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Systems in which both conduction and radiation are the dominant modes of heat transfer are important
in many engineering applications and various numerical methods exist to analyze such systems. An exact
solution to the conduction-radiation problem in a one-dimensional, planar, absorbing, emitting, non-
gray medium is presented. The method uses an integrating factor to solve the radiative transfer equation

and variation of parameters is used to solve the energy equation. The model is verified by comparing the
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temperature profiles calculated from this work to those found using numerical methods for both gray and
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1. Introduction

Systems in which both conduction and radiation are the domi-
nant modes of heat transfer can be found in many practical engi-
neering applications. These include fiber and foam insulations,
the manufacture of glass, the study and design of furnaces and
internal-combustion engines, filler and cover for windows and so-
lar collectors, thermal barrier coatings, and many others. The wide
variety of applications has resulted in several numerical and exper-
imental studies of methods for analyzing systems with simulta-
neous conduction and radiation.

The analysis of such systems is inherently difficult because of
the integro-differential nature of the radiative transfer equation
(RTE) [1]. The pioneering theoretical analysis for this problem
was presented by Viskanta and Grosh in 1962 in which the temper-
ature profile of a one-dimensional, gray medium bounded on both
sides by opaque surfaces was obtained by transforming the gov-
erning integro-differential equation into a non-linear integral
equation that was solved iteratively [2]. The same authors investi-
gated the effects of different emittances of the bounding surfaces
on the heat transfer in the gray medium [3]. The results of these
analyzes are often used as benchmark solutions to which other
methods are compared.
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More recent approaches to solving the combined conduction-
radiation problem include the use of the finite element method
[4,5], the finite difference method [6,7], the finite volume method
[8,9], and the lattice Boltzmann method [10-12]. The radiation
portion of the problem has been solved using the discrete ordinates
method [11], the discrete transfer method [1,12], the method of
spherical harmonics [1,13], the Monte Carlo method [14], and the
finite volume method [10,15]. Each of these methods has advanta-
ges and disadvantages [16].

Most of the published solutions deal with heat transfer in gray
media [17]. Fewer investigations have been conducted for the case
of conduction-radiation heat transfer in non-gray media. Heine-
mann et al. used theoretical and experimental methods to analyze
conduction-radiation heat transfer in non-gray silica aerogels [18]
while Manohar et al. investigated conduction-radiation heat trans-
fer in non-gray plastics [19]. More recently, Marques et al. devel-
oped a computationally efficient numerical model based on finite
strip theory to determine the temperature profile and heat flux
in absorbing, emitting, non-scattering, non-gray media [17].

The solution presented here resulted from an investigation into
the temperature gradient in thermal barrier coatings (TBCs). Ther-
mal barrier coatings allow for increased inlet temperatures in
power generation and aerospace turbines, thereby increasing
efficiency and reducing air cooling requirements. Knowledge of
the temperature profile in a thermal barrier coating is critical for
evaluating the TBC performance and monitoring its health, as well
as for accurate simulation and modeling. Another current applica-
tion of the solution presented in this paper is determination of the
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Nomenclature

emissive power

terms in summation of temperature profile
radiative intensity

thermal conductivity

length of medium
conduction-to-radiation parameter
function of z, 4, and u

function of z, 4, and u

heat flux

function of 4 and u

direction vector

temperature

Cartesian coordinate

reek symbols

emittance of boundary

polar angle

absorption coefficient

wavelength

Cvz—~~xm

S oo AN oW

u cosine of intensity direction
p reflectance of boundary

o Stefan-Boltzmann constant
13 azimuthal angle

Q solid angle

Subscripts

0 at left boundary

b blackbody

L at right boundary

m, n indices
radiative
in the § direction
spectrally dependent
Superscripts
forward direction
- backward direction
! integration coordinate

N

temperature profile in blackbody optical fiber pyrometers [20-22].
A blackbody optical fiber pyrometer consists of an optical fiber
whose sensing tip is coated with a highly conductive, opaque
material. The blackbody radiation emitted by the tip of the fiber
is transmitted along the optical fiber to a detector. Correct inter-
pretation of these emission measurements requires a solution to
the coupled radiation-conduction problem. The use of blackbody
optical fiber pyrometers in oxy-combustion flames is currently
being investigated. Oxy-combustion is a promising technology
being considered for carbon capture and sequestration due to the
fact it has the potential to produce very low levels of emissions
for all of the major pollutants of coal and natural gas. An under-
standing of the gas temperatures is critical to oxy-combustion
development. Blackbody optical fiber pyrometry has the potential
to solve all of the major problems associated with measuring tem-
peratures in large-scale, particle-laden combustion systems that
are required for the development of oxy-combustion.

