

Simulação numérica de escoamento reativo, transferência de calor e termoelasticidade em motor-foguete

CFD-10

<u>Palavras-chave</u>: propulsão líquida, CFD, volumes finitos, erro numérico, H₂/O₂, *multigrid*, tubeira, câmara de combustão, refrigeração regenerativa, refrigeração radiativa, elasticidade

Projeto de pesquisa submetido e aprovado pela

Agência Espacial Brasileira (AEB)

para concorrer ao Anúncio de Oportunidades 01/2006 do Programa UNIESPAÇO

Tema: Veículos Espaciais

Tópico: Processos de Combustão em Motores-Foguete

Luciano Kiyoshi Araki (UFPR)

José Nivaldo Hinckel (INPE)

Luciano Kiyoshi Araki (UFPR)

José Miraglia (UNIMARCO)

Márcio Augusto Villela Pinto (UEPG)

Cosmo Damião Santiago (UNIBRASIL)

Neil Franco de Carvalho (UNICENP)

Carlos Henrique Marchi

(pesquisador principal)
Universidade Federal do Paraná (UFPR)
Setor de Tecnologia (TC)

Departamento de Engenharia Mecânica (DEMEC)
Caixa postal 19040, CEP 81531-980, Curitiba, PR
Telefone: (41) 3361-3126; Fax: (41) 3361-3129
e-mail: marchi@demec.ufpr.br

Curitiba, 14 de maio de 2007.

RESUMO

O objetivo principal deste projeto é implementar códigos computacionais para projetar motores-foguete com refrigeração regenerativa ou radiativa. Ele consiste na continuação do projeto "Simulação numérica de escoamento reativo em motor-foguete com refrigeração regenerativa", financiado pelo Programa UNIESPAÇO 2004-2006 da Agência Espacial Brasileira. Os objetivos específicos são implementar códigos computacionais para: (1) dentro da câmara de combustão e tubeira, resolver escoamentos bidimensionais reativos (congelado, equilíbrio químico e taxa finita), considerando fluido viscoso com transferência de calor para a parede; (2) no caso de refrigeração regenerativa, resolver escoamentos unidimensionais do líquido refrigerante, considerando a transferência de calor da parede; (3) no caso de refrigeração radiativa, resolver a transferência de calor da parede para o ambiente externo, por convecção e radiação térmica; e (4) na parede do motor, resolver a condução de calor bidimensional bem como os campos de deslocamentos, tensões e deformações causados pelos campos de temperaturas e de escoamentos na tubeira. Todos os códigos computacionais serão implementados integralmente pelos membros do projeto com a linguagem Fortran 2003 e usando o método dos volumes finitos. Os recursos financeiros aprovados pela AEB totalizam R\$ 77.000,00. O projeto será executado por uma equipe de 10 pessoas de 6 universidades e do INPE, sendo 5 doutores, 3 doutorandos, 1 mestre e 1 mestranda.

1 INTRODUÇÃO

Os foguetes a propelente líquido são o principal sistema de propulsão espacial (Habiballah *et al.*, 1998). Um dos propelentes utilizados é o sistema LOX/LH₂, isto é, oxigênio líquido como oxidante e hidrogênio líquido como combustível. Este sistema provavelmente continuará a ser o preferido pelas próximas décadas (Haidn e Habiballah, 2003). A técnica mais utilizada para refrigerar motores-foguete a propelente líquido de alta pressão é a regenerativa, às vezes combinada com refrigeração por filme (Habiballah *et al.*, 1998). Em motores de baixo empuxo também pode-se empregar a refrigeração radiativa.

Os principais elementos de um motor-foguete a propelente líquido são:

- Placa injetora: promove a injeção e atomização do combustível e do oxidante na câmara de combustão.
- Câmara de combustão: espaço onde ocorre a mistura do combustível e do oxidante e a combustão do propelente. É conectada à tubeira.
- Tubeira: espaço formado por um bocal convergente-divergente através do qual escoam e são acelerados os produtos da combustão.
- Parede do motor: estrutura que envolve a câmara de combustão, tubeira e o sistema de refrigeração.

Uma descrição dos fenômenos físico-químicos envolvidos no funcionamento de um motor-foguete a propelente líquido pode ser vista no trabalho de Haidn e Habiballah (2003). Em resumo, tem-se na câmara de combustão um escoamento turbulento tridimensional de diversos gases reagindo quimicamente com taxa finita de reação, a alta pressão e temperatura. Estes gases com velocidade subsônica são acelerados através da tubeira até velocidades supersônicas. Os gases aquecidos, na câmara e na tubeira, transferem calor por convecção e radiação para a parede do motor. O calor se propaga por condução tridimensional através da parede e é retirado por um sistema de refrigeração ou por radiação e convecção para o ambiente.

