

UNIVERSIDADE FEDERAL DO PARANÁ CURSO DE ENGENHARIA MECÂNICA TM270 – TRABALHO DE FIM DE CURSO

DESENVOLVIMENTO DE MOTORES-FOGUETE PARA ESPAÇOMODELOS

DESENVOLVIMENTO DE MOTORES- FOGUETE PARA ESPAÇOMODELOS

Projeto apresentado como requisito à aprovação junto à disciplina TM270 -TRABALHO DE FIM DE CURSO, do Curso Engenharia Mecânica, de ministrado pelo Departamento de Engenharia Mecânica da UFPR, tendo professor orientador Carlos como Henrique Marchi.

CURITIBA

JULHO - 2015

Pensava que nós seguíamos caminhos já feitos, mas parece que não os há. O nosso ir faz o caminho.

C.S. Lewis

AGRADECIMENTOS

Agradeço a Deus, aos colegas, amigos e familiares pela paciência, dedicação e companheirismo sempre presentes.

RESUMO

O objetivo deste trabalho de conclusão de curso é o de desenvolver motores-foguete experimentais para uso em minifoguetes acadêmicos, recreativos ou com outros fins.

O uso de minifoguetes experimentais – principalmente no meio universitário - vem se expandido pelo Brasil, com o incentivo de competições como o Festival de Minifoguetes realizado em Curitiba, PR. Visando esta popularização, no presente trabalho serão apresentados motores-foguete de baixo custo utilizando como propelente uma mistura de nitrato de potássio e açúcar (KNSu), com corpo construído em tubo de acrílico, tampa e tubeira de massa epóxi.

Ao final do período de trabalho foram realizados 64 testes estáticos, para enquadrar os motores em 3 classes competitivas (½ A, A e B). Isto, com o intuito de disponibilizar dados para o projeto e construção de motores-foguete para o grande número de entusiastas dessa modalidade de competição. As principais dimensões dos motores para a classe ½ A foram: diâmetro de garganta de 2,4mm, comprimento total de 41 mm e massa de propelente de 3 g. Para a classe A: diâmetro de garganta de 2,4mm, comprimento total de 47 mm, massa de propelente de 3,8 g e massa total de 12,6 g. Para a classe B: diâmetro de garganta de 2,4mm, comprimento total de 68 mm, massa de propelente de 7 g e massa total de 15,8 g.

Além destes dados, foi possível adquirir uma equação que resume a variação do impulso total em função da massa de propelente, para diâmetro de garganta de 2,4 mm e grão propelente: com diâmetro de alma de 5 mm e diâmetro externo de 12,7 mm.

$$I_t = 0.156 m_p^{1.6607}$$

Equação que pode ser útil para comparar novos motores-foguete que possam ser construídos.

Palavras-Chave: Minifoguetes. Motores-foguete experimentais. KNSu.

LISTA DE SÍMBOLOS

c Velocidade de ejeção dos gases (m/s)

De Diâmetro externo do envelope (mm)

Dg Diâmetro da garganta (mm)

Di Diâmetro interno do envelope (mm)

E Empuxo (N)

 \overline{E} Empuxo médio (N)

Emax Empuxo máximo (N)

fm Fluxo de massa (g/s)

 g_0 Gravidade no nível do mar (m/s²)

 I_s Impulso específico (s)

 I_t Impulso total (Ns)

*KNO*₃ Nitrato de potássio

KNSu Mistura de nitrato de potássio com sacarose

Lgrão Comprimento do grão-propelente (mm)

Lt Comprimento total do motor-foguete (mm)

Ltampa Comprimento da tampa (mm)

Ltub Comprimento da tubeira (mm)

m Vazão mássica (kg/s)

Mo Massa total do motor-foguete antes da queima (g)

Macri Massa do envelope de acrílico (g)

 $m_{foguete}$ Massa total do minifoguete (g)

 m_p Massa de propelente (kg)

t Tempo (s)

TA Tubo de acrílico – denominação dos motores testados

SUMÁRIO

Introdução1	0
Motores-foguete1	1
2.1 Características básicas 1	1
2.2 Propelente 1	2
2.3 Tipos de grãos 1	3
2.4 Parâmetros de propulsão1	4
2.4.1 Impulso 1	5
2.4.2 Empuxo médio 1	5
2.4.3 Velocidade média de ejeção dos gases 10	6
2.4.4 Fluxo de massa 1	6
2.5 Classificação dos motores1	6
Metodologia18	8
3.1 Preparo do propelente1	8
3.1.1 Procedimento de moagem 1	8
3.1.2 Procedimento de mistura1	ć
3.2 Preparo dos motores-foguete2	0
3.3 Testes estáticos 22	2
3.4 Testes preliminares2	3
Resultados2	7
4.1 Comprimento de tubeira2	7
4.1.1 Resultados dos testes estáticos 2	8
4.1.2 Pós-processamento dos resultados 3	C
4.2 Ajuste da massa de propelente 33	3
4.2.1 Resultados dos testes estáticos 3	5
4.2.2 Pós-processamento dos resultados 3	8
	Introdução

5	Conclusão	. 39
	5.1 Motor-foguete classe ½ A	. 39
	5.2 Motor-foguete classe A	. 39
	5.3 Motor-foguete classe B	. 40
	5.4 Considerações finais	. 41
6	Referências	. 44
Apê	ndice	. 45
	A. Projeto geral dos motores-foguete	. 45
	B. Projeto da matriz de prensagem	. 46
	C. Relatório padrão dos motores testados	. 47
	D. Relatório do dia de teste	. 63

1 INTRODUÇÃO

De acordo com o Rockets Educator Guide (NASA, 2011) a utilização dos foguetes tem início por volta do século IV d.C. O primeiro uso militar confirmado de foguetes em guerra remete ao ano 1232 d.C., quando a China os usou contra os mongóis. Desde essa época até hoje em dia, os foguetes sofreram grandes evoluções possibilitando viagens espaciais, colocação de satélites artificiais em órbita, entre tantas outras possibilidades. Um de seus usos são os espaçomodelos (aqui chamados de minifoguetes). O espaçomodelismo é praticado por diversas pessoas de todas as idades e níveis acadêmicos, podendo ser usados para estudar novas alternativas para foguetes de maior porte, ou apenas para uso recreativo.

Dentro desta prática em 2014, foi realizado o I Festival de Minifoguetes de Curitiba, realizado no período 11 a 13 de abril. Esse festival teve grande aceitação, principalmente no meio universitário. A ideia deste trabalho surgiu no contexto desse festival, tendo por objetivo principal desenvolver uma gama de 3 motores-foguete experimentais das classes ½A, A e B (capítulo 3). Além desse objetivo principal, tem-se um secundário: desenvolver pelo menos um deles com carga temporizadora.

No Brasil, atualmente, há apenas um fabricante deste tipo de motorfoguete: a Bandeirante. Tendo isto em conta, salienta-se a importância do presente trabalho, já que, se a empresa por alguma eventualidade deixar de produzir motores, não haverá nenhuma outra opção nacional - o que aumentaria muito o custo para universidades e outros interessados na construção de minifoguetes. Além disso, ressalta-se que a importação destes motores é proibido para civis. Levando em conta o público alvo desta modalidade, o custo é um fator de suma importância isso torna os motores apresentados no trabalho bem interessantes, já que estes tem um custo aproximado de R\$ 1,20 (MORO, 2014) e os motores da Bandeirante tem o valor de R\$ 8,00 mais o frete. Outro fator que eleva a relevância deste trabalho é o de que a referida empresa brasileira não fabrica motores da classe ½ A ou abaixo.

2. MOTORES-FOGUETE

Neste capítulo será apresentado o funcionamento básico de um motorfoguete experimental movido a propelente sólido juntamente aos seus componentes básicos.

2.1 CARACTERÍSTICAS BÁSICAS

Os motores-foguete têm por objetivo providenciar a energia necessária para o voo do foguete. Seus componentes básicos podem ser visualizados na figura 2.1 abaixo:

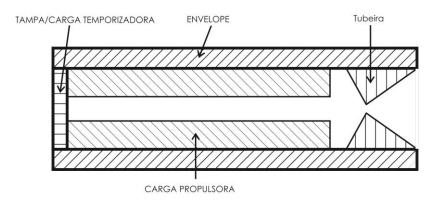


FIGURA 2.1 – ESQUEMA DE UM MOTOR FOGUETE

A carga propulsora é o propelente, esse responsável por gerar a força propulsiva do foguete - empuxo (MARCHI, 2014). A tubeira tem por objetivo principal aumentar a pressão dos gases resultantes da queima do propelente, além de aumentar a velocidade de escape dos gases, elevando assim o empuxo do motor. A tampa ou carga temporizadora, dependendo do caso, tem a finalidade de impedir que os gases escapem pelo lado onde ela está colocada. Caso seja escolhida a carga temporizadora, deve-se providenciar um longo tempo de queima para que, ao fim desta, se possa ignitar uma carga ejetora - a qual pode ejetar o paraquedas ou até mesmo o motor, dependendo do projeto. O envelope é responsável por comportar o propelente, sendo a

estrutura maior e principal do motor, podendo ser fabricado de diversos materiais, tais como: papelão, plástico, materiais metálicos (MARCHI, 2014).

2.2 PROPELENTE

Propelente é a mistura de oxidante e combustível utilizada no motor foguete para produzir a energia necessária à propulsão do foguete. Para a escolha adequada deve ser levado em conta as seguintes características – lembrando sempre da aplicação do motor-foguete (SUTTON e BIBLARZ, 2001):

- 1. Desempenho do propelente;
- Previsibilidade/reprodutibilidade da taxa de queima do propelente para se obter o empuxo e impulso mais próximos do valor de projeto;
- 3. Propriedades físicas adequadas;
- Alta massa específica a fim de diminuir o volume ocupado pelo propelente;
- 5. Previsibilidade/reprodutibilidade da ignição;
- 6. Boa durabilidade;
- 7. Baixa absorção de umidade a fim de diminuir a deterioração química;
- 8. Manufatura simples, de baixo custo, com boa reprodutibilidade que providencie segurança no manuseio e produção;
- Garantir a disponibilidade de todos os materiais e componentes necessários para a fabricação do propelente;
- 10. Baixo risco de preparo, ou seja, de ignição ou explosão durante o preparo;
- 11. Relativa insensibilidade a certos tipos de estímulos energéticos, como choques mecânicos;
- 12. Gases de exaustão não tóxicos;
- 13. Não possuir propensão à queima instável.

No caso em questão (de motores para minifoguetes) pode-se considerar que os pontos mais importantes na escolha do propelente, são: exaustão de gases não tóxicos, facilidade na fabricação e manuseio, baixo custo, baixo

risco de preparo e facilidade em encontrar matéria-prima. Levando esses fatores em conta, a mistura de nitrato de potássio e açúcar (KNSu) se torna uma excelente escolha de propelente, pois este é um propelente que não gera gases tóxicos na combustão, a matéria-prima é de fácil acesso, a fabricação do propelente não é complexa e pode ser considerado um propelente bem estável. Neste caso, o nitrato de potássio age como oxidante e o açúcar como combustível.

Para os motores em questão, a produção será feita contendo 35% em base mássica de sacarose (açúcar; $C_{12}H_{22}O_{11}$) e 65% de nitrato de potássio (KNO_3). Esta escolha foi baseada em diversos testes anteriormente realizados pelo grupo de foguetes Carl Sagan da UFPR, além de outros estudos desenvolvidos sobre esse propelente (VYVERMAN, 1978; NAKKA, 2015). Segundo Nakka, o melhor desempenho do impulso específico para este tipo de propelente se dá quando a porcentagem em massa do nitrato de potássio se encontra entre 65% e 70% (NAKKA, 2015).

2.3 TIPOS DE GRÃO

Os grãos são um bloco sólido de propelente armazenado dentro do envelope do motor (MARCHI, 2014). Esses podem ser fabricados com os mais variados perfis. Na figura 2.2 têm-se alguns exemplos de grãos-propelente e as curvas de empuxo características de cada um desses.

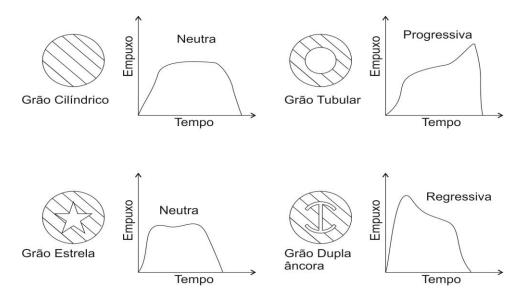


FIGURA 2.2 - Tipos de grãos - adaptado de Sutton e Biblarz, 2001.

Além dos tipos de grãos no gráfico do empuxo pelo tempo na figura acima, tem-se também o tipo de curva de empuxo que esses grãos fornecem. Acima de cada gráfico tem-se a informação se a queima é neutra, ou seja, atinge um ponto e mantém o mesmo empuxo por um período de tempo; se é progressiva, o empuxo cresce ao longo do tempo; ou regressiva, no qual o empuxo atinge um valor máximo e começa a decair ao longo do tempo de queima.

Para os motores desenvolvidos, a forma utilizada dos grãos foi tubular, principalmente pela facilidade de fabricação, já que as matrizes para este tipo de grão são de simples fabricação. E a outra opção de fácil construção é o grão cilíndrico, porém para as dimensões dos motores testados este tipo de grão não chega a gerar força útil.

