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Fig. 4 China clay flow patterns; =« =4°, M =
caliber cylinder.

The flow photographs presented were selected for their
ability to muaintain their salient features after reduction.
Previous experience® indicates that the boundary layer at
separation is trausitional for the 2.0 caliber cylinder (separa-
tion Reynolds number of 1.25 X 10¢ based on separation loca-
tion aft of shoulder). However, for a longer cylinder where
shadowgraph photographs indicate turbulent separation
(separation Reymnolds number = 2.36 X 10f), similar vortex
patterns are evident (Fig. 6).

These flow pictures indicate that serious reappraisal of
current theoretical separated flow models may be in order
since present models do not consider the circumferential
communication effects revealed by the present investigation.
Further experimental work is also warranted.

VORTEX SHED INTO
WAKE

VIEW LOOKING DOWNSTREAM

N~ SEPARATION BOUNDARY

TYPICAL REVERSE
FLOW STREAMLINE

— SEPARATION SHOCK
ALONG THE BODY

SEPARATION LINE

Fig. 5 Three-dimensional model.
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Fig. 6 China clay flow patterns; « = 4°, M = 1.2, 3.5
caliber cylinder.
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Transonic Flow in Small Throat
Radius of Curvature Nozzles

J. R. KuieGgeL* anp J. N. LEVINET
Dynamic Science, a Division of Marshall Industries,
Monrovia, Calif.

HE transonic flow region in convergent-divergent nozzles
has been widely studied. The application of various ex-
pansion techniques to this problem has proven to be one of the
more successful methods of analysis. Different investigators
have employed various expansion techniques,! ¢ ranging from
double power series expansions to small parameter expansions
about the sonic condition. All of these methods are essen-
tially the same, being perturbations about the one-dimensional
flow solution. The deviation from one-dimensional flow is de-
termined by the normalized throat wall radius of curvature R,
the ratio of the throat wall radius of curvature R, to the
_throat_radius r*(R_= R,/r*). Although these techniques
have been successfully applied to a variety of transonic flow

_problems, they, unfortunately, have a common shortcoming:
their inability to analyze nozzles having small normalized

throat wall radii of curvature R < 1. For most rocket nozzles _
Jof current interest, B <1, and it is generally believed that the
expansion methods are inapplicable. It will be shown, how-

ever, that this limitation is due to the coordinate system em-
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Fig.1 Toroidal coordinates.

ployed in the analysis rather than to a fundamental limitation
of the expansion method itself.

Hall! carried out a small perturbation transonic solution for
irrotational, perfect gas flow, in cylindrical coordinates, by
means of expansions in inverse powers of R, the normalized
throat wall radius of curvature. His solution gives the nor-
malized (with the sonic velocity) axial and radial velocity com-
ponents in the form

w=1+ “‘(r ) “’gf—) + —“"gf)
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where z = [2R/(v + 1)]"2/r* is the transformed normalized
axial coordinate and r = y/r* is the normalized radial coor-
dinate. In reviewing Hall’s work, it was discovered that his
published axisymmetric solution contained errors in the third-
order terms (us,vs) and the discharge coefficient. Since Hall’s
work is widely used in the field, the complete, corrected, third-
order axisymmetric solution is given in the Appendix.

The expansion parameter 1/R in Egs. (1) and (2) is intro-
duced through the wall boundary condition, which requires
the flow angle to be equal to the local wall slope at the bound-
ary. The boundary is not a constant coordinate line in cylin-
drical coordinates and must be evaluated as a power series in
1/R. Thus, the wall boundary condition is never exactly
satisfied in cylindrical coordinates. In addition, the radial
wall velocity v is proportional to the boundary slope, which can
become large in the vicinity of the throat in nozzles having
small (B < 1) normalized throat wall radius of curvature. It
is reasonable to expect that the accuracy of the solution could
be improved by seeking a solution in a coordinate system in
which the axis and wall are both coordinate lines. In such a
coordinate system, the boundary conditions are reduced to
their simplest form and can be satisfied exactly. In addition,
the normal coordinate lines are approximately streamlines
and the normal velocity component is always small throughout
the flowfield, being identically zero at both the wall and axis.
For nozzles having circular arc throats, the optimum coor-
dinate system would thus appear to be toroidal coordinates
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(Fig. 1), since in this coordinate system the axis is repre-
sented by the line 7 = 0 and the nozzle wall is represented by
the line n = 7, (a constant).

