-}), xJ — cj!-l—l
J

and setting

0]

S (x) = Ecj”ifj(x).

This quadratic programming problem is solved using a
simplex-type method where heuristic rules are used to add
or delete active constraints. Specifically, the minimization
problem is first solved, unconstrained by the non-negativity




conditions. This is accomplished by finding a stationary
point for the Lagrangian function,

L)) = |Ax = b|> = Xle'x = 1) (@)

where e has all unit components. Also, the superscript, ¢, °

denotes transposition. To account for the possibility that
A is not well-conditioned, it is expressed in terms of its
singular value decomposition!3

A = UWV. ©)

Here, V is a square orthogonal matrix, i.e., V=1 = W,
Its dimension is equal to the number of columns of A.
Also, W is a diagonal matrix with the same dimension as
V. Finally, U has the dimensions of 4 and has orthogonal
columns. With this decomposition, the solution to the
unconstrained minimization problem is given by

1 — e'VW-1Ub

eVW—2Vie

x = Yw-lup +

VIW=2Vle. (10)

Unfortunately, this. formula may yield some negative
components for x. If so, the solution to the quadratic
programming problem is situated on the boundary of the
set {x : e’x = I, x; = 0}, rather than in its interior. This
point is found by locating a stationary point for the
Lagrangian function,

LN = [Ax = b]% = Agle'x — 1) = Nx (1)

with certain components of X held fixed at zero. Speci-
fically, it follows from the Kuhn-Tucker conditions for
optimality,1© that the solution is achieved at a point which
is stationary with respect to the nonfixed arguments of £
for which :

x: =0, A= 0,

; J Mx = 0. (12)

This means that the solution has the property that the only
components of X which are nonzero are those for which the
corresponding components of x are zero, and vice versa.
Thus, the quadratic program solver proceeds as follows.
Suppose that the kth component of x in Eq. (10) is negative
and is actually the most negative among negative
components. This suggests that the kth component of x
be set to zero, so the kth component of A becomes a free
variable in Eq. (11). This can be implemented computa-
tionally by removing the kth column of A. Then, the
solution is recalculated by Eq. (10) with the singular value
decomposition in Eq. (9) corresponding to the new A.
Continuing in this way, a non-negative x is eventually
computed. Then, X is obtained according to

A =24Ax — b) — 2 [x"A"(Ax - b)]e (13)

where A has certain columns removed depending upon the
path leading to the non-negative solution in Eqg. (10).
Suppose the kth component of X in Eq. (13) is negative
and is actually the most negative among negative
components. This suggests that the kth component of A
be set to zero, so the kth component of x becomes a free
variable in Eq. (11). This can be implemented computa-
tionally by restoring the kth column of A. Then, the
solution is recalculated by Eq. (10) with the singular value
decomposition in Eq. (9) corresponding to the new A. If
this causes the new x to have negative components, they
are eliminated according to the procedure outlined above.
Again, \ is recomputed according to Eq. (13). Continuing
in this way, the minimum point is eventually computed
satisfying Eq. (12).

Since there are only finitely many inflection points to
be tested, the method is guaranteed to converge provided
it does not cycle. However, cycling is rare, and can be
avoided easily with heuristic techniques. !¢ In practice, this
method for solving Eq. (6) converges rapidly without
visiting a number of inflection points of combinatorial
order. In fact, the quadratic program solver converges
within a number of iterations on the order of the number
of basis functions.

Once the quadratic programming problem of Eq. (6) is
solved, f/*! is determined by Eq. (7). Finally, this itera-
tion on [ continues until the residual in Eq. (1) or the
difference between the coefficients, {c/*!} and {c'},
meets a certain tolerance. See Section 6 for a discussion
of the convergence.

5 Uniqueness Results

As stated in the last section, the purpose of the
optimization procedure is not merely to determine a nozzle
contour for which the exit flow reaches a specified Mach
Number. In addition, the flow must be uniform in the exit
region; i.e., all flow variables must be constant in a neigh-
borhood of the exit plane. One way to achieve this is to
explicitly minimize the deviation of all independent flow
variables, at all points of a test region, from specified
uniform conditions. However, these uniform conditions
can be obtained by performing the minimization over a
much smaller set. Indeed, the computational challenge is
to determine the smallest subset of a test region on which
constant flow properties will guarantee uniform flow
throughout the test region. Specifically, given any region,




there exists a subset of its boundary on which the uniform
conditions can be specified to determine a unique, uniform
solution to the hyperbolic equations modeling inviscid,
steady-state flow through the region. The purpose of this
section is to state such mathematical uniqueness results.
These provide the theoretical basis for minimizing the
residual in Eq. (1) to determine the optimal nozzle contour.
Uniqueness results will be stated for planar, axisymmetric,
and general 3D problems, and careful proofs of these
statements are omitted to limit the scope of this paper.

