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EFFICIENT SEMI-IMPLICIT SOLVING ALGORITHM
FOR NINE-DIAGONAL COEFFICIENT MATRIX

Milovan Peric 4
Lehrstuhl fiir Stromungsmechanik, Universitdt Erlangen-Niirnberg,
Egerlandstrasse 13, 8520 Erlangen, F.R. Germany

In numerical calculations of fluid flows and heat transfer it is often necessary to
solve a system of algebraic equations with a nine-diagonal coefficient matrix. Two
examples are the diffusion and pressure-correction equations when discretized on
nonorthogonal grids. A method of solving such systems of equations, based on the
strongly implicit procedure of Stone [1] for five-diagonal matrices, is presented. It
operates on the upper and lower triangular matrices with only seven nonzero diag-

onals, thus requiring less storage and computing time per iteration than the alter-

native extensions of the strongly implicit procedure to_nine-diagonal coefficient ma-
trices. It is also more efficient than the alternative methods—for the kind of equations
studied—when the missing diagonals in the upper and lower triangular matrices
correspond to points lying in ‘‘sharp’’ corners of a computational molecule. Results
of various test calculations and comparisons of performance with alternative solvers
are presented to support this view. The proposed solver can also be applied to five-

diagonal matrix problems, in which case it reduces to the strongly implicit procedure
of Stone [1]

INTRODUCTION

In recent years much effort has been devoted to developing procedures for the
numerical prediction of fluid flow and heat transfer in complex geometries [2-7].
For many practical problems the use of orthogonal body-fitted coordinates leads to
an unfavorable distribution of grid lines in the numerical grid. The alternative is to
use general nonorthogonal coordinates, which offer far greater control over the dis-
tribution of grid lines, as discussed, e.g., in [4]. In this case the differential equations
become significantly more complex than their Cartesian counterparts. This will be
demonstrated on the heat conduction equation:

div(l'y grad ¢) + 54, =0 o 1)

In the Cartesian coordinate system (y',y%) this equation reads
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NOMENCLATURE
a ' elements of coefficient o cancellation parameter
matrix [Eq. (1] ‘
A coefficient matrix 8 angle between grid lines
b coefficients of lower and 3 finite difference; increment
upper triangular matrices vector matrix
B coefficients in Eq. (3) r diffusion coefficient
c elements of product matrix € . error element
C product matrix X convergence factor
f computing time factor [Eq. 34)]
(Table 1) () temperature; dependent
I flux through control volume variable in differential
face; total number of equation
: iterations
J Jacobian of i -
cobian o 'coordmate Subscripts
transformation S
K total number of . e
computational points k : matrix position index
L lower triangular matrix P,E,W,S.N, } labels of centers of control
L g NE,NW,SE,SW)} . volumes in computational
n iteration counter
. molecule
N number of computational
s S e,w,n,s labels of centers of control
points in one direction ,
Q auxiliary vector matrix ' volume faces
. . nw,ne,sw, se labels of corners of control
r grid aspect ratio
. . volume
R residual vector matrix; sum
of absolute residuals’ )
S _source vector matrix Superscripts
u velocity vector components
U upper triangular matrix i,j grid location indices
X general coordinates iteration counter
y Cartesian coordinates I,2 coordinate directions

where ¢ is the temperature and T, the conductivity coefficient. In case of general
nonorthogonal coordinates (x',x%) (cf. Fig. 1), Eq. (1) transforms into

9 [T, /(o 3
"—7 =2 (—(bl- B} + ¢
dx | J \0ox
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where J is the Jacobian of coordinate transformation y' = ¥'(x’) and the coefficients

B! are given by

2 2
ax* d ax? ax*
y : | ax' ax?
W ey
2ol ax' | ox! gx!

(4)
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Fig. 1 Cartesian (y',y*) and general nonorthogonal (x', x*) co-
ordinate frames and their base vectors. -

In the finite-volume approach, which is being considered here, a differential equation
of the form of Eq. (3) is integrated over a finite number of control volumes (CV),
leading to a set of integral equations of the form

L—=1,+1,—-1,=S, )

where 1,, 1,, I,, and I represent diffusion fluxes through CV faces e, w, n, and s,
respectively (see Fig. 2). After discretization, a set of ordinary algebraic equations
results in terms of values at discrete points (CV centers; see Fig. 2):

apdp + 2 b, = Sp , - (6)
nb

where the summation is over nb neighbor points around the central point P. In the
case of a Cartesian grid [Eq. (2)], the computational molecule involves the central
point P and four “principal” neighbors, i.e., nb = E, W, N, S. This comes from
the usual discretization of the derivatives at CV faces, which appear in fluxes /; . g.,

- for 1,:
oo b~
ox e 6'.r}’.l.‘.' !

The complexity of nonorthogonal coordinates arises from the need to evaluate the
so-called cross-derivatives at each CV face, e. g., forl,: '

ad) ~'¢ne - d)se :
' (a‘xz)e B 8xfne,se ‘ (8)
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Fig. 2 Typical computational molecule and grid labeling scheme.

Values such as ¢,, are usually obtained by linear interpolation among the four sur-

rounding points, in this case N, P, NE, and E. Thus the computational molecule

extends to include the “corner” points NE, NW, SE, and SW (Fig. 2). The magnitude

of coefficients for the corner points increases as the angle of grid line inclination B

departs from orthogonality; it is also influenced by the grid aspect ratio [3].
The set of Eq. (6) can be written in matrix form as

[A]-{d} = {8} ' &)

Here {¢} represents the temperature field at discrete locations in the domain, ar-
ranged in vector form, {S} is a similar vector containing source terms, and [A] is
the coefficient matrix. The latter is a4 square matrix with dimensions K X K , where
K is the total number of computational points. However, in every row there are only
five (for orthogonal grids) or nine (for nonorthogonal grids) nonzero coefficients [Eq.
(6)]. The arrangement of nonzero coefficients in [A] depends on the way in which

the vector {¢} is formed. The numerical grid is typically indexed as shown in Fig.
2, with index { in the direction of the x' coordinate ranging from 1 to N,*; similarly,
in the x* direction the index J ranges from 1 to N, and the central point P then has
grid coordinates (i, j). -

If the vector {} is arranged so that the points follow each other along one
line, line after line in given order (e.g., from J=1toN,;fori =1 and in the same
way for lines i = 2 to N,), the matrix [A] will then have nonzero coefficients along
five or nine diagonals, as shown for the above example in Fig. 3.