2.4 PARÂMETROS DE PROPULSÃO

Para uma avaliação quantitativa de um motor-foguete, deve-se levar em conta alguns parâmetros:

2.4.1 IMPULSO

O impulso total (SUTTON e BIBLIARZ, 2001) é dado em função de E (força de empuxo instantânea) variando ao longo do tempo de queima e está expressa na equação abaixo:

$$I_t = \int_0^{t_q} E \ dt \tag{2.1}$$

Se o empuxo for constante no decorrer do tempo, tem-se que:

$$I_t = Et (2.2)$$

Além do impulso total tem-se também o impulso específico, que é a relação entre o impulso total e o peso do propelente. Este parâmetro é muito importante para verificar a eficiência do motor-foguete. Para o cálculo desse, conforme fórmula abaixo, deve-se levar em conta a vazão mássica (\dot{m}) e a aceleração da gravidade no nível do mar que é $g_0 = 9,807 \ m/s^2$.

$$I_{S} = \frac{\int_{0}^{t_{q}} E \, dt}{g_{0} \int_{0}^{t_{q}} m \, dt} \tag{2.3}$$

Se for considerado que o empuxo é constante ao decorrer do tempo e que a vazão mássica não varia ao longo do tempo, obtém-se a forma simplificada do impulso específico, dado pela fórmula abaixo, onde m_p é a massa do propelente:

$$I_{S} = \frac{I_{t}}{g_{0}m_{p}} \tag{2.4}$$

2.4.2 EMPUXO MÉDIO

É a força média que o motor-foguete fornece durante todo o seu funcionamento (MARCHI, 2014). Esta força é dada pelo valor do impulso total dividido pelo tempo de queima, ou seja:

$$\bar{E} = \frac{I_t}{t_q} \tag{2.5}$$

2.4.3 VELOCIDADE MÉDIA DE EJEÇÃO DOS GASES

Este valor representa a média da velocidade dos gases na saída da tubeira do motor (MARCHI, 2014) e é dado pela seguinte fórmula:

$$c = \frac{I_t}{m_p} \tag{2.6}$$

2.4.4 FLUXO DE MASSA

Por último há o fluxo de massa de propelente, que é a quantidade de massa de propelente que foi consumida durante o tempo de queima (SUTTON e BIBLIARZ, 2001). A fórmula é dada pela expressão abaixo:

$$fm = \frac{m_p}{tq} \tag{2.7}$$

A partir dos parâmetros descritos acima é possível projetar e avaliar a qualidade de um motor-foguete.

2.5 CLASSIFICAÇÃO DOS MOTORES

Apesar de ser um conceito simples, é de suma importância para o entendimento dos testes e análises que serão apresentados. A NAR (National Association of Rocketry) é o grupo que regulamenta essa classificação. O código de classificação é composto da maneira mostrado no exemplo abaixo (NAR, 2004):

- 1. Letra para mostrar o impulso total em "Ns" (exemplo: "C");
- 2. Número indicando o empuxo médio em "N" (exemplo: "4");
- 3. Número indicando o tempo da carga temporizador em "s" (exemplo: "5").

As classes podem ser divididas pelo impulso total gerado pelos motoresfoguete. Essas classes são divididas como apresentado na tabela a seguir:

TABELA 2.1 – Classes de motores-foguete adaptado de NAR (2004).

Classe	Impulso total (Ns)
1 ⁄8A	0,000 - 0,3125
<u>%</u> A	0,3126 – 0,625
½A	0,626 – 1,25
Α	1,26 – 2,50
В	2,51 – 5,00
С	5,01 – 10,00
D	10,01 – 20,00
E	20,01 – 40,00
F	40,01 – 80,00
G	80,01 – 160,00

3. METODOLOGIA

O início do presente trabalho se deu em 2014 no LAE (Laboratório de Atividades Espaciais) da UFPR. Para o entendimento dos resultados que serão apresentados se faz necessário visualizar o modo de fabricação dos motores além dos resultados preliminares.

3.1 PREPARO DO PROPELENTE

O preparo do propelente é uma das etapas que exige maior cuidado, pois apesar do baixo risco que a mistura de KNSu oferece, ainda é possível que acidentes ocorram. Por este fato, nos trabalhos realizados pelos integrantes do LAE, a mistura é sempre prensada a frio – apesar de uma aparente perda na eficiência do propelente (FOLTRAN et al, 2014) - diferentemente do que a maioria dos outros autores praticam, na qual a mistura é fundida (VYVERMAN, 1978; NAKKA, 2015). O preparo a frio pode ser dividido em duas etapas: moagem dos ingredientes e mistura.

3.1.1 PROCEDIMENTO DE MOAGEM

Para a moagem dos componentes devem-se ter dois moedores de café – sendo um específico para o oxidante e outro para o combustível. Ambos os moedores devem ser devidamente identificados em seu corpo – e não na tampa – a fim de evitar ignição dentro dos moedores. Além disso, é necessário sempre realizar a devida limpeza pós-uso. São necessários também dois recipientes: um para armazenar o oxidante moído e outro para o combustível. As etapas de moagem estão descritas a seguir:

 Preencher o moedor do café até aproximadamente 90% de sua capacidade;

- 2. Tampar o moedor;
- 3. Conectar a tomada:
- 4. Realizar a moagem por 30 segundos;
- 5. Desconectar o moedor da tomada;
- 6. Despejar o conteúdo dentro de recipiente adequado;
- 7. Realizar a limpeza do moedor;

Entre a moagem do combustível e do oxidante é indicado aguardar um período de pelo menos um minuto, pois partículas de ambos podem ficar em suspensão no ambiente, o que eleva os riscos de ignição acidental.

3.1.2 PROCEDIMENTO DE MISTURA

O procedimento de mistura deve ser realizado em local arejado e próximo de um extintor de incêndio. Para este procedimento foram utilizados: uma balança Marte AS500C resolução de 0,01 grama, uma bolsa hermética (ZIPLOC), um cronômetro e um recipiente para pesagem. O método de mistura é apresentado abaixo:

- Colocar o recipiente de pesagem sobre a balança e realizar a tara desta;
- 2. Inserir o oxidante (*KNO*₃) no recipiente até atingir um valor de aproximadamente 195 gramas;
- 3. Medir e anotar o valor da massa;
- Despejar o oxidante na bolsa hermética e em seguida lacrar o saco para evitar que umidade seja absorvida;
- Realizar a pesagem do recipiente e anotar a quantidade que permaneceu neste;
- Limpar o recipiente e recolocá-lo sobre a balança, se necessário realizando a tara desta novamente;
- Inserir o combustível (açúcar) no recipiente até atingir um valor de aproximadamente 105 gramas, anotar o valor medido;

- Abrir a bolsa hermética onde se encontra o oxidante e despejar o combustível, e logo em seguida lacrá-lo;
- Realizar a pesagem do recipiente e anotar a quantidade de combustível que permaneceu nele;
- 10. Limpar novamente o recipiente de pesagem antes de guardá-lo;
- 11. Torcer a parte superior da bolsa hermética, cuidando para manter uma boa quantidade de ar dentro deste para que ocorra uma mistura eficiente dos componentes;
- 12. Misturar o propelente por 15 minutos para garantir sua homogeneidade;
- 13. Finalmente, armazenar o propelente em local adequado.

3.2 PREPARO DOS MOTORES-FOGUETE

Os motores utilizados para este trabalho possuíam as características gerais como apresentadas no apêndice A. Esses motores foram denominados "TA" (tubo de acrílico) seguido de um número referente à ordem de produção deles – por exemplo TA 1 é o primeiro motor fabricado. A escolha de utilizar o tubo de acrílico se deu pela facilidade construtiva que esse apresenta, já que por ser transparente facilita a visualização durante a montagem. Além disso, o acrílico possui baixo custo, apresenta boa resistência e no grupo já havia sido usado em outros testes de propelente, pois possibilita a visualização da queima.

Para a construção dos motores foi utilizada a matriz contida no apêndice B, uma balança de precisão Marte AS500C com resolução de 0,01g e um paquímetro digital Lee Tools 150 mm com resolução de 0,01mm. Além desses foi necessário uma régua de 300 mm com resolução de 1 mm, arco de serra, lima, caneta hidrográfica, tubo de acrílico, propelente, massa epóxi, funil e ferramenta padrão de diâmetro de garganta. As etapas de preparo dos motores-foguete, foram as seguintes:

- Com a régua medir e marcar, com caneta, o comprimento desejado no tubo de acrílico;
- 2. Com o arco de serra cortar o tubo;
- 3. Com a caneta hidrográfica marcar o nome do motor-foguete;
- 4. Pesar o tubo de acrílico e medir o comprimento (Lt) com o paquímetro;
- 5. Inserir a matriz da alma na matriz base, e colocar o tubo de acrílico sobre esta, conforme foto abaixo (fig. 3.1);

FIGURA 3.1 – Foto da colocação da matriz no tubo de acrílico.

- 6. Levar o conjunto até a balança e realizar a tara desta;
- Inserir o propelente dentro do tubo de acrílico utilizando o funil até atingir o valor desejado da massa de propelente;
- Inserir o punção e fazer uma prensagem inicial utilizando a força manual;
- 9. Colocar o conjunto em uma morsa e prensá-lo até o nível desejado;
- 10. Para retirar a matriz sempre deve ser respeitada a seguinte sequência: primeiro retirar a matriz da alma com ferramental adequado e por seguinte remover o punção e a base da matriz.
- 11. Com o paquímetro realizar as aferições do Ltub e Ltampa;
- 12. Preparar a massa de epóxi e colocar a massa no lado onde ficará a tubeira;
- 13. Com a ferramenta padrão de garganta realizar o furo, cuidando para mantê-lo bem centralizado a fim de atingir o Dg desejado;
- 14. Colocar uma tampa de papel na parte inferior do motor para impedir que a massa de epóxi entre na alma do grão;
- 15. Referente aos motores TA 1 a 115: colocar a massa de epóxi na parte onde fica a tampa;

- 16. Referente aos motores TA 116 a 156: colocar uma pequena quantidade de massa epóxi na parte logo acima da tampa de papel e depois preencher com cola epóxi. Este método visa reduzir a massa do motor e aumentar a aderência entre a tampa e o tubo.
- 17. Esperar a massa/cola epóxi secar (cerca de um dia) e realizar as aferições de massa final.

Estas etapas foram seguidas e respeitadas na construção de todos os TA's construídos durante o período deste trabalho.

3.3 TESTES ESTÁTICOS

Os testes estáticos dos motores TA foram todos realizados no Laboratório de Máquinas Hidráulicas (LMH), do Departamento de Engenharia Mecânica (DEMEC) da UFPR, localizado em Curitiba, PR. Os testes foram feitos usando célula de carga, S2-50N da HBM, com a frequência de aquisição de dados a 200 Hz e sensibilidade 1,9998. Para a aquisição de dados, também da HBM, foram usados o módulo Spider 8 (frequência de 600 Hz) e o *software* CATMAN EXPRESS 4.5 de 2003.

Em todos os testes estáticos a ignição dos motores se deu por meio de estopim, com as seguintes características: diâmetro 2,0 mm (verde); diâmetro 2,5 mm (roxo); diâmetro 1,4 mm (preto). Foram utilizadas duas bancadas de testes, uma construída pelo professor Marcos Campos em 2006 (figura 3.2) e outra construída em 2013 pelos colaboradores da equipe GFCS (Grupo de Foguetes Carl Sagan) Diego, Marlus e Nicholas (figura 3.3.). Além disso, os dados de ambiente foram medidos utilizando o altímetro Oregon Venture RA123.

FIGURA 3.2 – Bancada Marcos Campos.

FIGURA 3.3 – Bancada Marlus-Diego-Nicholas.

3.4 TESTES PRELIMINARES

Antes do presente trabalho em relação aos motores-foguete TA's houve vários testes realizados pelo GFCS, os quais foram de suma importância para este trabalho. Esses trabalhos tinham o intuito de verificar o quanto o diâmetro da garganta e o comprimento da tubeira influenciavam no impulso total. A seguir é apresentada uma tabela relacionando os principais dados de todos os testes prévios:

TABELA 3.1 – Valores principais dos motores testados previamente ao trabalho.

Motores	Data	$\overline{I}_t(Ns)$	m_p (g)	Dg (mm)	$ar{L}_{tub}$ (mm)	Estopim
3 - 7	03/10/14	1,67	4,1-4,6		9,67	VERDE
8 - 12	17/10/14	0,69	2,7-2,8		5,61	VERDE
13 - 14	17/10/14	2,14	5,4		7,61	VERDE
16 - 18	07/11/14	0,94	3,6	*3,9	5,00	VERDE
19 - 21	07/11/14	0,77	3,7	*3,9	5,12	VERDE
22 - 24	07/11/14	1,12	3,8	*3,9	5,00	VERDE
25 - 27	07/11/14	2,12	5,5	*3,9	6,65	VERDE
28 - 30	07/11/14	2,13	5,6	*3,9	7,49	VERDE
31 - 33	07/11/14	2,66	5,7	*3,9	6,34	VERDE
34 - 35	07/11/14	4,38	8,5	*3,9	10,04	VERDE
38,39 e 41	21/11/14	0,95	3,8	*3,9	4,45	ROXO
42 - 44	21/11/14	1,15	3,8	*3,2	4,72	VERDE
51 - 53	19/12/14	1,1	3,8	*3,2	9,7 a 9,9	VERDE
55 - 57	19/12/14	1,43	3,8	*3,2	9,6 a 11,1	NÃO
58 - 60	16/01/15	1,69	3,8	*3,2	9,6 a 9,8	VERDE
62 - 64	27/02/15	1,94	3,8	*3,0	**10	VERDE
66 - 68	27/02/15	2,61	3,8	*2,4	**10	PRETO
70 - 72	27/02/15	2,58	3,8	*2,1	**10	PRETO
78-80 e 83	23/01/15	2,86	3,8	*2,4	**20	VERDE
82 - 84	23/01/15	2,49	3,8	*3,0	**20	VERDE
85 - 88	27/02/15	1,33	3,8	*2,4	**5	PRETO
89 - 92	27/02/15	2,27	3,8	*2,4	**30	PRETO

^{*} Valor do diâmetro da ferramenta padrão para furo de garganta. ** Estes comprimentos de tubeira são aproximados, pois os valores não foram aferidos.

Partindo-se destes dados gerais, foram construídos dois gráficos, considerando apenas os motores com massa de propelente de 3,8 g. Um deles associando o impulso total com o diâmetro de garganta (figura 3.4) e outro, o impulso total com o comprimento da tubeira (figura 3.5). Para cada gráfico foi ajustada uma curva a fim de facilitar a interpretação destes.