Previous efforts to solve combined conduction and radiation
heat transfer problems have relied on numerical methods to solve
the governing equations. The present work outlines an exact solu-
tion to the equations governing the simultaneous conduction and
radiation heat transfer in a one-dimensional, plane parallel,
absorbing, emitting, non-scattering, non-gray medium surrounded
by diffuse, opaque surfaces. The particular solution to the govern-
ing differential equation is obtained using the method of variation
of parameters while the spectral intensities required to calculate
the total radiative heat flux are found by solving the RTE using
an integrating factor. This approach results in an integral equation
that is solved for the temperature profile. The temperature profile
is obtained using iterative, numerical integration, and a closed-
form solution is not obtained. However, since numerical integra-
tion can be performed to an arbitrary degree of precision, the solu-
tion is exact. The model is verified by comparing the results for
various cases to those calculated using different numerical meth-
ods and to CFD simulations performed using commercial software
[23], which employs the discrete ordinates method to model the
radiative heat transfer.

2. Problem formulation

A one-dimensional, plane-parallel, homogeneous, isotropic,
non-gray, participating medium bounded by two surfaces is shown

in Fig. 1. The medium is absorbing, emitting, and non-scattering
and the bounding surfaces are opaque and diffuse. The tempera-
ture of the boundaries are denoted by Top and T; at z=0 and z=1L,
respectively. The material properties of both the participating
medium and the boundaries are independent of temperature. Heat
transfer in the medium occurs by both conduction and radiation.
The energy equation for simultaneous conduction and radiation
for a one-dimensional, planar medium at steady state with uniform
properties reduces to 1]

@ _1dgg 1)
d22 Tk dz
Eq. (1) is subject to the following boundary conditions.
T(0) =To (2)
T(L)=T, 3)
I;(L,8)

I1#(L,6) d

" L 1 (0,6)

Iy (z,6) T,
1;(0,6)
€10 / . . AL
2
z=0 z=1L

Fig. 1. Absorbing-emitting medium between two diffuse boundaries. Coordinates
used in the theoretical analysis are shown.
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Solving for the temperature profile in the medium requires
determination of the total radiative heat flux, qg. Assuming azi-
muthal symmetry and applying the variable transformation
= cos 0, the total radiative heat flux may be expressed as [1]

e} +1
a=2n [ [ leppdud:

—om [ {/ I (2, pyudps — /1

The RTE is used to calculate I (z, ) and I; (z, — ). For a non-scatter-
ing medium and looking in the zs direction from the left boundary,
the RTE reduces to [1]

dr
dz,

udu} dz. (4)

= Kl (25) — K1 (3)

The formal solution of Eq. (5) along a line of sight, which is ob-
tained by employing an integrating factor, is [1]
I} (z;,) = I (0)e % + K, / I (T(Z,))e &2 dZ, (6)
Beginning at an arbitrary point on the right boundary and

repeating this solution process gives the needed expression for
I; (z5).

I, (z5) = I; (L cos et/ <os0-2) g,
L/cos6
<[ bz (7)

Eqgs. (6) and (7) can be rewritten using the variable transformation
zs=z[cos 0 and in terms of the direction cosine p = cos 6 as follows.

I+(Z ,Lt) *F(O 'u) e ¥ z/p+ / Ib/ ) —K,z 4 /,udz (8)

L
12(7-7—#):IZ(L,—ﬂ)e’“’-“’ZW+% / Ip,(T(Z))e @ -2/mdZ  (9)

The boundary conditions, I; (0, 1) and I; (L, —u), must now be spec-
ified. I7 (0, u) represents the intensity coming from the left bound-
ary, which is due to both diffuse emission and reflection and is
represented by Eq. (10).

