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Abstract. Transitional and turbulent flows in a three-dimensional lid-driven cavity has been performed employing a 
large–eddy simulation methodology with dynamical and Smagorinsky subgrid-scale modes. The volume method in 
cartesian coordinates is applied on staggered girds, considering second order temporal and spatial  schemes. The tree-
dimensional structures as spanwise inward and outward currents, the end-wall corner vortices and the Taylor-Gortler-
like vortices were observed. As Reynolds number is increased the instabilities appear in the lower part of the cavity 
and, for the high Reynolds number the unstable flow becomes fully turbulent. The Taylor-Gortler-like vortices were 
distorted due to onset of turbulence regime. The qualitative and quantitative results showed a good agreement with 
experimental and numerical dates of other authors, also, the comparative analyze between the sub-grid scale models is 
presented.    
 
Keywords: Unstable flow, lid-driven cavity, large-eddy simulation.  

 
1. Introduction  
 

The lid-driven cavity flows have several important technological applications in different areas of engineering, 
moreover treated of flows with high complexity that until the present time is investigations reasons. The simplicity of 
the geometry that delimits the problem contrasts with the diversity of structures that if form and according to literature, 
this characteristic it became in a classic problem to test numerical models 

The representation of cavities of square section with infinite axial length, bidimensional cavities, is has been widely 
studied and is now a standard case test for new computational schemes. Benjamin and Denny (1979), Ghia et al. (1982) 
e Botella e Peyret (1998) they are some of the many existing works, of which Ghia et al. (1982) is frequent referenced. 
Ghia et al. employed finite-difference method with stream function-vorticity formulation, using uniform cartesian grids.   

Due the difficulty of to study three-dimensional lid-driven cavity, only in 80s the pioneering experimental work of 
koseff and Street (1984) allowed show that cavity flows were three-dimensional in nature. Moreover were observed 
pattern characteristics as primary and secondary eddies and structures as the end-wall corner vortices, the spanwise 
inward and outward currents and the Taylor-Gortler-like vortices. Recently Migeon et al. (2003) considered time three-
dimensional development inside standard parallelepiped lid-driven cavities at Reynolds number 1000; the results show 
the formation and development of vorticals structures and initial phase of the Taylor-Gortler-like vortices development.     

 The recent progress in numerical analysis and computer hardware has made it possible to adequate three-
dimensional analyze. Ku et al. (1987) and Babu and Korpela (1994) through of solving of the three-dimensional Navier-
Stokes equations, had presented comparisons between bi and three-dimensional results for cubic cavity. On the other 
hand, Iwatsu et al. (1989) show the flow topology from projection of the streamlines on planes for several Reynolds 
number and Sheu and Tsai (2002) carry through the same for Reynolds number 400. Unstable laminar flows that show 
the existence of Taylor-Gortler-like, has were computed by Iwatsu et al. (1990), Zang et al. (1994) and Chiang et al. 
(1996). The turbulent flows has been simulated using direct numerical simulation methodology by Leriche and 
Gavvirakis (2000) and large-eddy simulation by Zang et al. (1993), Deshpande and Milton (1998), Hassan Barsamian 
(2001). These works compared the results with experimental dates of koseff and Street (1984) and show turbulent 
statistical characteristics and instantaneous behavior. 
 
 
 
 
 
 
 



2. Problem Formulation and Turbulent Model 
 

The geometry of problem is depicted in Fig. 1, it is treated of a lid-driven cubical cavity of side = 1 m . The lid 
surface moves in the positive 

L
x  direction with velocity U =1.0 m s . The normal walls to direction x  are called of 

downstream and upstream walls, the normal wall direction  is called bottom wall and the normal walls to direction  
are called side walls.       

y z

 
 

Figure 1. Lid-driven cubical cavity geometry. 
 