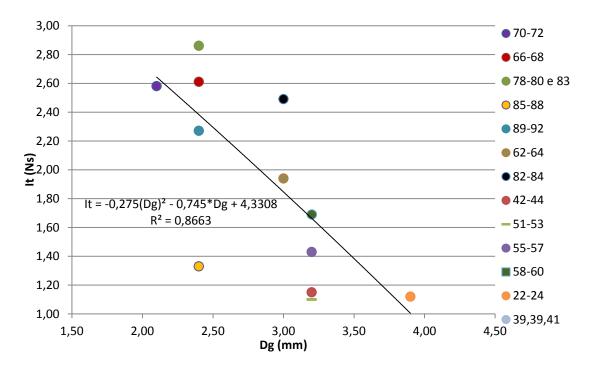


FIGURA 3.4 – Gráfico do impulso total em função do diâmetro de garganta.

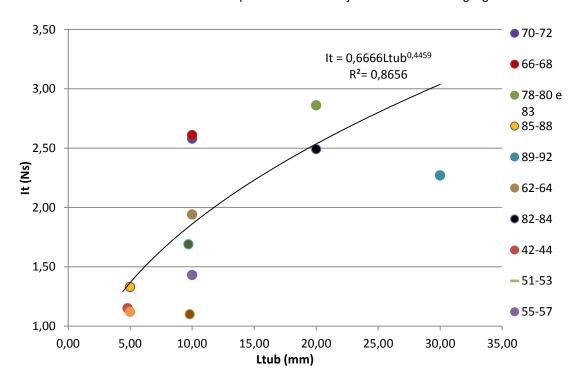


FIGURA 3.5 – Gráfico do impulso total em função do comprimento da tubeira.

A partir dos gráficos apresentados acima se verificou uma tendência em aumentar o impulso total quando se aumentava o comprimento da tubeira e se diminuía o diâmetro da garganta. Os testes que seguem no trabalho visaram verificar a veracidade destas suposições. Portanto fixou-se um diâmetro de garganta considerado seguro para novos testes (2,4 mm) e se trabalhou com os comprimentos de tubeira.

4. RESULTADOS

Neste capítulo serão apresentados todos os resultados dos testes realizados.

4.1 COMPRIMENTO DE TUBEIRA

Os primeiros testes – realizados no dia 07/05/15 – visavam encontrar um comprimento de tubeira ideal para os motores TA. Portanto fixaram-se todos os padrões de construção: Lgrão, Ltampa e m_p , variando apenas os comprimentos da tubeira, sendo eles: 5mm, 10mm, 15mm, 20mm, 25mm e 30mm. A seguir tem-se os dados dos motores construídos (tabelas. 4.1 a 4.6).

TABELA 4.1 – Dados dos motores TA com Ltub nominal de 5 mm.

	Ltub	Lgrão	Lt	Ltampa	m_p (g)	Macri (g)	Mo (g)	De	Di
	(mm)	(mm)	(mm)	(mm)	•			(mm)	(mm)
TA 93	5,72	26,15	41,62	9,75	3,80	2,49	10,87	15,01	12,82
TA 94	8,00	24,53	42,03	9,50	3,81	2,52	11,34	15,06	12,79
TA 95	6,45	26,22	42,11	9,44	3,80	2,55	10,85	15,10	12,80
TA 96	7,26	24,95	42,09	9,88	3,80	2,53	11,14	15,01	12,76

TABELA 4.2 – Dados dos motores TA com Ltub nominal de 10 mm.

	Ltub	Lgrão	Lt	Ltampa	m_p (g)	Macri (g)	Mo (g)	De	Di
	(mm)	(mm)	(mm)	(mm)	•			(mm)	(mm)
TA 97	9,45	21,99	46,54	15,10	3,80	2,79	12,95	15,12	12,82
TA 98	10,52	26,47	46,26	9,27	3,80	2,79	12,10	15,00	12,81
TA 99	9,48	26,50	47,54	11,56	3,80	2,83	12,71	15,06	12,71
TA 100	9,62	26,25	46,92	11,05	3,80	2,84	12,75	15,11	12,86

TABELA 4.3 – Dados dos motores TA com Ltub nominal de 15 mm.

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm)	m _p (g)	Macri (g)	Mo (g)	De (mm)	Di (mm)
TA 101	17,44	25,92	52,76	9,40	3,80	3,15	14,28	14,97	12,76
TA 102	15,44	27,43	52,47	9,60	3,81	3,12	14,07	14,95	12,75
TA 103	17,57	26,61	53,59	9,41	3,81	3,13	14,67	15,12	12,83
TA 104	17,38	26,35	53,45	9,72	3,81	3,18	14,86	14,96	12,86

TABELA 4.4 – Dados dos motores TA com Ltub nominal de 20 mm.

	Ltub	Lgrão	Lt	Ltampa	m_p	Macri	Мо	De	Di
	(mm)	(mm)	(mm)	(mm)	(g)	(g)	(g)	(mm)	(mm)
TA 105	22,15	26,11	57,83	9,57	3,79	3,51	16,37	15,08	12,76
TA 106	20,60	27,52	57,76	9,64	3,81	3,53	15,75	15,11	12,80
TA 107	20,32	27,46	57,42	9,64	3,80	3,44	15,35	15,10	12,77
TA 108	22,13	26,26	57,93	9,54	3,80	3,52	15,97	15,09	12,75

TABELA 4.5 – Dados dos motores TA com Ltub nominal de 25 mm.

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm)	т _р (g)	Macri (g)	Mo (g)	De (mm)	Di (mm)
TA 109	26,88	26,26	62,53	9,39	3,80	3,80	17,43	15,01	12,76
TA 110	26,62	26,06	62,14	9,46	3,81	3,74	17,14	15,08	12,81
TA 111	27,02	26,23	63,45	10,20	3,81	3,84	17,72	14,98	12,80
TA 112	26,42	24,89	60,90	9,59	3,81	3,69	17,35	15,03	12,82

TABELA 4.6 – Dados dos motores TA com Ltub nominal de 30 mm.

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm)	т _р (g)	Macri (g)	Mo (g)	De (mm)	Di (mm)
TA 113	32,12	26,27	67,79	9,40	3,80	4,14	19,40	15,01	12,70
TA 114	32,22	26,25	67,93	9,46	3,81	4,13	19,18	15,04	12,75
TA 115	32,43	26,27	68,32	9,62	3,82	4,11	19,32	14,99	12,79
TA 116	32,53	25,59	67,63	9,51	3,81	4,07	17,61	15,00	12,86

4.1.1 RESULTADOS DOS TESTES ESTÁTICOS

Todos os testes estáticos seguiram o padrão exposto no capítulo 3, para estes especificamente foi utilizada a bancada de testes do professor Marcos Campos (2006). Para o processamento dos dados foi utilizado o programa Curva Empuxo 2 1 desenvolvido pelo GFCS/UFPR.

Os dados referentes ao ambiente podem ser encontrados no apêndice D. É o tempo de queima é retirado a partri da curva de empuxo pelo tempo, a partir do momento em que está se estabiliza próxima do empuxo zero. A seguir são apresentados os resultados dos testes estáticos.

TABELA 4.7 – Resultados dos motores TA com Ltub nominal de 5 mm.

Motor	It (Ns)	$\overline{\pmb{E}}$ (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA93	1,79	1,03	1,735	48,0	471	5,06	2,19
TA94	2,13	1,65	1,290	57,1	560	3,26	2,95
TA95	2,19	1,84	1,185	58,7	575	4,43	3,21
TA96	1,38	0,48	2,890	37,0	363	1,85	1,31
Média	1,87	1,25	1,775	50,189	492,190	3,648	2,416

TABELA 4.8 – Resultados dos motores TA com Ltub nominal de 10 mm.

Motor	It (Ns)	$\overline{\pmb{E}}$ (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA97	1,56	0,84	1,850	41,8	410	2,35	2,06
TA98	2,36	1,75	1,350	63,2	620	5,22	2,81
TA99	2,21	1,57	1,410	59,3	581	4,77	2,70
TA100	2,23	1,63	1,370	59,8	586	4,73	2,77
Média	2,09	1,45	1,494	56,017	549,335	4,267	2,586

TABELA 4.9 – Resultados dos motores TA com Ltub nominal de 15 mm.

Motor	It (Ns)	$\overline{\pmb{E}}$ (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA101	2,43	2,49	0,980	65,2	639	5,73	2,06
TA102	2,39	3,17	0,755	64,1	628	5,57	5,05
TA103	2,09	1,67	1,250	56,0	549	3,89	3,05
TA104	1,50	0,58	2,590	40,3	395	2,11	1,47
Média	2,11	1,98	1,393	56,388	552,974	4,326	2,906

TABELA 4.10 – Resultados dos motores TA com Ltub nominal de 20 mm.

Motor	It (Ns)	\overline{E} (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA105	1,98	1,68	1,180	53,4	524	3,74	3,21
TA107	1,72	1,04	1,655	46,2	453	3,06	2,30
TA108	2,41	2,58	0,935	64,8	635	4,80	4,06
Média	2,04	1,77	1,257	54,774	537,974	3,865	3,191

^{*} O motor TA 106 ejetou a tampa, portanto não teve valores válidos no teste.

TABELA 4.11 – Resultados dos motores TA com Ltub nominal de 25 mm.

Motor	It (Ns)	\overline{E} (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA109	1,88	1,67	1,130	50,5	495	4,32	2,06
TA110	2,39	2,25	1,065	64,1	628	5,27	3,58
TA111	1,56	0,72	2,155	41,8	410	2,23	1,77
TA112	1,52	0,87	1,740	40,6	398	2,17	2,19
Média	1,84	1,38	1,523	49,246	482,938	3,495	2,399

TABELA 4.12 – Resultados dos motores TA com Ltub nominal de 30 mm.

Motor	It (Ns)	\overline{E} (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA113	2,14	1,43	1,490	57,3	562	4,72	2,06
TA114	2,27	1,91	1,185	60,6	595	5,56	3,22
TA115	1,56	0,48	3,240	41,5	407	1,98	1,18
TA116	2,68	2,63	1,020	71,8	704	6,26	3,74
Média	2,16	1,61	1,734	57,812	566,945	4,630	2,547

4.1.2 PÓS-PROCESSAMENTO DOS RESULTADOS

A partir dos resultados obtidos nos testes estáticos pôde ser feita a seguinte avaliação. Primeiro foi utilizado o programa R para verificar se havia significância na interação entre Ltub e It. Utilizando o teste de médias Anova (LIRA, 2014), o qual utiliza as variâncias para analisar as variações dentro da amostra (variações aleatórias) e as variações entre amostras (variações explicitadas). Foram encontrados os seguintes resultados:

TABELA 4.13 – Teste ANOVA dos dados experimentais.

	Df	Sum Sq	Mean Sq	Fvalue	Pr(>F)
Ltub	5	0.3488	0.06976	0.435	0.818
Residuals	17	2.7280	0.16047		

Portanto, considerando um nível de significância de 5%, pode-se considerar que o comprimento da tubeira não interfere no impulso total gerado pelo motor-foguete. Porém, como nos testes anteriores aparentemente houve diferenças significativas, decidiu-se fazer uma tabela comparativa com todos os motores já testados que tinham massa de propelente igual a 3,8 g e diâmetro de garganta de 2,4 mm (tabela 4.14 e 4.15). A partir destes valores foram

construídos dois gráficos: um correlacionando o impulso total com o comprimento da tubeira (gráfico 4.1) e outro (gráfico 4.2) correlacionando o impulso total com a massa total estimada de um foguete utilizando este motor (a massa dos componentes do motor, excluindo o motor, foi estimada em 10 g - valor médio das últimas montagens para esta categoria).

TABELA 4.14 – Valores médios dos motores TA93 - 116.

L	5 mm	10 mm	15 mm	20 mm	25 mm	30 mm
Lreal (mm)	6,858	9,768	16,958	21,300	26,735	32,325
$\overline{I_t}$ (Ns)	1,872	2,087	2,105	2,039	1,839	2,160
$\overline{I_t}$ máx (Ns)	2,186	2,356	2,429	2,414	2,393	2,682
$\overline{m_t}$ (g)	11,05	12,6275	14,47	15,86	17,41	19,3
$m_{foguete}$ (g)	21,05	22,6275	24,47	25,86	27,41	29,3
$\overline{I_t}/\!$	169,39	165,31	145,49	128,59	105,61	111,90
$\overline{I_t}/m_{foguete}$ (Ns/Kg)	88,92	92,25	86,03	78,86	67,08	73,71

TABELA 4.15 – Valores médios dos testes anteriores ao trabalho.

L	5 mm	10 mm	15 mm	20 mm
Lreal (mm)	-	-	-	-
$\overline{I_t}$ (Ns)	1,33	2,61	2,86	2,27
$\overline{I_t}$ máx (Ns)	1,55	2,66	3,01	2,84

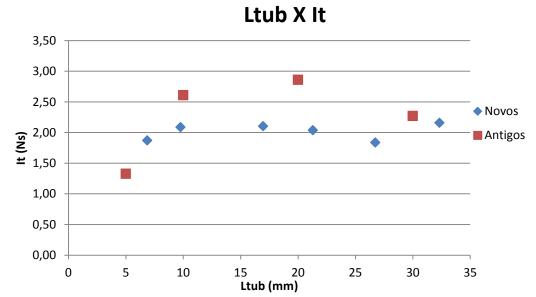


FIGURA 4.1 – Gráfico do impulso total pelo comprimento de tubeira, nos motores novos foi utilizado o valor real de Ltub.

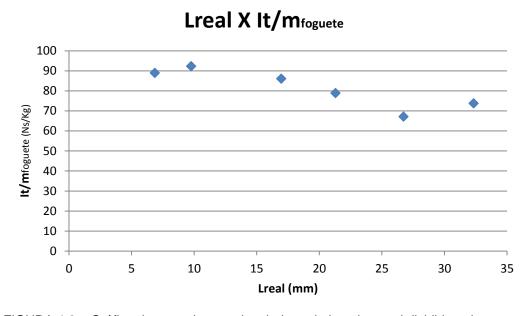


FIGURA 4.2 – Gráfico do comprimento da tubeira pelo impulso total dividido pela massa estimada de um foguete.

