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Abstract

In this work, a virtual boundary method is applied to the numerical simulation of a uniform flow over a cylinder.

The force source term, added to the two-dimensional Navier–Stokes equations, guarantees the imposition of the no-slip

boundary condition over the body–fluid interface. These equations are discretized, using the finite differences method.

The immersed boundary is represented with a finite number of Lagrangian points, distributed over the solid–fluid

interface. A Cartesian grid is used to solve the fluid flow equations. The key idea is to propose a method to calculate the

interfacial force without ad hoc constants that should usually be adjusted for the type of flow and the type of the

numerical method, when this kind of model is used. In the present work, this force is calculated using the Navier–Stokes

equations applied to the Lagrangian points and then distributed over the Eulerian grid. The main advantage of this

approach is that it enables calculation of this force field, even if the interface is moving or deforming. It is unnecessary

to locate the Eulerian grid points near this immersed boundary. The lift and drag coefficients and the Strouhal number,

calculated for an immersed cylinder, are compared with previous experimental and numerical results, for different

Reynolds numbers.
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1. Introduction

Immersed bodies present a very broad spectrum of practical problems due to their geometric complexity

and movement inside the flow. This class of problems is very difficult to analyze using classical methods,

because of these two characteristics. The most common problems involve vibration of the immersed
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structure, which induces turbulence in the flow and turbulence induces vibration on the immersed structure.

This is the well-known fluid–structure interaction problem. The movement of one or several particles,

which are in a deposition process inside a reservoir, presents another example of this class of problems [21].

Recently, some new types of methods based on the immersed boundary idea of Peskin [15], have been

proposed. The main idea is to use a regular Eulerian mesh for the fluid dynamics simulation, coupled with a

Lagrangian representation of the immersed boundary. The immersed boundary exerts a singular force on

the fluid. The Lagrangian mesh can move independent of the Eulerian mesh. Different models to calculate

this force field have been proposed recently.
Lai and Peskin [10] have proposed a second-order accurate immersed boundary method that has been

used to simulate flows over a circular cylinder. The interaction between the fluid and the immersed

boundary is modeled using a well-chosen discretized approximation to the Dirac delta function. The sin-

gular Lagrangian force intensity is calculated using a Hook law, in which the boundary point X is fixed to a

equilibrium point Xe with a very stiff spring, whose stiffness constant is j � 1.

Goldstein et al. [6,7] proposed a model called the Virtual Boundary Formulation, which was used to

simulate turbulent flow over a riblet-covered surface and to address other similar problems. Their method

is similar to the immersed boundary method but is appropriate only to rigid immersed surfaces. The main
idea of the virtual boundary method is to treat the embedded boundary in the fluid, applying a force field to

the fluid, so that it takes the same velocity as the surface. This is a virtual model for the classic no-slip

boundary condition. Since the force field is not known a priori, it must be calculated in a feedback way

such that the velocity on the boundary is used to determine the desired force distribution. This model

involves two imposed constants, a and b, which are chosen to be both negative and large enough in

magnitude to bring the fluid velocity close to the interface velocity. The force intensity is calculated using

the expression

~ff ð~xxk; tÞ ¼ a
Z t

0

~uuð~xxk; tÞ
h

� ~UUð~xxk; tÞ
i
dt þ b ~uuð~xxk; tÞ

h
� ~UUð~xxk; tÞ

i
; ð1Þ

where a and b are constants that must be adjusted in order to obtain the expected physical behavior at the
flow. Saiki and Biringen [18] used this model to simulate a two-dimensional flow around stationary and

moving cylinders.

Fogelson and Peskin [4] solved the three-dimensional Stokes equations to simulate the sedimenting

particle flows in the Stokes regime. In this work, the particles are slightly deformable. A regular La-

grangian grid is used to represent the overall domain. Each particle is represented by a group of La-

grangian points, placed over the fluid–particle interface. The momentum equations are solved at all points

of the Eulerian grid. The particle points move with the local velocity fluid. This velocity is affected by

density force term that is calculated over the Lagrangian points and distributed over the neighboring
Eulerian points. The distributed force field has to model the non-linear and viscous effects between fluid

and particle surfaces. Knowing this Eulerian force field, the entire domain is viewed as one entity without

solid interfaces. The authors made simulations with one and two particles under the influence of gravity.