‘ *Note that indices 1 and N, denote the boundary pointS and 2 to N;~1 centers of control volumes
_ between the two boundaries; equations of the form (6) exist for these “interior” points only.
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It should be noted at this stage that the discrete analogs of other transport equa-
tions encountered in fluid flow and heat transfer problems, namely the general scalar
convection-diffusion equation, the Navier-Stokes equations, and the pressure cor-
rection equation, all have the form given by Egs. (6) and (9). Particular attention
will be given here to the pressure-correction equation, which results from the SIM-
PLE and similar algorithms [8—11] and has the form of Eq. (2) or (3).

- In a heat conduction problem, after the coefficients of [A] are assembled, Eq.

(9) can be solved to yield the temperature values at CV centers. Almost invariably
the iterative solution algorithms are used, for they demand less storage and are more
cost-effective than the direct solvers for all but very small matrices [A].
In the case of coupled and nonlinear equations (e. g., Navier-Stokes equations)
the “inner” and “outer” iterations are distinguishable. For given coefficient matrices
[A] solutions are obtained for each variable (inner iterations), and then the coeffi-
cients are updated (outer iterations); the whole process is repeated until no changes
in the coefficients and dependent variables result. For such systems of equations it
is usually not necessary to obtain converged solutions for each outer iteration; typ-
ically, a few inner iterations are sufficient before the coefficients are updated. This
is the case when solving for velocity components and other coupled variables; in
such a case the rate of convergence of inner iterations is not critical for the cost-
effectiveness of the solution process as a whole. The pressure-correction equation,
however, must be solved to a certain level of convergence for every outer iteration
[9]; thus, it is the most “expensive” equation in fluid flow predictions, and the ef-
ficiency of solving for this equation is of great importance.

In the following section, several widely used solution algorithms that can be
applied to the nine-diagonal coefficient matrix problem defined above will be de-
scribed briefly before the newly proposed solution algorithm is presented.

s o i i i

K

K -

[A] {9} = {5}
Fig. 3 Schematic representation of Eq. (9) for a particular arrangement of
vector {¢b}.
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REVIEW OF SOME EXISTING SOLUTION ALGORITHMS

One of the most widely used iterative solution algorithms is the so-called line-
by-line (LBL) algorithm, which employs the tridiagonal matrix algorithm (TDMA)
(e.g., see [10]). The TDMA gives the exact solution for a three-diagonal coefficient
matrix, which would result in a one-dimensional heat conduction problem. When
treating two-dimensional problems by the LBL approach, the TDMA operates with
coefficients corresponding to points along a particular line, while the contribution
from coefficients of points on neighbor lines is calculated as a known quantity from
¢ values obtained in a previous iteration and added to the source term. The grid is
typically scanned line by line, first in one direction (e.g., along lines of constant
grid index i) and then in the other direction. This solver does not demand much
extra storage (two one-dimensional arrays) and is efficient for small matrices. How-
ever, as will be demonstrated later, the rate of convergence for nine-diagonal coef-
ficient matrices is rather low. S ‘

A more efficient solver for two-dimensional problems has been proposed by
Stone [1]. His strongly implicit procedure (SIP) is designed for five-diagonal ma-
trices, which would result, e. g., from the discretization procedure described in the
Introduction on orthogonal grids. Two triangular matrices, [L] for lower and [U] for
upper, are defined so that they have nonzero coefficients on the same diagonals as
the matrix [A]. Instead of Eq. (9), the following equation is then solved:

[L]-[U]-{&} = {S} _ ) (10)

The product matrix [L] - [U] has two extra diagonals, corresponding to points NW,
SE or NE, SW, depending on the arrangement of the vector {d}. The coefficients of
the matrices [L] and [U] are chosen so that the product matrix is a good approxi-
mation of the matrix [A], and through a suitable iteration procedure (described later)
the solution of Eq. (9) can be obtained. The “good approximation” is achieved by
partially canceling the influence of the two extra diagonals in the product matrix
through approximations of the following form:

?Nw zﬁ“(d?w +’ by — dp)
b5z = a(dy + bs — bp) (1

- where « is a parameter in the range 0-1. »

The SIP solver requires storage of five coefficients of matrices [L] and [U] per
computational point. Although strictly speaking it is designed for five-diagonal ma-
trices, it can be applied to nine-diagonal ones as well; however, as will be shown
later, the rate of convergence deteriorates rapidly as the magnitude of the corner
coefficients increases. , ~ b

The SIP algorithm can be directly extended to nine-diagonal matrices, as done
by Jacobs [12] and Schneider and Zedan [13], among others. When the two trian-
gular matrices are chosen such that they have nonzero coefficients on the same di-
agonals as matrix [A], the product matrix has nonzero coefficients on four extra
diagonals, e.g., corresponding to points marked by open circles in Fig. 2 for the
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arrangement of vector {¢} mentioned above (cf. Fig. 3). The influence of these extra
coefficients is partially canceled by expressing the ¢ values that they multiply through
values at neighbor points included in the computational molecule. Jacobs [12] and
Schneider and Zedan [13] use the following approximation formulas for ¢y and g
(cf. Fig. 2): '

byy = a(2dy — fbp)
bss = a(2ds — bp) (12)