Pelo gráfico 4.1 pode-se visualizar que nos novos motores o impulso total manteve-se relativamente constante em função do comprimento da tubeira, já nos antigos houve uma variação mais significativa. Partindo desse resultado e pela análise do gráfico 4.2 ficou decidido utilizar 10 mm como comprimento de tubeira padrão por esta apresentar uma boa relação massa total do foguete x

impulso total, além de apresentar uma facilidade construtiva – visto que a base da matriz tinha este comprimento.

4.2 AJUSTE DA MASSA DE PROPELENTE

Após os testes para decisão do comprimento de tubeira foi necessário realizar novos testes estáticos, visando ajustar os motores TA's o mais próximo possível do limite superior das classes 1/2A, A e B. Para esta etapa do projeto era necessário realizar diversos testes variando as massas de propelente para enquadrar os motores nas classes citadas acima. Nas tabelas a seguir são apresentados todos os dados de construção dos motores-foguete testados no dia 28/05/15 (TA 117 a TA 136) e 18/06/15 (TA 145 a TA 156). Todos os motores apresentados abaixo foram construídos utilizando 2,4 mm como diâmetro de garganta padrão. Todas as aferições foram realizadas utilizando uma balança Marte AS500C e paquímetro digital Lee Tools de 150 mm.

TABELA 4.16 – Dados dos motores TA m_p igual a 1 g.

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm)	m_p (g)	Macri (g)	Mo (g)
TA 117	9,66	7,08	27,88	11,14	1,00	1,64	7,240
TA 118	9,44	6,65	27,19	11,10	0,99	1,61	7,427
TA 119	9,38	6,89	27,36	11,09	1,01	1,62	7,397
TA 120	9,41	6,29	27,76	12,06	1,01	1,65	7,351

TABELA 4.17 – Dados dos motores TA m_p igual a 2 g.

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm)	m_p (g)	Macri (g)	Mo (g)
TA 121	9,43	12,36	35,21	13,42	1,99	2,09	9,225
TA 122	9,44	12,49	35,70	13,77	2,01	2,13	9,516
TA 123	9,45	12,37	34,91	13,09	2,01	2,07	9,075
TA 124	9,40	12,19	34,28	12,69	2,01	2,07	9,109

TABELA 4.18 – Dados dos motores TA m_p igual a 3 g.

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm)	m _p (g)	Macri (g)	Mo (g)
TA 125	9,48	19,50	41,96	12,98	3,00	2,51	10,544
TA 126	9,63	19,86	41,07	11,58	3,00	2,51	10,486
TA 127	9,35	19,53	42,13	13,25	3,00	2,47	10,708
TA 128	9,39	20,03	40,86	11,44	3,01	2,45	10,611

TABELA 4.19 – Dados dos motores TA m_p igual a 5 g.

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm)	m_p (g)	Macri (g)	Mo (g)
TA 129	9,51	31,48	55,66	14,67	5,00	3,38	13,393
TA 130	9,58	31,96	54,38	12,84	5,00	3,32	13,213
TA 131	9,90	31,29	55,13	13,94	5,00	3,36	13,562
TA 132	9,70	31,60	54,50	13,20	5,00	3,32	13,322

TABELA 4.20 – Dados dos motores TA m_p igual a 6 g.

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm)	m_p (g)	Macri (g)	Mo (g)
TA 133	9,50	40,00	62,28	12,78	6,01	3,77	14,504
TA 134	9,72	40,58	60,84	10,54	6,01	3,69	14,343
TA 135	9,62	40,77	61,70	11,31	6,00	3,73	14,904
TA 136	9,91	40,59	61,40	10,90	6,01	3,71	14,521

TABELA 4.21 – Dados dos motores TA m_p igual a 7 g.

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm)	m_p (g)	Macri (g)	Mo (g)
TA 145	9,83	46,71	67,93	11,39	6,99	4,02	15,68
TA 146	9,34	46,66	67,59	11,59	6,99	4,05	15,89
TA 147	9,63	46,70	68,14	11,81	7,00	4,10	15,91
TA 148	9,67	47,45	68,24	11,12	7,00	4,07	15,58

TABELA 4.22 – Dados dos motores TA m_p igual a 8 g.

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm) m_p (Macri (g)	Mo (g)
TA 149	9,79	53,52	74,59	11,28	8,00	4,46	17,06
TA 150	9,81	53,51	74,96	11,64	7,97	4,53	17,26
TA 151	9,53	54,72	75,01	10,76	8,00	4,50	17,22
TA 152	9,89	53,10	75,03	12,04	8,01	4,53	17,62

TABELA 4.23 – Dados dos motores TA m_p igual a 9 g.

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm)	m_p (g)	Macri (g)	Mo (g)
TA 153	9,90	61,12	81,95	10,93	9,00	4,89	18,50
TA 154	9,77	60,59	81,56	11,20	9,01	4,99	18,82
TA 155	9,88	59,94	79,44	9,62	9,01	4,84	18,39
TA 156	9,84	58,99	82,23	13,40	9,01	4,87	19,17

Além dos motores com diâmetro de garganta de 2,4 mm foram construídos mais dois grupos de motores com padrão de diâmetro de garganta igual 2,1 mm (TA 137 ao TA 144). Estes motores foram testados no dia 18/06/15 e têm seus dados mostrados nas tabelas abaixo.

TABELA 4.24 – Dados dos motores TA m_p igual a 3 g.

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm)	m_p (g)	Macri (g)	Mo (g)
TA 137	9,35	21,25	36,37	5,77	3,00	2,21	8,88
TA 138	9,94	20,88	36,73	5,91	2,99	2,23	9,19
TA 139	9,45	19,93	36,32	6,94	3,00	2,20	9,06
TA 140	9,48	20,77	36,30	6,05	2,99	2,20	8,98

TABELA 4.25 – Dados dos motores TA m_p igual a 6 g

	Ltub (mm)	Lgrão (mm)	Lt (mm)	Ltampa (mm)	m_p (g)	Macri (g)	Mo (g)
TA 141	9,40	41,44	62,00	11,16	6,01	3,69	14,45
TA 142	9,36	41,84	61,57	10,37	6,00	3,62	14,04
TA 143	9,39	42,48	61,24	9,37	5,99	3,72	14,4
TA 144	9,58	40,81	60,77	10,38	6,01	3,62	14,37

4.2.1 RESULTADOS DOS TESTES ESTÁTICOS

Todos os testes estáticos seguiram os padrões propostos no capítulo 3 e tem seus relatórios apresentados no apêndice D. Primeiramente serão apresentados os resultados para os motores com Dg de 2,4 mm.

TABELA 4.26 – Resultados dos motores TA com m_p igual a 1 g.

Motor	It (Ns)	$\overline{\pmb{E}}$ (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA117	0,12	0,06	2,080	12,7	125	0,13	0,48
TA118	0,13	0,07	2,030	13,6	133	0,15	0,49
TA119	0,16	0,07	2,360	16,0	16	0,13	0,43
TA120	0,19	0,09	2,060	18,9	19	0,15	0,49
Média	0,15	0,07	2,133	15,300	73,050	0,141	0,472

TABELA 4.27 – Resultados dos motores TA com m_p igual a 2 g.

Motor	It (Ns)	$\overline{m{E}}$ (N)	$oldsymbol{t_q}$ (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA121	0,34	0,09	3,770	17,5	172	0,25	0,53
TA122	0,14	0,10	1,420	7,3	72	0,20	1,42
TA123	0,50	0,21	2,370	25,3	248	0,42	0,85
TA124	0,40	0,06	6,600	20,2	198	0,28	0,30
Média	0,35	0,12	3,540	17,587	172,467	0,287	0,774

TABELA 4.28 – Resultados dos motores TA com m_p igual a 3 g.

Motor	It (Ns)	\overline{E} (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA125	1,00	0,44	2,260	34,1	334	1,10	1,33
TA126	1,21	0,51	2,375	41,1	403	1,46	1,26
TA127	0,94	0,38	2,480	32,0	314	1,01	1,21
TA128	1,17	0,56	2,100	39,6	389	1,64	1,43
Média	1,08	0,47	2,304	36,724	360,141	1,302	1,308

TABELA 4.29 – Resultados dos motores TA com m_p igual a 5 g.

Motor	It (Ns)	$\overline{\pmb{E}}$ (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA129	2,73	1,28	2,130	55,7	546	4,64	2,35
TA130	3,25	2,22	1,460	66,2	649	5 <i>,</i> 77	3,42
TA131	3,04	1,70	1,790	62,0	608	4,81	2,79
TA132	2,13	0,86	2,480	43,4	426	2,93	2,02
Média	2,79	1,52	1,965	53,708	526,697	4,126	2,645

TABELA 4.30 – Resultados dos motores TA com m_p igual a 6 g.

Motor	It (Ns)	\overline{E} (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA133	3,87	2,47	1,570	65,7	644	7,27	3,83
TA134	3,93	2,35	1,670	66,6	653	8,37	3,60
TA135	3,49	2,05	1,700	59,2	581	6,32	3,53
TA136	3,48	1,77	1,960	59,0	579	6,86	3,07
Média	3,69	2,16	1,725	62,647	614,358	7,207	3,506

TABELA 4.31 – Resultados dos motores TA com m_p igual a 7 g.

Motor	It (Ns)	\overline{E} (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA145	2,77	0,79	3,520	40,4	396	3,56	1,99
TA146	4,44	2,44	1,820	64,7	635	9,54	3,84
TA147	4,31	2,75	1,565	62,8	616	10,08	4,47
TA148	3,87	2,02	1,920	56,4	553	7,36	3,65
Média	3,85	2,00	2,206	56,091	550,067	7,634	3,486

TABELA 4.32 – Resultados dos motores TA com m_p igual a 8 g.

Motor	It (Ns)	$\overline{m{E}}$ (N)	$oldsymbol{t_q}$ (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA149	3,91	1,73	2,260	49,8	489	7,90	3,54
TA150	4,33	1,81	2,390	55,5	544	7,33	3,33
TA151	4,34	2,90	1,500	55,4	543	12,26	5,33
TA152	5,19	3,03	1,710	66,0	647	10,84	4,68
Média	4,44	2,37	1,965	56,667	555,710	9,581	4,223

TABELA 4.33 – Resultados dos motores TA com m_p igual a 9 g.

Motor	It (Ns)	\overline{E} (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA154	5,02	2,51	2,000	56,8	557	12,60	4,51
TA155	3,20	0,80	3,990	36,2	355	2,46	2,26
TA156	4,40	1,83	2,400	49,8	488	6,92	3,75
Média	4,21	1,71	2,797	47,599	466,791	7,325	3,506

^{*} O motor TA 153 ejetou a tampa, portanto não teve valores considerados no teste estático.

A seguir têm-se os resultados dos motores-foguete com Dg igual a 2,1 mm.

TABELA 4.34 – Resultados dos motores TA com m_p igual a 3 g.

Motor	It (Ns)	\overline{E} (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA137	1,24	0,67	1,860	42,3	415	1,51	1,61
TA138	1,00	0,40	2,485	34,0	334	1,32	1,20
TA139	1,32	0,76	1,740	44,9	440	2,18	1,72
TA140	1,21	0,50	2,400	41,3	405	1,26	1,25
Média	1,19	0,58	2,121	40,633	398,474	1,567	1,447

TABELA 4.35 – Resultados dos motores TA com m_p igual a 6 g.

Motor	It (Ns)	\overline{E} (N)	t_q (s)	Is (s)	c (m/s)	Emax(N)	fm (g/s)
TA141	3,56	2,68	1,330	60,5	593	8,83	4,52
TA144	3,63	2,37	1,530	61,6	604	8,73	3,93
Média	3,60	2,53	1,430	61,025	598,454	8,780	4,223

^{*} Os motores TA 142 e 143 tiveram a tampa ejetada, portanto não tiveram seus valores considerados durante o teste estático.

4.2.2 PÓS-PROCESSAMENTO DOS RESULTADOS

Plotando as médias do impulso total em função da massa de propelente para o diâmetro de garganta 2,4 mm, obtêm-se o seguinte gráfico:

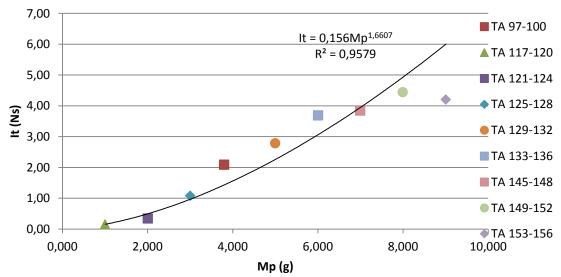


FIGURA 4.3 – Gráfico dos valores médios do impulso total pela massa de propelente.

Estes foram os principais resultados obtidos durante o período do trabalho. Ao todo foram realizados 64 testes estáticos referentes aos TA's construídos durante maio e junho de 2015, juntamente a dois testes de motores-foguete mais antigos fabricados pelo GFCS/UFPR (TA 73 e 74), porém ambos tiveram suas tampas ejetadas.

5. CONCLUSÃO

A conclusão será dividida em quatro partes, cada uma referente a uma das classes que se desejava atingir e outra com considerações para futuras melhorias nos motores-foguete produzidos pelo grupo.

5.1 MOTOR-FOGUETE CLASSE ½ A

De todos os motores testados, o grupo que obteve melhor resultado foi o dos motores TA 137 a TA 140, com o impulso total médio igual a 1,19 Ns. Porém, neste grupo, um deles teve o impulso total acima da máxima regulamentada pela NAR para esta classe. Assim, os motores TA 125 a TA 128 tiveram impulso total médio (1,08 Ns) mais próximo do limite superior da classe ½ A (1,25 Ns), sem que nenhum deles ultrapassasse esse limite. Estes motores tinham as seguintes características de fabricação: 10 mm de comprimento de tubeira, 2,4 mm de diâmetro de garganta, 10 mm de comprimento da tampa e utilizavam 3 g de KNSu como propelente.

