Proceedings of COBEM 2005
18th International Congress of Mechanical Engineering

Copyright © 2005 by ABCM
November 6-11, 2005, Ouro Preto, MG


NUMERICAL SIMULATION OF FLOW AROUND A NACA 0012 AIRFOIL IN TRANSIENT PITCHING MOTION USING IMMERSED BOUNDARY METHOD WITH VIRTUAL PHYSICAL MODEL
José Eduardo Santos Oliveira

Laboratory of Heat and Mass Transfer and Fluid Dynamic – University Federal of Uberlândia 

Mechanical Engineer College – Bloco 1M – Av. João Naves de Ávila, 2.121. CEP 38400-902

e-mail: jeolivei@mecanica.ufu.br

Ana Lúcia de Lima e Silva

e-mail: alfsilva@mecanica.ufu.br

Aristeu da Silveira Neto

e-mail: aristeus@mecanica.ufu.br

Abstract. In the present work the numerical simulation of turbulent flow over airfoils in transient pitching moving is presented. The flow is simulated through the numeric solution of the Navier-Stokes equations using the Immersed Boundary Method with Virtual Physical Model. This methodology allows the modelling of complex geometries immersed in the flow. With the use of two independent meshes there is no restriction as the movement or deformation of the body. In this way, the simulation of the flow on moving boundaries does not present any additional difficulty, as it happens in the classic methods where the meshes must be reconstructed. It is presented the two-dimensional simulation of flow past a NACA 0012 airfoil profile in ramp motion for different moving speeds in order to evaluate the transient effect on the flow. Preliminary numerical results are compared with experimental data.
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1. Introduction

Dynamic stall is a term used to describe a process where the lift force sudden drop while the airfoil increase the attack angle through a pitch motion. The stall phenomenon for thin airfoils is often associated with the formation of a leading-edge vortex; the stall is generally preceded by laminar boundary-layer separation near the airfoil nose. The vortex travel along the airfoil surface as it grows, and finally separates from the airfoil at its trailing edge. Dynamic stall is an unsteady phenomenon, and differently of static stall the flow separation occurs at high angle-of-attack.
A complete understanding of the dynamics of leading edge separation on a pitching airfoil is essential to design of compressor blades, wings of modern fighters, helicopters, etc. The dynamic stall phenomena was first study by the helicopter industries, where large torsional oscillations of the blades was observed and attributed to the periodic stalling and unstalling of each blade on the retreating side of the rotor disk (Akbari and Price, 2003). 

At high Re numbers, separation is a strongly interactive event wherein the boundary layer erupts from the surface in a sharply-focused narrow plume; the onset of this process was first identified by Van Dommelen & Shen (1980, 1982) and subsequently described by other authors (see, for example, Cowley 1983; Elliott et al. 1983; Peridier et al. 1991; Cowley et al. 1990).

 The leading edge separation has a significant impact on aerodynamic performance and in the structural life of components. The flow development over an airfoil as it pitches up is depicted in Fig. 1. Initially, the flow over the airfoil is attached, then reversed flow develops. Subsequently, a leading edge vortex forms which evolves into the stall vortex causing dynamic stall. Finally, the stall vortex is shed and the airfoil is fully stalled. Numerous experimental, numerical and analytical studies have focused on various aspects of the problem of leading edge separation and dynamic stall. Extensive reviews of computational and ex perimental studies of dynamic stall have been presented by Carr [6] and Carr and McCroskey [7].

Doligalski et al. [12] have reviewed some of the important studies conducted on vortex interactions and separation including dynamic stall. More recent experimental studies include those by Chandrasekhara et al. [8] and Shih et al. [23] of an NACA0012 airfoil undergoing constant-rate pitching-up motion. These show that the trailing edge flowfield only plays a secondary role in the dynamic stall process. Compressibility effects are important [8] and the separation structure evolves faster at lower Reynolds numbers [23].

2. Mathematical Formulation

The main idea in the IBM/VPM methodology is to solve the flow over immersed bodies using two independent meshes: a fixed Eulerian mesh for fluid domain and a Lagrangian mesh to represent body-fluid interface. Related to the mesh building, there are no difficulties to represent complex immersed bodies.

