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Abstract. In the present work the numerical simulation of turbulent flow over airfoils in transient pitching moving is 
presented. The flow is simulated through the numeric solution of the Navier-Stokes equations using the Immersed 
Boundary Method with Virtual Physical Model. This methodology allows the modelling of complex geometries 
immersed in the flow. With the use of two independent meshes there is no restriction as the movement or deformation 
of the body. In this way, the simulation of the flow on moving boundaries does not present any additional difficulty, as 
it happens in the classic methods where the meshes must be reconstructed. It is presented the two-dimensional 
simulation of flow past a NACA 0012 airfoil profile in oscillating pitching for two different moving speeds in order to 
evaluate the transient effect on the flow. Preliminary numerical results presented a good physical coherence. 
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1. Introduction 
 
Dynamic stall is a term used to describe a process where the lift force sudden drop, while the airfoil increases the 

attack angle through a pitch motion. The stall phenomenon for thin airfoils is often associated with the formation of a 
leading-edge vortex and is generally preceded by laminar boundary-layer separation near the airfoil nose. The vortex 
travel along the airfoil surface as it grows, and finally separates from the airfoil at its trailing edge. Dynamic stall is an 
unsteady phenomenon and differently of static stall the flow separation occurs at high angle-of-attack. A complete 
understanding of the dynamics of leading edge separation on a pitching airfoil is essential to design of compressor 
blades, wings of modern fighters, helicopters, etc. The dynamic stall phenomena was first study by the helicopter 
industries, where large torsional oscillations of the blades was observed and attributed to the periodic stalling and 
unstalling of each blade on the retreating side of the rotor disk (Akbari and Price, 2003).  

To model the moving airfoil immersed in the flow is represented by immersed boundary method (IB). The IB 
method was proposed by Peskin (1977) to simulate blood flow in heart valves, a high complex problem that involves 
moving boundaries and complex geometries. The main idea of the Peskin method is to use two meshes. The Eulerian 
mesh is used to solve the fluid flow equations while an independent Lagrangian mesh represents the immersed body. 
The interaction between the two meshes is made through a force source term added to the Navier-Stokes equations. This 
procedure allows to model complex geometries immersed in a fluid flow, avoiding the use of complex meshes to fit the 
grid to the immersed body. As a geometric dependence does not exist between these two meshes, the immersed 
boundary method can easily handle moving boundary problems without regenerating grids in time. The main issue in 
the methods based on the concept of immersed boundary is how to compute the force term. In the present work, a new 
model named Virtual Physical Model (VPM) proposed by Lima e Silva et al. (2003), is used. It is based on the 
calculation of the force field over a sequence of Lagrangian points, which represent the interface, using the Navier-
Stokes equations. 

In this work is presented preliminary numerical results of an oscillating airfoil at Reynolds number 410 . The airfoil 
was given a harmonic pitching motion about the mid-chord axis at two reduced frequencies: 0.5, and 0.25. The mean 
incidence and the oscillating amplitude were 5o  and 10o . The turbulence modeling methodology used was the Large 
Eddy Simulation (LES) with the Smagorinsky algebraic sub-grid scale model to calculate the turbulent viscosity. A 
qualitative comparison is made between the two simulated cases evidencing the effect of reduced frequency on the 
aerodynamic force coefficients and fluid flow behavior. 



2. Mathematical Formulation 
 
The main idea in the IBM/VPM methodology is to solve the flow over immersed bodies using two independent 

meshes: a fixed Eulerian mesh for the fluid domain and a Lagrangian mesh to represent the solid-fluid interface. There 
are no difficulties to represent complex immersed bodies, related to the mesh building. 
 