For the remaining two points Jacobs [12] chose expressions of the same form, which
he found to be the best of several alternatives he tried; thus:

byvw = a(dyw — ¢w)
- bsse = oz — ) (13)

Schneider and Zedan [13], on the other hand, chose the following expressions for
these two points:

bavw = a2y + bw — 2¢5)
bsse = ads + b - 2bp) » (14)

Both methods require storage of nine coefficients of [L] and [U] per computational
point and are—like the SIP—more or less sensitive to the choice of the parameter
a. Jacobs [12] tried various approximation formulas similar to Egs. (13) and (14)
and found that they significantly affect the ‘convergence property of the resulting
solution algorithm. Schneider and Zedan [13] claim to have found a better choice
in Eq. (14), resulting in reduction of sensitivity to the value of . If applied to a
five-diagonal coefficient matrix [A], their method—which they called modified strongly
{ ~ implicit (MSI)—uses seven nonzero coefficients in triangular matrices and hence
does not reduce to the SIP. ' :

In the next section a newly developed solution method for nine-diagonal ma-
trices, which also stems from the SIP, will be presented. It is designed to provide
fast convergence when solving differential equations of the form of Eq. (1) discre-
tized on nonorthogonal grids, where the comer coefficients result from the discre-
tization of cross-derivatives as in Eq. (8).

A NEW SOLUTION METHODOLOGY

In the early stage of this study the extension of the SIP methodology to nine-
diagonal matrices was pursued by the same path used by Jacobs [12] and Schneider
and Zedan [13]. It was noted, however, that there are two triangular matrices [L]
and [U] whose product gives a nine-diagonal matrix of exactly the same form as the
coefficient matrix [A] of Eq. (9). These two triangular matrices have nonzero coef-
ficients on seven diagonals only, which coincide with the corresponding nonzero
diagonals in [A]. The two diagonals left out are those corresponding to the two
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opposite corner points, NW-SE or NE-SW, depending on the arrangement of points
in the vector {b}. The analysis that follows refers to the arrangement shown sche-
matically in Fig. 3; i.e. the matrix position index &, which corresponds to grid lo-
cation (7,5), is calculated as k = (i = DN; + j, where j changes from 1 to N;and i
from 1 to N,. This arrangement will be denoted as a left-to-right (LR) sweep; for
i ; the alternative arrangement, in which k = V; = DN; + j, with j changing as before
] but i changing backward from N; to 1 [denoted here as a right-to-left (RL) sweep]
the essential steps will be outlined in the Appendix. .
| For the LR arrangement the missing diagonals in [L] and [U] are those cor-
responding to points SE and NW. The coefficients of the product matrix [C] = [L]- [U]
can be expressed for the kth row, in terms of coefficients b of the [L] and [U]
matrices, as follows (see Fig. 4): '

cih = bl
o = bby T + bl
iy = bigbi
! = b bt
¢’ = bShbig" + bifb ' + BB + by (15)
o = bifblr' + bibiy |
it = bby™
o = OB + bibY/
cih = b
The problem is that Eqs. (15) contain only seven uﬁknown coefficients b; unfortu-
nately, these cannot be determined uniquely so that the matrix [C] is identical to the

matrix [A] (which would enable a direct solution of Eq. (9) through such [L]- [U]
decomposition). To determine the coefficients b of [L] and [U] so that [L]-[U] -{b}

NN
\\1 bN\

NN \.

(L] ’ (U] = (C]

Fig. 4 Schematic representation of chosen triangular matrices [L] and [U] and their product matrix {C].
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is a reasonable approximation to [A]-{d}, the following two-step procedure may be
adopted.

Step 1

If the values of the depéndent variable ¢ at points NW and SE—for which
there are no coefficients b—are assumed to satisfy the following relations:*

byw = a(dy + d)w — ¢p)
sz = a(dg + b5 — bp) (16)

then Eq. (6) for location (i,j) can be rewritten as follows:'

apdp + apdp + aydy + andy + asds + ayp by

+ agwbsw + aywo(dy + by — ¢P)’ t agza(dg + b5 — bp) = Sp (17)

This can be seen as an approximation to Eq. (6), which can be written in matrix
form as

(A {6} = (S} (18)

Matrix [A'], which represents an approximation to matrix [A] of Eq. (9), now has
nonzero coefficients on seven diagonals, which correspond to those of the [L] and
[U] matrices: : '

ap = ap — raaNW — Qage

ar = ag + aag

ay = ay + aayy

ay = ay + aayy ' (19)

as = dg + Qdgr

I4 i
ane = Ang

’ -—
Asw = Qsw

Step 2

The product matrix [C] = [L] - [U] has nonzero coefficients on nine diagonals,
including those corresponding to points NW and SE. To calculate the coefficients b

*This is one of the many possible ways to approximate the ¢ values at points NW and SE through
the values at neighbor points. Equations (16) are identical to those used by Stone [1] [cf. Eq. (1D)],
which Jacobs [12] also found to be of the most general validity.

"The superscript indices for coefficients are omitted for clarity; wherever not included, index i,j
is assumed. ‘
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so that [C] - {¢} represents a reasonable approximation to [A’] - {}}, the influence of
the two additional coefficients may be partially cancelled by again using Egs. (16),
as outlined below.