 The fluid confined is isothermal and incompressible, with constant proprieties. The computational modeling 
requires solving three-dimensional flows equations, or either solving the Navier-Stokes equations. These equations in 
dimensional form and cartesian coordinates are as follows:    

 
.u∇ = 0 ,               (1) 
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where the velocity vector u  has components  in , ,u v w , ,x y z  directions, respectively, p is the pressure field, ρ  is 
the density and ν  is the cinematic viscosity. According large-eddy simulation methodology (Smagorinsky, 1963), the 
filtering process are applied on the governed equations for separate the fields that contains the large and sub-grid scales. 
This filtering process gives rise to the generalized sub-grid scale Reynolds stress, defined as ( )ij i j i ju u u uτ = − − , as 

described by Silveira-Neto et al. (2002). The tensor ijτ  is modeled using the Boussinesq hypothesis: 
 

22
3ij t ij ijS kτ ν= − + δ ,             (3) 

     
where tν  is the turbulent viscosity, (1 2)( )ij i j j iS u x u= ∂ ∂ + ∂ ∂x  is the strain rate of the resolved field and  is the 
kinetic turbulent energy. Considering the Eqs. (1-3), the filtered Navier-Stokes equations are written as: 
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Two sub-grid scale models were used to approximate the sub-grid scale Reynolds stress,  the Smagorinsky and 
dynamic models. The Smagorinsky model proposed by Smagorinsky (1963), is based on the equilibrium hypothesis, 
where the production can be equal the dissipation of sub-grid scale turbulent kinetic energy due to the viscosity effects. 
The form derived is: 

 
2( ) |t sC S |ν = ∆ ,              (6) 

 
where sC  is Smagorinsky coefficient, ∆  is the filter length scale and 1/ 2| | ( )ij ijS S S= . sC  may take different values in 
different flows, here were used two values 0.1  (Lilly, ) and  0.18 (Gravemeier, 2003). In the dynamic sub-grid scale 
model proposed by Germano et al. (1991), the parameter model can be computed as function of spatial coordinate and 
time. This model removes many of the difficulties and deficiencies of Smagorinsky model. According to the expression 
presented by Germano et al. (1991) and modificated by Lilly (1992): 

 
2 | |t C Sν = ∆ ,              (7) 

 
with the dynamic coefficient C  give by: 
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2
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where  is the filter test length scale. The influence of the filter test on flow is very important as demostred in 
Padilla and Silveira-Neto (2003), here used the discreet filter proposed by Padilla (2004). 

ˆ 2∆ = ∆

  
3. Numerical Method 
 

In order to perform the equations discretization, the finite volume method was employed on staggered grid, having 
second order schemes in space and time (Piomelli, 2000): central differencing an Adams-Brashforth schemes, 
respectively. The pressure velocity coupling method was the fractional step (Kim and Moin, 1985), where the steps 
named predictor and corrector are used. The pressure correction is evaluated by solving the Poisson equation using 
strongly implicit procedure method, as proposed by Stone (1968). 

The time step is evaluated following the CFL stability criteria. Moreover, uniform and non-uniform (concentrated 
near walls) meshes are employed. 
 
4. Results 
 

The lid-driven square cavity and the lid-driven cubical cavity were considered for the bi and thee-dimensional 
simulations. 
 
4.1. Bidimentional cavity 
 

The bidimensional configuration was approached considering a minimum of volumes and periodicity boundary 
condition in the axial direction. Several cases with Re ≤ 1000 had been considered, of which they are presented 
resulted for Re = 100 and 1000, simulated with uniforms meshes of 40x40x2 and 50x50x2 in the horizontal, vertical 
and axial directions, respectively. 

Figure 1 shows the streamlines displayed on the colored vorticity distribution for Reynolds number 100 and 1000. 
The standard flow in both cases present the primary vortex and two secondary vortices, with changes of form and size 
as Re increases. Qualitatively these results are similar to the numerical results of Ghia et al. (1982) and Botella and 
Peyret (1998). The changes in the flow in function of the increment of Re  are reflected in the displacement of vortices 
centers, that quantified are very approached with the results of the works adobe mentioned and with the ones of 
Schreiber and Keller (1983) and Goyon (1996). 

For bigger comparative details the data of Ghia et al. (1982) are used. The Fig. 2 depicts velocity profiles on the 
x = 0.5 (left) and 0.5 (right) line for horizontal and vertical velocity, respectively. For low y = Re  are not necessary 
dense meshes to get good results (as example Re = 100), but for Re = 1000 a small difference observed between the 
profiles gotten with meshes 40x40x2 and 50x50x2, as well as the data of Ghia et al. (1982). As Re  increases, bigger 



gradients in the lid-driven and the near walls are formed, as consequence dense meshes or non-uniform meshes are 
necessary. Of general form, the results have a good agreement with the numerical results of Ghia et al. (1982). 
  

