RELATÓRIO – ATIVIDADE #3

Autor: Eduardo Germer

Objetivos:

- Nova abordagem de estimativa inicial
- Valores de "Δt" ótimos com uso de MSI
- Critérios de convergência

Data: 18.Out.2012

Objetivo 1:

Além das opções de chute inicial usadas anteriormente (difusiva, advectiva e bilinear), foi desenvolvida outra que usa os resultados de uma malha anterior (grossa) e duas malhas anteriores (super grossa) à atual (fina).

Neste caso a sequência foi:

- ullet Obter a solução numérica convergida até o erro de máquina da malha super grossa ($\Phi_{ ext{SG}}$);
- ullet Refinar a malha (razão de refino: 2) e obter a solução numérica convergida até o erro de máquina da malha grossa ($\Phi_{\rm G}$);
- ullet Calcular a média aritmética ($\Phi_{\text{G-AVG}}$) das propriedades dos quatro volumes grossos, gerados a partir de cada volume da malha supergrossa, ou seja, este valor estará relacionado a cada volume "gerador" da malha supergrossa;
- Calcular a correção média C_{SG} = (Φ_{G-AVG} Φ_{G}) / 2^{PL} , onde "2" é a razão de refino e "PL" a ordem assintótica da aproximação usada (PL_{UDS} =1; PL_{CDS} =2);
- Gerar a malha fina (Φ_F) a partir da malha grossa (razão de refino: 2) e usar interpolação bilinear aplicado às propriedades relacionadas aos volumes da malha grossa (Φ_F) , e finalmente, aplicar a correção a estes valores:

$$\Phi_F = \Phi_F' - C_{SG}$$

Objetivo 2:

Obtenção de valores ótimos de "\Delta" utilizando o MSI na solução.

A definição dos outros parâmetros foi feita com base nas simulações feitas anteriormente, por todos os membros da equipe, usando o TDMA. Foi tomada a melhor simulação de cada um para cada malha, sendo realizada a simulação com MSI e a partir da melhor proposta o "Δt" foi ajustado.

As malhas analisadas foram 56 x 20 ; 112 x 40 ; 224 x 80 ; 448 x 160 com UDS e CDS.

A tabela 1 mostra os melhores valores de " Δ t" para simulação usando como condição inicial a solução 1D.

Tabela 1 – Valores ótimos de "Δt" com chute inical da solução 1D

Simul.	Cond.In.	nx2	ny2	beta1	beta2	dt1	dt2	imax	nitm_u	nitm_p	RAM	it	tcpu
A3-01	Sol.1D	56	20	0	0	3.5d-5	3.5d-5	6	2	2	2.84	241	1.5750
A3-02	Sol.1D	112	40	0	0	2.1d-5	2.1d-5	6	2	5	6.184	283	9.3750
A3-06	Sol.1D	224	80	0	0	9.7d-6	9.7d-6	5	2	2	18.5	706	74.7240
A3-11	Sol.1D	448	160	0	0	5.35d-6	5.35d-6	6	2	4	72.3	1453	869.0170
A3-16	Sol.1D	56	20	1	1	2.43d-5	2.43d-5	6	2	2	2.84	1451	9.1120
A3-17	Sol.1D	112	40	1	1	1.16d-5	1.16d-5	4	2	2	6.132	2138	47.4270
A3-21	Sol.1D	224	80	1	1	4.6d-6	4.6d-6	3	2	2	18.5	3825	356.8200
A3-26	Sol.1D	448	160	0	1	1d-6	1d-6	6	2	4	72	15415	6737.1930

A tabela 2 mostra os melhores valores de " Δ t" para simulação usando como condição inicial a solução da malha grossa, distribuindo os valores na malha fina com a abordagem difusiva. Pode-se verificar que os tempos de processamento foram melhores que da solução 1D quando usou-se o esquema UDS nas malhas 112 x 40 e 448 x 160. Porém, esta melhora não foi significativa, tendo sido no máximo 15% para a malha mais fina (448 x 160).

