Grupo de pesquisa:

CFD, propulsão e aerodinâmica de foguetes

(CFD/UFPR) – junho/2002

14 Jun 2013 - Pimentel

Laboratórios (136 m²):

Lena 1:	alunos
Lena 2:	professores
LAE:	minifoguetes

Localização: salas 7-16, 7-30 e 7-31 do DEMEC

Equipamentos principais: computadores (192 GB, Xeon, 12 núcleos) impressoras laser sensores, filmadora etc

PESQUISADORES atuais (11)

Da UFPR:

Prof. Carlos Henrique Marchi (líder)Prof. Luciano Kiyoshi ArakiProf. Márcio Augusto Villela Pinto

De outras instituições: UEPG = 3 UTFPR = 2

 $\mathbf{UFRN} = 1 \qquad \mathbf{IFPR} = 1$

UP = 1

3

ORIENTANDOS em mar/13 na UFPR (21)

IC = 9 TG = 0

 $M = 6 \qquad D = 6$

PD = 0 outros = 0

ORIENTAÇÕES concluídas até mar/13 na UFPR (40)

IC = 5 TG = 14

M = 10 D = 11

PD = 0 outros = 0

Linhas de pesquisa

• Aplicação de métodos numéricos

• Otimização de métodos numéricos

• Verificação e validação de soluções numéricas

Modelos matemáticos

Equações (1D/2D/3D/t): Laplace Poisson Fourier Advecção-difusão Burgers Euler Navier-Stokes Turbulência

Metodologia

Métodos numéricos: Diferenças finitas **Volumes Finitos** Ordem das aproximações numéricas: 1, 2, 3 e 4 Tipos de malhas: Uniformes e não-uniformes Quadradas e triangulares Estruturadas e não-estruturadas Não-ortogonais Solvers: GS, TDMA, ADI e MSI com multigrid Linguagem de programação: Fortran 90

Aplicação de métodos numéricos

• Propulsão de foguetes

• Aerodinâmica de foguetes

Ar sobre cone (L/D = 3): campo p

Ar sobre cone (L/D = 3): C_{Df}

- M Re Exp Mach2D
- 3 4,00 x 10⁶ 0,084 \pm 0,003 0,08406 \pm 0,0007

4 2,16 x 10⁶ 0,078 \pm 0,005 0,07779 \pm 0,0009

5 1,05 x 10⁶ 0,076 \pm 0,005 0,07556 \pm 0,0009

O foguete brasileiro VLS

Ar sobre o foguete VLS

Motor-foguete SSME e Space Shuttle

Esquema de motor-foguete bipropelente com refrigeração regenerativa

Detalhes dos canais de refrigeração

Motor-foguete

Vulcain do

Ariane V

Motor Vulcain (Ariane V)

- F (nível do mar) = 103 tf
- Tw-max = 750 K
- To = 3.500 K
- Po = 100 atm
- q"max = 60 MW/m^2
- Canais = 360
- Altura = 9,5 a 12 mm
- Largura = 1,3 a 2,6 mm

Modelos físicos para escoamento na tubeira

1: Gás com propriedades constantes

2: Gás com propriedades variáveis

3: Gases congelados

4: Gases em equilíbrio químico local

5: Gases com taxa finita de reação

a) invíscido

b) laminar

c) turbulento

Escoamento reativo 2D laminar

$$C^{\phi}\left[\frac{\partial}{\partial t}(\rho\phi) + \frac{\partial}{\partial x}(\rho u\phi) + \frac{1}{r}\frac{\partial}{\partial y}(r\rho v\phi)\right] = \frac{\partial}{\partial x}\left(\Gamma^{\phi}\frac{\partial\phi}{\partial x}\right) + \frac{1}{r}\frac{\partial}{\partial y}\left(r\Gamma^{\phi}\frac{\partial\phi}{\partial y}\right) + P^{\phi} + S^{\phi}$$

Equação	ϕ	C^{ϕ}	Γ^{ϕ}	P^{ϕ}	S^{ϕ}
Massa	1	1	0	0	0
QML-x	и	1	μ	$-\frac{\partial p}{\partial x}$	$\frac{1}{3}\frac{\partial}{\partial x}\left(\mu\frac{\partial u}{\partial x}\right) + \frac{1}{r}\frac{\partial}{\partial y}\left(\mu\frac{\partial v}{\partial x}\right) - \frac{2}{3}\frac{\partial}{\partial x}\left[\frac{\mu}{r}\frac{\partial}{\partial y}(rv)\right]$
QML-y	v	1	μ	$-\frac{\partial p}{\partial y}$	$\frac{1}{3r}\frac{\partial}{\partial y}\left(r\mu\frac{\partial v}{\partial y}\right) + \frac{\partial}{\partial x}\left(\mu\frac{\partial u}{\partial y}\right) - \frac{2}{3}\frac{\partial}{\partial y}\left(\mu\frac{\partial u}{\partial y}\right) - \frac{4}{3}f\frac{u}{r^2}v - \frac{2}{3r}fv\frac{\partial \mu}{\partial y}$
Energia	Т	Cp	k	$\frac{\partial p}{\partial t} - uP^u - vP^v$	$2\mu \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + f\left(\frac{v}{r} \right)^2 \right] + \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 - \frac{2}{3} \mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + f\frac{v}{r} \right)^2 + S_{eq/tf}$
Espécies	Y_i	1	0	0	\dot{W}_i