Um dos aspectos que pode ser melhorado nesses foguetes é a redução do comprimento de tampa, já que alguns testes foram feitos com Ltampa igual a 5mm para motores similares e tiveram êxito. Um fator interessante de se notar na curva de empuxo destes e dos demais testes é que apesar do grão ser do tipo tubular a queima apresentava características regressivas - isso se deu provavelmente pelos fatores que serão explicados no tópico 5.4.

5.2 MOTOR-FOGUETE CLASSE A

Os motores TA's que tiveram melhor desempenho nesta classe foram TA 97 a TA 100, com um impulso total médio de 2,09 Ns. Nenhum dos motores testados neste grupo passou o impulso total do limite superior da classe (2,5 Ns). Esses motores foram construídos com as seguintes características: 10 mm

de comprimento de tubeira, 10 mm de tampa, 2,4 mm de diâmetro de garganta e 3,8 g de propelente.

Também, nesse caso é possível trabalhar com comprimentos menores da tampa a fim de reduzir tamanho e massa. O motor apresenta um excelente desempenho, tornando-o bastante competitivo mesmo com motores de fabricação nacional. Comparando os dados médios dos motores aqui desenvolvidos com os A6-0 da fabricante nacional Bandeirante (BT) segundo testes estáticos (MARCHI, 2010) tem-se os seguintes valores:

TABELA 5.1 – Comparação dos motores TA's com os motores da fabricante nacional.

Motor/Fabricante	A6-0/BT	TA 97-100/GFCS
Classe	A4	A2
It (Ns)	1,61	2,09
\overline{E} (N)	3,82	1,45
t_q (s)	0,42	1,494
Is (s)	66	56,017
Emax (N)	7	4,267
fm (g/s)	5,9	2,586
c (m/s)	650	549

5.3 MOTOR-FOGUETE CLASSE B

Os motores que tiveram melhor desempenho dentro dessa classe foram TA 149 a TA 152 com impulso total médio de 4,44 Ns. Porém, dentro desse grupo, o TA 152 apresentou impulso total (5,19 Ns) acima do limite superior ao permitido pela classe, eliminando-os de competir como classe B. O segundo melhor resultado foi dos TA 153 a 156, mas o motor TA 154 apresentou o mesmo problema do 152.

Levando estes fatores em conta, o grupo TA 145 a TA 148 tiveram o melhor desempenho, sem nenhum deles passar o limite superior da classe B. Estes motores também tiveram um bom desempenho se comparados com os motores da fabricante brasileira. Comparando os resultados médios dos TA's com os BT (MARCHI, 2010) obtêm-se a seguinte tabela:

TABELA 5.2 – Comparação dos motores TA's com os motores da fabricante nacional.

Motor/Fabricante	B6-0/BT	TA 145-148/GFCS	TA 153-156/GFCS
Classe	В3	B2	B2
It (Ns)	3,43	3,85	4,44
\overline{E} (N)	3,45	2,00	2,37
t_q (s)	0,99	2,206	1,965
Is (s)	71,4	56,091	56,667
Emax (]N)	6,8	7,634	9,581
fm (g/s)	4,94	3,486	4,223
c (m/s)	699	520	556

5.4 CONSIDERAÇÕES FINAIS

Durante os testes dos motores TA's foram identificados alguns fatores que precisam de melhorias. Por exemplo, a tubeira sempre foi construída utilizando massa epóxi. Um dos problemas desse material é que ele acaba fundindo com a alta temperatura e muitas vezes é carregado junto aos gases de escape. Tal fator explica a maioria dos motores não terem uma constância nos valores medidos dos impulsos totais, o que se agrava quanto maior a quantidade de propelente ou quanto menor o diâmetro da garganta. O agravamento se dá por conta do aumento da pressão na câmara de

combustão, o que eleva a velocidade de ejeção e alarga excessivamente a garganta do motor, aumentando o tempo de queima e acarretando em baixo desempenho e derretimento do tubo de acrílico.

Nos testes com diâmetro de garganta com 2,1 mm foi percebido que há uma alta pressurização e se faz necessário aumentar o comprimento da tampa, pois em dois casos – com massa de propelente de 6 g - esta acabou sendo ejetada. Outro fator que interfere na repetitividade dos testes é o fato da prensagem ser manual, o que acarreta em não homogeneidade na pressão aplicada sobre o grão-propelente. Segundo trabalhos realizados anteriormente pelo GFCS (FOLTRAN et al, 2014) a velocidade de queima e outros parâmetros estão diretamente ligados à pressão exercida sobre o grão.

Uma das principais aquisições no presente trabalho foi a de encontrar uma correlação entre a massa de propelente, dada em gramas, com o impulso total em newtons-segundo, para motores com diâmetro de garganta 2,4 mm. Cuja equação é a seguinte:

$$I_t = 0.156 m_p^{1.6607} (5.1)$$

Esta curva experimental pode ser comparada a outra levantada anteriormente (SCHLOSSMACHER, 2014) no início dos trabalhos com os motores-foguete TA. Além disso, ela mostra o comportamento da velocidade média de ejeção dos gases. A primeira equação obtida, para motores com diâmetro de garganta de 3,9 mm, foi:

$$I_t = 0.0987 m p^{1.8321} (5.2)$$

O que indica para os intervalos de massa de propelente testados, um diâmetro de garganta menor é mais eficiente – extrapolando a curva experimental obtém-se que para massa de propelente até 14,45 g isso é verdadeiro. Desde os primeiros motores até os atuais houve uma grande evolução principalmente na redução de massa, que pode ser vista na tabela 5.3.

TABELA 5.3 – Comparação dos primeiros motores TA's com os atuais.

Motor	TA 125-128	TA 22-24	TA 97-100	TA 28-30
Classe	1⁄2A	½A1	A1	A1
$m_p(g)$	3,003	3,800	3,800	5,600
Mo (g)	-	8,640	12,628	12,077
It (Ns)	1,08	1,12	2,09	2,13
\overline{E} (N)	0,47	0,60	1,45	1,17
t_q (s)	2,304	1,905	1,494	1,928
Is (s)	36,724	29,980	56,017	38,849
Emax (N)	1,302	1,466	4,267	3,259
fm (g/s)	1,308	2,011	2,586	3,042
c (m/s)	360,141	293,999	549,335	380,981

A partir da tabela acima, pode-se verificar que nos novos motores TA's é necessário uma massa de propelente muito menor do que nos antigos, principalmente pelo fato da redução do diâmetro da tubeira. As massas dos motores antigos estão otimizadas ao máximo enquanto nos novos a tampa ainda pode ser bastante reduzida – diminuindo assim a massa do motor, antes da queima.

6. REFERÊNCIAS

FOLTRAN, A. C.; MORO, D. F.; SILVA, N. D. P. da; FERREIRA, A. E. G.; ARAKI, L. K.; MARCHI, C. H. Medição da velocidade de queima à pressão atmosférica do propelente sacarose/nitrato de potássio preparado a frio. In: SIMPÓSIO AEROESPACIAL BRASILEIRO, 2014, São José dos Campos.2014.

LIRA, S. A. **Planejamento do experimento.** Curitiba, 2014. Apostila.

MARCHI, C. H. Testes estáticos de 27 Jul e 13 Set 2010 de motoresfoguete do tipo BT de espaçomodelos. Curitiba: UFPR, 2010. Relatório técnico.

MARCHI, C. H. Capítulo 2 Motor-foguete de espaçomodelo. Curitiba, 16 ago. 2014. Apostila.

NAKKA, R.A. Richard Nakka's Experimental Rocketry Web Site. Disponível em: http://www.nakka-rocketry.net. Acesso em: 25/06/2015.

NAR. **United States Model Rocketry Sporting Code.** National Association of Rocketry, 2004.

NAR. Disponível em: http://www.nar.org/standards-and-testing-committee. Acesso em: 25/06/2015.

ROCKETS EDUCATOR GUIDE. Disponível em: http://www.nasa.gov/audience/foreducators/topnav/materials/listbytype/Rocket R.html#.VYyiiflViko>. Acesso em: 25/06/2015.

SCHLOSSMACHER, L. Relatório de estágio. Relatório, 2014

SUTTON, GEORGE P.; BIBLARZ, OSCAR. Rocket Propulsion Elements. 7 ed. Unites States of America: John Wiley & Sons, INC. 2001.

VYVERMANN, T. **The potassium nitrate – sugar propellant**. Relatório, 1978.

APÊNDICE

A. PROJETO GERAL DOS MOTORES

Neste apêndice é apresentado o projeto geral dos TA's.

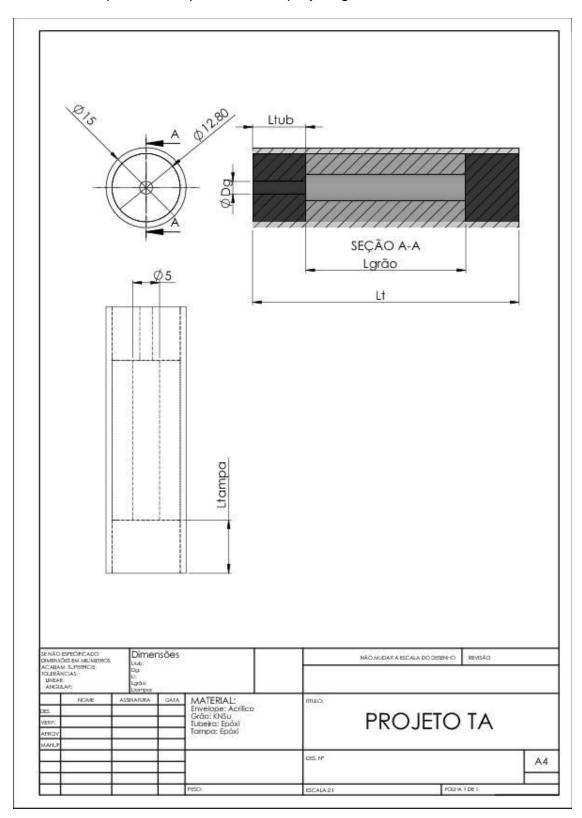


FIGURA A – Projeto TA.

B. PROJETO DA MATRIZ DE PRENSAGEM

Neste apêndice é apresentado o projeto geral da matriz de fabricação.

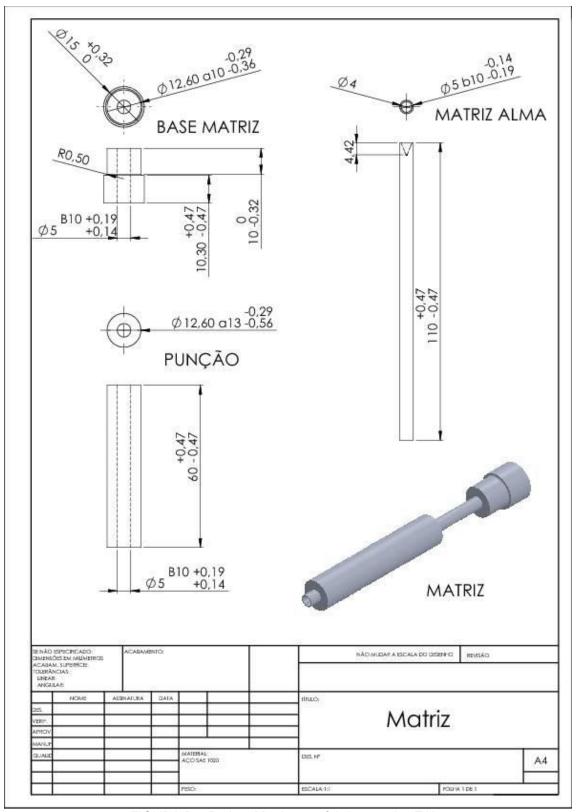
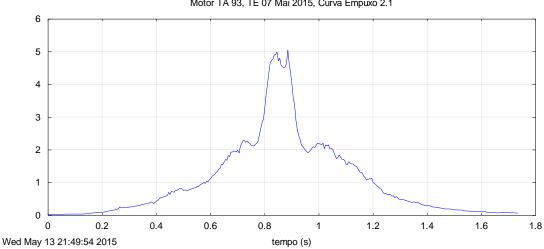


FIGURA B – Projeto Matriz para fabricação dos TA's.

C. RELATÓRIO PADRÃO DOS MOTORES TESTADOS

O GFCS realiza diversos testes estáticos e possuí um cadastro padrão dos motores-foguete. A seguir tem-se apresentado os relatórios padrões dos motores construídos e testados para este trabalho. Note que o agrupamento deles se dá pelos motores-foguete com as mesmas características.

Dados e resultados do Grupo de Foguetes Carl Sagan (GFCS) da Universidade Federal do Paraná (UFPR) [www.foguete.ufpr.br] Fabricante: GFCS/UFPR Fabricação: Mai/2015 Classe do motor segundo o fabricante:


Classe do motor segundo o GFCS/UFPR: A-1,3

Data dos testes: 7 Mai 2015

Número de motores testados: 4

Número de motores com mal funcionamento:0

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	1,38	1,87	2,19	Ns
Empuxo médio (Emed)	0,48	1,25	1,84	N
Tempo de queima da carga propulsora (tqp)	1,185	1,775	2,890	S
Massa inicial do motor (Mo)	10,850	11,050	11,340	g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	3,800	3,803	3,810	g
Impulso específico (Is)	36 , 969	50,189	58 , 656	S
Velocidade de ejeção efetiva média dos gases (c)	362,547	492,190	575 , 223	m/s
Empuxo máximo (Emax)	1,845	3,648	5 , 056	N
Fluxo de massa (fm)	1,315	2,416	3,207	g/s
Comprimento tubeira (Lt)	5 , 720	6,858	8,000	mm
Comprimento total (Lt)	41,620	41,963	42,110	mm

Motor TA 93, TE 07 Mai 2015, Curva Empuxo 2.1

Motor com o impulso total (1,79 Ns) mais próximo do impulso total médio (1,87 Ns).