2.1. Mathematical Model for Fluid Domain 

 
A rectangular domain was used for the present simulations and it was discretized with an Eulerian grid. The Navier-

Stokes equations for a viscous incompressible fluid can be written as: 
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It must be stressed that Eq. (1) is already the filtered equation. Also, the Boussinesq hypothesis was used to model 

the subgrid Reynolds stress tensor. These equations are solved on the Eulerian mesh and the coupling between the two 
meshes are made by the force source term fi that is different from zero only over the immersed boundary. Equation (3) 
models the interaction between the immersed boundary and the fluid , by the distribution of the Lagrangian force  on the 
fluid: 

 
( ) ( ) ( )k k kf x F x , t x x dx ,

Ω

δ= −∫  (3) 

 
where F  is the Lagrangian force density placed on kx  points over  the interface and k( x x )δ −  is a Dirac delta 
function. 

In order to discretize Eq. (3), the Dirac delta function is replaced by the distribution function ijD . This function acts 
like a Gaussian weight function with a unitary integral over the interval [ , ]−∞ +∞ . Therefore, Eq. (3) is replaced by: 

 
( ) ( ) ( ) 2
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where s∆  is the distance between two Lagrangian points. 
 
2.2. Solid-Fluid Interface Model 

 
The VPM performs the dynamic evaluation of the force exerted by the fluid flow over the immersed body. The 

force density kF( x ,t )  is calculated over the Lagrangian points using the movement equation. The Lagrangian force 
can be expressed by: 
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The different terms on the right side of Eq. (5) are referred as: acceleration force, pressure force, inertial force and 

viscous force. The four components of force density kF( x ,t )  are calculated on a control volume centered at a 
Lagrangian point. 

To evaluate the different terms described by Eq. (5) the pressure p( x,t )  and the velocity V( x,t )  fields must be 
known previously. These fields are calculated on the Eulerian grid while the force terms must be calculated over the 
interface. One of the possible ways to do that is to interpolate V( x,t )  and p( x,t )  over appropriate auxiliary 
Lagrangian points near the interface, as illustrated by Lima e Silva et al. (2003). 

For the pressure field, only grid points external to the interface and at a distance less than or equal to 2 x∆  are used 
in the interpolation process. For the velocity fields the external and internal points are taken, because the internal 
velocity field helps to model virtually the no-slip boundary condition. The pressure and velocity derivatives that appear 
in Eq.(5), are calculated using a second order Lagrange polynomial approximation. 
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3. Turbulence Modelling 
 
The Navier-Stokes equations are able to simulate, with fairly good agreement, a wild range of engineering problems 

including high complex unsteady turbulent flows. However, it is necessary to solve all degrees of freedom of the flow, 
which is proportional to 9 4/Re . This technique is called DNS (Direct Numerical Simulation) and it is obviously 
restricted to low Reynolds number due to the high mesh resolution required, considering the nowadays computers. 

An alternative way to handle this problem is the use of Reynolds decomposition or general filtering process of 
Germano (1986). The governing equations are suitably filtered and this procedure gives rise to the closure problem. 
This closure problem is nowadays solved using turbulence models. Different methodologies have been employed in the 
turbulence modeling, i. e., LES (Large Eddy Simulation). In the LES methodology the largest turbulent structures are 
solved from the filtered equations and only the smallest structures are modeled. These small structures are more 
homogeneous and isotropic (Silveira-Neto, 2003). The scale of the small structure is evaluated from the mesh used to 
solve the filtered equations, i.e., the filter width becomes a function of the grid. The turbulent structures that are smaller 
than the grid resolution are modeled by the so-called subgrid-scale models. 

In the present work the Smagorinsky subgrid-scale model was employed. The formulation of this model is 
discussed in the following section. 

 
3.1. Smagorinsky Sub-grid Scale Model 

 
In the present work LES methodology proposed by Smagorinsky (1963) is applied. The sub-grid scale model, 

which is based on the balance of production of sub-grid scale turbulent kinetic energy and dissipation of isotropic 
turbulence energy, is used. 

The turbulent viscosity is computed as function of strain rate ( ijS ) and the length scale ( ): 
 

2 2t s ij ij( C ) S S ,ν =  (6) 
 

where 0 18SC .=  is the Smagorinsky constant and x y∆ ∆=  is the characteristic sub-grid length. 
 