They observed favorable behavior as compared with existing theories for multi particle sedimentation.

They concluded that the proposed method is a powerful numerical tool to study flows with suspended

particles.

Ye et al. [26] proposed a method called the Cartesian Grid Method for simulating two-dimensional

unsteady, viscous, incompressible flows over complex geometries. In this method, a control volume near the
immersed boundary is re-formed into a body-fitted trapezoidal shape by discarding the solid part of the cell

and adding the neighboring cells. They used an interpolation scheme near the immersed boundary that

gives second-order spatial accuracy. The concept of momentum forcing, that is, the force added on the

Navier–Stokes equations, is not used.
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Fadlum et al. [3] used discrete-time forcing, as suggested by Mohd-Yusof [12], and showed that it is more

efficient than the feedback forcing method for three-dimensional problems. The velocity at the first grid

point, external to the interface, is obtained by a linear interpolation of the velocity at the second grid point

and the velocity of the body surface. The force is calculated at the first external grid point using the Navier–

Stokes Equations. In this model, there are no adjustable constants. This method requires a special algo-

rithm to identify the grid points over which the force must be calculated.

Kim et al. [9] proposed a method based on a finite-volume approach, using a staggered mesh. Flows over

immersed complex geometries were simulated. The authors introduced the use of a mass source or sink and
a momentum forcing to guarantee the no-slip boundary condition on the immersed boundary, and to

satisfy the continuity for the cell containing the immersed boundary.

In the present work, a new model is proposed. It is based on the calculation of the force field over a

sequence of Lagrangian points, which represent the interface, using the Navier–Stokes Equations. There

are no ad hoc constants in this model and a special algorithm to capture the neighboring grid points of the

immersed interface is not required. This model is being named here Physical Virtual Model (PVM), due to

the fact that it is based only upon the laws of conservation.

We simulated an internal channel flow and the flows around a circular cylinder, in order to validate the
methodology and the numerical procedure. Detailed informations about the flows over the cylinder, at

different Reynolds numbers are presented. These flow quantities are the mean drag and mean lift coeffi-

cients, the drag and lift fluctuations, the wall pressure and the recirculation length behind the cylinder and

the Strouhal number, for low Reynolds numbers. The results were compared with experimental and with

other numerical studies.
2. Mathematical formulation

2.1. General aspects of the formulation

Viscous and incompressible flows in a Cartesian square domain X containing an immersed boundary, as

illustrated in Fig. 1, can be modeled by the Navier–Stokes equations:

q
o~VV
ot

"
þ ð~VV � ~rrÞ~VV

#
¼ � ~rrP þ lr2~VV þ~FF ; ð2Þ
~rr � ~VV ¼ 0; ð3Þ
Fig. 1. Immersed boundary illustration; Eulerian mesh ð~xxÞ and Lagrangian mesh ð~xxkÞ.
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where ~FF is given by

~FF ð~xxÞ ¼
Z

X

~ff ð~xxkÞdð~xx �~xxkÞd~xxk; ð4Þ

and dð~xx �~xxkÞ is a Dirac delta function,~xxk are the Lagrangian points placed over the immersed boundary

(see Fig. 1), ~ff ð~xxkÞ is the Lagrangian force density, and ~FF ð~xxÞ is the Eulerian force that is not equal to zero

only over the immersed boundary. Eq. (4) models the interaction between the immersed boundary and the

fluid flow, by injecting the force field on the fluid.
In order to discretize the Dirac delta function that appears in Eq. (4), it must be replaced by the dis-

tribution function, Dij, proposed by Peskin [15] and modified by Juric [8], represented by the following

equations:

