Proceedings of COBEM 2005
18th International Congress of Mechanical Engineering

Copyright © 2005 by ABCM
November 6-11, 2005, Ouro Preto, MG


IMPLEMENTATION AND EVALUATION OF RANS TURBULENCE MODELS IN THE BRU3D CODE
Francisco José de Souza

Universidade Federal de Uberlândia
Av. João Naves de Ávila, 2160

Uberlândia – MG – Brazil

e-mail: fjsouza@mecanica.ufu.br

Aristeu da Silveira Neto
Universidade Federal de Uberlândia
Av. João Naves de Ávila, 2160

Uberlândia – MG – Brazil

e-mail: aristeus@mecanica.ufu.br

César José Deschamps
Universidade Federal de Santa Catarina

e-mail: deschamps@nrva.ufsc.br

João Luiz F. Azevedo
Instituto de Aeronáutica e Espaço

CTA/IAE/ASE - N

12228-904 – São José dos Campos – SP – Brazil

e-mail: azevedo@iae.cta.br

Enda Dimitri Vieira Bigarella
Embraer – Empresa Brasileira de Aeronáutica

Av. Brigadeiro Faria Lima, 2170

12227-901 - São José dos Campos – SP – Brazil

e-mail: bigarella@embraer.com.br

Guilherme Lara de Oliveira
Embraer – Empresa Brasileira de Aeronáutica

Av. Brigadeiro Faria Lima, 2170

12227-901 - São José dos Campos – SP – Brazil

e-mail: guilherme.oliveira@embraer.com.br

Abstract. This paper describes the implementation and evaluation of two RANS turbulence models, namely the standard - model and the realizable - model in the Bru3D code. The baseline code is a 3D, unstructured, finite volume code developed at CTA/IAE. Along with the - models, two different wall treatments were evaluated: the standard logarithmic wall function and the enhanced wall treatment. In the latter, the two-layer - model is used along with the Kader wall function, which also holds for the linear region of the boundary layer. Results of different combinations of models and wall treatments were validated in two shear flows: compressible flat plate and backward facing step. The best results for the compressible flat plate flow were obtained with both - turbulence models combined with the enhanced wall treatment. For the backward facing step problem, the reverse flow as well as the redeveloping flow region were best predicted by the realizable - model, combined with the enhanced wall treatment or integrated down to the wall.
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1. Introduction

Turbulence is one of the key phenomena in fluid dynamics. A major challenge in aerodynamic designs is the accuracy of turbulence models for simulating complex turbulent flows. The choice of the appropriate turbulence model is then of paramount importance in a successful flow prediction. Development of improved turbulence models has increased in the last decade due to technological requirements. Nevertheless, the lack of information about their performance has disencouraged usage of these models under different flow conditions. Thus, validation and testing of turbulence models are still needed to understand their capabilities and limitations (Bardina et al, 1997).

In this paper, the implementation and evaluation of two advanced Reynolds-averaged Navier-Stokes (RANS), namely the standard (-( and the realizable (-(, is presented. The models were implemented in the Bru3d code, which is an unstructured finite-volume based code developed at CTA/IAE (Scalabrin, 2002). Besides the integration to the wall, the models were implemented with two optional wall treatments: the standard logarithmic wall function and an enhanced wall treatment The latter combines the two-layer model in the near-wall region with the Kader wall function (Kader, 1981).

For the validation and evaluation of the implementations, two classical test cases for which the experimental results are available have been chosen. The first test is the compressible flow over a flat plate, which allows one to check for implementations errors. The second case is the backward facing step flow. This flow represents a challenge for most turbulence models, since separation, reattachment and redeveloping flow are some of the features present in this test case. The performance of different turbulence model/wall treatment combinations were compared with experimental mean velocity profiles.

2. Formulation

2.1. Baseline code

The baseline code (Scalabrin, 2002) solves the compressible 3D Navier-Stokes equations in an unstructured, cell-centered, conservative finite-volume formulation. The equations are advanced in time with a five-step, second-order Runge-Kutta scheme. Difusive terms are discretized with the second-order centered scheme whereas the advective terms can be computed through either the Jameson scheme (centered with artificial dissipation) or the first-order Van Leer scheme. In all the simulations shown in this work, the Jameson scheme was used.