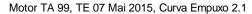
Observações:

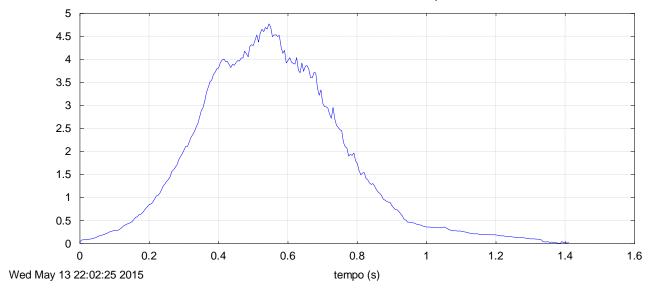
O motor TA 96 sofreu deformação durante o teste.

Lucas Schlossmacher; Curitiba, 14 de maio de 2015.

CADASTRO A - Cadastro dos motores TA 93 a 96 no GFCS/UFPR.

Classe do motor segundo o fabricante: Fabricante: GFCS/UFPR Fabricação: Mai/2015


Classe do motor segundo o GFCS/UFPR: A-1,5


Data dos testes: 7 Mai 2015

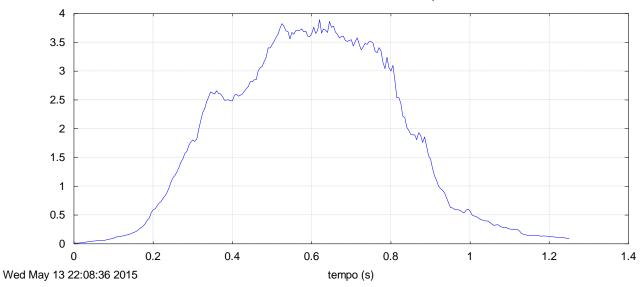
Número de motores testados: 4

Número de motores com mal funcionamento:0

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	1,56	2,09	2,36	Ns
Empuxo médio (Emed)	0,84	1,45	1,75	N
Tempo de queima da carga propulsora (tqp)	1,350	1,494	1,845	S
Massa inicial do motor (Mo)	12,100	12,628	12 , 950	g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	3,800	3,800	3,800	g
Impulso específico (Is)	41,801	56,017	63,234	S
Velocidade de ejeção efetiva média dos gases (c)	409,926	549,335	620,113	m/s
Empuxo máximo (Emax)	2,349	4,267	5 , 218	N
Fluxo de massa (fm)	2,060	2,586	2,815	g/s
Comprimento tubeira (Lt)	9,450	9,768	10,520	mm
Comprimento total (Lt)	46,540	46,895	47 , 560	mm

Motor com o impulso total (2,21 Ns) mais próximo do impulso total médio (2,09 Ns).

Observações:


Classe do motor segundo o fabricante: Fabricação: Mai/2015

Classe do motor segundo o GFCS/UFPR: A-2 Data dos testes: 7 Mai 2015

Número de motores testados: 4 Número de motores com mal funcionamento:0

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	1,50	2,11	2,43	Ns
Empuxo médio (Emed)	0,58	1,98	3,17	N
Tempo de queima da carga propulsora (tqp)	0,755	1,39	2 , 590	S
Massa inicial do motor (Mo)	14,070	14,470	14,860	g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	3,800	3,808	3,810	g
Impulso específico (Is)	40,277	56,388	65 , 182	S
Velocidade de ejeção efetiva média dos gases (c)	394,981	552,974	639,218	m/s
Empuxo máximo (Emax)	2,106	4,326	5 , 728	N
Fluxo de massa (fm)	1,471	2,906	2,060	g/s
Comprimento tubeira (Lt)	5 , 720	6,858	8,000	mm
Comprimento total (Lt)	41,620	41,963	42,110	mm

Motor TA 103, TE 07 Mai 2015, Curva Empuxo 2.1

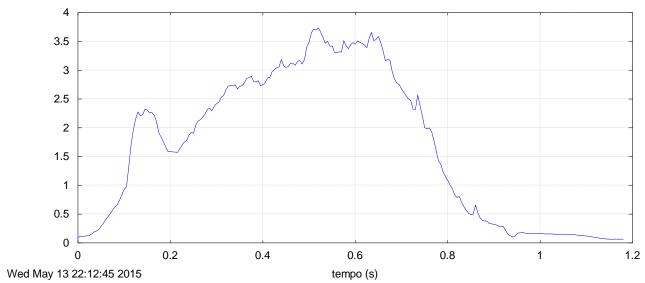
Motor com o impulso total (2,09 Ns) mais próximo do impulso total médio (2,11 Ns).

Observações:

O motor TA 104 sofreu um pouco de deformação durante o teste.

Classe do motor segundo o fabricante: Fabricante: GFCS/UFPR Fabricação: Mai/2015

Classe do motor segundo o GFCS/UFPR: A-1,8


Data dos testes: 7 Mai 2015

Número de motores testados: 4

Número de motores com mal funcionamento:1

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	1,72	2,04	2,41	Ns
Empuxo médio (Emed)	1,04	1,77	2,58	N
Tempo de queima da carga propulsora (tqp)	0,935	1,257	1,655	S
Massa inicial do motor (Mo)	15 , 350	15,860	16,370	G
Massa final do motor (Mf)				G
Massa de propelente (Mp)	3,790	3,800	3,810	G
Impulso específico (Is)	46,171	54,774	64 , 768	S
Velocidade de ejeção efetiva média dos gases (c)	452 , 779	537,149	635,162	m/s
Empuxo máximo (Emax)	3,060	3,865	4,800	N
Fluxo de massa (fm)	2,296	3,191	4,064	g/s
Comprimento tubeira (Lt)	20,320	21,300	22,150	Mm
Comprimento total (Lt)	57 , 420	57,735	57 , 930	Mm

Motor TA 105, TE 07 Mai 2015, Curva Empuxo 2.1

Motor com o impulso total (1,98 Ns) mais próximo do impulso total médio (2,04 Ns).

Observações:

O motor TA 116 teve sua tampa ejetada, portanto seus dados estáticos não forma considerados no cálculo.

Lucas Schlossmacher; Curitiba, 14 de maio de 2015.

Classe do motor segundo o fabricante: Fabricante: GFCS/UFPR Fabricação: Mai/2015

Classe do motor segundo o GFCS/UFPR: **A-1,4** Data dos testes: 7 Mai 2015

Número de motores testados: 4 Número de motores com mal funcionamento:0

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	1,52	1,84	2,39	Ns
Empuxo médio (Emed)	0,72	1,38	2,25	N
Tempo de queima da carga propulsora (tqp)	1,065	1,523	2,155	S
Massa inicial do motor (Mo)	17,140	17,410	17 , 720	g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	3,800	3,808	3,810	g
Impulso específico (Is)	40,630	49,246	64 , 053	S
Velocidade de ejeção efetiva média dos gases (c)	398,443	482,938	628,144	m/s
Empuxo máximo (Emax)	2,166	3,495	5 , 266	N
Fluxo de massa (fm)	1,768	2,399	3 , 577	g/s
Comprimento tubeira (Lt)	26,420	26,735	27,020	mm
Comprimento total (Lt)	60 , 900	62,255	63 , 450	mm

Motor TA 109, TE 07 Mai 2015, Curva Empuxo 2.1

Motor com o impulso total (1,88 Ns) mais próximo do impulso total médio (1,84 Ns).

Observações:

Os motores TA 109, 111 e 112 sofreram deformação durante seus respectivos testes.

Classe do motor segundo o fabricante: Fabricação: Mai/2015

Classe do motor segundo o GFCS/UFPR: **A-1,6** Data dos testes: 7 Mai 2015

Número de motores testados: 4 Número de motores com mal funcionamento:0

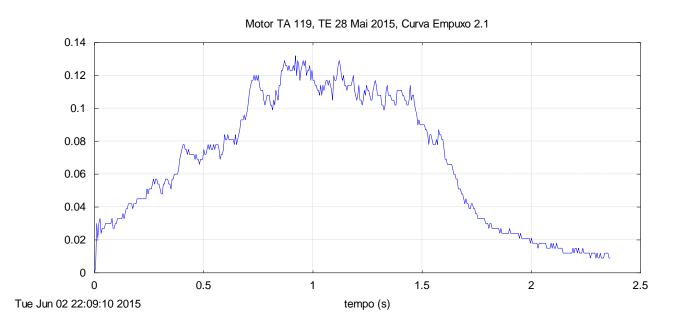
PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	1,56	2,16	2,68	Ns
Empuxo médio (Emed)	0,48	1,61	2,63	N
Tempo de queima da carga propulsora (tqp)	1,020	1,734	3,240	S
Massa inicial do motor (Mo)	19,180	19,300	19,400	g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	3,800	3,810	3,820	g
Impulso específico (Is)	41,517	57,812	71,788	S
Velocidade de ejeção efetiva média dos gases (c)	407,140	566,945	703,996	m/s
Empuxo máximo (Emax)	1,980	4,630	6,262	N
Fluxo de massa (fm)	1,179	2,547	3 , 735	g/s
Comprimento tubeira (Lt)	32,120	32,325	32,530	mm
Comprimento total (Lt)	67 , 630	67,918	68 , 320	mm

5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 0 0.2 0.4 0.6 8.0 1.2 1.4 1.6 Wed May 13 22:25:33 2015 tempo (s)

Motor TA 113, TE 07 Mai 2015, Curva Empuxo 2.1

Motor com o impulso total (2,14 Ns) mais próximo do impulso total médio (2,16 Ns).

Observações:


A massa inicial do motor TA 116 foi desconsiderado nos cálculos, pois este motor foi construído com uma tampa diferente dos demais motores – construídos, respectivamente, com cola Araldite e massa Durepoxi – o que levou a uma redução de massa. O motor TA 115 sofreu deformação.

Classe do motor segundo o fabricante: Fabricação: Mai/2015

Classe do motor segundo o GFCS/UFPR: 1/8A-0,1 Data dos testes: 28 Mai 2015

Número de motores testados: 4 Número de motores com mal funcionamento:0

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	0,12	0,15	0,19	Ns
Empuxo médio (Emed)	0,06	0,07	0,09	N
Tempo de queima da carga propulsora (tqp)	2,030	2,133	2,360	S
Massa inicial do motor (Mo)				g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	0,990	1,003	1,010	g
Impulso específico (Is)	12,699	15,300	18,940	S
Velocidade de ejeção efetiva média dos gases (c)	15,647	73,050	133,445	m/s
Empuxo máximo (Emax)	0,132	0,141	0,153	N
Fluxo de massa (fm)	0,428	0,472	0,490	g/s
Comprimento tubeira (Ltub)	9,380	9,473	9,660	mm
Comprimento total (Lt)	27,190	27,548	27 , 880	mm

Motor com o impulso total (0,16 Ns) mais próximo do impulso total médio (0,15 Ns).

Observações:

Classe do motor segundo o fabricante: Fabricante: GFCS/UFPR Fabricação: Mai/2015

Classe do motor segundo o GFCS/UFPR: 1/4A-0,1 Data dos testes: 28 Mai 2015

Número de motores testados: 4 Número de motores com mal funcionamento:0

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	0,14	0,35	0,50	Ns
Empuxo médio (Emed)	0,06	0,12	0,21	N
Tempo de queima da carga propulsora (tqp)	1,420	3,540	6,600	S
Massa inicial do motor (Mo)				g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	1,990	2,005	2,010	g
Impulso específico (Is)	7,305	17,587	25 , 331	S
Velocidade de ejeção efetiva média dos gases (c)	71,642	172,467	248,417	m/s
Empuxo máximo (Emax)	0,201	0,287	0,420	N
Fluxo de massa (fm)	0,305	0,774	1,415	g/s
Comprimento tubeira (Ltub)	9,400	9,430	9,450	mm
Comprimento total (Lt)	34,280	35,025	35 , 700	mm

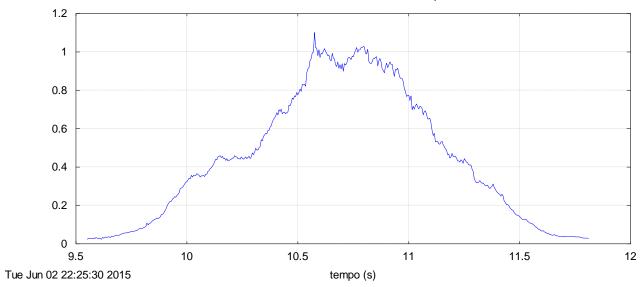
0.25 0.2 0.15 0.1 0.05 0 0.5 1.5 2 2.5 3 3.5 Tue Jun 02 22:12:30 2015 tempo (s)

Motor TA 121, TE 28 Mai 2015, Curva Empuxo 2.1

Motor com o impulso total (0,34 Ns) mais próximo do impulso total médio (0,35 Ns).

Observações:

Os motores TA 121, 122 e 124 sofreram uma leve deformação.


Classe do motor segundo o fabricante: Fabricação: Mai/2015

Classe do motor segundo o GFCS/UFPR: 1/2A-0,5 Data dos testes: 28 Mai 2015

Número de motores testados: 4 Número de motores com mal funcionamento:0

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	0,94	1,08	1,21	Ns
Empuxo médio (Emed)	0,38	0,47	0,56	N
Tempo de queima da carga propulsora (tqp)	2,100	2,304	2,480	S
Massa inicial do motor (Mo)				g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	3,000	3,003	3,010	g
Impulso específico (Is)	32,039	36,724	41,136	S
Velocidade de ejeção efetiva média dos gases (c)	314,194	360,141	403,410	m/s
Empuxo máximo (Emax)	1,014	1,302	1,635	N
Fluxo de massa (fm)	1,210	1,308	1,433	g/s
Comprimento tubeira (Ltub)	9,350	9,463	9,630	mm
Comprimento total (Lt)	40,860	41,505	42,130	mm

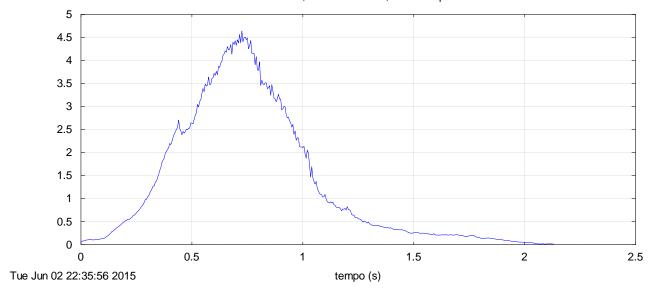
Motor TA 125, TE 28 Mai 2015, Curva Empuxo 2.1

Motor com o impulso total (1,00 Ns) mais próximo do impulso total médio (1,08 Ns).