2.1. Mathematical Model for Fluid Domain

The fluid domain is always rectangular and is discretized with an Eulerian grid. The flow inside this domain is modeled by the Navier-Stokes equations, Eq. (2)

, for viscous and incompressible flows:
(1)

, and the continuity equation, Eq. 
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It must be stressed that Eq. (3)

 models the interaction between the immersed boundary and the fluid flow, by the distribution of the force field on the fluid:
(1)

 is already the filtered Navier-Stokes equation. Also, the Boussinesq hypothesis was used to model the subgrid Reynolds stress tensor. These equations are solved on Eulerian mesh and the coupling between two meshes are made by the force source term fi that is different from zero only over the immersed boundary. Equation 
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where 
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 is a Dirac delta function.

In order to discretize the Dirac delta function that appears in Eq. 
(3)

, it must be replaced by the distribution function  GOTOBUTTON ZEqnNum329473  \* MERGEFORMAT . This function acts like a Gaussian weight function with a unitary integral over the interval 
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 is replaced by:
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where 
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 is the distance between two Lagrangean points.

2.2. Solid-Fluid Interface Model

The VPM performs dynamic evaluation of the force exerted by the fluid flow over the immersed body. The force density 
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 is calculated over the Lagrangian points using all the Navier-Stokes terms. The Lagrangian force should be expressed by:


[image: image12.wmf](

)

(

)

(

)

kfkij

j

i

ik

ijjji

uuuu

u

u

p

Fx,t.

txxxxx

n

éù

¶-¶

æö

¶

¶

¶

¶

=++++

êú

ç÷

ç÷

¶¶¶¶¶¶

êú

èø

ëû

r

r


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (5)

The different terms on the right side of Eq. 
(5)

, are referred to as: acceleration force, pressure force, inertial force and viscous force. The four components of force density  GOTOBUTTON ZEqnNum250010  \* MERGEFORMAT  are calculated on a control volume centered at a Lagrangean point.

To evaluate the different terms described by Eq. 
(5)

 the pressure  GOTOBUTTON ZEqnNum250010  \* MERGEFORMAT  and the velocity 
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 fields must be known a priori. These fields are calculated on the Eulerian grid while the force terms must be calculated over the interface. One of the possible ways to do that is to interpolate 
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 over appropriate auxiliary Lagrangean points near the interface, as illustrated by Lima e Silva et al. (2003).

For pressure field, only external grid points to the interface and at a distance less than or equal to 
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 are used in the interpolation process; for the velocity fields external and internal points are taken, because the internal velocity field helps to model virtually the no-slip velocity condition on the immersed boundary. The pressure and velocity derivatives that appear in Eq.(5)

, are calculated using a second order Lagrange polynomial approximation.

3. Turbulence Modelling

The Navier-Stokes equations are able to simulate, with fairly good agreement, a wild range of engineering problems including high complex unsteady turbulent flows. However, it is necessary to solve all degrees of freedom of the flow, which is proportional to 
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. This technique is called DNS (Direct Numerical Simulation) and it is obviously restricted to low Reynolds number due to the high mesh resolution required, considering the nowadays computers.

An alternative way to handle this problem is the use of Reynolds decomposition or general filtering process of Germano (1986). The governing equations are suitably filtered, this procedure gives rise to the closure problem. This closure problem is nowadays solved using turbulence models. Different methodologies have been employed in the turbulence modeling, e.g., LES (Large Eddy Simulation). In the LES methodology the largest turbulent structures are solved from the filtered equations and only the smallest structures are modeled. These small structures are more homogeneous and isotropic (Silveira-Neto, 2003). The scale of the small structure is evaluated from the mesh used to solve the filtered equations, i.e., the filter width becomes a function of the grid. The turbulent structures that are smallest than grid resolution are modeled by the so-called subgrid-scale models.

In the present work the Smagorinsky subgrid-scale model was employed. The formulation of this model is discussed in the following section.