4. Numerical Method 
 

The governing equations, Eq. (1) and (2), were discretized using the central second-order finite difference method 
in space and a Runge-Kutta second-order scheme in the time. The pressure-velocity coupling was performed using a 
pressure correction method, as proposed by Chorin (1968). The linear system for the pressure correction was solved 
using the iterative solver MSI procedure (Modified Strongly Implicit) of Schneider and Zedan (1981). The interfacial 
force field calculation and the momentum equation solution are performed in an explicit way. 

All the simulations were carried out on a non-uniform grid. The calculation domain has a length of 10C and a width 
of 8C, where C is the airfoil chord. A non-uniform grid of 278x198 points with three distinct regions in each direction 
was used, as can be observed in Fig. (1). On the x direction the first section has 50 points and is extended until 2.7C. 
The last section has 5.8C of length with 102 points. In the y direction the two non-uniform sections are identical with a 
length of 3.82C and 84 points. The airfoil is placed inside a rectangular box with a uniform mesh. The box has 
dimensions of 1.5C x 0.36C. 

 

 
 

Figure 1. View of the calculation domain. 



The airfoil is placed at 3.3C from the left boundary and centered vertically at 4C and the pitching axe is located at 
0.5C. A constant velocity profile U∞  was imposed at the domain inlet, in such a way that the fluid goes from the left to 
the right boundary. Neumann condition was imposed for the velocity at all other faces. For the pressure correction, null 
derivative was employed at the domain entrance and it was set as zero in the other faces. 

It must be stressed that even with the pitching movement, the Eulerian mesh remains unchanged and only the 
Lagrangian mesh is reconstructed at each angle-of-attack. The angle-of-attack as a function of time is given by: 

 
( ) ( )t cos tα α ∆α Ω= − ⋅ ⋅ , (7) 

 
where α  is the angle of attack at the time t , α  is the mean angle-of-attack, ∆α  is the amplitude of the pitching 
oscillation and 2 fΩ π= , where f  is the frequency of oscillation. Usually f  is written in terms of the reduced 
frequency, defined as: 
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5. Results and Discussions 

 
In this section the preliminary results are presented for the two-dimensional unsteady flow past a pitching  

NACA 0012 airfoil. The immersed airfoil profile was represented by IBM/VPM methodology. The Smagorinsky 
turbulence model (to perform LES) was employed to simulate two cases at 410Re = , using the reduced frequencies of 

0 5.κ =  and 0 25.κ = . In this work, only one static case was simulated for 5oα = . This case was used to initialize all 
the pitching simulations. The pitching movement starts from 5oα =  and than the angle is increased in accordance with  
Eq. (7). The simulation results are present in order to evaluate the effect of the reduced frequency (κ ) in the stall 
phenomena. Results reported by Akbari and Price (2003) predicted the static stall angle at 15oα ≈  for a Reynolds 
number of 410 . 

Figure (2) shows the drag ( DC ) and lift ( LC ) coefficients for the first test case. This numerical simulation has a 
mean angle of 15oα = , an amplitude of 10o∆α =  and a reduced frequency of 0 5.κ = . The simulations were carried 
out for 4s seconds of time that is sufficient to the airfoil to performs six cycles of oscillations. The lines of Fig. (2) were 
colored with the time scale to identify each cycle of movement. 

As can be visualized in the Fig. (2), there is a hysteresis loop in the aerodynamic force coefficients. During the 
downstroke the lift force coefficient is smaller than during the upstroke. This is due to the difference between the flow 
over the airfoil during these two airfoil movements, which affects significantly the vortex shedding dynamics and 
mainly the detached/reattached behavior of the flow. During the decrease of the angle, the flow is completed separated 
and the lift coefficient is reduced. Near 6 5o.α =  the lift force increases which is coincident with the flow reattachment 
on the upper surface. The differences between two consecutive cycles of the hysteresis loop is due to the unsteady 
nature of the flow. 