Dijð~xxkÞ ¼
f ½ðxk � xiÞ=h
f ½ðyk � yjÞ=h


h2
; ð5Þ
f ðrÞ ¼
f1ðrÞ if krk < 1;
1
2
� f1ð2� krkÞ if 1 < krk < 2;

0 if krk > 2;

8<
: ð6Þ

where

f1ðrÞ ¼
3� 2krk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4krk � 4krk2

q
8

; ð7Þ

r being ðxk � xiÞ=h or ðyk � yjÞ=h, h is the Eulerian grid size and ðxi; yjÞ are the Eulerian points. An important

property of this function is that its integral is equal to one.

2.2. Immersed boundary force – Physical virtual model

In the present work, the PVM is proposed to calculate the Lagrangian force field, based only upon the
momentum equation. All the Navier–Stokes terms are calculated over the Lagrangian points. Therefore the

force ~ff ð~xxkÞ should be expressed by

~ff ð~xxkÞ ¼ ~ffað~xxkÞ þ~ffið~xxkÞ þ~ffvð~xxkÞ þ~ffpð~xxkÞ: ð8Þ

The different terms that compose Eq. (8) are here referred to as acceleration force ~ffa, inertial force ~ffi,
viscous force ~ffv and pressure force ~ffp. These force components are represented by:

~ffað~xxkÞ ¼ q
o~VV
ot

ð~xxkÞ; ð9Þ
~ffið~xxkÞ ¼ qð~VV � ~rrÞ~VV ð~xxkÞ; ð10Þ
~ffvð~xxkÞ ¼ �lr2~VV ð~xxkÞ; ð11Þ
~ffpð~xxkÞ ¼ ~rrP ð~xxkÞ: ð12Þ



Fig. 2. Scheme for the pressure and velocity interpolation.
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The different terms described by Eqs. (9)–(12) must be evaluated over the interface using the velocity field
~VV ð~xxÞ and pressure field P ð~xxÞ. These calculations must also take into account that, at the interface, the fluid

velocity must be equal to the interface velocity, which guarantees the no-slip condition. The velocity and

pressure spatial derivatives are calculated using the fluid velocity and pressure obtained by Eqs. (2) and (3).

One of the possible ways to do this is to interpolate ~VV ð~xxÞ and P ð~xxÞ over appropriate points near the in-

terface, as illustrated by Fig. 2. This interpolation method is described in the following section.

2.3. Interpolation and derivatives calculation procedure

The interpolation scheme for the horizontal velocity, over point number 3, for example, is shown in

Fig. 3. A square dotted domain is defined as being the region where the variables will be analyzed. In the
Fig. 3. Interpolation scheme for the horizontal velocity at point 3.



Fig. 4. Interpolation scheme for the vertical velocity at point 3.
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shaded area that denotes the immersed body, the velocity and pressure fields do not contribute to the

interpolation process. The horizontal velocity components, shown in Fig. 3, are interpolated over point 3

using the same model given by Eqs. (5)–(7). Only those components, which are at a distance less than or

equal to 2Dx, from the point number 3, will be interpolated. This procedure is executed automatically by the
distribution function model. Furthermore, the dotted box, shown in Figs. 4 and 5, is used to reduce CPU

time calculation.
Fig. 5. (a) Interpolation scheme for the velocities and (b) for the pressure at point k.
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In Fig. 4, the vertical velocity components are shown for the interpolation scheme over point 3. The

same procedure is used to obtain the interpolated pressure value. The interpolations over the other points

(1, 2 and 4), are also done the same way. For the points over the interface (k points), the procedure is

different. The velocity components are interpolated using the internal and external grids (Fig. 5(a)). The

pressure is taken as the value at a Dx distance from point k, in the normal direction, as shown in Fig. 5(b).

