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Abstract

This paper presents a two-dimensional numerical simulation of flows around bluff bodies at Reynolds numbers Re = 100 and 200. The Immersed Boundary Method (IB), developed by Peskin in 1977, requires the computation of the force density term, which is added to the Navier Stokes equations. In the present work the Virtual Physical Model (VPM), proposed by Lima e Silva et al. in 2003 is used. This methodology presents the advantage of using a Cartesian Eulerian grid to represent the fluid domain and a set of points that compose the Lagrangian grid, used to model the bluff body. Simulations were performed for two circular cylinders of different diameter in tandem, two cylinders of the same diameter in tandem and two cylinders placed in side by side arrangement. The configurations of seven cylinders in a “V’ arrangement, for angles of 
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, were also simulated. A configuration of 23 different bluff bodies, obtained by a transverse cut in a central tower of an offshore structure, has been simulated and the results were compared with a single compact square, of equivalent size, immersed in the flow. The Strouhal number, the drag and the lift coefficients were also calculated. The Strouhal number is calculated using the Fast Fourier Transform (FFT) of the lift coefficient temporal distribution. Visualization of the vorticity and pressure fields and the streamlines are presented for each simulation showing the flow dynamics and patterns. It was possible to verify that the IB method with VPM is a powerful methodology to simulate flows in the presence of complex geometries.
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1. Introduction

The Immersed Boundary Method was designed to solve problems such as the biological fluid mechanics, which involve the interaction of a viscous fluid with an elastic membrane (Peskin, 1977). This methodology has been extended to solve complex engineering problems like those with immersed rigid bodies (Lima e Silva et al., 2003). The main idea of this method is to use a regular, Cartesian-Eulerian grid, to represent the total fluid domain, together with a Lagrangian grid to represent the immersed boundary. The boundary applies a singular force to the fluid and, at the same time, it reacts and moves inside the fluid at the local fluid velocity. The interaction between the fluid and the boundary can be modeled by a well-chosen discrete delta function, which is an approximation to the Dirac delta function. This methodology has been applied successfully for studying the flow interference between bluff bodies and the wake formed behind them. An important feature of this methodology is the modeling and computation of the Lagrangian force.

Peskin (1977) proposed to model this force field using the generalized Hooke’s law for immersed elastic boundaries. A constant of elasticity has been chosen to simulate the elastic boundary. Goldstein et al. (1993) proposed to calculate the fluid-solid interfacial force using a model that depends on two constants adjusted for each simulation. The force field is chosen along a specified surface to have a magnitude and direction opposing the local flow such that the flow is brought to the same velocity as the immersed boundary. This is a kind of virtual boundary condition that is imposed indirectly by the force field. For unsteady viscous flows the direct calculation of the force is performed by a feedback scheme in which the velocity is used to interactively determine the desired Lagrangian force field. 

Saiki and Biringen (1996) employed the Goldstein model to simulate flows with immersed solid bodies. The results presented spurious oscillations, which were caused by the use of the virtual boundary method with a spectral discretization. The oscillations were attenuated by the application of high-order finite differences.

Mohd-Yusof (1997) derived a discrete-time forcing scheme, which was used with a spectral method to simulate flows around cylinders and spheres at moderate Reynolds numbers. The force calculation was done in a way that the velocity value at the first grid node near the interface was imposed to guarantee the no-slip condition.

Ye et al. (1999) proposed a different approach on a staggered grid, named a Cartesian Grid Method, which does not use the concept of momentum forcing. In this method a control volume near the boundary is reshaped into a body-fitted trapezium by discarding the solid part of the cell and adding the neighboring cells. However, because the stencil of the trapezoidal boundary cell is different from that of the regular cell, a special numerical procedure is required in order to solve the discrete momentum equations at each computational time step.