Observações:

O motor 127 sofreu uma pequena deformação.

Lucas Schlossmacher; Curitiba, 04 de junho de 2015.


Classe do motor segundo o fabricante: Fabricante: GFCS/UFPR Fabricação: Mai/2015

Classe do motor segundo o GFCS/UFPR: **B-1,5**Data dos testes: 28 Mai 2015

Número de motores testados: 4 Número de motores com mal funcionamento:0

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	2,13	2,79	3 , 25	Ns
Empuxo médio (Emed)	0,86	1,52	2,22	N
Tempo de queima da carga propulsora (tqp)	1,460	1,965	2,480	S
Massa inicial do motor (Mo)				g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	5,000	5,000	5,000	g
Impulso específico (Is)	43,437	53,708	66,180	S
Velocidade de ejeção efetiva média dos gases (c)	425,969	526,697	649,007	m/s
Empuxo máximo (Emax)	2,928	4,126	5 , 767	N
Fluxo de massa (fm)	2,016	2,645	3,425	g/s
Comprimento tubeira (Ltub)	9,510	9,673	9,900	mm
Comprimento total (Lt)	31,290	31,583	31,960	mm

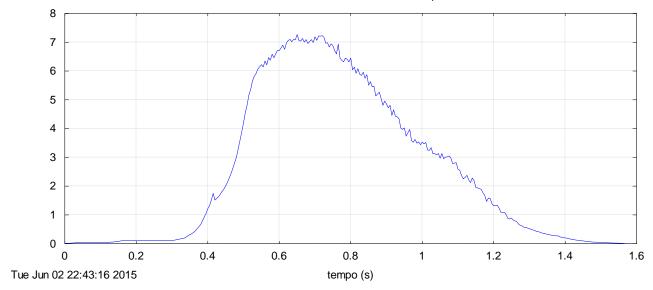
Motor TA 129, TE 28 Mai 2015, Curva Empuxo 2.1

Motor com o impulso total (2,73 Ns) mais próximo do impulso total médio (2,79 Ns).

Observações:

O motor TA 132 teve uma pequena deformação.

Lucas Schlossmacher; Curitiba, 04 de junho de 2015.


Classe do motor segundo o fabricante: Fabricante: GFCS/UFPR Fabricação: Mai/2015

Classe do motor segundo o GFCS/UFPR: **B-2**Data dos testes: 28 Mai 2015

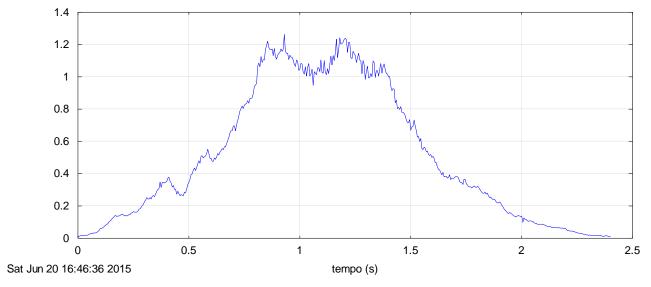
Número de motores testados: 4 Número de motores com mal funcionamento:0

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	3,48	3,69	3,93	Ns
Empuxo médio (Emed)	1,77	2,16	2,47	N
Tempo de queima da carga propulsora (tqp)	1,570	1,725	1,960	S
Massa inicial do motor (Mo)				g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	6,000	6,008	3,010	g
Impulso específico (Is)	59 , 017	62,647	66 , 618	S
Velocidade de ejeção efetiva média dos gases (c)	578 , 756	614,358	653 , 299	m/s
Empuxo máximo (Emax)	6 , 325	7,207	8,371	N
Fluxo de massa (fm)	3,066	3,506	3,828	g/s
Comprimento tubeira (Ltub)	9,500	9,688	9,910	mm
Comprimento total (Lt)	60,840	61,555	62,280	mm

Motor TA 133, TE 28 Mai 2015, Curva Empuxo 2.1

Motor com o impulso total (3,87 Ns) mais próximo do impulso total médio (3,69 Ns).

Observações:


Classe do motor segundo o fabricante: Fabricante: GFCS/UFPR Fabricação: Jun/2015

Classe do motor segundo o GFCS/UFPR: 1/2A-0,6 Data dos testes: 18 Jun 2015

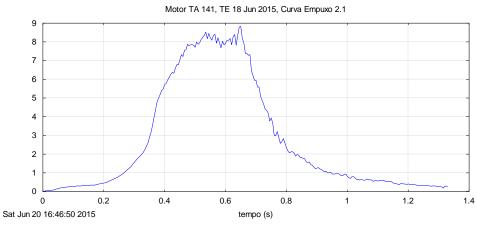
Número de motores testados: 4 Número de motores com mal funcionamento:0

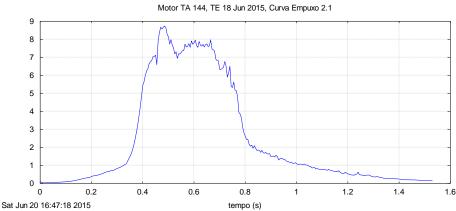
PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	1,00	1,19	1,32	Ns
Empuxo médio (Emed)	0,40	0,58	0,76	N
Tempo de queima da carga propulsora (tqp)	1,740	2,121	2,485	S
Massa inicial do motor (Mo)	8,88	9,028	9,19	g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	2,99	2,995	3,00	g
Impulso específico (Is)	34,021	40,633	44,903	S
Velocidade de ejeção efetiva média dos gases (c)	333 , 633	398,474	440,349	m/s
Empuxo máximo (Emax)	1,263	1,567	2 , 175	N
Fluxo de massa (fm)	1,203	1,447	1,724	g/s
Comprimento tubeira (Ltub)	9,35	9,555	9,94	mm
Comprimento total (Lt)	36,20	36,405	36 , 73	mm

Motor TA 140, TE 18 Jun 2015, Curva Empuxo 2.1

Motor com o impulso total (1,21 Ns) mais próximo do impulso total médio (1,19 Ns).

Observações:


O motor TA 140 sofreu uma leve deformação.


Classe do motor segundo o fabricante: Fabricante: GFCS/UFPR Fabricação: Jun/2015

Classe do motor segundo o GFCS/UFPR: **B-2,5** Data dos testes: 18 Jun 2015

Número de motores testados: 4 Número de motores com mal funcionamento:2

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	3 , 56	3,60	3,63	Ns
Empuxo médio (Emed)	2,37	2,53	2,68	N
Tempo de queima da carga propulsora (tqp)	1,330	1,430	1,530	S
Massa inicial do motor (Mo)	14,04	14,315	14,45	g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	5 , 99	6,003	6,01	g
Impulso específico (Is)	60 , 457	61,025	61,594	S
Velocidade de ejeção efetiva média dos gases (c)	592 , 880	598,454	604,029	m/s
Empuxo máximo (Emax)	8,734	8,780	8 , 837	N
Fluxo de massa (fm)	3 , 928	4,223	4,519	g/s
Comprimento tubeira (Ltub)	9,36	9,433	9,58	mm
Comprimento total (Lt)	60 , 77	61,395	62 , 00	mm

Curva de empuxo pelo tempo dos dois motores que funcionaram normalmente.

Observações:

Os motores TA 142 e 143 tiveram suas tampas ejetadas durante, seus respectivos, testes estáticos.

Lucas Schlossmacher; Curitiba, 20 de junho de 2015.

CADASTRO M - Cadastro dos motores TA 141 a 144 no GFCS/UFPR.

Classe do motor segundo o fabricante: Fabricante: GFCS/UFPR Fabricação: Jun/2015

Classe do motor segundo o GFCS/UFPR: **B-2**Data dos testes: 18 Jun 2015

Número de motores testados: 4 Número de motores com mal funcionamento:0

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	2,77	3,85	4,44	Ns
Empuxo médio (Emed)	0,79	2,00	2,75	N
Tempo de queima da carga propulsora (tqp)	1,565	2,206	3 , 520	S
Massa inicial do motor (Mo)	15 , 58	15,765	15 , 91	g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	6,99	6,995	7,00	g
Impulso específico (Is)	40,432	56,091	64 , 728	S
Velocidade de ejeção efetiva média dos gases (c)	396 , 498	550,067	634,765	m/s
Empuxo máximo (Emax)	3 , 555	7,634	10,075	N
Fluxo de massa (fm)	1,986	3,486	4,473	g/s
Comprimento tubeira (Ltub)	9,34	9,618	9,34	mm
Comprimento total (Lt)	67 , 59	67,975	68,24	mm

8 7 6 5 4 3 2 1 0 0.4 0.6 8.0 1.4 1.6 1.8 2 Sat Jun 20 16:48:45 2015 tempo (s)

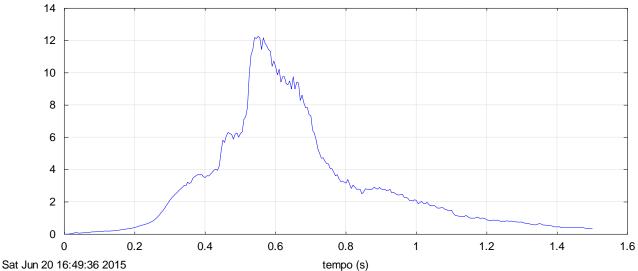
Motor TA 148, TE 18 Jun 2015, Curva Empuxo 2.1

Motor com o impulso total (3,87 Ns) mais próximo do impulso total médio (3,85 Ns).

Observações:

O motor TA 145 teve uma grande deformação no corpo de acrílico. E o motor TA 147 teve uma pequena deformação.

Lucas Schlossmacher; Curitiba, 20 de junho de 2015.


Classe do motor segundo o fabricante: Fabricante: GFCS/UFPR Fabricação: Jun/2015

Classe do motor segundo o GFCS/UFPR: **B-2,4** Data dos testes: 18 Jun 2015

Número de motores testados: 4 Número de motores com mal funcionamento:0

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	3 , 91	4,44	5 , 19	Ns
Empuxo médio (Emed)	1,73	2,37	3,03	N
Tempo de queima da carga propulsora (tqp)	1,500	1,965	2,390	S
Massa inicial do motor (Mo)	17,06	17,290	17,62	g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	7 , 97	7,995	8,01	g
Impulso específico (Is)	49,836	56,667	66,016	S
Velocidade de ejeção efetiva média dos gases (c)	488,727	555,710	647 , 393	m/s
Empuxo máximo (Emax)	7,330	9,581	12,259	N
Fluxo de massa (fm)	3 , 335	4,223	5 , 333	g/s
Comprimento tubeira (Ltub)	9,53	9,755	9,89	mm
Comprimento total (Lt)	74 , 59	74,898	75 , 03	mm

Motor TA 151, TE 18 Jun 2015, Curva Empuxo 2.1

Motor com o impulso total (4,34 Ns) mais próximo do impulso total médio (4,44 Ns).

Observações:

Os motores TA 149, 151 e 152 tiveram uma pequena deformação nos seus envelopes de acrílico. E o motor TA 150 teve sua tubeira bastante expandida.

Lucas Schlossmacher; Curitiba, 20 de junho de 2015.

CADASTRO O - Cadastro dos motores TA 149 a 152 no GFCS/UFPR.

Classe do motor segundo o fabricante: Fabricante: GFCS/UFPR Fabricação: Jun/2015

Classe do motor segundo o GFCS/UFPR: **B-1,7** Data dos testes: 18 Jun 2015

Número de motores testados: 4 Número de motores com mal funcionamento:1

PARÂMETRO	Mínimo real	MÉDIA	Máximo real	Unidade
Impulso total (It)	3,20	4,21	5 , 02	Ns
Empuxo médio (Emed)	0,80	1,71	2,51	N
Tempo de queima da carga propulsora (tqp)	2,000	2,797	3 , 990	S
Massa inicial do motor (Mo)	18,39	18,72	19,17	g
Massa final do motor (Mf)				g
Massa de propelente (Mp)	9,00	9,008	9,01	g
Impulso específico (Is)	36 , 176	47,599	56 , 821	S
Velocidade de ejeção efetiva média dos gases (c)	354,768	466,791	577 , 220	m/s
Empuxo máximo (Emax)	2,457	7,325	12,595	N
Fluxo de massa (fm)	2,258	3,506	4,505	g/s
Comprimento tubeira (Ltub)	9,77	9,848	9,90	mm
Comprimento total (Lt)	79,44	81,295	82,23	mm

To define the first of the firs

Motor TA 156, TE 18 Jun 2015, Curva Empuxo 2.1

Motor com o impulso total (4,40 Ns) mais próximo do impulso total médio (4,21 Ns).

Observações:

O motor TA 153 ejetou a tubeira. O motor TA 155 deformou completamente. E o motor TA 156 teve sua tubeira expandida, e acabou deixando de ser circular.

Lucas Schlossmacher; Curitiba, 20 de junho de 2015.