Tabela 2 – Valores ótimos de "Δt" com chute inical da malha grossa/difusivo

Simul.	Cond.In.	nx2	ny2	beta1	beta2	dt1	dt2	imax	nitm_u	nitm_p	RAM	it	tcpu
A3-03	Difusivo	112	40	0	0	2.072d-5	2.072d-5	6	2	5	6.184	257	8.845
A3-07	Difusivo	224	80	0	0	9.6d-6	9.6d-6	5	2	2	18.5	741	86.388
A3-12	Difusivo	448	160	0	0	5.36d-6	5.36d-6	6	2	4	72.3	1329	743.093
A3-18	Difusivo	112	40	1	1	1.175d-5	1.175d-5	4	2	2	6.132	2304	51.402
A3-22	Difusivo	224	80	1	1	4.65d-6	4.65d-6	3	2	2	18.5	4138	372.061
A3-27	Difusivo	448	160	0	1	1d-6	1d-6	6	2	4	-	-	-

A tabela 3 mostra os melhores valores de "Δt" para simulação usando como condição inicial a solução da malha grossa, distribuindo os valores na malha fina com o esquema advectivo.

Assim como ocorreu para o TDMA, não houve parâmetro que possibilitasse seu uso combinado com o CDS.

A melhora no tempo de processamento ocorreu somente nas malhas 112 x 40 e 448 x 160, tendo reduzido no máximo 13% do tempo em relação a utilização da solução 1D como chute inicial.

Tabela 3 – Valores ótimos de "Δt" com chute inical da malha grossa/advectivo

Simul.	Cond.In.	nx2	ny2	beta1	beta2	dt1	dt2	imax	nitm_u	nitm_p	RAM	it	tcpu
A3-04	Advectivo	112	40	0	0	2.073d-5	2.073d-5	6	2	5	6.184	257	8.361
A3-08	Advectivo	224	80	0	0	9.65d-6	9.65d-6	5	2	2	18.5	757	82.696
A3-13	Advectivo	448	160	0	0	5.34d-6	5.34d-6	6	2	4	72.3	1470	758.759
A3-19	Advectivo	112	40	1	1	-	-	4	2	2	-	NC	-
A3-23	Advectivo	224	80	1	1	-	-	3	2	2	-	NC	-
A3-28	Advectivo	448	160	0	1	-	-	5	2	2	-	NC	-

A tabela 4 mostra os melhores valores de "Δt" para simulação usando como condição inicial a solução da malha grossa, distribuindo os valores na malha fina com o esquema bilinear.

Assim como ocorreu para o TDMA, não houve parâmetro que possibilitasse seu uso combinado com o CDS.

Houve melhoria do tempo de processamento para todas as malhas analisadas, chegando a 18% na malha mais fina (448×160).

Tabela 4 – Valores ótimos de "Δt" com chute inical da malha grossa/bilinear

Simul.	Cond.In.	nx2	ny2	beta1	beta2	dt1	dt2	imax	nitm_u	nitm_p	RAM	it	tcpu
A3-05	Bilinear	112	40	0	0	2.071d-5	2.071d-5	6	2	5	6.184	271	8.986
A3-09	Bilinear	224	80	0	0	9.7d-6	9.7d-6	5	2	2	18.5	752	82.79
A3-14	Bilinear	448	160	0	0	5.33d-6	5.33d-6	6	2	4	72.3	1232	713.966
A3-20	Bilinear	112	40	1	1	-	-	4	2	2	-	NC	-
A3-24	Bilinear	224	80	1	1	-	-	3	2	2	-	NC	-
A3-29	Bilinear	448	160	0	1	-	-	6	2	4	-	NC	-

A tabela 5 mostra os melhores valores de "Δt" para simulação usando como condição inicial a solução da malha grossa, distribuindo os valores na malha fina com a nova abordagem, chamada ER.

O esquema apresentou redução de 9% no tempo de processamento para as malhas de 224 x 80, tanto usando o UDS quanto usando o CDS. A redução chegou a 22% na malha fina (448 x 160) usando o UDS. A aplicação do CDS na malha mais fina não foi finalizada.