Fadlun et al. (2000) applied the Mohd-Yusof (1997) developments to a discrete finite-difference method on a staggered grid. They adapted the Mohd-Yusof formulation in relation to the velocity calculation at the first grid point. The velocity at the first grid point external to the body is obtained by linearly interpolating the velocity at the second grid point, which is determined directly by solving the Navier-Stokes equations and the fluid velocity at the body surface.

Kim et al. (2001) introduced modifications to the Immersed Boundary Method by adding a mass source/sink with the momentum forcing. The mass source and the momentum forcing are applied on the body surface or in its neighborhood to satisfy the no-slip velocity boundary condition.

Lima e Silva et al. (2003) presented a new proposal to model the force field over the Lagrangian grid. This model does not require any constant to be adjusted nor a special interpolation scheme near the Lagrangian cells. It has been named the virtual physical model (VPM). The VPM is based on the momentum equation applied to a fluid particle located over the fluid-solid interface. The authors presented results for simulations of flows over a single two-dimensional cylinder at moderate Reynolds numbers. The Strouhal number, the recirculation bubble length, the drag, the lift and the pressure coefficient were compared with numerical and experimental results of other authors. The model is free of modeling constants, as well as any special procedure to recompose the discretization cells near the interface.

In the present work the Immersed Boundary Method with the Virtual Physical Model (Lima e Silva et al., 2003) were applied to simulate and analyze flows over bluff bodies. Simulations of two circular cylinders in tandem and in side by side arrangement were done. Flows over other complex arrangements of cylinders such as a “V” configuration and a composition of different geometries were simulated. The results illustrate the potential of this methodology to simulate flows over any type of complex configurations of immersed bodies. 

2. Mathematical Model: Momentum Equations and the Virtual Physical Model

A mixed Eulerian-Lagrangian formulation is used to represent the flow and the immersed boundary. A Cartesian grid describes the flow using a Finite Difference method and a Lagrangian grid, composed by a finite number of points, describes the immersed bodies. The Eulerian and the Lagrangian grids are coupled by a force field calculated at the Lagrangian points and then distributed across the Eulerian nodes in the body neighborhood. 

2.1. Fluid Formulation

The momentum and continuity equations for an incompressible, Newtonian viscous flow can be written as


[image: image2.wmf](

)

i

j

j

i

2

i

j

i

j

i

f

x

x

u

x

p

u

u

x

t

u

+

¶

¶

¶

+

¶

¶

-

=

ú

ú

û

ù

ê

ê

ë

é

¶

¶

+

¶

¶

m

r

 
(1)

and 
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The Eulerian force field is given by
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where 
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 is a Dirac delta function, 
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 are the Lagrangian points placed over the immersed boundary (see Fig. 1), 
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 is the Eulerian force, which is different from zero only over the immersed boundary. Equation (3) models the interaction between the immersed boundary and the fluid flow, injecting the force field into the fluid. 

2.2. Fluid-Interface Coupling

The Dirac delta function which appears in Eq (3) is replaced by the distribution function, 
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, proposed by Peskin (1977), in order to calculate the Eulerian force, in a discrete form. Therefore Eq. (3) is replaced by
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with
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and
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The 
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 term is calculated from Eqs. (5)-(7) and 
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 is the distance between the Lagrangian points, as indicated in Fig. 1. The parameter r is 
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 are the coordinates of the Eulerian points.

2.3. Interface Force Field Formulation

The Virtual Physical Model developed by Lima e Silva et al. (2003) and used to calculate the Lagrangian force field is based only upon the momentum equations. A momentum balance is done over the fluid particle, illustrated in Fig. 2, taking into account the Lagrangian force field 
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. Isolating this Lagrangian force yields
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The different terms that compose Eq. (8) are here named the acceleration force 
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2.4. Method to Calculate the 
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The terms described by Eqs. (9)-(12) must be evaluated over the interface using the Eulerian velocity field 
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 and pressure field 
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. These calculations also take into account that, at the interface, the fluid velocity must be equal to the interface velocity, which guarantees the no-slip boundary condition. The velocity and pressure spatial derivatives are computed using the fluid velocity and pressure obtained by means of Eqs. (1) and (2). 