Point p belongs to the nearest external Eulerian cell from point k.
The pressure and velocity derivatives, that appear in Eqs. (9)–(12), are calculated using a second-

order Lagrange polynomial approximation. Generalizing the vertical and horizontal velocity compo-
nents and the pressure by /, the first and second derivatives in the x direction are approximated

by:

o/
ox

ðxk; ykÞ ¼
ðxk � x2Þ

ðx1 � x2Þðx1 � xkÞ
/1 þ

ðxk � x1Þ
ðx2 � x1Þðx2 � xkÞ

/2 þ
ðxk � x1Þ þ ðxk � x2Þ
ðxk � x1Þðxk � x2Þ

/k; ð13Þ
o2/
ox2

ðxk; ykÞ ¼
2/1

ðx1 � x2Þðx1 � xkÞ
þ 2/2

ðx2 � x1Þðx2 � xkÞ
þ 2/k

ðxk � x1Þðxk � x2Þ
: ð14Þ

The derivatives in the y direction are given by:

o/
oy

ðxk; ykÞ ¼
ðyk � y4Þ

ðy3 � y4Þðy3 � ykÞ
/3 þ

ðyk � y3Þ
ðy4 � y3Þðy4 � ykÞ

/4 þ
ðyk � y3Þ þ ðyk � y4Þ
ðyk � y3Þðyk � y4Þ

/k; ð15Þ
o2/
oy2

ðxk; ykÞ ¼
2/3

ðy3 � y4Þðy3 � ykÞ
þ 2/4

ðy4 � y3Þðy4 � ykÞ
þ 2/k

ðyk � y3Þðyk � y4Þ
; ð16Þ

where /1, /2, /3 and /4 are obtained by the interpolation described in Figs. 3–5. The interface velocity

components ðuk; vkÞ, are also used for the derivative calculation. These velocity components are equal to

zero for the purposes of the present work, for which the interface is stationary. The pairs ðxk; ykÞ,
ðx1; y1Þ, ðx2; y2Þ, ðx3; y3Þ and ðx4; y4Þ are the coordinates of the points k, 1, 2, 3 and 4, respectively, as

shown in Fig. 2. We emphasize that the derivatives expressed by Eqs. (13)–(16) are calculated over the
interface at points ðxk; ykÞ. The distances between the points k and 1, k and 3, 1 and 2, and 3 and 4 are

Dx (the mesh size). Their distribution is always at the outside part of the immersed boundary. Using the

signal of the normal vector components, it is possible to conveniently locate these points, outside the

interface. Therefore, the calculation of the force terms, Eqs. (10)–(12), is independent of the internal

flow properties.

The acceleration force qðo~VV =otÞ, Eq. (9), is calculated taking into account that the fluid velocity over the

interface must have the same value as the interface velocity. Therefore, this acceleration term is approxi-

mated by ðqð~VVk � ~VVfkÞÞ=Dt, where ~VVk ¼ ðuk; vkÞ is the interface velocity and ~VVfk ¼ ðufk; vfkÞ is the fluid velocity
at the same position on the interface.

Once calculated, the Lagrangian force, given by Eq. (8), is distributed over the neighboring Eulerian

grid, as illustrated in Fig. 6.

The Dirac delta function, that appears in Eq. (4), is replaced by the distribution function, in order to

calculate the Eulerian force, in a discrete form. Therefore Eq. (4) is replaced by

~FFij ¼
X

Dij
~ffkDs2; ð17Þ

where Dij is given by Eqs. (5)–(7) and Ds is the distance between two Lagrangian points. The presented

mathematical model is solved using the numerical method described in the following section.