Em termos de projeto de um motor-foguete a propelente líquido, alguns parâmetros de interesse são o empuxo (F) produzido pelo motor, a temperatura máxima (T_{MAX}) atingida pela parede e as tensões (σ) na parede. A determinação do empuxo é fundamental para atender à missão de um foguete: massa da carga útil, um satélite por exemplo, e sua órbita. A distribuição de temperaturas e tensões da parede e seus valores máximos são essenciais na previsão da vida útil do motor e de sua falha estrutural.

Uma perspectiva da situação atual sobre a simulação numérica dos fenômenos envolvidos num motor-foguete a propelente líquido é a seguinte:

- Wang (2006) comenta que na solução numérica de escoamentos reativos em motores-foguete: malha estruturada é melhor do que não-estruturada; o efeito da radiação é pequeno no empuxo; taxa finita é melhor do que equilíbrio químico; a consideração da perda de calor em motores refrigerados regenerativamente melhora a predição do empuxo drasticamente; e o empuxo e o fluxo de calor comparam bem com experimentos.
- Hagemann et al. (2003) comentam que: os métodos numéricos são uma ajuda fundamental para entender a física do escoamento em motores-foguete; a predição de fenômenos de escoamento dominados por efeitos viscosos, como o fluxo de calor para a parede, alcançou alto nível de confiabilidade; e comparações com resultados experimentais mostram concordância razoavelmente boa para a transferência de calor em tubeiras com refrigeração radiativa.
- Não são encontrados na literatura dados suficientes para realizar comparações com resultados experimentais ou numéricos (Marchi et al., 2004).
- É necessário mais progresso em métodos numéricos que demandem menor tempo de computação (Habiballah *et al.*, 1998).
- São relatados resultados aparentemente contraditórios; por exemplo: (i) para o fluxo de calor no divergente de uma tubeira, sua solução numérica do escoamento laminar apresenta uma diferença de 15% para o resultado experimental, e 120% para escoamento turbulento (Kacynski et al., 1987); e (ii) dependendo da variável de interesse, se fluxo de massa, velocidade característica, impulso específico ou empuxo, comparações com resultados experimentais mostram que a solução numérica unidimensional pode ter erro menor do que uma bidimensional (Barros et al., 1990).
- Em geral, não são estimados os erros envolvidos nas soluções numéricas.
 Conseqüentemente, conclusões equivocadas podem ser extraídas de comparações entre resultados numéricos de modelos matemáticos distintos, ou entre resultados numéricos e experimentais (Marchi e Hobmeir, 2007).

2 OBJETIVOS

O objetivo principal deste projeto é implementar códigos computacionais para projetar motores-foguete com refrigeração regenerativa e radiativa.

Os objetivos específicos são implementar códigos computacionais para:

- 1) Dentro da câmara de combustão e tubeira, resolver escoamentos bidimensionais, reativos ou não, considerando fluido invíscido ou viscoso (escoamento laminar), com ou sem transferência de calor para a parede. Serão incluídos vários modelos de reação química entre hidrogênio e oxigênio para escoamentos do tipo congelado, equilíbrio químico e taxa finita.
- 2) No caso de refrigeração regenerativa, resolver escoamentos unidimensionais do líquido refrigerante, considerando a transferência de calor da parede .

- 3) No caso de refrigeração radiativa, resolver a transferência de calor da parede para o ambiente externo, por convecção e radiação térmica.
- 4) Na parede do motor, resolver a condução de calor uni e bidimensional bem como os campos de deslocamentos, tensões e deformações causados pelos campos de temperaturas e de escoamentos na tubeira.

Outros objetivos deste projeto são: (a) usar os códigos computacionais implementados na solução de alguns problemas, para fazer comparações de resultados, análise de desempenho e do efeito de alguns parâmetros físicos e realizar estimativas do erro numérico; (b) obter resultados numéricos altamente acurados, e suas estimativas do erro numérico, visando comparar modelos matemáticos baseados nas equações de Euler e Navier-Stokes, para verificar a importância de modelos mais complexos; (c) obter soluções numéricas de referência (benchmarks) para os problemas em consideração, com suas estimativas de erro numérico; (d) esclarecer algumas questões controvertidas da literatura, como aquelas mencionadas na introdução; (e) escrever relatórios técnicos e artigos científicos, a publicar em congressos e revistas, para relatar a teoria envolvida nos códigos computacionais e os resultados numéricos obtidos com eles; (f) com os recursos financeiros a serem obtidos, melhorar a infra-estrutura computacional do grupo de pesquisa de CFD da UFPR, responsável principal pela execução do projeto; e (g) formar mestres e doutores em temas relacionados ao presente projeto.

