Simulação Numérica de Escoamento Reativo em Motor-Foguete com Refrigeração Regenerativa

Carlos Henrique Marchi (UFPR, gerente do projeto) Luciano Kiyoshi Araki (UFPR) Márcio Augusto Villela Pinto (UEPG) Cosmo Damião Santiago (UNIBRASIL) Fábio Alencar Schneider (UNICENP) Thiago Fabricius Konopka (UFPR)

Objetivos

- Implementação de códigos computacionais para solução de escoamento reativo em motores-foguete operando com o sistema H_2/O_2 .
- Obtenção de soluções numéricas de referência (*benchmarks*), com as respectivas estimativas do erro numérico.

Problema

Divisão do problema em três partes:

- Câmara-Tubeira: escoamento reativo, turbulento de gases na câmara e tubeira.
- Parede: condução de calor através da parede entre os gases de combustão e o fluido refrigerante.
- Canais: escoamento turbulento do fluido refrigerante nos canais em torno da tubeira.

Figura 1: Motor-foguete bipropelente com refrigeração regenerativa.

Figura 2: Detalhes dos canais de refrigeração.

Etapas

- 1: Reações químicas (Gibbs).
- 2: Escoamento unidimensional reativo sem refrigeração (Mach1D).
- 3: Escoamento unidimensional reativo com refrigeração regenerativa (RHG).
- 4: Escoamento bidimensional reativo sem refrigeração (Mach2D).

Metodologia

- Método dos Volumes Finitos.
- Funções de interpolação de segunda ordem.
- Arranjo co-localizado de variáveis.
- Formulação apropriada a qualquer regime de velocidades.
- Malhas estruturadas, não-ortogonais.
- Estimativa do erro numérico com o GCI.

Modelos físicos

Monogás com propriedades constantes

Monogás com propriedades variáveis

Escoamento congelado

Escoamento em equilíbrio

Escoamento com taxa finita de reação

Modelos químicos

Modelo	Número de reações	Número de espécies	Espécies envolvidas
0	0	3	H ₂ O, O ₂ , H ₂
1	1	3	H ₂ O, O ₂ , H ₂
2	2	4	H ₂ O, O ₂ , H ₂ , OH
3	4	6	H ₂ O, O ₂ , H ₂ , OH, O, H
4	4	6	H ₂ O, O ₂ , H ₂ , OH, O, H
5	8	6	H ₂ O, O ₂ , H ₂ , OH, O, H
7	8	6	H ₂ O, O ₂ , H ₂ , OH, O, H
10	6	8	$H_2O, O_2, H_2, OH, O, H, HO_2, H_2O_2$
9	18	8	H ₂ O, O ₂ , H ₂ , OH, O, H, HO ₂ , H ₂ O ₂

Estimativas de erros para temperatura (mod. monogás com propriedades constantes)

Modelo	C_d [adim.]
Analítico (R1)	1,0
Monogás, prop. constantes (R1)	$0,9999999 \pm 1.10^{-6}$
Monogás, prop. variáveis (R1)	$0,991754 \pm 1 \cdot 10^{-6}$
Monogás, prop. variáveis(R2)	$1,059739 \pm 1 \cdot 10^{-6}$
Esc. congelado – mod. 0	$1,059711 \pm 1 \cdot 10^{-6}$
Esc. congelado – mod. 1	$1,031887 \pm 1.10^{-6}$
Esc. congelado – mod. 2	$1,017664 \pm 1.10^{-6}$
Esc. congelado – mod. 3, 4, 5 e 7	$1,001086 \pm 1.10^{-6}$
Esc. congelado – mod. 9 e 10	$1,001094 \pm 1.10^{-6}$
CEA (esc. congelado)	1,000580
Esc. em equilíbrio – mod. 0	$1,059711 \pm 3 \cdot 10^{-6}$
Esc. em equilíbrio – mod. 1	$1,0190 \pm 1.10^{-4}$
Esc. em equilíbrio – mod. 2	$0,9986 \pm 1.10^{-4}$
Esc. em equilíbrio – mod. 3 e 4	$0,9782 \pm 1.10^{-4}$
Esc. em equilíbrio – mod. 10	$0,9782 \pm 1.10^{-4}$
CEA (esc. em equilíbrio)	0,977372
Taxa finita – mod. 31	$1,007717 \pm 2 \cdot 10^{-6}$
Taxa finita – mod 32	$1,006824 \pm 5 \cdot 10^{-6}$