Tabela 5 – Valores ótimos de "Δt" com chute inical da malha grossa/ER

Simul.	Cond.In.	nx2	ny2	beta1	beta2	dt1	dt2	imax	nitm_u	nitm_p	RAM	it	tcpu
A3-10	ER	224	80	0	0	9.67d-6	9.67d-6	5	2	2	18.5	633	68.422
A3-15	ER	448	160	0	0	5.33d-6	5.33d-6	6	2	4	72.3	1297	679.477
A3-25	ER	224	80	1	1	4.65d-6	4.65d-6	3	2	2	18.5	3542	325.457
A3-30	ER	448	160	0	1	1d-6	1d-6	6	2	4			

Apesar da melhora no tempo de processamento, esta nova abordagem para chute inicial também tem influência sobre a solução numérica final. Apesar das normas tenderem ao erro de máquina, a solução numérica não parece adequada, conforme pode-se verificar nas Figs. 1, 2 e 3 a seguir.

A Fig.1 mostra o valor de "u" inicial usando os valores da malha grossa e o esquema ER.

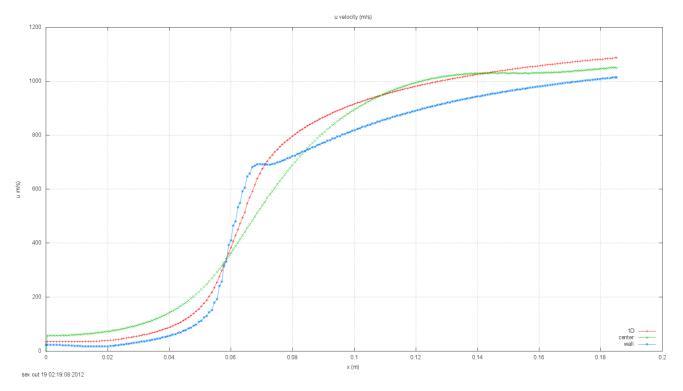


Figura 1 - Chute inicial de "u" com o esquema ER

A variável verificada foi somente a velocidade "u", mas é possível observar, comparando as Figs. 2 e 3, que a solução numérica quando usado o chute inicial com o esquema ER (Fig. 2) apresenta regiões de discordância com a solução numérica obtida com o chute inicial da solução 1D (Fig.3).

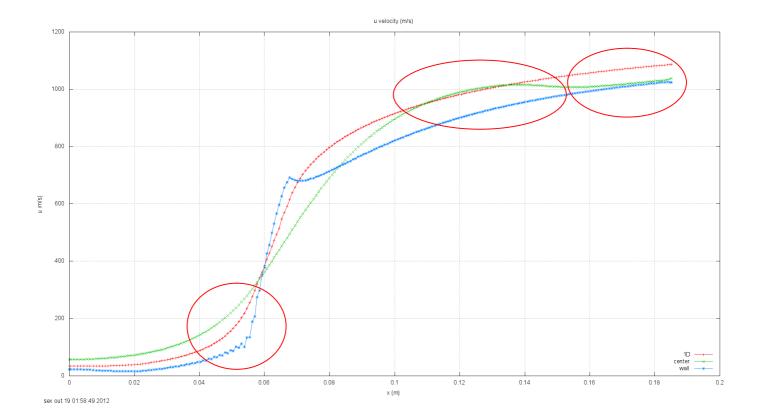


Figura 2 – Solução de "u" a partir do chute inicial com o esquema ER/UDS (malha 224 x 80 - UDS)

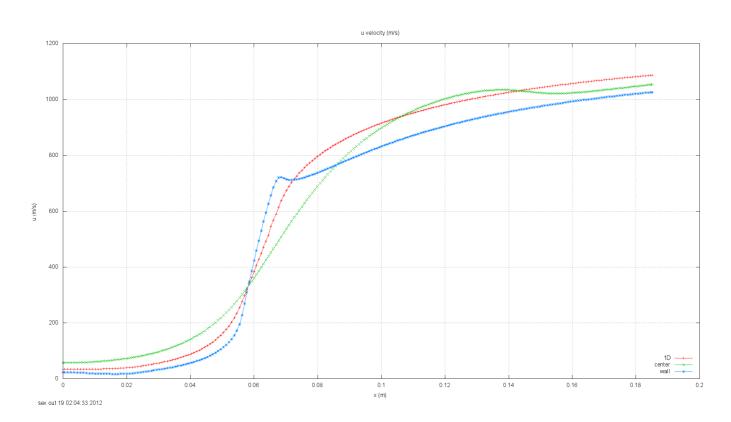


Figura 3 – Solução de "u" a partir do chute inicial com a solução 1D (malha 224 x 80 – UDS)