D. RELATÓRIO DO DIA DE TESTE

TESTES ESTÁTICOS de 7 de maio de 2015

Motores: TA 15 mm / GFCS / LAE / UFPR Tipo de teste: TE Posição: horizontal

Local: Laboratório de Máquinas Hidráulicas (LMH)/DEMEC/UFPR

Medidor de temperatura, pressão e hora: altímetro Oregon Venture RA123 (operador: <u>JEOVAN</u>)

Fotos: câmara fotográfica Canon PowerShot S51S (operador: <u>DIEGO</u>)

Vídeos: filmadora Sony HDR-SR10 (operador: MARCHI)

Placa: (operador: <u>SOFIA</u>)

Sistema de aquisição de dados usado: Spider 8 da HBM, freqüência 600 Hz, com software CATMAN EXPRESS 4.5 de 2003; HBM (operador: <u>IZABEL</u>)

Tipo de célula de carga: S2 – <u>50</u> N da HBM; freqüência de aquisição de dados: <u>200</u> Hz; sensibilidade: <u>1,9998</u>
Sistema de ignição: Pirotécnico (fósforo/isqueiro) (operador: <u>LUCIANO</u>) Ignitor: estopim verde

Bancada: Prof. Marcos Campos (2006)

Público estimado: 8 Anotações feitas por: <u>JEOVAN / MARCHI</u>

No	Nome	Classe?	Fabricante	Fabricado	Hora	T ar	p ar	estado	arquivo	OBSERVAÇÕES
						(°C)	(hPa)			
1	TA-93	?	GFCS/UFPR	Mai/2015	16:05	20,2	912,2	OK	ta93.txt	
2	TA-94	?	GFCS/UFPR	Mai/2015	16:07	20,2	912,3	OK	ta94.txt	
3	TA-95	?	GFCS/UFPR	Mai/2015	16:08	20,1	912,2	OK	ta95.txt	
4	TA-96	?	GFCS/UFPR	Mai/2015	16:10	20,1	912,1	X	Ta96.txt	MOTOR DEFORMADO
5	TA-97	?	GFCS/UFPR	Mai/2015	16:12	20,1	912,1	OK	Ta97.txt	
6	TA-98	?	GFCS/UFPR	Mai/2015	16:13	20,1	912,0	OK	ta98.txt	

No	Nome	Classe ?	Fabricante	Fabricado	Hora	T ar	p ar	estado	arquivo	OBSERVAÇÕES
7	TA-99	?	GFCS/UFPR	Mai/2015	16:14	(°C) 20,1	(hPa)	OV	4=00.4=4	
/						Í	912,1	OK	ta99.txt	
8	TA-100	?	GFCS/UFPR	Mai/2015	16:16	20,1	912,2	OK	ta100.txt	
9	TA-101	?	GFCS/UFPR	Mai/2015	16:17	20,1	912,1	OK	ta101.txt	
10	TA-102	?	GFCS/UFPR	Mai/2015	16:18	20,0	912,1	OK	ta102.txt	
11	TA-103	?	GFCS/UFPR	Mai/2015	16:20	20,0	912,1	OK	ta103.txt	
12	TA-104	?	GFCS/UFPR	Mai/2015	16:21	20,0	912,1	X	ta104.txt	DEFORMOU UM POUCO
13	TA-105	?	GFCS/UFPR	Mai/2015	16:23	20,0	912,1	OK	ta105.txt	
14	TA-106	?	GFCS/UFPR	Mai/2015	16:29	20,0	912,2	X	ta106.txt	EJETOU A TAMPA E QUEBROU O TUBO DE ACRÍLICO
15	TA-107	?	GFCS/UFPR	Mai/2015	16:29	19,9	912,3	OK	ta107.txt	
16	TA-108	?	GFCS/UFPR	Mai/2015	16:30	19,9	912,3	OK	ta108.txt	
17	TA-109	?	GFCS/UFPR	Mai/2015	16:32	19,9	912,5	X	ta109.txt	DEFORMOU UM POUCO O TUBO
18	TA-110	?	GFCS/UFPR	Mai/2015	16:33	19,9	912,4	OK	ta110.txt	
19	TA-111	?	GFCS/UFPR	Mai/2015	16:35	19,8	912,4	X	ta111.txt	TUBO DEFORMADO
20	TA-112	?	GFCS/UFPR	Mai/2015	16:36	19,8	912,4	X	ta112.txt	TUBO DEFORMADO
21	TA-113	?	GFCS/UFPR	Mai/2015	16:38	19,8	912,3	OK	ta113.txt	
22	TA-114	?	GFCS/UFPR	Mai/2015	16:40	19,8	912,4	OK	ta114.txt	
23	TA-115	?	GFCS/UFPR	Mai/2015	16:41	19,8	912,5	X	ta115.txt	COMPLETAMENTE DEFORMADO
24	TA-116	?	GFCS/UFPR	Mai/2015	16:42	19,7	912,4	OK	tal16.txt	

tipo teste: TS = teste de sistema TP = teste de propelente Estado após o teste: OK = significa que foi mantida a integridade do motor; Elétrico, estopim, fósforo

TR = teste de resistência

X = houve algum problema T = temperatura

TE = teste estático com curva de empuxo

 $p = press\~{a}o$

TESTES ESTÁTICOS de 28 de maio de 2015

Motores: TA 15 mm / GFCS / LAE / UFPR Tipo de teste: TE Posição: horizontal

Local: Laboratório de Máquinas Hidráulicas (LMH)/DEMEC/UFPR

Medidor de temperatura, pressão e hora: altímetro Oregon Venture RA123 (operador: <u>IZABEL / JEOVAN</u>)

Fotos: câmara fotográfica Canon PowerShot S51S (operador: DIEGO / NICHOLAS)

Vídeos: filmadora Sony HDR-SR10 (operador: MARCHI)

Placa: (operador: <u>JEOVAN</u>)

Sistema de aquisição de dados usado: Spider 8 da HBM, freqüência 600 Hz, com software CATMAN EXPRESS 4.5 de 2003; HBM (operador: NICHOLAS / IZABEL)

Tipo de célula de carga: $S2 - \underline{50}$ N da HBM; freqüência de aquisição de dados: $\underline{200}$ Hz; sensibilidade: $\underline{1,9998}$

Sistema de ignição: Pirotécnico (fósforo/isqueiro) (operador: <u>LUCIANO</u>) Ignitor: estopim verde

Bancada: Prof. Marcos Campos (2006)

Público estimado: 8 Anotações feitas por: IZABEL / JEOVAN

No	Nome	Classe ?	Fabricante	Fabricado	Hora	T ar	p ar	estado	arquivo	OBSERVAÇÕES
						(°C)	(hPa)			
1	TA-117	?	GFCS/UFPR	Mai/2015	16:02	18,1	905,6	OK	ta117.txt	
2	TA-118	?	GFCS/UFPR	Mai/2015	16:06	18,1	905,7	OK	ta118.txt	
3	TA-119	?	GFCS/UFPR	Mai/2015	16:08	18,1	905,6	OK	ta119.txt	
4	TA-120	?	GFCS/UFPR	Mai/2015	16:09	18,0	905,7	OK	ta120.txt	
5	TA-121	?	GFCS/UFPR	Mai/2015	16:12	18,0	905,7	X	ta121.txt	DEFORMOU UM POUCO
6	TA-122	?	GFCS/UFPR	Mai/2015	16:13	18,0	905,7	X	ta122.txt	DEFORMOU UM POUCO
7	TA-123	?	GFCS/UFPR	Mai/2015	16:16	18,0	905,7	OK	ta123.txt	
8	TA-124	?	GFCS/UFPR	Mai/2015	16:17	18,0	905,8	X	ta124.txt	DEFORMOU UM POUCO

No	Nome	Classe?	Fabricante	Fabricado	Hora	T ar	p ar (hPa)	estado	arquivo	OBSERVAÇÕES
9	TA-125	?	GFCS/UFPR	Mai/2015	16:20	18,0	905,9	OK	ta125.txt	
10	TA-126	?	GFCS/UFPR	Mai/2015	16:21	18,0	905,9	OK	ta126.txt	
11	TA-127	?	GFCS/UFPR	Mai/2015	16:23	18,0	905,9	X	ta127.txt	DEFORMOU MUITO POUCO
12	TA-128	?	GFCS/UFPR	Mai/2015	16:25	18,0	905,8	OK	ta128.txt	
13	TA-129	?	GFCS/UFPR	Mai/2015	16:28	18,0	905,9	OK	ta129.txt	
14	TA-130	?	GFCS/UFPR	Mai/2015	16:30	18,0	905,8	OK	ta130.txt	
15	TA-131	?	GFCS/UFPR	Mai/2015	16:31	18,0	905,9	OK	ta131.txt	
16	TA-132	?	GFCS/UFPR	Mai/2015	16:32	18,0	905,8	X	ta132.txt	DEFORMOU UM POUCO
17	TA-133	?	GFCS/UFPR	Mai/2015	16:35	17,9	905,9	OK	ta133.txt	
18	TA-134	?	GFCS/UFPR	Mai/2015	16:36	17,9	905,8	OK	ta134.txt	
19	TA-135	?	GFCS/UFPR	Mai/2015	16:38	17,9	905,8	OK	ta135.txt	A SAÍDA DA TUBEIRA FICOU QUASE TRIANGULAR
20	TA-136	?	GFCS/UFPR	Mai/2015	16:39	17,9	905,8	X	ta136.txt	DEFORMOU MUITO POUCO

tipo teste: TS = teste de sistema TP = teste de propelente Estado após o teste: OK = significa que foi mantida a integridade do motor; Ignitor: elétrico, estopim, fósforo

TR = teste de resistência

X = houve algum problema T = temperatura

TE = teste estático com curva de empuxo

 $p = press\~{a}o$

TESTES ESTÁTICOS de 18 de junho de 2015

Motores: TA 15 mm / GFCS / LAE / UFPR Tipo de teste: TE Posição: horizontal

Local: Laboratório de Máquinas Hidráulicas (LMH)/DEMEC/UFPR

Medidor de temperatura, pressão e hora: altímetro Oregon Venture RA123 (operador: <u>JEOVAN</u>)

Fotos: <u>NÃO FOI USADA CÂMARA FOTOGRÁFICA</u>
Vídeos: filmadora Sony HDR-SR10 (operador: MARCHI)

Placa: (operador: <u>CARLOS</u>)

Sistema de aquisição de dados usado: Spider 8 da HBM, freqüência 600 Hz, com software CATMAN EXPRESS 4.5 de 2003; HBM (operador: NICHOLAS)

Tipo de célula de carga: $S2 - \underline{50}$ N da HBM; freqüência de aquisição de dados: $\underline{200}$ Hz; sensibilidade: $\underline{1,9998}$

Sistema de ignição: Pirotécnico (fósforo/isqueiro) (operador: <u>LUCIANO</u>) Ignitor: estopim verde

Bancada: Marlus-Diego-Nicholas (2013)

Público estimado: 15 Anotações feitas por: <u>JEOVAN / MARCHI</u>

No	Nome	Classe?	Fabricante	Fabricado	Hora	T ar	p ar	estado	arquivo	OBSERVAÇÕES
						(°C)	(hPa)			
1	TA-137	?	GFCS/UFPR	Jun/2015	16:00	18,7	907,0	OK	ta137.txt	
2	TA-138	?	GFCS/UFPR	Jun/2015	16:02	18,6	907,0	OK	ta138.txt	
3	TA-139	?	GFCS/UFPR	Jun/2015	16:04	18,7	907,1	OK	ta139.txt	
4	TA-140	?	GFCS/UFPR	Jun/2015	16:05	18,7	907,1	OK	ta140.txt	UM PONTO FICOU DEFORMADO
5	TA-141	?	GFCS/UFPR	Jun/2015	16:13	18,8	907,0	OK	ta141.txt	
6	TA-142	?	GFCS/UFPR	Jun/2015	16:15	18,8	907,1	X	ta142.txt	TRINCA NO TUBO, BANCADA COM RESÍDUOS, MOTOR EJETOU DA BANCADA E A TAMPA FOI EJETADA
7	TA-143	?	GFCS/UFPR	Jun/2015	16:19	18,8	907,2	X	ta143.txt	TRINCA NO TUBO, MOTOR EJETOU DA BANCADA E A TAMPA FOI EJETADA

No	Nome	Classe?	Fabricante	Fabricado	Hora	T ar	p ar (hPa)	estado	arquivo	OBSERVAÇÕES
8	TA-144	?	GFCS/UFPR	Jun/2015	16:21	18,8	907,4	OK	ta144.txt	
9	TA-145	?	GFCS/UFPR	Jun/2015	16:25	18,8	907,6	X	ta145.txt	DEFORMOU BASTANTE O TUBO DE ACRÍLICO
10	TA-146	?	GFCS/UFPR	Jun/2015	16:26	18,8	907,7	OK	ta146.txt	
11	TA-147	?	GFCS/UFPR	Jun/2015	16:27	18,8	907,8	OK	ta147.txt	UM POUCO DE DEFORMAÇÃO
12	TA-148	?	GFCS/UFPR	Jun/2015	16:29	18,8	907,7	OK	ta148.txt	
13	TA-149	?	GFCS/UFPR	Jun/2015	16:32	18,8	907,9	X	ta149.txt	DEFORMOU POUCO NA TAMPA
14	TA-150	?	GFCS/UFPR	Jun/2015	16:33	18,8	907,9	OK	ta150.txt	ABRIU BASTANTE A TUBEIRA, PONTO DE DEFORMAÇÃO PEQUENO
15	TA-151	?	GFCS/UFPR	Jun/2015	16:35	18,8	908,0	OK	ta151.txt	DEFORMOU NA REGIÃO DA TUBEIRA
16	TA-152	?	GFCS/UFPR	Jun/2015	16:37	18,8	908,1	OK	ta152.txt	DEFORMOU UM POUCO NO CENTRO
17	TA-153	?	GFCS/UFPR	Jun/2015	16:39	18,8	908,1	X	ta153.txt	EJETOU A TUBEIRA, SAIU DA BANCADA, DEFORMOU A METADE
										INFERIOR
18	TA-154	?	GFCS/UFPR	Jun/2015	16:42	18,8	908,1	OK	ta154.txt	NÃO QUEIMOU UMA PORÇÃO MUITO PEQUENA DO PROPELENTE
19	TA-155	?	GFCS/UFPR	Jun/2015	16:44	18,8	908,3	X	ta155.txt	DEFORMOU COMPLETAMENTE A METADE INFERIOR (PERTO DA
										TUBEIRA)
20	TA-156	?	GFCS/UFPR	Jun/2015	16:45	18,8	908,2	OK	ta156.txt	GARGANTA FICOU NÃO CIRCULAR

tipo teste: TS = teste de sistema TP = teste de propelente Estado após o teste: OK = significa que foi mantida a integridade do motor; elétrico, estopim, fósforo

TR = teste de resistência

X = houve algum problema T = temperatura

TE = teste estático com curva de empuxo

 $p=press\~{a}o \\$