F* [adim.] 1.0 $1,000000 \pm 1.10^{-6}$ $1,003224 \pm 1.10^{-6}$ $1,003224 \pm 1.10^{-6}$ $1,003224 \pm 1.10^{-6}$ $1,003341 \pm 1.10^{-6}$ $1,000191 \pm 1 \cdot 10^{-6}$ $0,998998 \pm 1.10^{-6}$ $0,998998 \pm 1.10^{-6}$ 0.998992 $1,003224 \pm 4.10^{-6}$ $1,00884 \pm 1.10^{-5}$ $1,010751 \pm 8 \cdot 10^{-6}$ 1.011582 ± 8.10^{-6} $1,01\overline{1587} \pm 8 \cdot 10^{-6}$ 1.011553 $1,01\overline{1741} \pm 1\cdot 10^{-6}$ 1.012647 ± 1.10^{-6}

 P_{ex} [Pa] 29.173.42 $29.173,3 \pm 2.10^{-1}$ $30.098.3 \pm 2 \cdot 10^{-1}$ $30.098,3 \pm 2.10^{-1}$ $30.098.6 \pm 2 \cdot 10^{-1}$ $28.915.0 \pm 2.10^{-1}$ $28.201,0\pm 2\cdot 10^{-1}$ $27.460,1\pm 2.10^{-1}$ $27.460,7 \pm 2.10^{-1}$ 27.448 $30.98,6 \pm 6 \cdot 10^{-1}$ 33.610 ± 1.10^{1} 35.290 ± 1.10^{11} 36.160 ± 2.10^{11} 36.170 ± 2.10^{11} 36.178 $31.804,9 \pm 4.10^{-1}$ $32.592,3 \pm 7.10^{-1}$