Equation (17) can be approximated by

apdp + agds + awdy + aydy + asds + anebne + asw bsw

+ cxwldaw — a(dy + bw — &p)] + coeldse — a(dg + b5 — bp)] = Sp (20)

The last two terms on the left side of Eq. (20) are small compared to the other terms
if the approximations of Egs. (16) are valid. Equation (20) thus represents an ap-
proximation to Eq. (17), which is an approximation to Eq. (6) arrived at by using
the same substitution formulas (16). When this equation is rearranged and the coef-
ficients of corresponding ¢’s are set equal to the corresponding coefficients ¢ of Eq.
(15), there results the following set of equations from which the coefficients » can
be calculated uniquely for each point:

i i
bsy = asly ,
ij ij o pig pi=1,j=1
B = ay + aayy swbi
w i~1.j
1+ abN
ij ij o pid pi=1=1
i = as’ + aasg — bsybg
s = -
1+ ab™!
ijo— i i o4 b phipig=l _ piypiel.j .
by’ = ay’ — alayy + as} — by byby ) 20
— phipii=t _ pijpi=Uj_ pi pi—1.j-1
bs’byy by b bsivbne
ij ij o pbhni=l _ pijpie1.j
bi'j _ ay + aaN{y abw bN b“{bNE 4
N = bi.f
P
ij ij _ Ligi =1 _ pijpi.j—1
bi'j _ ar + Qdgg abs bE bs bNE
E ij
bg
ij
bl = 2E
NE =

iJ
P

Thus the coefficients of matrices [L] and [U] have been determined, and the equation

(L]- (U] {$} = {S} _ (22)

can now be solved by a rather simple inversion of triangular matrices. However, Eq.

(22) is not exactly the same as Eq. (9), whose solution is being sought; therefore,

an iterative procedure must be devised that will lead to the solution satisfying Eq.

(9). A method suggested by Stone [1] can be applied here, too. SRR
First, Eq. (9) can be rewritten as :
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L]- [U]-{$} = [L]- [U]-{o} — ([A]-{d} — {SD @

If n is an iteration counter, the iterative procedure can be arranged as follows:
(L] (U] {9} = [L]-[U] -} ~ (A1 &} ~ {S) (24)

By introducing two new vector matrices, namely the increment vector {8} and the
residual vector {R},

7 = (6" - (¢} | (25)
and
| R} ={S}- (Al {0 (26)
we obtain the following equation:
[L]-[U]-{8"} = {R?} @7
Multiplying Eq. (27) by [L]™" gives | | )
w-@t={Qr (28)
where | |
Qt=m" R} | 29
Furthermore, an expression is obtained for the increment vector {3}:
" =["{Q} (30)

The elements of vector matrices {Q} and {8} are easily obtained from Egs. (29) and
30) by forward and backward substitution:

- R - blj ij—=1 __ bt,j i=1j _ bi.j i—1,j=1
Qt»] —_ S Q Z}Q v SWQ (31)
P : .

and

ai.j - Qlj _ bi,jai,j-f-l . bi,jai+l.j — blj 8i+l.j+l (32)

Flnally, Eq. (25) can be used to update the ¢ field from {¢"} to {p"*'}. The process
is repeated—Dby starting from a guessed field {¢"}—until a prescribed convergence
criterion is satisfied. In this study the criterion defined below was used.

If R, is the sum of absolute values of all elements of residual vector {R"} after
the nth iteration,
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R,= > IR (33)
.k
then the iteration process is terminated when the following criterion is satisfied:

R
— =\ (34)
Ry |

Here A is a prescribed small number whose order of magnitude determines the ac-
curacy of the solution. The rate of convergence depends on several factors, which
will be discussed in the next section.

CONVERGENCE RATE ANALYSIS

The solution algorithm presented in the previous section reduces to that of Stone
[1] when the corner coefficients are zero, i.e., when the coefficient matrix is five-
diagonal (step 1 becomes redundant in that case). For the kinds of equation and
discretization procedure considered here, this happens when the numerical grid be-
comes orthogonal. The rate of convergence is then influenced primarily by the choice
of parameter a, i.e., the validity of replacement formulas* (16). Other factors are
the grid aspect ratio r,, defined as

o
H—

|

r,=

(35)

o
HN

where 8x' and 8x” are the grid spacings in the direction of coordinates x' and X,
respectively, and the actual problem under consideration. More details. of the per-
formance of the SIP solver for five-diagonal matrices can be found elsewhere [1,
13]; this will also be addressed in the next section, when the results of test calcu-
lations are presented. '

Attention will be turned here to the case of nine-diagonal coefficient matrices
resulting from the discretization of the diffusion operator on nonorthogonal grids, as
indicated in the Introduction. It will be shown that for such matrices the proposed
method converges especially fast when the vector {d} is arranged so that approxi-
mations of the form of Eq. (16) are applied to points that lie in “sharp” corners of
the computational molecule (see Fig. 2). ‘

First, comparing Eq. (17) of step 1 with Eq. (6) indicates that they differ by
the term

€ = ayydbyw + asedbse (36)

where 3¢y and 3¢, are the differences between the left and right sides of Eq. (16),
and their magnitude depends solely on the value of «. '

*When a = 0 the coefficients of matrices [A] and [C] corresponding to the nonzero diagonals
in matrices [L] and [U] are set equal, and the extra two coefficients in [C] are accepted as they come
out, with no compensation for their influence. '
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Second, comparing Eq. (20) of step 2 with Eq. (17) of step 1 indicates that
they differ by the term

€ = —CywObyw — Csedbsz (37)

Thus, the difference between Eq. (20), which is actually being solved, and Eq. (6),
whose solution is being sought, appears to be

€E=¢ te= 8¢NW(_0NW —ovw) t 8¢SE(aSEF — Csg) (38)

The quantity e determines the “error” introduced by the approximations in steps 1
and 2. The magnitude of this error, according to Eq. (38), depends on the magnitude
of the 3¢’s and the difference between the coefficients of matrices [A] and [C] that
multiply them. The former, as already noted, depends on the choice of ; the latter
depends on the magnitude and sign of the corresponding coefficients a and ¢, which
further depend on the arrangement of points in vector {d}. This second influence
can be exploited to advantage, as will now be explained.