The derivatives that compose the different terms are calculated using a second-order polynomial of Lagrange. Equations (13)-(16) were established for a generalized variable 
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, which can represent the velocity components and the pressure.

The derivatives in the x direction are given by
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and
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with similar terms representing the y direction derivatives.

The scheme used for these calculations was presented by Lima e Silva et al. (2003) and is summarized in Fig. (3). The velocity components 
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 must be interpolated over the auxiliary points 
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, with i = 1, 2, 3 and 4 (see Fig. 3). The velocity and pressure interpolations are performed using the neighboring Eulerian grid as illustrated by Figs. (4), (5) and (6). These interpolations do not account for the velocities and pressure values inside the interface. 

After the velocity components and the pressure on the auxiliary points 1, 2, 3 and 4 are known, they must be evaluated at point k over the interface. The velocities are interpolated using all the Eulerian values around point k, as illustrated by Fig. 7(a). The pressure at this point is estimated as shown by Fig. 7(b). The nearest Eulerian cell in the normal direction is found and its pressure is transferred to point k.  

After computing the Lagrangian force 
[image: image39.wmf](

)

t

,

x

F

r

r

 at each point k over the interface, this force is distributed using Eq. (4). This distribution process is illustrated in Fig. 8.

3. Numerical Algorithm

Equations (1) and (2) are solved by the finite difference method through a fractional step pressure correction method (Armfield and Street, 1999). As follows, an estimation of the velocity is explicitly calculated by
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where 
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 is the estimated velocity component, 
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 is the computational time step, n is the substep index, 
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and
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The pressure correction, 
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, is obtained by solving 
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The velocity field is updated using the solution of Eq. (13) by
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The previous pressure field and the correction pressure are used to calculate the new pressure field using
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The numerical method can be summarized as follows:

(a) The force field 
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 is calculated over the Lagrangian points 
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, by Eqs. (8)-(12) using the velocity and pressure fields at the previous time;

(b) The force 
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 is distributed to the Eulerian grid using Eqs. (4)-(7);

(c) The fluid velocity field under the influence of the force field 
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is estimated using Eq. (15);

(d) The linear system for the pressure correction, given by Eq. (18), is solved using an iterative method;

(e) The fluid velocity is updated using Eq. (19);

(f) The pressure field is computed using Eq. (20);

(g) The divergence is verified using Eq. (2);

(h) The steps above are repeated for the new time step.

The linear system for the pressure correction, Eq. (18), is solved by the modified strongly implicit procedure (MSI), Schneider and Zedan (1981). The interface force field and the momentum equations are computed using an explicit method. 

4. Numerical Results

4.1. Preliminary Aspects

The simulations were performed at Reynolds numbers (
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 is the kinematic viscosity of the fluid. The dimensionless time was defined as 
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, where t is the physical time in seconds. Once the pressure and velocities fields are obtained, the drag and lift coefficients and the Strouhal number are calculated using the Lagrangian force field directly. Therefore, these coefficients are defined as
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where Fd and Fl are the drag and the lift forces, respectively, given by
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where fx and fy are the Eulerian forces and Fx and Fy are the Lagrangian forces in the x and y directions; ( is the domain around the interface in the Eulerian grid and 
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 is the interface length. 


The Strouhal number is defined as the dimensionless frequency of vortex shedding behind the body, calculated by
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where f is the frequency of vortex shedding, which is determined by the FFT (Fast Fourier Transform) of the lift coefficient time distribution.

The time step 
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, to ensure numerical stability. As the geometry of the interface is established by the force field, the time step is calculated in such a way that the CFL < 1.0 criterion is attained.

A grid refinement was done with the objective of to verify its influence on the drag and lift coefficients. It was observed the necessity of at least 30 grids inside the body to guarantee the grid independence. At the present simulations 40 grids were used. The aspect ratio of the domain is also important and therefore this study was also done for each simulation. 

This methodology was very well validated by Lima e Silva et al. (2003) for flows over a single cylinder.