I7(0, 1) = &,015,,(T(0)) + p, l; (0, —11) (10)

The first term on the right side of Eq. (10) represents the diffuse
emission from the wall while the second term is the diffuse reflec-
tion of the incident intensity on the wall where p, , is the spectral,
directional-hemispherical reflectance. The incident intensity,
I; (0, —w), is a result of the emission and reflection from the opposite
wall as well as the emission from the medium itself and is therefore
dependent on direction. [; (0, —pu) is found by letting z= 0 in Eq. (9).
Similarly, I; (L, —u) represents the intensity emitted and reflected
by the right surface.

(L =) = &udy;(T(L)) + pudi (L 1) (11)

The intensity incident on the left boundary, I} (L, i), is found by let-
ting z=L in Eq. (8).

3. Solution

Eqgs. (10) and (11) are used in Egs. (8) and (9) to determine
expressions for I} (z, u) and I; (z, — ). These expressions are substi-
tuted into Eq. (4), resulting in an expression for the total radiative
heat flux. This, in turn, is substituted into Eq. (1) and Eqgs (1)-(3)
are solved using the method of variation of parameters. Although
primarily used to solve linear differential equations, the method

of variation of parameters has been used to solve nonlinear differ-
ential equations, particularly those in which the nonhomogeneity
is a function of the dependent variable [24-27]. The details of this
solution are provided by Moore [28]. The result, shown in Eq. (12),
is an expression for the temperature profile in a one-dimensional,
plane-parallel, non-gray, absorbing, emitting, and non-scattering
medium bounded by two opaque surfaces.

12
T(z) = (%—5>Z+TO+IZ/ /Hzll,udud) (12)
i=1

The terms in the summation are shown in Table 1. In the terms in
Table 1,

- K Z (emlin _ e
Pla i) = (1= p,op; 8720 (L € D+(1-e ))
(13)
— ,l,t Z —K;L/ —I; L/ K;Z/ 1
Q(z,2, 1) = Z(1— e WL/my pewil/n (] — gkiz/iy
8 (1 - pz.opz.Lefzk"L/’O <L )
(14)

4. Evaluation

The solution for the temperature profile given in Eq. (12) is not a
closed-form solution, so evaluation of the temperature profile re-
quires an iterative approach involving the numerical integration
of the Hj(z, 2, 1) terms over direction and wavelength. Although
numerical methods are used in the iterative approach, numerical
integration can be performed to an arbitrary degree of precision,
so the solution is exact.

The iterative solution begins with an initial guess of the temper-
ature profile. In this study, the linear temperature profile that
results from neglecting the radiative transfer is used as the initial
guess. With this initial guess, the spectral emissive power is calcu-
lated, and the temperature profile is updated using Eq. (12). This
updated temperature profile is then used to recalculate the spec-
tral emissive power as needed and the process is repeated until
convergence is obtained. Convergence is considered achieved
when the Euclidean norm of the difference between the calculated
temperature profile of the current iteration and that of the previ-
ous iteration reaches a specified tolerance. In cases where the radi-
ation heat transfer is dominant, under-relaxation is required to
obtain convergence.

When numerically evaluating the integrals in Eq. (12), both the
spatial dimension, z, and the direction cosine, y, are discretized and
each integral is expressed as a summation. For example, the elev-
enth term in the summation is approximated as

w9 [ [

] - z /0 ;;Eb‘Z(T(Zn))e’K,;Zn/Hm’umAzAH di (15)