The magnitude of the corner coefficients ayw, Ang, Asw, Asg, as noted in the
Introduction, depends on the angle B between grid lines and the cell aspect ratio r,.
Their sign, however, depends on the angle B only and is positive if the point lies in
. a sharp corner of the computational molecule (Fig. 2) and negative otherwise (the
coefficients of principal neighbors E, W, N, and S are—except in cases of extreme
nonorthogonality or aspect ratio—always negative; e. g., see [3]). The coefficients
b of matrices [L] and [U] typically bear the sign of and are similar in magnitude to
the corresponding coefficients a. Since the coefficients cwvw and csg are made of prod-
.ucts of the by, by and b;, bs, respectively (Eq. (15)], it appears that their sign is
normally positive, irrespective of the angle B. Thus, depending on the sign of ay,,
and agz, the magnitude of the terms in parentheses in Eq. (38) is equal to either the
sum or-the difference of their individual magnitudes:

lavw = caw| = laww] = |ewwll 0

lasz — cse| = ”aSEl = lesel forp > 90 39)
fa/vw — cywl| = l..a/vwl + ICNWI o

lass — CSEI = IaSE, + ‘CSEI forp <90

- Therefore, the total error € of Eq. (38)—for a given value of a—is much smaller

if points NW and SE lie in sharp corners of the computational molecule (B > 90°
see Fig. 2), since then the errors introduced through the approximations of steps 1
and 2 tend to partially cancel. The same is true for the RL arrangement of vector
{b} when B < 90°, since then the approximations mentioned above are applied to
points NE and SW.

The analysis above suggests that convergence should be much faster for the
appropriate arrangement of vector {¢}, i.e., the RL for B < 90° and LR for g >
90°. That this is indeed the case will be demonstrated in the next section, where the
results of several test calculations are presented; the influence of a and the problem
dependence are. also highlighted.
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VALIDATION OF THE METHOD

In this section results of several test calculations will be presented. The aim of
these calculations is to check the validity of the analysis presented in the preceding
section and to compare the performance of the proposed solver with that of similar
existing solvers. Four different test cases were set up. Before the results are pre-
sented, each of these cases will be described briefly.

Case 1 involves solution of the diffusion equation with no sources [Eq. (3)]
on a solution domain defined in Fig. 5. Four variants were studied; the height of a
solution domain H was kept constant, H = 0.8 m, while the angle B and length L
were varied as follows: for L = 1 m, B = 90°, 60°, and 45°, and for L = 10 m, B
= 45°. The boundary conditions were a given temperature at two opposite (isother-
mal) walls and zero normal gradient at the other two (adiabatic) walls, as indicated
in Fig. 5. The diffusion coefficient I" & Was set to 1 and kept constant over the solution
domain. Uniform grids of 20 X 20 CV were used in all cases.

Case 2 also involves solution of the diffusion equation without sources, but in
a more complex geometry, shown in Fig. 6. It represents a symmetry unit of a cross
section of a staggered tube bank, with the global dimensions and a nonuniform 33
X 20 CV grid, shown in Fig. 6. The boundary conditions were isothermal tube walls
(with different temperatures) and zero normal gradients across all symmetry bound-
aries. The diffusion coefficient I’ & Was uniform over the domain.

Case 3 involves solution of the pressure-correction equation during flow cal-
culations for the tube bank geometry shown in Fig. 6. For the velocity components,
antisymmetric periodic conditions at inlet and outlet were assumed, while conditions
at other boundaries were taken as indicated in Fig. 6. For the pressure-correction
equation, a zero gradient condition was applied at all boundaries.

Finally, case 4 involves solution of the pressure-correction equation in calcu-
lations of laminar lid-driven flow in cavities. Two variants of the basic geometry

y2 /o 20

L//////////////////
L//////////-/////// ~
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Fig. 5 Geometry and boundary conditions for case 1.
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Fig. 6 Grid and boundary conditions for cases 2 and 3.

shown in Fig. 7 were studied, one with the angle B = 63° and the other with B =
45°, while the width and height of the cavity were kept constant, L = H = 1 m.
For both variants, a uniform grid of 20 X 20 CV was employed; for the second one
a finer grid with 40 X 40 CV was also used. Boundary conditions are indicated in
Fig. 7.

Five solvers were tested: the RL and LR versions of the present method, the
SIP of Stone [1], the MSI procedure of Schneider and Zedan [13], and the standard
LBL with two sweeps over the domain per iteration (in the x' and x> directions,
respectively). All solvers were programmed by the author in the same style, using
standard FORTRAN language, without attempts to “specially” optimize any of them
(but they were all optimal versions for the scalar computer). This is emphasized here
because of the computing time comparisons, which would be inappropriate if the
algorithms were programmed differently.

- It should be noted that for the RL, LR, SIP, and MSI solvers the coefficients
b [Eq (21)] were calculated only once; their recalculation is not necessary if the
ordering of vector {¢} and o are kept constant throughout the iteration process, as
was the case here (see also [13]). Reordering of {¢} and varying o from one iteration
to another may result in reduction of the total number of iterations [1], but the com-
puting time per iteration in such a case almost doubles. The present author’s findings
_ indicate that this increase is not compensated for, at least not for some values of o
when it is kept constant and no reordering is performed.* For a grid consisting of
20 X 20 CV, the computing times spent on the assembly of coefficients [Eq. (21)]

*It has been argued [13] that the SIP algorithm requires reordering of {¢b} and that it is restricted
to five-diagonal coefficient matrices. The results of the present study show this not to be true, at least
not for the cases studied here.
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and one iteration [Egs. (26), (29), (30), and (25)] are shown in Table 1. These were
calculated as an average of three runs on the CYBER 855 under the NOS.?2 operating
system, using an FTN5 compiler with default options. The factor f gives the ratio
of corresponding computing times for other solvers and for the present one, which
enables direct cost comparisons when the number of iterations is known, irrespective
of the computer system used.