(R1): Rg = 526,97 J/kg K; (R2): Rg = 461,52543 84083019 J/kg K

Malha de 2560 volumes de controle

Modelo	<i>T_{ex}</i> [K]	u_{ex} [m/s]	M _{ex} [adim.]
Analítico (R1)	1712,7409	3316,7150	3,1928346
Monogás, prop. constantes (R1)	$1712,739 \pm 7 \cdot 10^{-3}$	$3316,717 \pm 7 \cdot 10^{-3}$	$3,19284 \pm 1.10^{-5}$
Monogás, prop. variáveis (R1)	$1802,338 \pm 7 \cdot 10^{-3}$	$3355,079 \pm 7 \cdot 10^{-3}$	$3,14424 \pm 1.10^{-5}$
Monogás, prop. variáveis(R2)	$1802,338 \pm 7 \cdot 10^{-3}$	$3139,835 \pm 7 \cdot 10^{-3}$	$3,14424 \pm 1.10^{-5}$
Esc. congelado – mod. 0	$1802,450 \pm 7 \cdot 10^{-3}$	$3139,920 \pm 7 \cdot 10^{-3}$	$3,14424 \pm 1.10^{-5}$
Esc. congelado – mod. 1	$1715,090 \pm 8 \cdot 10^{-3}$	$3218,531 \pm 7 \cdot 10^{-3}$	$3,18174 \pm 1.10^{-5}$
Esc. congelado – mod. 2	$1662,928 \pm 9 \cdot 10^{-3}$	$3259,770 \pm 7 \cdot 10^{-3}$	$3,20535 \pm 1.10^{-5}$
Esc. congelado – mod. 3, 4, 5 e 7	$1609,141 \pm 9 \cdot 10^{-3}$	$3309,743 \pm 7 \cdot 10^{-3}$	$3,23078 \pm 1.10^{-5}$
Esc. congelado – mod. 9 e 10	$1609,185 \pm 9 \cdot 10^{-3}$	$3309,720 \pm 7 \cdot 10^{-3}$	$3,23076 \pm 2 \cdot 10^{-5}$
CEA (esc. congelado)	1607,91	3311,4519	3,231
Esc. em equilíbrio – mod. 0	$1802,45 \pm 2 \cdot 10^{-2}$	$3139,92 \pm 2 \cdot 10^{-2}$	$3,14424 \pm 4 \cdot 10^{-5}$
Esc. em equilíbrio – mod. 1	$2169,9 \pm 3 \cdot 10^{-1}$	$3283,5 \pm 4 \cdot 10^{-1}$	$3,0009 \pm 6 \cdot 10^{-4}$
Esc. em equilíbrio – mod. 2	$2344,3 \pm 3 \cdot 10^{-1}$	$3356,9 \pm 5 \cdot 10^{-1}$	$2,9392 \pm 6 \cdot 10^{-4}$
Esc. em equilíbrio – mod. 3 e 4	$2459,8 \pm 2 \cdot 10^{-1}$	$3429,8 \pm 5 \cdot 10^{-1}$	$2,9147 \pm 6 \cdot 10^{-4}$
Esc. em equilíbrio – mod. 10	$2460,0\pm 2\cdot 10^{-1}$	$3429,8 \pm 5 \cdot 10^{-1}$	$2,9146 \pm 6 \cdot 10^{-4}$
CEA (esc. em equilíbrio)	2462,41	3432,7056	2,986
Taxa finita – mod. 31	$1915,20 \pm 4 \cdot 10^{-2}$	$3329,958 \pm 3 \cdot 10^{-3}$	$3,04829 \pm 2 \cdot 10^{-5}$
Taxa finita – mod 32	$1980,9 \pm 1 \cdot 10^{-1}$	$3335,89 \pm 1 \cdot 10^{-2}$	$3,01833 \pm 4.10^{-5}$

(R1): $Rg = 526,97 J/kg \cdot K$; (R2): $Rg = 461,5254384083019 J/kg \cdot K$

Malha de 2560 volumes de controle

Distribuição de temperaturas ao longo da tubeira

Distribuição de frações mássicas de H₂O ao longo da tubeira

Tempo de CPU

	Monogás, isentrópico		Esc.	Ese om oquilíbrio	Esc. com taxa finita	
Malha	Propriedades constantes	Propriedades variáveis	congelado (mod. 3)	(mod. 3)	mod. 31	Mod. 32
80 volumes	3,08 s	0,750 s	0,969 s	2,34 min	17,0 min	27,3 min
2560 volumes	2,07 min	3,02 min	2,66 min	1,98 dia	1,66 h	2,61 h
10240 volumes	56,9 min	1,65 h	1,49 h			