 
 (a) (b) 

 
Figure 2. The (a) drag and (b) lift coefficients versus angle of attack over six oscillation  

cycles (4 s) for the airfoil at 15oα = , 10o∆α =  and 0 5.κ =  
 
The time evolution of vorticity field ( 150 150zω− ≤ ≤ )for the first cycle of oscillation of the airfoil is presented in 

Fig. (3). The behavior of aerodynamic forces over the airfoil, showed in Fig. (2), can be associated with the dynamic of 
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vortex shedding presented in Fig. (3). During the upstroke movement is observed a constant increase of the lift force 
with the increase of the angle-of-attack, and no stall behavior was observed. It can be explained observing the flow over 
the airfoil, where no apparent indication of flow separation is detected up to 22 4o.α =  (Fig. 10g). It is important to 
note that the static stall occurs at 15oα = . The effect of pitching motion at this reduced frequency inhibits the stall 
phenomena for this range of angle of attack. 

 
(a) t= 0.00 s, α = 5.0º (c) t= 0.08 s, α = 8.0º(b) t= 0.04 s, α = 5.8º

(p) t= 0.60 s, α = 5.4º(o) t= 0.56 s, α = 7.2º(n) t= 0.52 s, α = 10.3º(m) t= 0.48 s, α = 14.1º

(l) t= 0.44 s, α = 18.0º(k) t= 0.40 s, α = 21.5º(j) t= 0.36 s, α = 24.0º(i) t= 0.32 s, α = 25.0º

(h) t= 0.28 s, α = 24.4º(g) t= 0.24 s, α = 22.4º(f) t= 0.20 s, α = 19.2º(e) t= 0.16 s, α = 15.3º

(d) t= 0.12 s, α = 11.4º

 
 

Figure 3. Vorticity field visualization for the NACA 0012 airfoil during the pitching movement at several angles of 
attack at 15oα = , 10o∆α =  and 0 5.κ =  

 
At 24 4o.α =  (Fig. 3h) a leading-edge separation bubble starts forming over the airfoil. Around this time instant the 

airfoil starts the downstroke movement, which forces the shed of the leading-edge vortex, promoting the detachment of 
the boundary layer and consequently the drop of the lift force, as shown in Fig. (2). The hysteresis effect in the 
aerodynamic forces during the downstroke is observed. At 14 1o.α =  (Fig. 3m) the growth of a great trailing-edge 
vortex start. This vortex is shed and inhibits the reattachment of the flow. The structures are transported downstream by 
the flow and around 6 5o.α =  occurs the reattachment of the flow and the lift force suddenly increases (Fig. 2b). When 
α  reaches 5 4o.  (Fig. 3p), during the downstroke, the flow is already attached at the leading-edge and the time cycle is 
completed. 

Figure (4) shows the drag and lift coefficients versus the angle-of-attack for the reduced frequency of 0 25.κ = . 
The initial conditions such as angle of attach and amplitude are the same in relation to the previous simulations. The 
simulation was accomplished for 4s and the airfoil performed three cycles of oscillation. For this case the lift coefficient 
also increases during the upstroke movement up to 20oα = . At this angle the lift coefficient suddenly drops 
characterizing the stall point. Note that in the previous case, 0 5.κ = , the stall phenomena was not observed. We can 
conclude that increasing the reduced frequency the stall angle is delayed to a high value of angle of attack. 

It is well know that LES turbulence models are better to describe flow structures and consequently the transient 
effects of vortices shedding induces high oscillations in the aerodynamic forces coefficients, when compared with 
results from RANS turbulence models which describe the average behavior of the fluid flow. It is interesting to note 



that the flow structures formed for a reduced frequency of 0 25.κ =  are bigger and more chaotic than the structures 
formed in the previous simulation ( 0 5.κ = ). As a consequence the oscillations present on the aerodynamic coefficients 
are bigger, as can be observed in Fig. (4). Therefore, considering the turbulence modeling employed (LES), a better 
procedure for this reduced frequency would be to simulate more pitching cycles and then apply a time average over the 
data, reducing the oscillation. 