Solution 6f Diffusion Problems

Both cases 1 and 2 involve mixed boundary conditions (Dirichlet/Neuman).
The condition of prescribed boundary values is introduced directly; the condition of

Table 1 Computing Times Required by Various Solvers to Assemble Coefficients » and to Perform
One Iteration for a 20 x 20 CV Grid

Assembly of coefficients Iterations
Computing Computing
Solver time (s) f time (s) f
RL, LR 0.011 1 0.010633 1
SIp 0.007 0.636 0.0096778 0.91
MSI 0.018 1.636 0.01239 1.1652

LBL — — 0.020084 1.887
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zero normal gradient is introduced by setting the total flux through the corresponding
boundary to zero [e.g., I, = 0 in Eq. (5) for a CV near the north boundary]. Values
of temperature at boundary points in the second case—which are needed for eval-
uation of fluxes through adjoining CV faces—were calculated by linear extrapolation
from interior points. This was implemented implicitly through the appropriate mod-
ification of coefficients for the next-to-boundary control volumes. The convergence
criterion was reduction of the sum of absolute residuals by five orders of magnitude
[i.e., A = 107 in Eq. (34)]. ‘ A

Figure 8 shows the numbers of iterations required by various solvers to achieve
- the prescribed convergence criterion for case 1 as a function of the parameter a.*
Filled symbols represent the real number of iterations multiplied by the factor f from
Table 1, in order to provide a cost comparison with the present solver.

Figure 8a presents results of calculations for § = 90° (five-diagonal coefficient
matrix) and L = 1 m, which gives the aspect ratio r, = 1.25. Both the RL and LR
versions of the present solver give results identical to those of the SIP; the latter is,
however, more cost effective, since it operates with five coefficients b, and the pres-
ent solver with seven (see Table 1). Convergence is very slow for a = 0 (not shown),
since in that case there is no compensation for the extra coefficients in the product
~ matrix. Convergence becomes faster and faster as a increases, up to a = 0.94; there-

after, the rate of convergence suddenly decreases, and for values of a greater than
0.96 divergence occurs. The MSI solver, on the other hand, is insensitive to a-in
the range 0.8 < o < 1, but for values of « lower than 0.8, the rate of convergence
increases. However, in a wide range of a values the SIP solver is more efficient;
the LBL solver is by far the slowest for this case.
Figure 8b presents results of calculations for 3 = 60°and L = 1 m (r, = 1.08).
In this case, the corner coefficients are of appreciable magnitude, and their influence
is readily seen. The SIP solver becomes significantly less efficient than in the pre-
vious case and would diverge for a > 0.75. The MSI solver also converges slower,
and its dependence on o changes: the slowest convergence occurs for a = 0.7, and
the convergence rate gradually increases on both sides of this value. Here the first
evidence of validity of the analysis presented in the preceding section is seen: the
RL solver—in which the approximations are applied to points NE and SW, which
now lie in sharp corners of the computational molecule—converges significantly
faster than the LR version, and it is also less sensitive to «. The general trend,
however, remains the same as in the previous case: the fastest convergence occurs
(for both the RL and LR versions) for values of a between 0.9 and 0.95.
Figure 8c presents results of calculations for 3 = 45°and L = 1 m (r, = 0.884).
The corner coefficients are now even stronger than in the previous case, which causes
the SIP, MSI, and LR solvers to converge more slowly. The SIP diverges for a >
~0.5; the MSI dependence on « has also changed—it converges faster for larger a.
The LR solver is again most efficient for a = 0.9; however, the dependence is now
stronger and the required number of iterations higher than in the previous case. In
contrast, the RL version is less dependent on a and converges faster than in the
previous case. The optimum value of a again lies in the range between 0.9 and 0.95,

*The LBL solver does not employ such a parameter.
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Fig. 8 Influence of parameter a on convergence of various solvers for case 1.
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but even for a = 0 the RL solver is about three times more efficient than the best
competitor, the MSI. ’

Calculations were also performed for B = 120° and 135°. In this case the LR
and RL solvers interchange role: the LR converges for B = 135° in exactly the same
way as-the RL for B = 45°. This is further proof that the “proper” arrangement of
vector {¢} (LR for B > 90° and RL for B < 90°) does lead to faster convergence.

To check the influence of aspect ratio 7, on the rate of convergence, calcula-
tions were also performed for B=45and L = 10 m (r, = 8.84, but L/H = 12.5).
Figure 84 presents a comparison of the performance of the RL and MSI solvers as
a function of a. Both solvers now show a strong dependence on a; the MSI converges
faster as a decreases (contrary to the previous case), while the RL behaves in the
usual way, being most efficient for o between 0.9 and 0.96. Comparison with Fig.
8c reveals, however, that values of the aspect ratio significantly greater than unity
adversely affect the rate of convergence of the present solver. This is presumably
due to the disproportion in magnitudes of coefficients of matrix [A] in the x' and x?
directions (the coefficients ay and as are about r, times greater than the coefficients
agz and ay).

Figures 9a—9¢ show the variation of the sum of absolute residuals as a function
of the number of iterations performed for case 1 (L = 1 m and B = 90°, 60°, and
45°, respectively). It is interesting that the slope of these curves (logarithmic scale
in one direction) remains constant for all solvers in a certain range of residual levels;
it then changes and stays constant again for another range. For B = 60° and 45° the
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MSI shows one more “turning” region than the LR and RL; moreover, in both cases
the curves for LR and MSI almost coincide until about R,/R, = 5 X 107*, after
which the MSI becomes slower. These diagrams clearly demonstrate the efficiency
of the RL solver for these cases.*

In all variants of case 1, a uniform grid (20 X 20 CV) was used, with r, and
B constant over the domain. In practical situations where nonorthogonal grids are
used, usually both the aspect ratio and the angle B8 vary from one control volume to
another. Case 2, therefore, represents a test case that is much closer to reality; here
the aspect ratio ranges between 1 and 8 and the angle B between 45° and 135°.
However, in most of the solution domain § is less than 90°, which is why the RL
solver was expected to give better results. _ ,

Figure 10 shows results of calculations for case 2. The MSI procedure con-
verges faster for lower values of «; the SIP diverges for a > 0.75 and is significantly
slower than the MSI. The RL solver shows its typical dependence on «; the fastest
convergence occurs for values between 0.9 and 0.95. In this range it is significantly
more efficient than any of the other solvers tried, especially in terms of computing
time.