Sem efeitos de transferência de calor

Modelo	<i>T_{ex}</i> [K]	u_{ex} [m/s]	M _{ex} [adim.]
Analítico (R1)	1712,7409	3316,7150	3,1928346
Monogás – prop. Variáveis (R2)	1800 ± 7	3142 ± 6	$3,15 \pm 1.10^{-2}$
Esc. congelado – mod. 3, 4, 5 e 7	1606 ± 9	3312 ± 7	$3,24 \pm 1.10^{-2}$
Esc. congelado – mod. 9 e 10	1606 ± 9	3312 ± 7	$3,24 \pm 1.10^{-2}$
CEA (esc. congelado)	1607,91	3311,4519	3,231
Esc. em equilíbrio – mod. 3, 4, 5 e 7	$2461,2 \pm 3 \cdot 10^{-1}$	3427 ± 2	$2,911 \pm 2 \cdot 10^{-3}$
Esc. em equilíbrio – mod. 9 e 10	$2461,4 \pm 3 \cdot 10^{-1}$	3427 ± 2	$2,911 \pm 2 \cdot 10^{-3}$
CEA (esc. em equilíbrio)	2462,41	3432,7056	2,986
Esc. com taxa finita – mod. 31	$1910 \pm 1 \cdot 10^{1}$	3332 ± 6	$3,05 \pm 1.10^{-2}$
Esc. com taxa finita – mod. 32	$1980 \pm 1 \cdot 10^{1}$	3338 ± 6	$3,02 \pm 1.10^{-2}$
C	om efeitos de transferência	a de calor	
Model	T_{ex} [K]	u_{ex} [m/s]	M_{ex} [adim.]
Monogás – prop. Variáveis (R2)	1730 ± 7	3112 ± 6	$3,18 \pm 1 \cdot 10^{-2}$
Esc. congelado – mod. 3	1534 ± 9	3278 ± 7	$3,27 \pm 2 \cdot 10^{-2}$
Esc. congelado – mod. 10	1534 ± 9	3278 ± 7	$3,27 \pm 2 \cdot 10^{-2}$
Esc. em equilíbrio – mod. 3	$2425,4 \pm 8 \cdot 10^{-1}$	3409 ± 2	$2,922 \pm 2 \cdot 10^{-3}$
Esc. em equilíbrio – mod. 10	$2425,6 \pm 8 \cdot 10^{-1}$	3409 ± 2	$2,922 \pm 2 \cdot 10^{-3}$
Esc. com taxa finita – mod. 31	$1860 \pm 1 \cdot 10^{1}$	3315 ± 6	$3,08 \pm 1.10^{-2}$
Esc. com taxa finita – mod. 32	1924 ± 9	$3320 \pm 2 \cdot 10^{1}$	$3,05 \pm 1.10^{-2}$

Distribuição de 80 volumes

Distribuição de temperaturas ao longo da tubeira

Distribuição de temperaturas ao longo da parede da tubeira

Tempo de CPU

Modelo		Iterações para:		Itoraçãos	Tempo de
Físico	Químico	Escoamento reativo de gases	Refrigerante	globais	CPU
Monogás, prop. variáveis		6.000	1.000	20	23,4 s
Ese congolado	3	5.000	1.000	20	10,6 s
Esc. congetado	10	5.000	1.000	20	12,2 s
Ese om og vil(brie	3	15.000	1.000	20	1,79 h
Esc. em equinorio	10	15.000	1.000	20	3,49 h
Ess som toxo finite	31	5.000.000	1.000	5	1,06 dia
Esc. com taxa minta	32	4.000.000	1.000	5	20,0 h

Modelo 2D - Fluent

Malhas estudadas: 200x60, 100x30, 50x15.

Fonte: Taillander, J., *Efeito do modelo matemático sobre o escoamento em tubeira de motor-foguete*, TCC – Eng. Mecânica, UFPR.

Cd – comparação de modelos

Modelo	Cd
Tubeira Cos	senoidal
Analítico 1D	1,0
Prop. Constantes – 1D	1,000000 ± 1 ·10
Prop. Variáveis – 1D	0,991754 ± 1 · 10
Congelado – mod.3 – 1D	1,001086 ± 1 ·10
CEA congelado	1,000580
quilíbrio — mod. 3 — 1D	0,9782 ± 1 ·10 ⁻
CEA equilíbrio	0,977372
Fluent – invíscido – 2D	$0,989 \pm 3 \cdot 10^{-3}$
Fluent – laminar – 2D	$0,988 \pm 3 \cdot 10^{-3}$
luent – turbulento – 2D	$0,987 \pm \pm 5.10^{\circ}$
Klingel e Levine – 2D	0,974995
Tubeira de Back	x et al. (1965)
umérico constante – 2D	0,9826 ±2 ·10-
Numérico variável – 2D	0,9747 ±2 ·10 ⁻⁴
ongelado – mod. 3 – 2D	0,9837 ±2 ·10-
quilíbrio – mod. 3 – 2D	1,0161 ± 1 · 10
Klingel e Levine – 2D	0.983131