3 METODOLOGIA

O projeto está estruturado em quatro metas a serem alcançadas em dois anos. Ao final de cada meta, pretende-se ter um código computacional ou versão correspondente a ela, um relatório técnico e um artigo científico. Todos os códigos computacionais serão implementados integralmente pelos membros do projeto, empregando o método de volumes finitos e escritos com a linguagem de programação Fortran 2003. Ressalta-se que a maior parte do que será feito terá por base os códigos já implementados no projeto anterior financiado pela AEB, aumentando a chance de se atingir os objetivos definidos. Em todas as etapas descritas abaixo, o pesquisador principal, Marchi, estará envolvido e o pesquisador Araki, nas metas 1 a 3. O envolvimento dos demais pesquisadores é mencionado nas metas ou etapas pertinentes descritas abaixo.

Meta 1: Escoamento 2D não-reativo

O objetivo principal desta meta é implementar um código computacional para resolver escoamentos bidimensionais, não-reativos, de fluidos viscosos laminares.

Atualmente, o grupo de pesquisa proponente deste projeto já tem implementado um código computacional, denominado Mach2D, versão 5.5, que resolve o escoamento bidimensional axissimétrico, de gás compressível invíscido, monoespécie, com troca de calor, para qualquer regime de velocidade e geometria. As principais características do modelo numérico usado neste código, cujos detalhes podem ser vistos nos textos de Maliska (2004) e Ferziger e Peric (2001), são: método dos volumes finitos; sistema de coordenadas não-ortogonais ajustadas aos contornos; arranjo co-localizado de variáveis; escoamentos em qualquer regime de velocidade; aproximações numéricas de 2ª ordem de acurácia; solver MSI.

A Meta 1 é composta de duas etapas:

- 1a) Incluir escoamento laminar, equações de Navier-Stokes, no código Mach2D. Isso também inclui alterações na equação da energia. Período: julho a dezembro/2007 = 6 meses.
- 1b) Otimizar e aplicar o código Mach2D não-reativo. Período: janeiro a junho/2008 = 6 meses. Participantes: Silva, Santiago e Pinto.

Otimizar, aqui, significa reduzir as necessidades de memória e/ou tempo de processamento para resolver um problema. Para tanto, entre outras, pretende-se tentar as seguintes estratégias: melhorar os algoritmos, inclusão de *multigrid*, passo de tempo variável, aproximações numéricas de 2ª ordem de acurácia nos termos químicos e uso de computação paralela. Aplicar significa usar o código implementado na solução de alguns problemas para comparações de resultados, análise de desempenho e do efeito de alguns parâmetros.

Meta 2: Escoamento 2D reativo

O objetivo principal desta meta é implementar um código computacional para resolver escoamentos bidimensionais, reativos, de fluidos viscosos laminares.

Atualmente, o grupo de pesquisa proponente deste projeto já tem implementado um código computacional, denominado Mach2D, versão 6.0, que resolve o escoamento bidimensional axissimétrico, reativo, de gases compressíveis invíscidos, com troca de calor, para qualquer regime de velocidade e geometria. Neste código, existem vários modelos de reação química entre hidrogênio e oxigênio para escoamentos do tipo congelado, equilíbrio químico e taxa finita, incorporados num outro código computacional denominado Gibbs.

A Meta 2 é composta de três etapas:

- 2a) Adaptar e otimizar o código Gibbs para escoamento de fluido viscoso. Período: julho/2007 a junho/2008 = 12 meses. Participantes: Miraglia, Hinckel, Silva, Santiago e Pinto.
- 2b) Adaptar o código Mach2D para escoamento reativo de fluido viscoso. Período: julho a setembro/2008 = 3 meses.
- 2c) Otimizar e aplicar o código Mach2D reativo viscoso. Período: outubro a dezembro/2008 = 3 meses. Participantes: Silva, Santiago e Pinto.

Meta 3: Refrigeração

O objetivo principal desta meta é implementar códigos computacionais para considerar refrigeração regenerativa e radiativa em motores-foguete.

A Meta 3 é composta de três etapas:

- 3a) Incluir refrigeração radiativa no código Mach2D da meta 2. Período: janeiro e fevereiro/2009 = 2 meses. Participantes: Hinckel e Silva.
- 3b) Implementar o código RHG2D para refrigeração regenerativa. Ele será uma junção do código Mach2D da meta 2 com o código Canal1D 2.0 do projeto Uniespaço 2004-2006. Esta etapa inclui revisar e otimizar o código Canal1D 2.0 e adaptar o código Mach2D da meta 2 para interagir com o código RHG2D. Período: março e abril/2009 = 2 meses.
- 3c) Aplicar os códigos Mach2D para refrigeração radiativa e RHG2D para refrigeração regenerativa. Período: março a junho/2009 = 4 meses. Participante: Silva.