To state the uniqueness results, the geometry will be
described in terms of Cartesian coordinates (x, y, z), where
X increases in the downstream direction along the central
axis of the nozzle. Also, for the following, let o, u, v, w
and e represent the density, the Cartesian components of
velocity, and the total energy per unit mass, respectively.
Then, set @ = [g, ou, ev, W, eel. In each of the cases
discussed below, Q will be assumed to be a solution to the
Euler equations, linearized with respect to the desired
constant flow state.

First, consider the p]anar case. Suppose @ is a smooth
solution to the linearized Euler equations in the wedge-
shaped region defined by

YDAME = 1= (g — 0. (19)
Here x

oxit 18 the x-coordinate of the exit plane, and 2y,,;
is the width of the inviscid flow region in the exit plane.
Also, M, is a specified Mach Number. More specifically,
suppose that @ has no variation with respect to z and is
symmetric with respect to the xz plane. Next, assume that
the following boundary conditions hold for constants A
and sy

(ycxil i

M = M,
M, =0
X for x = xcxi[) 0= |y| = Yexit (IS)
h = h
5 = 8

where M, h, and s represent the Mach Number, total
enthalpy per unit mass, and entropy per unit mass,
respectively. Then, @ is constant throughout the wedge-
shaped region of Eq. (14). Alternatively, it can be shown
that the same result holds il the boundary conditions of
Eq. (15) are replaced with

h = hy forx = X5, 0 < |¥| S Vet
< §F = .S'O (]6)
2
M = M, for Xexit — Yexit Mo -l=x= Xexits

y=20

\

Therefore, the conditions of either Eq. (15) or Eq. (16) can
be used to achieve uniformity in the planar flow case.

Next, consider the axisymmetric case. Suppose Q is a
smooth solution to the linearized Euler equations in the
cone-shaped region defined by

(rexit - NG 2) NME = 1 2 (g — . (17)
Here, r,y;, is the radius of the inviscid flow region in the
exit plane. More specifically, suppose that @ has no
variation with respect to # = tan~ !(z/y). Next, assume
that the following boundary conditions hold for constants
ho and sy:

M = MO
M =00 i e Foiin 0 S P A 2 < P e
h = hy
2 hEe

Then, Q is constant throughout the cone-shaped region of
Eq. (17). Alternatively, it can be shown that the same result
holds if the boundary conditions of Eq. (18) are replaced
with:

(M = M,
= g Borse s e 0 gt ot = g
(19
< s =5
M = M, for Xexit = Tegit \/M% e il x_exi:'
\

Hence, the conditions of either Eq. (18) or Eq. (19) can
be used to achieve uniformity in the axisymmetric flow
case.

Finally, consider the general 3D case. For example, the
nozzle could have a circular cross section at the throat and




a square cross section at the exit. Suppose @ is a smooth
solution to the linearized Euler equations in any cone-
shaped region defined by

(o~ Vo -2+ @-w) M- 1

= ('\’C.‘(ii = X}.

Here, ry is the distance from an arbitrary point (yy, zp) to
the edge of the inviscid flow region, in the exit plane. Next,
assume that the following boundary conditions hold for
constants /1y and sg:

(M = M,
My =0 forx = x,
o =h
v =S° 05\/01—y0)2+(z-z0)2 =r
9 @1
W, =
0 =W —yv + (2 — zgw
ror X = xcxip ‘\/U" n yo)z =1 (z i 20)2 = "'0

Then, @ is constant throughout the arbitrary cone-shaped
region of Eq. (20). Unfortunately, for the general 3D case,
Eq. (21) cannot be relaxed in a manner similar to that
shown in Eqgs. (16) and (19). Specifically, if the condition
on the axial derivative, M, is replaced with a specification
of the Mach Number along the centerline of the cone,
where y = ygand z = 2, then uniqueness of the constant
solution cannot be established. In fact, it is straightforward
to demonstrate multiple solutions explicitly.