2.2. Standard (-( model

The (-( model is the most widely known and extensively used two-equation eddy viscosity model (Bardina et al, 1997). Different versions of this model are found in the literature. The formulation used here is the one of Launder and Sharma (1974), also referred to as the standard (-( model. The (-( model was originally developed to improve the mixing-length model and to avoid the algebraic prescription of the turbulence length scale in complex flows. Transport equations are solved for two scalar properties of turbulence. The (-equation is a model of the transport equation for the turbulent kinetic energy, and the (-equation is a model for the dissipation rate of turbulent kinetic energy.

The eddy-viscosity in the standard (-( model is defined as a function of the turbulent kinetic energy, 
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, and the turbulent dissipation rate, 
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The eddy viscosity is scaled with the fluid density, 
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, the turbulent velocity scale, 
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, based on local dimensional analysis. The model coefficient, 
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, is determined by equilibrium analysis at high Reynolds numbers, and the damping function, f(, is modelled in terms of a turbulence Reynolds number, 
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The standard (-( model equations for a compressible flow are:
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where P is the production term, given by:
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and f2 is another near wall damping function.

The near wall damping functions f( and f2 are:
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The advective and the diffusive terms were discretized with the first-order upwind and the second-order centered schemes, respectively. The equations for ( and ( are advanced in time with an implicit Euler scheme.

2.3. Realizable (-( model

The purpose of this model, which was proposed by Shih et al (1994), is to provide new formulations for the dissipation rate and eddy viscosity in order to improve the performance of the standard (-( model. The new model dissipation rate equation is based on the dynamic equation for the fluctuation vorticity. The new formulation for the eddy viscosity contains the effect of mean rotation on the turbulent stresses ensures the square of the normal stresses are positive. Results for rotating homogeneous shear flows, free shear flows, channel flows with and without pressure gradients and backward facing steps show that this model performs better than the standard (-( in almost all cases.

The eddy viscosity for this model is obtained from:
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where 
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is the strain magnitude and f( is a low-Reynolds number function, designed to account for viscous and inviscid damping turbulent fluctuations in the proximity of solid surfaces:
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The realizable (-( model consists of the following transport equations for (, given by Eq. (2), and (, which reads:
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where P is the production term, given by Eq. (4) and the additional term E in the dissipation-rate equation is designed to improve the model response to adverse pressure-gradient flows is:
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Tt is a realizable estimate of the turbulence timescale:
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As with the standard (-( model, for the advective and the diffusive terms, the first-order upwind and the second-order centered schemes were used, respectively. The temporal discretization is by an implicit Euler scheme.

2.4. Logarithmic wall function

Most standard wall functions are based on the proposal of Launder and Spalding (1984), and have been most widely used for industrial flows. The formulation is described below.
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where up is the mean velocity parallel to the wall, u( is the shear velocity, 
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, (w is the shear stress at the wall, E = 9.793, ( = 0.4187 is the von Karman constant and y+ is the dimensionless distance from the wall:
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It is often assumed that the flow is in local equilibrium, meaning that the production and dissipation are nearly equal. If this is the case, it can be shown that:
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It should be noted that the above boundary conditions are valid only when the first grid point is within the logarithmic region i.e. when y+>30. In order to remedy this shortcoming of wall functions, the following operation is applied to Eq. (13):


[image: image24.wmf](

)

067

.

11

,

max

~

+

+

=

y

y

,
(15)

that is, a lower limit is imposed on the value of y+ (11.067), which marks the intersection between the logarithmic and the linear profile. As a consequence, the results are less dependent on the grid resolution, as shown in Vieser et al (2002).