Fig. 6. Illustration of the force distribution process.
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3. Numerical method

Eqs. (2) and (3) were discretized using the second-order finite central difference method in space and a

Euler first order in time. The velocity and pressure coupling was solved using a second-order pressure

correction method, as presented by Armfied and Street [1]. This method is described as follows:

�uunþ1
i � un

i

Dt
¼ � 1

q
opn

oxi
� Nðun

i Þ þ Lðun
i Þ þ F n

i ; ð18Þ
o2unþ1

oxi oxi
¼ q

Dt
o�uunþ1

i

oxi
; ð19Þ
unþ1
i ¼ �uunþ1

i � Dt
q

ounþ1

oxi
; ð20Þ
pnþ1 ¼ pn þ unþ1; ð21Þ

where

LðuiÞ ¼
l
q

o2ui

oxj oxj
; ð22Þ
NðuiÞ ¼
oðuiujÞ
oxj

; ð23Þ

where �uui is the estimated velocity component, u is the pressure correction and Dt and n are the compu-

tational time step and the sub-step indices, respectively. The numerical solution of these equations is de-

rived as follows:

1. Calculate the force field ~ff ð~xxkÞ, over the Lagrangian points ðxk; ykÞ, using Eqs. (8)–(12) and the initial

conditions.

2. Distribute the force ~ff ð~xxkÞ to the Eulerian grid using Eq. (17).

3. Estimate the fluid velocity field under the influence of the force field ~FF using Eq. (18).
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4. Solve the linear system for the pressure correction given by Eq. (19).

5. Compute the actual pressure field using Eq. (21).

6. Update the fluid velocity using Eq. (20).

7. Verify the divergence using Eq. (3).
This procedure completes the time step loop. Normally, one loop is sufficient to obtain the mass con-

servation, verified in step (7). The convergence criterion used for all the simulations was that

maxf ~rr � ~VV g6 10�8, where the max value is calculated over the entire domain.

The resulting linear system for the pressure correction u is solved using the interactive solver MSI

(Modified Strongly Implicit Procedure) of Schneider and Zedan [19]. Note that the interface force field

calculation and the momentum equation solution are performed in an explicit way.
4. Results

The immersed boundary method, using the Physical Virtual Model, has been applied to simulate an

internal channel flow and the flow around a circular cylinder in order to validate the methodology and the

numerical procedure. For the two-dimensional Poiseuille flow simulation, the channel walls where modeled

using the PVM model. Simulations of the flow past a circular cylinder were done for different low Reynolds

numbers and consequently, the drag and lift coefficients, the length of the recirculation bubble and the

pressure coefficient on the cylinder surface were obtained. These results were compared with results present
by other authors.

4.1. Poiseuille flow

Fig. 7 shows the steady state of a vertical velocity profile in a vertical channel of width h and length L.
This simulation was performed using a 100� 200 grid in the x and y directions, respectively. A constant

pressure gradient was imposed on the channel and the force field was calculated at the channel walls. This
Fig. 7. (a) Force field at the channels walls. (b) Detail of the force at the wall. (c) Vertical velocity profile at y ¼ 2. The continuous line

represents the analytical result and the crosses the numerical result.
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result was compared with the result obtained by the analytical solution. We would like to stress that

boundary conditions over the walls were modeled using the immersed boundary method, instead of the

classic no-slip velocity condition.

The maximum velocity error obtained comparing the present result with analytical solution, was 1.0%.

4.2. Flow over a circular cylinder

A rectangular domain was used to simulate the flow over a stationary cylinder. The boundary conditions

were imposed in such a way that the flow was from the bottom up toward the top of the domain. A circular

cylinder was placed inside the domain so that its center had coordinates x ¼ 7:5d and y ¼ 16:5d. The

domain had a length of 30d and a width of 15d. These dimensions were chosen in order to minimize the

boundary effects on the flow development. A Newman boundary condition was used on the lateral
boundaries. A constant velocity profile U1 was specified at the domain entrance.

A grid refinement study was done to verify the result independence and the accuracy of the method. The

results are shown in Table 1 for five grid sizes. They became grid independent for a grid of 150� 300 points

and all results presented in this paper were obtained for a grid of 250� 500 points.