The relationship between the cylindrical coordinates z, y
and the toroidal coordinates £, 7 is given by

y/r* = (1 4+ 2R)'? sinhn/(coshy + cos§) 3)
z/r* = (1 + 2R)V* sing/(coshy + cosf) 4

where —7 < £ <7, —o < 7 < «, and the throat plane is
at £ = 0. The wall contour in toroidal coordinates, in terms
of the normalized wall radius of curvature, is

1+ (1 4+ 2R)'2/(1 + R) ®)
1 — (1 + 2R)'?/(1 + R)

which can be expanded as

No = — ln
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convergent for all B > 0. Thus, utilizing the wall coordinate
in toroidal coordinates as a normalization quantity introduces
the perturbation parameter 1/(R + 1) into the solution,
whereas in cylindrical coordinates the perturbation parameter
appears as 1/R through the wall boundary condition. The
perturbation parameter 1/(R + 1) remains less than 1 for all
normalized wall radii of curvature. Thus, the convergence
properties of an expansion solution obtained in toroidal coor-
dinates should be superior to that given by Hall for eylindrical
coordinates. Since the two solutions must be identical in the
limit of large radii of curvature, one can transform Hall’s re-
sults from an expansion in 1/R to an expansion in 1/(R + 1),
which is the form one would obtain (to the specified order) by
transforming the solution in toroidal coordinates to Cartesian
coordinates. Thus, the solution given by Egs. (1) and (2)
and the solution expressed as
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are equivalent, the error being of order 1/R* in each, for the
limit of large B. The preceding solution is expected to be useful
for all R since the 7, expansion is convergent for all R whereas
Hall’s solution would appear to be divergent for R < 1, since
one can transform an expansion of the form 1/(R + 1) into an
expansion of the form 1/R only for R > 1. One could obtain
the aforementioned solutions completely in toroidal coordin-

Table 1 Comparison between theory and experiment

Theory Experiment
Cp 0.982 0.985
Ug 0.816 0.827
Uy 1.24 J 1.31
zo* 0.199 0.206
ro* 0.598 0.633
ZTu* —0.150 —0.136
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ates either by solving the equations of motion directly in
toroidal coordinates or expanding the coordinate transfor-
mation [Egs. (3)and (4)] in terms of 1/(R + 1), substituting
into Egs. (7) and (8), and collecting like powers of 1/(R + 1).

In order to demonstrate the properties of the solution in
toroidal coordinate form, the throat velocity at the axis u
and wall u., and the discharge coefficient Cp have been com-
puted using both the Hall solution and the present solution.
The equations for the throat wall and axis velocities and the
nozzle discharge coefficient are
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The results of calculations for y = 1.4 are shown in Figs.
2 and 3 as plots of the first, second, and third-order values of
ug, Uw, and Cp vs the expansion parameter 1/(1 + R). The
marked improvement in solution behavior is vividly demon-
strated. It can be seen that Hall’s solution seriously deterio-
rates for B less than 1.5 and becomes divergent in an oscillatory
manner for B less than 1, whereas the present solution remains
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Fig. 2 Comparison of Hall’s solution to the present re-
sults for the throat wall and axis velocities.
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“method to experimental data for a nozzle with B = 0.625.
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Fig. 3 Comparison of Hall’s solution to the present re-
sults for the discharge coefficient.

well behaved for all R and does not diverge in an oscillatory
manner.

It should also be noted that for nozzles having normalized
wall radii of curvature in the neighborhood of unity, the sharp
drop in the nozzle discharge coefficient predicted by Hall’s
third-order analysis appears to be associated with the conver-
gence properties of Hall’s solution. The present analysis pre-
dicts that the nozzle discharge coefficient remains reasonably
high for all nozzles. It is also interesting to note that the cur-

rent_solution approaches physically reasonable finite Iimits.
) “for the throat flow properties as B goes to zero. The solution
for B = 0 represents the flow through an axisymmetric sharp
edged orifice, a problem which has not previously been solved.