3.1. Smagorinsky Sub-grid Scale Model

In the present work LES methodology proposed by Smagorinsky (1963) is applied. The sub-grid scale model, which is based on the balance of production of sub-grid scale turbulent kinetic energy and dissipation of isotropic turbulence energy, is used.
The turbulent viscosity is computed as function of strain rate (
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where 
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 is the Smagorinsky constant and 
[image: image24.wmf]xy

DD

=

l

 is the characteristic sub-grid length.

4. Numerical Method
The governing equations, Eq. (1) and (2), were discretized using the central second-order finite difference method in space and a Runge-Kutta second-order scheme in the time. The pressure-velocity coupling was performed using a pressure correction method, as proposed by Chorin (1968). The linear system for the pressure correction was solved using the iterative solver MSI (Modified Strongly Implicit Procedure) of Schneider and Zedan (1981). The interface force field calculation and the momentum equation solution are performed in an explicit way.

All the simulations were carried out on the non-uniform grid. The calculation domain has a length of 10C and a width of 8C. The non-uniform grid has three distinct regions in each direction, as can be observed with more details in Fig. (1), on the x direction the first section has 50 meshes and is extended until 2.7C, the last section has 5.8C of length with 102 meshes. In the y direction the two non-uniform sections are identical with 3.82C of length and 84 meshes. The airfoil is placed inside a rectangular box with a uniform mesh; the box has 1.5C x 0.36C.
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Figure 1. View of the calculation domain.

The pitch axe is located at airfoil center (mid-chord from the leading edge) placed at 3.3C from the left boundary and centered vertically at 4C. A constant velocity profile 
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 was imposed at the domain inlet, in such a way that the fluid goes from the left to the right boundary. Neumann conditions were imposed for velocity at all other faces. For the pressure correction, null derivative was employed at the domain entrance and it was set as zero in the other faces.

It must be stressed that the MFI method is the responsible by the airfoil pitching movement, only the Lagrangian mesh is calculated in each time instant and the Eulerian mesh still unchanged. The time dependent angle-of-attack of airfoil is given by:
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where 
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 is the angle-of-attack at time, 
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 is the mean angle-of-attack, 
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 is the amplitude of the pitching oscillation and 
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 is the frequency of oscillation. Usually is defined the reduced frequency as:
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where 
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 is the chord length and 
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 free stream velocity.

5. Results and Discussions
In this section the preliminary results are presented for the two-dimensional unsteady flow past a pitching 
NACA 0012 airfoil. The immersed airfoil profile was represented by IBM/VPM methodology, the Smagorinsky turbulence model (to perform LES) was employed to simulate two test cases at 
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. In this work, only one static case was simulated for 
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 this case was used to start all pitching simulations, the movement started from that minimum steady angle-of-attack in accordance with the Eq. 
(7)

. The simulation results are present in order to evaluate the effect of the reduced frequency ( GOTOBUTTON ZEqnNum560818  \* MERGEFORMAT ) in the stall phenomena. Results reported by Akbari and Price (2003) predict the static stall angle at 
[image: image41.wmf]15

o

a

»

 for Reynolds number at 
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Figure (2) shows the drag (
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) and lift (
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) coefficients for the first test case. This numerical experiment had a mean angle 
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, an amplitude of 
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 and the reduced frequency 
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. It was simulated 4 s and the airfoil performing six oscillation cycles, the coefficient lines were colored with the time scale to identify the upward and downward airfoil motion.
As seen in the Fig. (2), there is a hysteresis loop in the aerodynamic force coefficients. During the downstroke the lift force coefficient is smaller than during the upstroke; this is due the difference between the flow over the airfoil during these two airfoil movements, which affect significantly the vortex shedding dynamic and mainly detached/reattached of the flow. During this part of the cycle the flow is completed separated, only near the end of the downstroke the lift force increases again, this is coincident with flow reattachment on the upper surface. The differences that exist in the hysteresis loop from a cycle to the next after cycle of oscillation are due to the unsteady nature of the flow.
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Figure 2. The (a) drag and (b) lift coefficients versus angle of attack over six oscillation 
cycles (4 s) for the airfoil at 
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The vorticity field (
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) development for the first cycle of oscillation of the airfoil is presented in Fig. (3). One can associate the behavior of aerodynamic forces over the airfoil, showed in Fig. (2), with the dynamic of vortex shedding show in Fig. (3). During the upstroke is observed a constant increase of the lift force with the increase of the angle-of-attack, no stall behavior was observed. That can be explain observing the flow over the airfoil, where no apparent indication of flow separation is detected up to 
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 (Fig. 10g). It is important to note that static stall occurs at 
[image: image54.wmf]15