Fig. 8 shows the 250� 500 uniform mesh used in the simulations of flow past a stationary circular

cylinder of diameter d ¼ 0:1. Simulations were performed at Re ¼ 10, 20, 40, 50, 60, 80, 100, 150, and 300.
Table 1

A grid refinement study

Re ¼ 80

Dx ¼ Dy Grid points CD

0.0150 100� 200 1.360

0.0120 125� 250 1.409

0.0100 150� 300 1.394

0.0075 200� 400 1.398

0.0060 250� 500 1.396

Fig. 8. (a) Complete view of the domain with the circular cylinder placed inside a vertical channel and (b) zoom view of the Cartesian

and Lagrangian grids.
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The velocity was imposed in such a way that the desired Reynolds number was obtained. The fluid

properties q and l were considered constants and were the same for all simulations.

The criterion for the determination of the number of Lagrangian points was such as Ds=Dx6 0:9. This

implies that, in the present method, we can use a reduced number of Lagrangian points, as compared with

Saiki and Biringen [18], who used a refined Lagrangian mesh in their simulations.

The Reynolds number in this flow was defined as

Re ¼ qU1d
l

; ð24Þ

where d is the cylinder diameter. Finally, the dimensionless time was defined as

T ¼ U1t
d

: ð25Þ

Once the velocity and pressure fields are calculated, the drag and lift coefficients and the Strouhal

number can also be calculated, using the force field directly.
Drag coefficient. As demonstrated by Lai and Peskin [10], the drag force on an immersed body in a

stream, arises from two sources: the shear stress and the pressure distribution along the body. The drag

coefficient can be defined as

CD ¼ FD

ð1=2ÞqU 2
1d

; ð26Þ

where FD is the drag force. Here, it can be calculated using the Eulerian force or the Lagrangian force as:

FD ¼ �
Z

X
Fx dx ¼ �

Z L

0

fx ds; ð27Þ

where Fx and fx are the x components of the Eulerian and Lagrangian force, respectively, L is the length of

the interface and X is a domain which contains the interface.

Lift coefficient. Similar to the drag coefficient, the lift coefficient can be defined as

CL ¼ FL

ð1=2ÞqU 2
1d

; ð28Þ

where FL is the lift force, which can be calculated using the y component of the Eulerian force or the

Lagrangian force as

FL ¼ �
Z

X
Fy dy ¼ �

Z L

0

fy ds; ð29Þ

where Fy and fy are the y components of the Eulerian and Lagrangian forces, respectively.

Strouhal number. The Strouhal number is defined as the dimensionless frequency with which the vortices

are shed behind the body

St ¼ fd
U1

; ð30Þ

where f is the vortex shedding frequency. This frequency can be obtained using the Fast Fourier Transform

of the lift coefficient time distribution.

A small time step ðDt ¼ 1� 10�6Þ was used at the first loop, in order to guarantee the code stability. It is

increased as the flow develops. When the force field is enough to satisfy the no-slip condition on the cylinder
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surface, the time step is of 1� 10�3. This time step is of the order of that used by others authors (i.e., Lai

and Peskin [10]). The results obtained with this time step, for Re ¼ 80, compare very well with others

authors results. Although, by security measure the authors have used a time step of Dt ¼ 1:10�4 for all

calculation presented in the present paper.

For Reynolds number equal to 10, 20 and 40 the wake formed behind the cylinder attains a steady

symmetric state, which is in agreement with the well-established result, by the linear stability theory. The

cylinder wake instabilities rises for ReP 47.

Fig. 9 shows the recirculation bubble behind the cylinder at Re ¼ 10, 20 and 40, respectively, in the
steady flow regime. The bubble increases with the Reynolds number.

The force components ðFx; FyÞ distributed near the solid interface are shown in Fig. 10. We observe that it

is different from zero also inside the interface. In fact, we have a velocity field inside this interface but it does
Fig. 9. Flow past a circular cylinder. Streamline visualization: (a) Re ¼ 10, (b) Re ¼ 20 and (c) Re ¼ 40.

Fig. 10. Force field illustration for Re ¼ 40: (a) Fx, (b) Fy .
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not affect the Lagrangian force calculation because only the external fields are used during the interpolation

process.