4.2. Cylinders of Different Diameters in Tandem

The IB simulations have been carried out in the domain shown in Fig. 9(a). This figure also shows a global view of the domain with the main geometrical parameters. Figure 9(b) shows a closer view of the arrangement with the Cartesian and the Lagrangian grids. The upstream and the downstream cylinders diameters are d and d/2, respectively. The simulations were done for the distances between the cylinder centers of L = 1.5d, 2.0d, 2.5d, 2.7d, 3.0d and 4.0d. A grid of 500x250 points in the x and y directions respectively was used. The flow direction is from the left to the right side of the domain. The simulations were carried out at a Reynolds number Re = 200, based on the diameter of the upstream cylinder, and the dimensionless time step, 
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, is 0.015. The indices 1 and 2 refer to the upstream and downstream cylinder, respectively.

The vorticity contours for four values of the time steps are shown in Fig. 10, for L = 2.7d. It can be observed that the cylinder 2 (downwind cylinder) is embedded in the vortex street generated by the cylinder 1 (Fig. 10(a)). As time advances, the vortex shed by cylinder 1 retracts downward and begins to collide frontally against cylinder 2. This phenomenon starts at T =150, as shown by Fig. 10 (c). At this time, the flow near cylinder 2 changes its direction and this cylinder starts shedding vortices. These effects (collision and vortex shedding) are directly observed in the temporal evolution of the drag coefficients as shown in Fig. 11. There is a change in their behavior. The drag coefficient of cylinder 2 (Cd2) presents negative values for T up to 150. For T >150, the drag coefficient assumes a positive time distribution. This behavior has its origin in the vortices transport dynamics explained above. The temporal sequence illustrated in Fig. 10 shows that as time passes the vortex shed from the upstream cylinder retracts and collides frontally with the downstream cylinder. This behavior explains why Cd2 changes its sign as a function of time. The Cd1 distribution also presents a sudden increase at the same time T =150.

For distances smaller than 2.7d the wake formed by the cylinder 1 envelopes cylinder 2 and near its surface there is a flow in the opposite direction (from right to left). This behavior can be seen in Fig. 12 using the vorticity field, for the case where the distance between the cylinders is L = 1.5d, Fig. 12(a) and L = 2.5d, Fig. 12 (b). Figure 13 shows the velocity vectors, confirming the direction of the flow near the smallest cylinder. 

It is important to mention that in the IB methodology, the instantaneous and the mean drag coefficient and the Strouhal number are directly obtained through the Lagrangian force, calculated over the immersed body. We can follow the evolution of the drag coefficient with the time as presented in Fig. 14 for L = 1.5d and for L = 2.5d. The negative value of the drag coefficient is observed for both cases.

The drag coefficient for both cylinders as a function of the distance between their centers is shown in Fig. 15. The drag coefficient sign of cylinder 2 switches from a negative value to a positive value when the vortices of cylinder 1 start to collide with cylinder 2, as presented before. The critical value of L/d = 2.7d is a little larger than the value of 2.5d, presented by Surmas et al. (2003) and Flatschart et al. (2000).

Figure 16 shows the results of the Strouhal number. It was calculated with the time distribution of Cl (lift coefficient) of the upstream cylinder. In the IB method the Strouhal number can be easily obtained because the force distribution is already known. The Strouhal number was calculated by taking the Fast Fourier Transformer (FFT) of the lift coefficient distribution. The results have the same behavior when compared with other methodologies (Surmas et al., 2003 and Flatschart et al., 2000). 

4.3. Cylinders of Same Diameters in Tandem

These simulations were done for two cylinders of same diameter d separated from each other by the following distances L = 1.5d, 2.0d, 3.0d and 4.0d. The simulations were carried out on a 500x250 grid for Re = 200. The domain used in these simulations and the geometrical parameters are shown in Fig. 17. As mentioned before, in this arrangement, the index 1 is used for the upstream cylinder and the index 2 refers to the downstream cylinder.