Meta 4: Condução de calor e termoelasticidade 2D

O objetivo principal desta meta é implementar códigos computacionais para resolver, na parede do motor, a condução de calor bidimensional e os campos de deslocamentos, tensões e deformações causados pelos campos de temperaturas e de escoamentos na tubeira, considerando-se refrigeração regenerativa e radiativa. Participantes: Giacomini e Carvalho.

A Meta 4 é composta de quatro etapas:

- 4a) Resolver a condução de calor na parede considerando-se o escoamento na tubeira com refrigeração radiativa. Período: julho a dezembro/2007 = 6 meses.
- 4b) Resolver os campos de deslocamentos, tensões e deformações causados pelos campos de temperaturas e de escoamento na tubeira com refrigeração radiativa. Período: janeiro a junho/2008 = 6 meses. Participante: Lopes
- 4c) Resolver a condução de calor na parede considerando-se os escoamentos na tubeira com refrigeração regenerativa. Período: julho a dezembro/2008 = 6 meses.
- 4d) Resolver os campos de deslocamentos, tensões e deformações causados pelos campos de temperaturas e de escoamentos na tubeira com refrigeração regenerativa. Período: janeiro a junho/2009 = 6 meses. Participante: Lopes

Cronograma

Na tabela abaixo, apresenta-se o cronograma de execução física das atividades previstas nas metas 1 a 4, organizado em períodos trimestrais.

Início: julho/2007. Término: junho/2009.

Meta	Etapa	Atividade	2007		2008				2009	
			3°	4 °	1°	2°	3°	4 °	1°	2 °
1		Escoamento 2D não-reativo								
	1a	Escoamento laminar	Х	Х						
	1b	Otimizar e aplicar o código Mach2D não-reativo			Х	Х				
2		Escoamento 2D reativo								
	2a	Adaptar e otimizar o código Gibbs	Х	Χ	Х	Х				
	2b	Adaptar o código Mach2D					Х			
	2c	Otimizar e aplicar o código Mach2D reativo						Х		
3		Refrigeração								
	3a	Radiativa							Χ	
	3b	Regenerativa							Χ	Х
	3c	Aplicações							Χ	Х
4		Condução e termoelasticidade 2D								
	4a	Condução com refrigeração radiativa	Х	Х						
	4b	Termoelasticidade e refrigeração radiativa			Х	Х				
	4c	Condução com refrigeração regenerativa					Х	Χ		
	4d	Termoelasticidade e refrigeração regenerativa							Х	Х

4 EQUIPE TÉCNICA

O projeto será executado por uma equipe de 10 pessoas de 6 universidades e do INPE, sendo 5 doutores, 3 doutorandos, 1 mestre e 1 mestranda. Quase todos os membros da equipe integram dois grupos de pesquisa registrados no CNPq: Dinâmica

dos Fluidos Computacional, da UFPR; e Propulsão Líquida, do INPE. A seguir, apresenta-se uma breve descrição de cada membro da equipe.

Carlos Henrique Marchi

Título: doutor em engenharia mecânica, UFSC, 2001

Professor efetivo adjunto da Universidade Federal do Paraná (UFPR)

Dedicação ao projeto: 10 horas/semana

Função no projeto: coordenar o projeto, definir modelos matemáticos e numéricos, e

implementar códigos computacionais

Especialidades principais: simulação numérica de escoamentos multidimensionais em

qualquer regime de velocidade, análise de erros numéricos, métodos multigrid

Luciano Kiyoshi Araki

Título: engenheiro mecânico, UFPR, 2003

Doutorando, bolsista CAPES na Universidade Federal do Paraná (UFPR)

Dedicação ao projeto: 20 horas/semana

Função no projeto: implementar códigos computacionais e realizar simulações

Especialidades principais: simulação numérica de escoamentos reativos

António Fábio Carvalho da Silva

Título: doutor em engenharia mecânica, UFSC, 1991

Professor efetivo adjunto da Universidade Federal de Santa Catarina (UFSC)

Dedicação ao projeto: 1 hora/semana

Função no projeto: consultor sobre modelos numéricos e transferência de calor

Especialidades principais: simulação numérica de escoamentos

José Nivaldo Hinckel

Título: doutor em engenharia mecânica, Rensselaer Polytechnic Institute, Estados Unidos, 1984

Tecnologista sênior do Instituto Nacional de Pesquisas Espaciais (INPE)

Dedicação ao projeto: 1 hora/semana

Função no projeto: consultor sobre modelos matemáticos em propulsão

Especialidades principais: projeto e desenvolvimento de motores-foguete a propelente líquido, propulsores catalíticos a hidrazina e bipropelentes, análise e simulação de sistemas propulsivos espaciais

José Miraglia

Título: mestre em engenharia aeronáutica, ITA, 1994

Professor titular da Universidade São Marcos (UNIMARCO)