The Lagrangian force terms, i.e., ~ffa (the acceleration force), ~ffi (the inertial force), ~ffv (the viscous force)

and ~ffp (the pressure force) are given by Eqs. (9)–(12). Their temporal evolution is shown in Figs. 11–13. In

Fig. 11(a) the points A and B represent the positions where this terms are analyzed.
Fig. 11. Specific points used to analyze the Lagrangian force components (a); temporal variation of the vertical acceleration force at

point B and vertical component of the velocity, inside the bubble recirculation, at point C (b).

Fig. 12. Temporal variation of the Lagrangian force components at Point A: horizontal component and vertical component (b).

Fig. 13. Temporal variation of the Lagrangian force components at Point B: horizontal component and vertical component (b).
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Fig. 11(b) shows the variation of the vertical component of the acceleration force ðfayÞ, at point B, and
the temporal variation of the vertical component of the fluid velocity ðvÞ, at point C. The components (x
and y) of all force terms extracted at the point A, on the left side of the cylinder, can be visualized in Fig. 12.

The horizontal and the vertical force components are shown in Figs. 12(a) and (b), respectively, as a

function of the non-dimensional time. Fig. 13 shows the same force components at point B.
We see that the vertical velocity component (Fig. 11(b)) presents an oscillating behavior, corresponding

to the vortices shedding process behind the cylinder. All force components (Figs. 11–13) presents the same

behavior as the vertical velocity component, showing that the force calculation takes into account the
neighboring flow dynamic. The vortices shedding process determines the frequencies and the amplitude of

the force oscillations.

The acceleration force ~ffa ¼ ðfax; fayÞ might tend to zero if the Lagrangian force had been calculated

implicitly in such a way that at each time the iterative process could bring this term ð~ffaÞ to zero, before to

advance to the next time. As the calculation were performed in a explicit way, it cannot be zero because the

force used at time t þ Dt is calculated at the time t. It is very important to stress that at each time the

acceleration force assumes a value different from zero due to the fact that the fluid velocity at the interface is

recalculated at each time and, consequently, it assume a value different from zero.
All force components present the same oscillating behavior, with the same frequency, but with different

amplitude levels. The acceleration force assumes a very important role to compose the total force. The

pressure force is the second more important, the viscous force is third more import and the inertial force is

negligible as compared with the others terms.

The no-slipping boundary condition must be guaranteed by this force field. The fluid velocity at the

Lagrangian point over the solid/fluid interface is obtained by interpolating the nearest velocity field. We

define here l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1ðu2
k þ v2kÞ=N

q
as a parameter that shows how good is the model in the sense that no

slipping boundary condition must be assured. Fig. 14 shows the time evolution for the parameter l2, which

tends to zero as time pass. For this simulation l2 is of the order 10�4. Fig. 15 shows the pressure field for six

Reynolds numbers and Fig. 16 shows the corresponding vorticity field. It can be visualized in both figures

that for Reynolds 20 and 40 the flow is symmetric. For Reynolds 80 the instabilities take place and the flow

is completely asymmetric.

The length of the bubble recirculation ðLwÞ is here defined as the distance between two stagnation

points downstream of the cylinder, as illustrated by Fig. 17. It was determined using the vertical velocity
Fig. 14. Time evolution of the parameter l2, for Re ¼ 10.



Fig. 15. Pressure field. (a) Re ¼ 20, (b) Re ¼ 40, (c) Re ¼ 80, (d) Re ¼ 100, (e) Re ¼ 150 and (f) Re ¼ 300.

Fig. 16. Vorticity field. (a) Re ¼ 20, (b) Re ¼ 40, (c) Re ¼ 80, (d) Re ¼ 100, (e) Re ¼ 150 and (f) Re ¼ 300.
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distribution, plotted over the central streamline downstream of the cylinder. Fig. 18 shows these distri-

butions as a function of y, for different values of Reynolds number. The second point, over this streamline,

where the velocity is zero gives the Lw measure. Fig. 19 shows the Lw distribution as a function of the

Reynolds number. Comparisons of the present results with those of other authors [13,14] demonstrate good

agreement.