   
 

Figure 2. Streamlines on vorticity fields (+: red and -: blue). Left: Re =100; right: Re =1000. 
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Figure 3. Comparison of profiles at the mid-sectional line. Left: horizontal velocity; right: vertical velocity. 
 
4.2. Three-dimensional cavity 
 

Results for several Reynolds number Re 10000, corresponding to the stable and unstable flows, was obtained 
using uniform and non-uniform meshes. The simulations for 

≤
Re ≤ 1000 were performed with both types of meshes and 

without sub-grid scale model. For 3200 were performed with uniform meshes and Smagorinsky and dynamic sub-
grid scale models.      

Re ≤

The important experimental work of Koseff and Street (1982) and Koseff and Street (1984) demonstrated that flows 
inside lid-driven cavity are three-dimensional in nature, showing that beyond the structures observed in the 
bidimensional configurations, were formed others: the end-wall corner vortices, the spanwise inward and outward 
currents and the Taylor-Gortler-like counter-rotating vortices (visualized by Migeon et al. 2003 so). Figure 4 shows the 
projections of the streamlines on three equidistant planes in direction (left) and z x direction (right) at =400, 
considering an uniform mesh of 50x50x50. The full-developed state it allows to observe that the flow is symmetric on 
the mid-plane 0.5. The mid-plane clearly show the primary and secondary vortices and side walls plane show the 
projections of the end-wall corner vortices. The downstream and upstream walls it allows to evidence the presence of 
the spanwise outward current inside the downstream and upstream secondary eddies and the mid-plane 

Re

z =

x = 0.5 show 
the projection of the spanwise outward current inside the primary eddy. The results show the good agreement with the 
numerical data of Sheu and Tsai (2002).  

Evidently the differences with the bidimensional solutions are well known, which are bigger as  increases, these 
differences are larger for cubical cavities, however diminish for larger aspect ratio height/axial length, as demonstrated 
by Chiang et al. (1998).   

Re
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Figure 4. The projections of the streamlines on equidistant planes at =400.  Re
 
Exists discrepancy respect of the Reynolds number from which the flow to pass of steady to unstable. Visualizations 

of Aidum et al. (1991) to allow conclude that the flow becomes unstable at the approximate =825, considering 
aspect ratio of 3, but the numerical result of Chiang et al. (1998) it reports the value of  = 1250 (same conditions). 
Other references consider the value of  1000. When the Reynolds number is increased for 3200 the flow is clearly 
unstable (Fig. 5: left) and when is increased up to =10000 the flow show high degree of instability and turbulence 
(Figs. 5-8).  

Re
Re

Re ≈
Re

Figure 5 depicts time distribution of horizontal velocity at three  stations on the y x = 0.5, = 0.5 line and  = 
3200 and 10000, performed with non-uniforms meshes of 40x40x40. It can be seen that the flow starts from rest and 
becomes quickly unstable, where the fluctuations were maiores near of bottom wall and minors in the center of the 
cavity. The sign of the signal it is related with the dynamics of the primary eddies, that in the nearness of the lid-driven 
is positive, it oscillates between positive and negative in the center and negative and in the nearness of the bottom wall 
is negative. The flow for  = 1000 shows oscillations of  velocity with larger amplitude and presence of multiple 
frequencies that form an irregular standard, characteristic standard of the turbulent flows. 
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Figure 5. Time distribution of horizontal velocity at various  stations on the y x = 0.5, 0.5 line. z =
 

According to observations of Koseff and Street (1984) and Prasad and Koseff (1989), the flow for Reynolds 
numbers below 5000 is essentially laminar and that transition to turbulence regime takes place in the range of 6000-
8000. However the large-eddy simulation methodology has been employed for flows of  3200. Re ≥

The results of the flow in lid-driven cavity for =10000 were compared with experimental dates of Prasad and 
Koseff (1989). Comparisons between Smagorinsky and dynamic sub-grid scale models are also carried through. Where 
the Smagorinsky model considers two values for the Smagorinsky coefficient. The results are presented in statistical 
quantifications form (mean velocities and root-mean square velocities) and instantaneous vorticity isosurfaces. The 
statistics of the different fields it considers the last ones 100 s. 