Dedicação ao projeto: 1 hora/semana

Função no projeto: consultor sobre modelos matemáticos em propulsão

Especialidades principais: projeto e desenvolvimento de motores-foguete a propelente

líquido

Eduardo Márcio de Oliveira Lopes

Título: doutor em engenharia mecânica, University Of Wales Cardiff, UWC, Grã-Bretanha. 1998

Professor efetivo adjunto da Universidade Federal do Paraná (UFPR)

Dedicação ao projeto: 1 hora/semana

Função no projeto: consultor sobre modelos matemáticos termoelásticos e mecânica dos sólidos

Especialidades principais: mecânica dos sólidos, vibrações e projeto mecânico

Márcio Augusto Villela Pinto

Título: doutor em métodos numéricos em engenharia, UFPR, 2006

Professor efetivo adjunto da Universidade Estadual de Ponta Grossa (UEPG)

Dedicação ao projeto: 3 horas/semana

Função no projeto: otimizar algoritmos e implementar códigos computacionais

Especialidades principais: análise numérica e métodos multigrid

Cosmo Damião Santiago

Título: mestre em métodos numéricos em engenharia, UFPR, 2001

Professor associado do Complexo de Ensino Superior do Brasil (UNIBRASIL) e doutorando na Universidade Federal do Paraná (UFPR)

Dedicação ao projeto: 3 horas/semana

Função no projeto: otimizar algoritmos e implementar códigos computacionais

Especialidades principais: análise numérica e métodos multigrid

Fabiana de Fátima Giacomini

Título: licenciada em matemática, Universidade Estadual de Filosofia, Ciências e Letras de União da Vitória, FAFI-UVA, 2001

Mestranda, bolsista do CNPq na Universidade Federal do Paraná (UFPR)

Dedicação ao projeto: 20 horas/semana

Função no projeto: implementar códigos computacionais e realizar simulações

Especialidades principais: matemática

Neil Franco de Carvalho

Título: mestre em métodos numéricos em engenharia, UFPR, 2002

Professor efetivo adjunto do Centro Universitário Positivo (UNICENP) e doutorando na

Universidade Federal do Paraná (UFPR) Dedicação ao projeto: 10 horas/semana

Função no projeto: implementar códigos computacionais e realizar simulações

Especialidades principais: métodos numéricos e mecânica dos sólidos

5 RESULTADOS E PRODUTOS ESPERADOS

Os resultados e produtos que se pretende obter ao final da execução do presente projeto são:

- 1) Três códigos computacionais: Mach2D (metas 1 a 3), RHG2D (meta 3) e outro código referente à meta 4. Estes códigos serão disponibilizados através da internet, gratuitamente, a qualquer interessado, bem como a AEB, INPE e IAE, incluindo os programas-fonte e os programas-executáveis.
- 2) Quatro artigos a serem submetidos para publicação em congressos e/ou revistas científicas internacionais para divulgar a pesquisa realizada. Cada artigo será referente a uma meta do projeto.
- 3) Quatro relatórios técnicos descrevendo em detalhes a pesquisa realizada. Cada relatório será referente a uma meta do projeto.
- 4) Formar um mestre e um doutor, e qualificar (projeto de tese) dois doutorandos no tema do projeto.
- 5) Aumentar a capacidade computacional do grupo de pesquisa da UFPR, permitindo ampliar o escopo de suas atividades de pesquisa, ensino e extensão.

6 DECLARAÇÃO

Eu, Carlos Henrique Marchi, pesquisador principal deste projeto, declaro ter conhecimento dos termos do Anúncio de Oportunidades 01/2006 e do Documento Base do Programa Uniespaço, da Agência Espacial Brasileira, e de estar de acordo com os mesmos.

<u>APÊNDICE</u>

A - INFRA-ESTRUTURA DISPONÍVEL

O projeto será executado no Laboratório de Experimentação Numérica (LENA), do Departamento de Engenharia Mecânica da Universidade Federal do Paraná. A infraestrutura disponível no LENA para desenvolver o projeto de pesquisa é a seguinte:

- 4 microcomputadores Pentium IV de 2.4 a 3.4 GHz, com 1 a 4 GB RAM
- 2 microcomputadores Core 2 Duo, de 2,4 GHz com 2 GB RAM
- Impressoras laser HP 1100 e 3020 monocromáticas
- Softwares Windows, Word, Wgnuplot e Fortran
- 3 salas totalizando 96 m²

B - TRABALHOS PRÉVIOS

Os trabalhos já publicados pelos integrantes da equipe, e que têm relação direta com o presente projeto, podem ser divididos em quatro temas: métodos numéricos, análise de erros numéricos, termoelasticidade e propulsão de foguetes.