The final test of any theoretical method is, of course, how
well it predicts the actual phenomena under consideration, as
evidenced by a comparison with experimental data. C uffel

et al.” have compared the results obtained with the present
The
predicted and measured sonic line parameters are summarized
in ’luble 1. The throut axis, wall velocxtles, and nozzle dis-

respectlvely, whelens the axis sonic point dlspla,(,em(‘nt 2%,
the radial distance to the throat sonic point crossing ro*,
and wall sonic point displacement z,*, were computed from

= [32ZR++11)]112[1 72?R_+151) +
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The excellent agreement between theory and experiment for
such a small throat Wull radxu 3 of curvature nozzle R=0. 625)
‘confirms t that, the present_ transonic. expansion zmalybh 1S ap-

“plicable to axisymmetric nozzles having circular arc throats
with B < 1. Transformation of Hall’s cylindrical resulfs into
other coordinate systems in which both the axis and wall are
natural coordinate lines should lead to similar improvements
in the prediction of transonic flow properties in nozzles having
other wall shapes.
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Appendix

It was discovered that Hall’s! published axisymmetric
solution contained errors in the third-order terms and dis-
charge coefficient. The authors have rederived the solution
and performed numerical cross checks to verify the results.
The complete, corrected, third-order axisymmetric solution
for the velocity components and discharge coefficient is given
in the following:

w=3r—%+4+: (A1)
v =it —ir 4 (A2)
2y 49, 4dy+15 10y +57
Ur =TT 24 Tt Togg T
z(rt — §) — 27(;' 32 (A3)
_v+3 20y + 63 . | 28y + 93
v 9 " 96 T o T
2y+9 , _ 4y + 15 .
z( 8 r T r)+rz (A4)
w o 596!+ 1737y + 3069
! 10368 ¢
388y* + 1161y + 1881 , . 304 + 831y 41242 ,
2304 1728 "
2008y" + 7830y + 14211 z[sw + 51y + 321 ,
82944 384 "
52y* + 76y + 279 , | 929" + 180y + 639
192 1152
Ty — 3 13y — 21 . 4y* — 5Ty + 27
2 — 2 3
: [ AT ] + 144 #
(A5)
s = 0836v! + 23031y + 30627 ,
! 82044
33807" + 11391y + 15201
13824 "
27! + 11271y + 15228,
13824
T100y! + 22311y + 30249
82944 r
. [5567’ + 1787y + 3060 | 388y* + 1161y + 1181
1728 576
304y! 4 83ly + 1242 7
864
. [5272 + 51y + 827 , 527" + 76y + 219 r] B
192 192

23 [77—‘2_-§ r] (A6)

The ratio of the mass flow through the nozzle to the “one-
dimensional” mass flow (discharge coefficient) is given by

1 o
cr=2 [, (pﬂ‘;*)mo rdr (A7)

which, when integrated, yields Eq. (13).
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Two Formulations for Optimization
Problems with State-Variable
Inequality Constraints

G. J. LasTmMAN*
Unaversity of Waterloo, Waterloo, Ontario, Canada

HE following optimization problem is to be considered:
minimize the functional

L= GIX@4] + [ QUX®,UW

subject to
dX(#)/dt = X(t) = FIX@),U@)t]; t<t<l
X(t), to known constants; L[X(),4] = 0
SIXOL<0; <t<h

where X' = XXy ... X)7, U = (U,U,, ...,UJ)T,
1= (0, .. F)T, L = (Ly,Ly, .. .L;)T. It is assumed
that only one state-variable inequality constraint is present
and that the trajectory is on the constraint boundary S = 0
only fort, < t < tn. The state-variable constraint S[X (¢),t]
is assumed to be a gth-order constraint; i.e., S and its first
g — 1 derivatives with respect to ¢t do not explicitly contain
the control U, but the gth derivative of S does contain
U, d&'S/dt* = C[X(1),U(t),t].

Following Bryson et al.,;! the following conditions must
hold at t = t.:

S[X(te)yte] =0
dis[‘\'(t‘),t!]/dti e S(i)[-’\'(te)yt(] = 0
J=12...,9-1
For t, < t < ty the control is computed from S = C[X(¢t),
U(t),t] = 0. These tangency conditions insure that the
extremal trajectory will not violate the constraint S < 0.

In order to obtain necessary conditions for an extremal
trajectory an augmented functional 7. is formed

I. = RIX@)wh + EWIXCL) + [ 01 - Prid
where
R[.\’(t]),l’,h] =5 (J'L\'(tl)’tl] + VTL[A.'“[),!]]

WX ()t = STV X@E)t];, 1 <1< g (8@ =)
W= (Wy,Wy. .  WoT
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