o

a

=

, the effect of pitching motion at this reduced frequency inhibits the stall phenomena for this range of angle-of-attack.
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Figure 3. Vorticity field visualization at several angles of attack for a pitching 
NACA 0012 airfoil, at 
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At 
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 (Fig. 10h) a leading-edge separation bubble starts forming on the airfoil, around this time instant the airfoil starts the downstroke, that movement forces the shed of the leading-edge vortex promoting the detachment of the flow and consequently the lift force drop, as shown in Fig. (2) observing the hysteresis effects in the aerodynamic forces during the downstroke. At 
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 (Fig. 10m) starts the growth of a great trailing-edge vortex, this vortex is shed and inhibits the reattach of the flow, that structures are transported downstream by the flow and around 
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 occurs the reattached of the flow and the lift force suddenly increases (Fig. 2). When 
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 (Fig. 10p) during the downstroke the flow is already attached at the leading-edge, and the time the cycle is complete.

Figure (4) shown coefficients versus angle-of-attack for the reduced frequency 
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, the start point and amplitude was kept unchanged in relation to the previous simulation. It was simulated 4 s and the airfoil performing three oscillation cycles. In this case the lift coefficient continues to increase during the upstroke up to 
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, when the lift force coefficient suddenly drop characterizing the stall point. Note that in the previous case, 
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; stall phenomena was not observed. We can conclude that increasing the reduced frequency the stall angle is delayed to high values of angle-of-attack.
It is well know that LES turbulence models are 

Sabe-se que em modelos do tipo LES as estruturas são melhores calculadas e conseqüentemente o efeito transiente de desprendimento de vórtices induzem maiores oscilações nas forças aerodinâmicas do que, por exemplo, em modelos de turbulência do tipo RANS que capturam o comportamento médio do escoamento. Observe que as estruturas formadas no escoamento para essa freqüência são maiores e mais caóticas do que as formadas para a freqüência mais elevada em conseqüência disto às oscilações sobre os coeficientes são maiores como se pode observar na figura 4. Em virtude do modelo de turbulência empregado seria mais adequado para essa freqüência realizar um maior numero de ciclos e então efetuar uma média de conjunto.
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Figure 4. The (a) drag and (b) lift coefficients versus angle of attack over three oscillation 
cycles (4 s) for the airfoil at 
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The vorticity plots for the first cycle of oscillation cycle at reduced frequency 
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 are presented in Fig. (5). In this case, observing the Fig. (5e) is easily to see that the flow remains attached to the airfoil surface. At 
[image: image72.wmf]192

o

.

a

=

 
(Fig. 5f) the flow starts to separate from the airfoil, one leading-edge vortex already shed and initiates the growth of second separation bubble. When the airfoil reaches 
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 (Fig. 5g) the flow over the upper surface of the airfoil is completely separate and the second leading-edge vortex is fully formed and it is shed from the airfoil at about mid-chord position. During the downstroke other high complex structures are formed from the upper surface of the airfoil due the interaction between leading-edge and trailing-edge vortex (Fig. 5i-l) these structures prevent the flow reattachment. At the end of the cycle these structures are being advected downstream but the flow still detached and small vortices are shedding (Kelvin-Helmholtz) from the leading-edge (Fig. 5m-o).
Comparing the two simulated cases we can observe some differences in the flow field between the first case, 
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; and this case, 
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. In the first case the flow remains attached to airfoil during most of the upstroke (Fig. 3b–g), the leading-edge vortex is formed and released entirely during the downstroke, and only one trailing-edge vortex is shed per cycle of oscillation. In both simulated cases is interesting to note that the flow field remains “quiet” during most of the upstroke, and much of the separation and vortex-shedding activity occurs in the downstroke.
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Figure 6. Vorticity field visualization at several angles of attack for a pitching 
NACA 0012 airfoil, at 
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6. Conclusions
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