Sobre métodos numéricos, podem ser citados os trabalhos de Marchi (1992) e Marchi e Maliska (1994). Os dois tratam da solução numérica de fluidos compressíveis, equações de Euler e Navier-Stokes, bi e tridimensionais, em qualquer regime de velocidade, envolvendo escoamentos subsônicos até supersônicos.

Sobre solução numérica de problemas bidimensionais de termoelasticidade, pode-se citar o trabalho de Hacke e Marchi (2006).

Sobre análise de erros numéricos, podem ser citados os trabalhos de Marchi e Silva (2002 e 2005), Schneider e Marchi (2006) e Marchi e Hobmeir (2007). Eles mostram como estimar confiavelmente erros de discretização de problemas uni e multidimensionais, envolvendo os processos de verificação e validação de soluções numéricas.

Sobre propulsão de foguetes, podem ser citados diversos trabalhos e seus respectivos problemas considerados:

- Marchi (1989) e Marchi et al. (1992): escoamento bidimensional axissimétrico de gás compressível invíscido, monoespécie, sem troca de calor; no primeiro, escoamento supersônico em bocal divergente e no segundo, escoamento subsônico a supersônico em bocal convergente-divergente.
- Marchi et al. (2000, 2004): escoamento na tubeira acoplado à condução de calor na parede e ao escoamento nos canais de refrigeração de um motor-foguete. Na tubeira, tem-se escoamento unidimensional subsônico a supersônico, de gás compressível viscoso, monoespécie, com troca de calor. Na parede, a condução de calor é unidimensional. Nos canais, tem-se escoamento unidimensional subsônico, de líquido compressível viscoso, monoespécie, com troca de calor. As propriedades termofísicas e de transporte são variáveis.
- Marchi et al. (2005): programa computacional com 15 modelos para cálculo de propriedades de reações químicas em equilíbrio e não-equilíbrio químico para o propelente H₂/O₂.
- Araki e Marchi (2006): escoamento unidimensional subsônico a supersônico, em bocal convergente-divergente, congelado e reativo em equilíbrio químico e com taxa finita de reação para o propelente H₂/O₂, incluindo a solução unidimensional da condução de calor na parede do motor e do escoamento do refrigerante em canais com sistema de refrigeração regenerativa.

 Cinco relatórios técnicos de Marchi e Araki (2005, 2006, 2007a, 2007b e 2007c) referentes ao projeto "Simulação numérica de escoamento reativo em motor-foguete com refrigeração regenerativa", financiado pelo Programa UNIESPAÇO 2004-2006 da Agência Espacial Brasileira.

Além disso, Marchi está orientando um trabalho de iniciação científica e uma tese de doutorado no tema do projeto; ambos devem ser concluídos até agosto de 2007.

C - RECURSOS FINANCEIROS

Pretende-se aplicar os recursos financeiros a receber da Agência Espacial Brasileira no seguinte:

Custeio R\$ 32.000,00

Capital R\$ 45.000,00

Total R\$ 77.000,00

Equipamento e Material Permanente Nacional:

- Dois microcomputadores de alto desempenho com 16 ou 32 GB RAM. Valor R\$ 39.400,00. Justificativa: ter equipamentos exclusivos de alto desempenho para realizar a implementação dos códigos computacionais do projeto, suas otimizações e aplicações, que envolverão malhas muito finas, precisando de muita memória computacional e velocidade de processamento.
- 2) Uma impressora multifuncional colorida do tipo laser. Valor R\$ 2.500,00. Justificativa: trocar uma das duas impressoras atuais do grupo de CFD/UFPR, que já tem mais de dez anos; ter uma impressora em cada uma das três salas do laboratório do grupo, facilitando o trabalho; fazer impressões coloridas, facilitando a interpretação e registro de resultados; imprimir listagens de códigos computacionais, resultados de simulações, artigos, relatórios etc referentes ao projeto.
- 3) Um microcomputador de médio desempenho. Valor R\$ 3.100,00. Justificativa: equipamento destinado a um membro da equipe (Lopes) para dotar o seu gabinete com um microcomputador.

Material de Consumo Nacional:

- 4) Oito pentes de memória RAM de 2 GB. Valor R\$ 8.000,00. Justificativa: dotar dois microcomputadores do grupo de CFD da UFPR com 8 GB RAM cada um, permitindo que mais estes dois microcomputadores possam também ser usados em simulações do projeto.
- 5) Toners para impressoras. Valor R\$ 3.000,00. Justificativa: imprimir listagens de códigos computacionais, resultados de simulações, artigos, relatórios etc referentes ao projeto.
- 6) Livros. Valor R\$ 4.000,00. Justificativa: atualizar a bibliografia do grupo de CFD da UFPR sobre propulsão de foguetes, métodos e erros numéricos.
- 7) Material de consumo (papel A4, CD, disquetes, pastas e sacos plásticos, pastas suspensas etc). Valor R\$ 1.000,00. Justificativa: imprimir listagens de códigos computacionais, resultados de simulações, artigos, relatórios etc referentes ao projeto e organizar e arquivar o material relativo ao projeto.