The boundary conditions shown in Egs. (15), (16), (18),
(19) and (21) suggest that for nozzle design, the
performance function to be minimized should involve all
variables listed. In particular, this includes not only the
Mach Number, but also the total enthalpy and the entropy.
However, these thermodynamic properties do not appear
in the residual function of Eq. (1). For flows considered
in this study, total enthalpy and entropy are expected to
be constant. On the other hand, additional terms should
be included in the performance function for more general
flows. Finally, note that while the uniqueness results of
this section give a minimum set of theoretical conditions
for uniform flow, it may be computationally convenient
to overspecify with a larger set of conditions.

6 Convergence Results
This section is concerned with the convergence of three

processes. The first is of the most immediate importance.
It involves the behavior of iterates of the optimization

scheme with continuing iterations for a fixed number of
basis functions. Then, the second pertains to the approxi-
mation properties of the basis functions. Specifically, it
is important for any solution to be approximated arbitrarily
well with a convex combination of a sufficiently large
number of basis functions. Finally, the third has to do with
the behavior of a sequence of optimal contours obtained
with an ever-increasing number of basis functions. Con-
vergence results for these processes are only described
below since careful proofs of these statements are beyond
the scope of this paper.

First, consider the convergence of the iterative
approximations for a fixed number of basis functions. It
is a standard feature of inverse problems that the solution
set should be carefully restricted.!” Specifically, it should
have at least the property that any sequence in it has a
convergent subsequence; i.e., every sequence must accu-
mulate around one or more elements in the set. This
property is known as compactness. For now it is assumed
that the solution set is spanned by a fixed number of basis
functions. Hence, it is finite-dimensional. In addition, the
convexity constraint makes the solution set closed and
bounded. All such finite-dimensional sets are compact.
Thus, the iterates of the design scheme must be clustered
around one or more accumulation contours. Also, an accu-
mulation or limit contour must be a convex combination
of the basis functions and therefore possess properties
prescribed for the solution set.

Now, consider the approximation of any element in the
solution set with a convex combination of basis functions.
Here, the solution set is not assumed to be finite-
dimensional. It is a convex set of functions limited only
by constraints such as endpoint conditions and derivative
bounds. Also, it is important to note for the following that
if a bound is imposed on, say, the (k + 1)st derivative,
the solution set is compact in CX, the space of functions
with continuous derivatives.!8 The concern is that there
be no parts of the solution set which are inaccessible or
which cannot be approximated arbitrarily well with a finite
convex combination of a sufficiently large number of basis
functions. However, (by the Krein-Milman Theorem)!?
every compact, convex set in CK can be approximated
arbitrarily well (in a CX sense) with convex combinations
of its extreme elements. In this work, the basis functions
are constucted to approximate the complete set of extreme
elements of the solution set with arbitrary accuracy as the
number of basis functions increases. Hence, convex
combinations of them can be used to approximate any
element of the solution set with arbitrary accuracy.




Finally, consider the behavior of a sequence of contours,
each of which is optimal in the convex hull of a fixed
number of basis functions. It is desirable for this sequence
to converge with respect to an ever-increasing number of
basis functions. Based upon discussions above, note that
each optimal contour lies in a finite-dimensional approxi-
mation to the full infinite-dimensional solution set. Since
the infinite-dimensional set contains all of its finite-
dimensional approximations, the sequence of optimal
contours in question must lie in the full infinite-dimensional
solution set. Recall that the full set is compact in C¥ if a
bound is imposed on the (k + 1)st derivative. Thus, the
sequence of optimal contours must cluster (in a Ck sense)
around one or more accumulation contours. Also, such
an accumulation contour must lie in the full solution set
and therefore possess the properties prescribed for any
admissible solution.

7 Computational Results

In this section, a test nozzle design calculation is
presented. This example involves the optimal design of an
axisymmetric nozzle through which a turbulent, viscous
perfect gas (air) is accelerated to a uniform Mach Number
4.0 flow in a neighborhood of the exit plane.

The geometric constraints were:

Xexil

- Xy = 25.0in.,  flxgq) = 2.22 in.,
.05 in. = flxg = 0.7 in,,

Fg) =0 ') = 001,
-0.08 = f"(x) = 0.01,

f N(xcxit]I =0

JS™ increasing.

With 14 equally spaced nodes, these conditions generated
20 cubic spline basis functions according to the procedure
outlined in Section 4. They are shown in Fig. 2. Other
contraints have been shown to work well except when
J'(Xexiy) is not positive. The value used here was suggested
by an optimization where f'(x,,;) was left unspecified. As
expected, the accuracy obtained was shown to increase as
the number of nodes was increased from 7 to 14.