The drag coefficient as a function of the dimensionless time for different values of the Reynolds number

is shown in Fig. 20. These results were obtained using Eq. (24).

Fig. 21 shows the lift coefficient as a function of time for different Reynolds numbers. These results were
obtained using Eq. (28). It should be noted that for Re ¼ 45 the flow is still stable. As the Reynolds number

increases the flow becomes unstable. The critical Reynolds number is approximately Re ¼ 47, as predicted

by the linear theory of stability.

The h orientation angle, illustrated by Fig. 22, varies from 0 to 180�, between the two stagnation points.

Fig. 23 shows the pressure coefficient on the cylinder surface, defined as Cp ¼ pk=0:5qU 2
1 [22], as a function

of the angle h, as illustrated by Fig. 22. The pressure is taken on the Lagrangian points~xxk. U1 is the free

stream velocity.

The comparison of the drag coefficient, obtained in the present work, with other numerical and ex-
perimental results, is presented in Table 2. Very good agreement has been obtained [5,11,23,26].
Fig. 17. Length of the bubble recirculation.

Fig. 18. Vertical velocity component ðvÞ as a function of y. Lw determination.



Fig. 19. Bubble recirculation length ðLw=dÞ as a function of the Reynolds number.

Fig. 20. Drag coefficients as a function of the dimensionless time: (a) Re ¼ 10, 20, 40 and 50; (b) Re ¼ 80, 100, 150 and 300.

Fig. 21. Variation of lift coefficients with time: (a) Re ¼ 45 and 47; (b) Re ¼ 50 and 80.
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Fig. 22. Schematic illustration of the angle h.

Fig. 23. Pressure coefficient distribution, between the stagnation points ðh ¼ 0Þ and ðh ¼ 180Þ: (a) Re ¼ 10, 20, 40 (present study);

.: Re ¼ 10, 20, 40 [14]; (b) Re ¼ 50, 80, 100, 150 (present study);O: Re ¼ 80, 100 [14].

Table 2

Comparison of mean drag coefficient (CD) with those of other authors

Re Present work Park et al.

[14]

Sucker and Brauer

[17]

Dennis and Chang

[2]

Ye et al.

[26]

Tritton

[20]

10 2.81 2.78 2.67

20 2.04 2.01 2.08 2.05 2.03 2.22

40 1.54 1.51 1.73 1.52 1.52 1.48

47 1.46 – – – – –

50 1.46 – 1.65 – – –

80 1.40 1.35 1.51 – 1.37 1.29

100 1.39 1.33 1.45 – – –

150 1.37 – 1.36 – – –

300 1.27 1.37 1.22 – 1.38 –
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Fig. 24. Strouhal number vs. Reynolds number.
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Fig. 24 shows the Strouhal number, defined by Eq. (30), as compared with the Strouhal number obtained

by other authors [16,25,26]. It should be noted that for low Reynolds numbers the results are in good

agreement [9,14,24]. As the Reynolds number increases the error factor of the numerical simulation in-
creases. The present work presents consistent results even for Re ¼ 300.
5. Conclusions

The Physical Virtual Model (PVM), proposed in the present work, permits the simulation of unsteady,

viscous incompressible flows over an immersed circular cylinder using a Cartesian grid. Statistical pa-

rameters, including drag and lift coefficients, the Strouhal number, wall pressure and the length of the
bubble recirculation, were reported for several values of the Reynolds number. The results show consis-

tency agreement with previous numerical and experimental results. The proposed model seems to be a

promising tool and can be also applied to other geometries, to mobile geometries and to higher Reynolds

numbers. The CPU time used to compute 10 s of simulation, for Re ¼ 80, was approximately 36 h in a

Pentium IV, 2 GHz. This time was sufficient to obtain the statistic parameters and it is compatible with

other methods such as Finite-Volume and the Lattice–Boltzman Methods.
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