In Fig. 18, the vorticity field of the present work is compared with the result of two other authors (Surmas et al., 2003 and Meneghini et al., 2001). These results correspond to the time at which the vortices collide frontally with the second cylinder. At this time the drag coefficient of cylinder 2 changes from negative to positive. 

Figure 19 shows the drag coefficient of cylinder 1 (upstream) and cylinder 2 (downstream) as a function of the distance between their centers. This figure clearly shows the point where the drag coefficient sign changes to positive. The transition occurred at L = 4.0d in the present work, which is the same value presented by Surmas et al. (2003) and Meneghini et al. (2001). When the cylinders have the same diameter, the sign transition occurs in the larger distance (L = 4.0d) as compared with simulations with cylinders of different diameters (L = 2.7d). 

The Strouhal number, based on the diameter of cylinder 1, is presented in Fig. 20 as a function of the distance and between the cylinders centers. The results of the present work are compared with results of other authors. The comparisons show that the agreement among the three methods is very good. The present Strouhal value was 2 percent lower than the obtained by Meneghini et al. (2001) for L = 4.0d.

4.4. Cylinders of Same Diameter Side by Side

These simulations were done with two cylinders of same diameter disposed side by side. The gap L between their centers was considered as 1.5d, 2.0d, 3.0d and 4.0d. The simulation domain is shown in Fig. 21. A grid of 500x350 nodes was used and Re = 200, as in the last two cases.

Figure 22 shows the vorticity (left column) and pressure contours (right column) for all the distances simulated. Similar results of Meneghini et al. (2001) and Surmas et al. (2003) are presented in Fig. 23 for L = 2.0d and L = 4.0d. There is a great interference between the wakes of the cylinders for small distances (a repulsive force between the cylinders). This repulsive force is due to the movement of the stagnation points of both cylinders where the pressure is high as observed by Meneghini et al. (2001). The flow has a region of intense instabilities that cause changes in the drag and lift coefficients. For 
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 only one wake is formed and it deflects in the direction of one of the cylinders and later in the opposite direction (flopping phenomenon). This behavior was also observed by Bearman and Wadcock (1973), Williamson (1985) and Meneghini et al. (2001). The formation of two independent wakes can be observed as the distance between the cylinders increases, and the wakes become independent of each other as in isolated cylinders.

The mean drag coefficient is shown in Fig. 24. It has the same value for both cylinders because they are symmetrically placed in the domain. The results of Surmas et al., (2003) and Meneghini et al. (2001) are also presented in this figure. Again the agreement among the three methodologies is not good and experimental results are required in order to draw conclusions about these results.

The mean lift coefficients are presented in Fig. 25 for both cylinders. This parameter has the same magnitude for both cylinders but with opposite signs. The index 1 indicates the upper cylinder and the index 2 indicates the lower cylinder. There is an attraction force between the cylinders. As the gap between them increases, the mean lift coefficient for both cylinders tends to zero. This behavior was expected as it was observed for a single cylinder. 

4.5. Cylinders of Same Diameter in “V”

The configuration shown in Fig. 26 was chosen to analyze and to verify the influence between the wakes formed by seven cylinders of same diameter d. The cylinders were arranged in different configurations by changing the angle 
[image: image67.wmf]a

. This angle was assumed equal to 400, 600, 800, 1000, 1400 and 1800. The diagonal distance between two consecutive cylinders, Fig. 26, was maintained equal to 2.5d for all the simulations (different values of 
[image: image68.wmf]a

). Cylinders 1 and 7 where chosen to be analyzed. The Reynolds number based on the diameter of one cylinder is 100. The grid size used for these simulations was 500x500 and the domain has dimensions 50d x 50d.

Figure 27 shows the vorticity field for all the angles simulated. It is interesting to note that the vortex formation over individual cylinders is totally inhibited when the angle 
[image: image69.wmf]a

 is small. This flow is similar to that of a single immersed body like a delta.