The grids generated for these basis functions and for
optimization iterates contained 301 points in the streamwise
direction, by 71 points in the radial direction. The viscous
spacing near the wall satisfied a power law with an
exponent of 9. Also, spacing was tighter near the throat,
satisfying a power law with an exponent of 7/3. For space
marching, the flow solver interpolated from such grids for
a total of 559 space steps. The initial space step was 0.001
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Fig. 2. Optimal contour (symbols) plotted among basis
functions (dashed curves).

in., which was increased by a factor of 1.02 at each step
to a maximum step of 0.2 in. In each case, the space
marching was initialized with a calculation of flow through
a cylinder extending smoothly upstream from the throat
for a length of 0.01 in. Note that the throat location is
understood as the point of initial expansion.

The stagnation conditions were

po = 60 Ib/in.2 To = 630°R

The Reynolds Number was 1.26 x 10° for a l-in.
reference length. The flow variables were specified at the
inflow boundary to give a constant inviscid core flow with
a certain boundary-layer profile. Specifically, free-stream
conditions were set in the inviscid core so that nonaxial
velocity components were zero and all other variables were
determined from a Mach Number of 1.01. For example,

Uy, = 1.13 x 103 ft/sec T, = 523 x 102 °R

P = 451 X 103 1b/ft2 g, = 5.02 x 1073 slug/ft3

Then the boundary-layer profile was generated as follows:

T - T u

wall

- T

wall

T

oo

1 0=r=ry(l —4)

- ryql h
. rthrt“ -A)sr= il




Here, A = 0.017 and ¢ = 2.7. Also, the wall temperature,
T\ a1» Was set to 90 percent of the free-stream temperature,
T.,. The bracketed expression was used to make the

profile smooth.

Besides this inflow profile, the following additional
boundary conditions were imposed. At the centerline, a
tangent flow condition was specified. At the nozzle wall,
a viscous no-slip condition was imposed. Also, the wall
temperature was specified to be constant and the same
value as indicated for the inflow boundary. The flow solver
was run using a Baldwin-Lomax algebraic turbulence
model. The number of quasi-Newton iterations performed
by the flow solver was set to two. For the optimization
scheme, the cells used for the residual of Eq. (1) were taken
from the exit plane and the centerline. The layer of cells
along the exit plane ranged from the center to 70 percent
of the exit radius. The layer of cells along the centerline

was longer by a factor of 4 /M% -1 = «\/E

With these conditions in place, the optimization package
required two iterations for the residual in Eq. (1) to drop
below 10~ 3. This calculation was completed on a Silicon
Graphics IRIS Indigo® workstation, with each flow-field
calculation requiring less than 200 sec. The final contour
is shown among basis functions in Fig. 2. Also, a contour
plot of the Mach Number distribution is shown in Fig. 3.
Note the constant Mach Number region near the exit. In
this region, the Mach Number deviates from 4.0 by less
than 0.1 percent,

NOZZLE WALL

MACH NUMBER 4.0
(ONTOUR

NOZZLE CENTERLINE

Fig. 3. Mach Number contour plot for a Mach Number
4.0 nozzle.

8 Concluding Remarks

A strategy has been proposed and analyzed for the
aerodynamic design of optimally contoured, high-enthalpy,
hypersonic nozzles. The approach involves expressing the
desired contour as an optimal convex combination of trial
configurations. The methods used were given a firm
theoretical foundation. This includes mathematical
uniqueness results that show what exit conditions guarantee
uniform flow in a neighborhood of the nozzle exit. Such
results have been proved for planar, axisymmetric, and
generally 3D nozzles. Also, convergence results were

11

verified for the design scheme. Specifically, for a fixed
number of basis functions, the iterative approximations
are guaranteed to converge to a contour in the specified
solution set. Also, any solution can be approximated
arbitrarily well with a convex combination of a sufficiently
large number of basis functions. Finally, a sequence of
optimal contours obtained with an ever-increasing number
of basis functions is guaranteed to converge to a contour
in the solution set. After the theoretical foundation was
secured, a modular, robust, axisymmetric nozzle design
package was implemented. This package includes an
algebraic grid generator module, a space-marching flow
solver module, and a quadratic program solver module.
The design package was used to design a nozzle that
accelerates a turbulent, viscous perfect gas to a uniform
exit flow that deviates from Mach Number 4.0 by less than
0.1 percent in a neighborhood of the exit plane. The quality
of the computational results suggests that the design
scheme will be successful in the design of more complex
nozzles, supporting more complex flows. In fact, the
optimizer strategy can be applied to other aerodynamic
design problems.
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