Objetivo 3:

Foram acompanhados quatro possíveis critérios de parada do processo iterativo, que são:

• Critério I:

$$CR_I = Fd_i^* - Fd_{i-1}^*$$

• Critério II:

Este é o critério atual usado no programa Mach2D-5p8.

$$CR_{II}$$
 = norma / norma1

• Critério III:

Este critério foi usado para verificar a efetividade das diferentes condições iniciais. Então a normalização foi feita em relação à "norma1" se fosse resolvido com o chute inicial da solução 1D.

• Critério IV:

Este critério normaliza com o termo fonte.

Resultados:

Todas as simulações tiveram como critério de parada o critério I. O problema é que ao se aproximar do erro de máquina, este padrão apresenta uma série de "zeros", então foi utilizado o momento do primeiro "zero" para parada do processo iterativo. Neste caso, os valores das tabelas a seguir (coluna do critério I) mostram o primeiro valor anterior ao "zero" na coluna que apresenta este critério.

Pôde-se verificar que os critérios I e IV seguem basicamente a mesma ordem, sendo que geralmente o IV está uma ordem acima de I. Os critérios II e III também seguem ordens parecidas, sendo que o III está geralmente uma ordem abaixo.

Tabela 6 – Solução numérica com chute inicial solução 1D

Simul.	Fd*(i)-Fd*(i-1)	Norma/Norma1	Norma/Norma1 _{1D}	Norma/Norma _b
A3-01	8.0108576496430000E-16	4.7257837302460100E-13	NA	2.9927659875238200E-15
A3-02	8.0108576496430000E-16	7.2465986814644500E-13	NA	1.3502407211776000E-14
A3-06	1.4686572357678800E-14	7.5061656037702000E-13	NA	2.2375622928301100E-14
A3-11	1.3351429416071600E-15	5.3965795148557800E-13	NA	3.4857641928181700E-15
A3-16	2.0027144124107500E-15	5.0042521973492000E-12	NA	9.9124538067020600E-14
A3-17	1.8558486888339600E-14	7.1781765613994400E-11	NA	2.1650758176034900E-12
A3-21	2.5367715890536100E-15	1.5553687900269500E-10	NA	9.8256389093311600E-12
A3-26	1.6422258181768100E-14	1.5046237420314700E-11	NA	2.8735780279214200E-14

Tabela 7 – Solução numérica com chute inicial solução malha grossa/difusivo

Simul.	Fd*(i)-Fd*(i-1)	Norma/Norma1	Norma/Norma1 _{1D}	Norma/Norma _b
A3-03	6.1416575313929600E-15	2.4508075746892200E-11	4.5257653714550300E-12	1.1235473183272300E-12
A3-07	2.0027144124107500E-15	2.8222704693419500E-12	3.4297499236315900E-13	4.4450014757271200E-15
A3-12	3.7384002365000600E-15	1.4024719308080600E-11	1.2344162222405900E-12	1.3392697506384800E-13
A3-18	3.2577487775214800E-14	4.7899271255674100E-09	4.7978804040140300E-10	6.4713797124690700E-12
A3-22	5.5942489253340200E-14	3.0674218740791500E-08	1.3205652322369900E-09	8.9765351336970500E-11
A3-27	-	-	-	-

Tabela 8 – Solução numérica com chute inicial solução malha grossa/advectivo

Simul.	Fd*(i)-Fd*(i-1)	Norma/Norma1	Norma/Norma1 _{1D}	Norma/Norma _b
A3-04	7.3432861788394100E-15	1.6650240207286700E-10	3.5551331468739400E-11	9.8151916433273800E-12
A3-08	1.3351429416071600E-15	2.5082252360199900E-12	3.4355261720978000E-13	3.6549042798006800E-15
A3-13	5.3405717664286600E-16	4.8813545074985900E-12	4.6780647035702200E-13	8.3710694738418100E-15
A3-19	-	-	-	-
A3-23	-	-	-	-
A3-28	-	-	-	-