The wake structure changes as the angle 
[image: image70.wmf]a

 increases. The flows become more complex and all the cylinders start to shed vortices, which strongly interact. There is a great influence between their wakes, which changes the drag force coefficients. 

The flow behavior, when the angle 
[image: image71.wmf]a

 is equal to 1800, is compared qualitatively with the experimental result of Fantasy of Flow (1993), Fig. 28, showing that both results are very similar.

Figure 29 shows the drag coefficient as a function of the dimensionless time for all the simulated angles (. The drag coefficients for cylinders 1 and 7, numbered in Fig. 26, are compared with the drag coefficient of a single cylinder. For angles smaller than 800 cylinders 1 and 7 have drag coefficients smaller than that for a single cylinder. Cylinder 1 has, for this range of 
[image: image72.wmf]a

, the smallest values of the drag coefficient, as can be seen in Fig. 29 (a)-(c). As the angle decreases, the wake becomes more inhibited. The amplitude of the wake oscillations increases with the increase of angle (. Also, as ( increases, the time variation of the drag coefficient becomes more and more complex. This is associated with the complexity of the wakes, as can be seen in Figs. 27 (d) - (f).

The mean drag coefficient and the Strouhal number are shown in Table 1 for cylinders 1 and 7. At ( = 400, a minimum value of Cd1 = 0.7323 is reached and St1 = 0.0851. These values are 52% and 44%, respectively, of the values found in an isolated cylinder (Cd = 1.3997, St = 0.1955).

For 
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 the values of the mean drag coefficients for all cylinders increase and reach values higher than that for an isolated cylinder. The amplitude of oscillation is also higher as 
[image: image74.wmf]a

is increased, as can be seen in Fig. 29. The maximum value of Cd1 = 2.2272 is 60% higher than the value for an isolated cylinder.

4.6. Combination of Bluff Bodies of Several Shapes

The IB methodology with the VPM has the advantage of providing a flow simulation around several geometries, without any type of additional complexity in the grid generation process. The grid is always Cartesian irrespective of the complexity of the configuration of immersed bodies. It is possible to obtain the force coefficients on each immersed body or an overall value, because the force distribution is known over each body individually at each time step. 

In order to illustrate these characteristics, a transverse horizontal cut at the main tower of an offshore structure was considered, which is illustrated in Fig. 30 (a). These structures are subject to strong wind streams and maritime currents, which can cause vibration, damaging the structural integrity. The schematic view of a composition of bluff bodies, generated by the transverse cut, is shown in Fig. 30 (b). Each body was numbered to facilitate the identification. For these simulations a non-uniform grid with 400x300 points was used, as illustrated in Fig. 31. The Reynolds number based on the dimension H, Fig. 30(b), is Re = 200. The distance between the external bodies (bodies 1 to 16) was chosen equal to 0.1H, as indicated in Fig. 30(b).

The streamlines for the dimensionless times T = 10s, 20s, 30s and 44s are shown in Fig. 32. The fluid flows through the immersed bodies but there is no vortex shedding inside the structure because all bodies are very close. The system of bodies can be considered as a porous media. The recirculation bubble generated behind the global structure has the same order of H. The results of the mean drag coefficients of each geometry are shown in Table 2. The value of the global drag coefficient calculated by the sum of the forces from each body is equal to 1.9492. 

We can observe that there are mass injections in the shear layer due to the gap between the bodies. As a consequence the horizontal length of the recirculation bubble is bigger than that of the flow over a square of the same dimensions. Figure 33 shows the streamlines of the simulations with a square immersed in the flow for the non-dimensional instants of time of T = 10s, 20s, 30s and 44s. For these simulations the value of the mean drag coefficient was 1.6844. This value is 13% smaller than the drag coefficient of the composition of bluff bodies.