8) Software Fortran. Valor R\$ 3.000,00. Justificativa: atualizar o compilador Fortran usado no projeto para diminuir o tempo computacional necessário a cada simulação.

Outros Serviços de Terceiros – Pessoa Jurídica:

- 9) Artigos. Valor R\$ 1.000,00. Justificativa: adquirir cópias oficiais de artigos científicos, através do sistema COMUT ou de editoras, para atualizar a bibliografia do grupo de CFD da UFPR sobre propulsão de foguetes, métodos e erros numéricos.
- 10) Tradução de artigos. Valor R\$ 3.000,00. Justificativa: traduzir para o inglês os quatro artigos previstos como resultado do projeto para serem publicados em congressos e revistas internacionais.
- 11) Xerox. Valor R\$ 1.000,00. Justificativa: fazer cópias de relatórios, de artigos científicos etc para diversos membros da equipe do projeto, facilitando o trabalho.
- 12) Divulgação do projeto. Valor R\$ 1.000,00. Justificativa: confeccionar folders e pôsteres sobre as atividades do projeto visando sua divulgação em seminários do grupo de CFD da UFPR, eventos do programa Uniespaço e congressos.

Passagens:

13) Três viagens entre Curitiba e Florianópolis; três viagens entre São José dos Campos e Curitiba; três viagens entre São Paulo e Curitiba. Valor R\$ 5.000,00. Justificativa: viagens de trabalho de Silva, Hinckel e Miraglia a Curitiba para participarem de dois eventos durante o projeto, junto com os demais membros da equipe; e visitas de Marchi aos três pesquisadores externos a Curitiba. Os objetivos destas viagens são facilitar as definições de modelos matemáticos e numéricos e análise de resultados do projeto.

Diárias:

14) Cerca de 15 diárias. Valor R\$ 2.000,00. Justificativa: cobrir gastos relativos às viagens citadas no item passagens.

Contrapartida das Instituições

Apenas considerando-se os salários e bolsa de estudo e a dedicação de cada membro da equipe, estima-se que a contrapartida das sete instituições envolvidas no projeto seja:

- UFPR = R\$ 45.000,00
- CNPq = R\$ 11.000,00
- UFSC + INPE + UNIMARCO = R\$ 12.000,00
- UEPG + UNIBRASIL = R\$ 18.000,00
- UNICENP = R\$ 48.000,00

Total: R\$ 134.000,00

<u>D - REFERÊNCIAS</u>

ARAKI, L. K.; MARCHI, C. H. Numerical solution of one-dimensional reactive flows in rocket engines with regenerative cooling. In: Brazilian Congress of Thermal Sciences and Engineering. **Anais...** Curitiba, 2006. 12 p. XI ENCIT.

BARROS, J. E. M.; ALVIM FILHO, G. F.; PAGLIONE, P. Estudo de escoamento reativo em desequilíbrio químico através de bocais convergente-divergente. In: III ENCONTRO NACIONAL DE CIÊNCIAS TÉRMICAS. **Anais**... Itapema, 1990.