“2 Ik dZ dpd),

Again, although numerical methods are used to evaluate the inte-
grals, the degree of precision is based on the step sizes Az and Apu
and, therefore, the solution can still be considered exact. For gray
media, the Stefan-Boltzmann Law [1] may be used to evaluate the
integral of the spectral blackbody emissive power over all wave-
lengths. For non-gray media, the spectrally varying properties are
discretized into bands and assumed to be constant over each band.
The spectral emissive power in each band is calculated using a
curve fit to the fractional blackbody emissive power function [1,29].
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Table 1
Terms of the summation in Eq. (12).
Hi 0By 1(T(0)P(z, 2, )1t
Hz LuBLE, (T(L))e HRP(z, 2, )t
Hs Pi0PP@ 2, ) [3 By (T(2))e -2 idZ
Hy 0,0P@, 2, 11) & By (T(Z))e "7 /1dZ!
Hs 2 [FE, (T(2))e - ndZ
He 1 fg B (T(@))e e i

ta SRy (T(L)QE 2 P
- LLB0 Ey (T(0))e bmQ(z, 2, )t

. 0:1Q(z, 2, 1) f5 By 1 (T(2))e -2 /nd7
Hio P10P1QZ. 2. 11) [y By, (T(Z))e 042V dZ
o (1= fg Epa(T(2))e % /1dZ

e 1 JF By (T(2))e @ -2lndZ

5. Results and discussion

The evaluation methodology discussed in Section 4 was imple-
mented as a program in MATLAB. The accuracy of the method is
verified by comparing the results for various cases to those calcu-
lated using different numerical methods and to CFD simulations in
which the discrete-ordinates method is used to model the radiative
heat transfer [23]. The conduction-to-radiation parameter is
defined as

_ kk
40T,

(16)

For optically thick slabs, this parameter provides a good estimate
for the relative importance of conduction heat transfer relative to
radiation heat transfer [1]. The simplest case is a gray material with
Kk =1 m~! surrounded by black surfaces (¢g = ¢, = 1) with T; = 0.5T,.
For this simple case, the non-dimensional temperature profiles
calculated using Eq. (12) are compared to those calculated using a
finite difference method [1], the collapsed dimension method
implemented by Talukdar and Mishra [30], and the discrete ordi-
nates method [23]. Fig. 2 shows these comparisons for different val-
ues of N. The average difference between the results of the present
method and the numerical methods is 0.89%. The number of itera-
tions required by the collapsed dimension method for N=0.1 and
0.01 was 80 and 120 [30], respectively while that of the method
presented here was 7 and 37, respectively. The computational time
required for the present method was, on average, about 3.5 times
faster than that of the finite element method but was, on average,
about three times slower than that of the CFD simulations.

A somewhat more complicated case is a gray medium sur-
rounded by non-black surfaces. Fig. 3 compares the temperature

0.9

N=0.01
0.8 S8

T, + =0.1
N

=10
0.7
| present work
¢ CFD simulation
0.6

X finite element method [1]

O collapsed dimension method [21]
0.5 t t t t

0 0.2 0.4 0.6 0.8 1
z/L

Fig. 2. Comparison of present method to numerical methods for case of gray
medium (x=1) with black boundaries for various conduction-to-radiation
parameters.

/T,

present work

* finite strip theory [17]
0.6

0.5 + + t
0 0.2 0.4 0.6 0.8 1
z/L

Fig. 3. Comparison of present method to finite strip method [17] for case of gray
medium (k=1) with gg=¢,=1 and ¢y =¢ = 0.1 for N=0.001.

profiles found using the present method to those found using finite
strip theory [17] for a gray medium with k =1 m~! and N = 0.001
with boundary emittances of ¢g=¢ =1 and ¢ = ¢, = 0.1. Figs. 4 and
5 compare the results from this work to those found from CFD sim-
ulations for cases in which the boundary emittances are different.
Fig. 4 shows the case of a gray medium with k = 0.1 m~! and
boundary emittances of ¢ =0.75 and ¢ =0.1 while Fig. 5 shows
the case of a gray medium with x=1m~"' and boundary
emittances of ¢ = 0.2 and ¢ = 0.9. The bounding surfaces are as-
sumed to be diffuse, so p =1 — ¢ in each of these cases. The average

0.9 -+

, \NJ\—0.0M
0.8
rr, N—O-m

0.7

present work

¢ CFD simulation

0.6

0.5 + t ; t + t + t
0 0.2 0.4 0.6 0.8
z/L

Fig. 4. Comparison of present method to CFD solutions for case of gray medium
(x=0.1) with ¢ = 0.75 and ¢ = 0.1 for various conduction-to-radiation parameters.
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1

0.9
present work
¢ CFD simulation
0.8
Tty N=0.01
0.7
0.6
0.5 t t t t + t
0 0.2 0.4 0.6 0.8 1

z/L

Fig. 5. Comparison of present method to CFD solutions for case of gray medium
(rc=1) with ¢ = 0.2 and ¢ = 0.9 for various conduction-to-radiation parameters.