Re



Figures 6 and 7 shows comparison of profiles at the mid-sectional plane ( =0.5 ), left side on the z m x = 0.5  line 
and right side on the = 0.5 m. Mean velocity profiles of horizontal and vertical velocity present good comparison 
everywhere except near the downstream wall, as seen in Fig. 6. The influence of the use of different values of 

m
y

sC  is 
notorious, mainly in regions next of lid-driven, downstream and upstream walls, but is not possible to differentiate the 
advantage of a value on another one, however the Fig. 7 permit one better analysis. On the other hand, for both the 
components of the velocity, the dynamic sub-grid scale model obtain better agreement with experimental data that the 
Smagorinsky sub-grid scale model.        
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Figure 6. Comparison of the mean velocity at Re =10000. Left: horizontal velocity; right: vertical velocity. 
 

u rms [m/s]

y
ax

is
[m

]

0.00 0.05 0.10
0.00

0.25

0.50

0.75

1.00

Prasad and Koseff
Smag. (Cs=0.1)
Smag. (Cs=0.18)
Dynamic

 
x axis [m]

v
rm

s
[m

/s
]

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

0.15

Prasad and Koseff
Smag. (Cs=0.1)
Smag. (Cs=0.18)
Dynamic

 
 

Figure 7. Comparison of the fluctuating velocity at Re =10000. Left: horizontal velocity: right: vertical velocity. 
 

Root-mean square velocities values are depicts in Fig. 7. The biggest values meet in the neighborhoods of the walls, 
mainly near the downstream wall; regions that coincide with the zones of high gradients of speed of the primary eddy. 
In function that the Smagorinsky sub-grid model it supplies high values of turbulent viscosity in the parietal regions, the 
statistics of the fluctuating velocity one does not behave adequately in the regions near the walls and, probably this is 
the reason not to obtain a good agreement with the experimental data in other regions of the cavity. Is possible to 
differentiate the advantage of a value of sC =0.18, mainly seeing the u  velocity. Again the dynamic sub-grid scale 
model obtain better agreement with experimental data in all regions. 

rms

The difference between the results simulated with the experimental data registered in Figs. 6 and 7, in peak 
magnitude, is probably due to necessity to use of denser meshes. 

The Taylor-Gortler-like vortices are originated due the hydrodynamics instability near of upstream wall (Chiang and 
Sheu 1997) and the development of these counter-rotating vortices were observed for Re =1000 by Prasad and Koseff  
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(1984), but recently Migeon et al. (2003) show that no well-formed counter-rotating vortices emerge for Re =1000, 
only initial phase of the instability development are revealed. For Re =3200 The Taylor-Gortler-like vortices are lightly 
unstable, but for Re =10000 this complex structures are highly unstable and distorted, as observed in Fig. 8. Moreover 
these structures are coupled with the primary and secondary eddies. The instantaneous vorticity ( xy ) isosurfaces at 
Re =10000 are plotted in Fig. 8, for the Smagorinsky sub-grid model with sC =0.18 (left) and for dynamic sub-grid 
scale model (right). The three-dimensional flow structures with dynamic model present a strongly quantity and quality 
of details. 
 

  
 

Figure 8. Instantaneous vorticity isosurfaces at Re =10000. Left: Smagorinsky model; right: dynamic model.   
 
5. Conclusions 
 

Solving the Navier-Stokes equations has performed stable and unstable flows in a three-dimensional lid-driven 
cavity. The large-eddy simulation with Smagorinsky and dynamic sub-grid scale models was used for flows of  
3200. The pattern of stable flows of bi and three-dimensional configurations were reproduced with good agreement 
respect of results of other authors. Characteristic Three-dimensional flow structures, as the end-wall corner vortices, the 
spanwise inward and outward currents and the Taylor-Gortler-like, appear as Reynolds number increased and becomes 
highly unstable for high Reynolds number. Quantitative comparisons between the Smagorinsky and dynamic sub-grid 
scale model and experimental dates, for turbulent flow, shown advantage of dynamic model; moreover the qualitative 
results were widely superiors.              

Re ≥
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