- FERZIGER, J. H.; PERIC, M. Computational methods for fluid dynamics. 3. ed. Berlin: Springer, 2001.
- FRÖHLICH, A.; POPP, M.; SCHMIDT, G.; THELEMANN, D. Heat transfer characteristics of H₂/O₂ combustion chambers. In: 29th JOINT PROPULSION CONFERENCE. **Proceedings**... Monterey, 1993. AIAA paper 93-1826.
- HABIBALLAH, M.; VINGERT, L.; DUTHOIT, V.; VUILLERMOZ, P. Research as a key in the design methodology of liquid-propellant combustion devices. **Journal of Propulsion and Power**, v. 14, n. 5, p. 782-788, 1998.
- HACKE, O.; MARCHI, C. H. Solução numérica de problema termoelástico com estimativa do erro de discretização. In: Brazilian Congress of Thermal Sciences and Engineering. **Anais**... Curitiba, 2006. 7 p. XI ENCIT.
- HAGEMANN, G.; ALTING, J.; PRECLIK, D. Scalability for rocket nozzle flows based on subscale and full-scale testing. **Journal of Propulsion and Power**, v. 19, n. 3, p. 321-331, 2003.
- HAIDN, O. J.; HABIBALLAH, M. Research on high pressure cryogenic combustion. **Aerospace Science and Technology**, v. 7, p. 473-491, 2003
- KACYNSKI, K. J.; PAVLI, A. J.; SMITH, T. A. Experimental evaluation of heat transfer on a 1030:1 area ratio rocket nozzle. Cleveland: NASA Lewis Research Center, 1987. NASA Technical Paper 2726.
- MALISKA, C. R. Transferência de calor e mecânica dos fluidos computacional. 2. ed. Rio de Janeiro: LTC, 2004.
- MARCHI, C. H. Solução numérica do escoamento supersônico invíscido em bocais divergentes operando no vácuo. In: CONGRESSO NACIONAL DE MATEMÁTICA APLICADA E COMPUTACIONAL. **Anais...** São José do Rio Preto, 1989.
- MARCHI, C. H. Solução numérica de escoamentos tridimensionais viscosos em qualquer regime de velocidade. Florianópolis: Universidade Federal de Santa Catarina, 1992. Dissertação de mestrado em Engenharia Mecânica.
- MARCHI, C. H.; ARAKI, L. K. **Relatório técnico 1: programa Gibbs 1.3**. Curitiba: Universidade Federal do Paraná, 2005. 62 p.
- MARCHI, C. H.; ARAKI, L. K. **Projeto CFD-5: relatório técnico 2; programa Gibbs 1.3**. Curitiba: Universidade Federal do Paraná, 2006. 38 p.
- MARCHI, C. H.; ARAKI, L. K. Relatório técnico 3 do projeto CFD-5/UFPR: programa Mach1D 5.0. Curitiba: Universidade Federal do Paraná, 2007a. 209 p.
- MARCHI, C. H.; ARAKI, L. K. Relatório técnico 4 do projeto CFD-5/UFPR: programa RHG1D 3.0. Curitiba: Universidade Federal do Paraná, 2007b. 59 p.

- MARCHI, C. H.; ARAKI, L. K. Relatório técnico 5 do projeto CFD-5/UFPR: código Mach2D 6.0. Curitiba: Universidade Federal do Paraná, 2007c. 44 p.
- MARCHI, C. H.; ARAKI, L. K.; LAROCA, F. Evaluation of thermochemical properties and combustion temperature for LOX/LH2 reaction schemes. In: Iberian Latin-American Congress on Computational Methods in Engineering. **Anais**... Guarapari, 2005. 16 p. XXVI CILAMCE.
- MARCHI, C. H.; HOBMEIR, M. A. Numerical solution of staggered circular tubes in twodimensional laminar forced convection. **Journal of the Brazilian Society of Mechanical Sciences and Engineering**, v. XXIX, p. 42-48, 2007.
- MARCHI, C. H.; LAROCA, F.; SILVA, A. F. C.; HINCKEL, J. N. Solução numérica de escoamentos em motor-foguete com refrigeração regenerativa. In: CONGRESSO IBERO LATINO-AMERICANO DE MÉTODOS COMPUTACIONAIS EM ENGENHARIA. **Anais...** Rio de Janeiro, 2000.
- MARCHI, C. H.; LAROCA, F.; SILVA, A. F. C.; HINCKEL, J. N. Numerical solutions of flows in rocket engines with regenerative cooling. **Numerical Heat Transfer, Part A**, v. 45, p. 699-717, 2004.
- MARCHI, C. H.; MALISKA, C. R. A nonorthogonal finite-volume method for the solution of all speed flows using co-located variables. **Numerical Heat Transfer, Part B,** v. 26, p. 293-311, 1994.
- MARCHI, C. H.; SILVA, A. F. C. Unidimensional numerical solution error estimation for convergent apparent order. **Numerical Heat Transfer, Part B**, v. 42, p. 167-188, 2002.
- MARCHI, C. H.; SILVA, A. F. C. Multi-dimensional discretization error estimation for convergente apparent order. **Journal of the Brazilian Society of Mechanical Sciences and Engineering**, v. XXVII, p. 432-439, 2005.
- MARCHI, C. H.; SILVA, A. F. C.; MALISKA, C. R. Solução numérica de escoamentos invíscidos em tubeiras com velocidade supersônica na saída. In: ENCONTRO NACIONAL DE CIÊNCIAS TÉRMICAS. **Anais...** Rio de Janeiro, 1992. p. 145-148.
- SCHNEIDER, F. A.; MARCHI, C. H. Efeito do tipo de refino de malhas não-uniformes de volumes finitos sobre a ordem efetiva do erro de discretização. In: CONGRESSO IBERO LATINO-AMERICANO DE MÉTODOS COMPUTACIONAIS EM ENGENHARIA. **Anais...** Belém, 2006. 15 p.
- WANG, T. S. Multidimensional unstructured-grid liquid rocket-engine nozzle performance and heat transfer analysis. **Journal of Propulsion and Power**, v. 22, n. 1, p. 78-84, 2006.