Tabela 9 – Solução numérica com chute inicial solução malha grossa/bilinear

Simul.	Fd*(i)-Fd*(i-1)	Norma/Norma1	Norma/Normal _{1D}	Norma/Norma _b
A3-05	2.6702858832143300E-16	7.2755271059915300E-11	1.5146932713011400E-11	4.2774798322444000E-12
A3-09	2.1362287065714600E-15	2.6501029698111700E-12	3.2907258613799800E-13	2.6268266639938200E-15
A3-14	2.2029858536518200E-14	2.3646177994537200E-11	1.7285476051845300E-12	3.4697496825789800E-14
A3-20	-	-	-	-
A3-24	-	-	-	-
A3-29	-	-	-	-

Tabela 10 – Solução numérica com chute inicial solução malha grossa/ER

Simul.	Fd*(i)-Fd*(i-1)	Norma/Norma1	Norma/Norma1 _{1D}	Norma/Norma _b
A3-10	2.8038001773750500E-15	7.2394388483100400E-12	6.1698406192954100E-13	5.8046283688507600E-15
A3-15	1.4686572357678800E-15	2.0012401900723000E-11	6.9355779507330700E-13	3.4222733471922100E-15
A3-25	7.3432861788394100E-15	9.3131724149665800E-10	9.3131724149665800E-10	6.3956274397996400E-11
A3-30	-	-	-	-

Hardware e Software das simulações:

Computador: HP Pavilion dv5-1260, 4GB RAM, 64bit, AMD Turion X-2 Dual Core RM-74, 2.2 GHz

Sistema operacional: Windows 7

Compilador: Intel Visual Fortran 11.1.065 [Intel 64].

Programa: Mach2D-5p8

<u>Dados constantes nas simulações</u>: kg=1; a1=1.d-6; coord=1; Rg=2.869E+02; gamma=1.4d0; p0=1725068.d0; T0=833.33d0; pr=101325.d0; g0=9.80665d0; modvis=0; modtur=0; ccTw=0; reload=0; tolerance=1d-10; wbkp=50000; wlf=1; sem_a=1; sem_g=1; w_g=1; w_cam=1; vertela=0; num=1; itb1=itb2=1000; it1=it2=5; itmax=50000. Obs. na malha 448x160 usando CDS itb1=500 e itb2=1000

Outros resultados das simulações:

Simul.	Cq	Fd*
A3-01	1.0470435336622600E+00	9.7707596984436100E-01
A3-02	1.0169458810463100E+00	9.7209634659142900E-01
A3-06	1.0008334466604300E+00	9.7022915351237300E-01
A3-11	9.9147375920823200E-01	9.6869090182349900E-01
A3-16	9.7990859385335500E-01	9.6485915005563900E-01
A3-17	9.8080206224355100E-01	9.6608998727978900E-01
A3-21	9.8106788348614200E-01	9.6659818365025900E-01
A3-26	9.8123819565285300E-01	9.6680690564918400E-01

Simul.	Cd	Fd*
A3-03	1.0169459831579200E+00	9.7795947919954400E-01
A3-07	1.0008341451624500E+00	9.7278005454152600E-01
A3-12	9.9147303685547000E-01	9.6984311360412400E-01
A3-18	9.8081327630248300E-01	9.6610104173886100E-01
A3-22	9.8107404522482500E-01	9.6660417425363200E-01
A3-27		

Simul.	Cq	Fd*
A3-04	1.0297549624999300E+00	9.9384677742205100E-01
A3-08	1.0058213190804600E+00	9.7930980655446600E-01
A3-13	9.9323249163677100E-01	9.7241051020779600E-01
A3-19	-	-
A3-23	-	-
A3-28	-	-

Simul.	Cq	Fd*
A3-05	1.0175089416915800E+00	9.7965212570787000E-01
A3-09	1.0012048259892100E+00	9.7372040742516300E-01
A3-14	9.9162770876619500E-01	9.7028848276279600E-01
A3-20	-	-
A3-24	-	-
A3-29	-	-

Simul.	Cq	Fd*
A3-10	1.0007587657511000E+00	9.6797024449301000E-01
A3-15	9.9161797903487200E-01	9.6755446815383700E-01
A3-25	9.8106792986058000E-01	9.6659824982097900E-01
A3-30		