Solution of Pressure-Correction Equation

As already noted, the pressure-correction equation, which results from the
SIMPLE and similar algorithms for the velocity-pressure coupling [9-11], is basi-
cally of the same type as the diffusion equation [Eq. (1)]. When nonorthogonal grids
are used to solve the fluid flow equations, a nine-coefficient pressure-correction equation
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Fig. 11 Influence of parameter a on convergence of various solvers for case 3.

‘ *Note that the results are shown (for RL, LR, and MSI) for a = 0.9, which is not the optimum
value for the RL solver.
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Fig. 12 Influence of parameter « on convergence of various solvers for case 4
and 20 X 20 CV grid.

of the form of Eq. (6) results (e. 8., see [3]). However, it usually converges slower
than the typical diffusion equation for the following reasons: (1) the coefficient cor-
responding to I, of Eq. (1) varies from one control volume to another, (2) the source
term (mass imbalance) varies from one control volume to another, and (3) the bound-
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Since most of the computing time in fluid flow predictions is spent on solving
the pressure-correction equation, it is important to have an efficient solver for it.
The usual solvers (like LBL and SIP) have proved inefficient in the case of a full
nine-point pressure-correction equation, which is why, in most flow prediction pro-
cedures for nonorthogonal grids, a simplified version of the pressure-correction equa-
tion with a five-diagonal coefficient matrix is used [3-6]. This, however, slows
down the overall convergence when the grid nonorthogonality is appreciable [3].

In order to test the performance of various solvers when solving the pressure-
correction equation with a nine-diagonal coefficient matrix, calculations were per-
formed for cases 3 and 4 described above.

Figure 11 shows results of calculations for case 3, for the first (a) and last ()
outer iterations. The grid (33 X 20 CV) and boundary conditions are shown in Fig.
6. At the end of the solution process the sources are small, and since zero-gradient
boundary conditions are used, there is an almost uniform pressure-correction field
with very low values, hence fast convergence and weak dependence on o for all
solvers. However, at the beginning of the solution process, the sources are strong
and the rate of convergence is significantly lower (\ = 0.1 was the convergence

LBL

oS LN
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Fig. 13 Convergence rates of various solvers for case 4 and 20 X 20 CV grid.
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criterion for all calculations with the pressure-correction equation). The dependence
of performance on « is similar to that seen for case 2 (see Fig. 1la and Fig. 10);
only the MSI solver now shows a somewhat weaker dependence on . The RL solver
again converges fastest for « between 0.9 and 0.96, and it is significantly more
efficient than the nearest competitor, the MSI. '

Figure 12 presents results of calculations for case 4 on a 20 X 20 CV grid and

for two angles of inclination: B
outer iteration) and B = 45°

= 63° (Figs. 12a and 125, for the first and the last
(Figs. 12¢ and 124, as above). For B = 63° the SIP

solver converges for values of o up to 0.75; however, for g = 45°, where the corner
coefficients are stronger, it converges—but slower—for values of o only up to 0.5.
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Fig. 14 Influence of parameter a on convergence of MSI and RL solvers for case
4 and 40 X 40 CV grid.
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Fig. 15 Convergence rates of MSI and RL solvers for case 4 and 40 X
40 CV grid.

In contrast to cases 2 and 3, the MSI solver now converges faster for greater «, the
dependence being more pronounced for lower B. The RL solver, on the other hand,
shows the same kind of dependence on « as in all previous cases; it is only signif-
icantly weaker for lower B (see also Fig. 8 for case 1). The fastest convergence
occurs for o« in the range 0.9 to 0.96; for all values of o the RL solver is more
efficient than any of its competitors, especially for lower B.

Figure 13 shows the variation of the sum of absolute residuals as a function
of the number of iterations performed for various solvers, for B = 63° (Figs. 13a
and 13b, for the first and last outer iterations, respectively) and 8 = 45° (Figs. 13c¢
and 13d, as above). These figures highlight the efficiency of the RL solver and
inefficiency of the standard LBL solver.

To assess the influence of the increase in number of computational points on
the rate of convergence of the MSI and RL solvers (the SIP and LBL being omitted
as obviously less efficient), calculations were performed for case 4, B = 45°, and a
40 X 40 CV grid (four times more control volumes than in the previous calculation).
Results of these calculations are shown in Fig. 14 for the first (a) and last (b) outer
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iterations. Comparisons with Figs. 12c and 124, which show the corresponding re-
sults for the 20 X 20 CV grid, reveal that both solvers become more sensitive to
the value of a and converge slower when the number of computational points in-
creases. The MSI appears to be more sensitive: for a 20 X 20 CV grid and a = 0.9,
the ratio of the number of iterations required by the MSI and RL solvers to achieve
the same level of convergence was about 4.5 (first outer iteration) to 3.5 (last outer
iteration), while for a 40 X 40 CV grid this ratio ranged between 6.6 and 7.8. In
other words, for a fourfold increase in the number of computational points, the num-
ber of iterations increased about six times for the MSI and four times for the RL
solver. ' .

Figure 15 shows the variation of the sum of absolute residuals as a function
of the number of iterations performed for the above case. At the beginning of the
solution process (Fig. 15a) both MSI and RL show an increase in residuals after the
first iteration; after the second iteration, both solvers show the same level of resid-
uals, but thereafter the rate of reduction is much faster for the RL. At the end of
solution process (Fig. 15b) the variation is smooth for both solvers; the reduction
is, however, much faster for the RL solver.