The time evolution of the drag coefficient is represented in Fig. 34 for the geometries numbered in Fig. 30.  Figure 34(a) shows the time distribution of the drag coefficient for bodies 3 and 11. These two bodies are placed symmetrically. The drag distributions are out of phase but the amplitudes are the same for both bodies. The same behavior is observed in Figs. 34(b)-(g). Figure 34(f) shows the drag coefficient for bodies 21, 22 and 23 placed inside the configuration. As expected, the drag coefficient of these bodies is small as compared with the downstream bodies (bodies 1 and 13-18). Figure 34 (h) shows the drag coefficient for bodies 7 and 15 placed in the downwind and upwind stagnation positions. The drag coefficient of body 15 is greater than body 7, as expected. This results illustrate that it is possible, using the IB-VPM methodology to easily calculate the drag and lift coefficients of each body that compose such a complex geometry.  

5. Conclusions

The Immersed Boundary Method with the Virtual Physical Model was used to simulate flows over different compositions of bluff bodies. The results of the mean drag coefficient and the Strouhal number for cylinders in tandem and side-by-side were compared with other author’s results. The flow dynamics changes with the distance between the cylinders. It was observed the presence of a repulsion force when the distance between the bodies is small. Consequently the drag coefficient is affected and can change from negative to positive. For the simulations with different cylinders and with two identical cylinders in tandem, it was observed that the distance where the Cd sign changes was 2.7d and 4.0d, respectively. In the side-by-side arrangement, a repulsive force between the cylinders has been observed for gaps 
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. The simulations with seven cylinders in a “V” configuration show the potential of the methodology to study flows over complex geometries. There is no restriction on the number of bodies and the computational cost is not significantly increased when a great number of bodies are immersed in the flow. In other words the main cost is due to the solution of the linear system for the pressure correction. With these simulations, it is possible to choose the optimal configuration for which the drag coefficients are minimized. The last case simulated was the flow in the presence of different bluff bodies, illustrating a horizontal section on an offshore structure. The global drag coefficient was compared with that of a square with the same dimensions. The drag coefficient value obtained for the compact square was approximately 13% smaller than that for the composed geometry. There was a change in the shape of the recirculation bubble and the vortex shedding starts earlier than it is for the simulations with a square.

It is also important to emphasize that in the IB method a Cartesian grid is used to simulate flows over any geometric shape. Another advantage is the ease of calculating the force coefficients for an isolated body or the global value for the configuration.
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Figure Captions

Figure 1 – Immersed boundary illustration: Lagrangian grid for the interface and Eulerian grid for the domain. 

Figure 2 – Illustration of a particle of fluid located over an immersed interface point. 

Figure 3 – Scheme for the velocity components and pressure interpolations. 

Figure 4 – Scheme for the interpolation of the horizontal velocity component 
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)

u

 at point 3. 

Figure 5 – Scheme for the interpolation of the vertical velocity component 
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u

 at point 3. 

Figure 6 – Scheme for the interpolation of the pressure field at point 3. 

Figure 7 – Interpolation for the velocity components (a) and pressure (b), at point k. 

Figure 8 – Illustration of the Lagrangian force distribution process to the Eulerian grid. 

Figure 9 – Geometric parameters of the simulation domain with two cylinders of different diameters disposed in tandem; global view (a) and closer view (b) 

Figure 10 – Arrangement in tandem for different cylinders. Sequence of Vorticity Contours for L = 2.7d; 2.5s (a), 5.0s (b), 10.0s (c) and 21s (d).

Figure 11 –  Arrangement in tandem for different cylinders. Time evolution of Cd1 and Cd2 for L = 2.7d
Figure 12 – Arrangement in tandem for different cylinders. Vorticity Contours for L = 1.5d (a) and L = 2.5d (b). 

Figure 13 – The velocity vectors for the flows around two cylinders of different diameter for L = 1.5d. 
Figure 14 – Arrangement in tandem for different cylinders. Evolution of the drag coefficient with time for L = 1.5d and for L = 2.5d.

Figure 15 - Arrangement in tandem for different cylinders. Mean drag coefficient as a function of the gap between cylinders centers. 1 upstream cylinder and 2 downstream cylinder.