Escoamento reativo 2D laminar

Equilíbrio químico local

$$S_{eq/tf} = -\frac{\partial}{\partial x} \left(\sum_{i=1}^{N_e} \rho h_i Y_i u \right) - \frac{1}{r} \frac{\partial}{\partial y} \left(\sum_{i=1}^{N_e} r \rho h_i Y_i v \right)$$

Taxa finita:

$$S_{eq/tf} = -\sum_{i=1}^{N_e} h_i \dot{w}_i$$

$$p = \sum_{i=1}^{N_e} p_i$$

$$c_{p} = \sum_{i=1}^{N_{e}} Y_{i}(c_{p})_{i} \qquad R = \sum_{i=1}^{N_{e}} Y_{i} R_{i} \qquad p = \rho R T$$

Modelos químicos para H_2/O_2

9 equilíbrio e 6 taxa finita

Modelo	Número de reações	Número de espécies	Espécies envolvidas
0	0	3	H_2O, O_2, H_2
1	1	3	H_2O, O_2, H_2
2	2	4	H ₂ O, O ₂ , H ₂ , OH
3	4	6	H ₂ O, O ₂ , H ₂ , OH, O, H
4	4	6	H ₂ O, O ₂ , H ₂ , OH, O, H
5	8	6	H ₂ O, O ₂ , H ₂ , OH, O, H
7	8	6	H ₂ O, O ₂ , H ₂ , OH, O, H
10	6	8	$H_2O, O_2, H_2, OH, O, H, HO_2, H_2O_2$
9	18	8	$H_2O, O_2, H_2, OH, O, H, HO_2, H_2O_2$

Malha 56x20, Mach2D, invíscido

Mach2D, 224x80/200, p parede

Mach, invíscido, 1792x640, Mach2D

Otimização de métodos numéricos

- Métodos *multigrid* geométricos e algébricos
- Aproximações numéricas
- Multiextrapolação de Richardson
- Programação //, *solvers* etc

MER em Tc, Laplace 2D, DF

27

Verificação e validação de soluções numéricas

- Verificar códigos e soluções numéricas
- Validar soluções numéricas
- Avaliar e desenvolver estimadores de erros numéricos
- Gerar resultados numéricos de referência
- Incerteza dos dados da simulação

Tipos de erros

V&V: estimador de erro para MER

Poisson 1D, DF, T(3/4) nodal, CDS-2

Teste estático de motor de EM

Motor BT-100, TE 27 Jul 2010, Curva_empuxo 1.2

Lançamento EM α-17/C6-5 (23/06/2011)

32

Agradecimentos (financiadores):

Projeto CFD-19/CAPES Validação em propulsão e aerodinâmica de foguetes

Parte experimental UnB ITA INPE IAE Outros Parte teórica UFPR Outros

Empresas Acrux Bandeirante Edge of Space

Código computacional VonBraun atual

- Mach2D 7.0: escoamento 2D plano/axis., monoespécie, turbulento 0 eq., sem reação, //, G-NO, ∀V, VF, p=1-2
- Mach2D 6.2: 7.0 laminar e reativo
- Gibbs 1.3: reação H2/O2
- RHG 1.0: condução na parede e refrigeração regenerativa e radiativa
- Richardson 4.0: Uh, Umc, Tc, Uc, Tm e Um
- Interp1D: interpolação 1D, p=1-10, G-U, para MER
- Interp2D: interpolação 2D, p=1-6, G-U, para MER
- Flame 1.0: combustão e chama 1D
- Trajetoria 1.1/Trajeto: trajetória 1D e 2D (2 graus lib.)
- Roache: CRE e FRE (MER em campos) para DF e G-U
- Mach3D/Navier: escoamento 3D, monoespécie, invíscido e laminar, sem reação, p=1, G-NO, ∀V, VF

Código computacional VonBraun 2016 e além

- Mach2D 8.0: 6.2 + 7.0, otimizado, turbulento 2 eq., radiação térmica
- Gibbs 2.0: 1.3 + ar + outros propelentes + Flame
- Nusselt: convecção 2D e 3D em canais
- Fourier: condução 2D e 3D em tubeiras
- Richardson 5.0: 4.0 + Interp1D e Interp2D para G-NU
- Thompson: gerador de malhas 2D e 3D
- Roache: CRE e FRE (MER em campos), DF/VF, G-NU
- Mach3D: versão 3D do Mach2D
- Galileu: trajetória 3D (6 graus lib.)