 

 
 (a) (b) 

 
Figure 4. The (a) drag and (b) lift coefficients versus angle of attack over three oscillation  

cycles (4 s) for the airfoil at 15oα = , 10o∆α =  and 0 25.κ =  
 
(a) t= 0.00 s, α = 5.0º (c) t= 0.16 s, α = 8.0º(b) t= 0.08 s, α = 5.8º (d) t= 0.24 s, α = 11.4º

(h) t= 0.56 s, α = 24.4º(g) t= 0.48 s, α = 22.4º(f) t= 0.40 s, α = 19.2º(e) t= 0.32 s, α = 15.3º

(l) t= 0.88 s, α = 18.0º(k) t= 0.80 s, α = 21.5º(j) t= 0.72 s, α = 24.0º(i) t= 0.64 s, α = 25.0º

(p) t= 1.20 s, α = 5.4º(o) t= 1.12 s, α = 7.2º(n) t= 1.04 s, α = 10.3º(m) t= 0.96 s, α = 14.1º

 
 

Figure 5. Vorticity field visualization at several angles of attack for a pitching  
NACA 0012 airfoil, at 15oα = , 10o∆α =  and 0 25.κ =  
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The vorticity fields for the first cycle of oscillations at reduced frequency of 0 25.κ =  are presented in Fig. (5). 
Observing Fig. (5e) it is easy to see that the flow remains attached to the airfoil surface. At 19 2o.α =   
(Fig. 5f) the flow detaches from the airfoil, one leading-edge vortex already shed and initiates the growth of separation 
bubble. When the airfoil reaches 22 4o.α =  (Fig. 5g) the flow over the upper surface of the airfoil is completely 
separated, the second leading-edge vortex is fully formed and is shedded from the airfoil at about the  
mid-chord position. During the downstroke other high complex structures are formed from the upper surface of the 
airfoil due the interaction between leading edge and trailing edge vortices (Fig. 5i-l). These structures prevent the flow 
reattachment. At the end of the cycle these structures are being advected downstream but the flow is still detached and 
small vortices are shedding (Kelvin-Helmholtz instabilities) from the leading edge (Fig. 5m-o). 

Comparing the two simulated cases we can observe some differences in the flow field between the first case, 
0 5.κ = , and the second case, 0 25.κ = . In the first case the flow remains attached to airfoil during the most part of the 

upstroke (Fig. 3b–g), the leading-edge vortex is formed and released entirely during the downstroke, and only one 
trailing-edge vortex is shedded per cycle of oscillation. In both simulated cases it is interesting to note that the flow field 
remains “quiet” during the most part of the upstroke and much of the separation and vortex shedding activity occurs in 
the downstroke. This behavior is due to the influence of the airfoil movement that reduces the adverse pressure gradient 
in the upstroke cycle and increases it in the downstroke cycle. 
 
6. Conclusions 
 

In this work the IB/VPM (Immersed Boundary Method/Virtual Physical Model) was used to simulate pitching 
oscillations of a NACA 0012 airfoil, preliminary results are presented showing good coherence with the physical 
phenomena. It was performed two numerical simulations at two reduced frequencies 0.5 and 0.25, in order to evaluate 
the effect of the reduced frequency on the fluid flow. It was observed that increasing the reduced frequency of the 
pitching motion the flow separation was delayed to higher incidences compared to the static stall case. Separation was 
observed to start from the leading-edge, followed by the formation and advection of vortices along the surface of the 
airfoil, trailing-edge vortices were also observed to form and shed from the airfoil. Large amplitude oscillations was 
observed in the force coefficients for the simulation in the reduced frequency 0.25, this behavior was attributed to the 
LES turbulence model used, it is necessary more time of simulation to establish a trustworthy statistical data set. 
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