2.5. Enhanced wall treatment

The enhanced wall treatment (Fluent manual, 2003) is a near-wall modeling method that combines a two-layer model with the Kader wall function. This enables to have a near-wall modeling approach that will possess the accuracy of the standard two-layer approach for fine near-wall meshes and that, at the same time, will not significantly reduce accuracy for wall-function meshes. In the near-wall model implemented in the Bru3D code, the viscosity-affected near-wall region is completely resolved all the way to the viscous sublayer. In this approach, the whole domain is subdivided into a viscosity-affected region and a fully-turbulent region. The demarcation of the two regions is determined by a wall-distance-based, turbulent Reynolds number, Rey, defined as:
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where y is the distance from the wall to the cell centers.

In the fully turbulent region (Rey > Rey*, Rey*=200), the standard k-( model is employed. In the viscosity-affected near-wall region (Rey < 200), the one-equation model of Wolfstein is employed. In the one-equation model, the momentum equations and the k equation are retained. However, the turbulent viscosity, (t, is computed from: 
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where the length scale that appears in the equation above is computed from Eq.(18):
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The two-layer formulation for turbulent viscosity described above is used as a part of the enhanced wall treatment, in which the two-layer definition is smoothly blended with the high-Reynolds-number (t definition from the outer region:
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where (t is the high-Reynolds-number definition for the (-( model chosen, Eq.(1) or Eq.(6). A blending function, ((, is defined in such a way that it is equal to unity far from walls and is zero very near walls. The blending function used is:
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The constant A determines the width of the blending function. By defining a width such that the value of ((will be within 1% of its far-field value given a variation of (Rey, the result is:


[image: image30.wmf](

)

98

.

0

tanh

Re

y

A

D

=

,
(21)

Typically, (Rey would be assigned a value that is between 5% and 20% of Rey*. The main purpose of the blending function (( is to prevent solution convergence from being impeded when the (-( solution in the outer layer does not match with the two-layer formulation.

The ( field is computed from:
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The length scale that appears in Eq. (22) is computed from Chen and Patel:
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If the whole flow domain is inside the viscosity-affected region (Rey < 200), ( is not obtained by solving the transport equation; it is instead obtained algebraically from Eq. (22). The constants in the length scale formulas, Eqs. (18) and (23), are taken from:
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To have a method that can extend its applicability throughout the near-wall region (i.e., laminar sublayer, buffer region, and fully-turbulent outer region) it is necessary to formulate the law-of-the wall as a single wall law for the entire wall region. This can be achieved by blending linear (laminar) and logarithmic (turbulent) laws-of-the-wall using a function suggested by Kader (1981):
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where 
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with the blending function given by:
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where 
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Similarly, the general equation for the derivative 
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This formula also guarantees the correct asymptotic behavior for large and small values of y+ and reasonable representation of velocity profiles in the cases where y + falls inside the wall buffer region (3 < y+ < 10).

3. Results and discussions

3.1. Compressible flat plate flow

In this test case, the numerical predictions were compared with the empirical correlations of mean velocity profile of a Mach 1.5 boundary layer flow over an adiabatic surface. The grid contains 10560 hexahedral elements, with special refinement near the wall. The Reynolds number was Re=1.0 million. There is a general consensus that the Van Driest I transformation (Van Driest, 1951) is a good fit to the experimental data of the flow velocity profile in the inner layer:
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Figure 1 presents the results of the standard and realizable (-( models integrated down to the wall and combined with the logarithmic wall-function and the enhanced wall treatment. It can be seen that the, when integrated down to the wall, realizable (-( model provides a much better agreement with the experimental correlation. This result is not surprising since y+ for the first node away from the wall is nearly 0.6 and the standard (-( model requires this value to be around 0.1 to yield accurate results. The results of both turbulence models combined with the logarithmic wall function are seen to be very poor. Indeed, this mesh is fine enough to allow the first node away from the wall to lie in the linear region of the boundary-layer, where the logarithmic wall-function no longer holds. This suggests that this wall function is more applicable in cases in which the mesh is coarse so that the first node from the wall lies above in the logarithmic region. Both turbulence models combined with the enhanced wall treatment provide the same profile, which is considerably better than the remaining ones.
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Figure 1. Vertical profiles of the dimensionless streamwise velocity for the compressible flat plate flow problem (Re = 106, M( = 1.5)
3.2. Backward facing step flow