Figure 16 - Arrangement in tandem for different cylinders. Strouhal number as a function of the gap between the cylinders centers. 

Figure 17 – Geometric parameters of the simulation domain with two cylinders of same diameter disposed in tandem; global view (a) and closer view with the Eulerian and Lagrangian grids (b).

Figure 18 - Arrangement in tandem for cylinders of the same diameter. Vorticity Contours for L = 4.0d; present work (a), Surmas et al. (2003) (b) and Meneghini et al. (2001) (c). 

Figure 19 – Arrangement in tandem for cylinders of the same diameter. Drag coefficient for both cylinders as a function of the gap. 
Figure 20 – Arrangement in tandem for cylinders of same diameter. Strouhal Number as a function of the gap. 
Figure 21 – Geometric parameters of the simulation domain with two cylinders of same diameter disposed side by side.

Figure 22 - Vorticity Contours and pressure field for L = 1.5d (a), L = 2.0d (b), L = 3.0d (c) and L = 4.0d (d); present work.

Figure 23 - Vorticity Contours for Side by side arrangement and L = 2.0d and 4.0d, respectively. Surmas et al. (2003) (a) and Meneguini et al. (2001) (b).

Figure 24 – Drag coefficient as a function of the gap between the cylinders for the side by side arrangement.

Figure 25 – Lift coefficient as a function of the gap between the cylinders for the side by side arrangement.

Figure 26 – Schematic view of the “V” Configuration.

Figure 27 – Vorticity Field for the “V” Configuration. ( = 400 (a), ( = 600 (b), ( = 800 (c), ( = 1000 (d), ( = 1400 (e) and ( = 1800 (f). 

Figure 28 – Flow Visualization for the “V” Configuration at ( = 1800. Present work (a) and experimental result of Fantasy of Flow book, (b).
Figure 29 – Drag coefficient as a function of time for cylinders 1 and 7 for the “V” Configuration. ( = 400 (a), ( = 600 (b), ( = 800 (c), ( = 1000 (d), ( = 1400 (e) and ( = 1800 (f).

Figure 30 – Picture of an offshore structure (a) and schematic view of a horizontal plane of the central tower (b).

Figure 31 – Non-uniform grid used for the simulations over a group of bluff bodies.

Figure 32 – Streamlines formed by the flow over group of bluff bodies; 10s (a), 20s (b), 30s (c) and 45s (d).

Figure 33 – Streamlines formed by the flow over a square; 10s (a), 20s (b), 30s (c), and 45s (d).

Figure 34 – Time evolution of the drag coefficient for the geometries represented in Fig. 30.

Tables Legend

Table 1 – Mean drag coefficient and Strouhal number for the cylinders 1 and 7 for different ( angles.

Table 2 – Mean drag coefficients for the bluff bodies of Figure 30(b).
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Fig. 34

Table 1

	(
	Cd,1
	Cd,7
	St1
	St7

	400
	0.7323
	0.8017
	0.0851
	0.0849

	600
	0.9709
	1.1173
	0.1128
	0.1132

	800
	1.1767
	1.3975
	0.1194
	0.1198

	1000
	1.4556
	1.5358
	0.1286
	0.1280

	1400
	1.9752
	1.8249
	0.2074
	0.1857

	1800
	2.2272
	1.9320
	0.2294
	0.1892


Table 2

	Body Number
	Cd
	Body Number
	Cd

	1
	1.9520
	13
	1.9560

	2
	0.5000
	14
	1.9340

	3
	0.7600
	15
	1.7080

	4
	0.4880
	16
	1.9280

	5
	0.3740
	17
	0.8440

	6
	0.4780
	18
	0.8460

	7
	0.4370
	19
	0.4340

	8
	0.4840
	20
	0.4340

	9
	0.3840
	21
	0.5500

	10
	0.4960
	22
	0.4240

	11
	0.7680
	23
	0.4240

	12
	0.5000
	
	


























* Corresponding author.
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