CONCLUSIONS

A new procedure for solving the systems of algebraic equations resulting from
the finite-volume (or finite-difference) discretization of conservation equations on
_ nonorthogonal two-dimensional numerical grids is presented. These systems of equa-
tions have a nine-diagonal coefficient matrix, and the motivation for the present work
was to extend the SIP methodology of Stone [1] to accommodate such matrices at
the lowest possible increase in computer storage and run time requirements. A mod-
erate increase in storage is achieved by using triangular matrices with seven nonzero
coefficient diagonals, which is two more than in the SIP but two less than in alter- -
native extensions to nine-diagonal matrices [12, 13]. The computing time per iter-
ation in the proposed solver is_about 10% higher than in the SIP, but about 16.5%
Tower than in the alternative (MSI) solver. The new algorithm reduces to that of
Stone [1] when the coefficient matrix is five-diagonal.

i parameters on the rate of convergence, a series of test calculations was performed.
Some involved solution of the diffusion equation to a tight tolerance for mixed boundary

- conditions and various grid nonorthogonality and aspect ratios. Special attention was
paid to the solution of the pressure-correction equation for fluid flow predictions on
nonorthogonal grids, since it is particularly difficult to solve and therefore could yield
the greatest computing time savings. From the results of these calculations and com-
parisons with three alternative solution methods (the SIP of Stone [1], the MSI of

~ Schneider and Zedan [13], and the standard LBL method [10]) the following con-
clusions can be made: THMA o

1. For the kind of equations and discretization practices studied, the newly
proposed solver is particularly efficient when the matrices are arranged so that the
points in sharp corners of the computational molecule need approximations of the
kind given by Eq. (16). This is explained by analyzing the errors in the two-step
approximation procedure and confirmed by all test calculations.

Y
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2. The dependence of the new solver on the cancellation parameter o shows
a regular pattern, and in all cases studied here the optimum value lay in the range
0.9 to 0.95. The SIP solver shows the same kind of dependence, but the optimum
value is reduced and the convergence rate decreases when the corner coefficients
become stronger. The dependence of the MSI procedure on a varies from case to
case and a typical optimum range cannot be identified, at least not for the cases
studied here.

3. Departure of the grid aspect ratio from unity increases the sensitivity of the
proposed solver to «; the optimum range, however, remains the same.

4. Increasing grid nonorthogonality for the kind of equations studied here re-
sults in reduced sensitivity of the proposed solver to the parameter a and an increase
in the convergence rate; for other solvers tried the opposite is true.

5. The proposed solver is less sensitive to an increase in the number of com-
putational points than the best alternative tried, the MSI (at least for the case tested).

6. For a values in the range mentioned above and all cases tested, the proposed
solver is more efficient than the other methods tried. In cases of strong grid non-
orthogonality and aspect ratio close to unity, it required up to seven times fewer
iterations (up to eight times less computing time) to reach the prescribed convergence
limit than the most efficient alternative, the MSI method.

These conclusions are valid for application of the solvers tested to equations
resulting from the nine-point discretization of the differential conservation equations
on nonorthogonal grids, as indicated in the Introduction. The errors introduced by
approximations in the two steps of the proposed solution algorithm partially cancel
when the matrices are arranged in an appropriate way, giving a significant increase
in the rate of convergence. Although the proposed solver can be applied to any nine-
diagonal coefficient matrix of the form studied, the efficiency may not be the same
if the coefficients are generated by an operator different from that used in this study.

APPENDIX: BASIC STEPS FOR THE RL ARRANGEMENT

When the vector {¢} is arranged in the RL fashion (index j changing from 1
to N; and index i backward from N; to 1), then the coefficients in matrix [A] cor-
respondmg to the SE, E, NE points interchange places on the nonzero diagonals with
those corresponding to the SW, W, and NW points, as compared to the LR arrange-
ment shown in Fig. 3. The missing diagonals in the [L] and [U] matrices now cor-
respond to the NE and SW points. The coefficients of the product matrix [C] can
then be expressed in terms of the coefficients b of the [L] and [U] matrices as fol-
lows:

Csé-_b

lj — bg;br-ﬂj—l + b;.;]

CNE —_ bz jb€+l J
' i
cs’ = bylbly 't + by

t)__b l+1.]— +b bl+lj+bgj ihj—1 + b;i/ (Al)
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& = BB + by
cs = bybif ™!

i = B + by
Ny = bEbid,

Now points NE and sw require special treatment, and approximations of the follow-
ing form can be applied [see Eq. (16)]: :

bng = a(dy + b — bp) -
bsw = a(ds + bw — bp) (A2)

Steps 1 and 2 are analogous to those presented for the LR arrangement and lead to
the following expressions for the coefficients p- :

i o i
SE = dsg
ij i i i+l j—1
biv = ag + aay; bstby
E = 1+ apitly
Qoy
ij b g il j—1
i = as’ + aagy, bstby
s = ij—1
l + (wa
ij — _ijf ij iJ o o pijpi+l,j Ljpij—1 )
b’ = ay’ — a(dly, + e — bE'by Y — bibiiY (A3)

— bUpiITL . phipitly _ i i+1,j—1
bs’by; bp by bsibyy

ay + aalj - abp/ b~ bg by’

b= A
b
P
ij L~ abipii=l _ pigyij—1
bi‘j _ Aw + QAdgy abs bW bs wa
w bi,j
P
ij
ij _ Onw
Ly OV
by Y,
P

The iteration procedure follows in the same 'w'ay as for the LR arrangement. The
formulas equivalent to Egs. (31) and (32) now read

0 = R = YO — pligit _ yy i

5 (A4)
ai.j _— Qi.j — b}l;}jsi'j+l — biifﬁi—"j — b]r;}{vsi—l.j+l (AS)
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