Table 2
Spectral properties for two non-gray cases.

Case 1: To = 800K, T, = 400 K

Band 0—10 um 10 — 20 pm 20 — co um
£.0 0.25 0.5 0.75
& 0.3 0.85 1
K 10 1 0.1
Case 2: To = 1400 K, T, = 900 K
Band 0—2pum 2—7pum 7 — co pm
£.0 0.5 0.1 0.3
& 0.65 0.9 0.8
K; 5 0.2 2
1 4
0.9
0.8
k=15
TIT,
0.7
— present work
* CFD simulation
0.6
0.5 t t + + t T .
0 0.2 0.4 0.6 0.8 1
z/L

Fig. 6. Comparison of present method to CFD solutions for various thermal
conductivities. Properties correspond to Case 1 in Table 2.

difference between the results of the present method and the
numerical methods is 1.2%. The computational time required for
the present method was, on average, about eight times greater
than that of the CFD simulations.

Finally, the most detailed case is that of a non-gray medium
bounded by spectrally selective surfaces. Two scenarios are consid-
ered. The spectrally dependent properties of the medium and
boundaries are divided into three bands over each of which the
properties are assumed to be constant. Table 2 shows the values

1 «

present work

¢ CFD simulation

0.9

T/T, 08

0.7

0.6 t t t t + {
0 0.2 0.4 0.6 0.8 1
z/L

Fig. 7. Comparison of present method to CFD solutions for various thermal
conductivities. Properties correspond to Case 2 in Table 2.

of these spectrally dependent properties for the two cases and
the results of these cases are compared to CFD simulations and
shown in Figs. 6 and 7 for various values of the thermal conductiv-
ity. Again, the bounding surfaces are assumed to be diffuse, so
p, = 1 —¢,. The average difference between the results of the pres-
ent method and the CFD solutions is 1.67%. The computational
time required for the present method was, on average, about 55
times greater than that of the CFD simulations.

As can be seen from the figures above, there is excellent agree-
ment between the model presented in this work and other meth-
ods for determining the temperature profile in a gray or non-
gray one-dimensional, plane-parallel medium surrounded by two
gray or non-gray diffuse, opaque surfaces. The average difference
between the results of the present method and the numerical
methods tested was 1.25%. The time required for the present mod-
el to reach convergence was often greater than that required for
the other methods, especially the CFD simulations. This was most
apparent in the non-gray cases. This was, in part, due to the need
to use an under-relaxation factor that decreased as the conduc-
tion-to-radiation parameter decreased and as the thermal conduc-
tivity of the medium decreased. The time required for convergence
may be improved by using a dynamic under-relaxation factor.
Additionally, a large number of points were required in the discret-
ization of the spatial coordinate in order to fully capture the effects
of the radiative heat transfer at the left boundary, which signifi-
cantly increased the time required to achieve convergence. The
use of a dynamic under-relaxation factor and non-uniform spatial
discretization would significantly improve the computational effi-
ciency of the exact solution. The model presented here is, in theory,
more accurate than the numerical methods and may be used as a
benchmark solution for validation of other numerical methods.

6. Conclusions

An exact, analytical method of determining the temperature
profile in a one-dimensional, planar, absorbing, emitting, non-gray
medium in which both radiation and conduction heat transfer are
significant has been presented. The method utilizes an integrating
factor to solve the Radiative Transfer Equation to determine the
spectral intensities required in the total radiative heat flux. The
method of variation of parameters is employed to solve the energy
equation in which the divergence of the radiative heat flux is the
source of thermal energy. Comparison of results obtained using
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the proposed method with results obtained using various numeri-
cal techniques has verified the method. Cases with gray and non-
gray media and gray and non-gray boundaries were considered.
Since the proposed method is exact, it may be used to obtain
benchmark solutions.
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