The incompressible flow downstream of the step with an expansion ratio of 1.25 is modeled. The experiments were accomplished by Vogel and Eaton (1984). The inlet is placed 3.8 H upstream of the step, whose height is H. The outlet boundary is located approximately 40 H downstream of the step. The Reynolds number, calculated as:
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is 28000 and the Mach number was kept at 0.3. All the walls were treated as adiabatic walls. In the experiment, the inlet profile evolved in a rectangular duct. Thus, the boundary layer profile at the inlet was imposed according to the experimental values available (Vogel and Eaton, 1984). The mesh contains 14190 hexahedral elements.

Figures 2(a) to 2(f) compare the simulated mean streamwise velocity profiles with the experimental ones at different stations downstream of the step. In the first station (Fig. 2a), the reverse flow is best predicted by the realizable (-( model with the enhanced wall treatment, while in the second station this model integrated to the wall provides the best result, though overpredicting the mean profile above y/H=1. All the other combinations of turbulence models and wall functions underpredict the intensity of the recirculation.

[image: image48.jpg]yH

O exp. {(Vogel and Eaton, 1984)
standard ke
standard ke+loglaw
standard ke+enhan wall treat
- - - realizable ke
able ke+loglaw
77777 realizable ke+enhan wall treat




[image: image49.jpg]yH

exp. (Vogel and Eaton, 1984)
standard ke

standard ke+loglaw

standard ke+enhan wall treat
realizable ke

able ke+loglaw
realizable ke+enhan wall treat

x/H=4.55





2(a)






2(b)

[image: image50.jpg]yH

O exp. {(Vogel and Eaton, 1984)
—— standard ke
————— standard ke+loglaw
———— standard ke+enhan wall treat
- - - realizable ke
able ke+loglaw
77777 realizable ke+enhan wall treat




[image: image51.jpg]yH

3 —————————— — -
[ O exp. {(Vogel and Eaton, 1984)
F standard ke
[ standard ke+loglaw
standard ke+enhan wall treat
r - ---- realizable ke
ol mEmms able ke+loglaw 4
77777 realizable ke+enhan wall treat
1k 4
| }H=9.5333
V: N L L
o 06 08





2(c)






2(d)

[image: image52.jpg]yH

exp. (Vogel and Eaton, 1984)
standard ke

standard ke+loglaw
standard ke+enhan wall treat
realizable ke

able ke+loglaw
realizable ke+enhan wall treat




[image: image53.jpg]yH

3 —————— ————— .
[ O exp. {(Vogel and Eaton, 1984)
F standard ke
[ standard ke+loglaw
standard ke+enhan wall treat
r - ---- realizable ke
2 m—— able ke+loglaw
77777 realizable ke+enhan wall treat
1k
| WH=17.5333
ola —— L
0 02 04 06 08





2(e)






2(f)

Figure 2. Vertical streamwise velocity profiles for the backward facing step flow: comparison between computed and experimental results at different horizontal stations downstream of the step.

The redeveloping flow (Figs. 2c and 2d) close to the wall is best predicted by the realizable (-( model combined with the enhanced wall treatment, whereas the standard (-( combinations appear to overpredict the velocity magnitude. However, the opposite trend is observed in the next stations (Figs. 2e and 2f), in which the standard (-( model combinations perform slightly better than the realizable (-( ones. In this particular test case, it is important to bear in mind that the profiles also have the influence of the upper wall. Since experimental data above y/H=3 are not available, it is not possible to conclude that the numerical profiles display only the effect of the lower wall modeling, specially at stations away from the step where confinement effects are known to influence the results. Moreover, the first y+ for most of the stations is above 1 in the mesh employed in these simulations.
4. Conclusions

Different combinations of (-(  turbulence models and wall treatments were implemented and validated for two shear flows. The results were found to be consistent, with the realizable (-( model capable of predicting reverse flow. The best overall results were provided by the combination realizable (-( model + enhanced wall treatment.
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